Science.gov

Sample records for membrane-bound torpedo acetylcholine

  1. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  2. Binding of rabies virus to purified Torpedo acetylcholine receptor.

    PubMed

    Lentz, T L; Benson, R J; Klimowicz, D; Wilson, P T; Hawrot, E

    1986-12-01

    The binding of 125I- and 35S-labeled rabies virus (CVS strain) to affinity-purified acetylcholine receptor from Torpedo electric organ was demonstrated. The binding of rabies virus to the acetylcholine receptor increased with increasing receptor concentration, was dependent on the pH of the incubation medium, and was saturable with increasing virus concentration. Binding of radioactively labeled virus was effectively competed by unlabeled homologous virus particles. Binding of 35S-labeled rabies virus to the AChR was inhibited up to 50% by alpha-bungarotoxin and up to 30% by (+)-tubocurarine but was not affected by atropine. These results demonstrate direct binding of rabies virus to a well-defined neurotransmitter receptor, namely the acetylcholine receptor and indicate that at least a portion of the virus interaction occurs near the acetylcholine binding site on the receptor. These findings support the hypothesis that the acetylcholine receptor may serve as a rabies virus receptor in vivo.

  3. In vitro selection of RNA molecules that displace cocaine from the membrane-bound nicotinic acetylcholine receptor.

    PubMed

    Ulrich, H; Ippolito, J E; Pagán, O R; Eterović, V A; Hann, R M; Shi, H; Lis, J T; Eldefrawi, M E; Hess, G P

    1998-11-24

    The nicotinic acetylcholine receptor (AChR) controls signal transmission between cells in the nervous system. Abused drugs such as cocaine inhibit this receptor. Transient kinetic investigations indicate that inhibitors decrease the channel-opening equilibrium constant [Hess, G. P. & Grewer, C. (1998) Methods Enzymol. 291, 443-473]. Can compounds be found that compete with inhibitors for their binding site but do not change the channel-opening equilibrium? The systematic evolution of RNA ligands by exponential enrichment methodology and the AChR in Torpedo californica electroplax membranes were used to find RNAs that can displace inhibitors from the receptor. The selection of RNA ligands was carried out in two consecutive steps: (i) a gel-shift selection of high-affinity ligands bound to the AChR in the electroplax membrane, and (ii) subsequent use of nitrocellulose filters to which both the membrane-bound receptor and RNAs bind strongly, but from which the desired RNA can be displaced from the receptor by a high-affinity AChR inhibitor, phencyclidine. After nine selection rounds, two classes of RNA molecules that bind to the AChR with nanomolar affinities were isolated and sequenced. Both classes of RNA molecules are displaced by phencyclidine and cocaine from their binding site on the AChR. Class I molecules are potent inhibitors of AChR activity in BC3H1 muscle cells, as determined by using the whole-cell current-recording technique. Class II molecules, although competing with AChR inhibitors, do not affect receptor activity in this assay; such compounds or derivatives may be useful for alleviating the toxicity experienced by millions of addicts.

  4. Development of the electromotor system of Torpedo marmorata: distribution of extracellular matrix and cytoskeletal components during acetylcholine receptor focalization.

    PubMed

    Richardson, G P; Fiedler, W; Fox, G Q

    1987-03-01

    A combination of direct fluorescence and indirect immunofluorescence microscopy has been used to compare the distribution of the acetylcholine receptor with the distribution of major cytoskeletal and extracellular matrix components during electrocyte differentiation in the electric organs of Torpedo marmorata. Laminin, fibronectin and extracellular matrix proteoglycan are always more extensively distributed around the differentiating cell than the acetylcholine receptor-rich patch that forms on the ventral surface of the cell. The distribution of acetylcholinesterase within the ventral surface of the differentiating electrocyte closely resembles the distribution of the acetylcholine receptor. Areas of apparently high acetylcholine receptor density within the ventrally forming acetylcholine receptor-rich patch are always areas of apparently high extracellular matrix proteoglycan density but are not always areas of high laminin or fibronectin density. Desmin levels appear to increase at the onset of differentiation and desmin initially accumulates in the ventral pole of each myotube as it begins to form an electrocyte. During differentiation F-actin-positive filament bundles are observed that extend from the nuclei down to the ventrally forming acetylcholine receptor-rich patch. Most filament bundles terminate in the acetylcholine receptor-rich region of the cell membrane. Electron-microscopic autoradiography suggests that the filament bundles attach to the membrane at sites where small acetylcholine receptor clusters are found. The results of this study suggest that, out of the four extracellular matrix components studied, only the distribution of acetylcholinesterase (which may be both matrix- and membrane-bound at this stage) closely parallels that of the acetylcholine receptor, and that F-actin filament bundles terminate in a region of the cell that is becoming an area of high acetylcholine receptor density.

  5. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    SciTech Connect

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced /sup 155/Eu:/sup 3 +/ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor.

  6. Effect of opioid peptides on electrically evoked acetylcholine release from Torpedo electromotor neurons.

    PubMed

    Oron, L; Sarne, Y; Michaelson, D M

    1991-04-29

    The opioid peptide dynorphin A(1-8) (1 micron) increased acetylcholine release from the Torpedo electric organ by approximately twofold. This effect was reversed by the opiate antagonist naloxone. The effect of Dyn A(1-8) on acetylcholine release was found to vary in magnitude with the seasons of the year, with maximal enhancement being observed in the summer and none in winter. Dynorphin B, methionine-enkephalin and leucine-enkephalin also increased acetylcholine release and showed similar seasonal variations. These findings suggest that acetylcholine release from Torpedo electromotor neurons is regulated by opiate receptors. The physiological significance of these observations is discussed in view of the previous findings that the Torpedo neurons contain an endogenous enkephalin-like peptide.

  7. Nonopioid effect of morphine on electrically evoked acetylcholine release from Torpedo electromotor neurons.

    PubMed

    Oron, L; Sarne, Y; Michaelson, D M

    1992-02-01

    The release of acetylcholine from Torpedo electric organ slices following their electrical stimulation was modulated by morphine, by the muscarinic antagonist atropine, and by the nicotinic antagonist tubocurarine. Addition of either atropine or tubocurarine in the presence of the acetylcholinesterase inhibitor phospholine iodide enhanced acetylcholine release. The effects of the two antagonists were additive, a result suggesting that the secreted acetylcholine regulates its own release by activating both muscarinic and nicotinic cholinergic receptors and that these receptors inhibit acetylcholine release by different mechanisms. The effects of opiates on acetylcholine release were examined under conditions in which the cholinergic modulation of release is blocked, i.e., in the presence of atropine and tubocurarine. These experiments revealed that electrically evoked release of acetylcholine is blocked by the opiate agonists morphine and levorphanol. However, the inhibitory effect of morphine on acetylcholine release was not reversed by the opioid antagonist naloxone. Furthermore, dextrorphan, the nonopioid stereoisomer of levorphanol, had the same inhibitory effect as its opioid counterpart. These findings suggest that the effects of opiates on electrically evoked release of acetylcholine are not mediated by opioid receptors. The possible mechanisms underlying these nonopioid effects of morphine and levorphanol are discussed.

  8. Specific Stimulated Uptake of Acetylcholine by Torpedo Electric Organ Synaptic Vesicles

    NASA Astrophysics Data System (ADS)

    Parsons, Stanley M.; Koenigsberger, Robert

    1980-10-01

    The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to [14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3 about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicles were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group.

  9. Incorporation of acetylcholine receptors and Cl- channels in Xenopus oocytes injected with Torpedo electroplaque membranes.

    PubMed Central

    Marsal, J; Tigyi, G; Miledi, R

    1995-01-01

    A method was developed to transplant assembled nicotinic acetylcholine receptors (AcChoRs) and Cl- channels from the electric organ of Torpedo to the membrane of Xenopus oocytes. Membrane vesicles from Torpedo electroplaques were injected into the oocytes and, within a few hours, the oocyte membrane acquired AcChoRs and Cl- channels. The mechanism of expression of these receptors and channels is very different from that which follows the injection of mRNA, since the appearance of receptors after membrane injection does not require de novo protein synthesis or N-glycosylation. This, and other controls, indicate that the foreign receptor-bearing membranes fuse with the oocyte membrane and cause the appearance of functional receptors and channels. All this makes the Xenopus oocyte an even more powerful tool for studies of the structure and function of membrane proteins. PMID:7761478

  10. Structural characterization of the main immunogenic region of the Torpedo acetylcholine receptor.

    PubMed

    Morell, Stuart W; Trinh, Vu B; Gudipati, Eswari; Friend, Alexander; Page, Nelson A; Agius, Mark A; Richman, David P; Fairclough, Robert H

    2014-03-01

    To develop antigen-specific immunotherapies for autoimmune diseases, knowledge of the molecular structure of targeted immunological hotspots will guide the production of reagents to inhibit and halt production of antigen specific attack agents. To this end we have identified three noncontiguous segments of the Torpedo nicotinic acetylcholine receptor (AChR) α-subunit that contribute to the conformationally sensitive immunological hotspot on the AChR termed the main immunogenic region (MIR): α(1-12), α(65-79), and α(110-115). This region is the target of greater than 50% of the anti-AChR Abs in serum from patients with myasthenia gravis (MG) and animals with experimental autoimmune myasthenia gravis (EAMG). Many monoclonal antibodies (mAbs) raised in one species against an electric organ AChR cross react with the neuromuscular AChR MIR in several species. Probing the Torpedo AChR α-subunit with mAb 132A, a disease inducing anti-MIR mAb raised against the Torpedo AChR, we have determined that two of the three MIR segments, α(1-12) and α(65-79), form a complex providing the signature components recognized by mAb 132A. These two segments straddle a third, α(110-115), that seems not to contribute specific side chains for 132A recognition, but is necessary for optimum antibody binding. This third segment appears to form a foundation upon which the three-dimensional 132A epitope is anchored.

  11. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    SciTech Connect

    Blanton, M.P.; Wang, H.H. )

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.

  12. Subcellular localization of creatine kinase in Torpedo electrocytes: association with acetylcholine receptor-rich membranes

    PubMed Central

    1985-01-01

    Creatine kinase (CK, EC 2.7.3.2) has recently been identified as the intermediate isoelectric point species (pl 6.5-6.8) of the Mr 40,000- 43,000 nonreceptor, peripheral v-proteins in Torpedo marmorata acetylcholine receptor-rich membranes (Barrantes, F. J., G. Mieskes, and T. Wallimann, 1983, Proc. Natl. Acad. Sci. USA, 80: 5440-5444). In the present study, this finding is substantiated at the cellular and subcellular level of the T. marmorata electric organ by immunofluorescence and by protein A-gold labeling of either ultrathin cryosections of electrocytes or purified receptor-membrane vesicles that use subunit-specific anti-chicken creatine kinase antibodies. The muscle form of the kinase, on the one hand, is present throughout the entire T. marmorata electrocyte except in the nuclei. The brain form of the kinase, on the other hand, is predominantly located on the ventral, innervated face of the electrocyte, where it is closely associated with both surfaces of the postsynaptic membrane, and secondarily in the synaptic vesicles at the presynaptic terminal. Labeling of the noninnervated dorsal membrane is observed at the invaginated sac system. In the case of purified acetylcholine receptor-rich membranes, antibodies specific for chicken B-CK label only one face of the isolated vesicles. No immunoreaction is observed with anti-chicken M-CK antibodies. A discussion follows on the possible implications of these localizations of creatine kinase in connection with the function of the acetylcholine receptor at the postsynaptic membrane, the Na/K ATPase at the dorsal electrocyte membrane, and the ATP-dependent transmitter release at the nerve ending. PMID:3884630

  13. Botulinum toxin inhibits quantal acetylcholine release and energy metabolism in the Torpedo electric organ.

    PubMed Central

    Dunant, Y; Esquerda, J E; Loctin, F; Marsal, J; Muller, D

    1987-01-01

    1. Type A Botulinum toxin (BoTX) blocked nerve-electroplaque transmission in small fragments of Torpedo marmorata electric organ incubated in vitro. The effect was observed either with the crystalline toxin complex (associated with haemagglutinin) or with the purified neurotoxin (molecular weight approximately 150,000). 2. The quantal content of the evoked post-synaptic response was reduced by BoTX but the quantum size remained unchanged till complete blockade of the evoked response. 3. Spontaneous electroplaque potentials were composed of two populations: one with a bell-shaped amplitude distribution (miniature potentials or quanta) and a population of small events with a skewed distribution (subminiatures). In BoTX-poisoned tissue, the bell-distributed miniatures progressively disappeared, but the subminiatures kept on occurring. Occasionally, larger spontaneous potentials with a slow time course were recorded; they were also BoTX resistant. 4. A biochemical assay showed that evoked acetylcholine (ACh) release was impaired by BoTX. During the period when evoked transmission was blocked, spontaneous ACh release transiently increased. 5. At the time of transmission blockade, there was no significant change of ACh content, of ACh turnover, of ACh repartition in the vesicle-bound and free compartments, or of the number of synaptic vesicles. 6. The amount of ATP was reduced to 50% by BoTX, and that of creatine phosphate (CrP) to less than 20%. The ATP-CrP-converting enzyme, creatine kinase, was inhibited in BoTX-poisoned tissue. 7. Thus, the electrophysiological effects of BoTX are very similar at the nerve-electroplaque and the neuromuscular junctions. The present work suggests in addition that suppression of quantal release by BoTX is related to marked alterations of the energy metabolism in the tissue. Images Plate 1 PMID:3656169

  14. Tryptophan and cystein residues of the acetylcholine receptors of Torpedo species. Relationship to binding of cholinergic ligands.

    PubMed

    Eldefrawi, M E; Eldefrawi, A T; Wilson, D B

    1975-09-23

    Several methods were used to analyze for tryptophan in the acetylcholine (ACh) receptors purified from the electric organs of the electric rays, Torpedo californica and Torpedo marmorata. The best value of tryptophan was 2.4 mol %. When excited at 290 nm, both receptors fluoresced with a maximum at 336, but there was no change in the fluorescence emission spectra upon binding of carbamylcholine, d-tubocurarine, ACh, or decamethonium. The free SH content of the Torpedo receptors varied in different preparations, and was highest in that purified from fresh T. californica using deaerated solutions and dialysis under nitrogen, and lowest in that prepared from the aged lyophilized membranes of T. marmorata. The maximum free SH content was 20 nmol/mg of protein or 0.22 mol %, equal to at most 18% of the total cysteic acid residues. Reaction of either 33% or of all the SH residues with p-chloromercuribenzoate reduced maximum ACh binding to the pure receptor prepared from fresh T. californica by only 23%.

  15. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    SciTech Connect

    Dwyer, B.P. )

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digests of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.

  16. Separate fractions of mRNA from Torpedo electric organ induce chloride channels and acetylcholine receptors in Xenopus oocytes.

    PubMed Central

    Sumikawa, K; Parker, I; Amano, T; Miledi, R

    1984-01-01

    Poly(A)+ mRNA extracted from the electric organ of Torpedo was fractionated by sucrose density gradient centrifugation. After injection into Xenopus oocytes one mRNA fraction induced the appearance of chloride channels in the oocyte membrane. Many of these channels were normally open, and the ensuing chloride current kept the resting potential of injected oocytes close to the chloride equilibrium potential. When the membrane was hyperpolarized, the chloride current was reduced. A separate fraction of mRNA induced the incorporation of acetylcholine receptors into the oocyte membrane. When translated in a cell-free system this fraction directed the synthesis of the alpha, beta, gamma, and delta subunits of the acetylcholine receptor. In contrast, the mRNA fraction that induced the chloride channels caused the synthesis of the delta subunit, a very small amount of alpha, and no detectable beta or gamma subunits. This suggests that the size of the mRNA coding for the chloride channel is similar to the preponderant species of mRNA coding for the delta subunit of the acetylcholine receptor. Images Fig. 1. PMID:6094179

  17. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells

    PubMed Central

    1984-01-01

    The synaptic portion of a muscle fiber's basal lamina sheath has molecules tightly bound to it that cause aggregation of acetylcholine receptors (AChRs) on regenerating myofibers. Since basal lamina and other extracellular matrix constituents are insoluble in isotonic saline and detergent solutions, insoluble detergent-extracted fractions of tissues receiving cholinergic input may provide an enriched source of the AChR-aggregating molecules for detailed characterization. Here we demonstrate that such an insoluble fraction from Torpedo electric organ, a tissue with a high concentration of cholinergic synapses, causes AChRs on cultured chick muscle cells to aggregate. We have partially characterized the insoluble fraction, examined the response of muscle cells to it, and devised ways of extracting the active components with a view toward purifying them and learning whether they are similar to those in the basal lamina at the neuromuscular junction. The insoluble fraction from the electric organ was rich in extracellular matrix constituents; it contained structures resembling basal lamina sheaths and had a high density of collagen fibrils. It caused a 3- to 20-fold increase in the number of AChR clusters on cultured myotubes without significantly affecting the number or size of the myotubes. The increase was first seen 2-4 h after the fraction was added to cultures and it was maximal by 24 h. The AChR-aggregating effect was dose dependent and was due, at least in part, to lateral migration of AChRs present in the muscle cell plasma membrane at the time the fraction was applied. Activity was destroyed by heat and by trypsin. The active component(s) was extracted from the insoluble fraction with high ionic strength or pH 5.5 buffers. The extracts increased the number of AChR clusters on cultured myotubes without affecting the number or degradation rate of surface AChRs. Antiserum against the solubilized material blocked its effect on AChR distribution and bound to the

  18. A Raman spectroscopic investigation of the lipid state in acetylcholine receptor-rich membranes from Torpedo marmorata.

    PubMed Central

    Aslanian, D; Négrerie, M

    1985-01-01

    The lipid state in acetylcholine receptor (AcChR)-rich membranes purified from electric organ of Torpedo marmorata was studied in the temperature interval from 0 degrees C to 35 degrees C using the (C-H) stretching and (C-C) skeletal optical vibrations. The Raman spectra of AcChR-rich membranes, recorded immediately after preparation of the samples, indicate that the lipids are in a predominant triclinic crystalline lattice and do not undergo a phase transition when the temperature increases up to 35 degrees C. However, the polar groups of the lipids appear subject to temperature-induced variations. After extraction of 43-kd and other non-receptor proteins, spectra indicate an order-disorder phase transition of lipids at approximately 21 degrees C. This transition appears less cooperative than the transition of the membrane lipid extract. The role of the proteins in preservation of the crystalline state of lipids in AcChR-rich membranes is discussed. PMID:4018037

  19. Change in state of phosphorylation of acetylcholine receptor during maturation of the electromotor synapse in Torpedo marmorata electric organ.

    PubMed

    Saitoh, T; Changeux, J P

    1981-07-01

    Two populations of membrane fragments, both rich in acetylcholine receptor (AcChoR), appeared during subcellular fractionation by ultracentrifugation of neonatal Torpedo marmorata electric organs. One of these equilibrated at 38.5% (wt/wt) sucrose, as did AcChoR-rich membranes from adult fish; the other equilibrated at 36.8% sucrose. AcChoR purified from these light membrane fractions gave the same subunit profile as adult AcChoR (after polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate) but was more susceptible to heat inactivation and focused at an isoelectric point more alkaline by 0.1 pH unit. Treatment of adult AcChoR with Escherichia coli alkaline phosphatase decreased its thermal stability and shifted its isoelectric point towards alkaline pH. However, identical treatment did not affect AcChoR purified from neonatal light membrane fractions. The gamma and delta chains of AcChoR can be phosphorylated in vitro by endogenous protein kinases, which copurify with AcChoR-rich membranes. Treatment of AcChoR from neonatal light membranes by E. coli alkaline phosphatase enhanced the phosphorylation of the gamma and delta chains but did so to a smaller extent than in the case of adult AcChoR. In conclusion, adult AcChoR appears to be more phosphorylated than AcChoR from neonatal light membranes, indicating that its state of phosphorylation changes during development.

  20. Consequences of alkaline treatment for the ultrastructure of the acetylcholine-receptor-rich membranes from Torpedo marmorata electric organ

    PubMed Central

    1981-01-01

    After fixation with glutaraldehyde and impregnation with tannic acid, the membrane that underlies the nerve terminals in Torpedo marmorata electroplaque presents a typical asymmetric triple-layered structure with an unusual thickness; in addition, it is coated with electron- dense material on its inner, cytoplasmic face. Filamentous structures are frequently found attached to these "subsynaptic densities." The organization of the subsynaptic membrane is partly preserved after homogenization of the electric organ and purification of acetylcholine- receptor (AchR)-rich membrane fragments. In vitro treatment at pH 11 and 4 degrees C of these AchR-rich membranes releases an extrinsic protein of 43,000 mol wt and at the same time causes the complete disappearance of the cytoplasmic condensations. Freeze-etching of native membrane fragments discloses remnants of the ribbonlike organization of the AchR rosettes. This organization disappears ater alkaline treatment and is replaced by a network which is not observed after rapid freezing and, therefore, most likely results from the lateral redistribution of the AchR rosettes during condition of slow freezing. A dispersion of the AchR rosettes in the plane of the membrane also occurs after fusion of the pH 11-treated fragments with phospholipid vesicles. These results are interpreted in terms of a structural stabilization and immobilization of the AchR by the 43,000- Mr protein binding to the inner face of the subsynaptic membrane. PMID:7287814

  1. Profile of the alpha-bungarotoxin-binding regions on the extracellular part of the alpha-chain of Torpedo californica acetylcholine receptor.

    PubMed Central

    Mulac-Jericevic, B; Atassi, M Z

    1987-01-01

    The continuous alpha-neurotoxin-binding regions on the extracellular part (residues 1-210) of the alpha-chain of Torpedo californica acetylcholine receptor were localized by reaction of 125I-labelled alpha-bungarotoxin with synthetic overlapping peptides spanning this entire part of the chain. The specificity of the binding was confirmed by inhibition with unlabelled toxin and, for appropriate peptides, with unlabelled anti-(acetylcholine receptor) antibodies. Five toxin-binding regions were localized within residues 1-10, 32-41, 100-115, 122-150 and 182-198. The third, fourth and fifth (and to a lesser extent the first and second) toxin-binding regions overlapped with regions recognized by anti-(acetylcholine receptor) antibodies. The five toxin-binding regions may be distinct sites or, alternatively, different 'faces' in one (or more) sites. PMID:3435488

  2. A single gene codes for the nicotinic acetylcholine receptor alpha-subunit in Torpedo marmorata: structural and developmental implications.

    PubMed Central

    Klarsfeld, A; Devillers-Thiéry, A; Giraudat, J; Changeux, J P

    1984-01-01

    We have used Southern blot hybridization to analyze the genomic structure encoding the alpha-subunit of the acetylcholine receptor (AChR) in Torpedo marmorata, with cDNA probes isolated from the electric organ. Four different radiolabelled probes, corresponding to various parts of the alpha-subunit mRNA, hybridized to several genomic fragments of T. marmorata DNA generated by digestion with the restriction enzymes SstI, PvuII and PstI. The same hybridization pattern was observed after washing the blots under low- or high-stringency conditions. As a check for detection sensitivity of heterologous sequences, the same probes were hybridized to PvuII-digested chicken DNA, revealing bands at low stringency which disappeared at higher stringencies. Unambiguously, two of our probes (one of them entirely within the coding region) hybridized to a single genomic fragment from T. marmorata DNA. This feature, as well as the results of an extensive study of the whole hybridization pattern, points towards the uniqueness of alpha-subunit-specific sequences in the genome of T. marmorata. Since overall more bands were found than expected from the cDNA sequence, this alpha-subunit gene must be split by several introns (at least four, possibly more). The length of this gene is at least 20 kb. The existence of a single alpha-subunit gene is consistent with the absence of chemical heterogeneity in the NH2-terminal sequence of the purified alpha-chain, and supports the view that the two alpha-chains belonging to one AChR oligomer have an identical primary structure. It also suggests that localization and stabilization of the AChR in well-defined post-synaptic areas of T. marmorata electric organ basically relies, during development, on 'epigenetic' mechanisms. Images Fig. 2. Fig. 3. Fig. 4. PMID:6323168

  3. Design, synthesis, and characterization of a 39 amino acid peptide mimic of the main immunogenic region of the Torpedo acetylcholine receptor.

    PubMed

    Trinh, Vu B; Foster, Alex J; Fairclough, Robert H

    2014-05-01

    We have designed a 39 amino acid peptide mimic of the conformation-dependent main immunogenic region (MIR) of the Torpedo acetylcholine receptor (TAChR) that joins three discontinuous segments of the Torpedo α-subunit, α(1-12), α(65-79), and α(110 - 115) with two GS linkers: This 39MIR-mimic was expressed in E. coli as a fusion protein with an intein-chitin-binding domain (IChBD) to permit affinity collection on chitin beads. Six MIR-directed monoclonal antibodies (mAbs) bind to this complex and five agonist/antagonist site directed mAbs do not. The complex of MIR-directed mAb-132A with 39MIR has a Kd of (2.11±0.11)×10(-10)M, which is smaller than (7.13±1.20)×10(-10)M for the complex of mAb-132A with α(1-161) and about the same as 3.4×10(-10)M for that of mAb-132A with TAChR. Additionally, the 39MIR-IChBD adsorbs all MIR-directed antibodies (Abs) from an experimental autoimmune myasthenia gravis (EAMG) rat serum. Hence, the 39MIR-mimic has the potential to inactivate or remove pathogenic Torpedo MIR-directed Abs from EAMG sera and to direct a magic bullet to the memory B-cells that produce those pathogenic Abs. The hope is to use this as a guide to produce a mimic of the human MIR on the way to an antigen specific therapeutic agent to treat MG.

  4. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors — Recommendations for methods and experimental designs

    PubMed Central

    Losen, Mario; Martinez-Martinez, Pilar; Molenaar, Peter C.; Lazaridis, Konstantinos; Tzartos, Socrates; Brenner, Talma; Duan, Rui-Sheng; Luo, Jie; Lindstrom, Jon; Kusner, Linda

    2015-01-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice. PMID:25796590

  5. Bupropion Binds to Two Sites in the Torpedo Nicotinic Acetylcholine Receptor Transmembrane Domain: A Photoaffinity Labeling Study with the Bupropion Analog [125I]-SADU-3-72

    PubMed Central

    Pandhare, Akash; Hamouda, Ayman K.; Staggs, Brandon; Aggarwal, Shaili; Duddempudi, Phaneendra K.; Lever, John R.; Lapinsky, David J.; Jansen, Michaela; Cohen, Jonathan B.; Blanton, Michael P.

    2012-01-01

    Bupropion, a clinically-used antidepressant and smoking-cessation drug, acts as a noncompetitive antagonist of nicotinic acetylcholine receptors (nAChRs). To identify its binding site(s) in nAChRs, we developed a photoreactive bupropion analog, (±)-2-(N-tert-butylamino)-3′-[125I]-iodo-4′-azidopropiophenone (SADU-3-72). Based upon inhibition of [125I]SADU-3-72 binding, SADU-3-72 binds with high affinity (IC50 = 0.8 μM) to the Torpedo nAChR in the resting (closed channel) state and in the agonist-induced desensitized state, and bupropion binds to that site with three-fold higher affinity in the desensitized (IC50 = 1.2 μM) than in the resting state. Photolabeling of Torpedo nAChRs with [125I]SADU-3-72 followed by limited in-gel digestion of nAChR subunits with endoproteinase Glu-C established the presence of [125I]SADU-3-72 photoincorporation within nAChR subunit fragments containing M1-M2-M3 helices (αV8-20K, βV8-22/23K and γV8-24K) or M1-M2 helices (δV8-14). Photolabeling within βV8-22/23K, γV8-24K and δV8-14 was reduced in the desensitized state and inhibited by ion channel blockers selective for the resting (tetracaine) or desensitized (thienycyclohexylpiperidine (TCP)) state, and this pharmacologically specific photolabeling was localized to the M2-9 leucine ring (δLeu265, βLeu257) within the ion channel. In contrast, photolabeling within the αV8-20K was enhanced in the desensitized state and not inhibited by TCP, but was inhibited by bupropion. This agonist-enhanced photolabeling was localized to αTyr213 in αM1. These results establish the presence of two distinct bupropion binding sites within the Torpedo nAChR transmembrane domain: a high affinity site at the middle (M2-9) of the ion channel and a second site near the extracellular end of αM1 within a previously described halothane (general anesthetic) binding pocket. PMID:22394379

  6. Effects of lipid-analog detergent solubilization on the functionality and lipidic cubic phase mobility of the Torpedo californica nicotinic acetylcholine receptor.

    PubMed

    Padilla-Morales, Luis F; Morales-Pérez, Claudio L; De La Cruz-Rivera, Pamela C; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A; Quesada, Orestes; Lasalde-Dominicci, José A

    2011-10-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β(2)-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility.

  7. Asynchronous assembly of the acetylcholine receptor and of the 43-kD nu1 protein in the postsynaptic membrane of developing Torpedo marmorata electrocyte

    PubMed Central

    1989-01-01

    The assembly of the nicotinic acetylcholine receptor (AchR) and the 43- kD protein (v1), the two major components of the post synaptic membrane of the electromotor synapse, was followed in Torpedo marmorata electrocyte during embryonic development by immunocytochemical methods. At the first developmental stage investigated (45-mm embryos), accumulation of AchR at the ventral pole of the newly formed electrocyte was observed within columns before innervation could be detected. No concomitant accumulation of 43-kD immunoreactivity in AchR- rich membrane domains was observed at this stage, but a transient asymmetric distribution of the extracellular protein, laminin, which paralleled that of the AchR, was noticed. At the subsequent stage studied (80-mm embryos), codistribution of the two proteins was noticed on the ventral face of the cell. Intracellular pools of AchR and 43-kD protein were followed at the EM level in 80-mm electrocytes. AchR immunoreactivity was detected within membrane compartments, which include the perinuclear cisternae of the endoplasmic reticulum and the plasma membrane. On the other hand, 43-kD immunoreactivity was not found associated with the AchR in the intracellular compartments of the cell, but codistributed with the AchR at the level of the plasma membrane. The data reported in this study suggest that AchR clustering in vivo is not initially determined by the association of the AchR with the 43-kD protein, but rather relies on AchR interaction with extracellular components, for instance from the basement membrane, laid down in the tissue before the entry of the electromotor nerve endings. PMID:2642909

  8. Torpedo Rockets

    NASA Technical Reports Server (NTRS)

    2004-01-01

    All through the 13th to the 15th Centuries there were reports of many rocket experiments. For example, Joanes de Fontana of Italy designed a surface-rurning, rocket-powered torpedo for setting enemy ships on fire

  9. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane.

    PubMed

    Heuser, J E; Salpeter, S R

    1979-07-01

    The receptor-rich postsynaptic membrane of the elasmobranch electric organ was fixed by quick-freezing and then viewed by freeze-fracture, deep-etching and rotary-replication. Traditional freeze-fracture revealed a distinct, geometrical pattern of shallow 8.5-nm bumps on the E fracture-face, similar to the lattice which has been seen before in chemically fixed material, but seen less clearly than after quick-freezing. Fracture plus deep-etching brought into view on the true outside of this membrane a similar geometrical pattern of 8.5-nm projections rising out of the membrane surface. The individual projections looked like structures that have been seen in negatively stained or deep-etched membrane fragments and have been identified as individual acetylcholine receptor molecules. The surface protrusions were twice as abundant as the large intramembrane particles that characterize the fracture faces of this membrane, which have also been considered to be receptor molecules. Particle counts have always been too low to match the estimates of postsynaptic receptor density derived from physiological and biochemical studies; counts of surface projections, however, more closely matched these estimates. Rotary-replication of quick-frozen, etched postsynaptic membranes enhanced the visibility of these surface protuberances and illustrated that they often occur in dimers, tetramers, and ordered rows. The variations in these surface patterns suggested that in vivo, receptors in the postsynaptic membrane may tend to pack into "liquid crystals" which constantly appear, flow, and disappear in the fluid environment of the membrane. Additionally, deep-etching revealed a distinct web of cytoplasmic filaments beneath the postsynaptic membrane, and revealed the basal lamina above it; and delineated possible points of contact between these structures and the membrane proper.

  10. Organization of acetylcholine receptors in quick-frozen, deep-etched, and rotary-replicated Torpedo postsynaptic membrane

    PubMed Central

    1979-01-01

    The receptor-rich postsynaptic membrane of the elasmobranch electric organ was fixed by quick-freezing and then viewed by freeze-fracture, deep-etching and rotary-replication. Traditional freeze-fracture revealed a distinct, geometrical pattern of shallow 8.5-nm bumps on the E fracture-face, similar to the lattice which has been seen before in chemically fixed material, but seen less clearly than after quick- freezing. Fracture plus deep-etching brought into view on the true outside of this membrane a similar geometrical pattern of 8.5-nm projections rising out of the membrane surface. The individual projections looked like structures that have been seen in negatively stained or deep-etched membrane fragments and have been identified as individual acetylcholine receptor molecules. The surface protrusions were twice as abundant as the large intramembrane particles that characterize the fracture faces of this membrane, which have also been considered to be receptor molecules. Particle counts have always been too low to match the estimates of postsynaptic receptor density derived from physiological and biochemical studies; counts of surface projections, however, more closely matched these estimates. Rotary- replication of quick-frozen, etched postsynaptic membranes enhanced the visibility of these surface protuberances and illustrated that they often occur in dimers, tetramers, and ordered rows. The variations in these surface patterns suggested that in vivo, receptors in the postsynaptic membrane may tend to pack into "liquid crystals" which constantly appear, flow, and disappear in the fluid environment of the membrane. Additionally, deep-etching revealed a distinct web of cytoplasmic filaments beneath the postsynaptic membrane, and revealed the basal lamina above it; and delineated possible points of contact between these structures and the membrane proper. PMID:479296

  11. 73. TORPEDO WORK SHOP FORWARD LOOKING AFT SHOWING TORPEDO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. TORPEDO WORK SHOP - FORWARD LOOKING AFT SHOWING TORPEDO ELEVATOR, HIGH PRESSURE AIR REDUCING STATION, SCUTTLEBUTT, TORPEDO AFTERBODY WORKSHOP, OVERHEAD CHAIN MOIST AND RAIL SYSTEM AND OVERHEAD SPRINKLER SYSTEM. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  12. Structure Biology of Membrane Bound Enzymes

    SciTech Connect

    Fu, Dax

    2016-11-30

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkane $\\square$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.

  13. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  14. The "torpedo" effect in medicine.

    PubMed

    Tsoucalas, Gregory; Karamanou, Marianna; Lymperi, Maria; Gennimata, Vassiliki; Androutsos, George

    2014-01-01

    The natural electrical phenomena fascinated humans since antiquity. The electrical discharges produced by the torpedo fish were highly appreciated among ancient physicians as Hippocrates, Scribonius Largus and Galen and were prescribed for headache, gout and prolapsed anus. In the medieval period, torpedo's electrical properties were attributed to occult powers, while Renaissance physicians' and scientists' studied the anatomy and mechanical nature of the provoked shock paving the way for the discovery of the electrical nature of torpedo's activity and the evolution of electrotherapy.

  15. Torpedo electromotor system development: biochemical differentiation of Torpedo electrocytes in vitro.

    PubMed

    Richardson, G P; Witzemann, V

    1986-04-01

    The accumulation of 2 postsynaptic proteins--the acetylcholine receptor and acetylcholinesterase, total protein and lactate dehydrogenase levels, and the evolution of the multiple molecular forms of acetylcholinesterase (exhibiting apparent sedimentation coefficients of 17, 13, 11 and 6S) have been examined in aneural cultures of embryonic Torpedo electric organ explanted before, during or after electrocyte differentiation and the onset of synaptogenesis. During electrocyte differentiation in vitro, with explants taken before the 38 mm stage, the relative proportions of the 17, 13 and 11S forms change in vitro as in vivo but the 6S form remains abnormally dominant. In tissue explants taken from 38 to 47 mm stage embryos, the 4 major molecular forms of acetylcholinesterase differentiate in a manner identical to that observed in vivo. In explants taken after the onset of synaptogenesis (55-80 mm stages), the proportions of the acetylcholinesterase forms change as in vivo only during the first week in vitro whilst accumulation is occurring at the normal in vivo rate. The switch to the high acetylcholine receptor and acetylcholinesterase accumulation rate that occurs when synaptogenesis begins in vivo is not observed after any time lag in vitro with tissue explanted before the stage (55 mm) at which synaptogenesis begins. The effects on acetylcholinesterase and acetylcholine receptor accumulation of supplementing the medium with a neural tissue extract are described. The experiments were designed to elucidate the factors and mechanisms that regulate the differentiation and formation of chemical synapses using the electric organ of Torpedo marmorata as a model system. The results demonstrate that the complex changes occurring in the multiple molecular forms of acetylcholinesterase during electrocyte differentiation are not under direct neural control but that the switch to an increased acetylcholinesterase and acetylcholine receptor accumulation rate may be triggered by

  16. Membrane-bound mucin modular domains: from structure to function.

    PubMed

    Jonckheere, Nicolas; Skrypek, Nicolas; Frénois, Frédéric; Van Seuningen, Isabelle

    2013-06-01

    Mucins belong to a heterogeneous family of large O-glycoproteins composed of a long peptidic chain called apomucin on which are linked hundreds of oligosaccharidic chains. Among mucins, membrane-bound mucins are modular proteins and have a structural organization usually containing Pro/Thr/Ser-rich O-glycosylated domains (PTS), EGF-like and SEA domains. Via these modular domains, the membrane-bound mucins participate in cell signalling and cell interaction with their environment in normal and pathological conditions. Moreover, the recent knowledge of these domains and their biological activities led to the development of new therapeutic approaches involving mucins. In this review, we show 3D structures of EGF and SEA domains. We also describe the functional features of the evolutionary conserved domains of membrane-bound mucins and discuss consequences of splice events.

  17. Inhibition of membrane-bound succinate dehydrogenase by fluorescamine.

    PubMed

    Jay, D; Jay, E G; Garcia, C

    1993-12-01

    Fluorescamine rapidly inactivated membrane-bound succinate dehydrogenase. The inhibition of the enzyme by this reagent was prevented by succinate and malonate, suggesting that the group modified by fluorescamine was located at the active site. The modification of the active site sulfhydryl group by 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) did not alter the inhibitory action of fluorescamine. However, the protective effect of malonate against fluorescamine inhibition was abolished in the enzyme modified at the thiol.

  18. Tunable Tensor Voting Improves Grouping of Membrane-Bound Macromolecules

    SciTech Connect

    Loss, Leandro A.; Bebis, George; Parvin, Bahram

    2009-04-15

    Membrane-bound macromolecules are responsible for structural support and mediation of cell-cell adhesion in tissues. Quantitative analysis of these macromolecules provides morphological indices for damage or loss of tissue, for example as a result of exogenous stimuli. From an optical point of view, a membrane signal may have nonuniform intensity around the cell boundary, be punctate or diffused, and may even be perceptual at certain locations along the boundary. In this paper, a method for the detection and grouping of punctate, diffuse curvilinear signals is proposed. Our work builds upon the tensor voting and the iterative voting frameworks to propose an efficient method to detect and refine perceptually interesting curvilinear structures in images. The novelty of our method lies on the idea of iteratively tuning the tensor voting fields, which allows the concentration of the votes only over areas of interest. We validate the utility of our system with synthetic and annotated real data. The effectiveness of the tunable tensor voting is demonstrated on complex phenotypic signals that are representative of membrane-bound macromolecular structures.

  19. Photochemical energy conversion by membrane-bound photoredox systems

    SciTech Connect

    Tollin, G.

    1992-03-01

    Most of our effort during the past grant period has been directed towards investigating electron transfer processes involving redox proteins at lipid bilayer/aqueous interfaces. This theme, as was noted in our previous three year renewal proposal, is consistent with our goal of developing biomimetic solar energy conversion systems which utilize the unique properties of biological electron transfer molecules. Thus, small redox proteins such as cytochrome c, plastocyanin and ferredoxin function is biological photosynthesis as mediators of electron flow between the photochemical systems localized in the membrane, and more complex soluble or membrane-bound redox proteins which are designed to carry out specific biological tasks such as transbilayer proton gradient formation, dinitrogen fixation, ATP synthesis, dihydrogen synthesis, generation of strong reductants, etc. In these studies, we have utilized two principal experimental techniques, laser flash photolysis and cyclic voltammetry, both of which permit direct measurements of electron transfer processes.

  20. Reverse signaling through membrane-bound interleukin-15.

    PubMed

    Budagian, Vadim; Bulanova, Elena; Orinska, Zane; Pohl, Thomas; Borden, Ernest C; Silverman, Robert; Bulfone-Paus, Silvia

    2004-10-01

    The results from this study implicate membrane-anchored interleukin (IL)-15 constitutively expressed on the cell surface of PC-3 human prostate carcinoma cells and interferon-gamma-activated human monocytes in reverse signaling upon stimulation with soluble IL-15 receptor-alpha or anti-IL-15 antibodies, mediating the outside-to-inside signal transduction that involves the activation of members of the MAPK family (ERK and p38) and focal adhesion kinase. The presence of membrane-bound IL-15 was not dependent on the expression of the trimeric IL-15 receptor complex by these cells and resisted treatment with acidic buffer or trypsin. Reverse signaling through membrane-bound IL-15 considerably increased the production of several pro-inflammatory cytokines by monocytes, such as IL-6, IL-8, and tumor necrosis factor-alpha, thereby indicating the relevance of this process to the complex immunomodulatory function of these cells. Furthermore, stimulation of transmembrane IL-15 also enhanced the transcription of IL-6 and IL-8 in the PC-3 cell line and promoted migration of PC-3 cells as well as LNCaP human prostate carcinoma cells stably expressing IL-15 on the cell surface. Thus, IL-15 can exist as a biologically active transmembrane molecule that possesses dual ligand-receptor qualities with a potential to induce bidirectional signaling. This fact highlights a new level of complexity in the biology of IL-15 and offers novel important insights into our understanding of the cellular responses modulated by this pleiotropic cytokine.

  1. Heterologous expression and purification of membrane-bound pyrophosphatases.

    PubMed

    Kellosalo, J; Kajander, T; Palmgren, M G; Lopéz-Marqués, R L; Goldman, A

    2011-09-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that couple the hydrolysis of inorganic pyrophosphate to pumping of protons or sodium ions. In plants and bacteria they are important for relieving stress caused by low energy levels during anoxia, drought, nutrient deficiency, cold and low light intensity. While they are completely absent in mammalians, they are key players in the survival of disease-causing protozoans making these proteins attractive pharmacological targets. In this work, we aimed at the purification of M-PPases in amounts suitable for crystallization as a first step to obtain structural information for drug design. We have tested the expression of eight integral membrane pyrophosphatases in Saccharomyces cerevisiae, six from bacterial and archaeal sources and two from protozoa. Two proteins originating from hyperthermophilic organisms were purified in dimeric and monodisperse active states. To generate M-PPases with an increased hydrophilic surface area, which potentially should facilitate formation of crystal contacts, phage T4 lysozyme was inserted into different extramembraneous loops of one of these M-PPases. Two of these fusion proteins were active and expressed at levels that would allow their purification for crystallization purposes.

  2. Membrane-bound beta-lactamase forms in Escherichia coli.

    PubMed

    Plückthun, A; Pfitzinger, I

    1988-10-05

    Frameshift pseudo-revertants of Escherichia coli RTEM beta-lactamase were obtained by a selection procedure, starting from frameshift mutants at the signal-processing site. These pseudo-revertant proteins, which have a totally altered COOH-terminal part of the signal sequence, are attached to the outer face of the inner membrane. The mutant proteins are enzymatically active in vitro and in vivo, and the membrane localization has no deleterious effect on cell growth. We conclude that initiation of transport across the membrane does not require the COOH-terminal part of the signal, but this part of the sequence determines whether the protein is released to the periplasm either with or without cleavage of the signal, or whether the protein remains anchored to the membrane. Mutants with two signals in series were used to show that a truncated signal is not refractory to transport per se. If neither signal contains a functional cleavage site, the protein is at least partially found on the outer face of the inner membrane. If both signals contain functional cleavage sites, both are removed and the protein is released to the periplasm. If only the first signal contains a cleavage site, a longer fusion protein is transported and released. The results presented here show that a pre-beta-lactamase-like protein can fold properly even as a membrane-bound species.

  3. Mark XIV Torpedo Case Study

    DTIC Science & Technology

    2011-02-26

    to cry and the XO and I said ‘Captain, this ship was tracking right on course with the speed and course we got it exactly right.’ He said ‘We will...they realized how much testing they really needed to do. The inherent arrogance of the Gun Club and the “not invented here” syndrome , have been...The silent service—The torpedoes of WW II ( Cat # AAE 43107) [History Channel documentary]. New York, NY: A&E Television Networks. Naval Undersea

  4. Meprins, membrane-bound and secreted astacin metalloproteinases

    PubMed Central

    Sterchi, Erwin E.; Stöcker, Walter; Bond, Judith S.

    2008-01-01

    The astacins are a subfamily of the metzincin superfamily of metalloproteinases. The first to be characterized was the crayfish enzyme astacin. To date more than 200 members of this family have been identified in species ranging from bacteria to humans. Astacins are involved in developmental morphogenesis, matrix assembly, tissue differentiation and digestion. Family members include the procollagen C-proteinase (BMP1, bone morphogenetic protein 1), tolloid and mammalian tolloid-like, HMP (Hydra vulgaris metalloproteinase), sea urchin BP10 (blastula protein) and SPAN (Strongylocentrotus purpuratus astacin), the ‘hatching’ subfamily comprising alveolin, ovastacin, LCE, HCE (‘low’ and ‘high’ choriolytic enzymes), nephrosin (from carp head kidney), UVS.2 from frog, and the meprins. In the human and mouse genomes, there are six astacin family genes (two meprins, three BMP1/tolloid-like, one ovastacin), but in Caenorhabditis elegans there are 40. Meprins are the only astacin proteinases that function on the membrane and extracellularly by virtue of the fact that they can be membrane-bound or secreted. They are unique in their domain structure and covalent subunit dimerization, oligomerization propensities, and expression patterns. They are normally highly regulated at the transcriptional and post-translational levels, localize to specific membranes or extracellular spaces, and can hydrolyse biologically active peptides, cytokines, extracellular matrix (ECM) proteins and cell-surface proteins. The in vivo substrates of meprins are unknown, but the abundant expression of these proteinases in the epithelial cells of the intestine, kidney and skin provide clues to their functions. PMID:18783725

  5. The electromotor system of Torpedo. A model cholinergic system.

    PubMed

    Whittaker, V P

    1977-12-01

    The electric organ of Torpedo, besides providing abundant amounts of cholinoceptive post-synaptic membrane for the isolation of the acetylcholine receptor protein, is a rich source of cholinergic nerve terminals. Using perfused, innervated tissue blocks from which synaptic vesicles in different functional states can be isolated, much information can be obtained about synaptic-vesicle dynamics. So far this is consistent with the view that the synaptic vesicles are the source of transmitter released on stimulation and that uptake of newly synthesized transmitter by the vesicles is dependent on their having discharged their previous charge of transmitter in at least one cycle of exo- and endocytosis. Studies of the protein composition of the vesicle membrane, especially when combined with similar information about the external presynaptic membrane, purified samples of which are now available from synaptosome (T-sac) preparations, promise to throw new light on the molecular mechanism underlying vesicle exo-/endocytosis.

  6. Structure of the high-affinity binding site for noncompetitive blockers of the acetylcholine receptor: (/sup 3/H)chlorpromazine labels homologous residues in the. beta. and delta chains

    SciTech Connect

    Giraudat, J.; Dennis, M.; Heidmann, T.; Haumont, P.Y.; Lederer, F.; Changeux, J.P.

    1987-05-05

    The membrane-bound acetylcholine receptor from Torpedo marmorata was photolabeled by the noncompetitive channel blocker (/sup 3/H)chlorpromazine under equilibrium conditions in the presence of the agonist carbamoylcholine. The amount of radioactivity incorporated into all subunits was reduced by addition of phencyclidine, a specific ligand for the high-affinity site for noncompetitive blockers. The labeled ..beta.. chain was purified and digested with trypsin or CNBr, and the resulting fragments were fractionated by high-performance liquid chromatography. Sequence analysis resulted in the identification of Ser-254 and Leu-257 as residues labeled by (/sup 3/H)chlorpromazine in a phencyclidine-sensitive manner. These residues are located in the hydrophobic and potentially transmembrane segment M II of the ..beta.. chain, a region homologous to that containing the chlorpromazine-labeled Ser-262 in the delta chain. These results show that homologous regions of different receptor subunits contribute to the unique high-affinity site for noncompetitive blockers, a finding consistent with the location of this site on the axis of symmetry of the receptor molecule.

  7. The noncompetitive blocker ( sup 3 H)chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: Implications for the alpha-helical organization of regions MII and for the structure of the ion channel

    SciTech Connect

    Revah, F.; Galzi, J.L.; Giraudat, J.; Haumont, P.Y.; Lederer, F.; Changeux, J.P. )

    1990-06-01

    Labeling studies of Torpedo marmorata nicotinic acetylcholine receptor with the noncompetitive channel blocker ({sup 3}H)chlorpromazine have led to the initial identification of amino acids plausibly participating to the walls of the ion channel on the alpha, beta, and delta subunits. We report here results obtained with the gamma subunit, which bring additional information on the structure of the channel. After photolabeling of the membrane-bound receptor under equilibrium conditions in the presence of agonist and with or without phencyclidine (a specific ligand for the high-affinity site for noncompetitive blockers), the purified labeled gamma subunit was digested with trypsin, and the resulting fragments were fractionated by HPLC. Sequence analysis of peptide mixtures containing various amounts of highly hydrophobic fragments showed that three amino acids are labeled by ({sup 3}H)chlorpromazine in a phencyclidine-sensitive manner: Thr-253, Ser-257, and Leu-260. These residues all belong to the hydrophobic and putative transmembrane region MII of the gamma subunit. Their distribution along the sequence is consistent with an alpha-helical organization of this segment. The ({sup 3}H)chlorpromazine-labeled amino acids are conserved at homologous positions in the known sequences of other ligand-gated ion channels and may, thus, play a critical role in ion-transport mechanisms.

  8. 11. Submersible torpedo tube mounted on platform of elevator at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. Submersible torpedo tube mounted on platform of elevator at northeast (starboard) elevator tower. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  9. Configuration of membrane-bound proteins by x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Chen, Chiu-Hao; Málková, Šárka; Cho, Wonhwa; Schlossman, Mark L.

    2011-11-01

    In this presentation we review our recent work using x-ray reflectivity to determine the configuration of membrane-bound proteins. The reflectivity data is analyzed in terms of the known crystallographic structure of proteins and a slab model representing the lipid layer to yield an electron density profile of the lipid/protein system. Our recent modified analysis methodology for the lipid/protein system is concisely described in this report. In addition, some results of the configuration of the membrane-bound proteins cPLA2α-C2, p40phox-PX, and PKCα-C2 are highlighted.

  10. Phylogeny, topology, structure and functions of membrane-bound class III peroxidases in vascular plants.

    PubMed

    Lüthje, Sabine; Meisrimler, Claudia-Nicole; Hopff, David; Möller, Benjamin

    2011-07-01

    Peroxidases are key player in the detoxification of reactive oxygen species during cellular metabolism and oxidative stress. Membrane-bound isoenzymes have been described for peroxidase superfamilies in plants and animals. Recent studies demonstrated a location of peroxidases of the secretory pathway (class III peroxidases) at the tonoplast and the plasma membrane. Proteomic approaches using highly enriched plasma membrane preparations suggest organisation of these peroxidases in microdomains, a developmentally regulation and an induction of isoenzymes by oxidative stress. Phylogenetic relations, topology, putative structures, and physiological function of membrane-bound class III peroxidases will be discussed.

  11. Copper(II) enhances membrane-bound α-synuclein helix formation.

    PubMed

    Lucas, Heather R; Lee, Jennifer C

    2011-03-01

    Interactions of copper and membranes with α-synuclein have been implicated in pathogenic mechanisms of Parkinson's disease, yet work examining both concurrently is scarce. We have examined the effect of copper(ii) on protein/vesicle binding and found that both the copper(ii) affinity and α-helical content are enhanced for the membrane-bound protein.

  12. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  13. [Membrane-bound proteases involved in neuropeptide degradation in the brain].

    PubMed

    Yokosawa, H

    1993-07-01

    The action of neuropeptides at the synapse is terminated through enzymatic degradation by membrane-bound proteases. We defined and purified membrane-bound proteases functioning at the initial stage of degradation of four neuropeptides. 1. Substance P-degrading endopeptidases isolated from the rat brain and pig striatum showed similar properties to those of endopeptidase-24.16 (neurolysin) except for cleavage sites of substance P. 2. LHRH fragment (1-5)-generating endopeptidases isolated from the neuroblastoma cells and rat brain showed similar properties to those of endopeptidase-24.15 (thimet oligopeptidase). 3. One of two dynorphin-degrading cysteine proteases isolated from neuroblastoma cells showed strict specificity toward the Arg-Arg residues. 4. Endopeptidase-24.11 (neprilysin) isolated from the rat brain was identified as a somatostatin-degrading enzyme.

  14. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  15. From 'I' to 'L' and back again: the odyssey of membrane-bound M13 protein.

    PubMed

    Vos, Werner L; Nazarov, Petr V; Koehorst, Rob B M; Spruijt, Ruud B; Hemminga, Marcus A

    2009-05-01

    The major coat protein of the filamentous bacteriophage M13 is a surprising protein because it exists both as a membrane protein and as part of the M13 phage coat during its life cycle. Early studies showed that the phage-bound structure of the coat protein was a continuous I-shaped alpha-helix. However, throughout the years various structural models, both I-shaped and L-shaped, have been proposed for the membrane-bound state of the coat protein. Recently, site-directed labelling approaches have enabled the study of the coat protein under conditions that more closely mimic the in vivo membrane-bound state. Interestingly, the structure that has emerged from this work is I-shaped and similar to the structure in the phage-bound state.

  16. Biochemical and molecular characterization of mitochondrial membrane-bound arginase in Heteropneustes fossilis.

    PubMed

    Mishra, Suman; Mishra, Rajnikant

    2016-05-01

    The two predominant forms of arginase, cytosolic Arginase-I and mitochondrial Arginase-II, catalyze hydrolysis of arginine into ornithine and urea. Based on presence of arginase activity in extracts using potassium chloride (KCl), mitochondrial membrane-bound arginase has also been suggested. However, the activity of arginase in fractions obtained after KCl-treatment may be either due to leakage of mitochondrial arginase or release of adhered cytosolic arginase to cell organelles having altered net charge. Therefore, it has been intended to analyse impact of KCl on ultra-structural properties of mitochondria, and biochemical analysis of mitochondrial membrane-bound proteins and arginase of Heteropneustes fossilis. Liver of H. fossilis was used for isolating mitochondria for analysis of ultrastructural properties, preparing cytosolic, mitochondrial, and mitochondrial-membrane bound extracts after treatment of KCl. Extracts were analysed for arginase activity assay, protein profiling through SDS-PAGE and MALDI MS/MS. The KCl-mediated modulation in polypeptides and arginase were also evaluated by PANTHER, MitoProt and IPSORT servers. The effects of KCl on ultra-structural integrity of mitochondria, activity of arginase, modulation on mitochondrial proteins and enzymes including arginase were observed. The 48 kDa polypeptide of mitochondrial fraction, that showed KCl-dependent alteration matched with Myb binding protein and 30 kDa bands resembles to arginase after MALDI MS/MS analysis. Results indicate KCl-dependent ultrastructural changes in mitochondria and release of mitochondrial arginase. The proposed membrane bound mitochondrial arginase could be mitochondrial arginase-II or altered form of cytosolic arginase-I contributing to KCl-induced arginase activity in H. fossilis.

  17. Summary of Recent Hybrid Torpedo Powerplant Studies

    DTIC Science & Technology

    2007-12-01

    Powerplant Studies by Jonathan A. Peters Technical Report No. 07-004 December 2007 Supported by: E. G. Liszka, Director Office of Naval Research...To) 11/30/2007 Technical Report I 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Summary of Recent Hybrid Torpedo Powerplant Studies N00014-05-G-0106 5b...releasable Technical Report version to follow. 15 The THERMHYB package has been used successfully to support a number of powerplant development

  18. Synthetic activity enhancement of membrane-bound lipase from Rhizopus chinensis by pretreatment with isooctane.

    PubMed

    Wang, Dong; Xu, Yan; Teng, Yun

    2007-05-01

    The cell-bound lipase from Rhizopus chinensis CCTCC M201021 with high catalysis ability for ester synthesis was located as a membrane-bound lipase by the treatments of Yatalase firstly. In order to improve its synthetic activity in non-aqueous phase, the pretreatments of this enzyme with various organic solvents were investigated. The pretreatment with isooctane improved evidently the lipase synthetic activity, resulting in about 139% in relative synthetic activity and 115% in activity recovery. The morphological changes of mycelia caused by organic solvent pretreatments could influence the exposure of the membrane-bound enzyme from mycelia and the exhibition of the lipase activity. The pretreatment conditions with isooctane and acetone were further investigated, and the optimum effect was obtained by the isooctane pretreatment at 4 degrees C for 1 h, resulting in 156% in relative synthetic activity and 126% in activity recovery. When the pretreated lipases were employed as catalysts for the esterification production of ethyl hexanoate in heptane, higher initial reaction rate and higher final molar conversion were obtained using the lipase pretreated with isooctane, compared with the untreated lyophilized one. This result suggested that the pretreatment of the membrane-bound lipase with isooctane could be an effective method to substitute the lyophilization for preparing biocatalysts used in non-aqueous phase reactions.

  19. Membrane bound IL-15 is increased on CD14 monocytes in early stages of MS.

    PubMed

    Vaknin-Dembinsky, Adi; Brass, Steven D; Brass, Steven; Gandhi, Roopali; Weiner, Howard L

    2008-03-01

    IL-15 is a pro-inflammatory cytokine whose three-dimensional structure is similar to that of IL-2. IL-2 and IL-15 have similar as well as distinct biological functions. An active form of IL-15 that is membrane bound has also been described. Furthermore, IL-15 is known to play a role in autoimmune diseases. We thus investigated the expression of membrane bound IL-15 on monocytes (CD14+ cells) and studied its effect on T cell activation in MS patients. We found that unstimulated CD14+ cells from relapsing remitting MS patients had increased membrane bound IL-15. Those with high surface levels of IL-15 on monocytes were in the early stages of the disease. In addition, we found that T cells of MS patients had enhanced responsiveness to IL-15 and there was increased expression of IL-15 receptor on CD4+ T cells. Thus, IL-15 may be an important cytokine that drives Th1 responses early in the course of the disease and could serve as a target for immunotherapy and as an early marker in the immunologic staging of MS.

  20. Distinguishing torpedo maculopathy from similar lesions of the posterior segment.

    PubMed

    Villegas, Victor M; Schwartz, Stephen G; Flynn, Harry W; Capó, Hilda; Berrocal, Audina M; Murray, Timothy G; Harbour, J William

    2014-01-01

    Torpedo maculopathy is a congenital solitary, oval-shaped lesion typically located temporal to the center of the macula. Congenital hypertrophy of the retinal pigment epithelium (RPE), RPE lesions of Gardner syndrome, and other lesions can present with similar characteristics. Because of its unique clinical and imaging features, torpedo maculopathy generally can be differentiated from other posterior segment lesions.

  1. Membrane-bound alkaline phosphatase from ectopic mineralization and rat bone marrow cell culture.

    PubMed

    Simão, Ana Maria S; Beloti, Márcio M; Cezarino, Rodrigo M; Rosa, Adalberto Luiz; Pizauro, João M; Ciancaglini, Pietro

    2007-04-01

    Cells from rat bone marrow exhibit the proliferation-differentiation sequence of osteoblasts, form mineralized extracellular matrix in vitro and release alkaline phosphatase into the medium. Membrane-bound alkaline phosphatase was obtained by method that is easy to reproduce, simpler and fast when compared with the method used to obtain the enzyme from rat osseous plate. The membrane-bound alkaline phosphatase from cultures of rat bone marrow cells has a MW(r) of about 120 kDa and specific PNPP activity of 1200 U/mg. The ecto-enzyme is anchored to the plasma membrane by the GPI anchor and can be released by PIPLC (selective treatment) or polidocanol (0.2 mg/mL protein and 1% (w/v) detergent). The apparent optimum pH for PNPP hydrolysis by the enzyme was pH 10. This fraction hydrolyzes ATP (240 U/mg), ADP (350 U/mg), glucose 1-phosphate (1100 U/mg), glucose 6-phosphate (340 U/mg), fructose 6-phosphate (460 U/mg), pyrophosphate (330 U/mg) and beta-glycerophosphate (600 U/mg). Cooperative effects were observed for the hydrolysis of PPi and beta-glycerophosphate. PNPPase activity was inhibited by 0.1 mM vanadate (46%), 0.1 mM ZnCl2 (68%), 1 mM levamisole (66%), 1 mM arsenate (44%), 10 mM phosphate (21%) and 1 mM theophylline (72%). We report the biochemical characterization of membrane-bound alkaline phosphatase obtained from rat bone marrow cells cultures, using a method that is simple, rapid and easy to reproduce. Its properties are compared with those of rat osseous plate enzyme and revealed that the alkaline phosphatase obtained has some kinetics and structural behaviors with higher levels of enzymatic activity, facilitating the comprehension of the mineralization process and its function.

  2. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  3. Coordination of copper to the membrane-bound form of α-synuclein.

    PubMed

    Dudzik, Christopher G; Walter, Eric D; Abrams, Benjamin S; Jurica, Melissa S; Millhauser, Glenn L

    2013-01-08

    Aggregation of the 140-amino acid protein α-synuclein (α-syn) is linked to the development of Parkinson's disease (PD). α-Syn is a copper binding protein with potential function as a regulator of metal-dependent redox activity. Epidemiological studies suggest that human exposure to excess copper increases the incidence of PD. α-Syn exists in both solution and membrane-bound forms. Previous work evaluated the Cu(2+) uptake for α-syn in solution and identified Met1-Asp2 and His50 as primary contributors to the coordination shell, with a dissociation constant of approximately 0.1 nM. When bound to the membrane bilayer, α-syn takes on a predominantly helical conformation, which spatially separates His50 from the N-terminus of the protein and is therefore incompatible with the copper coordination geometry of the solution state. Here we use circular dichroism and electron paramagnetic resonance (continuous wave and pulsed) to evaluate the coordination of copper to the membrane-bound form of α-syn. In this molecular environment, Cu(2+) binds exclusively to the N-terminus of the protein (Met1-Asp2) with no participation from His50. Copper does not alter the membrane-bound α-syn conformation or enhance the release of the protein from the bilayer. The Cu(2+) affinity is similar to that identified for solution α-syn, suggesting that copper coordination is retained in the membrane. Consideration of these results demonstrates that copper exerts its greatest conformational effect on the solution form of α-syn.

  4. Ionization, partitioning, and dynamics of tryptophan octyl ester: implications for membrane-bound tryptophan residues.

    PubMed Central

    Chattopadhyay, A; Mukherjee, S; Rukmini, R; Rawat, S S; Sudha, S

    1997-01-01

    The presence of tryptophan residues as intrinsic fluorophores in most proteins makes them an obvious choice for fluorescence spectroscopic analyses of such proteins. Membrane proteins have been reported to have a significantly higher tryptophan content than soluble proteins. The role of tryptophan residues in the structure and function of membrane proteins has attracted a lot of attention. Tryptophan residues in membrane proteins and peptides are believed to be distributed asymmetrically toward the interfacial region. Tryptophan octyl ester (TOE) is an important model for membrane-bound tryptophan residues. We have characterized this molecule as a fluorescent membrane probe in terms of its ionization, partitioning, and motional characteristics in unilamellar vesicles of dioleoylphosphatidylcholine. The ionization property of this molecule in model membranes has been studied by utilizing its pH-dependent fluorescence characteristics. Analysis of pH-dependent fluorescence intensity and emission maximum shows that deprotonation of the alpha-amino group of TOE occurs with an apparent pKa of approximately 7.5 in the membrane. The fluorescence lifetime of membrane-bound TOE also shows pH dependence. The fluorescence lifetimes of TOE have been interpreted by using the rotamer model for the fluorescence decay of tryptophan. Membrane/water partition coefficients of TOE were measured in both its protonated and deprotonated forms. No appreciable difference was found in its partitioning behavior with ionization. Analysis of fluorescence polarization of TOE as a function of pH showed that there is a decrease in polarization with increasing pH, implying more rotational freedom on deprotonation. This is further supported by pH-dependent red edge excitation shift and the apparent rotational correlation time of membrane-bound TOE. TOE should prove useful in monitoring the organization and dynamics of tryptophan residues incorporated into membranes. PMID:9251800

  5. Coordination of Copper to the Membrane-Bound Form of α-Synuclein

    SciTech Connect

    Dudzik, Christopher G.; Walter, Eric D.; Abrams, Benjamin S.; Jurica, Melissa S.; Millhauser, Glenn L.

    2013-01-01

    Aggregation of the 140 amino acid protein α-synuclein (α-syn) is linked to the development of Parkinson's disease (PD). α-Syn is a copper binding protein with potential function as a regulator of metal dependent redox activity. Epidemiological studies suggest that human exposure to excess copper increases the incidence of PD. α-Syn exists in both solution and membrane bound forms. Previous work evaluated the Cu2+ uptake for α-syn in solution and identified Met1-Asp2 and His50 as primary contributors to the coordination shell, with a dissociation constant of approximately 0.1 nM. When bound to the membrane bilayer, α-syn takes on a predominantly helical conformation, which spatially separates His50 from the protein N-terminus and is therefore incompatible with the copper coordination geometry of the solution state. Here we use circular dichroism and electron paramagnetic resonance (continuous wave and pulsed) to evaluate copper coordination to the membrane bound form of α-syn. In this molecular environment, Cu2+ binds exclusively to the protein N-terminus (Met1-Asp2) with no participation from His50. Copper does not alter the membrane bound α-syn conformation, or enhance the protein's release from the bilayer. The Cu2+ affinity is similar to that identified for solution α-syn suggesting that copper coordination is retained in the membrane. Consideration of these results suggests that copper exerts its greatest conformational affect on the solution form of α-syn and this species may therefore be precursor to PD arising from environmental copper exposure.

  6. Study of the interaction of cadmium with membrane-bound succinate dehydrogenase.

    PubMed

    Jay, D; Zamorano, R; Muñoz, E; Gleason, R; Boldu, J L

    1991-04-01

    Cadmium ions inhibit membrane-bound succinate dehydrogenase with a second-order rate constant of 10.42 mM-1 s-1 at pH 7.35 and 25 degrees C. Succinate and malonate protect the enzyme against cadmium ion inhibition. The protection pattern exerted by succinate and malonate suggests that the group modified by cadmium is located at the active site. The pH curve of inactivation by Cd2+ indicates the involvement of an amino acid residue with pKa of 7.23.

  7. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    SciTech Connect

    Baker, S E; Hopkins, R C; Blanchette, C; Walsworth, V; Sumbad, R; Fischer, N; Kuhn, E; Coleman, M; Chromy, B; Letant, S; Hoeprich, P; Adams, M W; Henderson, P T

    2008-10-22

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  8. Transferred nuclear Overhauser effect analyses of membrane-bound enkephalin analogues by sup 1 H nuclear magnetic resonance: Correlation between activities and membrane-bound conformations

    SciTech Connect

    Milon, Alain; Miyazawa, Tatsuo; Higashijima, Tsutomu )

    1990-01-09

    Leu-enkephalin, (D-Ala{sup 2})Leu-enkephalin, and (D-Ala{sup 2})Leu-enkephalinamide (agonists) and (L-Ala{sup 2})Leu-enkephalin (inactive analogue) bind to lipid bilayer consisting of phosphatidylcholine and phosphatidylserine. The conformations that these compounds assume, once bound to perdeuterated phospholipid bilayer, have been shown to be unique, as shown by the transferred nuclear Overhauser effect (TRNOE) of {sup 1}H NMR spectroscopy. In addition, their location in the bilayer was analyzed by TRNOE in the presence of spin-labeled phospholipids. These analyses showed a clear relationship between the activity and the peptide-membrane interaction. The three active peptides, when bound to membranes, adopt the same conformation, characterized by a type II{prime} {beta}-turn around Gly{sup 3}-Phe and a {gamma}-turn around Gly{sup 2} (or D-Ala{sup 2}). The inactive analogue, (L-Ala{sup 2})Leu-enkephalin, displayed a completely different TRNOE pattern corresponding to a different conformation in the membrane-bound state. The tyrosine residue of the active compounds is not inserted into the interior of membrane, but it is inserted into the bilayer for the L-Ala{sup 2} analogue. According to these results, (L-Ala{sup 2})Leu-enkephalin may be explained to be inactive because the mode of binding to the membranes is different from that of active compounds.

  9. Torpedo: topic periodicity discovery from text data

    NASA Astrophysics Data System (ADS)

    Wang, Jingjing; Deng, Hongbo; Han, Jiawei

    2015-05-01

    Although history may not repeat itself, many human activities are inherently periodic, recurring daily, weekly, monthly, yearly or following some other periods. Such recurring activities may not repeat the same set of keywords, but they do share similar topics. Thus it is interesting to mine topic periodicity from text data instead of just looking at the temporal behavior of a single keyword/phrase. Some previous preliminary studies in this direction prespecify a periodic temporal template for each topic. In this paper, we remove this restriction and propose a simple yet effective framework Torpedo to mine periodic/recurrent patterns from text, such as news articles, search query logs, research papers, and web blogs. We first transform text data into topic-specific time series by a time dependent topic modeling module, where each of the time series characterizes the temporal behavior of a topic. Then we use time series techniques to detect periodicity. Hence we both obtain a clear view of how topics distribute over time and enable the automatic discovery of periods that are inherent in each topic. Theoretical and experimental analyses demonstrate the advantage of Torpedo over existing work.

  10. Purification and characterization of the membrane-bound quinoprotein glucose dehydrogenase of Gluconacetobacter diazotrophicus PAL 5.

    PubMed

    Sará-Páez, Martin; Contreras-Zentella, Martha; Gómez-Manzo, Saúl; González-Valdez, Alejandra Abigail; Gasca-Licea, Rolando; Mendoza-Hernández, Guillermo; Escamilla, José Edgardo; Reyes-Vivas, Horacio

    2015-02-01

    Acetic acid bacteria oxidize a great number of substrates, such as alcohols and sugars, using different enzymes that are anchored to the membrane. In particular, Gluconacetobacter diazotrophicus is distinguished for its N2-fixing activity under high-aeration conditions. Ga. diazotrophicus is a true endophyte that also has membrane-bound enzymes to oxidize sugars and alcohols. Here we reported the purification and characterization of the membrane-bound glucose dehydrogenase (GDHm), an oxidoreductase of Ga. diazotrophicus. GDHm was solubilized and purified by chromatographic methods. Purified GDHm was monomeric, with a molecular mass of 86 kDa. We identified the prosthetic group as pyrroloquinoline quinone, whose redox state was reduced. GDHm showed an optimum pH of 7.2, and its isoelectric point was 6.0. This enzyme preferentially oxidized D-glucose, 2-deoxy-D-glucose, D-galactose and D-xylose; its affinity towards glucose was ten times greater than that of E. coli GDHm. Finally, Ga. diazotrophicus GDHm was capable of reducing quinones such as Q 1, Q 2, and decylubiquinone; this activity was entirely abolished in the presence of micromolar concentrations of the inhibitor, myxothiazol. Hence, our purification method yielded a highly purified GDHm whose molecular and kinetic parameters were determined. The possible implications of GDHm activity in the mechanism for reducing competitor microorganisms, as well as its participation in the respiratory system of Ga. diazotrophicus, are discussed.

  11. Nucleotide specificity for the bidirectional transport of membrane-bounded organelles in isolated axoplasm.

    PubMed

    Leopold, P L; Snyder, R; Bloom, G S; Brady, S T

    1990-01-01

    Video microscopy of isolated axoplasm from the squid giant axon permits correlated quantitative analyses of membrane-bounded organelle transport both in the intact axoplasm and along individual microtubules. As a result, the effects of experimental manipulations on both anterograde and retrograde movements of membrane-bounded organelles can be evaluated under nearly physiological conditions. Since anterograde and retrograde fast axonal transport are similar but distinct cellular processes, a systematic biochemical analysis is important for a further understanding of the molecular mechanisms for each. In this series of experiments, we employed isolated axoplasm of the squid to define the nucleoside triphosphate specificity for bidirectional organelle motility in the axon. Perfusion of axoplasm with 2-20 mM ATP preserved optimal vesicle velocities in both the anterograde and retrograde directions. Organelle velocities decreased to less than 50% of optimal values when the axoplasm was perfused with 10-20 mM UTP, GTP, ITP, or CTP with simultaneous depletion of endogenous ATP with hexokinase. Under the same conditions, TTP and ATP-gamma-S were unable to support significant levels of transport. None of the NTPs tested had a differential effect on anterograde vs. retrograde movement of vesicles. Surprisingly, several inconsistencies were revealed when a comparison was made between these results and nucleoside triphosphate specificities that have been reported for putative organelle motors by using in vitro assays. These data may be used in conjunction with data from well-defined in vitro assays to develop models for the molecular mechanisms of axonal transport.

  12. Membrane-bound α-synuclein interacts with glucocerebrosidase and inhibits enzyme activity

    PubMed Central

    Yap, Thai Leong; Velayati, Arash; Sidransky, Ellen; Lee, Jennifer C.

    2012-01-01

    Mutations in GBA, the gene encoding glucocerebrosidase, the lysosomal enzyme deficient in Gaucher disease increase the risk for developing Parkinson disease. Recent research suggests a relationship between glucocerebrosidase and the Parkinson disease-related amyloid-forming protein, α-synuclein; however, the specific molecular mechanisms responsible for association remain elusive. Previously, we showed that α-synuclein and glucocerebrosidase interact selectively under lysosomal conditions, and proposed that this newly identified interaction might influence cellular levels of α-synuclein by either promoting protein degradation and/or preventing aggregation. Here, we demonstrate that membrane-bound α-synuclein interacts with glucocerebrosidase, and that this complex formation inhibits enzyme function. Using site-specific fluorescence and Förster energy transfer probes, we mapped the protein-enzyme interacting regions on unilamellar vesicles. Our data suggest that on the membrane surface, the glucocerebrosidase-α-synuclein interaction involves a larger α-synuclein region compared to that found in solution. In addition, α-synuclein acts as a mixed inhibitor with an apparent IC50 in the submicromolar range. Importantly, the membrane-bound, α-helical form of α-synuclein is necessary for inhibition. This glucocerebrosidase interaction and inhibition likely contribute to the mechanism underlying GBA-associated parkinsonism. PMID:23266198

  13. Biochemical similarities between soluble and membrane-bound calcium-dependent protein kinases of barley

    SciTech Connect

    Klimczak, L.J.; Hind, G. )

    1990-04-01

    The soluble and membrane-bound forms of the calcium-dependent protein kinase from barley leaves (Hordeum vulgare L. cv. Borsoy) have been partially purified and compared. Both forms showed an active polypeptide of 37 kilodaltons on activity gels with incorporated histone as substrate. They eluted from chromatofocusing columns at an identical isoelectric point of pH 4.25 {plus minus} 0.2, and also comigrated on several other chromatographic affinity media including Matrex Gel Blue A, histone-agarose, phenyl-Sepharose, and heparin-agarose. Both activities comigrated with chicken ovalbumin during gel filtration through Sephacryl S-200, indicating a native molecular mass of 45 kilodaltons. The activities share a number of enzymatic properties including salt and pH dependence, free calcium stimulation profile, substrate specificity, and Km values. The soluble activity was shown to bind to artificial lipid vesicles. These data suggest strongly that the soluble and membrane-bound calcium-dependent protein kinases from barley are very closely related or even identical.

  14. Membrane-Bound ATPase Contributes to Hop Resistance of Lactobacillus brevis

    PubMed Central

    Sakamoto, Kanta; van Veen, H. W.; Saito, Hiromi; Kobayashi, Hiroshi; Konings, Wil N.

    2002-01-01

    The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 μM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N′-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the α- and β-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds. PMID:12406727

  15. Membrane-bound ATPase contributes to hop resistance of Lactobacillus brevis.

    PubMed

    Sakamoto, Kanta; Van Veen, H W; Saito, Hiromi; Kobayashi, Hiroshi; Konings, Wil N

    2002-11-01

    The activity of the membrane-bound H+-ATPase of the beer spoilage bacterium Lactobacillus brevis ABBC45 increased upon adaptation to bacteriostatic hop compounds. The ATPase activity was optimal around pH 5.6 and increased up to fourfold when L. brevis was exposed to 666 microM hop compounds. The extent of activation depended on the concentration of hop compounds and was maximal at the highest concentration tested. The ATPase activity was strongly inhibited by N,N'-dicyclohexylcarbodiimide, a known inhibitor of FoF1-ATPase. Western blots of membrane proteins of L. brevis with antisera raised against the alpha- and beta-subunits of FoF1-ATPase from Enterococcus hirae showed that there was increased expression of the ATPase after hop adaptation. The expression levels, as well as the ATPase activity, decreased to the initial nonadapted levels when the hop-adapted cells were cultured further without hop compounds. These observations strongly indicate that proton pumping by the membrane-bound ATPase contributes considerably to the resistance of L. brevis to hop compounds.

  16. SEC-MALLS ANALYSIS OF HYALURONAN SIZE DISTRIBUTIONS MADE BY MEMBRANE-BOUND HYALURONAN SYNTHASE

    PubMed Central

    Baggenstoss, Bruce A.; Weigel, Paul H.

    2006-01-01

    SEC-MALLS analyses of E. coli membranes expressing Streptococcus equisimilis hyaluronan synthase (seHAS) demonstrated an inherent artifact (10–100 MDa) that co-eluted with HA, and skewed the apparent weight-average mass of HA to erroneously high values. Briefly heating samples to 65–75°C eliminated this artifact and increased the yield of recovered HA, due to the release of HA chains that were attached to membrane-bound HAS. Inclusion of alkaline phosphatase, which removed UDP produced during the reaction, improved the linearity of HA synthesis - even at high substrate utilization. Surprisingly, addition of EDTA, to chelate Mg+2 ions, did not completely stop the HAS reaction at 30°C or at 4°C. The best conditions for stopping the reaction without altering SEC-MALLS profiles of the product HA were to chill samples on ice in the presence of both EDTA and UDP. Even with excess substrate, the maximum size of product HA decreased as the enzyme concentration increased. Therefore, the maximum HA size made by HAS was determined by extrapolation to zero enzyme concentration. Using the above conditions, membrane-bound seHAS synthesized a cohort of HA products that steadily increased in weight-average molar mass, reaching a final maximal steady-state size of 4–6 MDa within 2–4 hours. PMID:16476403

  17. Purification and characterization of a membrane-bound sialidase from pig liver.

    PubMed

    Kobayashi, T; Ito, M; Ikeda, K; Tanaka, K; Saito, M

    2000-04-01

    A membrane-bound sialidase in pig liver microsomes was solubilized with a nonionic detergent, IGEPAL CA630, and purified to homogeneity by sequential chromatographies on SP-Toyopearl, Butyl-Toyopearl (1st), SuperQ-Toyopearl, Hydroxyapatite, Butyl-Toyopearl (2nd), GM1-Cellulofine affinity, and sialic acid-Cellulofine affinity columns. The molecular weight of the purified enzyme was estimated to be 57 kDa on SDS-PAGE. The pH optimum was 4.8 for the activity measured using 4-methylumbelliferyl-alpha-N-acetylneuraminic acid (4MU-Neu5Ac) as the substrate. The enzyme activity was inhibited by 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, iodoacetamide and p-chloromercuribenzoic acid. While the enzyme could effectively hydrolyze 4MU-Neu5Ac, it failed to significantly cleave a sialic acid residue(s) from sialyllactose, glycoproteins or gangliosides at pH 4.8. These results suggest that the purified enzyme is a novel sialidase with a substrate specificity distinct from those of known membrane-bound sialidases in mammalian tissues.

  18. Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors.

    PubMed

    Kotlyar, A B; Vinogradov, A D

    1984-01-18

    The protective effect of dicarboxylates on the active-site-directed inhibition of the membrane-bound succinate dehydrogenase by N-ethylmaleimide, steady-state kinetics methods for Ki and Ks determinations, and equilibrium studies were employed to quantitate the relative affinities of succinate, fumarate, malonate and oxaloacetate to the reduced and oxidized species of the enzyme. A more than 10-fold difference in the relative affinities of the reduced and oxidized succinate dehydrogenase to succinate, fumarate and oxaloacetate is found, whereas the reactivity of the active-site sulphydryl group does not depend on the redox state of the enzyme. The redox-state-dependent changes in the affinity of the membrane-bound succinate dehydrogenase to oxaloacetate can be quantitatively accounted for by a 10-fold increase in the rate of dissociation of the enzyme-inhibitor complex which occurs upon reduction of the enzyme. The data obtained give no support for either the existence of a sulphydryl group other than the active-site one important for the catalysis or for the presence of a separate dicarboxylate-specific regulatory site in the succinate dehydrogenase molecule.

  19. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.

    PubMed

    Choi, Kyoung-Hwa; Cha, Jaeho

    2015-09-01

    Sulfolobus acidocaldarius DSM639 produced an acid-resistant membrane-bound amylopullulanase (Apu) during growth on starch as a sole carbon and energy source. The physiological role of Apu in starch metabolism was investigated by the growth and starch degradation pattern of apu disruption mutant as well as biochemical properties of recombinant Apu. The Δapu mutant lost the ability to grow in minimal medium in the presence of starch, and the amylolytic activity observed in the membrane fraction of the wild-type strain was not detected in the Δapu mutant when the cells were grown in YT medium. The purified membrane-bound Apu initially hydrolyzed starch, amylopectin, and pullulan into various sizes of maltooligosaccharides, and then produced glucose, maltose, and maltotriose in the end, indicating Apu is a typical endo-acting glycoside hydrolase family 57 (GH57) amylopullulanase. The maltose and maltotriose observed in the culture medium during the exponential and stationary phase growth indicates that Apu is the essential enzyme to initially hydrolyze the starch into small maltooligosaccharides to be transported into the cell.

  20. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set.

    PubMed

    Chang, Hang; Wen, Quan; Parvin, Bahram

    2015-03-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance.

  1. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set

    PubMed Central

    Wen, Quan

    2014-01-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633

  2. Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor.

    PubMed Central

    Papadouli, I; Potamianos, S; Hadjidakis, I; Bairaktari, E; Tsikaris, V; Sakarellos, C; Cung, M T; Marraud, M; Tzartos, S J

    1990-01-01

    The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible. PMID:1695844

  3. Study on torpedo fuze signal denoising method based on WPT

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Sun, Changcun; Zhang, Tao; Ren, Zhiliang

    2013-07-01

    Torpedo fuze signal denoising is an important action to ensure reliable operation of fuze. Based on the good characteristics of wavelet packet transform (WPT) in signal denoising, the paper used wavelet packet transform to denoise the fuze signal under a complex background interference, and a simulation of the denoising results with Matlab is performed. Simulation result shows that the WPT denoising method can effectively eliminate background noise exist in torpedo fuze target signal with higher precision and less distortion, leading to advance the reliability of torpedo fuze operation.

  4. Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  5. Purification and characterization of the membrane-bound nitrate reductase isoenzymes of Bradyrhizobium japonicum.

    PubMed

    Fernández-López, M; Olivares, J; Bedmar, E J

    1996-08-19

    Two respiratory membrane-bound nitrate reductase (NR) isoenzymes, NRI and NRII, have been purified for the first time from one single microorganism. Triton X-100-solubilized NRs were purified by a three-step procedure of differential centrifugation, Q-Sepharose chromatography, and gel filtration on Sephacryl S-300. Both isoenzymes were purified to homogeneity by the criteria of NR activity staining in polyacrylamide gels run under non-denaturating conditions and coincident staining of the protein band by silver nitrate. NRI is composed of three subunits of 116 kDa, 68 kDa, and 56 kDa, whereas NRII is composed of four subunits of 116 kDa, 68 kDa, 59 kDa, and 56 kDa. The 116-kDa subunit of NRI and the 59-kDa subunit of NRII exhibited immunological cross-reactivity with the respiratory NR of Pseudomonas stutzeri strain ZoBell.

  6. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases

    PubMed Central

    Flanagan, Lindsey A.; Parkin, Alison

    2016-01-01

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  7. Allosteric activation of membrane-bound glutamate receptors using coordination chemistry within living cells

    NASA Astrophysics Data System (ADS)

    Kiyonaka, Shigeki; Kubota, Ryou; Michibata, Yukiko; Sakakura, Masayoshi; Takahashi, Hideo; Numata, Tomohiro; Inoue, Ryuji; Yuzaki, Michisuke; Hamachi, Itaru

    2016-10-01

    The controlled activation of proteins in living cells is an important goal in protein-design research, but to introduce an artificial activation switch into membrane proteins through rational design is a significant challenge because of the structural and functional complexity of such proteins. Here we report the allosteric activation of two types of membrane-bound neurotransmitter receptors, the ion-channel type and the G-protein-coupled glutamate receptors, using coordination chemistry in living cells. The high programmability of coordination chemistry enabled two His mutations, which act as an artificial allosteric site, to be semirationally incorporated in the vicinity of the ligand-binding pockets. Binding of Pd(2,2‧-bipyridine) at the allosteric site enabled the active conformations of the glutamate receptors to be stabilized. Using this approach, we were able to activate selectively a mutant glutamate receptor in live neurons, which initiated a subsequent signal-transduction pathway.

  8. The purification and subunit structure of a membrane-bound ATPase from the Archaebacterium Halobacterium saccharovorum

    NASA Technical Reports Server (NTRS)

    Hochstein, Lawrence I.; Kristjansson, Hordur; Altekar, Wijaya

    1987-01-01

    The procedure for the isolation and 70-fold purification of membrane-bound cold-sensitive ATPase from Halobacterium saccharovorum is described. Upon exposure to cold, the enzyme dissociates into two major subunits, I (87 kDa) and II (60 kDa), and two minor subunits, III (29 kDa) and IV (20 kDa). The stoichiometry of the enzyme is proposed to be I2.II2.III.IV; the molecular mass of such a complex would be 343 kDa, which is in good agreement with the value of 350 kDa obtained by gel filtration. The structure of the ATPase from H. saccharovorum makes it unlike any previously described ATPase.

  9. KCl-Dependent Release of Mitochondrial Membrane-Bound Arginase Appears to Be a Novel Variant of Arginase-II

    PubMed Central

    Suman, Mishra; Rajnikant, Mishra

    2016-01-01

    Arginase regulates arginine metabolism, ornithine-urea cycle, and immunological surveillance. Arginase-I is predominant in cytosol, and arginase-II is localised in the mitochondria. A mitochondrial membrane-bound arginase has also been proposed to be adsorbed with outer membrane of mitochondria which gets released by 150 mM potassium chloride (KCl). It is presumed that inclusion of 150 mM KCl in the homogenization medium would not only facilitate release of arginase bound with outer membrane of mitochondria but also affect functional anatomy of mitochondria, mitochondrial enzymes, and proteins. Therefore, it has been intended to characterize KCl-dependent release of mitochondrial membrane-bound arginase from liver of mice. Results provide advancement in the area of arginase biology and suggest that fraction of mitochondrial membrane-bound arginase contains mitochondrial arginase-II and a variant of arginase-II. PMID:27293971

  10. Effect of aloe vera leaf gel extract on membrane bound phosphatases and lysosomal hydrolases in rats with streptozotocin diabetes.

    PubMed

    Rajasekaran, S; Sriram, N; Arulselvan, P; Subramanian, S

    2007-03-01

    Diabetes mellitus is known to promote deterioration of membrane function and impair intra cellular metabolism in the organism. The aim of the present study was to examine the effect of the ethanolic extract from Aloe vera leaf gel on membrane bound phosphatases and lysosomal hydrolases in the liver and kidney of streptozotocin (STZ)-induced diabetic rats. The rats treated with STZ showed significant alterations in the activities of membrane bound phosphatases and lysosomal hydrolases in the liver and kidney. Oral administration of Aloe vera gel extract at a dose of 300 mg/kg body weight/day to STZ-induced diabetic rats for a period of 21 days significantly restored the alterations in enzymes activity to near normalcy. These results were compared with glibenclamide, a reference drug. Thus, the present study confirms that Aloe vera gel extract possesses a significant beneficial effect on membrane bound phosphatases and lysosomal hydrolases.

  11. Genome-Based Discovery of a Novel Membrane-Bound 1,6-Dihydroxyphenazine Prenyltransferase from a Marine Actinomycete

    PubMed Central

    Zeyhle, Philipp; Bauer, Judith S.; Kalinowski, Jörn; Shin-ya, Kazuo; Gross, Harald; Heide, Lutz

    2014-01-01

    Recently, novel prenylated derivatives of 1,6-dihydroxyphenazine have been isolated from the marine sponge-associated Streptomyces sp. SpC080624SC-11. Genome sequencing of this strain now revealed a gene cluster containing all genes necessary for the synthesis of the phenazine and the isoprenoid moieties. Unexpectedly, however, the cluster did not contain a gene with similarity to previously investigated phenazine prenyltransferases, but instead a gene with modest similarity to the membrane-bound prenyltransferases of ubiquinone and menaquinone biosynthesis. Expression of this gene in E. coli and isolation of the membrane fraction proved that the encoded enzyme, Mpz10, catalyzes two successive prenylations of 1,6-dihydroxyphenazine. Mpz10 is the first example of a membrane-bound enzyme catalyzing the prenylation of a phenazine substrate, and one of few examples of membrane-bound enzymes involved in the prenylation of aromatic secondary metabolites in microorganisms. PMID:24892559

  12. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    SciTech Connect

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and the remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.

  13. Crystal structure of a membrane-bound l-amino acid deaminase from Proteus vulgaris.

    PubMed

    Ju, Yingchen; Tong, Shuilong; Gao, Yongxiang; Zhao, Wei; Liu, Qi; Gu, Qiong; Xu, Jun; Niu, Liwen; Teng, Maikun; Zhou, Huihao

    2016-09-01

    l-amino acid oxidases/deaminases (LAAOs/LAADs) are a class of oxidoreductases catalyzing the oxidative deamination of l-amino acids to α-keto acids. They are widely distributed in eukaryotic and prokaryotic organisms, and exhibit diverse substrate specificity, post-translational modifications and cellular localization. While LAAOs isolated from snake venom have been extensively characterized, the structures and functions of LAAOs from other species are largely unknown. Here, we reported crystal structure of a bacterial membrane-bound LAAD from Proteus vulgaris (pvLAAD) in complex with flavin adenine dinucleotide (FAD). We found that the overall fold of pvLAAD does not resemble typical LAAOs. Instead it, is similar to d-amino acid oxidases (DAAOs) with an additional hydrophobic insertion module on protein surface. Structural analysis and liposome-binding assays suggested that the hydrophobic module serves as an extra membrane-binding site for LAADs. Bacteria from genera Proteus and Providencia were found to encode two classes of membrane-bound LAADs. Based on our structure, the key roles of residues Q278 and L317 in substrate selectivity were proposed and biochemically analyzed. While LAADs on the membrane were proposed to transfer electrons to respiratory chain for FAD re-oxidization, we observed that the purified pvLAAD could generate a significant amount of hydrogen peroxide in vitro, suggesting it could use dioxygen to directly re-oxidize FADH2 as what typical LAAOs usually do. These findings provide a novel insights for a better understanding this class of enzymes and will help developing biocatalysts for industrial applications.

  14. Proinflammatory cytokines and their membrane-bound receptors are altered in the lymphocytes of schizophrenia patients.

    PubMed

    Pandey, Ghanshyam N; Ren, Xinguo; Rizavi, Hooriyah S; Zhang, Hui

    2015-05-01

    Abnormalities of protein levels of proinflammatory cytokines and their soluble receptors have been reported in the plasma/serum of schizophrenia (SZ) patients. To examine if SZ is also associated with the abnormal gene expression of cytokines and their membrane-bound receptors, we studied mRNA expression of proinflammatory cytokines and their receptors in lymphocytes of SZ patients and normal control (NC) subjects. We determined the protein and mRNA expression of proinflammatory cytokines and mRNA expression of their receptors in lymphocytes from 30 SZ patients and 30 drug-free NC subjects. The subjects were diagnosed according to DSM-IV criteria. Protein levels of cytokines were determined by ELISA, and mRNA levels in lymphocytes were determined by the qPCR method. We found that the mRNA levels of IL-6, TNF-α, IL-1R1, TNFR1, and TNFR2, but not IL-1β, IL-1R2, IL-1RA, IL-6R, or GP130 were significantly increased in lymphocytes of SZ patients compared with NC subjects. We also found that the protein expression of IL-6 and TNF-α, but not IL-1β, was also significantly increased in SZ patients compared with NC subjects. These studies suggest that in addition to the reported abnormalities of proinflammatory cytokines and their soluble receptors in the plasma of SZ patients, an abnormal gene expression of these cytokines and their membrane-bound receptors may be involved in the pathogenesis of SZ.

  15. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone.

    PubMed

    Sampedro, Javier; Valdivia, Elene R; Fraga, Patricia; Iglesias, Natalia; Revilla, Gloria; Zarra, Ignacio

    2017-02-01

    In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer.

  16. Optimisation of the Factor VIII yield in mammalian cell cultures by reducing the membrane bound fraction.

    PubMed

    Kolind, Mille Petersen; Nørby, Peder Lisby; Berchtold, Martin Werner; Johnsen, Laust Bruun

    2011-02-20

    In vivo, clotting Factor VIII (FVIII) circulates in plasma bound to von Willebrand factor (vWF), and the vWF:FVIII complex prevents binding of FVIII to phosphatidylserine (PS). Activation of FVIII by thrombin releases FVIII from vWF, and subsequently FVIII binds to PS exposed on activated platelets and forms the tenase complex together with clotting Factor IX. In vitro, during serum free production of recombinant FVIII (rFVIII), production cells also expose PS, and since vWF is not present to hinder interaction of secreted rFVIII with PS, rFVIII is partly associated with the cell membrane of the production cells. Recently, we showed that as much as 90% of secreted rFVIII is bound to transiently transfected production cells during serum free conditions. In this study, we investigated the effect of including vWF in the serum free medium, and demonstrate that addition of vWF results in release of active membrane bound rFVIII to the culture medium. Moreover, the attachment of rFVIII to cell membranes of un-transfected HEK293 cells was studied in the presence of compounds that competes for interactions between rFVIII and PS. Competitive assays between iodinated rFVIII (¹²⁵I-rFVIII) and annexin V or ortho-phospho-L-serine (OPLS) demonstrated that annexin V and OPLS were able to reduce the membrane bound fraction of rFVIII by 70% and 30%, respectively. Finally, adding OPLS to CHO cells stably expressing FVIII increased the yield by 50%. Using this new knowledge, the recovery of rFVIII could be increased considerably during serum free production of this therapeutic protein.

  17. The pharmacology of novel acetylcholinesterase inhibitors, (+/-)-huprines Y and X, on the Torpedo electric organ.

    PubMed

    Ros, E; Aleu, J; Gómez de Aranda, I; Muñoz-Torrero, D; Camps, P; Badia, A; Marsal, J; Solsona, C

    2001-06-08

    The effects of the tacrine-huperzine A hybrid acetylcholinesterase inhibitors, (+/-)-12-amino-3-chloro-9-methyl-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride ((+/-)-huprine Y) and (+/-)-12-amino-3-chloro-9-ethyl-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinoline hydrochloride ((+/-)-huprine X), were tested on spontaneous synaptic activity by measuring the amplitude, the rise time, the rate of rise, the half-width and the area or the electrical charge of the miniature endplate potentials (m.e.p.ps) recorded extracellularly on Torpedo electric organ fragments. (+/-)-Huprine Y and (+/-)-huprine X at a concentration of 500 nM increased all the m.e.p.p. variables analyzed. The effect of (+/-)-huprine Y was smaller than that of (+/-)-huprine X for all the variables except for the rate of rise where there was no significant difference. The effects of these drugs were also tested on nicotinic receptors by analyzing the currents elicited by acetylcholine (100 microM) in Xenopus laevis oocytes, transplanted with membranes from Torpedo electric organ. Both drugs inhibited the currents in a reversible manner, (+/-)-huprine Y (IC(50)=452 nM) being more effective than (+/-)-huprine X (IC(50)=4865 nM). The Hill coefficient was 0.5 for both drugs. The inhibition of the nicotinic receptor was voltage-dependent and decreased at depolarizing potentials, and there was no significant difference in the effects between (+/-)-huprine Y and (+/-)-huprine X at concentrations near to their IC(50) values. At depolarizing potentials between -20 and +15 mV, these drugs did not have any detectable effect on the blockade of the nicotinic receptor. Both huprines increased the desensitization of the nicotinic receptors since the current closed quickly in the presence of the drugs, and there was no significant difference in this effect between (+/-)-huprine Y (500 nM) and (+/-)-huprine X (5 microM). We conclude that (+/-)-huprine Y and (+/-)-huprine X increase the level of

  18. Properties of soluble and membrane bound dopamine-beta-monooxygenase from bovine adrenal medulla cross-linked with dimethyl suberimidate.

    PubMed

    Miras-Portugal, M T; Millaruelo, A; Vara, F

    1980-12-10

    Bovine dopamine-beta-monooxygenase from chromaffin granules in its soluble and membrane-bound forms was cross-linked with the bifunctional reagent dimethyl suberimidate, and its structural and kinetic properties were studied. 1. The cross-linking reaction does not affect the activity of soluble dopamine-beta-monooxygenase; it produces a ten percent inactivation in the membrane-bound enzyme, possibly because the linkage to other membrane proteins hinders its activity. 2. The soluble dopamine-beta-monooxygenase reaction mixture was analyzed by sodium dodecyl sulfate gel electrophoresis, showing appreciable amounts of dimer and tetramer, but only small amounts of trimer. In membrane-bound dopamine-beta-monooxygenase, subjected to the same treatment, appreciable amounts of dimer and higher aggregates were found. 3. The kinetic properties of soluble dopamine-beta-monooxygenase after the crosslinking reaction are the same as those of the native enzyme, with a ping-pong kinetic mechanism and the same real Michaelis constants for tyramine and ascorbate: KmT = 0.36 mM and KmA = 0.32 mM. Membrane-bound dopamine-beta-monooxygenase does not present a ping-pong mechanism before or after cross-linking; its real Michaelis constants are slightly modified by the cross-linking reaction: KmT = 0.4 mM and KMA = 0.4 mM.

  19. Removal of N-terminal methionine from haemoglobin nascent peptides by a membrane-bound rat liver methionine aminopeptidase.

    PubMed Central

    Termignoni, C; Freitas, J O; Guimarães, J A

    1986-01-01

    A membrane-bound aminopeptidase able to remove methionine from haemoglobin nascent peptides is described. The enzyme also hydrolyses methionine from methionyl-lysyl-bradykinin but not lysine from lysyl-bradykinin. The tripeptide Met-Ala-Ser is poorly hydrolysed. This aminopeptidase also splits amino acid 2-naphthylamides, being, however, less specific with respect to these synthetic substrates. PMID:3087345

  20. 44. 'Submarine Torpedo Tube Foundation and Towers,' Y&D Drawing 226855, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. 'Submarine Torpedo Tube Foundation and Towers,' Y&D Drawing 226855, approved by Bureau of Ordnance. Dated 20 October 1943. - Naval Torpedo Station, Firing Pier, North end of Gould Island in Narragansett Bay, Newport, Newport County, RI

  1. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase.

    PubMed Central

    Kreimer, D. I.; Shnyrov, V. L.; Villar, E.; Silman, I.; Weiner, L.

    1995-01-01

    Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state. PMID:8563632

  2. A membrane-bound NAC transcription factor as an integrator of biotic and abiotic stress signals.

    PubMed

    Seo, Pil Joon; Park, Chung-Mo

    2010-05-01

    Transcription factors are central components of gene regulatory networks that mediate virtually all aspects of growth and developmental processes in biological systems. The activity of transcription factors is regulated at multiple steps, such as gene transcription, posttranscriptional RNA processing, posttranslational modification, protein-protein interactions, and controlled protein turnover. Controlled activation of dormant, membrane-bound transcription factor (MTF) is an intriguing regulatory mechanism that ensures quick transcriptional responses to environmental fluctuations in plants, in which various stress hormones serve as signaling mediators. NTL6 is proteolytically activated upon exposure to cold and induces expression of the Pathogenesis-Related (PR) genes. The membrane-mediated cold signaling in inducing pathogen resistance is considered to be an adaptive strategy that protects plants against infection by hydrophilic pathogens frequently occurring during cold season. We found that NTL6 also mediates abscisic acid (ABA) regulation of abiotic stress responses in Arabidopsis. NTL6 is proteolytically activated by ABA. Transgenic plants overexpressing a nuclear NTL6 form (35S:6ΔC) exhibited a hypersensitive response to ABA and high salinity in seed germination. Taken together, these observations indicate that NTL6 plays an integrative role in plant responses to both biotic and abiotic stress conditions.

  3. Purification and characterization of a detergent-requiring membrane-bound metalloendopeptidase from porcine brain.

    PubMed

    Jeohn, G H; Matsuzaki, H; Takahashi, K

    1999-03-01

    A detergent-requiring metalloendopeptidase cleaving a progastrin-C-terminal peptide (progastrin-(88-101)) mainly at the Arg95-Gly96 bond was solubilized from porcine cerebral vesicular membranes and purified to homogeneity as examined by PAGE. The purified enzyme had a molecular mass of approximately 76 kDa as estimated by both SDS/PAGE and Sephacryl S-300 gel filtration. It hydrolyzed progastrin-(88-101) peptide, BAM-12P, and bradykinin fairly specifically, and more efficiently than various other neuropeptides and related oligopeptides examined as substrates. It was inactive in the absence of detergents, and required certain detergents such as Triton X-100 or Lubrol PX for activity. Its optimum pH was about 6.5 and was strongly inhibited by metal-chelating agents such as EDTA, EGTA, and o-phenanthroline. It was extremely sensitive to EDTA and was completely inhibited even by 0.3 microM EDTA; the activity was fully restored by addition of a 10-fold higher concentration of Zn2+, CO2+, or Mn2+ ions over EDTA. On the other hand, dynorphin A-(1-13) peptide, a strong inhibitor of neurolysin, failed to inhibit the enzyme. The various characteristics indicated that the present enzyme is a unique membrane-bound metalloendopeptidase.

  4. Biogenesis of phased siRNAs on membrane-bound polysomes in Arabidopsis

    PubMed Central

    Li, Shengben; Le, Brandon; Ma, Xuan; Li, Shaofang; You, Chenjiang; Yu, Yu; Zhang, Bailong; Liu, Lin; Gao, Lei; Shi, Ting; Zhao, Yonghui; Mo, Beixin; Cao, Xiaofeng; Chen, Xuemei

    2016-01-01

    Small RNAs are central players in RNA silencing, yet their cytoplasmic compartmentalization and the effects it may have on their activities have not been studied at the genomic scale. Here we report that Arabidopsis microRNAs (miRNAs) and small interfering RNAs (siRNAs) are distinctly partitioned between the endoplasmic reticulum (ER) and cytosol. All miRNAs are associated with membrane-bound polysomes (MBPs) as opposed to polysomes in general. The MBP association is functionally linked to a deeply conserved and tightly regulated activity of miRNAs – production of phased siRNAs (phasiRNAs) from select target RNAs. The phasiRNA precursor RNAs, thought to be noncoding, are on MBPs and are occupied by ribosomes in a manner that supports miRNA-triggered phasiRNA production, suggesting that ribosomes on the rough ER impact siRNA biogenesis. This study reveals global patterns of cytoplasmic partitioning of small RNAs and expands the known functions of ribosomes and ER. DOI: http://dx.doi.org/10.7554/eLife.22750.001 PMID:27938667

  5. Development of a Membrane-Bound Random DNA Sequence Combinatorial Array Recognition Surface (CARS)

    PubMed Central

    Bruno, John G.

    2010-01-01

    A partially overlapping population of random sequence 60mer DNA molecules consisting of many concatamers of varied lengths was spatially separated in one and two dimensions by electrophoresis in polyacrylamide and transferred to nitrocellulose membranes. The spatially separated library serves as a potential sensor interface on which many different molecular recognition events or target analyte-binding patterns may emerge, thereby theoretically representing a “universal sensor” surface. The separated DNA library has been referred to as a DNA combinatorial array recognition surface or “CARS.” After UV baking and various fluorescence staining or fluorescent probe interactions, the one-dimensional (1-D) and 2-D membrane-bound CARS were digitally photographed and subjected to image analysis with National Institutes of Health Image-Java software. Image analysis demonstrated relatively consistent and more similar spatial fluorescence patterns within CARS analyte treatment groups but noteworthy pattern differences before and after analyte addition and between different analyte treatments. Taken together, these data suggest a potential role for CARS as a novel, inexpensive, self-assembling universal molecular recognition surface that could be coupled to sophisticated Bayesian or other pattern recognition algorithms to classify analytes or make specific identifications, much like the senses of smell or taste. PMID:20357981

  6. Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs

    PubMed Central

    Karl, Alexandra; Berner, Arne; Schmitz, Paul; Koch, Matthias; Nerlich, Michael; Mueller, Michael B.

    2016-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondrogenic cell differentiation. Human bone marrow derived MSCs were chondrogenically predifferentiated in aggregate culture for 14 days. Thereafter, one group was subjected to hypertrophy enhancing media conditions while controls were kept in chondrogenic medium until day 28. Histological evaluation, gene expression by PCR, and Western blot analysis were carried out at days 1, 3, 7, 14, 17, 21, and 28. A subset of cultures was treated with the BMP inhibitor Noggin to test for BMP dependent expression of BAMBI. Hypertrophic differentiated pellets showed larger cells with increased collagen 10 and alkaline phosphatase staining. There was significantly increased expression of BAMBI on gene expression and protein level in hypertrophic cultures compared to the chondrogenic control and increased BMP4 gene expression. Immunohistochemistry showed intense staining of BAMBI in hypertrophic cells. BAMBI expression was dose-dependently downregulated by Noggin. The pseudoreceptor BAMBI is upregulated upon enhancement of hypertrophy in MSC chondrogenic differentiation by a BMP dependent mechanism. PMID:27843458

  7. Purification and structural analysis of membrane-bound polyphenol oxidase from Fuji apple.

    PubMed

    Liu, Fang; Zhao, Jin-Hong; Wen, Xin; Ni, Yuan-Ying

    2015-09-15

    Membrane-bound polyphenol oxidase (mPPO) in Fuji apple (Malus domestica Borkh. cv. Red Fuji) was purified and analyzed with a nanoelectrospray ionization mass spectrometer. The three-dimensional model and binding site of mPPO to 4-methyl catechol were also studied using molecular docking. mPPO was purified 54.41-fold using temperature-induced phase partitioning technique and ion exchange chromatography. mPPO had a molecular weight of 67.3kDa. Even though a significant level of homology was observed between mPPO and the soluble polyphenol oxidase in the copper binding sequence, there was another region, rich in histidine residues, which differed in 13 amino acids. The three-dimensional structure of mPPO consisted of six α-helices, two short β-strands, and ten random coils. The putative substrate-binding pocket contained six polar or charged amino acids, His191, His221, Trp224, Trp228, Phe227, and Val190. Trp224 and Trp228 formed hydrogen bonds with 4-methyl-catechol.

  8. EHD2 restrains dynamics of caveolae by an ATP-dependent, membrane-bound, open conformation.

    PubMed

    Hoernke, Maria; Mohan, Jagan; Larsson, Elin; Blomberg, Jeanette; Kahra, Dana; Westenhoff, Sebastian; Schwieger, Christian; Lundmark, Richard

    2017-02-21

    The EH-domain-containing protein 2 (EHD2) is a dynamin-related ATPase that confines caveolae to the cell surface by restricting the scission and subsequent endocytosis of these membrane pits. For this, EHD2 is thought to first bind to the membrane, then to oligomerize, and finally to detach, in a stringently regulated mechanistic cycle. It is still unclear how ATP is used in this process and whether membrane binding is coupled to conformational changes in the protein. Here, we show that the regulatory N-terminal residues and the EH domain keep the EHD2 dimer in an autoinhibited conformation in solution. By significantly advancing the use of infrared reflection-absorption spectroscopy, we demonstrate that EHD2 adopts an open conformation by tilting the helical domains upon membrane binding. We show that ATP binding enables partial insertion of EHD2 into the membrane, where G-domain-mediated oligomerization occurs. ATP hydrolysis is related to detachment of EHD2 from the membrane. Finally, we demonstrate that the regulation of EHD2 oligomerization in a membrane-bound state is crucial to restrict caveolae dynamics in cells.

  9. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors

    PubMed Central

    Natale, Christopher A; Duperret, Elizabeth K; Zhang, Junqian; Sadeghi, Rochelle; Dahal, Ankit; O'Brien, Kevin Tyler; Cookson, Rosa; Winkler, Jeffrey D; Ridky, Todd W

    2016-01-01

    The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics. DOI: http://dx.doi.org/10.7554/eLife.15104.001 PMID:27115344

  10. Cloning of SEZ-12 encoding seizure-related and membrane-bound adhesion protein.

    PubMed

    Kajiwara, K; Nagasawa, H; Shimizu-Nishikawa, K; Ookura, T; Kimura, M; Sugaya, E

    1996-05-06

    SEZ-12 is one of the seizure-related cDNAs which was isolated by differential hybridization from primary cultured neurons from the mouse cerebral cortex with or without pentylenetetrazol (PTZ). SEZ-12 expression is transiently down-regulated in the mouse brain by injection of PTZ. To characterize SEZ-12, isolation of full-length cDNA and nucleotide sequence analysis were performed. The deduced amino acid sequence of SEZ-12 revealed that it encodes membrane-bound C-type lectin and has a significant homology to that of human cDNA, DGCR2 and IDD, which were cloned from a balanced translocation breakpoint associated with the DiGeorge syndrome. The isolated cDNA was about 4 kb in length and the message was expressed ubiquitously in various organs with low-abundance. Previously, we also cloned a transmembrane protein which is probably involved in cell-cell interaction by the differential hybridization technique. These findings suggest that transmembrane signaling in neuronal cells may have an important role in PTZ-induced seizure.

  11. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract.

    PubMed

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2013-12-01

    Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.

  12. A gene complex coding for the membrane-bound hydrogenase of Alcaligenes eutrophus H16.

    PubMed Central

    Kortlüke, C; Horstmann, K; Schwartz, E; Rohde, M; Binsack, R; Friedrich, B

    1992-01-01

    One of the key enzymes in the chemolithoautotrophic metabolism of Alcaligenes eutrophus H16 is a dimeric, membrane-associated hydrogenase. The genetic determinants of this enzyme are located on the endogenous megaplasmid pHG1 (G. Eberz, C. Hogrefe, C. Kortlüke, A. Kamienski, and B. Friedrich, J. Bacteriol. 168:636-641, 1986). Complementation studies showed that the information required for the formation of active membrane-bound hydrogenase occupies more than 7.5 kb of megaplasmid DNA. We cloned and sequenced this region and identified the genes encoding the two hydrogenase subunits (hoxK and hoxG). The nucleotide sequence contains nine additional closely spaced open reading frames. Immunoelectron microscopy showed that the gene product of one of these open reading frames (hoxM) is involved in the process leading to the attachment of hydrogenase to the membrane. Other open reading frames may encode additional processing functions and components of a hydrogenase-linked electron transport chain. Analysis of Tn5-B21-mediated transcriptional fusions provided evidence that the structural genes and accessory functions belong to at least three coordinately regulated transcriptional units. Images PMID:1383192

  13. Identification of a Membrane-bound Prepore Species Clarifies the Lytic Mechanism of Actinoporins * ♦

    PubMed Central

    Bellomio, Augusto; Gil-Cartón, David; Redondo-Morata, Lorena; Sot, Jesús; Scheuring, Simon; Valle, Mikel; González-Mañas, Juan Manuel; Tsumoto, Kouhei

    2016-01-01

    Pore-forming toxins (PFTs) are cytolytic proteins belonging to the molecular warfare apparatus of living organisms. The assembly of the functional transmembrane pore requires several intermediate steps ranging from a water-soluble monomeric species to the multimeric ensemble inserted in the cell membrane. The non-lytic oligomeric intermediate known as prepore plays an essential role in the mechanism of insertion of the class of β-PFTs. However, in the class of α-PFTs, like the actinoporins produced by sea anemones, evidence of membrane-bound prepores is still lacking. We have employed single-particle cryo-electron microscopy (cryo-EM) and atomic force microscopy to identify, for the first time, a prepore species of the actinoporin fragaceatoxin C bound to lipid vesicles. The size of the prepore coincides with that of the functional pore, except for the transmembrane region, which is absent in the prepore. Biochemical assays indicated that, in the prepore species, the N terminus is not inserted in the bilayer but is exposed to the aqueous solution. Our study reveals the structure of the prepore in actinoporins and highlights the role of structural intermediates for the formation of cytolytic pores by an α-PFT. PMID:27445331

  14. The molecular cloning and characterisation of cDNA coding for the alpha subunit of the acetylcholine receptor.

    PubMed Central

    Sumikawa, K; Houghton, M; Smith, J C; Bell, L; Richards, B M; Barnard, E A

    1982-01-01

    A rare cDNA coding for most of the alpha subunit of the Torpedo nicotinic acetylcholine receptor has been cloned into bacteria. The use of a mismatched oligonucleotide primer of reverse transcriptase facilitated the design of an efficient, specific probe for recombinant bacteria. DNA sequence analysis has enabled the elucidation of a large part of the polypeptide primary sequence which is discussed in relation to its acetylcholine binding activity and the location of receptor within the plasma membrane. When used as a radioactive probe, the cloned cDNA binds specifically to a single Torpedo mRNA species of about 2350 nucleotides in length but fails to show significant cross-hybridisation with alpha subunit mRNA extracted from cat muscle. Images PMID:6183641

  15. Inhibition of the voltage-dependent chloride channel of Torpedo electric organ by diisopropylfluorophosphate and its reversal by oximes

    SciTech Connect

    Abalis, I.M.; Chiang, P.K.; Wirtz, R.A.; Andre, R.G.

    1986-05-01

    Diisopropylfluorophosphate (DFP), a potent organophosphate inhibitor of cholinesterases, was found to inhibit the specific binding of (/sup 35/S)t-butylbicyclophosphorothionate (TBPS), specific chloride channels ligand, to the electric organ membranes of Torpedo, with a Ki of 21 +/- 3 ..mu..M. The binding sites of (/sup 35/S)TBPS in the Torpedo membranes were found not to be GABA receptors or nicotinic acetylcholine receptors as previously described. Interestingly, a stimulation of the binding of (/sup 35/S)TBPS was observed in the presence of atropine and three oximes, monopyridinium oxime 2-PAM, bispyridinium bis-oxime TMB-4 and H-oxime HI-6. The maximal stimulation was 300-500% of control, after which, the stimulation was reversed at higher concentrations. The three oximes protected by more than 95% the inhibition by 1 mM DFP of the binding of (/sup 35/S)TBPS to the voltage-dependent chloride channel. However, atropine protected only 20% of the inhibited channel. These results, thus, suggest that the protection against the toxic effects of DFP or other anticholinesterase agents by the tested oximes may not be solely a result of the reactivation of cholinesterases but also the protection of the voltage-dependent chloride channel.

  16. An Application of Kalman Filtering to Torpedo Tracking.

    DTIC Science & Technology

    1980-09-01

    pulse transit times from the tor- pedo to a receiving hydrophone array. These measurements, which are nonlinear functions of the position and depth...3000. X-POSIT[ON (FT) Figure 4. True Trajectory of the Torpedo in the Area of a Single Array 47 LL_ 000 - x - y Note: The R G Y error de- creases on...12. True Trajectory of the Torpedo During a Straight Run in the Area of a Single Array 55 000 -x xxX - y U-. - CPA Inbound Leg 4 Outbound Leg - L- 0

  17. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Fridkin, M; Fuchs, S

    1986-01-01

    A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the

  18. Analysis of ligand binding to the synthetic dodecapeptide 185-196 of the acetylcholine receptor alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Fridkin, M; Fuchs, S

    1986-12-01

    A synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo acetylcholine receptor alpha subunit, which contains the adjacent cysteine residues at positions 192 and 193, was recently shown by us to contain the essential elements for alpha-bungarotoxin binding. In the present study, we have used Sepharose-linked peptides for quantitative analysis of the cholinergic binding properties of this and other synthetic peptides. Sepharose-linked peptides corresponding to residues 1-20, 126-143, 143-158, 169-181, 185-196, 193-210, and 394-409 of the alpha subunit of Torpedo acetylcholine receptor, as well as a peptide corresponding to residues 185-196 of the alpha subunit of human acetylcholine receptor, were tested for their toxin-binding capacity. Of these immobilized peptides, only peptide 185-196 of the Torpedo acetylcholine receptor bound toxin significantly, thus verifying that this synthetic peptide contains essential components of the receptor toxin-binding site. Analysis of toxin binding to the peptide yielded a dissociation constant of 3.5 X 10(-5) M. This binding was inhibited by various cholinergic ligands. The inhibition potency obtained was alpha-bungarotoxin greater than Naja naja siamensis toxin greater than d-tubocurarine greater than decamethonium greater than acetylcholine greater than carbamoylcholine. This pharmacological profile resembles that of the nicotinic acetylcholine receptor and therefore suggests that the synthetic dodecapeptide also includes the neurotransmitter binding site. Reduction and carboxymethylation of the cysteine residues on peptide 185-196 inhibit its capacity to bind toxin, demonstrating that an intact disulfide is required for toxin binding. A decrease in toxin binding was also obtained following chemical modification of the tryptophan residue at position 187, thus implying its possible involvement in toxin binding. The failure to detect binding of toxin to the corresponding human sequence 185-196, in which the

  19. Membrane-Bound PenA β-Lactamase of Burkholderia pseudomallei

    PubMed Central

    Randall, Linnell B.; Dobos, Karen; Papp-Wallace, Krisztina M.; Bonomo, Robert A.

    2015-01-01

    Burkholderia pseudomallei is the etiologic agent of melioidosis, a difficult-to-treat disease with diverse clinical manifestations. β-Lactam antibiotics such as ceftazidime are crucial to the success of melioidosis therapy. Ceftazidime-resistant clinical isolates have been described, and the most common mechanism is point mutations affecting expression or critical amino acid residues of the chromosomally encoded class A PenA β-lactamase. We previously showed that PenA was exported via the twin arginine translocase system and associated with the spheroplast fraction. We now show that PenA is a membrane-bound lipoprotein. The protein and accompanying β-lactamase activity are found in the membrane fraction and can be extracted with Triton X-114. Treatment with globomycin of B. pseudomallei cells expressing PenA results in accumulation of the prolipoprotein. Mass spectrometric analysis of extracted membrane proteins reveals a protein peak whose mass is consistent with a triacylated PenA protein. Mutation of a crucial lipobox cysteine at position 23 to a serine residue results in loss of β-lactamase activity and absence of detectable PenAC23S protein. A concomitant isoleucine-to-alanine change at position 20 in the signal peptide processing site in the PenAC23S mutant results in a nonlipidated protein (PenAI20A C23S) that is processed by signal peptidase I and exhibits β-lactamase activity. The resistance profile of a B. pseudomallei strain expressing this protein is indistinguishable from the profile of the isogenic strain expressing wild-type PenA. The data show that PenA membrane association is not required for resistance and must serve another purpose. PMID:26711764

  20. Detection of oocyte perivitelline membrane-bound sperm: a tool for avian collection management.

    PubMed

    Croyle, Kaitlin E; Durrant, Barbara S; Jensen, Thomas

    2015-01-01

    The success and sustainability of an avian breeding programme depend on managing productive and unproductive pairs. Given that each breeding season can be of immeasurable importance, it is critical to resolve pair fertility issues quickly. Such problems are traditionally diagnosed through behavioural observations, egg lay history and hatch rates, with a decision to re-pair generally taking one or more breeding seasons. In pairs producing incubated eggs that show little or no signs of embryonic development, determining fertility is difficult. Incorporating a technique to assess sperm presence on the oocyte could, in conjunction with behaviour and other data, facilitate a more timely re-pair decision. Detection of perivitelline membrane-bound (PVM-bound) sperm verifies successful copulation, sperm production and sperm functionality. Alternatively, a lack of detectable sperm, at least in freshly laid eggs, suggests no mating, lack of sperm production/function or sperm-oviduct incompatibility. This study demonstrated PVM-bound sperm detection by Hoechst staining in fresh to 24-day-incubated exotic eggs from 39 species representing 13 orders. However, a rapid and significant time-dependent loss of detectable PVM-bound sperm was observed following incubation of chicken eggs. The PCR detection of sperm in seven species, including two bacterially infected eggs, demonstrated that this method was not as reliable as visual detection using Hoechst staining. The absence of amplicons in visually positive PVMs was presumably due to large PVM size and low sperm count, resulting in DNA concentrations too low for standard PCR detection. In summary, this study demonstrated the feasibility and limitations of using PVM-bound sperm detection as a management tool for exotic avian species. We verified that sperm presence or absence on fluorescence microscopy can aid in the differentiation of fertile from infertile eggs to assist breeding managers in making prompt decisions for pair

  1. Molecular characterization of soluble and membrane-bound trehalases of the whitefly, Bemisia tabaci.

    PubMed

    Wang, Jia; He, Wen-Bo; Su, Yun-Lin; Bing, Xiao-Li; Liu, Shu-Sheng

    2014-04-01

    Trehalases (Tres) have been demonstrated to be the key enzymes that are involved in various trehalose-associated physiological processes in insects. However, little attention has been devoted to the Tres in the whitefly, Bemisia tabaci. In this study, a soluble Tre (BtTre-1) and a membrane-bound Tre (BtTre-2) were cloned in the invasive cryptic species Middle East-Asia Minor 1 (MEAM1) of the whitefly B. tabaci complex. Alignment of deduced amino acids sequences of both BtTres revealed that they share common consensus regions and residues with Tres of other insect species. Levels of BtTres expression in various stages and tissues of the whitefly suggested that BtTre-2 may play a key role in trehalose catabolism during development of the whitefly, especially for oocyte development, while BtTre-1 may prevent trehalose in salivary gland from leaking and entering into plants along with saliva. Potential roles of trehalose catabolism in response to direct and/or plant-mediated indirect effects of Tomato Yellow Leaf Curl China Virus (TYLCCNV) were also detected. Whiteflies feeding on virus-infected tobacco plants showed higher BtTres expressions and accordingly higher BtTres activity but lower trehalose content than those feeding on uninfected plants. The enhanced trehalose catabolism may be beneficial to oocyte development in ovary and attenuate plant defensive responses induced by trehalose in saliva. Viruliferous and nonviruliferous whiteflies feeding on cotton, a nonhost plant for TYLCCNV, differed significantly only in trehalose content. The higher trehalose content in viruliferous whiteflies may be conducive to resisting the stress inflicted by TYLCCNV.

  2. Detection of oocyte perivitelline membrane-bound sperm: a tool for avian collection management

    PubMed Central

    Croyle, Kaitlin E.; Durrant, Barbara S.; Jensen, Thomas

    2015-01-01

    The success and sustainability of an avian breeding programme depend on managing productive and unproductive pairs. Given that each breeding season can be of immeasurable importance, it is critical to resolve pair fertility issues quickly. Such problems are traditionally diagnosed through behavioural observations, egg lay history and hatch rates, with a decision to re-pair generally taking one or more breeding seasons. In pairs producing incubated eggs that show little or no signs of embryonic development, determining fertility is difficult. Incorporating a technique to assess sperm presence on the oocyte could, in conjunction with behaviour and other data, facilitate a more timely re-pair decision. Detection of perivitelline membrane-bound (PVM-bound) sperm verifies successful copulation, sperm production and sperm functionality. Alternatively, a lack of detectable sperm, at least in freshly laid eggs, suggests no mating, lack of sperm production/function or sperm–oviduct incompatibility. This study demonstrated PVM-bound sperm detection by Hoechst staining in fresh to 24-day-incubated exotic eggs from 39 species representing 13 orders. However, a rapid and significant time-dependent loss of detectable PVM-bound sperm was observed following incubation of chicken eggs. The PCR detection of sperm in seven species, including two bacterially infected eggs, demonstrated that this method was not as reliable as visual detection using Hoechst staining. The absence of amplicons in visually positive PVMs was presumably due to large PVM size and low sperm count, resulting in DNA concentrations too low for standard PCR detection. In summary, this study demonstrated the feasibility and limitations of using PVM-bound sperm detection as a management tool for exotic avian species. We verified that sperm presence or absence on fluorescence microscopy can aid in the differentiation of fertile from infertile eggs to assist breeding managers in making prompt decisions for pair

  3. Effects of membrane-bound glucose dehydrogenase overproduction on the respiratory chain of Gluconobacter oxydans.

    PubMed

    Meyer, Maria; Schweiger, Paul; Deppenmeier, Uwe

    2013-04-01

    The acetic acid bacterium Gluconobacter oxydans incompletely oxidizes carbon sources as a natural part of its metabolism, and this feature has been exploited for many biotechnological applications. The most important enzymes used to harness the biocatalytic oxidative capacity of G. oxydans are the pyrroloquinoline quinone (PQQ)-dependent dehydrogenases. The membrane-bound PQQ-dependent glucose dehydrogenase (mGDH), encoded by gox0265, was used as model protein for homologous membrane protein production using the previously described Gluconobacter expression vector pBBR1p452. The mgdh gene had ninefold higher expression in the overproduction strain compared to the parental strain. Furthermore, membranes from the overexpression strain had a five- and threefold increase of mGDH activity and oxygen consumption rates, respectively. Oxygen consumption rate of the membrane fraction could not be increased by the addition of a substrate combination of glucose and ethanol in the overproduction strain, indicating that the terminal quinol oxidases of the respiratory chain were rate limiting. In contrast, addition of glucose and ethanol to membranes of the control strain increased oxygen consumption rates approaching the observed rates with G. oxydans overproducing mGDH. The higher glucose oxidation rates of the mGDH overproduction strain corresponded to a 70 % increase of the gluconate production rate compared to the control strain. The high rate of glucose oxidation may be useful in the industrial production of gluconates and ketogluconates, or as whole-cell biosensors. Furthermore, mGDH was purified to homogeneity by one-step strep-tactin affinity chromatography and characterized. To our knowledge, this is the first report of a membrane integral quinoprotein being purified by affinity chromatography and serves as a proof-of-principle for using G. oxydans as a host for membrane protein expression and purification.

  4. Determination of 15N chemical shift anisotropy from a membrane-bound protein by NMR spectroscopy.

    PubMed

    Pandey, Manoj Kumar; Vivekanandan, Subramanian; Ahuja, Shivani; Pichumani, Kumar; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2012-06-21

    Chemical shift anisotropy (CSA) tensors are essential in the structural and dynamic studies of proteins using NMR spectroscopy. Results from relaxation studies in biomolecular solution and solid-state NMR experiments on aligned samples are routinely interpreted using well-characterized CSA tensors determined from model compounds. Since CSA tensors, particularly the (15)N CSA, highly depend on a number of parameters including secondary structure, electrostatic interaction, and the amino acid sequence, there is a need for accurately determined CSA tensors from proteins. In this study, we report the backbone amide-(15)N CSA tensors for a 16.7-kDa membrane-bound and paramagnetic-heme containing protein, rabbit Cytochrome b(5) (cytb(5)), determined using the (15)N CSA/(15)N-(1)H dipolar transverse cross-correlation rates. The mean values of (15)N CSA determined for residues in helical, sheet, and turn regions are -187.9, -166.0, and -161.1 ppm, respectively, with an overall average value of -171.7 ppm. While the average CSA value determined from this study is in good agreement with previous solution NMR experiments on small globular proteins, the CSA value determined for residues in helical conformation is slightly larger, which may be attributed to the paramagnetic effect from Fe(III) of the heme unit in cytb(5). However, like in previous solution NMR studies, the CSA values reported in this study are larger than the values measured from solid-state NMR experiments. We believe that the CSA parameters reported in this study will be useful in determining the structure, dynamics, and orientation of proteins, including membrane proteins, using NMR spectroscopy.

  5. Diisopropylfluorophosphate Impairs the Transport of Membrane-Bound Organelles in Rat Cortical Axons

    PubMed Central

    Gao, Jie; Naughton, Sean X.; Wulff, Heike; Singh, Vikrant; Beck, Wayne D.; Magrane, Jordi; Thomas, Bobby; Kaidery, Navneet Ammal; Hernandez, Caterina M.

    2016-01-01

    The extensive use of organophosphates (OPs) is an ongoing environmental health concern due to multiple reports of OP-related neurologic abnormalities. The mechanism of the acute toxicity of OPs has been attributed to inhibition of acetylcholinesterase (AChE), but there is growing evidence that this may not account for all the long-term neurotoxic effects of OPs. In previous experiments (using ex vivo and in vitro model systems) we observed that the insecticide OP chlorpyrifos impaired the movements of vesicles and mitochondria in axons. Here, using a time-lapse imaging technique, we evaluated the OP-nerve agent diisopropylfluorophosphate (DFP) across a wide range of concentrations (subnanomolar to micromolar) for effects on fast axonal transport of membrane-bound organelles (MBOs) that contain the amyloid precursor protein (APP) tagged with the fluorescent marker Dendra2 (APPDendra2). Both 1 and 24 hours of exposure to DFP and a positive control compound, colchicine, resulted in a decrease in the velocity of anterograde and retrograde movements of MBOs and an increase in the number of stationary MBOs. These effects occurred at picomolar (100 pM) to low nanomolar (0.1 nM) concentrations that were not associated with compromised cell viability or cytoskeletal damage. Moreover, the effects of DFP on axonal transport occurred at concentrations that did not inhibit AChE activity, and they were not blocked by cholinergic receptor antagonists. Given the fundamental importance of axonal transport to neuronal function, these observations may explain some of the long-term neurologic deficits that have been observed in humans who have been exposed to OPs. PMID:26718240

  6. Disruption of the membrane-bound alcohol dehydrogenase-encoding gene improved glycerol use and dihydroxyacetone productivity in Gluconobacter oxydans.

    PubMed

    Habe, Hiroshi; Fukuoka, Tokuma; Morita, Tomotake; Kitamoto, Dai; Yakushi, Toshiharu; Matsushita, Kazunobu; Sakaki, Keiji

    2010-01-01

    Dihydroxyacetone (DHA) production from glycerol by Gluconobacter oxydans is an industrial form of fermentation, but some problems exist related to microbial DHA production. For example, glycerol inhibits DHA production and affects its biological activity. G. oxydans produces both DHA and glyceric acid (GA) from glycerol simultaneously, and membrane-bound glycerol dehydrogenase and membrane-bound alcohol dehydrogenases are involved in the two reactions, respectively. We discovered that the G. oxydans mutant DeltaadhA, in which the membrane-bound alcohol dehydrogenase-encoding gene (adhA) was disrupted, significantly improved its ability to grow in a higher concentration of glycerol and to produce DHA compared to a wild-type strain. DeltaadhA grew on 220 g/l of initial glycerol and produced 125 g/l of DHA during a 3-d incubation, whereas the wild-type did not. Resting DeltaadhA cells converted 230 g/l of glycerol aqueous solution to 139.7 g/l of DHA during a 3-d incubation. The inhibitory effect of glycerate sodium salt on DeltaadhA was investigated. An increase in the glycerate concentration at the beginning of growth resulted in decreases in both growth and DHA production.

  7. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    PubMed

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  8. Presence of membrane-bound proteinases that preferentially degrade oxidatively damaged erythrocyte membrane proteins as secondary antioxidant defense.

    PubMed

    Beppu, M; Inoue, M; Ishikawa, T; Kikugawa, K

    1994-11-23

    Human erythrocytes were oxidized with xanthine/xanthine oxidase/ferric ion or ADP/ferric ion at 37 degrees C for several hours. Band 3 protein and spectrin of the oxidized cells were found to be significantly modified as analyzed by radiolabeling with tritiated borohydride. Sodium dodecylsulfate-polyacrylamide gel electrophoresis of the xanthine/xanthine oxidase/ferric iron-oxidized cells and subsequent immunoblotting with anti band 3 protein showed that band 3 protein was fragmented into smaller molecular-weight fragments. When the cell membrane obtained from the oxidized cells were incubated at pH 7.4 and 37 degrees C for several hours in the presence of alpha-tocopherol, extensive degradation of band 3 protein and spectrin was observed. Band 3 protein was found to be most susceptible to the degradation. Degradation of band 3 protein was also observed after similar incubation of the membrane from the ADP/ferric ion-oxidized cells. Membrane-bound serine- and metalloproteinases were responsible for the degradation of band 3 protein, because the degradation was remarkably inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, and partially by ethylenediaminetetraacetic acid. Hence, the membrane proteins became susceptible to membrane-bound proteinases by oxidative stress. This observation suggests that these membrane-bound proteinases exist to remove oxidatively damaged proteins from the cell membrane.

  9. Transient Developmental Purkinje Cell Axonal Torpedoes in Healthy and Ataxic Mouse Cerebellum

    PubMed Central

    Ljungberg, Lovisa; Lang-Ouellette, Daneck; Yang, Angela; Jayabal, Sriram; Quilez, Sabrina; Watt, Alanna J.

    2016-01-01

    Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells – known as torpedoes – have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function of Purkinje cell axonal torpedoes in health as well as in disease is poorly understood. We investigated the properties of developmental torpedoes in the postnatal mouse cerebellum of wild-type and transgenic mice. We found that Purkinje cell axonal torpedoes transiently appeared on axons of Purkinje neurons, with the largest number of torpedoes observed at postnatal day 11 (P11). This was after peak developmental apoptosis had occurred, when Purkinje cell counts in a lobule were static, suggesting that most developmental torpedoes appear on axons of neurons that persist into adulthood. We found that developmental torpedoes were not associated with a presynaptic GABAergic marker, indicating that they are not synapses. They were seldom found at axonal collateral branch points, and lacked microglia enrichment, suggesting that they are unlikely to be involved in axonal refinement. Interestingly, we found several differences between developmental torpedoes and disease-related torpedoes: developmental torpedoes occurred largely on myelinated axons, and were not associated with changes in basket cell innervation on their parent soma. Disease-related torpedoes are typically reported to contain neurofilament; while the majority of developmental torpedoes did as well, a fraction of smaller developmental torpedoes did not. These differences indicate that developmental torpedoes may not be functionally identical to disease-related torpedoes. To study this further, we used a mouse model of spinocerebellar ataxia type 6 (SCA6), and found elevated disease-related torpedo number at 2

  10. EXTERIOR VIEW, LOOKING WEST, WITH SWITCHING ENGINE TRANSPORTING TORPEDO LADLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW, LOOKING WEST, WITH SWITCHING ENGINE TRANSPORTING TORPEDO LADLE FILLED WITH MOLTEN IRON TO THE Q-BOP FURNACES. VERTICAL CONVEYOR TRANSPORTS ALL PROCESS MATERIAL INCLUDING COKE AND PELLETS TO FURNACE. - U.S. Steel, Fairfield Works, Blast Furnace No. 8, North of Valley Road, West of Ensley-Pleasant Grove Road, Fairfield, Jefferson County, AL

  11. Structure and promoter analysis of the mouse membrane-bound transferrin-like protein (MTf) gene.

    PubMed

    Nakamasu, K; Kawamoto, T; Yoshida, E; Noshiro, M; Matsuda, Y; Kato, Y

    2001-03-01

    Recently, we purified membrane-bound transferrin-like protein (MTf) from the plasma membrane of rabbit chondrocytes and showed that the expression levels of MTf protein and mRNA were much higher in cartilage than in other tissues [Kawamoto T, Pan, H., Yan, W., Ishida, H., Usui, E., Oda, R., Nakamasu, K., Noshiro, M., Kawashima-Ohya, Y., Fujii, M., Shintani, H., Okada, Y. & Kato, Y. (1998) Eur. J. Biochem. 256, 503--509]. In this study, we isolated the MTf gene from a constructed mouse genomic library. The mouse MTf gene was encoded by a single-copy gene spanning approximately 26 kb and consisting of 16 exons. The transcription-initiation site was located 157 bp upstream from the translation-start codon, and a TATA box was not found in the 5' flanking region. The mouse MTf gene was mapped on the B3 band of chromosome 16 by fluorescence in situ hybridization. Using primary chondrocytes, SK-MEL-28 (melanoma cell line), ATDC5 (chondrogenic cell line) and NIH3T3 (fibroblast cell line) cells, we carried out transient expression studies on various lengths of the 5' flanking region of the MTf gene fused to the luciferase reporter gene. Luciferase activity in SK-MEL-28 cells was higher than in primary chondrocytes. Although no luciferase activity was detectable in NIH3T3 cells, it was higher in chondrocytes than in ATDC5 chondrogenic cells. These findings were consistent with the levels of expression of MTf mRNA in these cells cultured under similar conditions. The patterns of increase and decrease in the luciferase activity in chondrocytes transfected with various 5' deleted constructs of the MTf promoter were similar to that in ATDC5 cells, but differed from that in SK-MEL-28 cells. The findings obtained with primary chondrocytes suggest that the regions between -693 and -444 and between -1635 and -1213 contain positive and negative cis-acting elements, respectively. The chondrocyte-specific expression of the MTf gene could be regulated via these regulatory elements in

  12. Structural and Dynamical Insights into the Membrane-Bound α-Synuclein

    PubMed Central

    Mukhopadhyay, Samrat

    2013-01-01

    Membrane-induced disorder-to-helix transition of α-synuclein, a presynaptic protein, has been implicated in a number of important neuronal functions as well as in the etiology of Parkinson’s disease. In order to obtain structural insights of membrane-bound α-synuclein at the residue-specific resolution, we took advantage of the fact that the protein is devoid of tryptophan and incorporated single tryptophan at various residue positions along the sequence. These tryptophans were used as site-specific markers to characterize the structural and dynamical aspects of α-synuclein on the negatively charged small unilamellar lipid vesicles. An array of site-specific fluorescence readouts, such as the spectral-shift, quenching efficiency and anisotropy, allowed us to discern various features of the conformational rearrangements occurring at different locations of α-synuclein on the lipid membrane. In order to define the spatial localization of various regions of the protein near the membrane surface, we utilized a unique and sensitive indicator, namely, red-edge excitation shift (REES), which originates when a fluorophore is located in a highly ordered micro-environment. The extent of REES observed at different residue positions allowed us to directly identify the residues that are localized at the membrane-water interface comprising a thin (∼ 15 Å) layer of motionally restrained water molecules and enabled us to construct a dynamic hydration map of the protein. The combination of site-specific fluorescence readouts allowed us to unravel the intriguing molecular details of α-synuclein on the lipid membrane in a direct model-free fashion. Additionally, the combination of methodologies described here are capable of distinguishing subtle but important structural alterations of α-synuclein bound to different negatively charged lipids with varied head-group chemistry. We believe that the structural modulations of α-synuclein on the membrane could potentially be

  13. Generation and characterization of tabalumab, a human monoclonal antibody that neutralizes both soluble and membrane-bound B-cell activating factor

    PubMed Central

    Manetta, Joseph; Bina, Holly; Ryan, Paul; Fox, Niles; Witcher, Derrick R; Kikly, Kristine

    2014-01-01

    B-cell activating factor (BAFF) is a B-cell survival factor with a key role in B-cell homeostasis and tolerance. Dysregulated BAFF expression may contribute to autoimmune diseases or B-cell malignancies via effects on abnormal B-lymphocyte activation, proliferation, survival, and immunoglobulin secretion. Monoclonal antibodies were generated against human BAFF, characterized for species specificity and affinity, and screened for the ability to neutralize both membrane-bound and soluble BAFF. In addition, studies were undertaken to determine the relative potency of membrane-bound and soluble BAFF. Tabalumab has a high affinity for human, cynomolgus monkey, and rabbit BAFF. No binding to mouse BAFF was detected. Tabalumab was able to neutralize soluble human, cynomolgus monkey, or rabbit BAFF with equal potency. Our data demonstrate that membrane-bound BAFF can be a more potent stimulus for B-cells than soluble BAFF, and tabalumab also neutralized membrane-bound BAFF. Tabalumab prevented BAFF from binding to BAFF receptors and demonstrated pharmacodynamic effects in human BAFF transgenic mice. Tabalumab is a high-affinity human antibody with neutralizing activity against membrane-bound and soluble BAFF. Given our findings that membrane-bound BAFF can have greater in vitro potency than soluble BAFF, neutralization of both forms of BAFF is likely to be important for optimal therapeutic effect. PMID:25258549

  14. Acetylcholine Promotes Binding of α-Conotoxin MII for α3β2 Nicotinic Acetylcholine Receptors

    PubMed Central

    Sambasivarao, Somisetti V.; Roberts, Jessica; Bharadwaj, Vivek S.; Slingsby, Jason G.; Rohleder, Conrad; Mallory, Chris; Groome, James R.

    2014-01-01

    α-Conotoxin MII (α-CTxMII) is a 16 amino acid peptide with the sequence GCCSNPVCHLEHSNLC containing disulfide bonds between Cys2-Cys8 and Cys3-Cys16. This peptide, isolated from the venom of the marine cone snail Conus magus, is a potent and selective antagonist of neuronal nicotinic acetylcholine receptors (nAChRs). To evaluate the impact of channel-ligand interactions on ligand binding affinity, homology models of the heteropentameric α3β2-nAChR were constructed. The models were created in MODELLER using crystal structures of the Torpedo marmorata-nAChR (Tm-nAChR, PDB ID: 2BG9) and the Aplysia californica-acetylcholine binding protein (Ac-AChBP, PDB ID: 2BR8) as templates for the α3 and β2 subunit isoforms derived from rat neuronal nAChR primary amino acid sequences. Molecular docking calculations were performed with AutoDock to evaluate interactions of the heteropentameric nAChR homology models with the ligands acetylcholine (ACh) and α-CTxMII. The nAChR homology models described here bind ACh with commensurate binding energies to previously reported systems, and identify critical interactions that facilitate both ACh and α-CTxMII ligand binding. The docking calculations revealed an increased binding affinity of the α3β2-nAChR for α-CTxMII with ACh bound to the receptor, which was confirmed through two-electrode voltage clamp experiments on oocytes from Xenopus laevis. These findings provide insights into the inhibition and mechanism of electrostatically driven antagonist properties of the α-CTxMIIs on nAChRs. PMID:24420650

  15. Structural Features of Membrane-bound Glucocerebrosidase and α-Synuclein Probed by Neutron Reflectometry and Fluorescence Spectroscopy*

    PubMed Central

    Yap, Thai Leong; Jiang, Zhiping; Heinrich, Frank; Gruschus, James M.; Pfefferkorn, Candace M.; Barros, Marilia; Curtis, Joseph E.; Sidransky, Ellen; Lee, Jennifer C.

    2015-01-01

    Mutations in glucocerebrosidase (GCase), the enzyme deficient in Gaucher disease, are a common genetic risk factor for the development of Parkinson disease and related disorders, implicating the role of this lysosomal hydrolase in the disease etiology. A specific physical interaction exists between the Parkinson disease-related protein α-synuclein (α-syn) and GCase both in solution and on the lipid membrane, resulting in efficient enzyme inhibition. Here, neutron reflectometry was employed as a first direct structural characterization of GCase and α-syn·GCase complex on a sparsely-tethered lipid bilayer, revealing the orientation of the membrane-bound GCase. GCase binds to and partially inserts into the bilayer with its active site most likely lying just above the membrane-water interface. The interaction was further characterized by intrinsic Trp fluorescence, circular dichroism, and surface plasmon resonance spectroscopy. Both Trp fluorescence and neutron reflectometry results suggest a rearrangement of loops surrounding the catalytic site, where they extend into the hydrocarbon chain region of the outer leaflet. Taking advantage of contrasting neutron scattering length densities, the use of deuterated α-syn versus protiated GCase showed a large change in the membrane-bound structure of α-syn in the complex. We propose a model of α-syn·GCase on the membrane, providing structural insights into inhibition of GCase by α-syn. The interaction displaces GCase away from the membrane, possibly impeding substrate access and perturbing the active site. GCase greatly alters membrane-bound α-syn, moving helical residues away from the bilayer, which could impact the degradation of α-syn in the lysosome where these two proteins interact. PMID:25429104

  16. pH-induced conformational changes of membrane-bound influenza hemagglutinin and its effect on target lipid bilayers.

    PubMed Central

    Gray, C.; Tamm, L. K.

    1998-01-01

    Influenza virus hemagglutinin (HA) has served as a paradigm for both pH-dependent and -independent viral membrane fusion. Although large conformational changes were observed by X-ray crystallography when soluble fragments of HA were subjected to fusion-pH conditions, it is not clear whether the same changes occur in membrane-bound HA, what the spatial relationship is between the conformationally changed HA and the target and viral membranes, and in what way HA perturbs the target membrane at low pH. We have taken a spectroscopic approach using an array of recently developed FTIR techniques to address these questions. Difference attenuated total reflection FTIR spectroscopy was employed to reveal reversible and irreversible components of the pH-induced conformational change of the membrane-bound bromelain fragment of HA, BHA. Additional proteolytic fragments of BHA were produced which permitted a tentative assignment of the observed changes to the HA1 and HA2 subunits, respectively. The membrane-bound HA1 subunit undergoes a reversible conformational change, which most likely involves the loss of a small proportion of beta-sheet at low pH. BHA was found to undergo a partially reversible tilting motion relative to the target membrane upon exposure to pH 5, indicating a previously undescribed hinge near the anchoring point to the target membrane. Time-resolved amide H/D exchange experiments revealed a more dynamic (tertiary) structure of membrane-bound BHA and its HA2, but not its HA1, subunit. Finally BHA and, to a lesser degree, HA1 perturbed the lipid bilayer of the target membrane at the interface, as assessed by spectral changes of the lipid ester carbonyl groups. These results are discussed in the context of a complementary study of HA that was bound to viral membranes through its transmembrane peptide (Gray C, Tamm LK, 1997, Protein Sci 6:1993-2006). A distinctive role for the HA1 subunit in the conformational change of HA becomes apparent from these combined

  17. Isolation and characterization of secretory granules storing a vasoactive intestinal polypeptide-like peptide in Torpedo cholinergic electromotor neurones.

    PubMed

    Agoston, D V; Dowe, G H; Whittaker, V P

    1989-06-01

    Previous immunocytochemical work showed that the cholinergic electromotor neurones of Torpedo marmorata contain a vasoactive intestinal polypeptide-like immunoreactivity (VIPLI) that is conveyed to the terminals by axonal transport from the cell bodies where it is presumably synthesized. In extension of this work, we have now succeeded in isolating the VIPLI storage granules from both the terminals and the axons of these neurones and characterizing them morphologically and biochemically. They were readily separated from synaptic vesicles but contained several components in common that had previously been regarded as specific for synaptic vesicles. Among these were a heparan sulphate type of proteoglycan, synaptophysin, and a Mg2+-dependent ATPase. The VIPLI concentration in lobe tissue and the amount of tissue available were both insufficient to permit the isolation of granules from the electromotor cell bodies by the same technique but it was possible to establish the presence of such granules by particle-exclusion chromatography, using the stable markers mentioned above. In contrast to the VIPLI-containing granules, axonal synaptic vesicles differed from their terminal counterparts in having a very low acetylcholine content relative to stable vesicle markers: they presumably fill up on reaching the terminal where they are exposed to higher concentrations of cytoplasmic acetylcholine.

  18. Characterization and photoaffinity labeling of the muscarinic acetylcholine receptor

    SciTech Connect

    Cremo, C.R.

    1983-01-01

    The muscarinic acetylcholine receptor, identified by tritiated L-quinuclidinyl benzilate (L-(/sup 3/H)QNB) binding, was solubilized from porcine atrial membranes using a 5:1 (w/w) ratio of digitonin and cholate. Specific binding activities of the solubilized receptor solutions usually exceeded 1.0 nmol L-(/sup 3/H)QNB sites per gram of protein, representing 75-98% total site recovery and a two- to three-fold enrichment over untreated atrial membranes. Two rapid assays for measuring the binding activities of detergent extracts were devised and compared with equilibrium dialysis. All three methods gave similar results. The equilibrium dissociation constant of the solubilized receptor for L-(/sup 3/H)QNB as determined by the three methods varied from 230 to 450 pM depending on the method and temperature. The interaction of alkyl quanidines and decahydrohistrionicotoxin with the membrane-bound and solubilized muscarinic acetylcholine receptor (mAcChR) from porcine atria was described. Alkyl guanidines with alkyl chain lengths from one to ten carbons displaced (/sup 3/H)L-quinuclidinyl bensilate ((/sup 3/H)L-QNB) competitively from a single class of sites for the membrane-bound mAcChR. From a plot of -1n K/sub i/ versus alkyl carbon chain number, a value of -(473 +/- 30) cal/mol was estimated as the energetic contribution per methylene group to the total binding energy. The synthesis and properties of a radiolabeled muscarinic antagonist photoaffinity probe, (/sup 3/H) p-azidoatropine methyl iodide were reported.

  19. Are hormones from the neuropeptide Y family recognized by their receptors from the membrane-bound state?

    PubMed

    Bader, Reto; Zerbe, Oliver

    2005-09-01

    Hormones and many other neurotransmitters, growth factors, odorant molecules, and light all present stimuli for a class of membrane-anchored receptors called G protein-coupled receptors (GPCRs). The GPCRs are the largest family of cell-surface receptors involved in signal transduction. About 1% of all known genes of Drosophila and more than 5% of the genes of Caenorhabditis elegans encode GPCRs. In addition, more than 50% of current therapeutic agents on the market target these receptors. When the enormous biological and pharmaceutical importance of these receptors is considered, it is surprising how little is known about the mechanism with which these receptors recognize their natural ligands. In this review we present a structural approach, utilizing techniques of high-resolution NMR spectroscopy, to address the question of whether peptides from the neuropeptide Y family of neurohormones are recognized directly from solution or from the membrane-bound state. In our studies we discovered that the structures of the membrane-bound species are better correlated to the pharmacological properties of these peptides than the solution structures are. These findings are supported by the observation that many biophysical properties of these peptides seem to be optimized for membrane binding. We finally present a scenario of possible events during receptor recognition.

  20. Size exclusion chromatography-multiangle laser light scattering analysis of hyaluronan size distributions made by membrane-bound hyaluronan synthase.

    PubMed

    Baggenstoss, Bruce A; Weigel, Paul H

    2006-05-15

    Size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) analyses of Escherichia coli membranes expressing Streptococcus equisimilis hyaluronan synthase (seHAS) demonstrated an inherent artifact (10-100 MDa) that coeluted with hyaluronan (HA) and skewed the apparent weight-average mass of HA to erroneously high values. Briefly heating samples to 65-75 degrees C eliminated this artifact and increased the yield of recovered HA due to the release of HA chains that were attached to membrane-bound HAS. Inclusion of alkaline phosphatase, which removed uridine 5'-diphosphate (UDP) produced during the reaction, improved the linearity of HA synthesis-even at high substrate use. Surprisingly, the addition of EDTA, to chelate Mg(2+) ions, did not completely stop the HAS reaction at 30 degrees C or at 4 degrees C. The best conditions for stopping the reaction without altering SEC-MALLS profiles of the product HA were to chill samples on ice in the presence of both EDTA and UDP. Even with excess substrate, the maximum size of product HA decreased as the enzyme concentration increased. Therefore, the maximum HA size made by HAS was determined by extrapolation to zero enzyme concentration. Using the above conditions, membrane-bound seHAS synthesized a cohort of HA products that steadily increased in weight-average molar mass, reaching a final maximal steady-state size of 4 to 6 MDa within 2-4 h.

  1. Mg2+ is an essential activator of hydrolytic activity of membrane-bound pyrophosphatase of Rhodospirillum rubrum.

    PubMed Central

    Sosa, A; Ordaz, H; Romero, I; Celis, H

    1992-01-01

    The substrate for the hydrolytic activity of membrane-bound pyrophosphatase is the PP(i)-Mg2+ complex. The enzyme has no activity when the free Mg2+ concentration is lower than 10 microM (at 0.5 mM-PP(i)-Mg2+), and therefore free Mg2+ is an essential activator of the hydrolytic activity. The Km for the substrate changes in response to variation in free Mg2+ concentration, from 10.25 to 0.6 mM when free Mg2+ is increased from 0.03 to 1.0 mM respectively. The Km for Mg2+ depends on the substrate concentration: the Km decreases from 0.52 to 0.14 mM from 0.25 to 0.75 mM-PP(i)-Mg2+ respectively. The extrapolated Km for Mg2+ in the absence of the substrate is 0.73 mM. Imidodiphosphate-Mg2+ and free Ca2+ were used as competitive inhibitors of substrate and activator respectively. The equilibrium binding kinetics suggest an ordered mechanism for the activator and the substrate: Mg2+ ions bind the enzyme before PP(i)-Mg2+ in the formation of the catalytic complex, membrane-bound pyrophosphatase-(Mg2+)-(PP(i)-Mg2+). PMID:1315519

  2. Protective Effect of Prosopis cineraria Against N-Nitrosodiethylamine Induced Liver Tumor by Modulating Membrane Bound Enzymes and Glycoproteins

    PubMed Central

    Pakkir Maideen, Naina Mohamed; Velayutham, Ravichandiran; Manavalan, Gobinath

    2012-01-01

    Purpose: The objective of the present study was to evaluate the protective effect of methanol extract of Prosopis cineraria (MPC) against N-nitrosodiethylamine (DEN, 200mg/kg) induced Phenobarbital promoted experimental liver tumors in male Wistar rats. Methods: The rats were divided into four groups, each group consisting of six animals. Group 1 served as control animals. Liver tumor was induced in group 2, 3, and 4 and Group 3 animals received MPC 200mg/kg and Group 4 animals received MPC 400mg/kg. Results: Administration of DEN has brought down the levels of membrane bound enzymes like Na+/ K+ ATPase, Mg2+ ATPase and Ca2+ATPase which were later found to be increased by the administration of Prosopis cineraria (200 and 400mg/kg) in dose dependent manner. The MPC extract also suppressed the levels of glycoproteins like Hexose, Hexosamine and Sialic acid when compared to liver tumor bearing animals. Conclusion: Our study suggests that MPC may extend its protective role by modulating the levels of membrane bound enzymes and suppressing glycoprotein levels. PMID:24312790

  3. Structural Ensembles of Membrane-bound α-Synuclein Reveal the Molecular Determinants of Synaptic Vesicle Affinity

    PubMed Central

    Fusco, Giuliana; De Simone, Alfonso; Arosio, Paolo; Vendruscolo, Michele; Veglia, Gianluigi; Dobson, Christopher M.

    2016-01-01

    A detailed characterisation of the molecular determinants of membrane binding by α-synuclein (αS), a 140-residue protein whose aggregation is associated with Parkinson’s disease, is of fundamental significance to clarify the manner in which the balance between functional and dysfunctional processes are regulated for this protein. Despite its biological relevance, the structural nature of the membrane-bound state αS remains elusive, in part because of the intrinsically dynamic nature of the protein and also because of the difficulties in studying this state in a physiologically relevant environment. In the present study we have used solid-state NMR and restrained MD simulations to refine structure and topology of the N-terminal region of αS bound to the surface of synaptic-like membranes. This region has fundamental importance in the binding mechanism of αS as it acts as to anchor the protein to lipid bilayers. The results enabled the identification of the key elements for the biological properties of αS in its membrane-bound state. PMID:27273030

  4. Identification and characterization of novel membrane-bound PRL protein tyrosine phosphatases from Setaria cervi, a bovine filarial parasite.

    PubMed

    Singh, Neetu; Yadav, Smita; Rathaur, Sushma

    2015-11-01

    A significant amount of protein tyrosine phosphatase (PTP) activity was detected in the detergent-soluble membrane-bound fraction of Setaria cervi, a bovine filarial parasite. The membrane-bound PTP activity was significantly inhibited when the adult parasites were exposed to compounds having antifilarial activity like aspirin and SK7 as well as phenylarsine oxide, a specific PTP inhibitor suggesting that this activity is stress regulated. Further, this enzyme was purified as a single protein of apparently 21 kDa using two different chromatographic techniques. The MALDI-MS/MS analysis of its peptides showed closest match with protein tyrosine phosphatase PRL (Aedes aegypti). This purified enzyme (named as PRL) showed maximum activity at pH 5.5/37 °C and hydrolysed para nitro phenyl phosphate (pNPP) at the highest rate followed by O-P-L-tyrosine and O-P-L-threonine. It showed significant inhibition by specific inhibitors of PTP such as sodium orthovanadate, phenylarsine oxide and ammonium molybdate and was activated by dithiothreitol (DTT). The active site modification studies suggested involvement of cysteine, arginine, histidine and aspartic acid in the catalytic activity of PRL. The activity of S. cervi PRL was also found to be resistant towards the external oxidative stress. Thus, S. cervi PRL could be taken as a potential target for the management of human lymphatic filariasis.

  5. Pantetheinase activity of membrane-bound Vanin-1: lack of free cysteamine in tissues of Vanin-1 deficient mice.

    PubMed

    Pitari, G; Malergue, F; Martin, F; Philippe, J M; Massucci, M T; Chabret, C; Maras, B; Duprè, S; Naquet, P; Galland, F

    2000-10-20

    Pantetheinase (EC 3.5.1.-) is an ubiquitous enzyme which in vitro has been shown to recycle pantothenic acid (vitamin B5) and to produce cysteamine, a potent anti-oxidant. We show that the Vanin-1 gene encodes pantetheinase widely expressed in mouse tissues: (1) a pantetheinase activity is specifically expressed by Vanin-1 transfectants and is immunodepleted by specific antibodies; (2) Vanin-1 is a GPI-anchored pantetheinase, and consequently an ectoenzyme; (3) Vanin-1 null mice are deficient in membrane-bound pantetheinase activity in kidney and liver; (4) in these organs, a major metabolic consequence is the absence of detectable free cysteamine; this demonstrates that membrane-bound pantetheinase is the main source of cysteamine in tissues under physiological conditions. Since the Vanin-1 molecule was previously shown to be involved in the control of thymus reconstitution following sublethal irradiation in vivo, this raises the possibility that Vanin/pantetheinase might be involved in the regulation of some immune functions maybe in the context of the response to oxidative stress.

  6. Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate.

    PubMed

    Manzo, Anthony J; Goushcha, Alexander O; Barabash, Yuri M; Kharkyanen, Valery N; Scott, Gary W

    2009-07-01

    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I(exp), obeys a simple exponential law with the rate constant alphaI(exp) + k(rec), in which alpha is a parameter relating the light intensity, measured in mW/cm(2), to a corresponding theoretical rate in units of reciprocal seconds, and k(rec) is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the alpha parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer-Lambert-Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation.

  7. Effect of Butanedioic Acid Mono (2,2-Dimethylhydrazide) on the Activity of Membrane-Bound Succinate Dehydrogenase

    PubMed Central

    See, Raymond M.; Foy, Chester L.

    1982-01-01

    Mitochondria isolated from hypocotyls of five-day-old bean (Phaseolus vulgaris L. `Black Valentine') seedlings rapidly oxidized succinate, malate, and NADH. Oxidation rates, respiratory control, and ADP:O ratios obtained with saturating concentrations of all three substrates indicated that the mitochondria were tightly coupled. The mitochondrial preparation was then employed to investigate the respiration-inhibiting effects of butanedioic acid mono (2,2-dimethyl-hydrazide) (daminozide) a plant growth retardant having structural similarity to an endogenous respiratory substrate (succinate). Daminozide markedly inhibited the activity of membrane-bound succinate dehydrogenase. Inhibition was of the competitive type (apparent Ki, 20.2 millimolar) with respect to succinate. Although not excluding other hypotheses, the results support an active role for daminozide in the suppression of respiration as an important metabolic site of its action as a plant growth regulator. PMID:16662493

  8. Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats.

    PubMed

    Chaâbane, M; Ghorbel, I; Elwej, A; Mnif, H; Boudawara, T; Chaâbouni, S Ellouze; Zeghal, N; Soudani, N

    2016-10-12

    Pesticides exposure causes usually harmful effects to the environment and human health. The present study aimed to investigate the potential toxic effects of penconazole, a triazole fungicide, on the cerebrum and cerebellum of adult rats. Penconazole was administered intraperitoneally to male Wistar rats at a dose of 67 mg kg(-1) body weight every 2 days during 9 days. Results showed that penconazole induced oxidative stress in rat cerebrum and cerebellum tissues. In fact, we have found a significant increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, as well as an alteration of the antioxidant status, enzymatic (superoxide dismutase and catalase) and nonenzymatic (glutathione), the cholinergic function, and membrane-bound ATPases (Na(+)/K(+)-ATPase and Mg(2+)-ATPase). Penconazole also provoked histological alterations marked by pyknotic and vacuolated neurons in the cerebrum and apoptosis and edema in the cerebellum Purkinje cells' layer. Therefore, the use of this neurotoxicant fungicide must be regularly monitored in the environment.

  9. Preliminary safety assessment of a membrane-bound delta 9 desaturase candidate protein for transgenic oilseed crops.

    PubMed

    Madduri, Krishna M; Schafer, Barry W; Hasler, James M; Lin, Gaofeng; Foster, Mendy L; Embrey, Shawna K; Sastry-Dent, Lakshmi; Song, Ping; Larrinua, Ignacio M; Gachotte, Daniel J; Herman, Rod A

    2012-10-01

    A gene encoding delta 9 desaturase (D9DS), an integral membrane protein, is being considered for incorporation into oilseed crops to reduce saturated fatty acids and thus improve human nutritional value. Typically, a safety assessment for transgenic crops involves purifying heterologously produced transgenic proteins in an active form for use in safety studies. Membrane-bound proteins have been very difficult to isolate in an active form due to their inherent physicochemical properties. Described here are methods used to derive enriched preparations of the active D9DS protein for use in early stage safety studies. Results of these studies, in combination with bioinformatic results and knowledge of the mode of action of the protein, along with a history of safe consumption of related proteins, provides a weight of evidence supporting the safety of the D9DS protein in food and feed.

  10. Photochemical energy conversion by membrane-bound photoredox systems. Progress report, July 1, 1989--March 1, 1992

    SciTech Connect

    Tollin, G.

    1992-03-01

    Most of our effort during the past grant period has been directed towards investigating electron transfer processes involving redox proteins at lipid bilayer/aqueous interfaces. This theme, as was noted in our previous three year renewal proposal, is consistent with our goal of developing biomimetic solar energy conversion systems which utilize the unique properties of biological electron transfer molecules. Thus, small redox proteins such as cytochrome c, plastocyanin and ferredoxin function is biological photosynthesis as mediators of electron flow between the photochemical systems localized in the membrane, and more complex soluble or membrane-bound redox proteins which are designed to carry out specific biological tasks such as transbilayer proton gradient formation, dinitrogen fixation, ATP synthesis, dihydrogen synthesis, generation of strong reductants, etc. In these studies, we have utilized two principal experimental techniques, laser flash photolysis and cyclic voltammetry, both of which permit direct measurements of electron transfer processes.

  11. Release of Membrane-Bound Vesicles and Inhibition of Tumor Cell Adhesion by the Peptide Neopetrosiamide A

    PubMed Central

    Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.

    2010-01-01

    Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768

  12. Human Renal Normal, Tumoral, and Cancer Stem Cells Express Membrane-Bound Interleukin-15 Isoforms Displaying Different Functions1

    PubMed Central

    Azzi, Sandy; Gallerne, Cindy; Romei, Cristina; Le Coz, Vincent; Gangemi, Rosaria; Khawam, Krystel; Devocelle, Aurore; Gu, Yanhong; Bruno, Stefania; Ferrini, Silvano; Chouaib, Salem; Eid, Pierre; Azzarone, Bruno; Giron-Michel, Julien

    2015-01-01

    Intrarenal interleukin-15 (IL-15) participates to renal pathophysiology, but the role of its different membrane-bound isoforms remains to be elucidated. In this study, we reassess the biology of membrane-bound IL-15 (mb-IL-15) isoforms by comparing primary cultures of human renal proximal tubular epithelial cells (RPTEC) to peritumoral (ptumTEC), tumoral (RCC), and cancer stem cells (CSC/CD105+). RPTEC express a 14 to 16 kDa mb-IL-15, whose existence has been assumed but never formally demonstrated and likely represents the isoform anchored at the cell membrane through the IL-15 receptor α (IL-15Rα) chain, because it is sensitive to acidic treatment and is not competent to deliver a reverse signal. By contrast, ptumTEC, RCC, and CSC express a novel N-hyperglycosylated, short-lived transmembrane mb-IL-15 (tmb-IL-15) isoform around 27 kDa, resistant to acidic shock, delivering a reverse signal in response to its soluble receptor (sIL-15Rα). This reverse signal triggers the down-regulation of the tumor suppressor gene E-cadherin in ptumTEC and RCC but not in CSC/CD105+, where it promotes survival. Indeed, through the AKT pathway, tmb-IL-15 protects CSC/CD105+ from non-programmed cell death induced by serum starvation. Finally, both mb-IL-15 and tmb-IL-15 are sensitive to metalloproteases, and the cleaved tmb-IL-15 (25 kDa) displays a powerful anti-apoptotic effect on human hematopoietic cells. Overall, our data indicate that both mb-IL-15 and tmb-IL-15 isoforms play a complex role in renal pathophysiology downregulating E-cadherin and favoring cell survival. Moreover, “apparently normal” ptumTEC cells, sharing different properties with RCC, could contribute to organize an enlarged peritumoral “preneoplastic” environment committed to favor tumor progression. PMID:26152359

  13. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone1[OPEN

    PubMed Central

    Fraga, Patricia

    2017-01-01

    In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3. In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1. We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer. PMID:27956490

  14. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    PubMed

    Lundin, Anna; Dijkman, Ronald; Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-05-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  15. The Development of Primary Cell Batteries for Torpedoes and Midget Submarine in Germany (Die Entwicklung von Primaerelementbatterien fuer Torpedos und Kleinst-U-Boote in Deutschland),

    DTIC Science & Technology

    1982-10-05

    It was decided to build the Mg-C battery on the principle of the Voltaic pile . Such a battery was fabri- cated by the TVA in which discs with a 400...wakeless torpedo was developed during the First World War by the Siemens Company. There it was their goal initially to produce a remote-controlled torpedo...3 air bottles of 5 1 each (200 atm) 7. Additional air container 8. Removable vertical fins 2 .......................... ....... ;, , At first it was

  16. The α-bungarotoxin binding site on the nicotinic acetylcholine receptor: Analysis using a phage–epitope library

    PubMed Central

    Balass, Moshe; Katchalski-Katzir, Ephraim; Fuchs, Sara

    1997-01-01

    The nicotinic acetylcholine receptor (AcChoR) is a ligand-gated ion channel that is activated upon binding of acetylcholine. α-Neurotoxins, in particular α-bungarotoxin (α-BTX), bind specifically and with high affinity to the AcChoR and compete with binding of the natural ligand. We employed a 15-mer phage-display peptide library to select epitopes reacting with α-BTX. Phages bearing the motif YYXSSL as a consensus sequence were found to bind with high affinity to α-BTX. The library-derived peptide (MRYYESSLKSYPD) bears amino acid sequence similarities to a region of the α-subunit of the Torpedo muscle AcChoR, as well as of other muscle and neuronal AcChoRs that bind α-BTX. The library-derived peptide and the corresponding peptides containing residues 187–199 of the Torpedo AcChoR α-subunit (WVYYTCCPDTPYL), as well as peptides analogous to the above region in the neuronal AcChoR (e.g., human α7; ERFYECCKEPYPD) that binds α-BTX, inhibit the binding of α-BTX to the intact Torpedo AcChoR with IC50 values of 10−6 M. A synthetic peptide from a neuronal AcChoR that does not bind α-BTX (e.g., human α2; ERKYECCKEPYPD) which differs by just one amino acid from the homologous peptide from the α-BTX-binding protein (α7)—i.e., Lys in α2 and Tyr in α7—does not inhibit the binding of α-BTX to Torpedo AcChoR. These results indicate the requirement for two adjacent aromatic amino acid residues for binding to α-BTX. PMID:9177167

  17. Axonal transport in the electromotor nerves of Torpedo marmorata.

    PubMed

    Davies, L P; Whittaker, V P; Zimmermann, H

    1977-12-19

    Studies on the axonal transport of cholinergic cell components were made on the electromotor nerves of Torpedo marmorata. Choline acetyltransferase was rapidly accumulated at ligatures on Torpedo nerves, both in vivo and in segments incubated in vitro. In vivo accumulation was maximal approximately one month after nerve interruption. Orthograde transport (both in vitro and in vivo) is calculated to have a velocity of 50--140 mm/day, if, as double-ligature experiments suggest, only about 15% of the axoplasmic enzyme is mobile. A small retrograde accumulation of the transferase was demonstrated. Lactate dehydrogenase did not accumulate but a slight reduction of its activity at ligatures was observed. In contrast to mammalian cholinergic nerves, no accumulation of esterase was observed. ACh accumulation proximal to a cut was apparent and may result in part from local synthesis in the presence of elevated levels of its synthesizing enzyme. Measurements have been made on the activity of choline acetyltransferase in the brain and all parts of the "electric system". In view of these results it is difficult to see how the measured rate of axonal translocation is sufficient to supply the levels of the enzyme found within the electric organ. Within the electromotor cells, choline acetyltransferase is highly concentrated in the axon terminals.

  18. Characterization of 19 Genes Encoding Membrane-Bound Fatty Acid Desaturases and their Expression Profiles in Gossypium raimondii Under Low Temperature.

    PubMed

    Liu, Wei; Li, Wei; He, Qiuling; Daud, Muhammad Khan; Chen, Jinhong; Zhu, Shuijin

    2015-01-01

    To produce unsaturated fatty acids, membrane-bound fatty acid desaturases (FADs) can be exploited to introduce double bonds into the acyl chains of fatty acids. In this study, 19 membrane-bound FAD genes were identified in Gossypium raimondii through database searches and were classified into four different subfamilies based on phylogenetic analysis. All 19 membrane-bound FAD proteins shared three highly conserved histidine boxes, except for GrFAD2.1, which lost the third histidine box in the C-terminal region. In the G. raimondii genome, tandem duplication might have led to the increasing size of the FAD2 cluster in the Omega Desaturase subfamily, whereas segmental duplication appeared to be the dominant mechanism for the expansion of the Sphingolipid and Front-end Desaturase subfamilies. Gene expression analysis showed that seven membrane-bound FAD genes were significantly up-regulated and that five genes were greatly suppressed in G. raimondii leaves exposed to low temperature conditions.

  19. Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP

    PubMed Central

    Li, Huinan; Harlow, Mark L.

    2014-01-01

    Abstract The type of neurotransmitter secreted by a neuron is a product of the vesicular transporters present on its synaptic vesicle membranes and the available transmitters in the local cytosolic environment where the synaptic vesicles reside. Synaptic vesicles isolated from electroplaques of the marine ray, Torpedo californica, have served as model vesicles for cholinergic neurotransmission. Many lines of evidence support the idea that in addition to acetylcholine, additional neurotransmitters and/or neuromodulators are also released from cholinergic synapses. We identified the types of vesicular neurotransmitter transporters present at the electroplaque using immunoblot and immunofluoresence techniques with antibodies against the vesicle acetylcholine transporter (VAChT), the vesicular glutamate transporters (VGLUT1, 2, and 3), and the vesicular nucleotide transporter (VNUT). We found that VAChT, VNUT, VGLUT 1 and 2, but not 3 were present by immunoblot, and confirmed that the antibodies were specific to proteins of the axons and terminals of the electroplaque. We used a single‐vesicle imaging technique to determine whether these neurotransmitter transporters were present on the same or different populations of synaptic vesicles. We found that greater than 85% of vesicles that labeled for VAChT colabeled with VGLUT1 or VGLUT2, and approximately 70% colabeled with VNUT. Based upon confidence intervals, at least 52% of cholinergic vesicles isolated are likely to contain all four transporters. The presence of multiple types of neurotransmitter transporters – and potentially neurotransmitters – in individual synaptic vesicles raises fundamental questions about the role of cotransmitter release and neurotransmitter synergy at cholinergic synapses. PMID:24744885

  20. Molecular forms and subunit structure of the acetylcholine receptor in the central nervous system of insects.

    PubMed

    Breer, H; Kleene, R; Hinz, G

    1985-12-01

    The nicotinic acetylcholine receptor as probed by alpha-bungarotoxin binding has been isolated from detergent-solubilized ganglionic membrane preparations from the insect, Locusta migratoria. The isolation and characterization of the receptor protein was achieved by preparation of membrane fragments, extraction by sodium deoxycholate, centrifugation on sucrose density gradient, affinity chromatography, gel electrophoresis, and immunoblotting. The purified receptor protein migrated as a single band on polyacrylamide when native (Mr = 250,000 to 300,000) but also under denaturing conditions (Mr = 65,000) and cross-reacted with some monoclonal antibodies against the Torpedo receptor. In immunohistochemical approaches using polyclonal antibodies the acetylcholine receptor antigenic sites could topochemically be identified at very distinct zones in the neuropil of locust ganglia. The results suggest that the acetylcholine receptor in the central nervous system of insects represents an oligomeric complex composed of four identical or very similar subunits and thus may represent a prototype of the recently proposed homo-oligomeric ancestral acetylcholine receptor.

  1. The Novel Membrane-Bound Proteins MFSD1 and MFSD3 are Putative SLC Transporters Affected by Altered Nutrient Intake.

    PubMed

    Perland, Emelie; Hellsten, Sofie V; Lekholm, Emilia; Eriksson, Mikaela M; Arapi, Vasiliki; Fredriksson, Robert

    2017-02-01

    Membrane-bound solute carriers (SLCs) are essential as they maintain several physiological functions, such as nutrient uptake, ion transport and waste removal. The SLC family comprise about 400 transporters, and we have identified two new putative family members, major facilitator superfamily domain containing 1 (MFSD1) and 3 (MFSD3). They cluster phylogenetically with SLCs of MFS type, and both proteins are conserved in chordates, while MFSD1 is also found in fruit fly. Based on homology modelling, we predict 12 transmembrane regions, a common feature for MFS transporters. The genes are expressed in abundance in mice, with specific protein staining along the plasma membrane in neurons. Depriving mouse embryonic primary cortex cells of amino acids resulted in upregulation of Mfsd1, whereas Mfsd3 is unaltered. Furthermore, in vivo, Mfsd1 and Mfsd3 are downregulated in anterior brain sections in mice subjected to starvation, while upregulated specifically in brainstem. Mfsd3 is also attenuated in cerebellum after starvation. In mice raised on high-fat diet, Mfsd1 was specifically downregulated in brainstem and hypothalamus, while Mfsd3 was reduced consistently throughout the brain.

  2. A novel prokaryotic expression system for biosynthesis of recombinant human membrane-bound catechol-O-methyltransferase.

    PubMed

    Pedro, A Q; Bonifácio, M J; Queiroz, J A; Maia, C J; Passarinha, L A

    2011-11-10

    Membrane proteins constitute 20-30% of all proteins encoded by the genome of various organisms. While large amounts of purified proteins are required for pharmaceutical and crystallization attempts, there is an unmet need for the development of novel heterologous membrane protein overexpression systems. Specifically, we tested the application of Brevibacillus choshinensis cells for the biosynthesis of human membrane bound catechol-O-methyltransferase (hMBCOMT). In terms of the upstream stage moderate to high expression was obtained for complex media formulation with a value near 45 nmol/h/mg for hMBCOMT specific activity achieved at 20 h culture with 37°C and 250 rpm. Subsequently, the efficiency for reconstitution of hMBCOMT is markedly null in the presence of ionic detergents, such as sodium dodecyl sulphate (SDS). In general, for non-ionic and zwiterionic detergents, until a detergent critic micellar concentration (CMC) of 1.0 mM, hMBCOMT shows more biological activity at lower detergent concentrations while for detergent CMC higher than 1 mM, higher detergent concentrations seem to be ideal for hMBCOMT solubilization. Indeed, from the detergents tested, the non-ionic digitonin at 0.5% (w/v) appears to be the most suitable for hMBCOMT solubilization.

  3. A rice membrane-bound calcium-dependent protein kinase is activated in response to low temperature.

    PubMed

    Martín, M L; Busconi, L

    2001-03-01

    Calcium-dependent protein kinases (CDPKs) are found in various subcellular localizations, which suggests that this family of serine/threonine kinases may be involved in multiple signal transduction pathways. CDPKs are believed to be involved in the response of plants to low temperatures, but the precise role in the signal transduction pathway is largely unknown. Previous reports described changes in CDPKs' mRNA levels in response to cold treatment, but whether these changes are accompanied by increases in protein level and/or kinase activities is unknown. In the present study, we identify in rice (Oryza sativa L. cv Don Juan) plants a 56-kD membrane-bound CDPK that is activated in response to cold treatment. Immunoblot analysis of the enzyme preparations from control and cold-treated plants showed that the kinase level was similar in both preparations. However, both kinase and autophosphorylating activities of the enzyme prepared from cold-treated plants were significantly higher than that obtained from control plants. The activation of the CDPK is detected after 12 to 18 h of cold treatment, which indicates that the kinase does not participate in the initial response to low temperature but in the adaptative process to adverse conditions. To our knowledge, this is the first demonstration of a CDPK that is posttranscriptionally activated in response to low temperature.

  4. Engineering Hydrogen Gas Production from Formate in a Hyperthermophile by Heterologous Production of an 18-Subunit Membrane-bound Complex*

    PubMed Central

    Lipscomb, Gina L.; Schut, Gerrit J.; Thorgersen, Michael P.; Nixon, William J.; Kelly, Robert M.; Adams, Michael W. W.

    2014-01-01

    Biohydrogen gas has enormous potential as a source of reductant for the microbial production of biofuels, but its low solubility and poor gas mass transfer rates are limiting factors. These limitations could be circumvented by engineering biofuel production in microorganisms that are also capable of generating H2 from highly soluble chemicals such as formate, which can function as an electron donor. Herein, the model hyperthermophile, Pyrococcus furiosus, which grows optimally near 100 °C by fermenting sugars to produce H2, has been engineered to also efficiently convert formate to H2. Using a bacterial artificial chromosome vector, the 16.9-kb 18-gene cluster encoding the membrane-bound, respiratory formate hydrogen lyase complex of Thermococcus onnurineus was inserted into the P. furiosus chromosome and expressed as a functional unit. This enabled P. furiosus to utilize formate as well as sugars as an H2 source and to do so at both 80° and 95 °C, near the optimum growth temperature of the donor (T. onnurineus) and engineered host (P. furiosus), respectively. This accomplishment also demonstrates the versatility of P. furiosus for metabolic engineering applications. PMID:24318960

  5. The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight

    PubMed Central

    Jiang, Guanghuai; Yin, Dedong; Zhao, Jiying; Chen, Honglin; Guo, Lequn; Zhu, Lihuang; Zhai, Wenxue

    2016-01-01

    Thylakoid membrane-bound ascorbate peroxidase (tAPX) is a major H2O2-scavenging enzyme. To clarify its functions in tolerance to rice bacterial blight, we produced rice lines overexpressing and suppressing tAPX (OsAPX8). The overexpressing lines exhibited increased tolerance to bacterial pathogen. The RNA interference (RNAi) lines were considerably more sensitive than the control plant. Further analysis of the H2O2 content in these transgenic plants indicated that the H2O2 accumulation of OsAPX8-overexpressing plants was considerably less than that of wild-type and RNAi plants upon challenge with bacterial pathogen. Interestingly, H2O2 was the most important factor for the serious leaf dehydration and withering of rice without major resistance genes and was not the cause of hypersensitivity. It addition, wall tightening or loosening can occur according to the level of H2O2. In addition, OsAPX8 interacted with the susceptibility protein Os8N3/Xa13, and their binding repressed the reaction of OsAPX8 in tolerance to bacterial blight. PMID:27185545

  6. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells

    PubMed Central

    Moslehi, Akram; Hashemi-beni, Batool; Moslehi, Azam; Akbari, Maryam Ali

    2016-01-01

    Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs. PMID:27382350

  7. The effect of progesterone and 17-β estradiol on membrane-bound HLA-G in adipose derived stem cells.

    PubMed

    Moslehi, Akram; Hashemi-Beni, Batool; Moslehi, Azam; Akbari, Maryam Ali; Adib, Minoo

    2016-07-01

    Membrane-bound HLA-G (mHLA-G) discovery on adipose derived stem cells (ADSCs) as a tolerogenic and immunosuppressive molecule was very important. Many documents have shown that HLA-G expression can be controlled via some hormones such as progesterone (P4) and estradiol (E2). Therefore, this study was designed to evaluate progesterone and estradiol effects on mHLA-G in ADSCs at restricted and combination concentrations. Three independent cell lines were cultured in complete free phenol red DMEM and subcultured to achieve suffi cient cells. These cells were treated with P4, E2 and P4 plus E2 at physiologic and pregnancy concentrations for 3 days in cell culture conditions. The HLA-G positive ADSCs was measured via monoclonal anti HLA-G-FITC/MEMG-09 by means of flow cytometry in nine groups. Data were analyzed by one way ANOVA and Tukey's post hoc tests. There were no signifi cant values of the mean percentage of HLA-G positive cells in E2-treated and the combination of P4 plus E2-treated ADSCs compared to control cells (p value>0.05) but P4 had a signifi cant increase on mHLA-G in ADSCs (p value<0.05). High P4 concentration increased mHLA-G but E2 and the combination of P4 plus E2 could not change mHLA-G on ADSCs.

  8. The rice thylakoid membrane-bound ascorbate peroxidase OsAPX8 functions in tolerance to bacterial blight.

    PubMed

    Jiang, Guanghuai; Yin, Dedong; Zhao, Jiying; Chen, Honglin; Guo, Lequn; Zhu, Lihuang; Zhai, Wenxue

    2016-05-17

    Thylakoid membrane-bound ascorbate peroxidase (tAPX) is a major H2O2-scavenging enzyme. To clarify its functions in tolerance to rice bacterial blight, we produced rice lines overexpressing and suppressing tAPX (OsAPX8). The overexpressing lines exhibited increased tolerance to bacterial pathogen. The RNA interference (RNAi) lines were considerably more sensitive than the control plant. Further analysis of the H2O2 content in these transgenic plants indicated that the H2O2 accumulation of OsAPX8-overexpressing plants was considerably less than that of wild-type and RNAi plants upon challenge with bacterial pathogen. Interestingly, H2O2 was the most important factor for the serious leaf dehydration and withering of rice without major resistance genes and was not the cause of hypersensitivity. It addition, wall tightening or loosening can occur according to the level of H2O2. In addition, OsAPX8 interacted with the susceptibility protein Os8N3/Xa13, and their binding repressed the reaction of OsAPX8 in tolerance to bacterial blight.

  9. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa

    PubMed Central

    Wilton, Mike; Wong, Megan J. Q.; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D.; Lewenza, Shawn

    2016-01-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg2+ or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities. PMID:27271742

  10. Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji).

    PubMed

    Liu, Fang; Zhao, Jin-Hong; Gan, Zhi-Lin; Ni, Yuan-Ying

    2015-04-15

    This study compared membrane-bound with soluble polyphenol oxidase (mPPO and sPPO, respectively) from Fuji apple. Purified mPPO and partially purified sPPO were used. mPPO was purified by temperature-induced phase partitioning and ion exchange chromatography. The specific activity of mPPO was 34.12× higher than that of sPPO. mPPO was more stable than sPPO at pH 5.0-8.5. Although mPPO was more easily inactivated at 25-55 °C, it is still more active than sPPO in this temperature range. The optimum substrate of mPPO was 4-methyl catechol, followed by catechol. L-cysteine had the highest inhibitory effects on mPPO followed by ascorbic acid and glutathione. Surprisingly, EDTA increased mPPO activity. The results revealed that purified mPPO is a dimer with a molecular weight of approximately 67 kDa.

  11. Putative Membrane-Bound Transporters MFSD14A and MFSD14B Are Neuronal and Affected by Nutrient Availability

    PubMed Central

    Lekholm, Emilia; Perland, Emelie; Eriksson, Mikaela M.; Hellsten, Sofie V.; Lindberg, Frida A.; Rostami, Jinar; Fredriksson, Robert

    2017-01-01

    Characterization of orphan transporters is of importance due to their involvement in cellular homeostasis but also in pharmacokinetics and pharmacodynamics. The tissue and cellular localization, as well as function, is still unknown for many of the solute carriers belonging to the major facilitator superfamily (MFS) Pfam clan. Here, we have characterized two putative novel transporters MFSD14A (HIAT1) and MFSD14B (HIATL1) in the mouse central nervous system and found protein staining throughout the adult mouse brain. Both transporters localized to neurons and MFSD14A co-localized with the Golgi marker Giantin in primary embryonic cortex cultures, while MFSD14B staining co-localized with an endoplasmic retention marker, KDEL. Based on phylogenetic clustering analyses, we predict both to have organic substrate profiles, and possible involvement in energy homeostasis. Therefore, we monitored gene regulation changes in mouse embryonic primary cultures after amino acid starvations and found both transporters to be upregulated after 3 h of starvation. Interestingly, in mice subjected to 24 h of food starvation, both transporters were downregulated in the hypothalamus, while Mfsd14a was also downregulated in the brainstem. In addition, in mice fed a high fat diet (HFD), upregulation of both transporters was seen in the striatum. Both MFSD14A and MFSD14B were intracellular neuronal membrane-bound proteins, expressed in the Golgi and Endoplasmic reticulum, affected by both starvation and HFD to varying degree in the mouse brain. PMID:28179877

  12. Aluminium and Acrylamide Disrupt Cerebellum Redox States, Cholinergic Function and Membrane-Bound ATPase in Adult Rats and Their Offspring.

    PubMed

    Ghorbel, Imen; Amara, Ibtissem Ben; Ktari, Naourez; Elwej, Awatef; Boudawara, Ons; Boudawara, Tahia; Zeghal, Najiba

    2016-12-01

    Accumulation of aluminium and acrylamide in food is a major source of human exposure. Their adverse effects are well documented, but there is no information about the health problems arising from their combined exposure. The aim of the present study was to examine the possible neurotoxic effects after co-exposure of pregnant and lactating rats to aluminium and acrylamide in order to evaluate redox state, cholinergic function and membrane-bound ATPases in the cerebellum of adult rats and their progeny. Pregnant female rats have received aluminium (50 mg/kg body weight) via drinking water and acrylamide (20 mg/kg body weight) by gavage, either individually or in combination from the 14th day of pregnancy until day 14 after delivery. Exposure to these toxicants provoked an increase in malondialdehyde (MDA) and advanced oxidation protein product (AOPP) levels and a decrease in SOD, CAT, GPx, Na(+)K(+)-ATPase, Mg(2+)-ATPase and AChE activities in the cerebellum of mothers and their suckling pups. A reduction in GSH, NPSH and vitamin C levels was also observed. These changes were confirmed by histological results. Interestingly, co-exposure to these toxicants exhibited synergism based on physical and biochemical variables in the cerebellum of mothers and their progeny.

  13. Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Rodrigues, M. L.; Oliveira, T.; Matias, P. M.; Martins, I. C.; Valente, F. M. A.; Pereira, I. A. C.; Archer, M.

    2006-06-01

    The cytochrome c nitrite reductase complex from D. vulgaris Hildenborough has been crystallized. The preliminary crystallographic structure reveals a 2:1 NrfA:NrfH complex stoichiometry. The cytochrome c nitrite reductase (cNiR) isolated from Desulfovibrio vulgaris Hildenborough is a membrane-bound complex formed of NrfA and NrfH subunits. The catalytic subunit NrfA is a soluble pentahaem cytochrome c that forms a physiological dimer of about 120 kDa. The electron-donor subunit NrfH is a membrane-anchored tetrahaem cytochrome c of about 18 kDa molecular weight and belongs to the NapC/NirT family of quinol dehydrogenases, for which no structures are known. Crystals of the native cNiR membrane complex, solubilized with dodecylmaltoside detergent (DDM), were obtained using PEG 4K as precipitant. Anomalous diffraction data were measured at the Swiss Light Source to 2.3 Å resolution. Crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.5, b = 256.7, c = 578.2 Å. Molecular-replacement and MAD methods were combined to solve the structure. The data presented reveal that D. vulgaris cNiR contains one NrfH subunit per NrfA dimer.

  14. Protective effect of Lagenaria siceraria (Mol) against membrane-bound enzyme alterations in isoproterenol-induced cardiac damage in rats.

    PubMed

    Vijayakumar, M; Selvi, V; Krishnakumari, S

    2012-01-01

    This study was aimed at evaluating the preventive role of the ethanolic extract of Lagenaria siceraria (Mol) fruit on membrane-bound enzymes, such as sodium potassium-dependent adenosine triphosphatase (Na(+)/K(+) ATPase), calcium-dependent adenosine triphosphatase (Ca(2+) ATPase) and magnesium-dependent adenosine triphosphatase (Mg(2+) ATPase) on isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Male albino Wistar rats were pretreated with the ethanolic extract of L. siceraria (Mol) fruit (125, 250 and 500 mg kg(-1) body weight) for a period of 30 days. After the treatment period, ISO (85mg kg(-1) body weight) was subcutaneously injected into rats at 24-h intervals for 2 days. ISO-induced rats showed a significant (p < 0.05) decrease in the activity of Na(+)/K(+) ATPase and an increase in the activities of Ca(2+) and Mg(2+) ATPases in the heart tissues. Pre-treatment with the ethanolic extract of L. siceraria (Mol) fruit for a period of 30 days exhibited a significant (p < 0.05) effect in ISO-induced rats. Thus, our study shows that the ethanolic extract of L. siceraria (Mol) fruit has membrane-stabilising role in ISO-induced MI in rats.

  15. Quinone-reactive proteins devoid of haem b form widespread membrane-bound electron transport modules in bacterial respiration.

    PubMed

    Simon, Jörg; Kern, Melanie

    2008-10-01

    Many quinone-reactive enzyme complexes that are part of membrane-integral eukaryotic or prokaryotic respiratory electron transport chains contain one or more haem b molecules embedded in the membrane. In recent years, various novel proteins have emerged that are devoid of haem b but are thought to fulfil a similar function in bacterial anaerobic respiratory systems. These proteins are encoded by genes organized in various genomic arrangements and are thought to form widespread membrane-bound quinone-reactive electron transport modules that exchange electrons with redox partner proteins located at the outer side of the cytoplasmic membrane. Prototypic representatives are the multihaem c-type cytochromes NapC, NrfH and TorC (NapC/NrfH family), the putative iron-sulfur protein NapH and representatives of the NrfD/PsrC family. Members of these protein families vary in the number of their predicted transmembrane segments and, consequently, diverse quinone-binding sites are expected. Only a few of these enzymes have been isolated and characterized biochemically and high-resolution structures are limited. This mini-review briefly summarizes predicted and experimentally demonstrated properties of the proteins in question and discusses their role in electron transport and bioenergetics of anaerobic respiration.

  16. An investigation into membrane bound redox carriers involved in energy transduction mechanism in Brevibacterium linens DSM 20158 with unsequenced genome.

    PubMed

    Shabbiri, Khadija; Botting, Catherine H; Adnan, Ahmad; Fuszard, Matthew; Naseem, Shahid; Ahmed, Safeer; Shujaat, Shahida; Syed, Quratulain; Ahmad, Waqar

    2014-04-01

    Brevibacterium linens (B. linens) DSM 20158 with an unsequenced genome can be used as a non-pathogenic model to study features it has in common with other unsequenced pathogens of the same genus on the basis of comparative proteome analysis. The most efficient way to kill a pathogen is to target its energy transduction mechanism. In the present study, we have identified the redox protein complexes involved in the electron transport chain of B. linens DSM 20158 from their clear homology with the shot-gun genome sequenced strain BL2 of B. linens by using the SDS-Polyacrylamide gel electrophoresis coupled with nano LC-MS/MS mass spectrometry. B. linens is found to have a branched electron transport chain (Respiratory chain), in which electrons can enter the respiratory chain either at NADH (Complex I) or at Complex II level or at the cytochrome level. Moreover, we are able to isolate, purify, and characterize the membrane bound Complex II (succinate dehydrogenase), Complex III (menaquinone cytochrome c reductase cytochrome c subunit, Complex IV (cytochrome c oxidase), and Complex V (ATP synthase) of B. linens strain DSM 20158.

  17. Chelation of Membrane-Bound Cations by Extracellular DNA Activates the Type VI Secretion System in Pseudomonas aeruginosa.

    PubMed

    Wilton, Mike; Wong, Megan J Q; Tang, Le; Liang, Xiaoye; Moore, Richard; Parkins, Michael D; Lewenza, Shawn; Dong, Tao G

    2016-08-01

    Pseudomonas aeruginosa employs its type VI secretion system (T6SS) as a highly effective and tightly regulated weapon to deliver toxic molecules to target cells. T6SS-secreted proteins of P. aeruginosa can be detected in the sputum of cystic fibrosis (CF) patients, who typically present a chronic and polymicrobial lung infection. However, the mechanism of T6SS activation in the CF lung is not fully understood. Here we demonstrate that extracellular DNA (eDNA), abundant within the CF airways, stimulates the dynamics of the H1-T6SS cluster apparatus in Pseudomonas aeruginosa PAO1. Addition of Mg(2+) or DNase with eDNA abolished such activation, while treatment with EDTA mimicked the eDNA effect, suggesting that the eDNA-mediated effect is due to chelation of outer membrane-bound cations. DNA-activated H1-T6SS enables P. aeruginosa to nonselectively attack neighboring species regardless of whether or not it was provoked. Because of the importance of the T6SS in interspecies interactions and the prevalence of eDNA in the environments that P. aeruginosa inhabits, our report reveals an important adaptation strategy that likely contributes to the competitive fitness of P. aeruginosa in polymicrobial communities.

  18. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris

    PubMed Central

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-01-01

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens. PMID:28198457

  19. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions.

    PubMed

    Vagne, Quentin; Turner, Matthew S; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal "corrals" and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles.

  20. Identification of a novel type III secretion-associated outer membrane-bound protein from Xanthomonas campestris pv. campestris.

    PubMed

    Li, Lei; Li, Rui-Fang; Ming, Zhen-Hua; Lu, Guang-Tao; Tang, Ji-Liang

    2017-02-15

    Many bacterial pathogens employ the type III secretion system (T3SS) to translocate effector proteins into eukaryotic cells to overcome host defenses. To date, most of our knowledge about the T3SS molecular architecture comes from the studies on animal pathogens. In plant pathogens, nine Hrc proteins are believed to be structural components of the T3SS, of which HrcC and HrcJ form the outer and inner rings of the T3SS, respectively. Here, we demonstrated that a novel outer membrane-bound protein (HpaM) of Xanthomonas campestris pv. campestris is critical for the type III secretion and is structurally and functionally conserved in phytopathogenic Xanthomonas spp. We showed that the C-terminus of HpaM extends into the periplasm to interact physically with HrcJ and the middle part of HpaM interacts physically with HrcC. It is clear that the outer and inner rings compose the main basal body of the T3SS apparatus in animal pathogens. Therefore, we presume that HpaM may act as a T3SS structural component, or play a role in assisting assembling or affecting the stability of the T3SS apparatus. HpaM is a highly prevalent and specific protein in Xanthomonas spp., suggesting that the T3SS of Xanthomonas is distinctive in some aspects from other pathogens.

  1. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study

    PubMed Central

    2015-01-01

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, 57Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S]3+ reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S]5+ superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated 57Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states. PMID:26598030

  2. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    PubMed Central

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  3. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  4. Cholinergic synaptic vesicle heterogeneity: evidence for regulation of acetylcholine transport

    SciTech Connect

    Gracz, L.M.; Wang, W.; Parsons, S.M.

    1988-07-12

    Crude cholinergic synaptic vesicles from a homogenate of the electric organ of Torpedo californica were centrifuged to equilibrium in an isosmotic sucrose density gradient. The classical VP/sub 1/ synaptic vesicles banding at 1.055 g/mL actively transported (/sup 3/H)acetylcholine (AcCh). An organelle banding at about 1.071 g/mL transported even more (/sup 3/H)AcCh. Transport by both organelles was inhibited by the known AcCh storage blockers trans-2-(4-phenylpiperidino)cyclohexanol (vesamicol, formerly AH5183) and nigericin. Relative to VP/sub 1/ vesicles the denser organelle was slightly smaller as shown by size-exclusion chromatography. It is concluded that the denser organelle corresponds to the recycling VP/sub 2/ synaptic vesicle originally described in intact Torpedo marmorata electric organ. The properties of the receptor for vesamicol were studied by measuring binding of (/sup 3/H)vesamicol, and the amount of SV2 antigen characteristic of secretory vesicles was assayed with a monoclonal antibody directed against it. Relative to VP/sub 1/ vesicles the VP/sub 2/ vesicles had a ratio of (/sup 3/H)AcCh transport activity to vesamicol receptor concentration that typically was 4-7-fold higher, whereas the ratio of SV2 antigen concentration to vesamicol receptor concentration was about 2-fold higher. The Hill coefficients ..cap alpha../sub H/ and equilibrium dissociation constants K for vesamicol binding to VP/sub 1/ and VP/sub 2/ vesicles were essentially the same. The positive Hill coefficient suggests that the vesamicol receptor exists as a homotropic oligomeric complex. The results demonstrate that VP/sub 1/ and VP/sub 2/ synaptic vesicles exhibit functional differences in the AcCh transport system, presumably as a result of regulatory phenomena.

  5. Torpedo electromotor system development: a quantitative analysis of synaptogenesis.

    PubMed

    Fox, G Q; Kötting, D

    1984-04-10

    Synaptogenesis in the electric organ of Torpedo marmorato has been studied quantitatively at the ultrastructural level of observation. In addition to establishing the normal developmental time course for this event we were interested in determining whether a gradient of synaptogenesis might be present because the electric organ produces several morphologically recognizable spatiotemporal gradients during its early ontogeny. These gradients genesis of electrocyte columns, both gradients of which are operative for periods of weeks. No gradient of synaptogenesis was found, indicating this to be a synchronous process. The idea is advanced that synaptogenesis in the electric organ is modulated by extrinsic influences, many of which may originate from the target electrocytes which, by this time, have become synchronized in their development.

  6. Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid.

    PubMed Central

    Bhushan, A; McNamee, M G

    1993-01-01

    Fourier transform infrared spectroscopy is used to characterize specific interactions between negatively charged lipids, such as phosphatidic acid, and the purified nicotinic acetylcholine receptor from Torpedo californica. The specific interaction of phosphatidic acid with acetylcholine receptor is demonstrated by the receptor-induced perturbation of the lipid ionization state, which is monitored using Fourier transform infrared bands arising from the phosphate head group. The acetylcholine receptor shifts the pKa of phosphatidic acid molecules adjacent to the receptor to a lower value by almost 2 pH units from 8.5 to 6.6. Decreased pH also leads to changes in ion channel function and to changes in the secondary structure of the acetylcholine receptor in membranes containing ionizable phospholipids. Phospholipase D restores functional activity of acetylcholine receptor reconstituted in an unfavorable environment containing phosphatidylcholine by generating phosphatidic acid. Lipids such as phosphatidic acid may serve as allosteric effectors for membrane protein function and the lipid-protein interface could be a site for activity-dependent changes that lead to modulation of synaptic efficacy. PMID:8471723

  7. Oxygen reduction in the strict anaerobe Desulfovibrio vulgaris Hildenborough: characterization of two membrane-bound oxygen reductases.

    PubMed

    Lamrabet, O; Pieulle, L; Aubert, C; Mouhamar, F; Stocker, P; Dolla, A; Brasseur, G

    2011-09-01

    Although Desulfovibrio vulgaris Hildenborough (DvH) is a strictly anaerobic bacterium, it is able to consume oxygen in different cellular compartments, including extensive periplasmic O₂ reduction with hydrogen as electron donor. The genome of DvH revealed the presence of cydAB and cox genes, encoding a quinol oxidase bd and a cytochrome c oxidase, respectively. In the membranes of DvH, we detected both quinol oxygen reductase [inhibited by heptyl-hydroxyquinoline-N-oxide (HQNO)] and cytochrome c oxidase activities. Spectral and HPLC data for the membrane fraction revealed the presence of o-, b- and d-type haems, in addition to a majority of c-type haems, but no a-type haem, in agreement with carbon monoxide-binding analysis. The cytochrome c oxidase is thus of the cc(o/b)o₃ type, a type not previously described. The monohaem cytochrome c₅₅₃ is an electron donor to the cytochrome c oxidase; its encoding gene is located upstream of the cox operon and is 50-fold more transcribed than coxI encoding the cytochrome c oxidase subunit I. Even when DvH is grown under anaerobic conditions in lactate/sulfate medium, the two terminal oxidase-encoding genes are expressed. Furthermore, the quinol oxidase bd-encoding genes are more highly expressed than the cox genes. The cox operon exhibits an atypical genomic organization, with the gene coxII located downstream of coxIV. The occurrence of these membrane-bound oxygen reductases in other strictly anaerobic Deltaproteobacteria is discussed.

  8. Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase.

    PubMed Central

    Osman, T A; Buck, K W

    1996-01-01

    A crude membrane-bound RNA polymerase, obtained by differential centrifugation of extracts of tomato leaves infected with tobacco mosaic tobamovirus (tomato strain L) TMV-L), was purified by sucrose density gradient centrifugation. Removal of the endogenous RNA template with micrococcal nuclease rendered the polymerase template dependent and template specific. The polymerase was primer independent and able to initiate RNA synthesis on templates containing the 3'-terminal sequences of the TMV-L positive or negative strands. TMV-vulgare RNA was a less efficient template, while RNAs of cucumber mosaic cucumovirus and red clover necrotic mosaic dianthovirus, or 5'-terminal sequences of TMV-L positive or negative strands, did not act as templates for the polymerase. A main product of the reaction with TMV-L genomic RNA as a template, carried out in the presence of [alpha-32P]UTP, was genomic-length single-stranded RNA. This was shown to be the positive strand and uniformly labelled along its length, demonstrating complete replication of TMV-L RNA. Genomic-length double-stranded RNA, labelled in both strands, and small amounts of RNAs corresponding to the single- and double-stranded forms of the coat protein subgenomic mRNA were also formed. Antibodies to N-terminal and C-terminal portions of the 126-kDa protein detected the 126-kDa protein and the 183-kDa readthrough protein in purified RNA polymerase preparations, whereas antibodies to the readthrough portion of the 183-kDa protein detected only the 183-kDa protein. All three antibodies inhibited the template-dependent RNA polymerase, but none of them had any effect on the template-bound enzyme. PMID:8709249

  9. Rapid effects of aldosterone in primary cultures of cardiomyocytes - do they suggest the existence of a membrane-bound receptor?

    PubMed

    Araujo, Carolina Morais; Hermidorff, Milla Marques; Amancio, Gabriela de Cassia Sousa; Lemos, Denise da Silveira; Silva, Marcelo Estáquio; de Assis, Leonardo Vinícius Monteiro; Isoldi, Mauro César

    2016-10-01

    Aldosterone acts on its target tissue through a classical mechanism or through the rapid pathway through a putative membrane-bound receptor. Our goal here was to better understand the molecular and biochemical rapid mechanisms responsible for aldosterone-induced cardiomyocyte hypertrophy. We have evaluated the hypertrophic process through the levels of ANP, which was confirmed by the analysis of the superficial area of cardiomyocytes. Aldosterone increased the levels of ANP and the cellular area of the cardiomyocytes; spironolactone reduced the aldosterone-increased ANP level and cellular area of cardiomyocytes. Aldosterone or spironolactone alone did not increase the level of cyclic 3',5'-adenosine monophosphate (cAMP), but aldosterone plus spironolactone led to increased cAMP level; the treatment with aldosterone + spironolactone + BAPTA-AM reduced the levels of cAMP. These data suggest that aldosterone-induced cAMP increase is independent of mineralocorticoid receptor (MR) and dependent on Ca(2+). Next, we have evaluated the role of A-kinase anchor proteins (AKAP) in the aldosterone-induced hypertrophic response. We have found that St-Ht31 (AKAP inhibitor) reduced the increased level of ANP which was induced by aldosterone; in addition, we have found an increase on protein kinase C (PKC) and extracellular signal-regulated kinase 5 (ERK5) activity when cells were treated with aldosterone alone, spironolactone alone and with a combination of both. Our data suggest that PKC could be responsible for ERK5 aldosterone-induced phosphorylation. Our study suggests that the aldosterone through its rapid effects promotes a hypertrophic response in cardiomyocytes that is controlled by an AKAP, being dependent on ERK5 and PKC, but not on cAMP/cAMP-dependent protein kinase signaling pathways. Lastly, we provide evidence that the targeting of AKAPs could be relevant in patients with aldosterone-induced cardiac hypertrophy and heart failure.

  10. Survival, mobility, and membrane-bound enzyme activities of freshwater planarian, Dugesia japonica, exposed to synthetic and natural surfactants.

    PubMed

    Li, Mei-Hui

    2012-04-01

    Surfactants are a major class of emerging pollutants widely used in large quantities in everyday life and commonly found in surface waters worldwide. Freshwater planarian was selected to examine the effects of different surfactants by measuring mortality, mobility, and membrane-bound enzyme activities. Among the 10 surfactants tested, the acute toxicities of betaine and polyethylene glycol (PEG-200) to planarians were relatively low, with a median lethal concentration (LC50) greater than 10,000 mg/L. The toxicity to planarians of the other eight surfactants based on 48-h LC50 could be arranged in the descending order of cetylpyridinum chloride (CPC) > 4-tert-octylphenol (4-tert-OP) > ammonium lauryl sulfate > benzalkonium chloride > saponin > sodium lauroylsarcosinate > dioctyl sulfosuccinate > dodecyl trimethyl ammonium bromide (DTAB). Both CPC and 4-tert-OP were very toxic to planarians, with 48-h LC50 values <1 mg/L. The median effective concentrations (EC50s) of planarian mobility were in the 0.1 to 50 mg/L range and were in the same range as the 24-h LC50 of planarians exposed to different surfactants, except for DTAB. In addition, significant inhibition of cholinesterase activity activities was found in planarians exposed to 4-tert-OP at 2.5 and 5 mg/L and to saponin at 10 mg/L after 2-h treatments. This result suggests that planarian mobility responses can be used as an alternative indicator for acute toxicity of surfactants after a very short exposure period.

  11. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production.

    PubMed

    Kanai, Tamotsu; Simons, Jan-Robert; Tsukamoto, Ryohei; Nakajima, Akihito; Omori, Yoshiyuki; Matsuoka, Ryoji; Beppu, Haruki; Imanaka, Tadayuki; Atomi, Haruyuki

    2015-01-01

    The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw(-1) h(-1) was observed at a dilution rate of 0.31 h(-1). We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h(-1), the SHPR was 36.2 mmol H2 g-dcw(-1) h(-1), corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h(-1) or 1.07 h(-1) resulted in a SHPR of 120 mmol H2 g-dcw(-1) h(-1), which is one of the highest production rates observed in microbial fermentation.

  12. Senescent cells expose and secrete an oxidized form of membrane-bound vimentin as revealed by a natural polyreactive antibody

    PubMed Central

    Frescas, David; Roux, Christelle M.; Aygun-Sunar, Semra; Gleiberman, Anatoli S.; Krasnov, Peter; Kurnasov, Oleg V.; Strom, Evguenia; Virtuoso, Lauren P.; Wrobel, Michelle; Osterman, Andrei L.; Antoch, Marina P.; Mett, Vadim; Chernova, Olga B.; Gudkov, Andrei V.

    2017-01-01

    Studying the phenomenon of cellular senescence has been hindered by the lack of senescence-specific markers. As such, detection of proteins informally associated with senescence accompanies the use of senescence-associated β-galactosidase as a collection of semiselective markers to monitor the presence of senescent cells. To identify novel biomarkers of senescence, we immunized BALB/c mice with senescent mouse lung fibroblasts and screened for antibodies that recognized senescence-associated cell-surface antigens by FACS analysis and a newly developed cell-based ELISA. The majority of antibodies that we isolated, cloned, and sequenced belonged to the IgM isotype of the innate immune system. In-depth characterization of one of these monoclonal, polyreactive natural antibodies, the IgM clone 9H4, revealed its ability to recognize the intermediate filament vimentin. By using 9H4, we observed that senescent primary human fibroblasts express vimentin on their cell surface, and MS analysis revealed a posttranslational modification on cysteine 328 (C328) by the oxidative adduct malondialdehyde (MDA). Moreover, elevated levels of secreted MDA-modified vimentin were detected in the plasma of aged senescence-accelerated mouse prone 8 mice, which are known to have deregulated reactive oxygen species metabolism and accelerated aging. Based on these findings, we hypothesize that humoral innate immunity may recognize senescent cells by the presence of membrane-bound MDA-vimentin, presumably as part of a senescence eradication mechanism that may become impaired with age and result in senescent cell accumulation. PMID:28193858

  13. Defining the extreme substrate specificity of Euonymus alatus diacylglycerol acetyltransferase, an unusual membrane-bound O-acyltransferase

    PubMed Central

    Bansal, Sunil; Durrett, Timothy P.

    2016-01-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) synthesizes the unusually structured 3-acetyl-1,2-diacylglycerols (acetyl-TAG) found in the seeds of a few plant species. A member of the membrane-bound O-acyltransferase (MBOAT) family, EaDAcT transfers the acetyl group from acetyl-CoA to sn-1,2-diacylglycerol (DAG) to produce acetyl-TAG. In vitro assays demonstrated that the enzyme is also able to utilize butyryl-CoA and hexanoyl-CoA as acyl donors, though with much less efficiency compared with acetyl-CoA. Acyl-CoAs longer than eight carbons were not used by EaDAcT. This extreme substrate specificity of EaDAcT distinguishes it from all other MBOATs which typically catalyze the transfer of much longer acyl groups. In vitro selectivity experiments revealed that EaDAcT preferentially acetylated DAG molecules containing more double bonds over those with less. However, the enzyme was also able to acetylate saturated DAG containing medium chain fatty acids, albeit with less efficiency. Interestingly, EaDAcT could only acetylate the free hydroxyl group of sn-1,2-DAG but not the available hydroxyl groups in sn-1,3-DAG or in monoacylglycerols (MAG). Consistent with its similarity to the jojoba wax synthase, EaDAcT could acetylate fatty alcohols in vitro to produce alkyl acetates. Likewise, when coexpressed in yeast with a fatty acyl-CoA reductase capable of producing fatty alcohols, EaDAcT synthesized alkyl acetates although the efficiency of production was low. This improved understanding of EaDAcT specificity confirms that the enzyme preferentially utilizes acetyl-CoA to acetylate sn-1,2-DAGs and will be helpful in engineering the production of acetyl-TAG with improved functionality in transgenic plants. PMID:27688773

  14. Depression of membrane-bound Na sup + -K sup + -ATPase activity induced by free radicals and by ischemia of kidney

    SciTech Connect

    Kako, K.; Kato, M.; Matsuoka, T.; Mustapha, A. )

    1988-02-01

    A partially purified, membrane-bound Na{sup +}-K{sup +}-ATPase fraction, prepared from the outer medulla of porcine kidney, was incubated in the presence of 0.1-100 mM H{sub 2}O{sub 2} for either 15 or 30 min at 37{degree}C. The activity of ouabain-sensitive Na{sup +}-K{sup +}-ATPase was reduced proportionally to the concentration of H{sub 2}O{sub 2} and the duration of incubation. There were decreases in SH contents and turnover rates of the Na{sup +}-K{sup +}-ATPase preparation, while malondialdehyde (MDA) and conjugated dienes were generated from the membrane lipids in the course of the incubation. The concentrations of ethanolamine (E) plasmalogen and of arachidonic acid in the E glycerophospholipid molecules were reduced by the free radical reaction. Similarly, a reduction in Na{sup +}K{sup +}-ATPase activity and the formation of MDA and conjugated dienes, together with a decrease in E glycerophospholipids, were observed when the membrane fraction was exposed to ultraviolet irradiation (254 nm) for 30 min at 4{degree}C. Microsomal fractions, prepared from the outer medulla of canine kidney after 1 h of unilateral ischemia and 1 h of reperfusion, showed a decreased Na{sup +}-K{sup +}-ATPase activity, a reduced amount of SH groups, and an increased MDA. These changes were normalized by the infusion of N-mercaptopropionylglycine. These results support the view (1) that free radical generation affects the enzyme protein as well as membrane lipids, and (2) that free radicals may be formed in the ischemic reperfused kidney.

  15. Overproduction of the membrane-bound [NiFe]-hydrogenase in Thermococcus kodakarensis and its effect on hydrogen production

    PubMed Central

    Kanai, Tamotsu; Simons, Jan-Robert; Tsukamoto, Ryohei; Nakajima, Akihito; Omori, Yoshiyuki; Matsuoka, Ryoji; Beppu, Haruki; Imanaka, Tadayuki; Atomi, Haruyuki

    2015-01-01

    The hyperthermophilic archaeon Thermococcus kodakarensis can utilize sugars or pyruvate for growth. In the absence of elemental sulfur, the electrons via oxidation of these substrates are accepted by protons, generating molecular hydrogen (H2). The hydrogenase responsible for this reaction is a membrane-bound [NiFe]-hydrogenase (Mbh). In this study, we have examined several possibilities to increase the protein levels of Mbh in T. kodakarensis by genetic engineering. Highest levels of intracellular Mbh levels were achieved when the promoter of the entire mbh operon (TK2080-TK2093) was exchanged to a strong constitutive promoter from the glutamate dehydrogenase gene (TK1431) (strain MHG1). When MHG1 was cultivated under continuous culture conditions using pyruvate-based medium, a nearly 25% higher specific hydrogen production rate (SHPR) of 35.3 mmol H2 g-dcw−1 h−1 was observed at a dilution rate of 0.31 h−1. We also combined mbh overexpression using an even stronger constitutive promoter from the cell surface glycoprotein gene (TK0895) with disruption of the genes encoding the cytosolic hydrogenase (Hyh) and an alanine aminotransferase (AlaAT), both of which are involved in hydrogen consumption (strain MAH1). At a dilution rate of 0.30 h−1, the SHPR was 36.2 mmol H2 g-dcw−1 h−1, corresponding to a 28% increase compared to that of the host T. kodakarensis strain. Increasing the dilution rate to 0.83 h−1 or 1.07 h−1 resulted in a SHPR of 120 mmol H2 g-dcw−1 h−1, which is one of the highest production rates observed in microbial fermentation. PMID:26379632

  16. Homogeneous purification and characterization of LePGT1--a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon.

    PubMed

    Ohara, Kazuaki; Mito, Koji; Yazaki, Kazufumi

    2013-06-01

    Membrane-bound type prenyltransferases for aromatic substrates play crucial roles in the biosynthesis of various natural compounds. Lithospermum erythrorhizon p-hydroxybenzoate: geranyltransferase (LePGT1), which contains multiple transmembrane α-helices, is involved in the biosynthesis of a red naphthoquinone pigment, shikonin. Taking LePGT1 as a model membrane-bound aromatic substrate prenyltransferase, we utilized a baculovirus-Sf9 expression system to generate a high yield LePGT1 polypeptide, reaching ~ 1000-fold higher expression level compared with a yeast expression system. Efficient solubilization procedures and biochemical purification methods were developed to extract LePGT1 from the membrane fraction of Sf9 cells. As a result, 80 μg of LePGT1 was purified from 150 mL culture to almost homogeneity as judged by SDS/PAGE. Using purified LePGT1, enzymatic characterization, e.g. substrate specificity, divalent cation requirement and kinetic analysis, was done. In addition, inhibition experiments revealed that aromatic compounds having two phenolic hydroxyl groups effectively inhibited LePGT1 enzyme activity, suggesting a novel recognition mechanism for aromatic substrates. As the first example of solubilization and purification of this membrane-bound protein family, the methods established in this study will provide valuable information for the precise biochemical characterization of aromatic prenyltransferases as well as for crystallographic analysis of this novel enzyme family.

  17. Enhancement of cell growth and glycolic acid production by overexpression of membrane-bound alcohol dehydrogenase in Gluconobacter oxydans DSM 2003.

    PubMed

    Zhang, Huan; Shi, Lulu; Mao, Xinlei; Lin, Jinping; Wei, Dongzhi

    2016-11-10

    Membrane-bound alcohol dehydrogenase (mADH) was overexpressed in Gluconobacter oxydans DSM 2003, and the effects on cell growth and glycolic acid production were investigated. The transcription levels of two terminal ubiquinol oxidases (bo3 and bd) in the respiratory chain of the engineered strain G. oxydans-adhABS were up-regulated by 13.4- and 3.8-fold, respectively, which effectively enhanced the oxygen uptake rate, resulting in higher resistance to acid. The cell biomass of G. oxydans-adhABS could increase by 26%-33% when cultivated in a 7L bioreactor. The activities of other major membrane-bound dehydrogenases were also increased to some extent, particularly membrane-bound aldehyde dehydrogenase (mALDH), which is involved in the catalytic oxidation of aldehydes to the corresponding acids and was 1.26-fold higher. Relying on the advantages of the above, G. oxydans-adhABS could produce 73.3gl(-1) glycolic acid after 45h of bioconversion with resting cells, with a molar yield 93.5% and a space-time yield of 1.63gl(-1)h(-1). Glycolic acid production could be further improved by fed-batch fermentation. After 45h of culture, 113.8gl(-1) glycolic acid was accumulated, with a molar yield of 92.9% and a space-time yield of 2.53gl(-1)h(-1), which is the highest reported glycolic acid yield to date.

  18. Protective effect of fish oil on changes in the activities of membrane-bound ATPases and mineral status in experimentally induced myocardial infarction in Wistar rats.

    PubMed

    Padma, Viswanadha Vijaya; Devi, Chennam Srinivasulu Shyamala; Kalaiselvi, Palaniswamy

    2010-12-01

    The present study evaluated the protective effect of fish oil in isoproterenol-induced myocardial infarction in rats. The results of the present study indicate that the IPH administration decreases the activities of membrane-bound ATPases compared to control animals. Fish oil pretreatment brought about significant increase in the activity of these membrane-bound ATPases in IPH (isoproterenol hydrochloride)-treated animals. Significant increase in serum potassium level with concomitant decrease in the values of sodium, magnesium, and calcium were observed in IPH-treated rats compared to control rats, fish oil pretreatment reversed these changes to near normal. Significant elevation of sodium and calcium levels with concomitant decrease in the levels of potassium and magnesium were observed in the myocardial tissue of IPH-administered rats compared to control rats, fish oil pretreatment followed by IPH administration brought these levels to near normal. The levels of lipid peroxidation (LPO) in both serum and tissue were increased in IPH-treated rats compared with control rats, whereas pretreatment with fish oil in IPH-treated rats maintained near-normal LPO levels. The results of the present study reveals that the pretreatment of fish maintains the activities of membrane-bound ATPases and the mineral levels at near normal by the inhibition of lipid peroxidation.

  19. Generation of membrane-bound catechol-O-methyl transferase deficient mice with disctinct sex dependent behavioral phenotype.

    PubMed

    Tammimaki, A; Aonurm-Helm, A; Zhang, F P; Poutanen, M; Duran-Torres, G; Garcia-Horsman, A; Mannisto, P T

    2016-12-01

    Catechol-O-methyltransferase (COMT) has two isoforms: soluble (S-COMT), which resides in the cytoplasm, and membrane-bound (MB-MT), anchored to intracellular membranes. COMT is involved in the O-methylation of L-DOPA, dopamine and other catechols. The exact role of MB-COMT is still mostly unclear. We wanted to create a novel genetically modified mouse model that specifically lacks MB-COMT activity and to study their behavioral phenotype. MB-COMT knock-in mutant mice were generated by introducing two point mutations in exon 2 of the Comt gene (ATGCTG->GAGCTC disabling the function of the P2 promoter and allowing only the P1-regulated S-COMT transcription. The first mutation changes methionine to glutamic acid whereas the second one does not affect coding. The expression of the two COMT isoforms, total COMT activity in several areas of the brain and peripheral tissues and extracellular dopamine concentrations after L-DOPA (10 mg/kg) and carbidopa (30 mg/kg) subcutaneous administration were assessed. A battery of behavioral tests was performed to compare MB-COMT deficient mice and their wild type littermates of both sexes. MB-COMT deficient mice were seemingly normal, bred usually and had unaltered COMT activity in the brain and periphery despite a complete lack of the MB-COMT protein. MB-COMT deficient male mice showed higher extracellular dopamine levels than their wild-type littermates in the striatum, but not in the mPFC. In addition, the MB-COMT deficient male mice exhibited a distinct endophenotype characterized by schizophrenia-related behaviors like aggressive behavior and reduced prepulse inhibition. They also had prolonged immobility in the tail suspension test. Both sexes were sensitized to acute pain and had normal motor activity but disturbed short-term memory. Hence the behavioral phenotype was not limited to schizophrenia-related endophenotype and some behavioural findings were not sex-dependent. Our findings indicate that MB-COMT is critical for

  20. Identification of membrane-bound CR1 (CD35) in human urine: evidence for its release by glomerular podocytes

    PubMed Central

    1994-01-01

    Complement receptor 1 (CR1) is present on erythrocytes (E-CR1), various leucocytes, and renal glomerular epithelial cells (podocytes). In addition, plasma contains a soluble form of CR1 (sCR1). By using a specific ELISA, CR1 was detected in the urine (uCR1) of normal individuals (excretion rate in 12 subjects, 3.12 +/- 1.15 micrograms/24 h). Contrary to sCR1, uCR1 was pelleted by centrifugation at 200,000 g for 60 min. Analysis by sucrose density gradient ultracentrifugation showed that uCR1 was sedimenting in fractions larger than 19 S, whereas sCR1 was found as expected in fractions smaller than 19 S. The addition of detergents reduced the apparent size of uCR1 to that of sCR1. After gel filtration on Sephacryl-300 of normal urine, the fractions containing uCR1 were found to be enriched in cholesterol and phospholipids. The membrane-association of uCR1 was demonstrated by analyzing immunoaffinity purified uCR1 by electron microscopy which revealed membrane-bound vesicles. The apparent molecular mass of uCR1 was 15 kD larger than E-CR1 and sCR1 when assessed by SDS-PAGE and immunoblotting. This difference in size could not be explained on the basis of glycosylation only, since pretreatment with N-glycosidase F reduced the size of all forms of CR1; however, the difference in regular molecular mass was not abrogated. The structural alleles described for E-CR1 were also found for uCR1. The urine of patients who had undergone renal transplantation contained alleles of uCR1 which were discordant with E-CR1 in 7 of 11 individuals, indicating that uCR1 originated from the kidney. uCR1 was shown to bind C3b-coated immune complexes, suggesting that the function of CR1 was not destroyed in urine. A decrease in uCR1 excretion was observed in 3 of 10 patients with systemic lupus erythematosus, corresponding to the three who had severe proliferative nephritis, and in three of three patients with focal sclerosis, but not in six other patients with proteinuria. Taken together

  1. Morphogenetic roles of acetylcholine.

    PubMed Central

    Lauder, J M; Schambra, U B

    1999-01-01

    In the adult nervous system, neurotransmitters mediate cellular communication within neuronal circuits. In developing tissues and primitive organisms, neurotransmitters subserve growth regulatory and morphogenetic functions. Accumulated evidence suggests that acetylcholine, (ACh), released from growing axons, regulates growth, differentiation, and plasticity of developing central nervous system neurons. In addition to intrinsic cholinergic neurons, the cerebral cortex and hippocampus receive extensive innervation from cholinergic neurons in the basal forebrain, beginning prenatally and continuing throughout the period of active growth and synaptogenesis. Acute exposure to ethanol in early gestation (which prevents formation of basal forebrain cholinergic neurons) or neonatal lesioning of basal forebrain cholinergic neurons, significantly compromises cortical development and produces persistent impairment of cognitive functions. Neonatal visual deprivation alters developmental expression of muscarinic acetylcholine receptors (mAChR) in visual cortex, whereas local infusion of mAChR antagonists impairs plasticity of visual cortical neurons. These findings raise the possibility that exposure to environmental neurotoxins that affect cholinergic systems may seriously compromise brain development and have long-lasting morphologic, neurochemical, and functional consequences. PMID:10229708

  2. Naturally occurring and synthetic peptides acting on nicotinic acetylcholine receptors.

    PubMed

    Kasheverov, Igor E; Utkin, Yuri N; Tsetlin, Victor I

    2009-01-01

    Nicotinic acetylcholine receptors (nAChRs) are pentameric membrane-bound proteins belonging to the large family of ligand-gated ion channels. nAChRs possess various binding sites which interact with compounds of different chemical nature, including peptides. Historically first peptides found to act on nAChR were synthetic fragments of snake alpha-neurotoxins, competitive receptor antagonists. Later it was shown that fragments of glycoprotein from rabies virus, having homology to alpha-neurotoxins, and polypeptide neurotoxins waglerins from the venom of Wagler's pit viper Trimeresurus (Tropidolaemus) wagleri bind in a similar way, waglerins being efficient blockers of muscle-type nAChRs. Neuropeptide substance P appears to interact with the channel moiety of nAChR. beta-Amyloid, a peptide forming senile plaques in Alzheimer's disease, also can bind to nAChR, although the mode of binding is still unclear. However, the most well-studied peptides interacting with the ligand-binding sites of nAChRs are so-called alpha-conotoxins, peptide neurotoxins from marine snails of Conus genus. First alpha-conotoxins were discovered in the late 1970s, and now it is a rapidly growing family due to isolation of peptides from multiple Conus species, as well as to cloning, and chemical synthesis of new analogues. Because of their unique selectivity towards distinct nAChR subtypes, alpha-conotoxins became valuable tools in nAChR research. Recent X-ray structures of alpha-conotoxin complexes with acetylcholine-binding protein, a model of nAChR ligand-binding domains, revealed the details of the nAChR ligand-binding sites and provided the basis for design of novel ligands.

  3. Expression of a Drosophila melanogaster acetylcholine receptor-related gene in the central nervous system

    SciTech Connect

    Wadsworth, S.C.; Rosenthal, L.S.; Kammermeyer, K.L.; Potter, M.B.; Nelson, D.J.

    1988-02-01

    The authors isolated Drosophila melanogaster genomic sequences with nucleotide and amino acid sequence homology to subunits of vertebrate acetylcholine receptor by hybridization with a Torpedo acetylcholine receptor subunit cDNA probe. Five introns are present in the portion of the Drosophila gene encoding the unprocessed protein and are positionally conserved relative to the human acetylcholine receptor alpha-subunit gene. The Drosophila genomic clone hybridized to salivary gland polytene chromosome 3L within region 64B and was termed AChR64B. A 3-kilobasae poly(A)-containing transcript complementary to the AChR64B clone was readily detectable by RNA blot hybridizations during midembryogenesis, during metamorphosis, and in newly enclosed adults. AChR64B transcripts were localized to the cellular regions of the central nervous system during embryonic, larval, pupal, and adult stages of development. During metamorphosis, a temporal relationship between the morphogenesis of the optic lobe and expression of AChR64B transcripts was observed.

  4. THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF TORPEDO MARMORATA

    PubMed Central

    Sheridan, Michael N.

    1965-01-01

    The fine structure of the electric organ of the fish Torpedo marmorata has been examined after osmium tetroxide or potassium permanganate fixation, acetone dehydration, and Araldite embedment. This organ consists of stacks of electroplaques which possess a dorsal noninnervated and a ventral richly innervated surface. Both surfaces are covered with a thin basement membrane. A tubular membranous network whose lumen is continuous with the extracellular space occupies the dorsal third of the electroplaque. Nerve endings, separated from the ventral surface of the electroplaque by a thin basement membrane, contain synaptic vesicles (diameter 300 to 1200 A), mitochondria, and electron-opaque granules (diameter 300 A). Projections from the nerve endings occupy the lumina of the finger-like invaginations of the ventral surface. The cytoplasm of the electroplaques contains the usual organelles. A "cellular cuff" surrounds most of the nerve fibers in the intercellular space, and is separated from the nerve fibre and its Schwann cell by a space containing connective tissue fibrils. The connective tissue fibrils and fibroblasts in the intercellular space are primarily associated with the dorsal surface of the electroplaque. PMID:14286287

  5. Biochemical and immunological studies of the Muscarinic acetylcholine receptor

    SciTech Connect

    Gainer, M.W.

    1985-01-01

    Muscarinic acetylcholine receptors were solubilized from bovine brain membranes with 3(3-cholamidopropyl)dimethylammonio)propanesulfonate (CHAPS). A combination of 10 mM CHAPS and 1 M NaCl solubilized 15-40% of the specific receptor binding sites from these membranes. The solubilized receptors displayed high affinity binding of the muscarinic antagonist, (/sup 3/H)quinuclidinyl benzilate with a K/sub D/ = 300 pM. In addition, the solubilized and retained guanyl nucleotide regulation of agonist binding characteristic of membrane bound receptors. Gel filtration experiments showed that solubilized receptors from cortex and cerebellum had different elution profiles. Analysis by sucrose density gradient centrifugation showed that receptors in the lower molecular weight peak sedimented with a coefficient of 5S. Receptors in the larger molecular weight peak sedimented to the bottom of the gradient. Attempts to purify receptors by chromatography on propylbenzilycholine Sepharose were unsuccessful. The technique used to attach the ligand to the solid support, however, was used to synthesize a PrBCM-BSA conjugate and the conjugate used as an antigen in the production of anti-ligand antibodies. Two anti-PrBCM monoclonal antibodies were isolated that recognize muscarinic but not nicotinic cholinergic ligands. The abilities of the antibodies to recognize other muscarinic ligands indicated the antibodies recognized a portion of PrBCM involved in binding to the receptor. Construction of an antibody affinity resin resulted in the purification of this fragment a minimum of 170 fold.

  6. [Influence of UV-light on erythrocyte membrane structure and catalytic behaviour of membrane acetylcholine esterase].

    PubMed

    Volotovskiĭ, I D; Sheĭko, L M; Konev, S V

    1976-01-01

    UV-light is shown to induce the structural transitions in the erythrocyte membrane described by S-shape curves in plots of the structural response versus the irradiation dose. In contrast to the free acetylcholine esterase (AChE) UV-light acts on the membrane enzyme as a mixed inhibitor (simultaneous change in Vmax and Km). The modification of the environment structure of residual enzyme is suggested to be the main reason of this phenomenon. The effect is under the control of membrane integrity and disappears after its desintegration. Membrane AChE treated ultrasonically both prior to and after irradiation is inactivated without a Km change. The data obtained show the influence of erythrocyte membrane structure on the catalytic behaviour of membrane-bound AChE.

  7. 33 CFR 334.1190 - Hood Canal and Dabob Bay, Wash.; naval non-explosive torpedo testing area.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....; naval non-explosive torpedo testing area. 334.1190 Section 334.1190 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.1190 Hood Canal and Dabob Bay, Wash.; naval non-explosive torpedo testing area. (a)...

  8. Characterization of alpha-conotoxin interactions with the nicotinic acetylcholine receptor and monoclonal antibodies.

    PubMed Central

    Ashcom, J D; Stiles, B G

    1997-01-01

    The venoms of predatory marine cone snails, Conus species, contain numerous peptides and proteins with remarkably diverse pharmacological properties. One group of peptides are the alpha-conotoxins, which consist of 13-19 amino acids constrained by two disulphide bonds. A biologically active fluorescein derivative of Conus geographus alpha-conotoxin GI (FGI) was used in novel solution-phase-binding assays with purified Torpedo californica nicotinic acetylcholine receptor (nAchR) and monoclonal antibodies developed against the toxin. The binding of FGI to nAchR or antibody had apparent dissociation constants of 10-100 nM. Structure-function studies with alpha-conotoxin GI analogues composed of a single disulphide loop revealed that different conformational restraints are necessary for effective toxin interactions with nAchR or antibodies. PMID:9359860

  9. Electron microscopic localization of calelectrin, a Mr 36 000 calcium-regulated protein, at the cholinergic electromotor synapse of Torpedo.

    PubMed

    Fiedler, W; Walker, J H

    1985-07-01

    Calelectrin is a calcium-binding protein of Mr 36 000 which has previously been shown to be associated with membranes of the cholinergic synapse in a calcium-dependent manner. We report here that calelectrin was solubilized from the electric organ of Torpedo marmorata in the absence of calcium together with proteins of Mr 54 000 and Mr 15 000. In cholinergic nerve endings isolated from the electric organ only calelectrin was solubilized in a calcium-dependent manner. A specific antiserum to calelectrin was used to localize the antigen by immunofluorescence microscopy on sections of electric organ and showed that calelectrin is distributed throughout the postsynaptic cell. Calelectrin was also detected in axons and in the cell bodies of the cholinergic neurones where it was concentrated in discrete patches throughout the cells. Electric organ tissue was processed to localize calelectrin with the electron microscope using an immunoperoxidase method. The most intense staining was observed on the cytoplasmic face of the acetylcholine receptor-containing postsynaptic membrane and also associated with the intracellular filaments of the electrocyte. The intensity of staining associated with these structures could be greatly reduced by preincubating the tissue with calcium chelators. In nerve terminals calelectrin was associated with synaptic vesicles in a polarized fashion. Calelectrin was also found on the cytoplasmic face of the synaptosomal plasma membrane and associated with neurofilaments. No extracellular staining was ever observed. Our results strongly support our original hypothesis that calelectrin is a calcium-regulated component of intracellular structure associated both with membranes and filaments.

  10. Azemiopsin from Azemiops feae Viper Venom, a Novel Polypeptide Ligand of Nicotinic Acetylcholine Receptor*

    PubMed Central

    Utkin, Yuri N.; Weise, Christoph; Kasheverov, Igor E.; Andreeva, Tatyana V.; Kryukova, Elena V.; Zhmak, Maxim N.; Starkov, Vladislav G.; Hoang, Ngoc Anh; Bertrand, Daniel; Ramerstorfer, Joachim; Sieghart, Werner; Thompson, Andrew J.; Lummis, Sarah C. R.; Tsetlin, Victor I.

    2012-01-01

    Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a β-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC50 0.18 ± 0.03 μm) and with lower efficiency to human α7 nAChR (IC50 22 ± 2 μm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1β1ϵδ) than the fetal form (α1β1γδ), EC50 being 0.44 ± 0.1 μm and 1.56 ± 0.37 μm, respectively. The peptide had no effect on GABAA (α1β3γ2 or α2β3γ2) receptors at a concentration up to 100 μm or on 5-HT3 receptors at a concentration up to 10 μm. Ala scanning showed that amino acid residues at positions 3–6, 8–11, and 13–14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges. PMID:22613724

  11. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078

    PubMed Central

    Tan, Shu-Tang; Xue, Hong-Wei

    2016-01-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5–1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5–1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5–1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5–1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  12. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    SciTech Connect

    Middleton, R.E.; Cohen, J.B. )

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with high affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.

  13. First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study.

    PubMed

    Pessione, Enrica; Pessione, Alessandro; Lamberti, Cristina; Coïsson, Daniel Jean; Riedel, Kathrin; Mazzoli, Roberto; Bonetta, Silvia; Eberl, Leo; Giunta, Carlo

    2009-05-01

    The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2-DE and MALDI-TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and beta-phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down-regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy-supplying routes. The most interesting finding is a membrane-bound TDC highly over-expressed during amine production. This is the first evidence of a true membrane-bound TDC, longly suspected in bacteria on the basis of the gene sequence.

  14. An organelle-free assay for pea chloroplast Mg-chelatase: Resolution of the activity into soluble and membrane bound fractions

    SciTech Connect

    Walker, C.J.; Weinstein, J.D. )

    1991-05-01

    Mg-chelatase, which catalyzes the insertion of magnesium into protoporphyrin, lies at the branchpoint of heme and chlorophyll biosynthesis in chloroplasts. Since magnesium chelation is the first step unique to chlorophyll synthesis, one would expect this step to be highly regulated. However, to date little is known about the enzymology or regulation of Mg-chelatase due mostly to an inability to assay it's activity outside of the intact plastid. Here the authors report the first truly in vitro i.e. organelle-free, assay for Mg-chelatase. Mg-chelatase activity in intact pea chloroplasts which is 3 to 4 fold higher than in cucumber chloroplasts, survived chloroplast lysis and could be fractionated, by centrifugation, into supernatant and pellet components. Both of these fractions were required to reconstitute Mg-chelatase activity and both were inactivated by boiling; indicating that the enzyme is composed of soluble and membrane bound protein(s). The specific activity of the reconstituted system was typically 1 nmol Mg-Deuteroporphyrin/h/mg protein and activity was linear for at least 60 min under our assay conditions. ATP and magnesium were required for Mg-chelatase activity. The soluble component could be fractionated with ammonium sulfate. The product of the reaction was confirmed fluorometrically as the magnesium chelate of the porphyrin substrate. Crude separation of chloroplast membranes into thylakoids and envelopes, suggested that the membrane-bound component of Mg-chelatase is probably located in the envelope.

  15. Identification of a membrane-bound, glycol-stimulated phospholipase A sub 2 located in the secretory granules of the adrenal medulla

    SciTech Connect

    Hildebrandt, E.; Albanesi, J.P. )

    1991-01-01

    Chromaffin granule membranes prepared from bovine adrenal medullae showed Ca{sup 2+}-stimulated phospholipase A{sub 2} (PLA{sub 2}) activity when assayed at pH 9.0 with phosphatidylcholine containing an ({sup 14}C)-arachidonyl group in the 2-position. However, the activity occurred in both soluble and particulate subcellular fractions, and did not codistribute with markers for the secretory granule. PLA{sub 2} activity in the granule membrane preparation was stimulated dramatically by addition of glycerol, ethylene glycole, or poly(ethylene glycol). This glycol-stimulated PLA{sub 2} activity codistributed with membrane-bound dopamine {beta}-hydroxylase, a marker for the granule membranes, through the sequence of differential centrifugation steps employed to prepare the granule membrane fraction, as well as on a sucrose density gradient which resolved the granules from mitochondria, lysosomes, and plasma membrane. The glycol-stimulated PLA{sub 2} of the chromaffin granule was membrane-bound, exhibited a pH optimum of 7.8, retained activity in the presence of EDTA, and was inactivated by p-bromophenacyl bromide. When different {sup 14}C-labeled phospholipids were incorporated into diarachidonylphosphatidylcholine liposomes, 1-palmitoyl-2-arachidonylphosphatidylcholine was a better substrate for this enzyme than 1-palmitoyl-2-oleylphosphatidylcholine or 1-acyl-2-arachidonyl-phosphatidylethhanolamine, and distearoylphosphatidylcholine was not hydrolyzed.

  16. Fourier transform infrared evidence for a predominantly alpha-helical structure of the membrane bound channel forming COOH-terminal peptide of colicin E1.

    PubMed Central

    Rath, P; Bousché, O; Merrill, A R; Cramer, W A; Rothschild, K J

    1991-01-01

    The structure of the membrane bound state of the 178-residue thermolytic COOH-terminal channel forming peptide of colicin E1 was studied by polarized Fourier transform infrared (FTIR) spectroscopy. This fragment was reconstituted into DMPC liposomes at varying peptide/lipid ratios ranging from 1/25-1/500. The amide I band frequency of the protein indicated a dominant alpha-helical secondary structure with limited beta- and random structures. The amide I and II frequencies are at 1,656 and 1,546 cm-1, close to the frequency of the amide I and II bands of rhodopsin, bacteriorhodopsin and other alpha-helical proteins. Polarized FTIR of oriented membranes revealed that the alpha-helices have an average orientation less than the magic angle, 54.6 degrees, relative to the membrane normal. Almost all of the peptide groups in the membrane-bound channel protein undergo rapid hydrogen/deuterium (H/D) exchange. These results are contrasted to the alpha-helical membrane proteins, bacteriorhodopsin, and rhodopsin. PMID:1710937

  17. Reconstitution of Purified Acetylcholine Receptors with Functional Ion Channels in Planar Lipid Bilayers

    NASA Astrophysics Data System (ADS)

    Nelson, N.; Anholt, R.; Lindstrom, J.; Montal, M.

    1980-05-01

    Acetylcholine receptor, solubilized and purified from Torpedo californica electric organ under conditions that preserve the activity of its ion channel, was reconstituted into vesicles of soybean lipid by the cholate-dialysis technique. The reconstituted vesicles were then spread into monolayers at an air-water interface and planar bilayers were subsequently formed by apposition of two monolayers. Addition of carbamoylcholine caused an increase in membrane conductance that was transient and relaxed spontaneously to the base level (i.e., became desensitized). The response to carbamoylcholine was dose dependent and competitively inhibited by curare. Fluctuations of membrane conductance corresponding to the opening and closing of receptor channels were observed. Fluctuation analysis indicated a single-channel conductance of 16± 3 pS (in 0.1 M NaCl) with a mean channel open time estimated to be 35± 5 ms. Thus, purified acetylcholine receptor reconstituted into lipid bilayers exhibited the pharmacological specificity, activation, and desensitization properties expected of this receptor in native membranes.

  18. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism.

    PubMed

    Yang, Xue-Peng; Wei, Liu-Jing; Ye, Jian-Bin; Yin, Bo; Wei, Dong-Zhi

    2008-09-15

    A membrane-bound pyrroloquinoline quinine (PQQ)-dependent D-sorbitol dehydrogenase (mSLDH) in Gluconobacter oxydans participates in the oxidation of D-sorbitol to L-sorbose by transferring electrons to ubiquinone which links to the respiratory chain. To elucidate the kinetic mechanism, the enzyme purified was subjected to two-substrate steady-state kinetic analysis, product and substrate inhibition studies. These kinetic data indicate that the catalytic reaction follows an ordered Bi Bi mechanism, where the substrates bind to the enzyme in a defined order (first ubiquinone followed by D-sorbitol), while products are released in sequence (first L-sorbose followed by ubiquinol). From these findings, we proposed that the native mSLDH bears two different substrate-binding sites, one for ubiquinone and the other for D-sorbitol, in addition to PQQ-binding and Mg(2+)-binding sites in the catalytic center.

  19. Membrane-bound ICAM-1 contributes to the onset of proinvasive tumor stroma by controlling acto-myosin contractility in carcinoma-associated fibroblasts

    PubMed Central

    Bonan, Stephanie; Albrengues, Jean; Grasset, Eloise; Kuzet, Sanya-Eduarda; Nottet, Nicolas; Bourget, Isabelle; Bertero, Thomas; Mari, Bernard; Meneguzzi, Guerrino; Gaggioli, Cedric

    2017-01-01

    Acto-myosin contractility in carcinoma-associated fibroblasts leads to assembly of the tumor extracellular matrix. The pro-inflammatory cytokine LIF governs fibroblast activation in cancer by regulating the myosin light chain 2 activity. So far, however, how LIF mediates cytoskeleton contractility remains unknown. Using phenotypic screening assays based on knock-down of LIF-dependent genes in fibroblasts, we identified the glycoprotein ICAM-1 as a crucial regulator of stroma fibroblast proinvasive matrix remodeling. We demonstrate that the membrane-bound ICAM-1 isoform is necessary and sufficient to promote inflammation-dependent extracellular matrix contraction, which favors cancer cell invasion. Indeed, ICAM-1 mediates generation of acto-myosin contractility downstream of the Src kinases in stromal fibroblasts. Moreover, acto-myosin contractility regulates ICAM-1 expression by establishing a positive feedback signaling. Thus, targeting stromal ICAM-1 might constitute a possible therapeutic mean to counteract tumor cell invasion and dissemination. PMID:27901489

  20. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.

    PubMed

    Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G

    2013-12-01

    Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.

  1. Trapping of Vibrio cholerae cytolysin in the membrane-bound monomeric state blocks membrane insertion and functional pore formation by the toxin.

    PubMed

    Rai, Anand Kumar; Chattopadhyay, Kausik

    2014-06-13

    Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytolytic toxin that belongs to the family of β barrel pore-forming protein toxins. VCC induces lysis of its target eukaryotic cells by forming transmembrane oligomeric β barrel pores. The mechanism of membrane pore formation by VCC follows the overall scheme of the archetypical β barrel pore-forming protein toxin mode of action, in which the water-soluble monomeric form of the toxin first binds to the target cell membrane, then assembles into a prepore oligomeric intermediate, and finally converts into the functional transmembrane oligomeric β barrel pore. However, there exists a vast knowledge gap in our understanding regarding the intricate details of the membrane pore formation process employed by VCC. In particular, the membrane oligomerization and membrane insertion steps of the process have only been described to a limited extent. In this study, we determined the key residues in VCC that are critical to trigger membrane oligomerization of the toxin. Alteration of such key residues traps the toxin in its membrane-bound monomeric state and abrogates subsequent oligomerization, membrane insertion, and functional transmembrane pore-formation events. The results obtained from our study also suggest that the membrane insertion of VCC depends critically on the oligomerization process and that it cannot be initiated in the membrane-bound monomeric form of the toxin. In sum, our study, for the first time, dissects membrane binding from the subsequent oligomerization and membrane insertion steps and, thus, defines the exact sequence of events in the membrane pore formation process by VCC.

  2. Synergistic salubrious effect of ferulic acid and ascorbic acid on membrane-bound phosphatases and lysosomal hydrolases during experimental myocardial infarction in rats.

    PubMed

    Yogeeta, Surinder Kumar; Gnanapragasam, Arunachalam; Senthilkumar, Subramanian; Subhashini, Rajakannu; Devaki, Thiruvengadam

    2006-12-23

    Altered membrane integrity has been suggested as a major factor in the development of cellular injury during myocardial necrosis. The present study was designed to investigate the effect of the combination of ferulic acid (FA) and ascorbic acid (AA) on lysosomal hydrolases and membrane-bound phosphatases during isoproterenol (ISO) induced myocardial necrosis in rats. Induction of rats with 1SO (150 mg/kg b.wt, i.p.) for 2 days resulted in a significant increase in the activities of lysosomal hydrolases (beta-D-glucuronidase, beta-D-galactosidase, beta-D-N-acetylglucosaminidase, acid phosphatase and cathepsin-D) in the heart and serum. A significant increase in plasma lactate level, cardiac levels of sodium, calcium and a decrease in cardiac level of potassium was also observed, which was paralleled by abnormal activities of membrane-bound phosphatases (Na(+)-K(+) ATPase, Ca(2+) ATPase and Mg(2+) ATPase) in the heart of ISO-administered rats. Pre-co-treatment with the combination of FA (20 mg/kg b.wt) and AA (80 mg/kg b.wt) orally for 6 days significantly attenuated these abnormalities and restored the levels to near normalcy when compared to individual drug treated groups. The combination of FA and AA preserved the membrane integrity by mitigating the oxidative stress and associated cellular damage more effectively when compared to individual treatment groups. In our study, the protection conferred by FA and AA might be through the nitric oxide pathway and by their ability of quenching free radicals. In conclusion, these findings indicate the synergistic modulation of lysosomal hydrolases and membrane phosphatases by the combination of FA and AA.

  3. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    PubMed Central

    Mallikarjuna, Nimgampalle; Praveen, Kukkarasapalli; Yellamma, Kuna

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimer’s. Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the selected brain regions of hippocampus and cerebral cortex in all four groups of rats at selected time intervals. Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20%) in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration. PMID:28265536

  4. Membrane-bound fatty acid desaturases are inserted co-translationally into the ER and contain different ER retrieval motifs at their carboxy termini.

    PubMed

    McCartney, Andrew W; Dyer, John M; Dhanoa, Preetinder K; Kim, Peter K; Andrews, David W; McNew, James A; Mullen, Robert T

    2004-01-01

    Fatty acid desaturases (FADs) play a prominent role in plant lipid metabolism and are located in various subcellular compartments, including the endoplasmic reticulum (ER). To investigate the biogenesis of ER-localized membrane-bound FADs, we characterized the mechanisms responsible for insertion of Arabidopsis FAD2 and Brassica FAD3 into ER membranes and determined the molecular signals that maintain their ER residency. Using in vitro transcription/translation reactions with ER-derived microsomes, we show that both FAD2 and FAD3 are efficiently integrated into membranes by a co-translational, translocon-mediated pathway. We also demonstrate that while the C-terminus of FAD3 (-KSKIN) contains a functional prototypic dilysine ER retrieval motif, FAD2 contains a novel C-terminal aromatic amino acid-containing sequence (-YNNKL) that is both necessary and sufficient for maintaining localization in the ER. Co-expression of a membrane-bound reporter protein containing the FAD2 C-terminus with a dominant-negative mutant of ADP-ribosylation factor (Arf)1 abolished transient localization of the reporter protein in the Golgi, indicating that the FAD2 peptide signal acts as an ER retrieval motif. Mutational analysis of the FAD2 ER retrieval signal revealed a sequence-specific motif consisting of Phi-X-X-K/R/D/E-Phi-COOH, where -Phi- are large hydrophobic amino acid residues. Interestingly, this aromatic motif was present in a variety of other known and putative ER membrane proteins, including cytochrome P450 and the peroxisomal biogenesis factor Pex10p. Taken together, these data describe the insertion and retrieval mechanisms of FADs and define a new ER localization signal in plants that is responsible for the retrieval of escaped membrane proteins back to the ER.

  5. Biosynthesis of UDP-xylose. Cloning and characterization of a novel Arabidopsis gene family, UXS, encoding soluble and putative membrane-bound UDP-glucuronic acid decarboxylase isoforms.

    PubMed

    Harper, April D; Bar-Peled, Maor

    2002-12-01

    UDP-xylose (Xyl) is an important sugar donor for the synthesis of glycoproteins, polysaccharides, various metabolites, and oligosaccharides in animals, plants, fungi, and bacteria. UDP-Xyl also feedback inhibits upstream enzymes (UDP-glucose [Glc] dehydrogenase, UDP-Glc pyrophosphorylase, and UDP-GlcA decarboxylase) and is involved in its own synthesis and the synthesis of UDP-arabinose. In plants, biosynthesis of UDP-Xyl is catalyzed by different membrane-bound and soluble UDP-GlcA decarboxylase (UDP-GlcA-DC) isozymes, all of which convert UDP-GlcA to UDP-Xyl. Because synthesis of UDP-Xyl occurs both in the cytosol and in membranes, it is not known which source of UDP-Xyl the different Golgi-localized xylosyltransferases are utilizing. Here, we describe the identification of several distinct Arabidopsis genes (named AtUXS for UDP-Xyl synthase) that encode functional UDP-GlcA-DC isoforms. The Arabidopsis genome contains five UXS genes and their protein products can be subdivided into three isozyme classes (A-C), one soluble and two distinct putative membrane bound. AtUxs from each class, when expressed in Escherichia coli, generate active UDP-GlcA-DC that converts UDP-GlcA to UDP-Xyl. Members of this gene family have a large conserved C-terminal catalytic domain (approximately 300 amino acids long) and an N-terminal variable domain differing in sequence and size (30-120 amino acids long). Isoforms of class A and B appear to encode putative type II membrane proteins with their catalytic domains facing the lumen (like Golgi-glycosyltransferases) and their N-terminal variable domain facing the cytosol. Uxs class C is likely a cytosolic isoform. The characteristics of the plant Uxs support the hypothesis that unique UDP-GlcA-DCs with distinct subcellular localizations are required for specific xylosylation events.

  6. Incorporation of membrane-bound, mammalian-derived immunomodulatory proteins into influenza whole virus vaccines boosts immunogenicity and protection against lethal challenge

    PubMed Central

    Herbert, Andrew S; Heffron, Lynn; Sundick, Roy; Roberts, Paul C

    2009-01-01

    Background Influenza epidemics continue to cause morbidity and mortality within the human population despite widespread vaccination efforts. This, along with the ominous threat of an avian influenza pandemic (H5N1), demonstrates the need for a much improved, more sophisticated influenza vaccine. We have developed an in vitro model system for producing a membrane-bound Cytokine-bearing Influenza Vaccine (CYT-IVAC). Numerous cytokines are involved in directing both innate and adaptive immunity and it is our goal to utilize the properties of individual cytokines and other immunomodulatory proteins to create a more immunogenic vaccine. Results We have evaluated the immunogenicity of inactivated cytokine-bearing influenza vaccines using a mouse model of lethal influenza virus challenge. CYT-IVACs were produced by stably transfecting MDCK cell lines with mouse-derived cytokines (GM-CSF, IL-2 and IL-4) fused to the membrane-anchoring domain of the viral hemagglutinin. Influenza virus replication in these cell lines resulted in the uptake of the bioactive membrane-bound cytokines during virus budding and release. In vivo efficacy studies revealed that a single low dose of IL-2 or IL-4-bearing CYT-IVAC is superior at providing protection against lethal influenza challenge in a mouse model and provides a more balanced Th1/Th2 humoral immune response, similar to live virus infections. Conclusion We have validated the protective efficacy of CYT-IVACs in a mammalian model of influenza virus infection. This technology has broad applications in current influenza virus vaccine development and may prove particularly useful in boosting immune responses in the elderly, where current vaccines are minimally effective. PMID:19393093

  7. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    SciTech Connect

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.; Lennon, V.A.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodies to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.

  8. The reaction site of a non-competitive antagonist in the delta-subunit of the nicotinic acetylcholine receptor.

    PubMed Central

    Oberthür, W; Muhn, P; Baumann, H; Lottspeich, F; Wittmann-Liebold, B; Hucho, F

    1986-01-01

    A site in the primary structure of the nicotinic acetylcholine receptor from Torpedo marmorata covalently labeled with the non-competitive antagonist [3H]triphenylmethylphosphonium (TPMP+) was localized. The label was found in position 262 of the delta-polypeptide chain. This site is specifically labeled in the presence of the agonist carbamoylcholine. Labeling is prevented by the non-competitive antagonist histrionicotoxin. Position 262, probably a serine, is located in the highly conserved membrane-spanning helix M2 (according to the predicted folding scheme of Finer-Moore and Stroud (1984). The relationship of this site to the receptor's ion channel and its regulation is discussed. Images Fig. 2. PMID:3758027

  9. Investigation of Single-Stage Modified Turbine of Mark 25 Torpedo Power Plant

    NASA Technical Reports Server (NTRS)

    Hoyt, Jack W.

    1947-01-01

    Efficiency investigations have been made on a single-stage modification of the turbine of a Mark 25 aerial torpedo to determine the performance of the unit with five different turbine nozzles. The output of the turbine blades was computed by analyzing the windage and mechanical-friction losses of the unit. The turbine was faund to be most efficient with a cast nozzle having sharp-edged inlets to the nine nozzle ports. An analysis af the effectiveness af the first and second stages of the standard Mark 25 torpedo turbine indicates that the first- stage turbine contributes nearly all the brake power produced at blade-jet speed ratios above 0.26.

  10. Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor

    SciTech Connect

    Lentz, T.L. )

    1991-11-12

    Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of {sup 125}I-{alpha}-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b and the structurally similar segment of CVS rabies virus glycoprotein. These affinities were comparable to those of d-tubocurarine and suberyldicholine. These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Since this region of the glycoprotein contains residues corresponding to all of the functionally invariant neurotoxin residues, it may interact with the acetylcholine receptor through a mechanism similar to that of the neurotoxins.

  11. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    SciTech Connect

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The results are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.

  12. Torpedo electromotor system development: neuronal cell death and electric organ development in the fourth branchial arch.

    PubMed

    Fox, G Q; Richardson, G P; Kirk, C

    1985-06-08

    The fourth branchial arch of Torpedo marmorata has been examined at the light and electron microscopic level during development. Of interest was the determination of the extent of electric organ tissue reported to be present in this arch and its possible relationship to electromotoneuron cell death in the electric lobes. The main electric organ of the torpedo is derived from the hyoid and first three branchial arches and is innervated by four major electromotor nerves. Extensive electromotoneuron cell death occurs in the electric lobes and most notably in the posterior poles. This feature could be due to a tendency for these neurons to innervate the fourth branchial arch where little or no electric tissue is formed. Our findings support this conclusion but are not entirely consistent with the idea that a population mismatch has occurred. This is because cell death precedes the genesis of the target cells. The presence of innervated differentiated electric tissue in this arch is also reported, leading to the conclusion that Torpedo marmorata possesses an accessory electric organ.

  13. Increased soluble and membrane-bound PD-L1 contributes to immune regulation and disease progression in patients with tuberculous pleural effusion

    PubMed Central

    Pan, Xue; Zhong, Anyuan; Xing, Yufei; Shi, Minhua; Qian, Bin; Zhou, Tong; Chen, Yongjing; Zhang, Xueguang

    2016-01-01

    Soluble and membrane-bound programmed death ligand-1 (sPD-L1 and mPD-L1, respectively) have been demonstrated to participate in the immune suppression of non-small cell lung cancer. However, the contribution of sPD-L1 and mPD-L1 to immune regulation and disease progression in patients with pleural effusions remains unknown. The present study evaluated the levels of sPD-L1 and membrane-bound PD-1/PD-L1 in the peripheral blood and pleural effusions of patients with tuberculous pleural effusion (TPE), malignant pleural effusion (MPE) and non-tuberculous non-malignant pleural effusion (n-TB n-M). Furthermore, selected T lymphocytes and cluster of differentiation (CD)14+ monocytes were co-cultured to investigate the potential effect of the PD-1/PD-L1 pathway in TPE. Levels of sPD-L1 and PD-L1 on CD14+ monocytes were increased in the TPE group, as compared with the MPE and n-TB n-M groups. Furthermore, sPD-L1 levels and the expression levels of PD-L1 on CD14+ monocytes were demonstrated to be positively correlated with interferon (IFN)-γ concentration in pleural effusions. Therefore, IFN-γ may increase the expression of PD-L1 on CD14+ monocytes in vitro. Cell counting kit-8 analysis demonstrated that anti-PD-L1 antibody was able to partially reverse the proliferation of T lymphocytes in the co-culture system. The results of the present study indicated that sPD-L1 or mPD-L1 are associated with the immune regulation and disease progression of TPE, and may serve as possible biomarkers of TPE. Furthermore, sPD-L1 and the PD-1/PD-L1 pathway of TPE may be associated with the Th1 immune response; therefore, an anti-PD-1/PD-L1 pathway suggests a potential immune therapy strategy for the treatment of TPE. PMID:27698705

  14. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation.

    PubMed

    Adachi, O; Fujii, Y; Ano, Y; Moonmangmee, D; Toyama, H; Shinagawa, E; Theeragool, G; Lotong, N; Matsushita, K

    2001-01-01

    To identify the enzyme responsible for pentitol oxidation by acetic acid bacteria, two different ribitol oxidizing enzymes, one in the cytosolic fraction of NAD(P)-dependent and the other in the membrane fraction of NAD(P)-independent enzymes, were examined with respect to oxidative fermentation. The cytoplasmic NAD-dependent ribitol dehydrogenase (EC 1.1.1.56) was crystallized from Gluconobacter suboxydans IFO 12528 and found to be an enzyme having 100 kDa of molecular mass and 5 s as the sedimentation constant, composed of four identical subunits of 25 kDa. The enzyme catalyzed a shuttle reversible oxidoreduction between ribitol and D-ribulose in the presence of NAD and NADH, respectively. Xylitol and L-arabitol were well oxidized by the enzyme with reaction rates comparable to ribitol oxidation. D-Ribulose, L-ribulose, and L-xylulose were well reduced by the enzyme in the presence of NADH as cosubstrates. The optimum pH of pentitol oxidation was found at alkaline pH such as 9.5-10.5 and ketopentose reduction was found at pH 6.0. NAD-Dependent ribitol dehydrogenase seemed to be specific to oxidoreduction between pentitols and ketopentoses and D-sorbitol and D-mannitol were not oxidized by this enzyme. However, no D-ribulose accumulation was observed outside the cells during the growth of the organism on ribitol. L-Ribulose was accumulated in the culture medium instead, as the direct oxidation product catalyzed by a membrane-bound NAD(P)-independent ribitol dehydrogenase. Thus, the physiological role of NAD-dependent ribitol dehydrogenase was accounted to catalyze ribitol oxidation to D-ribulose in cytoplasm, taking D-ribulose to the pentose phosphate pathway after being phosphorylated. L-Ribulose outside the cells would be incorporated into the cytoplasm in several ways when need for carbon and energy sources made it necessary to use L-ribulose for their survival. From a series of simple experiments, membrane-bound sugar alcohol dehydrogenase was concluded to be

  15. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    SciTech Connect

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi; Turk, Tom; Sepčić, Kristina; Benoit, Evelyne; Frangež, Robert

    2012-12-01

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials, recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.

  16. Diverse in vivo effects of soluble and membrane-bound M-CSF on tumor-associated macrophages in lymphoma xenograft model.

    PubMed

    Liao, Jinfeng; Feng, Wenli; Wang, Rong; Ma, Shihui; Wang, Lina; Yang, Xiao; Yang, Feifei; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2016-01-12

    Macrophage colony-stimulating factor (M-CSF) is an important cytokine for monocyte/macrophage lineage. Secretory M-CSF (sM-CSF) and membrane-bound M-CSF (mM-CSF) are two major alternative splicing isoforms. The functional diversity of these isoforms in the activation of tumor-associated macrophages (TAMs), especially in lymphoma microenvironment, has not been documented. Here, we studied the effects of M-CSF isoforms on TAMs in xenograft mouse model. More infiltrating TAMs were detected in microenvironment with mM-CSF and sM-CSF. TAMs could be divided into three subpopulations based on their expression of CD206 and Ly6C. While sM-CSF had greater potential to recruit and induce differentiation of TAMs and TAM subpopulations, mM-CSF had greater potential to induce proliferation of TAMs and TAM subpopulations. Though both isoforms educated TAMs and TAM subpopulations to M2-like macrophages, mM-CSF and sM-CSF induced different spectrums of phenotype-associated genes in TAMs and TAM subpopulations. These results suggested the diverse effects of M-CSF isoforms on the activation of TAMs and TAM subpopulations in lymphoma microenvironments.

  17. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures

    PubMed Central

    Ou, Yangguang; Wu, Juanfang; Sandberg, Mats

    2014-01-01

    This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push–pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push–pull perfusion can distinguish ectoenzyme activity with a ~100 µm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus. PMID:25168111

  18. Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rγnull mice is enhanced by transgenic expression of membrane-bound human SCF

    PubMed Central

    Racki, Waldemar J.; Leif, Jean; Burzenski, Lisa; Hosur, Vishnu; Wetmore, Amber; Gott, Bruce; Herlihy, Mary; Ignotz, Ronald; Dunn, Raymond; Shultz, Leonard D.; Greiner, Dale L.

    2012-01-01

    Immunodeficient mice engrafted with human HSCs support multidisciplinary translational experimentation, including the study of human hematopoiesis. Heightened levels of human HSC engraftment are observed in immunodeficient mice expressing mutations in the IL2-receptor common γ chain (IL2rg) gene, including NOD-scid IL2rγnull (NSG) mice. Engraftment of human HSC requires preconditioning of immunodeficient recipients, usually with irradiation. Such preconditioning increases the expression of stem cell factor (SCF), which is critical for HSC engraftment, proliferation, and survival. We hypothesized that transgenic expression of human membrane-bound stem cell factor Tg(hu-mSCF)] would increase levels of human HSC engraftment in nonirradiated NSG mice and eliminate complications associated with irradiation. Surprisingly, detectable levels of human CD45+ cell chimerism were observed after transplantation of cord blood–derived human HSCs into nonirradiated adult as well as newborn NSG mice. However, transgenic expression of human mSCF enabled heightened levels of human hematopoietic cell chimerism in the absence of irradiation. Moreover, nonirradiated NSG-Tg(hu-mSCF) mice engrafted as newborns with human HSCs rejected human skin grafts from a histoincompatible donor, indicating the development of a functional human immune system. These data provide a new immunodeficient mouse model that does not require irradiation preconditioning for human HSC engraftment and immune system development. PMID:22246028

  19. Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase.

    PubMed

    Tanisho, S; Kamiya, N; Wakao, N

    1989-01-26

    The pH dependency of cell mass productivity, the hydrogen evolution rate and the yield of hydrogen from glucose was measured by controlling the pH of the culture automatically. The cell mass productivity of Enterobacter aerogenes increased in a linear fashion up to a pH value of approx. 7.0. In contrast, both the evolution rate and the yield of hydrogen showed convex relationships up to a pH value of 7.0, both having maximum values at a pH of approx. 5.8. The maximum evolution rate was approx. 11.3 mmol H2 per g dry cell per h at 38 degrees C. A hypothetical mechanism for hydrogen evolution was proposed by taking our results and other research work into consideration. The proposed mechanism of hydrogen evolution was that NADH was oxidized on the inside surface of the cell membrane and protons were reduced on the outside surface by means of membrane-bound hydrogenase. This mechanism explains in a thermodynamic context the relation between the activity of the hydrogen evolution and the pH of the culture.

  20. Construction of a plasmid for co-expression of mouse membrane-bound form of IL-15 and RAE-1ε and its biological activity.

    PubMed

    Qian, Li; Ji, Ming-Chun; Pan, Xin-Yuan; Gong, Wei-Juan; Tian, Fang; Duan, Qiu-Fang

    2011-05-01

    Interleukin 15 (IL-15) is a pivotal cytokine for the proliferation and activation of a specific group of immune cells such as natural killer (NK), IFN-producing killer dendritic cells (IKDC) and CD8 T cells. RAE-1ε, the ligand for the activating NKG2D receptor, which also play an important role in the proliferation and activation of NK cells and IKDCs. In this study, a membrane-bound form of IL-15 (termed mb15) encoding sequence and RAE-1ε gene were obtained by SOE-PCR or PCR amplification. The amplified mb15 and RAE-1ε gene were then digested and inserted into the multiple cloning site1 (MCS1) and MCS2 of pVITRO2-mcs vector, respectively. A recombinant eukaryotic expression vector for co-expression of mb15 and RAE-1ε was successfully constructed. After it was transfected to BaF3 cells, the expression of IL-15 and RAE-1ε in recombinant BaF3/mb15/RAE-1ε cells were verified by RT-PCR, western blot and FCM analysis. Furthermore, BaF3/mb15/RAE-1ε cells had the ability of promoting NK cells proliferation and IFN-γ secretion. In conclusion, BaF3/mb15/RAE-1ε cells were successfully constructed, which is very useful for further studies, especially for the expansion and activation of certain subsets of immune cells such as NK cells and IKDCs.

  1. Differences in the effect of phosphatidylinositol 4,5-bisphosphate on the hydrolytic and transphosphatidylation activities of membrane-bound phospholipase D from poppy seedlings.

    PubMed

    Oblozinsky, Marek; Bezakova, Lydia; Mansfeld, Johanna; Heilmann, Ingo; Ulbrich-Hofmann, Renate

    2013-08-01

    The hydrolytic activity of phospholipase D (PLD) yielding phosphatidic acid from phosphatidylcholine and other glycerophospholipids is known to be involved in many cellular processes. In contrast, it is not clear whether the competitive transphosphatidylation activity of PLD catalyzing the head group exchange of phospholipids has a natural function. In poppy seedlings (Papaver somniferum L.) where lipid metabolism and alkaloid synthesis are closely linked, five isoenzymes with different substrate and hydrolysis/transphosphatidylation selectivities have been detected hitherto. A membrane-bound PLD, found in microsomal fractions of poppy seedlings, is active at micromolar concentrations of Ca(2+) ions and needs phosphatidylinositol 4,5-bisphosphate (PIP2) as effector in the hydrolysis of phosphatidylcholine (PC). The optimum PIP2 concentration at 1.2 mol% of the concentration of the substrate PC indicates a specific activation effect. Transphosphatidylation with glycerol, ethanolamine, l-serine, or myo-inositol as acceptor alcohols is also activated by PIP2, however, with an optimum concentration at 0.6-0.9 mol%. In contrast to hydrolysis, a basic transphosphatidylation activity occurs even in the absence of PIP2, suggesting a different fine-tuning of the two competing reactions.

  2. Purification of a Membrane-Bound UDP-Glucose:Sterol [beta]-D-Glucosyltransferase Based on Its Solubility in Diethyl Ether.

    PubMed Central

    Warnecke, D. C.; Heinz, E.

    1994-01-01

    Membrane-bound UDP-glucose:sterol [beta]-D-glucosyltransferase (UDPG-SGTase) catalyzes the formation of steryl glucosides from UDP-glucose and free sterols. This enzyme was purified from etiolated oat shoots (Avena sativa L. cv Alfred) in five steps. UDPG-SGTase was solubilized from a microsomal fraction with the detergent n-octyl-[beta]-D-thioglucopyranoside and then extracted into diethyl ether. Subsequent removal of the organic solvent, resolubilization with an aqueous buffer, and two column chromatographic steps on Q-Sepharose and Blue Sepharose resulted in a 12,500-fold overall purification. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the final preparation revealed a 56-kD protein band, the intensity of which correlated with enzyme activity in the respective fractions. Polyclonal antibodies raised against this 56-kD protein did not inhibit enzyme activity but specifically bound to the native UDPG-SGTase. These results suggest that the 56-kD protein represents the UDPG-SGTase. The purified enzyme was specific for UDP-glucose (Km = 34 [mu]M), for which UDP was a competitive inhibitor (inhibitor constant = 47 [mu]M). In contrast to the specificity with regard to the glycosyl donor, UDPG-SGTase utilized all tested sterol acceptors, such as [beta]-sitosterol, cholesterol, stigmasterol, and ergosterol. PMID:12232266

  3. Genome-wide identification of membrane-bound fatty acid desaturase genes in Gossypium hirsutum and their expressions during abiotic stress

    PubMed Central

    Feng, Jiyu; Dong, Yating; Liu, Wei; He, Qiuling; Daud, M. K.; Chen, Jinhong; Zhu, Shuijin

    2017-01-01

    Membrane-bound fatty acid desaturases (FADs) are of great importance and play multiple roles in plant growth and development. In the present study, 39 full-length FAD genes, based on database searches, were identified in tetraploid upland cotton (Gossypium hirsutum L.) and were phylogenetically clustered into four subfamilies. Genomic localization revealed that 34 genes were mapped on 22 chromosomes, and five genes were positioned on the scaffold sequences. The FAD genes of G. hirsutum in the same subfamily had similar gene structures. The structures of paralogous genes were considerably conserved in exons number and introns length. It was suggested that the FAD gene families in G. hirsutum might be duplicated mainly by segmental duplication. Moreover, the FAD genes were differentially expressed in different G. hirsutum tissues in response to different levels of salt and cold stresses, as determined by qRT-PCR analysis. The identification and functional analysis of FAD genes in G. hirsutum may provide more candidate genes for genetic modification. PMID:28374822

  4. Detection and phylogenetic analysis of the membrane-bound nitrate reductase (Nar) in pure cultures and microbial communities from deep-sea hydrothermal vents.

    PubMed

    Pérez-Rodríguez, Ileana; Bohnert, Kenneth A; Cuebas, Mariola; Keddis, Ramaydalis; Vetriani, Costantino

    2013-11-01

    Over the past few years the relevance of nitrate respiration in microorganisms from deep-sea hydrothermal vents has become evident. In this study, we surveyed the membrane-bound nitrate reductase (Nar) encoding gene in three different deep-sea vent microbial communities from the East Pacific Rise and the Mid-Atlantic Ridge. Additionally, we tested pure cultures of vent strains for their ability to reduce nitrate and for the presence of the NarG-encoding gene in their genomes. By using the narG gene as a diagnostic marker for nitrate-reducing bacteria, we showed that nitrate reductases related to Gammaproteobacteria of the genus Marinobacter were numerically prevalent in the clone libraries derived from a black smoker and a diffuse flow vent. In contrast, NarG sequences retrieved from a community of filamentous bacteria located about 50 cm above a diffuse flow vent revealed the presence of a yet to be identified group of enzymes. 16S rRNA gene-inferred community compositions, in accordance with previous studies, showed a shift from Alpha- and Gammaproteobacteria to Epsilonproteobacteria as the vent fluids become warmer and more reducing. Based on these findings, we argue that Nar-catalyzed nitrate reduction is likely relevant in temperate and less reducing environments where Alpha- and Gammaproteobacteria are more abundant and where nitrate concentrations reflect that of background deep seawater.

  5. Molybdenum-containing membrane-bound formate dehydrogenase isolated from Citrobacter sp. S-77 having high stability against oxygen, pH, and temperature.

    PubMed

    Nguyen, Nga T; Yatabe, Takeshi; Yoon, Ki-Seok; Ogo, Seiji

    2014-10-01

    Membrane-bound formate dehydrogenase (FDH) was purified to homogeneity from a facultative anaerobic bacterium Citrobacter sp. S-77. The FDH from Citrobacter sp. S-77 (FDHS77) was a monomer with molecular mass of approximately 150 kDa. On SDS-PAGE, the purified FDHS77 showed as three different protein bands with molecular mass of approximately 95, 87, and 32 kDa, respectively. Based on the N-terminal amino acid sequence analysis, the sequence alignments observed for the 87 kDa protein band were identical to that of the large subunit of 95 kDa, indicating that the purified FDHS77 consisted of two subunits; a 95 kDa large subunit and a 32 kDa small subunit. The purified FDHS77 in this purification did not contain a heme b subunit, but the FDHS77 showed significant activity for formate oxidation, determined by the Vmax of 30.4 U/mg using benzyl viologen as an electron acceptor. The EPR and ICP-MS spectra indicate that the FDHS77 is a molybdenum-containing enzyme, displaying a remarkable O2-stability along with thermostability and pH resistance. This is the first report of the purification and characterization of a FDH from Citrobacter species.

  6. ANKYRIN REPEAT-CONTAINING PROTEIN 2A is an essential molecular chaperone for peroxisomal membrane-bound ASCORBATE PEROXIDASE3 in Arabidopsis.

    PubMed

    Shen, Guoxin; Kuppu, Sundaram; Venkataramani, Sujatha; Wang, Jing; Yan, Juqiang; Qiu, Xiaoyun; Zhang, Hong

    2010-03-01

    Arabidopsis thaliana ANKYRIN REPEAT-CONTAINING PROTEIN 2A (AKR2A) interacts with peroxisomal membrane-bound ASCORBATE PEROXIDASE3 (APX3). This interaction involves the C-terminal sequence of APX3 (i.e., a transmembrane domain plus a few basic amino acid residues). The specificity of the AKR2A-APX3 interaction suggests that AKR2A may function as a molecular chaperone for APX3 because binding of AKR2A to the transmembrane domain can prevent APX3 from forming aggregates after translation. Analysis of three akr2a mutants indicates that these mutant plants have reduced steady state levels of APX3. Reduced expression of AKR2A using RNA interference also leads to reduced steady state levels of APX3 and reduced targeting of APX3 to peroxisomes in plant cells. Since AKR2A also binds specifically to the chloroplast OUTER ENVELOPE PROTEIN7 (OEP7) and is required for the biogenesis of OEP7, AKR2A may serve as a molecular chaperone for OEP7 as well. The pleiotropic phenotype of akr2a mutants indicates that AKR2A plays many important roles in plant cellular metabolism and is essential for plant growth and development.

  7. Polyphenol Oxidation by Vicia faba Chloroplast Membranes: STUDIES ON THE LATENT MEMBRANE-BOUND POLYPHENOL OXIDASE AND ON THE MECHANISM OF PHOTOCHEMICAL POLYPHENOL OXIDATION.

    PubMed

    Hutcheson, S W; Buchanan, B B

    1980-12-01

    The mechanism whereby light effects polyphenol oxidation was examined with Vicia faba chloroplast membranes known to contain a bound latent polyphenol oxidase. Results obtained with the inhibitors 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) and 2,5-dibromo-3-methyl-6-idopropyl-p-benzoquinone (DBMIB) indicated an involvement of the non-cyclic electron transport pathway in the light-dependent oxidation of polyphenols, such as dihydroxyphenylalanine (DOPA). Further evidence was provided by experiments in which (a) DOPA replaced H(2)O as electron donor for the photoreduction of NADP, (b) NADP replaced O(2) as electron acceptor in the photochemical oxidation of DOPA, and (c) the variable fluorescence associated with photosystem II was increased by DOPA. The photochemical oxidation of DOPA by V. faba chloroplast membranes was insensitive to KCN and to antibodies against purified latent polyphenol oxidase. The results are consistent with the conclusion that the light-dependent oxidation of polyphenols by V. faba chloroplast membranes is achieved independently of the latent membrane-bound polyphenol oxidase. Electrons derived from polyphenols seem to enter the noncyclic electron transport chain on the oxidizing side of photosystem II and to react with O(2) at an unidentified site on the photosystem I side of the DCMU/DBMIB blocks.The physiological mechanism for the activation of latent polyphenol oxidase remains an unanswered question. Present results suggest that activation could occur through either acidification or the release of free fatty acids.

  8. Purification and characterization of a membrane bound neutral pH optimum magnesium-dependent and phosphatidylserine-stimulated sphingomyelinase from rat brain.

    PubMed

    Liu, B; Hassler, D F; Smith, G K; Weaver, K; Hannun, Y A

    1998-12-18

    Sphingomyelin hydrolysis and ceramide generation catalyzed by sphingomyelinases (SMase) are key components of the signaling pathways in cytokine- and stress-induced cellular responses. In this study, we report the partial purification and characterization of the membrane bound, neutral pH optimal, and magnesium-dependent SMase (N-SMase) from rat brain. Proteins from Triton X-100 extract of brain membrane were purified sequentially with DEAE-Sephacel, heparin-Sepharose, ceramic hydroxyapatite, Mono Q, phenyl-Superose, and Superose 12 column chromatography. After eight purification steps, the specific activity of the enzyme increased by 3030-fold over the brain homogenate. The enzyme hydrolyzed sphingomyelin but not phosphatidylcholine and its activity was dependent upon magnesium with an optimal pH of 7.5 and a native pI of 5.2. Delipidation of the enzyme through chromatographic purification or by extraction with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid followed by gel filtration revealed that the enzyme became increasingly dependent on phosphatidylserine (PS). Up to 20-fold stimulation was observed with PS whereas other lipids examined were either ineffective or only mildly stimulatory. The Km of the enzyme for substrate sphingomyelin (3.4 mol %) was not affected by PS. The highly purified enzyme was inhibited by glutathione with a >95% inhibition observed with 3 mM glutathione and with a Hill number calculated at approximately 8. The significance of these results to the regulation of N-SMase is discussed.

  9. Krypton Derivatization of an O2 -Tolerant Membrane-Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport.

    PubMed

    Kalms, Jacqueline; Schmidt, Andrea; Frielingsdorf, Stefan; van der Linden, Peter; von Stetten, David; Lenz, Oliver; Carpentier, Philippe; Scheerer, Patrick

    2016-04-25

    [NiFe] hydrogenases are metalloenzymes catalyzing the reversible heterolytic cleavage of hydrogen into protons and electrons. Gas tunnels make the deeply buried active site accessible to substrates and inhibitors. Understanding the architecture and function of the tunnels is pivotal to modulating the feature of O2 tolerance in a subgroup of these [NiFe] hydrogenases, as they are interesting for developments in renewable energy technologies. Here we describe the crystal structure of the O2 -tolerant membrane-bound [NiFe] hydrogenase of Ralstonia eutropha (ReMBH), using krypton-pressurized crystals. The positions of the krypton atoms allow a comprehensive description of the tunnel network within the enzyme. A detailed overview of tunnel sizes, lengths, and routes is presented from tunnel calculations. A comparison of the ReMBH tunnel characteristics with crystal structures of other O2 -tolerant and O2 -sensitive [NiFe] hydrogenases revealed considerable differences in tunnel size and quantity between the two groups, which might be related to the striking feature of O2 tolerance.

  10. Kinetics of the flash-induced P515 response in relation to the H+-permeability of the membrane bound ATPase in spinach chloroplasts

    SciTech Connect

    Peters, R.L.; van Kooten, O.; Vredenberg, W.J.

    1985-08-01

    The effect of dicyclohexylcarbodiimide (DCCD) on the kinetics of the flash-induced P515 response and on the activity of the ATPase was investigated in isolated spinach chloroplasts. It was found that after the addition of 5 X 10(-8)mol DCCD the rate of ATP hydrolysis induced by a period of 60 sec illumination was decreased to less than 5% of its original value. At this concentration, hardly any effect, if at all, could be detected on the kinetics of the flash-induced P515 response, neither in dark-adapted nor in light-activated chloroplasts. It was concluded that the presence of concentrations of DCCD, sufficiently high to affect the ATPase activity, does not affect the kinetics of the flash-induced P515 response. Since DCCD decreases the H+ permeability of the membrane-bound ATPase, it was concluded that this permeability coefficient for protons is not an important factor in the regulation of the flash-induced membrane potential and, therefore, does not affect the kinetics of the flash-induced P515 response.

  11. Difference in NaCl tolerance of membrane-bound 5'-nucleotidases purified from deep-sea and brackish water Shewanella species.

    PubMed

    Kuribayashi, Taka-Aki; Fujii, Sotaro; Masanari, Misa; Yamanaka, Masaru; Wakai, Satoshi; Sambongi, Yoshihiro

    2017-01-03

    Shewanella species are widely distributed in sea, brackish, and fresh water areas, growing psychrophilically or mesophilically, and piezophilically or piezo-sensitively. Here, membrane-bound 5'-nucleotidases (NTases) from deep-sea Shewanella violacea and brackish water Shewanella amazonensis were examined from the aspect of NaCl tolerance to gain an insight into protein stability against salt. Both NTases were single polypeptides with molecular masses of ~59 kDa, as determined on mass spectroscopy. They similarly required 10 mM MgCl2 for their activities, and they exhibited the same pH dependency and substrate specificity for 5'-nucleotides. However, S. violacea 5'-nucleotidase (SVNTase) was active enough in the presence of 2.5 M NaCl, whereas S. amazonensis 5'-nucleotidase (SANTase) exhibited significantly reduced activity with the same concentration of the salt. Although SVNTase and SANTase exhibited high sequence identity (69.7%), differences in the ratio of acidic to basic amino acid residues and the number of potential salt bridges maybe being responsible for the difference in the protein stability against salt. 5'-Nucleotidases from these Shewanella species will provide useful information regarding NaCl tolerance, which may be fundamental for understanding bacterial adaptation to growth environments.

  12. Tetanus toxin mechanism of action in Torpedo electromotor system: a study on different steps in the intoxication process.

    PubMed

    Herreros, J; Blasi, J; Arribas, M; Marsal, J

    1995-03-01

    The mechanism of action of tetanus toxin was characterized in the electromotor system of Torpedo marmorata either at peripheral and central nervous system. The consecutive steps of the intoxication pathway were observed: (i) [125I]tetanus toxin specifically bound to neuronal plasma membranes isolated both from electric organ and electric lobe of Torpedo, exhibiting one and two binding sites respectively; (ii) [125I]tetanus toxin was internalized into nerve terminals and retrogradely transported to the electric lobe after its injection in the electric organ; (iii) finally, intracellular effect of tetanus toxin was studied either at electric organ and electric lobe membrane fractions. In both preparations tetanus toxin cleaved synaptobrevin, as detected by immunoblotting methods. In conclusion, our findings exhibit the presence of two different populations of acceptors for tetanus toxin in central and peripheral nervous system and show that synaptobrevin cleavage may account for intracellular toxicity in Torpedo.

  13. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  14. Electrophysiological aspects of synaptic transmission at the electromotor junction of Torpedo marmorata.

    PubMed

    Erdelyi, L; Krenz, W D

    1984-01-01

    Miniature and stimulus-evoked electroplaque potentials were recorded in Torpedo electrocytes intracellularly and extracellularly and analysed quantitatively. Tetrodotoxin reversibly blocked stimulus evoked potentials but hardly affected spontaneous miniature potentials in amplitude and frequency. The quantum content of stimulus-evoked potentials varied between 150 and 400 in normal saline and decreased in low Ca2+ high Mg2+ solution. Quantal release conformed to binomial statistics and allowed determination of the release parameters p and n. Analysis of the time constant of decay of spontaneous miniature electroplaque currents showed variation around a mean of 0.75 +/- 0.16 msec (SD) which was greatly prolonged by application of neostigmine.

  15. The action of aminopyridine on the electromotor synapse of Torpedo marmorata.

    PubMed

    Erdélyi, L

    1983-09-09

    An investigation of the action of 4-aminopyridine (4-AP) on Torpedo electromotor synapses was performed using the microelectrode technique. 4-AP in concentrations of 1--10 micrometers increased the peak amplitude (p) and half-decay time (t 1/2) of the intracellularly recorded excitatory postsynaptic potentials (EEP), independent of alterations in miniature EPPs or membrane potential. 4-AP also increased the amplitude and time constant of decay (tau) of the excitatory postsynaptic current (EPC). Analysis of the results supports potentiated transmitter release and accumulation of the transmitter in the synaptic cleft as the mechanism by which 4-AP produces its effect.

  16. Morphological and biochemical characterization of mitochondria in Torpedo red blood cells.

    PubMed

    Pica, A; Scacco, S; Papa, F; De Nitto, E; Papa, S

    2001-02-01

    A study is presented on the morphology and respiratory functions of mitochondria from Torpedo marmorata red blood cells. In vivo staining of red blood cells and transmission electron microscopy showed the existence of a considerable number of vital and orthodox mitochondria which decreased from young erythroblasts to mature erythrocytes from 60-50 to 30-20 per cell. In erythrocytes mitochondria exhibited a canonical, functional respiratory chain. The content and activity of cytochromes in erythrocytes were, however, significantly lower as compared to mammalian tissues.

  17. Effect of First-Stage Blade Design on Performance of Mark 25 Torpedo Power Plant

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Hoyt, Jack W.

    1948-01-01

    The effect of rotor-blade length, inlet angle, and shrouding was investigated with four different nozzles in a single-stage modification of the Mark 25 aerial-torpedo power plant. The results obtained with the five special rotor configurations are compared with those of the standard first-stage rotor with each nozzle. Each nozzle-rotor combination was operated at nominal pressure ratios of 8, 15 (design), and 20 over a range of speeds from 6000 rpm to the design speed of 18,000 rpm. Inlet temperature and pressure conditions of 1OOOo F and 95 pounds per square inch gage, respectively, were maintained constant for all runs.

  18. Investigation of Turbine of Mark 25 Torpedo Power Plant with Five Nozzle Designs

    NASA Technical Reports Server (NTRS)

    Hoyt, Jack W.; Kottas, Harry

    1947-01-01

    Efficiency investigations were made on the two-stage turbine from a Mark 25 aerial torpedo to determine the performance of the unit with five different turbine nozzles. The output of the turbine blades was computed by analyzing the windage and mechanical-friction losses of the unit. A method was developed for measuring the change in turbine clearances with changed operating conditions. The turbine was found to be most efficient with a cast nozzle having a sharp-edged inlet to the nine nozzle ports.

  19. Dimethoate induces kidney dysfunction, disrupts membrane-bound ATPases and confers cytotoxicity through DNA damage. Protective effects of vitamin E and selenium.

    PubMed

    Ben Amara, Ibtissem; Karray, Aida; Hakim, Ahmed; Ben Ali, Yassine; Troudi, Afef; Soudani, Nejla; Boudawara, Tahia; Zeghal, Khaled Mounir; Zeghal, Najiba

    2013-12-01

    Dimethoate (DM) is an organophosphate insecticide widely used in agriculture and industry and has toxic effects on non-target organisms especially mammalian. However, we still know little about DM-induced kidney injury and its alleviation by natural antioxidants. In the present study, selenium (Se), vitamin E, DM, Se+DM, vitamin E+DM, Se+vitamin E+DM were given to adult rats for 4 weeks. Plasma creatinine and uric acid, kidney MDA, PC, H2O2 and AOPP levels were higher, while Na(+)-K(+)-ATPase and LDH values were lower in the DM group than those of controls. A smear without ladder formation on agarose gel was shown in the DM group, indicating random DNA degradation and DM-induced genotoxicity. A decrease in kidney GSH, NPSH and plasma urea levels and an increase in GPx, SOD and catalase activities were observed in the DM group when compared to those of controls. Plasma cystatin C levels increased, indicating a decrease in glomerular filtration rate. When Se or vitamin E was added through diet, the biochemical parameters cited above were partially restored in Se+DM and vitamin E+DM than DM group. The joint effect of Se and vitamin E was more powerful against DM-induced oxidative stress and kidney dysfunction. The changes in biochemical parameters were substantiated by histological data. In conclusion, our results indicated a possible mechanism of DM-induced nephrotoxicity, where renal genotoxicity was noted, membrane-bound ATPases and plasma biomarkers were disturbed. Se and vitamin E ameliorated the toxic effects of this pesticide in renal tissue suggesting their role as potential antioxidants.

  20. LPT1 encodes a membrane-bound O-acyltransferase involved in the acylation of lysophospholipids in the yeast Saccharomyces cerevisiae.

    PubMed

    Tamaki, Hisanori; Shimada, Atsushi; Ito, Yoshihiro; Ohya, Mihoko; Takase, Juri; Miyashita, Masahiro; Miyagawa, Hisashi; Nozaki, Hiroyuki; Nakayama, Reiko; Kumagai, Hidehiko

    2007-11-23

    Phospholipids are major components of cellular membranes that participate in a range of cellular processes. Phosphatidic acid (PA) is a key molecule in the phospholipid biosynthetic pathway. In Saccharomyces cerevisiae, SLC1 has been identified as the gene encoding lysophosphatidic acid acyltransferase, which catalyzes PA synthesis. However, despite the importance of PA, disruption of SLC1 does not affect cell viability (Nagiec, M. M., Wells, G. B., Lester, R. L., and Dickson, R. C. (1993) J. Biol. Chem. 268, 22156-22163). We originally aimed to identify the acetyl-CoA:lyso platelet-activating factor acetyltransferase (lysoPAF AT) gene in yeast. Screening of a complete set of yeast deletion clones (4741 homozygous diploid clones) revealed a single mutant strain, YOR175c, with a defect in lysoPAF AT activity. YOR175c has been predicted to be a member of the membrane-bound O-acyltransferase superfamily, and we designated the gene LPT1. An Lpt1-green fluorescent protein fusion protein localized at the endoplasmic reticulum. Other than lysoPAF AT activity, Lpt1 catalyzed acyltransferase activity with a wide variety of lysophospholipids as acceptors, including lysophosphatidic acid, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysophosphatidylinositol, and lysophosphatidylserine. A liquid chromatography-mass spectrometry analysis indicated that lysophosphatidylcholine and lysophosphatidylethanolamine accumulated in the Deltalpt1 mutant strain. Although the Deltalpt1 mutant strain did not show other detectable defects, the Deltalpt1 Deltaslc1 double mutant strain had a synthetic lethal phenotype. These results indicate that, in concert with Slc1, Lpt1 plays a central role in PA biosynthesis, which is essential for cell viability.

  1. Widespread occurrence of N-terminal acylation in animal globins and possible origin of respiratory globins from a membrane-bound ancestor.

    PubMed

    Blank, Miriam; Burmester, Thorsten

    2012-11-01

    Proteins of the (hemo-)globin superfamily have been identified in many different animals but also occur in plants, fungi, and bacteria. Globins are renowned for their ability to store and to transport oxygen, but additional globin functions such as sensing, signaling, and detoxification have been proposed. Recently, we found that the zebrafish globin X protein is myristoylated and palmitoylated at its N-terminus. The addition of fatty acids results in an association with the cellular membranes, suggesting a previously unrecognized globin function. In this study, we show that N-terminal acylation likely occurs in globin proteins from a broad range of phyla. An N-terminal myristoylation site was identified in 90 nonredundant globins from Chlorophyta, Heterokontophyta, Cnidaria, Mollusca, Arthropoda, Nematoda, Echinodermata, Hemichordata, and Chordata (including Cephalochordata), of which 66 proteins carry an additional palmitoylation site. Bayesian phylogenetic analyses identified five major globin families, which may mirror the ancient globin diversity of the Metazoa. Globin X-like proteins form two related clades, which diverged before the radiation of the Eumetazoa. Vertebrate hemoglobin (Hb), myoglobin, cytoglobin, globin E, and globin Y form a strongly supported common clade, which is the sister group of a clade consisting of invertebrate Hbs and relatives. The N-terminally acylated globins do not form a single monophyletic group but are distributed to four distinct clades. This pattern may be either explained by multiple introduction of an N-terminal acylation site into distinct globin lineages or by the origin of animal respiratory globins from a membrane-bound ancestor. Similarly, respiratory globins were not monophyletic. This suggests that respiratory globins might have emerged independently several times and that the early metazoan globins might have been associated with a membrane and carried out a function that was related to lipid protection or

  2. A Heteromeric Membrane-Bound Prenyltransferase Complex from Hop Catalyzes Three Sequential Aromatic Prenylations in the Bitter Acid Pathway1[OPEN

    PubMed Central

    Li, Haoxun; Ban, Zhaonan; Qin, Hao; Ma, Liya; King, Andrew J.

    2015-01-01

    Bitter acids (α and β types) account for more than 30% of the fresh weight of hop (Humulus lupulus) glandular trichomes and are well known for their contribution to the bitter taste of beer. These multiprenylated chemicals also show diverse biological activities, some of which have potential benefits to human health. The bitter acid biosynthetic pathway has been investigated extensively, and the genes for the early steps of bitter acid synthesis have been cloned and functionally characterized. However, little is known about the enzyme(s) that catalyze three sequential prenylation steps in the β-bitter acid pathway. Here, we employed a yeast (Saccharomyces cerevisiae) system for the functional identification of aromatic prenyltransferase (PT) genes. Two PT genes (HlPT1L and HlPT2) obtained from a hop trichome-specific complementary DNA library were functionally characterized using this yeast system. Coexpression of codon-optimized PT1L and PT2 in yeast, together with upstream genes, led to the production of bitter acids, but no bitter acids were detected when either of the PT genes was expressed by itself. Stepwise mutation of the aspartate-rich motifs in PT1L and PT2 further revealed the prenylation sequence of these two enzymes in β-bitter acid biosynthesis: PT1L catalyzed only the first prenylation step, and PT2 catalyzed the two subsequent prenylation steps. A metabolon formed through interactions between PT1L and PT2 was demonstrated using a yeast two-hybrid system, reciprocal coimmunoprecipitation, and in vitro biochemical assays. These results provide direct evidence of the involvement of a functional metabolon of membrane-bound prenyltransferases in bitter acid biosynthesis in hop. PMID:25564559

  3. The Membrane Bound LRR Lipoprotein Slr, and the Cell Wall-Anchored M1 Protein from Streptococcus pyogenes Both Interact with Type I Collagen

    PubMed Central

    Bober, Marta; Mörgelin, Matthias; Olin, Anders I.; von Pawel-Rammingen, Ulrich; Collin, Mattias

    2011-01-01

    Streptococcus pyogenes is an important human pathogen and surface structures allow it to adhere to, colonize and invade the human host. Proteins containing leucine rich repeats (LRR) have been indentified in mammals, viruses, archaea and several bacterial species. The LRRs are often involved in protein-protein interaction, are typically 20–30 amino acids long and the defining feature of the LRR motif is an 11-residue sequence LxxLxLxxNxL (x being any amino acid). The streptococcal leucine rich (Slr) protein is a hypothetical lipoprotein that has been shown to be involved in virulence, but at present no ligands for Slr have been identified. We could establish that Slr is a membrane attached horseshoe shaped lipoprotein by homology modeling, signal peptidase II inhibition, electron microscopy (of bacteria and purified protein) and immunoblotting. Based on our previous knowledge of LRR proteins we hypothesized that Slr could mediate binding to collagen. We could show by surface plasmon resonance that recombinant Slr and purified M1 protein bind with high affinity to collagen I. Isogenic slr mutant strain (MB1) and emm1 mutant strain (MC25) had reduced binding to collagen type I as shown by slot blot and surface plasmon resonance. Electron microscopy using gold labeled Slr showed multiple binding sites to collagen I, both to the monomeric and the fibrillar structure, and most binding occurred in the overlap region of the collagen I fibril. In conclusion, we show that Slr is an abundant membrane bound lipoprotein that is co-expressed on the surface with M1, and that both these proteins are involved in recruiting collagen type I to the bacterial surface. This underlines the importance of S. pyogenes interaction with extracellular matrix molecules, especially since both Slr and M1 have been shown to be virulence factors. PMID:21655249

  4. Structure and function of rat liver polysome populations. I. Complexity, frequency distribution, and degree of uniqueness of free and membrane-bound polysomal polyadenylate-containing RNA populations

    PubMed Central

    1981-01-01

    Free and membrane-bound polysomes were isolated from rat liver in high yields with minimal degradation, cross-contamination, or contamination by nuclear or nonpolysomal cytoplasmic ribonucleoprotein. Poly(A)+ RNA fractions isolated from free and bound polysomal RNA (poly(A)+ RNAfree and poly(A)+ RNAbound) by oligo(dT) cellulose chromatography exhibited number-average lengths of 1,600 and 1,200 nucleotides, respectively, on formamide sucrose gradients. Poly(A)+ RNAfree and poly(A)+ RNAbound contain 9.1 +/- 0.55 and 10.7 +/- 0.50% poly(A) as measured by hybridization to [3H]poly(U) and comprise 2.37 and 1.22% of their respective polysomal RNA populations. Homologous poly(A)+ RNA-cDNA hybridizations revealed that greater than 95% of the mass of poly(A)+ RNAfree and poly(A)+ RNAbound contain nucleotide complexities of about 3.4 x 10(7) and 6.0 x 10(6), respectively. This represents about 20,000 and 5,000 poly(A)+ RNA species of average sizes. Heterologous hybridizations suggested that considerable overlap exists between poly(A)+ RNAfree and poly(A)+ RNAbound sequences that cannot be attributed to cross-contamination. This was confirmed by conducting heterologous reactions using kinetically enriched cDNA populations. Heterologous hybridizations involving poly(A)+ RNA derived from tightly bound polysomes and cDNAfree indicated tha most of the overlapping sequences are not contributed by loosely bound (high-salt releasable) polysomes. The ramifications of these findings are discussed. PMID:6116718

  5. In vitro assay of the chlorophyll biosynthetic enzyme Mg-chelatase: Resolution of the activity into soluble and membrane-bound fractions

    SciTech Connect

    Walker, C.J.; Weinstein, J.D. )

    1991-07-01

    The first committed step in chlorophyll synthesis is the Mg-chelatase-catalyzed insertion of magnesium into protoporphyrin IX. Since iron insertion into protoporphyrin leads to heme formation, Mg-chelatase lies at the branch point of heme and chlorophyll synthesis in chloroplasts. Little is known about the enzymology or regulation of Mg-chelatase, as it has been assayed only in intact cucumber chloroplasts. In this report we describe an in vitro assay for Mg-chelatase. Mg-chelatase activity in intact pea chloroplasts was 3- to 4-fold higher than in cucumber chloroplasts. This activity survived chloroplast lysis and could be fractionated by centrifugation into supernatant and pellet components. Both of these fractions were required to reconstitute Mg-chelatase activity, and both were inactivated by boiling indicating that the enzyme is composed of soluble and membrane-bound protein(s). The product of the reaction was confirmed fluorometrically as the magnesium chelate of the porphyrin substrate. The specific activity of the reconstituted system was typically 1 nmol of Mg-deuteroporphyrin per h per mg of protein, and activity was linear for at least 60 min under our assay conditions. ATP and magnesium were required for Mg-chelatase activity and the enzymen was sensitive to the sulfhydryl reagent N-ethylmaleimide (I{sub 50}, 20 {mu}M). Broken and reconstituted cucumber chloroplasts were unable to maintain Mg-chelatase activity. However, the cucumber supernatant fraction was active when combined with the pellet fraction of peas; the converse was not true, which suggested that the cucumber pellet was the component that lost activity during lysis.

  6. Identification of amino acid residues that determine the substrate specificity of mammalian membrane-bound front-end fatty acid desaturases[S

    PubMed Central

    Watanabe, Kenshi; Ohno, Makoto; Taguchi, Masahiro; Kawamoto, Seiji; Ono, Kazuhisa; Aki, Tsunehiro

    2016-01-01

    Membrane-bound desaturases are physiologically and industrially important enzymes that are involved in the production of diverse fatty acids such as polyunsaturated fatty acids and their derivatives. Here, we identified amino acid residues that determine the substrate specificity of rat Δ6 desaturase (D6d) acting on linoleoyl-CoA by comparing its amino acid sequence with that of Δ5 desaturase (D5d), which converts dihomo-γ-linolenoyl-CoA. The N-terminal cytochrome b5-like domain was excluded as a determinant by domain swapping analysis. Substitution of eight amino acid residues (Ser209, Asn211, Arg216, Ser235, Leu236, Trp244, Gln245, and Val344) of D6d with the corresponding residues of D5d by site-directed mutagenesis switched the substrate specificity from linoleoyl-CoA to dihomo-γ-linolenoyl-CoA. In addition, replacement of Leu323 of D6d with Phe323 on the basis of the amino acid sequence of zebra fish Δ5/6 bifunctional desaturase was found to render D6d bifunctional. Homology modeling of D6d using recent crystal structure data of human stearoyl-CoA (Δ9) desaturase revealed that Arg216, Trp244, Gln245, and Leu323 are located near the substrate-binding pocket. To our knowledge, this is the first report on the structural basis of the substrate specificity of a mammalian front-end fatty acid desaturase, which will aid in efficient production of value-added fatty acids. PMID:26590171

  7. Antipeptide monoclonal antibodies inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor.

    PubMed

    Bracci, L; Antoni, G; Cusi, M G; Lozzi, L; Niccolai, N; Petreni, S; Rustici, M; Santucci, A; Soldani, P; Valensin, P E

    1988-09-01

    It has been reported that binding to muscle nicotinic acetylcholine receptor at the post-synaptic membrane is an important event of the rabies virus neurotropism. The binding site can be located within the 190-203 region of the virus glycoprotein sharing a high degree of homology with the "toxic loop" of the curare-mimetic snake neurotoxins. We have synthesized a tetradecapeptide corresponding to this glycoprotein region and used it, following conjugation with an immunogenic carrier to raise MAbs. We found that some MAbs raised against the peptide were able to recognize both the virus glycoprotein and the snake neurotoxin alpha-bungarotoxin; moreover, they can inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor extracted from the electric organs of Torpedo marmorata. On the basis of this cross-reactivity, we suggest that rabies virus glycoprotein and curare-mimetic snake neurotoxins share three-dimensionally similar structures in order to bind to the nicotinic cholinergic receptor. The potential use of the immunogenic properties of the peptide for the rational design of a synthetic vaccine against rabies is proposed.

  8. Potentiation of alpha7 nicotinic acetylcholine receptors via an allosteric transmembrane site.

    PubMed

    Young, Gareth T; Zwart, Ruud; Walker, Alison S; Sher, Emanuele; Millar, Neil S

    2008-09-23

    Positive allosteric modulators of alpha7 nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as potential tools for the treatment of neurological and psychiatric disorders such as Alzheimer's disease and schizophrenia. However, despite the potential therapeutic usefulness of these compounds, little is known about their mechanism of action. Here, we have examined two allosteric potentiators of alpha7 nAChRs (PNU-120596 and LY-2087101). From studies with a series of subunit chimeras, we have identified the transmembrane regions of alpha7 as being critical in facilitating potentiation of agonist-evoked responses. Furthermore, we have identified five transmembrane amino acids that, when mutated, significantly reduce potentiation of alpha7 nAChRs. The amino acids we have identified are located within the alpha-helical transmembrane domains TM1 (S222 and A225), TM2 (M253), and TM4 (F455 and C459). Mutation of either A225 or M253 individually have particularly profound effects, reducing potentiation of EC(20) concentrations of acetylcholine to a tenth of the level seen with wild-type alpha7. Reference to homology models of the alpha7 nAChR, based on the 4A structure of the Torpedo nAChR, indicates that the side chains of all five amino acids point toward an intrasubunit cavity located between the four alpha-helical transmembrane domains. Computer docking simulations predict that the allosteric compounds such as PNU-120596 and LY-2087101 may bind within this intrasubunit cavity, much as neurosteroids and volatile anesthetics are thought to interact with GABA(A) and glycine receptors. Our findings suggest that this is a conserved modulatory allosteric site within neurotransmitter-gated ion channels.

  9. Acetylcholine receptor clustering and nuclear movement in muscle fibers in culture

    PubMed Central

    1987-01-01

    We have studied the formation of acetylcholine receptor (AChR) clusters and the behavior of myonuclei in rat and chick skeletal muscle cells grown in cell culture. These cells were treated with a factor derived from Torpedo electric extracellular matrix, which causes a large increase in their number of AChR clusters. We found that these clusters were located preferentially in membrane regions above myonuclei. This cluster-nucleus colocalization is explained by our finding that most of the nuclei near clusters remain relatively stationary, while most of those away from clusters are able to translocate throughout the myotube. In some cases, clusters clearly formed first, then nuclei migrated underneath and became immobilized. If clustered AChRs later dispersed, their associated nuclei resumed moving. These results suggest that AChR clustering initiates an extensive cytoskeletal rearrangement that causes the subcluster localization of organelles, potentially providing a stable source of newly synthesized AChRs for insertion into the cluster. PMID:3793762

  10. Analysis and modulation of the immune response of mice to acetylcholine receptor by anti-idiotypes.

    PubMed

    Souroujon, M C; Barchan, D; Fuchs, S

    1985-01-01

    Anti-idiotypes were raised in mice against three well-characterized anti-acetylcholine receptor (AChR) monoclonal antibodies (mcAbs), as well as against polyclonal mouse anti-AChR antibodies. In binding experiments, the anti-idiotypic antibodies inhibited the binding of AChR only to the immunizing idiotype. However, a less restricted specificity was found in in vivo experiments. Mice producing anti-idiotypes were challenged with AChR and the idiotypic composition of their anti-AChR response was analysed using specific rabbit anti-idiotypic antibodies. It was found that preimmunization with a certain idiotype leads to the preferential suppression of this particular idiotype in the polyclonal response to AChR. However, preimmunization with either polyclonal or monoclonal anti-AChR antibodies resulted in a reduction of the overall anti-Torpedo AChR and anti-muscle AChR titers. This reduction was greater than would be expected from the representation of each of the respective idiotypes in the polyclonal anti-AChR serum, and may imply that in addition to the immunizing idiotype other anti-AChR idiotypes are also suppressed. Our results suggest that anti-idiotypes may have a potential for the modulation of the autoimmune response directed against AChR in myasthenia.

  11. Identification of epitopes within a highly immunogenic region of acetylcholine receptor by a phage epitope library.

    PubMed

    Barchan, D; Balass, M; Souroujon, M C; Katchalski-Katzir, E; Fuchs, S

    1995-11-01

    We have employed a hexapeptide phage-epitope library to identify epitopes for a mAb (mAb 5.14), which is directed to a determinant within a highly immunogenic, cytoplasmic region of the alpha-subunit of acetylcholine receptor (AChR). We have selected two different peptide-presenting phages (SWDDIR-phage and LWILTR-phage) which interact specifically with mAb 5.14. This interaction is specifically inhibited by AChR and by synthetic peptides corresponding to the hexapeptides presented by the selected phages. Although mAb 5.14 binds to AChR in its native as well as its denatured form, the selected hexapeptides do not exist as such in the AChR molecule. However, three amino acid sequence homologies with these hexapeptides were shown to be present in the cytoplasmic region of Torpedo AChR. By extending the selected hexapeptides, at one or both ends, with amino acid residues flanking the hexapeptides in the phage, we obtained mimotopes with an up to two order of magnitude higher affinity to the Ab. These extended peptides were able to efficiently block the binding of mAb 5.14 to both peptide-presenting phages, and to AChR.

  12. Minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor

    SciTech Connect

    Jones, O.T.; Eubanks, J.H.; Earnest, J.P.; McNamee, M.G.

    1988-05-17

    The detergent sodium cholate was used to both solubilize and partially delipidate the nicotinic acetylcholine receptor from Torpedo californica. Using both native membranes and reconstituted membranes, it is shown that the detergent to lipid molar ratio is the most important parameter in determining the effect of the detergent on the functional properties of the receptor. Receptor-lipid complexes were quantitatively separated from detergent and excess lipids by centrifugation through detergent-free sucrose gradients. The lipid to protein molar ratio of the complexes could be precisely controlled by adjusting the cholate and lipid concentrations of the starting membranes. Analyses of both ion influx activity and ligand binding revealed that a minimum of 45 lipids per receptor was required for stabilization of the receptor in a fully functional state. Progressive irreversible inactivation occurred as the lipid to protein mole ratio was decreased below 45, and complete inactivation occurred below a ratio of 20. The results are consistent with a functional requirement for a single shell of lipids around the perimeter of the receptor.

  13. TORPEDO: Networked Access to Full-Text and Page-Image Representations of Physics Journals and Technical Reports.

    ERIC Educational Resources Information Center

    Atkinson, Roderick D.; Stackpole, Laurie E.

    1995-01-01

    The Naval Research Laboratory (NRL) Library and the American Physical Society (APS) are experimenting with electronically disseminating journals and reports in a project called TORPEDO (The Optical Retrieval Project: Electronic Documents Online). Scanned journals and reports are converted to ASCII, then attached to bibliographic information, and…

  14. 33 CFR 334.1190 - Hood Canal and Dabob Bay, Wash.; naval non-explosive torpedo testing area.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... are about to enter the area while a torpedo is in the water will be contacted by a Navy patrol boat... Naval vessels flying a “Baker” (red) flag. (iv) Notices of temporary suspension and revival of...″; thence northeasterly to a point on the mean high water line at Takutsko Pt.; thence northerly along...

  15. 33 CFR 334.1190 - Hood Canal and Dabob Bay, Wash.; naval non-explosive torpedo testing area.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... are about to enter the area while a torpedo is in the water will be contacted by a Navy patrol boat... Naval vessels flying a “Baker” (red) flag. (iv) Notices of temporary suspension and revival of...″; thence northeasterly to a point on the mean high water line at Takutsko Pt.; thence northerly along...

  16. Growth of the Obligate Anaerobe Desulfovibrio vulgaris Hildenborough under Continuous Low Oxygen Concentration Sparging: Impact of the Membrane-Bound Oxygen Reductases

    PubMed Central

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  17. Degradation of membrane-bound ganglioside GM1. Stimulation by bis(monoacylglycero)phosphate and the activator proteins SAP-B and GM2-AP.

    PubMed

    Wilkening, G; Linke, T; Uhlhorn-Dierks, G; Sandhoff, K

    2000-11-17

    According to our hypothesis (Fürst, W., and Sandhoff, K. (1992) Biochim. Biophys. Acta 1126, 1-16) glycosphingolipids of the plasma membrane are digested after endocytosis as components of intraendosomal and intralysosomal vesicles and membrane structures. The lysosomal degradation of glycosphingolipids with short oligosaccharide chains by acid exohydrolases requires small, non-enzymatic cofactors, called sphingolipid activator proteins (SAPs). A total of five activator proteins have been identified as follows: namely the saposins SAP-A, -B, -C, and -D, which are derived from the single chain SAP-precursor protein (prosaposin), and the GM2 activator protein. A deficiency of prosaposin results in the storage of ceramide and sphingolipids with short oligosaccharide head groups. The loss of the GM2 activator protein blocks the degradation of the ganglioside GM2. The enzymatic hydrolysis of the ganglioside GM1 is catalyzed by beta-galactosidase, a water-soluble acid exohydrolase. The lack of ganglioside GM1 accumulation in patients suffering from either prosaposin or GM2 activator protein deficiency has led to the hypothesis that SAPs are not needed for the hydrolysis of the ganglioside GM1 in vivo. In this study we demonstrate that an activator protein is required for the enzymatic degradation of membrane-bound ganglioside GM1 and that both SAP-B and the GM2 activator protein significantly enhance the degradation of the ganglioside GM1 by acid beta-galactosidase in a liposomal, detergent-free assay system. These findings offer a possible explanation for the observation that no storage of the ganglioside GM1 has been observed in patients with either isolated prosaposin or isolated GM2 activator deficiency. We also demonstrate that anionic phospholipids such as bis(monoacylglycero)phosphate and phosphatidylinositol, which specifically occur in inner membranes of endosomes and in lysosomes, are essential for the activator-stimulated hydrolysis of the ganglioside GM1

  18. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: impact of the membrane-bound oxygen reductases.

    PubMed

    Ramel, Fanny; Brasseur, Gael; Pieulle, Laetitia; Valette, Odile; Hirschler-Réa, Agnès; Fardeau, Marie Laure; Dolla, Alain

    2015-01-01

    Although obligate anaerobe, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough (DvH) exhibits high aerotolerance that involves several enzymatic systems, including two membrane-bound oxygen reductases, a bd-quinol oxidase and a cc(b/o)o3 cytochrome oxidase. Effect of constant low oxygen concentration on growth and morphology of the wild-type, single (Δbd, Δcox) and double deletion (Δcoxbd) mutant strains of the genes encoding these oxygen reductases was studied. When both wild-type and deletion mutant strains were cultured in lactate/sulfate medium under constant 0.02% O2 sparging, they were able to grow but the final biomasses and the growth yield were lower than that obtained under anaerobic conditions. At the end of the growth, lactate was not completely consumed and when conditions were then switched to anaerobic, growth resumed. Time-lapse microscopy revealed that a large majority of the cells were then able to divide (over 97%) but the time to recover a complete division event was longer for single deletion mutant Δbd than for the three other strains. Determination of the molar growth yields on lactate suggested that a part of the energy gained from lactate oxidation was derived toward cells protection/repairing against oxidative conditions rather than biosynthesis, and that this part was higher in the single deletion mutant Δbd and, to a lesser extent, Δcox strains. Our data show that when DvH encounters oxidative conditions, it is able to stop growing and to rapidly resume growing when conditions are switched to anaerobic, suggesting that it enters active dormancy sate under oxidative conditions. We propose that the pyruvate-ferredoxin oxidoreductase (PFOR) plays a central role in this phenomenon by reversibly switching from an oxidative-sensitive fully active state to an oxidative-insensitive inactive state. The oxygen reductases, and especially the bd-quinol oxidase, would have a crucial function by maintaining reducing conditions

  19. Membrane-Bound CYB5R3 Is a Common Effector of Nutritional and Oxidative Stress Response Through FOXO3a and Nrf2

    PubMed Central

    Siendones, Emilio; SantaCruz-Calvo, Sara; Martín-Montalvo, Alejandro; Cascajo, María V.; Ariza, Julia; López-Lluch, Guillermo; Villalba, José M.; Acquaviva-Bourdain, Cécile; Roze, Emmanuel; Bernier, Michel; de Cabo, Rafael

    2014-01-01

    Abstract Aims: Membrane-bound CYB5R3 deficiency in humans causes recessive hereditary methaemoglobinaemia (RHM), an incurable disease that is characterized by severe neurological disorders. CYB5R3 encodes for NADH-dependent redox enzyme that contributes to metabolic homeostasis and stress protection; however, how it is involved in the neurological pathology of RHM remains unknown. Here, the role and transcriptional regulation of CYB5R3 was studied under nutritional and oxidative stress. Results: CYB5R3-deficient cells exhibited a decrease of the NAD+/NADH ratio, mitochondrial respiration rate, ATP production, and mitochondrial electron transport chain activities, which were associated with higher sensitivity to oxidative stress, and an increase in senescence-associated β-galactosidase activity. Overexpression of either forkhead box class O 3a (FOXO3a) or nuclear factor (erythroid-derived 2)-like2 (Nrf2) was associated with increased CYB5R3 levels, and genetic ablation of Nrf2 resulted in lower CYB5R3 expression. The presence of two antioxidant response element sequences in the CYB5R3 promoter led to chromatin immunoprecipitation studies, which showed that cellular stressors enhanced the binding of Nrf2 and FOXO3a to the CYB5R3 promoter. Innovation: Our findings demonstrate that CYB5R3 contributes to regulate redox homeostasis, aerobic metabolism, and cellular senescence, suggesting that CYB5R3 might be a key effector of oxidative and nutritional stress pathways. The expression of CYB5R3 is regulated by the cooperation of Nrf2 and FOXO3a. Conclusion: CYB5R3 is an essential gene that appears as a final effector for both nutritional and oxidative stress responses through FOXO3a and Nrf2, respectively, and their interaction promotes CYB5R3 expression. These results unveil a potential mechanism of action by which CYB5R3 deficiency contributes to the pathophysiological underpinnings of neurological disorders in RHM patients. Antioxid. Redox Signal. 21, 1708–1725. PMID

  20. The conformation of acetylcholine at its target site in the membrane-embedded nicotinic acetylcholine receptor

    PubMed Central

    Williamson, P. T. F.; Verhoeven, A.; Miller, K. W.; Meier, B. H.; Watts, A.

    2007-01-01

    The conformation of the neurotransmitter acetylcholine bound to the fully functional nicotinic acetylcholine receptor embedded in its native membrane environment has been characterized by using frequency-selective recoupling solid-state NMR. Six dipolar couplings among five resolved 13C-labeled atoms of acetylcholine were measured. Bound acetylcholine adopts a bent conformation characterized with a quaternary ammonium-to-carbonyl distance of 5.1 Å. In this conformation, and with its orientation constrained to that previously determined by us, the acetylcholine could be docked satisfactorily in the agonist pocket of the agonist-bound, but not the agonist-free, crystal structure of a soluble acetylcholine-binding protein from Lymnaea stagnali. The quaternary ammonium group of the acetylcholine was determined to be within 3.9 Å of five aromatic residues and its acetyl group close to residues C187/188 of the principle and residue L112 of the complementary subunit. The observed >CO chemical shift is consistent with H bonding to the nicotinic acetylcholine receptor residues γY116 and δT119 that are homologous to L112 in the soluble acetylcholine-binding protein. PMID:17989232

  1. Experimental determination of the vertical alignment between the second and third transmembrane segments of muscle nicotinic acetylcholine receptors

    PubMed Central

    Mnatsakanyan, Nelli; Jansen, Michaela

    2013-01-01

    Nicotinic acetylcholine receptors (nAChR) are members of the Cys-loop ligand-gated ion channel superfamily. Muscle nAChR are heteropentamers that assemble from two α, and one each of β, γ, and δ subunits. Each subunit is composed of three domains, extracellular, transmembrane and intracellular. The transmembrane domain consists of four α-helical segments (M1–M4). Pioneering structural information was obtained using electronmicroscopy of Torpedo nAChR. The recently-solved X-ray structure of the first eukaryotic Cys-loop receptor, a truncated (intracellular domain missing) glutamate-gated chloride channel α (GluClα)showed the same overall architecture . However, a significant difference with regard to the vertical alignment between the channel-lining segment M2 and segment M3 was observed. Here we used functional studies utilizing disulfide trapping experiments in muscle nAChR to determine the spatial orientation between M2 and M3. Our results are in agreement with the vertical alignment as obtained when using the GluClα structure as a template to homology model muscle nAChR, however, they cannot be reconciled with the current Torpedo nAChR model. The vertical M2–M3 alignments as observed in X-ray structures of prokaryotic Gloeobacter violaceus ligand-gated ion channel (GLIC) and GluClα are in agreement. Our results further confirm that this alignment in Cys-loop receptors is conserved between prokaryotes and eukaryotes. PMID:23565737

  2. Identification of regions involved in the binding of alpha-bungarotoxin to the human alpha7 neuronal nicotinic acetylcholine receptor using synthetic peptides.

    PubMed Central

    Marinou, Martha; Tzartos, Socrates J

    2003-01-01

    The neuronal alpha7 nicotinic acetylcholine receptor (AChR) binds the neurotoxin alpha-bungarotoxin (alpha-Bgt). Fine mapping of the alpha-Bgt-binding site on the human alpha7 AChR was performed using synthetic peptides covering the entire extracellular domain of the human alpha7 subunit (residues 1-206). Screening of these peptides for (125)I-alpha-Bgt binding resulted in the identification of at least two toxin-binding sites, one at residues 186-197, which exhibited the best (125)I-alpha-Bgt binding, and one at residues 159-165, with weak toxin-binding capacity; these correspond, respectively, to loops C and IV of the agonist-binding site. Toxin binding to the alpha7(186-197) peptide was almost completely inhibited by unlabelled alpha-Bgt or d -tubocurarine. Alanine substitutions within the sequence 186-198 revealed a predominant contribution of aromatic and negatively charged residues to the binding site. This sequence is homologous to the alpha-Bgt binding site of the alpha1 subunit (residues 188-200 in Torpedo AChR). In competition experiments, the soluble peptides alpha7(186-197) and Torpedo alpha1(184-200) inhibited the binding of (125)I-alpha-Bgt to the immobilized alpha7(186-197) peptide, to native Torpedo AChR, and to the extracellular domain of the human alpha1 subunit. These results suggest that the toxin-binding sites of the neuronal alpha7 and muscle-type AChRs bind to identical or overlapping sites on the alpha-Bgt molecule. In support of this, when synthetic alpha-Bgt peptides were tested for binding to the recombinant extracellular domains of the human alpha7 and alpha1 subunits, and to native Torpedo and alpha7 AChR, the results indicated that alpha-Bgt interacts with both neuronal and muscle-type AChRs through its central loop II and C-terminal tail. PMID:12614199

  3. Isolation and characterization of two homologous cDNA clones from Torpedo electromotor neurons.

    PubMed

    Ngsee, J K; Scheller, R H

    1989-10-01

    Two homologous cDNA clones were isolated from a Torpedo california electric lobe lambda gt11 expression library using a polyclonal antiserum directed against proteins associated with synaptic vesicles. Northern blotting reveals an 8- to 9-kb transcript in the electric lobe and the spinal cord, but not in the brain or other non-neuronal tissues. Antibodies generated against a fusion protein synthesized in Escherichia coli reacted with a 85- to 90-kD species in the neurons of the electric lobe. The immunoreactivity is associated with microsomal membranes and can be extracted readily with high salt. Immunohistochemical studies demonstrated a sparse punctate staining pattern in the cell body which colocalized with a subpopulation of post-Golgi vesicles.

  4. Development of the electromotor system in Torpedo marmorata: cationic staining of the electric organ.

    PubMed

    Fox, G Q

    1987-10-01

    The electric organs of embryonic Torpedo marmorata have been reacted with three cationic stains to evaluate the appearance and distribution of anionic sites. Ruthenium red, alcian blue and lysozyme were used at different pHs and found to react in a time-related manner to anionic components within the interelectrocyte space. The basal lamina covering the ventral electrocyte surface possesses the greatest number of anionic sites whereas growth cone, presynaptic terminal and glial membranes displayed almost no staining. Since this lamina serves as the exclusive substrate for ingrowing neurites during synaptogenesis, the results are consistent with the idea that charge distribution on the membrane surface may provide a necessary cue for neurite motility, extension and eventual synaptogenesis.

  5. Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor.

    PubMed

    Lentz, T L

    1991-11-12

    Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of 125I-alpha-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b (IC50 = 5.7 x 10(-6) M) and the structurally similar segment (residues 173-203) of CVS rabies virus glycoprotein (IC50 = 2.6 x 10(-6) M). These affinities were comparable to those of d-tubocurarine (IC50 = 3.4 x 10(-6) M) and suberyldicholine (IC50 = 2.5 x 10(-6) M). These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Modifications involving Lys-27, Trp-29, Phe-33, Arg-37, and Gly-38 reduced affinity of binding. R37D and F33T modifications reduced the affinity of alpha-bungarotoxin residues 28-40 by an order of magnitude. Arg-37 may correspond to the positively charged quaternary ammonium group and Phe-33 to the hydrophobic acetyl methyl group of acetylcholine.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Immunohistochemical localization of monoclonal antibodies to the nicotinic acetylcholine receptor in chick midbrain.

    PubMed Central

    Swanson, L W; Lindstrom, J; Tzartos, S; Schmued, L C; O'Leary, D D; Cowan, W M

    1983-01-01

    We used the indirect immunofluorescence method to determine the crossreactivity of a library of 57 monoclonal antibodies (mAbs) against each of the subunits of the nicotinic acetylcholine receptor (nAcChoR) isolated from Torpedo and Electrophorus electric organs or from fetal calf and human muscle, with specific neural elements in the midbrain of the chick. Out of 17 mAbs that recognized motor end plates on chick muscle, 14 produced a similar pattern of labeling in the midbrain: the neuronal perikarya and dendrites in the lateral spiriform nucleus (SpL) were intensely labeled, and there was moderate labeling of fibers in certain of the deeper layers of the optic tectum, which disappeared after the SpL was destroyed electrolytically. Two lines of evidence suggest that the mAbs may be crossreacting with nAcChoRs in the midbrain. First, all of the mAbs that stained the SpL also stained neuromuscular junctions in skeletal muscle, whereas none of the 40 mAbs that failed to stain end plates crossreacted with the SpL; second, in vitro immunological studies and blocking experiments on tissue sections (in which unlabeled mAbs were used to block the staining of a directly fluorescein-treated mAb) indicated the presence of mAbs specific for unique antigenic determinants on all four of the subunits (alpha, beta, gamma, and delta) from Torpedo nAcChoR in chick midbrain and muscle. On the other hand, the distribution of mAb staining in the optic tectum does not closely parallel that of either acetylcholinesterase staining or of 125I-labeled alpha-bungarotoxin binding; no toxin binding has been observed autoradiographically in the SpL, but the nucleus does contain moderately dense acetylcholinesterase staining. Take together, our observations suggest that there may be a cholinergic input to the SpL and that the projection fibers from the SpL to the optic tectum (which are also stained with an antiserum to [Leu]enkephalin) may contain presynaptic nAcChoRs. It is clear, however

  7. Effect of denervation on a cholinergic-specific ganglioside antigen (Chol-1) present in Torpedo electromotor presynaptic plasma membranes.

    PubMed

    Ferretti, P; Borroni, E

    1984-04-01

    The presence of Chol-1, an antigen identified in the plasma membrane of cholinergic electromotor nerve terminals of Torpedo marmorata, was investigated in Torpedo electric organ after 3, 6, and 9 weeks' denervation. Denervation was monitored by the cessation of stimulus-evoked discharge potentials, by the reduction in nerve terminals seen morphologically, and by the decrease in ACh and ChAT contents. The content of ganglioside-bound sialic acid did not show any appreciable change with time. Some modification of ganglioside pattern on TLC was observed after 9 weeks' denervation. The presence of Chol-1 after denervation was assayed by its activity in inhibiting the selective complement-induced lysis of the cholinergic subpopulation of guinea pig cortical synaptosome which is mediated by the anti-Chol-1 antiserum. Denervation did not affect Chol-1 immunoreactivity although it did alter the distribution of the immunoreactivity among gangliosides. The possible significance of the results is discussed.

  8. Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.

    PubMed

    Padilla-Morales, Luis F; Colón-Sáez, José O; González-Nieves, Joel E; Quesada-González, Orestes; Lasalde-Dominicci, José A

    2016-01-01

    In our previous study we examined the functionality and stability of nicotinic acetylcholine receptor (nAChR)-detergent complexes (nAChR-DCs) from affinity-purified Torpedo californica (Tc) using fluorescence recovery after photobleaching (FRAP) in Lipidic Cubic Phase (LCP) and planar lipid bilayer (PLB) recordings for phospholipid and cholesterol like detergents. In the present study we enhanced the functional characterization of nAChR-DCs by recording macroscopic ion channel currents in Xenopus oocytes using the two electrode voltage clamp (TEVC). The use of TEVC allows for the recording of macroscopic currents elicited by agonist activation of nAChR-DCs that assemble in the oocyte plasma membrane. Furthermore, we examined the stability of nAChR-DCs, which is obligatory for the nAChR crystallization, using a 30 day FRAP assay in LCP for each detergent. The present results indicate a marked difference in the fractional fluorescence recovery (ΔFFR) within the same detergent family during the 30 day period assayed. Within the cholesterol analog family, sodium cholate and CHAPSO displayed a minimum ΔFFR and a mobile fraction (MF) over 80%. In contrast, CHAPS and BigCHAP showed a marked decay in both the mobile fraction and diffusion coefficient. nAChR-DCs containing phospholipid analog detergents with an alkylphosphocholine (FC) and lysofoscholine (LFC) of 16 carbon chains (FC-16, LFC-16) were more effective in maintaining a mobile fraction of over 80% compared to their counterparts with shorter acyl chain (C12, C14). The significant differences in macroscopic current amplitudes, activation and desensitization rates among the different nAChR-DCs evaluated in the present study allow to dissect which detergent preserves both, agonist activation and ion channel function. Functionality assays using TEVC demonstrated that LFC16, LFC14, and cholate were the most effective detergents in preserving macroscopic ion channel function, however, the nAChR-cholate complex

  9. Determination by X-Ray Crystallography of the Three-Dimensional Structure of Acetylcholinesterase from Torpedo Electric Organ

    DTIC Science & Technology

    1990-10-01

    PIPLC purified from Bacillus thuringiensis (Low et al., 1988) or, more recently, by PIPLC produced by Bacillus subtilis transfected with the PIPLC gene...from Bacillus thuringiensis (Henner et al., 1988). PIPLC from Bacillus thuringiensis has been reported to have a much higher specific activity than...number of sulfhydryl reagents inhibit Torpedo californica AChE with pseudo-first-order kinetics , the best of those examined being N-ethylmaleimide and

  10. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  11. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    PubMed

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer.

  12. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    PubMed

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  13. Metabolism of acetylcholine in human erythrocytes

    SciTech Connect

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identification of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.

  14. Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Wilson, P T

    1987-01-01

    Peptides corresponding to portions of loop 2 of snake venom curare-mimetic neurotoxins and to a structurally similar region of rabies virus glycoprotein were synthesized. Interaction of these peptides with purified Torpedo electric organ acetylcholine receptor was tested by measuring their ability to block the binding of 125I-labeled alpha-bungarotoxin to the receptor. In addition, inhibition of alpha-bungarotoxin binding to a 32-residue synthetic peptide corresponding to positions 173-204 of the alpha-subunit was determined. Neurotoxin and glycoprotein peptides corresponding to toxin loop 2 inhibited labeled toxin binding to the receptor with IC50 values comparable to those of nicotine and the competitive antagonist d-tubocurarine and to the alpha-subunit peptides with apparent affinities between those of d-tubocurarine and alpha-cobratoxin. Substitution of neurotoxin residue Arg37, the proposed counterpart of the quaternary ammonium of acetylcholine, with a negatively charged Glu residue reduced the apparent affinity about 10-fold. Peptides containing the neurotoxin invariant residue Trp29 and 10- to 100-fold higher affinities than peptides lacking this residue. These results demonstrate that relatively short synthetic peptides retain some of the binding ability of the native protein from which they are derived, indicating that such peptides are useful in the study of protein-protein interactions. The ability of the peptides to compete alpha-bungarotoxin binding to the receptor with apparent affinities comparable to those of other cholinergic ligands indicates that loop 2 of the neurotoxins and the structurally similar segment of the rabies virus glycoprotein act as recognition sites for the acetylcholine receptor. Invariant toxin residues Arg37 and Trp29 and their viral homologs play important, although not essential, roles in binding, possibly by interaction with complementary anionic and hydrophobic subsites on the acetylcholine receptor. The alpha

  15. Torpedo electromotor system development: developmentally regulated neuronotrophic activities of electric organ tissue.

    PubMed

    Richardson, G P; Rinschen, B; Fox, G Q

    1985-01-15

    Explant cultures of electric lobe from 45-60 mm stage Torpedo embryos and both ganglionic and dissociated cell cultures prepared from 8-day chick ciliary ganglia have been used to determine whether the electric organs of Torpedo marmorata contain developmentally regulated neuronotrophic activity. Electric lobe explants were evaluated by measuring their neurone density, choline acetyltransferase (CAT0, and low salt, Triton X-100-soluble protein contents. Addition of soluble extracts prepared from the electric organs of late stage embryos (85-105 mm) to standard medium results in the maintenance of nearly theoretical neurone densities in electric lobe explants during a 7-day culture period. Soluble electric organ extracts from early embryonic stages (42-59 mm) do not increase neurone density relative to control cultures but cause an elevation in the CAT content of the explants over control values. On the basis of this analysis it is concluded (1) that late embryonic stage and adult electric organs contain neuronotrophic activity that allows electromotor neurones to survive in vitro and (2) that activity increases rapidly in the electric organs between the 59 nd 72 mm stages of development at a time when rapid increases in postsynaptic membrane markers in the electric organs occur and when peripheral synaptogenesis begins. The activity of late stage embryonic electric organs is heat stable and lost on dialysis. Using ciliary ganglion explants and evaluating both the initial fibre outgrowth and the CAT content after 4 days in vitro, trophic activity is found to be maximal at early embryonic stages (45-55 mm) and to decline thereafter. It is shown that the decline in activity is not due to an increase in toxicity. Using established dissociated ganglionic cell survival assays the specific activity of neuronotrophic factors allowing survival is constant between the 45 and 73 mm stages in the electric organs and then rapidly declines, but activity per electric organ

  16. Minimal RNA aptamer sequences that can inhibit or alleviate noncompetitive inhibition of the muscle-type nicotinic acetylcholine receptor.

    PubMed

    Sivaprakasam, Kannan; Pagán, Oné R; Hess, George P

    2010-02-01

    Combinatorially synthesized nucleotide polymers have been used during the last decade to find ligands that bind to specific sites on biological molecules, including membrane-bound proteins such as the nicotinic acetylcholine receptors (nAChRs). The neurotransmitter receptors belong to a group of four structurally related proteins that regulate signal transmission between ~10(11) neurons of the mammalian nervous system. The nAChRs are inhibited by compounds such as the anticonvulsant MK-801 [(+)-dizocilpine] and abused drugs such as cocaine. Based on predictions arising from the mechanism of receptor inhibition by MK-801 and cocaine, we developed two classes of RNA aptamers: class I members, which inhibit the nAChR, and class II members, which alleviate inhibition of the receptor by MK-801 and cocaine. The systematic evolution of ligands by the exponential enrichment (SELEX) method was used to obtain these compounds. Here, we report that we have truncated RNA aptamers in each class to determine the minimal nucleic acid sequence that retains the characteristic function for which the aptamer was originally selected. We demonstrate that a truncated class I aptamer containing a sequence of seven nucleotides inhibits the nAChR and that a truncated class II aptamer containing a sequence of only four nucleotides can alleviate MK-801 inhibition.

  17. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    PubMed Central

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds. PMID:26008231

  18. Nicotinic acetylcholine receptor from chick optic lobe.

    PubMed Central

    Norman, R I; Mehraban, F; Barnard, E A; Dolly, J O

    1982-01-01

    An alpha-bungarotoxin-sensitive nicotinic cholinergic receptor from chick optic lobe has been completely purified. Its standard sedimentation coefficient is 9.1 S. The value near 12 S reported for the related component from other brain regions can be reproduced when the initial extraction is by Triton X-100 (rather than Lubrol PX), but other protein is then complexed with it. A single subunit of apparent molecular weight 54,000 is detected, and this subunit is specifically labeled by bromo-[3H]acetylcholine, but only after disulfide reduction. The same size subunit likewise is labeled in the protein (purified similarly) from the rest of the chick brain which can also bind alpha-bungarotoxin and nicotinic ligands. Immunological crossreactivity is demonstrated between both of these proteins with an antiserum to pure acetylcholine receptor from skeletal muscle. The acetylcholine receptor from chick optic lobe and the alpha-bungarotoxin-binding protein from the rest of the brain appear similar or identical by a series of criteria and are related to (but with differences from) peripheral acetylcholine receptors. Images PMID:6175967

  19. Primary Structure of Nicotinic Acetylcholine Receptor

    DTIC Science & Technology

    1986-08-01

    quantities of starting material (for reviews of receptor, see Popot and Changeux, 1984; Stroud and Finer-Moore, 1985). This work led to the...Cloning of the Acetylcholine Receptor. Cold Spring Harbor Symp. on Quant. Biol. XLVIH: 71-78. 15. Popot , J-L. and Changeux, J-P. (1984) The

  20. Turnover of Acetylcholine Receptors: Mechanisms of Regulation

    DTIC Science & Technology

    1988-12-01

    ME, Whittingham S, and Duane DD (1976) Antibody to acetylcholine receptor in myasthenia gravis : prevalance, clinical correlates and diagnostic value...transferred to nitorcellulose. Proc Natl Acad Sci 77:5201-5205. Weinberg CB and Hall ZW (1979) Antibodies from patients with myasthenia gravis recognize

  1. Structural determinants of alpha-bungarotoxin binding to the sequence segment 181-200 of the muscle nicotinic acetylcholine receptor. alpha. subunit: Effects of cysteine/cystine modification and species-specific amino acid substitution

    SciTech Connect

    McLane, K.E.; Wu, Xiadong; Diethelm, B.; Conti-Tronconi, B.M. )

    1991-05-21

    The sequence segment 181-200 of the Torpedo nicotinic acetylcholine receptor (nAChR) {alpha}subunit forms a binding site for {alpha}-bungarotoxin ({alpha}-BTX). Synthetic peptides corresponding to the homologous sequences of human, calf, mouse, chicken, frog, and cobra muscle nAChR {alpha}1 subunits were tested for their ability to bind {sup 125}I-{alpha}-BTX, and differences in {alpha}-BTX affinity were determined by using solution (IC{sub 50}s) and solid-phase (K{sub d}s) assays. Panels of overlapping peptides corresponding to the complete {alpha}1 subunit of mouse and human were also tested for {alpha}-BTX binding, but other sequence segments forming the {alpha}-BTX site were not consistently detectable. The role of a putative vicinal disulfide bound between Cys-192 and -193, relative to the Torpedo sequence, was determined by modifying the peptides with sulfhydryl reagents. Reduction and alkylation of the peptides decreased {alpha}-BTX binding, whereas oxidation of the peptides had little effect. These results indicate that while the adjacent cysteines are likely to be involved in forming the toxin/{alpha}1-subunit interface a vicinal disulfide bound was not required for {alpha}-BTX binding.

  2. Presence of vasoactive intestinal polypeptide-like immunoreactivity in the cholinergic electromotor system of Torpedo marmorata.

    PubMed

    Agoston, D V; Conlon, J M

    1986-08-01

    Vasoactive intestinal polypeptide (VIP)-like immunoreactivity was detected in the cholinergic electro-motor system of Torpedo marmorata using a combination of immunohistochemical assays, radioimmunoassay, and HPLC. The immunohistochemical assays revealed that the distribution of VIP-like immunoreactivity in the electric lobes, electromotor nerves, and electric organ is comparable to that of the stable cholinergic synaptic vesicle marker vesicle-specific proteoglycan. Ligation of the electromotor nerves caused a marked accumulation of VIP-like immunoreactivity in the lobes (180%) and the proximal portions of the electromotor nerves (130%) and a decrease in the electric organ (-50%), when measured by radioimmunoassay using synthetic VIP (porcine sequence) as the standard. VIP-like immunoreactivity in extracts of electric lobes electromotor nerves, and electric organ was eluted from a semipreparative reverse-phase HPLC column as a single peak with a retention time similar to that of porcine VIP. Rechromatography at higher resolution on an analytical column indicated diversity between the molecular forms of VIP-like immunoreactivity extracted from electric lobe and electric organ, suggesting the possibility of posttranslational processing.

  3. Rabies virus binding to the nicotinic acetylcholine receptor alpha subunit demonstrated by virus overlay protein binding assay.

    PubMed

    Gastka, M; Horvath, J; Lentz, T L

    1996-10-01

    A virus overlay protein binding assay was used to study binding of 125I-labelled rabies virus to the acetylcholine receptor (AChR) from Torpedo californica electric organ membranes. After gel electrophoresis of electric organ membranes and transfer of proteins to nitrocellulose, 125I-labelled alpha-bungarotoxin, a curaremimetic neurotoxin, bound to a 40 kDa band and 125I-labelled rabies virus bound to 51 kDa and 40 kDa bands. Binding of rabies virus to the 40 kDa band was inhibited by unlabelled alpha-bungarotoxin. In blots of affinity-purified AChR, labelled virus bound to the 40 kDa alpha subunit and was competed by alpha-bungarotoxin. Based on binding of rabies virus to the alpha subunit and the ability of alpha-bungarotoxin to compete for binding, rabies virus appears to bind to the neurotoxin-binding site of the nicotinic AChR alpha subunit.

  4. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    USGS Publications Warehouse

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  5. Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization.

    PubMed

    Tuzun, Erdem; Berrih-Aknin, Sonia; Brenner, Talma; Kusner, Linda L; Le Panse, Rozen; Yang, Huan; Tzartos, Socrates; Christadoss, Premkumar

    2015-08-01

    Myasthenia gravis (MG) is an autoimmune disorder characterized by generalized muscle weakness due to neuromuscular junction (NMJ) dysfunction brought by acetylcholine receptor (AChR) antibodies in most cases. Although steroids and other immunosuppressants are effectively used for treatment of MG, these medications often cause severe side effects and a complete remission cannot be obtained in many cases. For pre-clinical evaluation of more effective and less toxic treatment methods for MG, the experimental autoimmune myasthenia gravis (EAMG) induced by Torpedo AChR immunization has become one of the standard animal models. Although numerous compounds have been recently proposed for MG mostly by using the active immunization EAMG model, only a few have been proven to be effective in MG patients. The variability in the experimental design, immunization methods and outcome measurements of pre-clinical EAMG studies make it difficult to interpret the published reports and assess the potential for application to MG patients. In an effort to standardize the active immunization EAMG model, we propose standard procedures for animal care conditions, sampling and randomization of mice, experimental design and outcome measures. Utilization of these standard procedures might improve the power of pre-clinical EAMG experiments and increase the chances for identifying promising novel treatment methods that can be effectively translated into clinical trials for MG.

  6. Molecular dynamics simulation of the M2 helices within the nicotinic acetylcholine receptor transmembrane domain: structure and collective motions.

    PubMed

    Hung, Andrew; Tai, Kaihsu; Sansom, Mark S P

    2005-05-01

    Multiple nanosecond duration molecular dynamics simulations were performed on the transmembrane region of the Torpedo nicotinic acetylcholine receptor embedded within a bilayer mimetic octane slab. The M2 helices and M2-M3 loop regions were free to move, whereas the outer (M1, M3, M4) helix bundle was backbone restrained. The M2 helices largely retain their hydrogen-bonding pattern throughout the simulation, with some distortions in the helical end and loop regions. All of the M2 helices exhibit bending motions, with the hinge point in the vicinity of the central hydrophobic gate region (corresponding to residues alphaL251 and alphaV255). The bending motions of the M2 helices lead to a degree of dynamic narrowing of the pore in the region of the proposed hydrophobic gate. Calculations of Born energy profiles for various structures along the simulation trajectory suggest that the conformations of the M2 bundle sampled correspond to a closed conformation of the channel. Principal components analyses of each of the M2 helices, and of the five-helix M2 bundle, reveal concerted motions that may be relevant to channel function. Normal mode analyses using the anisotropic network model reveal collective motions similar to those identified by principal components analyses.

  7. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site.

    PubMed

    Wangler, Naomi J; Santos, Kira L; Schadock, Ines; Hagen, Fred K; Escher, Emanuel; Bader, Michael; Speth, Robert C; Karamyan, Vardan T

    2012-01-02

    Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins.

  8. Identification of Membrane-bound Variant of Metalloendopeptidase Neurolysin (EC 3.4.24.16) as the Non-angiotensin Type 1 (Non-AT1), Non-AT2 Angiotensin Binding Site*

    PubMed Central

    Wangler, Naomi J.; Santos, Kira L.; Schadock, Ines; Hagen, Fred K.; Escher, Emanuel; Bader, Michael; Speth, Robert C.; Karamyan, Vardan T.

    2012-01-01

    Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins. PMID:22039052

  9. The energy-conserving electron transfer system used by Desulfovibrio alaskensis strain G20 during pyruvate fermentation involves reduction of endogenously formed fumarate and cytoplasmic and membrane-bound complexes, Hdr-Flox and Rnf.

    PubMed

    Meyer, Birte; Kuehl, Jennifer V; Price, Morgan N; Ray, Jayashree; Deutschbauer, Adam M; Arkin, Adam P; Stahl, David A

    2014-11-01

    The adaptation capability of Desulfovibrio to natural fluctuations in electron acceptor availability was evaluated by studying Desulfovibrio alaskensis strain G20 under varying respiratory, fermentative and methanogenic coculture conditions in chemostats. Transition from lactate to pyruvate in coculture resulted in a dramatic shift in the population structure and closer interspecies cell-to-cell interactions. Lower methane production rates in coculture than predicted from pyruvate input was attributed to redirection of electron flow to fumarate reduction. Without a methanogenic partner, accumulation of H₂and formate resulted in greater succinate production. Comparative transcript and gene fitness analysis in concert with physiological data of G20 wildtype and mutants demonstrated that pyruvate fermentation involves respiration of cytoplasmically formed fumarate using cytoplasmic and membrane-bound energy-conserving complexes, Rnf, Hdr-Flox-1 and Hmc. At the low H₂/formate levels maintained in coculture, Rnf likely functions as proton-pumping ferredoxin (Fd): type-I cytochrome c oxidoreductase, which transitions to a proton-pumping Fd(red):  nicotinamide adenine dinucleotide (NAD⁺) oxidoreductase at high H₂/formate levels during fermentation in monoculture. Hdr-Flox-1 is postulated to recycle Fd(red) via a flavin-based electron bifurcation involving NADH, Fdox and the thiol/disulphide-containing DsrC. In a menaquinone (MQ)-based electron confurcation reaction, the high-molecular-weight cytochrome-c₃complex, Hmc, is proposed to then couple DsrC(red) and periplasmic H₂/formate oxidation using the MQ pool to fuel a membrane-bound fumarate reductase.

  10. Agonists block currents through acetylcholine receptor channels.

    PubMed Central

    Sine, S M; Steinbach, J H

    1984-01-01

    We have examined the effects of high concentrations of cholinergic agonists on currents through single acetylcholine receptor (AChR) channels on clonal BC3H1 cells. We find that raised concentrations of acetylcholine (ACh; above 300 microM) or carbamylcholine (Carb; above 1,000 microM) produce a voltage- and concentration-dependent reduction in the mean single-channel current. Raised concentrations of suberyldicholine (Sub; above 3 microM) produce a voltage- and concentration-dependent increase in the number of brief duration low-conductance interruptions of open-channel currents. These observations can be quantitatively described by a model in which agonist molecules enter and transiently occlude the ion-channel of the AChR. PMID:6478036

  11. The quantal nature of transmission and spontaneous potentials at the Torpedo electromotor junction.

    PubMed

    Erdélyi, L

    1985-01-01

    Miniature and stimulus evoked electroplaque potentials (mEpPs and EpPs) were recorded in Torpedo electrocytes intracellularly and extracellularly. The quantal release parameters of EpPs and the time course of quantal EpCs were estimated in normal and low Ca2+-high Mg2+ solutions. Amplitude-frequency distribution of mEpPs showed Gaussian or uneven character with an average mean value of 0.3 +/- 0.08 mV (S.D.). The mean coefficient of variation of mEpPs was 26.8 +/- 7.2% (n = 6). Tetrodotoxin reversibly blocked the stimulus evoked EpP but hardly influenced the amplitude-frequency histogram of spontaneous EpPs in 10(-8)-10(-6) M concentration. The quantum content of stimulus evoked EpPs varied between 100-400 in normal solution which decreased in low Ca2+-high Mg2+ solution and the quantal release conformed to binomial statistics and allowed determination of the parameters p and n. Frequency of the spontaneous discharges varied highly from electrocyte to electrocyte but an analysis of the time intervals showed randomness for the events. The decay phase of quantal current composed of non-exponential and exponential sections which was characteristic with 0.75 +/- 0.16 msec (mean, S.D., at 20 degrees C) time constant of exponential decay. Although, two types of mEpCs could be differentiated having significantly slower and faster time courses. Neostigmine prolonged the time constant of decay of mEpCs in dose-dependent manner with a factor of 2 in 10(-6) M and of 4 in 10(-5) M concentrations (at about 20 degrees C).

  12. Hydrogen ions control synaptic vesicle ion channel activity in Torpedo electromotor neurones.

    PubMed

    Ahdut-Hacohen, Ronit; Duridanova, Dessislava; Meiri, Halina; Rahamimoff, Rami

    2004-04-15

    During exocytosis the synaptic vesicle fuses with the surface membrane and undergoes a pH jump. When the synaptic vesicle is inside the presynaptic nerve terminal its internal pH is about 5.5 and after fusion, the inside of the vesicle comes in contact with the extracellular medium with a pH of about 7.25. We examined the effect of such pH jump on the opening of the non-specific ion channel in the synaptic vesicle membrane, in the context of the post-fusion hypothesis of transmitter release control. The vesicles were isolated from Torpedo ocellata electromotor neurones. The pH dependence of the opening of the non-specific ion channel was examined using the fused vesicle-attached configuration of the patch clamp technique. The rate of opening depends on both pH and voltage. Increasing the pH from 5.5 to 7.25 activated dramatically the non-specific ion channel of the vesicle membrane. The single channel conductance did not change significantly with the alteration in the pH, and neither did the mean channel open time. These results support the hypothesis that during partial fusion of the vesicle with the surface membrane, ion channels in the vesicle membrane open, admit ions and thus help in the ion exchange process mechanism, leading to the release of the transmitter from the intravesicular ion exchange matrix. This process may have also a pathophysiological significance in conditions of altered pH.

  13. Neuronal Nicotinic Acetylcholine Receptors and Epilepsy

    PubMed Central

    Bertrand, Daniel

    2002-01-01

    The identification of a genetically transmissible form of epilepsy that is associated with a mutation in CHRNA4, the gene that encodes the α4 subunit of the high-affinity nicotinic acetylcholine receptor, was the first demonstration that an alteration in a ligand-gated ion channel can cause seizures. Since then, nine mutations have been found, and analysis of their physiologic properties has revealed that all of them enhance receptor function. PMID:15309115

  14. External Imaging of Cerebral Muscarinic Acetylcholine Receptors

    NASA Astrophysics Data System (ADS)

    Eckelman, William C.; Reba, Richard C.; Rzeszotarski, Waclaw J.; Gibson, Raymond E.; Hill, Thomas; Holman, B. Leonard; Budinger, Thomas; Conklin, James J.; Eng, Robert; Grissom, Michael P.

    1984-01-01

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  15. External imaging of cerebral muscarinic acetylcholine receptors

    SciTech Connect

    Eckelman, W.C.; Reba, R.C.; Rzeszotarski, W.J.; Gibson, R.E.; Hill, T.; Holman, B.L.; Budinger, T.; Conklin, J.J.; Eng, R.; Grissom, M.P.

    1984-01-20

    A radioiodinated ligand that binds to muscarinic acetylcholine receptors was shown to distribute in the brain by a receptor-mediated process. With single-photon-emission imaging techniques, radioactivity was detected in the cerebrum but not in the cerebellum, whereas with a flow-limited radiotracer, radioactivity was detected in cerebrum and cerebellum. Single-photon-emission computed tomography showed good definition of the caudate putamen and cortex in man.

  16. [Sites of synthesis of acetylcholine receptors in denervated muscles].

    PubMed

    Giacobini Robecchi, M G; Garelli, M; Filogamo, G

    1980-09-01

    Muscle fibres binding with 125I alpha-bungarotoxine from Bungarus Multicinctus, after treatment with saponine, shows (in electron microscope autoradiography) intracellular binding sites identifying sites of acetylcholine receptor synthesis. In innervated muscle, the acetylcholine receptor is located only at the neuromuscular junction. In denervated muscle the receptor is distributed along the whole sarcolemma; in this situation the acetylcholine receptor is synthesized "ex novo" in the membrane system over the whole length of the muscle fibre.

  17. Immunocytochemical Detection of Acetylcholine in the Rat Central Nervous System

    NASA Astrophysics Data System (ADS)

    Geffard, M.; McRae-Degueurce, A.; Souan, Marie Laure

    1985-07-01

    A specific antibody to acetylcholine was raised and used as a marker for cholinergic neurons in the rat central nervous system. The acetylcholine conjugate was obtained by a two-step immunogen synthesis procedure. An enzyme-linked immunosorbent assay was used to test the specificity and affinity of the antibody in vitro; the results indicated high affinity. A chemical perfusion mixture of allyl alcohol and glutaraldehyde was used to fix the acetylcholine in the nervous tissue. Peroxidase-antiperoxidase immunocytochemistry showed many acetylcholine-immunoreactive cells and fibers in sections from the medial septum region.

  18. Characterization of gastrin-releasing peptide immunoreactivity in distinct storage particles in guinea pig myenteric and Torpedo electromotor neurones.

    PubMed

    Shaw, C; Whittaker, V P; Agoston, D V

    1990-01-01

    Using high resolution centrifugal density-gradient separation of cytoplasmic extracts of guinea pig myenteric plexus and Torpedo electric tissue, we have succeeded in isolating fractions of storage particles rich in gastrin-releasing peptide (GRP). In extracts of myenteric plexus and gradients derived therefrom, the 10-amino acid GRP peptide (GRP-10) was the sole form present; this was bimodally distributed in the gradients, one peak copurifying with Golgi membranes and apparently consisting of immature storage particles, the other with other synaptophysin-rich neuropeptide-containing particles. In extracts of electric organ, a tissue rich in cholinergic electromotor nerve terminals, and gradients derived therefrom, GRP-like immunoreactivity behaved in gel permeation and reversed phase high performance liquid chromatography like the 27-amino acid peptide (GRP-27). About half of the immunoreactivity sedimented in the centrifugal gradient to a region rich in particles containing vasoactive intestinal polypeptide-like immunoreactivity; the remainder was recovered in a very dense region of the gradient containing larger membrane fragments, including synaptosomes. The electromotor nerves and cell bodies also contained GRP-27-like immunoreactivity in relatively high concentration as did the Torpedo gut. It is concluded that this GRP-like peptide is packaged in dense storage particles in the electromotor neurones.

  19. VAT-1 from Torpedo electric organ forms a high-molecular-mass protein complex within the synaptic vesicle membrane.

    PubMed

    Linial, M

    1993-08-15

    VAT-1 is an abundant 41-kDa protein from Torpedo cholinergic synaptic vesicles. Most of VAT-1 immunoreactivity (70%) is localized to the synaptic vesicle membrane while the rest (30%) copurifies with larger membranous fragments. VAT-1 forms a high-molecular-mass complex within the synaptic vesicle membrane. The Stokes radius of the VAT-1 complex is 4.85 nm and the sedimentation coefficient is 8.0 x 10(-13) S. Using these values, the calculated apparent mass of the VAT-1 complex is 176 kDa and the friction coefficient is consistent with that for a globular protein. Electrophoresis of solubilized synaptic vesicle proteins following cross-linking resulted in a 40-kDa ladder which was detected by VAT-1 antibodies. This is in accord with VAT-1 protein complex being composed primarily of VAT-1 subunits. The hydrodynamic characteristics of the VAT-1 protein complex suggest that it is composed of three or four VAT-1 subunits. Synaptophysin, an abundant component of Torpedo synaptic vesicle membranes, which has a similar apparent size as VAT-1, is not part of the VAT-1 protein complex. Interactions between the subunits within the protein complex do not depend on disulfide bonds or on lowering the ionic strength. However, partial dissociation of VAT-1 subunits from the complex occurs by chelating calcium ions.

  20. In the beginning: a personal reminiscence on the origin and legacy of ClC-0, the ‘Torpedo Cl− channel’

    PubMed Central

    Miller, Christopher

    2015-01-01

    Abstract This unapologetically subjective essay recalls the Torpedo Cl– channel in the years when it had neither a molecular identity nor proper name (ClC-0), and membership in a large superfamily. I discuss the circumstances surrounding its discovery and subsequent research through the 1980s that revealed its unusual molecular architecture and other strange mechanistic characteristics. PMID:25433078

  1. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz; Michel-Schmidt, Rosmarie; Kirkpatrick, Charles James

    2015-11-01

    Acetylcholine is inactivated by acetylcholinesterase and butyrylcholinesterase and thereby its cellular signalling is stopped. One distinguishing difference between the neuronal and non-neuronal cholinergic system is the high expression level of the esterase activity within the former and a considerably lower level within the latter system. Thus, any situation which limits the activity of both esterases will affect the non-neuronal cholinergic system to a much greater extent than the neuronal one. Both esterases are pH-dependent with an optimum at pH above 7, whereas at pH values below 6 particularly the specific acetylcholinesterase is more or less inactive. Thus, acetylcholine is prevented from hydrolysis at such low pH values. The pH of the surface of the human skin is around 5 and therefore non-neuronal acetylcholine released from keratinocytes can be detected in a non-invasive manner. Several clinical conditions like metabolic acidosis, inflammation, fracture-related haematomas, cardiac ischemia and malignant tumours are associated with local or systemic pH values below 7. Thus, the present article describes some consequences of an impaired inactivation of extracellular non-neuronal acetylcholine.

  2. Overexpression of a Plasma Membrane Bound Na+/H+ Antiporter-Like Protein (SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis

    PubMed Central

    Kumari, P. Hima; Kumar, S. Anil; Sivan, Pramod; Katam, Ramesh; Suravajhala, Prashanth; Rao, K. S.; Varshney, Rajeev K.; Kishor, Polavarapu B. Kavi

    2017-01-01

    A Na+/H+ antiporter-like protein (NHXLP) was isolated from Sorghum bicolor L. (SbNHXLP) and validated by overexpressing in tomato for salt tolerance. Homozygous T2 transgenic lines when evaluated for salt tolerance, accumulated low Na+ and displayed enhanced salt tolerance compared to wild-type plants (WT). This is consistent with the amiloride binding assay of the protein. Transgenics exhibited higher accumulation of proline, K+, Ca2+, improved cambial conductivity, higher PSII, and antioxidative enzyme activities than WT. Fluorescence imaging results revealed lower Na+ and higher Ca2+ levels in transgenic roots. Co-immunoprecipitation experiments demonstrate that SbNHXLP interacts with a Solanum lycopersicum cation proton antiporter protein2 (SlCHX2). qRT-PCR results showed upregulation of SbNHXLP and SlCHX2 upon treatment with 200 mM NaCl and 100 mM potassium nitrate. SlCHX2 is known to be involved in K+ acquisition, and the interaction between these two proteins might help to accumulate more K+ ions, and thus maintain ion homeostasis. These results strongly suggest that plasma membrane bound SbNHXLP involves in Na+ exclusion, maintains ion homeostasis in transgenics in comparison with WT and alleviates NaCl stress. PMID:28111589

  3. Physicochemical constraints of elevated pH affect efficient membrane interaction and arrest an abortive membrane-bound oligomeric intermediate of the beta-barrel pore-forming toxin Vibrio cholerae cytolysin.

    PubMed

    Rai, Anand Kumar; Kundu, Nidhi; Chattopadhyay, Kausik

    2015-10-01

    Vibrio cholerae cytolysin (VCC) is a potent membrane-damaging cytotoxic protein. VCC causes permeabilization of the target cell membranes by forming transmembrane oligomeric beta-barrel pores. Membrane pore formation by VCC involves following key steps: (i) membrane binding, (ii) formation of a pre-pore oligomeric intermediate, (iii) membrane insertion of the pore-forming motifs, and (iv) formation of the functional transmembrane pore. Membrane binding, oligomerization, and subsequent pore-formation process of VCC appear to be facilitated by multiple regulatory mechanisms that are only partly understood. Here, we have explored the role(s) of the physicochemical constraints, specifically imposed by the elevated pH conditions, on the membrane pore-formation mechanism of VCC. Elevated pH abrogates efficient interaction of VCC with the target membranes, and blocks its pore-forming activity. Under the elevated pH conditions, membrane-bound fractions of VCC remain trapped in the form of abortive oligomeric species that fail to generate the functional transmembrane pores. Such an abortive oligomeric assembly appears to represent a distinct, more advanced intermediate state than the pre-pore state. The present study offers critical insights regarding the implications of the physicochemical constraints for regulating the efficient membrane interaction and pore formation by VCC.

  4. A single membrane-bound enzyme catalyzes the conversion of 2,5-diketo-d-gluconate to 4-keto-d-arabonate in d-glucose oxidative fermentation by Gluconobacter oxydans NBRC 3292.

    PubMed

    Tazoe, Masaaki; Oishi, Hiromi; Kobayashi, Setsuko; Hoshino, Tatsuo

    2016-08-01

    4-Keto-d-arabonate synthase (4KAS), which converts 2,5-diketo-d-gluconate (DKGA) to 4-keto-d-arabonate (4KA) in d-glucose oxidative fermentation by some acetic acid bacteria, was solubilized from the Gluconobacter oxydans NBRC 3292 cytoplasmic membrane, and purified in an electrophoretically homogenous state. A single membrane-bound enzyme was found to catalyze the conversion from DKGA to 4KA. The 92-kDa 4KAS was a homodimeric protein not requiring O2 or a cofactor for the conversion, but was stimulated by Mn(2+). N-terminal amino acid sequencing of 4KAS, followed by gene homology search indicated a 1,197-bp open reading frame (ORF), corresponding to the GLS_c04240 locus, GenBank accession No. CP004373, encoding a 398-amino acid protein with a calculated molecular weight of 42,818 Da. An Escherichia coli transformant with the 4kas plasmid exhibited 4KAS activity. Furthermore, overexpressed recombinant 4KAS was purified in an electrophoretically homogenous state and had the same molecular size as the natural enzyme.

  5. NK cells are primed by ANRS MVA(HIV)-infected DCs, via a mechanism involving NKG2D and membrane-bound IL-15, to control HIV-1 infection in CD4+ T cells.

    PubMed

    Moreno-Nieves, Uriel Y; Didier, Céline; Lévy, Yves; Barré-Sinoussi, Françoise; Scott-Algara, Daniel

    2014-08-01

    Natural killer (NK) cells are the major antiviral effector cell population of the innate immune system. It has been demonstrated that NK-cell activity can be modulated by the interaction with dendritic cells (DCs). The HIV-1 vaccine candidate Modified Vaccinia Ankara encoding an HIV polypeptide (MVA(HIV)), developed by the French National Agency for Research on AIDS (ANRS), has the ability to prime NK cells to control HIV-1 infection in DCs. However, whether or not MVA(HIV)-primed NK cells are able to better control HIV-1 infection in CD4(+) T cells, and the mechanism underlying the specific priming, remain undetermined. In this study, we show that MVA(HIV)-primed NK cells display a greater capacity to control HIV-1 infection in autologous CD4(+) T cells. We also highlight the importance of NKG2D engagement on NK cells and DC-produced IL-15 to achieve the anti-HIV-1 specific priming, as blockade of either NKG2D or IL-15 during MVA(HIV)-priming lead to a subsequent decreased control of HIV-1 infection in autologous CD4(+) T cells. Furthermore, we show that the decreased control of HIV-1 infection in CD4(+) T cells might be due, at least in part, to the decreased expression of membrane-bound IL-15 (mbIL-15) on DCs when NKG2D is blocked during MVA(HIV)-priming of NK cells.

  6. Robust Expression of the Human Neonatal Fc Receptor in a Truncated Soluble Form and as a Full-Length Membrane-Bound Protein in Fusion with eGFP

    PubMed Central

    Seijsing, Johan; Lindborg, Malin; Löfblom, John; Uhlén, Mathias; Gräslund, Torbjörn

    2013-01-01

    Studies on the neonatal Fc receptor (FcRn) have revealed a multitude of important functions in mammals, including protection of IgG and serum albumin (SA) from lysosomal degradation. The pharmacokinetic behavior of therapeutic antibodies, IgG-Fc- and SA-containing drugs is therefore influenced by their interaction with FcRn. Pre-clinical development of such drugs is facilitated if their interaction with FcRn can be studied in vitro. For this reason we have developed a robust system for production of the soluble extracellular domain of human FcRn as well as the full-length receptor as fusion to green fluorescent protein, taking advantage of a lentivirus-based gene delivery system where stable over-expressing cells are easily and rapidly generated. Production of the extracellular domain in multiple-layered culture flasks, followed by affinity purification using immobilized IgG, resulted in capture of milligram amounts of soluble receptor per liter cell culture with retained IgG binding. The receptor was further characterized by SDS-PAGE, western blotting, circular dichroism spectroscopy, ELISA, surface plasmon resonance and a temperature stability assay showing a functional and stable protein of high purity. The full-length receptor was found to be successfully over-expressed in a membrane-bound form with retained pH-dependent IgG- and SA-binding. PMID:24260574

  7. Plasma-membrane-bound macromolecules are dynamically aggregated to form non-random codistribution patterns of selected functional elements. Do pattern recognition processes govern antigen presentation and intercellular interactions?

    PubMed

    Vereb, G; Mátyus, L; Bene, L; Panyi, G; Bacsó, Z; Balázs, M; Matkó, J; Szöllösi, J; Gáspár, R; Damjanovich, S

    1995-01-01

    Molecular recognition processes between cell surface elements are discussed with special reference to cell surface pattern formation of membrane-bound integral proteins. The existence, as detected by flow cytometric resonance energy transfer (Appendix), and significance of cell surface patterns involving the interleukin-2 receptor, the T-cell receptor-CD3 system, the intercellular adhesion molecule ICAM-1, and the major histocompatibility complex class I and class II molecules in the plasma membrane of lymphocytes are described. The modulation of antigen presentation by transmembrane potential changes is discussed, and a general role of transmembrane potential changes, and therefore of ion channel activities, adduced as one of the major regulatory mechanisms of cell-cell communication. A general role in the mediation and regulation of intercellular interactions is suggested for cell-surface macromolecular patterns. The dynamic pattern of protein and lipid molecules in the plasma membrane is generated by the genetic code, but has a remarkable flexibility and may be one of the major instruments of accommodation and recognition processes at the cellular level.

  8. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  9. Homology modeling of human muscarinic acetylcholine receptors.

    PubMed

    Thomas, Trayder; McLean, Kimberley C; McRobb, Fiona M; Manallack, David T; Chalmers, David K; Yuriev, Elizabeth

    2014-01-27

    We have developed homology models of the acetylcholine muscarinic receptors M₁R-M₅R, based on the β₂-adrenergic receptor crystal as the template. This is the first report of homology modeling of all five subtypes of acetylcholine muscarinic receptors with binding sites optimized for ligand binding. The models were evaluated for their ability to discriminate between muscarinic antagonists and decoy compounds using virtual screening using enrichment factors, area under the ROC curve (AUC), and an early enrichment measure, LogAUC. The models produce rational binding modes of docked ligands as well as good enrichment capacity when tested against property-matched decoy libraries, which demonstrates their unbiased predictive ability. To test the relative effects of homology model template selection and the binding site optimization procedure, we generated and evaluated a naïve M₂R model, using the M₃R crystal structure as a template. Our results confirm previous findings that binding site optimization using ligand(s) active at a particular receptor, i.e. including functional knowledge into the model building process, has a more pronounced effect on model quality than target-template sequence similarity. The optimized M₁R-M₅R homology models are made available as part of the Supporting Information to allow researchers to use these structures, compare them to their own results, and thus advance the development of better modeling approaches.

  10. Acetylcholine and choline levels in rabbit fetuses exposed to anticholinergics.

    PubMed

    McBride, W G; Hicks, L J

    1987-01-01

    It has been hypothesized that acetylcholine, choline acetylase and acetylcholinesterase may have an ontogenic and trophic influence in the embryo, and that therefore certain drugs may produce malformations via their effect on the acetylcholine and choline levels in the fetus. Thalidomide and the anticholinergics, scopolamine hydrobromide and orphenadrine hydrochloride, and doxylamine succinate, an antihistamine with secondary anticholinergic action, were administered to pregnant New Zealand White rabbit does from day 8 to day 15 of gestation. Cesarean sections were performed on gestational day 16, the fetuses removed and the acetylcholine and choline contents of the fetuses and placentas were estimated by organic extraction and derivation for injection into a GCMS. These acetylcholine and choline levels were compared with those of the fetuses and placentas of the control animals mated with the same buck on the same day as the treated animals. Thalidomide (50 mg/kg) did not affect acetylcholine or choline levels in the fetuses or the placentas obtained from the treated animal. Scopolamine (approximately 100 micrograms/kg) reduced the choline level in the placenta and fetus but not the acetylcholine levels. Orphenadrine (approximately 24 mg/kg) reduced acetylcholine and choline levels in the fetus and choline levels in the placenta. Doxylamine succinate (10 mg/kg) reduced the acetylcholine levels in the fetus and the choline levels in the placenta. The placenta is a fetal organ and the significance of acetylcholine production by the placenta is as yet unknown. The reduction in acetylcholine levels in the fetus exposed to drugs with an anticholinergic action may be of significance in the production of malformations.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Marine Natural Products Acting on the Acetylcholine-Binding Protein and Nicotinic Receptors: From Computer Modeling to Binding Studies and Electrophysiology

    PubMed Central

    Kudryavtsev, Denis; Makarieva, Tatyana; Utkina, Natalia; Santalova, Elena; Kryukova, Elena; Methfessel, Christoph; Tsetlin, Victor; Stonik, Valentin; Kasheverov, Igor

    2014-01-01

    For a small library of natural products from marine sponges and ascidians, in silico docking to the Lymnaea stagnalis acetylcholine-binding protein (AChBP), a model for the ligand-binding domains of nicotinic acetylcholine receptors (nAChRs), was carried out and the possibility of complex formation was revealed. It was further experimentally confirmed via competition with radioiodinated α-bungarotoxin ([125I]-αBgt) for binding to AChBP of the majority of analyzed compounds. Alkaloids pibocin, varacin and makaluvamines С and G had relatively high affinities (Ki 0.5–1.3 μM). With the muscle-type nAChR from Torpedo californica ray and human neuronal α7 nAChR, heterologously expressed in the GH4C1 cell line, no competition with [125I]-αBgt was detected in four compounds, while the rest showed an inhibition. Makaluvamines (Ki ~ 1.5 μM) were the most active compounds, but only makaluvamine G and crambescidine 359 revealed a weak selectivity towards muscle-type nAChR. Rhizochalin, aglycone of rhizochalin, pibocin, makaluvamine G, monanchocidin, crambescidine 359 and aaptamine showed inhibitory activities in electrophysiology experiments on the mouse muscle and human α7 nAChRs, expressed in Xenopus laevis oocytes. Thus, our results confirm the utility of the modeling studies on AChBPs in a search for natural compounds with cholinergic activity and demonstrate the presence of the latter in the analyzed marine biological sources. PMID:24686559

  12. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed Central

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-01-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake Ac

  13. Snake acetylcholine receptor: cloning of the domain containing the four extracellular cysteines of the alpha subunit.

    PubMed

    Neumann, D; Barchan, D; Horowitz, M; Kochva, E; Fuchs, S

    1989-09-01

    The acetylcholine receptor (AcChoR) at the neuromuscular junction of elapid snakes binds cholinergic ligands but unlike other muscle AcChoRs does not bind alpha-bungarotoxin. Numerous studies indicate that the ligand-binding site of the AcChoR includes cysteine residues at positions 192 and 193 of the alpha subunit. We have previously shown that a synthetic dodecapeptide corresponding to residues 185-196 of the Torpedo AcChoR alpha subunit contains the essential elements of the ligand-binding site. In an attempt to elucidate the structural basis for the precise binding properties of snake AcChoR, we sequenced a portion of the snake AcChoR alpha subunit. First, a mouse AcChoR alpha-subunit cDNA probe was used to screen a size-selected snake (Natrix tessellata) genomic library. A genomic clone was isolated and was found to contain sequences homologous to the exon including the first two cysteines (Cys-128 and -142) of AcChoR alpha subunit. The domain of the alpha subunit from Natrix and cobra AcChoR (amino acid residues 119-222), which contains the four extracellular cysteines (128, 142, 192, and 193), was amplified by reverse transcription of mRNA and the polymerase chain reaction and then sequenced. The deduced amino acid sequence showed that the snake alpha subunit contains the two tandem cysteines at positions 192 and 193, resembling all other AcChoR alpha subunits. Sequence comparison revealed that the cloned region of the snake alpha subunit is highly homologous (75-80%) to other muscle AcChoRs and not to neuronal AcChoR, which also does not bind alpha-bungarotoxin. In the presumed ligand-binding site, in the vicinity of Cys-192 and Cys-193, four major substitutions occur in the snake sequence--at positions 184 (Trp----Phe), 185 (Lys----Trp), 187 (Trp----Ser), and 194 (Pro----Leu). In addition, Asn-189 is a putative N-glycosylation site, present only in the snake. These changes, or part of them, may explain the lack of alpha-bungarotoxin-binding to snake AcChoR.

  14. The mammalian 43-kD acetylcholine receptor-associated protein (RAPsyn) is expressed in some nonmuscle cells

    PubMed Central

    1989-01-01

    Torpedo electric organ and vertebrate neuromuscular junctions contain the receptor-associated protein of the synapse (RAPsyn) (previously referred to as the 43K protein), a nonactin, 43,000-Mr peripheral membrane protein associated with the cytoplasmic face of postsynaptic membranes at areas of high nicotinic acetylcholine receptor (AChR) density. Although not directly demonstrated, several lines of evidence suggest that RAPsyn is involved in the synthesis and/or maintenance of such AChR clusters. Microscopic and biochemical studies had previously indicated that RAPsyn expression is restricted to differentiated, AChR- synthesizing cells. Our recent finding that RAPsyn is also produced in undifferentiated myocytes (Frail, D.E., L.S. Musil, a. Bonanno, and J.P. Merlie, 1989. Neuron. 2:1077-1086) led to to examine whether RAPsyn is synthesized in cell types that never express AChR (i.e., cells of other than skeletal muscle origin). Various primary and established rodent cell lines were metabolically labeled with [35S]methionine, and extracts were immunoprecipitated with a monospecific anti-RAPsyn serum. Analysis of these immunoprecipitates by SDS-PAGE revealed detectable RAPsyn synthesis in some (notably fibroblast and Leydig tumor cell lines and primary cardiac cells) but not all (hepatocyte- and lymphocyte-derived) cell types. These results were further substantiated by peptide mapping studies of RAPsyn immunoprecipitated from different cells and quantitation of RAPsyn- encoding mRNA levels in mouse tissues. RAPsyn synthesized in both muscle and nonmuscle cells was shown to be tightly associated with membranes. These findings demonstrate that RAPsyn is not specific to skeletal muscle-derived cells and imply that it may function in a capacity either in addition to or instead of AChR clustering. PMID:2469679

  15. 6-bromohypaphorine from marine nudibranch mollusk Hermissenda crassicornis is an agonist of human α7 nicotinic acetylcholine receptor.

    PubMed

    Kasheverov, Igor E; Shelukhina, Irina V; Kudryavtsev, Denis S; Makarieva, Tatyana N; Spirova, Ekaterina N; Guzii, Alla G; Stonik, Valentin A; Tsetlin, Victor I

    2015-03-12

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes.

  16. 6-Bromohypaphorine from Marine Nudibranch Mollusk Hermissenda crassicornis is an Agonist of Human α7 Nicotinic Acetylcholine Receptor

    PubMed Central

    Kasheverov, Igor E.; Shelukhina, Irina V.; Kudryavtsev, Denis S.; Makarieva, Tatyana N.; Spirova, Ekaterina N.; Guzii, Alla G.; Stonik, Valentin A.; Tsetlin, Victor I.

    2015-01-01

    6-Bromohypaphorine (6-BHP) has been isolated from the marine sponges Pachymatisma johnstoni, Aplysina sp., and the tunicate Aplidium conicum, but data on its biological activity were not available. For the nudibranch mollusk Hermissenda crassicornis no endogenous compounds were known, and here we describe the isolation of 6-BHP from this mollusk and its effects on different nicotinic acetylcholine receptors (nAChR). Two-electrode voltage-clamp experiments on the chimeric α7 nAChR (built of chicken α7 ligand-binding and glycine receptor transmembrane domains) or on rat α4β2 nAChR expressed in Xenopus oocytes revealed no action of 6-BHP. However, in radioligand analysis, 6-BHP competed with radioiodinated α-bungarotoxin for binding to human α7 nAChR expressed in GH4C1 cells (IC50 23 ± 1 μM), but showed no competition on muscle-type nAChR from Torpedo californica. In Ca2+-imaging experiments on the human α7 nAChR expressed in the Neuro2a cells, 6-BHP in the presence of PNU120596 behaved as an agonist (EC50 ~80 μM). To the best of our knowledge, 6-BHP is the first low-molecular weight compound from marine source which is an agonist of the nAChR subtype. This may have physiological importance because H. crassicornis, with its simple and tractable nervous system, is a convenient model system for studying the learning and memory processes. PMID:25775422

  17. Suitability of Nicotinic Acetylcholine Receptor α7 and Muscarinic Acetylcholine Receptor 3 Antibodies for Immune Detection

    PubMed Central

    Rommel, Frank R.; Raghavan, Badrinarayanan; Paddenberg, Renate; Kummer, Wolfgang; Tumala, Susanne; Lochnit, Günter; Gieler, Uwe

    2015-01-01

    Recent evidence reveals a crucial role for acetylcholine and its receptors in the regulation of inflammation, particularly of nicotinic acetylcholine receptor α7 (Chrna7) and muscarinic acetylcholine receptor 3 (Chrm3). Immunohistochemistry is a key tool for their cellular localization in functional tissues. We evaluated nine different commercially available antibodies on back skin tissue from wild-type (Wt) and gene-deficient (KO) mice. In the immunohistochemical analysis, we focused on key AChR-ligand sensitive skin cells (mast cells, nerve fibers and keratinocytes). All five antibodies tested for Chrm3 and the first three Chrna7 antibodies stained positive in both Wt and respective KO skin. With the 4th antibody (ab23832) nerve fibers were unlabeled in the KO mice. By western blot analysis, this antibody detected bands in both Wt and Chrna7 KO skin and brain. qRT-PCR revealed mRNA amplification with a primer set for the undeleted region in both Wt and KO mice, but none with a primer set for the deleted region in KO mice. By 2D electrophoresis, we found β-actin and β-enolase cross reactivity, which was confirmed by double immunolabeling. In view of the present results, the tested antibodies are not suitable for immunolocalization in skin and suggest thorough control of antibody specificity is required if histomorphometry is intended. PMID:25673288

  18. Acetylcholine receptors in the human retina

    SciTech Connect

    Hutchins, J.B.; Hollyfield, J.G.

    1985-11-01

    Evidence for a population of acetylcholine (ACh) receptors in the human retina is presented. The authors have used the irreversible ligand TH-propylbenzilylcholine mustard (TH-PrBCM) to label muscarinic receptors. TH- or SVI-alpha-bungarotoxin (alpha-BTx) was used to label putative nicotinic receptors. Muscarinic receptors are apparently present in the inner plexiform layer of the retina. Autoradiographic grain densities are reduced in the presence of saturating concentrations of atropine, quinuclidinyl benzilate or scopolamine; this indicates that TH-PrBCM binding is specific for a population of muscarinic receptors in the human retina. Binding sites for radiolabeled alpha-BTx are found predominantly in the inner plexiform layer of the retina. Grain densities are reduced in the presence of d-tubocurarine, indicating that alpha-BTx may bind to a pharmacologically relevant nicotinic ACh receptor. This study provides evidence for cholinergic neurotransmission in the human retina.

  19. Impulsive behavior and nicotinic acetylcholine receptors.

    PubMed

    Ohmura, Yu; Tsutsui-Kimura, Iku; Yoshioka, Mitsuhiro

    2012-01-01

    Higher impulsivity is thought to be a risk factor for drug addiction, criminal involvement, and suicide. Excessive levels of impulsivity are often observed in several psychiatric disorders including attention-deficit/hyperactivity disorder and schizophrenia. Previous studies have demonstrated that nicotinic acetylcholine receptors (nAChRs) are involved in impulsive behavior. Here, we introduce recent advances in this field and describe the role of the following nAChR-related brain mechanisms in modulating impulsive behavior: dopamine release in the ventral striatum; α4β2 nAChRs in the infralimbic cortex, which is a ventral part of the medial prefrontal cortex (mPFC); and dopamine release in the mPFC. We also suggest several potential therapeutic drugs to address these mechanisms in impulsivity-related disorders and explore future directions to further elucidate the roles of central nAChRs in impulsive behavior.

  20. Alcohol's actions on neuronal nicotinic acetylcholine receptors.

    PubMed

    Davis, Tiffany J; de Fiebre, Christopher M

    2006-01-01

    Although it has been known for many years that alcoholism and tobacco addiction often co-occur, relatively little information is available on the biological factors that regulate the co-use and abuse of nicotine and alcohol. In the brain, nicotine acts at several different types of receptors collectively known as nicotinic acetylcholine receptors (nAChRs). Alcohol also acts on at least some of these receptors, enhancing the function of some nAChR subtypes and inhibiting the activity of others. Chronic alcohol and nicotine administration also lead to changes in the numbers of nAChRs. Natural variations (i.e., polymorphisms) in the genes encoding different nAChR subunits may be associated with individual differences in the sensitivity to some of alcohol's and nicotine's effects. Finally, at least one subtype of nAChR may help protect cells against alcohol-induced neurotoxicity.

  1. Conotoxins Targeting Nicotinic Acetylcholine Receptors: An Overview

    PubMed Central

    Lebbe, Eline K. M.; Peigneur, Steve; Wijesekara, Isuru; Tytgat, Jan

    2014-01-01

    Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data. PMID:24857959

  2. [Desensitization of the nicotinic acetylcholine receptor].

    PubMed

    Quiñonez, M; Rojas, L

    1994-01-01

    In biological membranes, ionic channels act speeding up ion movements. Each ionic channel is excited by a specific stimulus (i.e. electric, mechanical, chemical, etc.). Chemically activated ionic channels (CAIC), such as the nicotinic acetylcholine receptor (nAChR), suffer desensitization when the receptor site is still occupied by the agonist molecule. The desensitized CAIC is a non functional channel state regarded as a particular case of receptors rundown. CAIC desensitization only involve reduced activity and not their membrane elimination. Desensitization is important to control synaptic transmission and the development of the nervous system. In this review we discuss results related to its production, modulation and some aspects associated to models that consider it. Finally, an approach combining molecular biology and electrophysiology techniques to understand desensitization and its importance in biological systems is presented.

  3. Modulation of nicotinic acetylcholine receptors by strychnine

    PubMed Central

    García-Colunga, Jesús; Miledi, Ricardo

    1999-01-01

    Strychnine, a potent and selective antagonist at glycine receptors, was found to inhibit muscle (α1β1γδ, α1β1γ, and α1β1δ) and neuronal (α2β2 and α2β4) nicotinic acetylcholine receptors (AcChoRs) expressed in Xenopus oocytes. Strychnine alone (up to 500 μM) did not elicit membrane currents in oocytes expressing AcChoRs, but, when applied before, concomitantly, or during superfusion of acetylcholine (AcCho), it rapidly and reversibly inhibited the current elicited by AcCho (AcCho-current). Although in the three cases the AcCho-current was reduced to the same level, its recovery was slower when the oocytes were preincubated with strychnine. The amount of AcCho-current inhibition depended on the receptor subtype, and the order of blocking potency by strychnine was α1β1γδ > α2β4 > α2β2. With the three forms of drug application, the Hill coefficient was close to one, suggesting a single site for the receptor interaction with strychnine, and this interaction appears to be noncompetitive. The inhibitory effects on muscle AcChoRs were voltage-independent, and the apparent dissociation constant for AcCho was not appreciably changed by strychnine. In contrast, the inhibitory effects on neuronal AcChoRs were voltage-dependent, with an electrical distance of ≈0.35. We conclude that strychnine regulates reversibly and noncompetitively the embryonic type of muscle AcChoR and some forms of neuronal AcChoRs. In the former case, strychnine presumably inhibits allosterically the receptor by binding at an external domain whereas, in the latter case, it blocks the open receptor-channel complex. PMID:10097172

  4. Is the acetylcholine receptor a rabies virus receptor?

    PubMed

    Lentz, T L; Burrage, T G; Smith, A L; Crick, J; Tignor, G H

    1982-01-08

    Rabies virus was found on mouse diaphragms and on cultured chick myotubes in a distribution coinciding with that of the acetylcholine receptor. Treatment of the myotubes with alpha-bungarotoxin and d-tubocurarine before the addition of the virus reduced the number of myotubes that became infected with rabies virus. These findings together suggest that acetylcholine receptors may serve as receptors for rabies virus. The binding of virus to acetylcholine receptors, which are present in high density at the neuromuscular junction, would provide a mechanism whereby the virus could be locally concentrated at sites in proximity to peripheral nerves facilitating subsequent uptake and transfer to the central nervous system.

  5. The Maturation Factors HoxR and HoxT Contribute to Oxygen Tolerance of Membrane-Bound [NiFe] Hydrogenase in Ralstonia eutropha H16 ▿ †

    PubMed Central

    Fritsch, Johannes; Lenz, Oliver; Friedrich, Bärbel

    2011-01-01

    The membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha H16 undergoes a complex maturation process comprising cofactor assembly and incorporation, subunit oligomerization, and finally twin-arginine-dependent membrane translocation. Due to its outstanding O2 and CO tolerance, the MBH is of biotechnological interest and serves as a molecular model for a robust hydrogen catalyst. Adaptation of the enzyme to oxygen exposure has to take into account not only the catalytic reaction but also biosynthesis of the intricate redox cofactors. Here, we report on the role of the MBH-specific accessory proteins HoxR and HoxT, which are key components in MBH maturation at ambient O2 levels. MBH-driven growth on H2 is inhibited or retarded at high O2 partial pressure (pO2) in mutants inactivated in the hoxR and hoxT genes. The ratio of mature and nonmature forms of the MBH small subunit is shifted toward the precursor form in extracts derived from the mutant cells grown at high pO2. Lack of hoxR and hoxT can phenotypically be restored by providing O2-limited growth conditions. Analysis of copurified maturation intermediates leads to the conclusion that the HoxR protein is a constituent of a large transient protein complex, whereas the HoxT protein appears to function at a final stage of MBH maturation. UV-visible spectroscopy of heterodimeric MBH purified from hoxR mutant cells points to alterations of the Fe-S cluster composition. Thus, HoxR may play a role in establishing a specific Fe-S cluster profile, whereas the HoxT protein seems to be beneficial for cofactor stability under aerobic conditions. PMID:21441514

  6. A high-molecular-weight complex of membrane proteins BAP29/BAP31 is involved in the retention of membrane-bound IgD in the endoplasmic reticulum.

    PubMed

    Schamel, Wolfgang W A; Kuppig, Stephan; Becker, Bernd; Gimborn, Kerstin; Hauri, Hans-Peter; Reth, Michael

    2003-08-19

    B cell antigen receptors (BCRs) are multimeric transmembrane protein complexes comprising membrane-bound immunoglobulins (mIgs) and Ig-alpha/Ig-beta heterodimers. In most cases, transport of mIgs from the endoplasmic reticulum (ER) to the cell surface requires assembly with the Ig-alpha/Ig-beta subunits. In addition to Ig-alpha/Ig-beta, mIg molecules also bind two ER-resident membrane proteins, BAP29 and BAP31, and the chaperone heavy chain binding protein (BiP). In this article, we show that neither Ig-alpha/Ig-beta nor BAP29/BAP31 nor BiP bind simultaneously to the same mIgD molecule. Blue native PAGE revealed that only a minor fraction of intracellular mIgD is associated with high-molecular-weight BAP29/BAP31 complexes. BAP-binding to mIgs was found to correlate with ER retention of chimeric mIgD molecules. On high-level expression in Drosophila melanogaster S2 cells, mIgD molecules were detected on the cell surface in the absence of Ig-alpha/Ig-beta. This aberrant transport was prevented by coexpression of BAP29 and BAP31. Thus, BAP complexes contribute to ER retention of mIg complexes that are not bound to Ig-alpha/Ig-beta. Furthermore, the mechanism of ER retention of both BAP31 and mIgD is not through retrieval from a post-ER compartment, but true ER retention. In conclusion, BAP29 and BAP31 might be the long sought after retention proteins and/or chaperones that act on transmembrane regions of various proteins.

  7. Modal gating of muscle nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Vij, Ridhima

    Many ion channels exhibit multiple patterns of kinetic activity in single-channel currents. This behavior is rare in WT mouse muscle nicotinic acetylcholine receptors (AChRs), where A2C↔A2O gating events are well-described by single exponentials. Also, single-channel open probability (PO) is essentially homogeneous at a given agonist concentration in the WT receptors. Here I report that perturbations of almost all the residues in loop C (alpha188-alpha199, at the agonist binding site) generate heterogeneity in PO ('modes'). Such unsettled activity was apparent with an alanine substitution at all positions in loop C (except alphaY190 and alphaY198) and with different side chain substitutions at alphaP197 for both adult- and fetal-type AChRs. I used single channel electrophysiology along with site-directed mutagenesis to study modal gating in AChRs consequent to mutations/deletions in loop C. The multiple patterns of kinetic activity arose from the difference in agonist affinity rather than in intrinsic AChR gating. Out of the four different agonists used to study the modal behavior, acetylcholine (ACh) showed a higher degree of kinetic heterogeneity compared to others. The time constant for switching between modes was long (~mins), suggesting that they arise from alternative, stable protein conformations. By studying AChRs having only 1 functional binding site, I attempted to find the source of the affinity difference, which was traced mainly to the alphadelta agonist site. Affinity at the neurotransmitter binding site is mainly determined by a core of five aromatic residues (alphaY93, alphaW149, alphaY190, alphaY198 and deltaW57). Phenylalanine substitutions at all aromatic residues except alphaY93 resulted in elimination of modes. Modes were also eliminated by alanine mutation at deltaW57 on the complementary side but not at other aromatics. Also, by substituting four gamma subunit residues into the delta subunit on the complementary beta sheet, I found that

  8. A conformational change in the peripheral anionic site of Torpedo californica acetylcholinesterase induced by a bis-imidazolium oxime.

    PubMed

    Legler, Patricia M; Soojhawon, Iswarduth; Millard, Charles B

    2015-09-01

    As part of ongoing efforts to design improved nerve agent antidotes, two X-ray crystal structures of Torpedo californica acetylcholinesterase (TcAChE) bound to the bis-pyridinium oxime, Ortho-7, or its experimental bis-imidazolium analogue, 2BIM-7, were determined. Bis-oximes contain two oxime groups connected by a hydrophobic linker. One oxime group of Ortho-7 binds at the entrance to the active-site gorge near Trp279, and the second binds at the bottom near Trp84 and Phe330. In the Ortho-7-TcAChE complex the oxime at the bottom of the gorge was directed towards the nucleophilic Ser200. In contrast, the oxime group of 2BIM-7 was rotated away from Ser200 and the oxime at the entrance induced a significant conformational change in the peripheral anionic site (PAS) residue Trp279. The conformational change alters the surface of the PAS and positions the imidazolium oxime of 2BIM-7 further from Ser200. The relatively weaker binding and poorer reactivation of VX-inhibited, tabun-inhibited or sarin-inhibited human acetylcholinesterase by 2BIM-7 compared with Ortho-7 may in part be owing to the unproductively bound states caught in crystallo. Overall, the reactivation efficiency of 2BIM-7 was comparable to that of 2-pyridine aldoxime methyl chloride (2-PAM), but unlike 2-PAM the bis-imidazolium oxime lacks a fixed charge, which may affect its membrane permeability.

  9. Localization of dystrophin and dystrophin-related protein at the electromotor synapse and neuromuscular junction in Torpedo marmorata.

    PubMed

    Cartaud, A; Ludosky, M A; Tomé, F M; Collin, H; Stetzkowski-Marden, F; Khurana, T S; Kunkel, L M; Fardeau, M; Changeux, J P; Cartaud, J

    1992-06-01

    The immunological identification of dystrophin isoforms at the neuromuscular junction and Torpedo marmorata electromotor synapse was attempted using various antibodies. A polyclonal antibody raised against electrophoretically purified dystrophin from T. marmorata electrocyte has been thoroughly investigated. This antibody recognized dystrophin in the electric tissue as well as sarcolemmal and synaptic neuromuscular junction dystrophin in all studies species (T. marmorata, rat, mice and human) at serum dilutions as high as 1:10,000. At variance, no staining of either the sarcolemma or neuromuscular junction was observed in Duchenne muscular dystrophy or mdx mice skeletal muscles. In these muscles, other members of the dystrophin superfamily, in particular the dystrophin-related protein(s) encoded by autosomal genes are present. These data thus demonstrate the specificity of our antibodies for dystrophin. Anti-dystrophin-related protein antibodies [Khurana et al. (1991) Neuromusc. Disorders 1, 185-194] which gave a strong immunostaining of the neuromuscular junction in various species, including T. marmorata, cross-reacted weakly with the postsynaptic membrane of the electrocyte. Taken together, these observations are in favor of the existence of a protein very homologous to dystrophin at the electromotor synapse in T. marmorata, whereas both dystrophin and dystrophin-related protein co-localize at the neuromuscular junction as in all species studied. The electrocyte thus offers the unique opportunity to study the interaction of dystrophin with components of the postsynaptic membrane.

  10. The gallbladder of the electric ray Torpedo marmorata Risso displays excrescent cholecystocytes with merocrine and apocrine-like secretions.

    PubMed

    Gilloteaux, J; Ott, Donald W; Oldham-Ott, Carla K

    2013-01-01

    The gallbladder of Torpedo marmorata exhibits a mucosal surface layer of simple columnar epithelium with very tall cholecystocytes. The apical domain of each cell has few microvilli, but many mucous vesicles that are secreted by exocytosis at the cell apices. The apical regions may also elongate and undergo self-excision while shedding mucus and cell debris into the gallbladder lumen in a manner similar to that described in mammals as a result of sex steroid treatment to induce gallstones and to that found in the cholecystitis associated with cholelithiasis. Numerous small mitochondria, spherical to elongated, are distributed throughout the cells, while the nuclei are often located in the lower third of each cell. In the lower part of the cholecystocytes, large and very densely contrasted lysosomes can be found. All cells are tightly joined by junctional complexes, including long, highly contrasted desmosomes. The fibromuscular layer is made of a loose stroma with a limited muscular component and a poor blood supply. Large diameter blood vessels can only be found in the subserosal layer. It is hypothesized that the obligatorily carnivorous diet of this ureotelic fish has resulted in the evolution of a gallbladder ultrastructure resembling that found in cholecystitis but without the associated cholelithiasis.

  11. A higher risk of congenital anomalies in the offspring of personnel who served aboard a Norwegian missile torpedo boat

    PubMed Central

    Mageroy, N; Mollerlokken, O J; Riise, T; Koefoed, V; Moen, B E

    2006-01-01

    Background In the 1990s, congenital anomalies were reported among children whose fathers had served aboard a Norwegian missile torpedo boat (MTB). The Royal Norwegian Navy asked the University of Bergen to look into this problem as one part of a general health and work environment surveillance. Aims To estimate any increased risk of having children with congenital anomalies and having stillborn children among the offspring of workers that had served aboard the MTB and to investigate possible differences in exposure and other risk factors between these groups. Methods Data from a cross‐sectional study among all current employees of the Norwegian Navy (n = 2265, response rate 58%) were analysed. Results The prevalence ratio of having a child with congenital malformations associated with working on the ship was 4.0 (95% CI 1.9 to 8.6). The prevalence ratio of having a child who was stillborn or died within one week was 4.1 (95% CI 1.7 to 9.9). Conclusion Service aboard the MTB was associated with an increased risk of having children with congenital birth defects and having children that were stillborn. The causes of these findings are unknown. PMID:16421386

  12. Diversity of insect nicotinic acetylcholine receptor subunits.

    PubMed

    Jones, Andrew K; Sattelle, David B

    2010-01-01

    Nicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate fast synaptic transmission in the insect nervous system and are targets of a major group of insecticides, the neonicotinoids. They consist of five subunits arranged around a central ion channeL Since the subunit composition determines the functional and pharmacological properties of the receptor the presence of nAChR families comprising several subunit-encodinggenes provides a molecular basis for broad functional diversity. Analyses of genome sequences have shown that nAChR gene families remain compact in diverse insect species, when compared to their nematode andvertebrate counterparts. Thus, the fruit fly (Drosophila melanogaster), malaria mosquito (Anopheles gambiae), honey bee (Apis mellifera), silk worm (Bombyx mon) and the red flour beetle (Tribolium castaneum) possess 10-12 nAChR genes while human and the nematode Caenorhabditis elegans have 16 and 29 respectively. Although insect nAChRgene families are amongst the smallest known, receptor diversity can be considerably increased by the posttranscriptional processes alternative splicing and mRNA A-to-I editingwhich can potentially generate protein products which far outnumber the nAChR genes. These two processes can also generate species-specific subunit isoforms. In addition, each insect possesses at least one highly divergent nAChR subunit which may perform species-specific functions. Species-specific subunit diversification may offer promising targets for future rational design of insecticides that target specific pest insects while sparing beneficial species.

  13. Allosteric binding sites on muscarinic acetylcholine receptors.

    PubMed

    Wess, Jürgen

    2005-12-01

    In this issue of Molecular Pharmacology, Tränkle et al. (p. 1597) present new findings regarding the existence of a second allosteric site on the M2 muscarinic acetylcholine receptor (M2 mAChR). The M2 mAChR is a prototypic class A G protein-coupled receptor (GPCR) that has proven to be a very useful model system to study the molecular mechanisms involved in the binding of allosteric GPCR ligands. Previous studies have identified several allosteric muscarinic ligands, including the acetylcholinesterase inhibitor tacrine and the bis-pyridinium derivative 4,4'-bis-[(2,6-dichloro-benzyloxy-imino)-methyl]-1,1'-propane-1,3-diyl-bis-pyridinium dibromide (Duo3), which, in contrast to conventional allosteric muscarinic ligands, display concentration-effect curves with slope factors >1. By analyzing the interactions of tacrine and Duo3 with other allosteric muscarinic agents predicted to bind to the previously identified ;common' allosteric binding site, Tränkle et al. provide evidence suggesting that two allosteric agents and one orthosteric ligand may be able to bind to the M2 mAChR simultaneously. Moreover, studies with mutant mAChRs indicated that the M2 receptor epitopes involved in the binding of tacrine and Duo3 may not be identical. Molecular modeling and ligand docking studies suggested that the additional allosteric site probably represents a subdomain of the receptor's allosteric binding cleft. Because allosteric binding sites have been found on many other GPCRs and drugs interacting with these sites are thought to have great therapeutic potential, the study by Tränkle et al. should be of considerable general interest.

  14. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-18

    Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.

  15. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    PubMed

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties.

  16. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis.

  17. Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Cole, A. E.; Nicoll, R. A.

    1983-09-01

    The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.

  18. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.

    PubMed

    Zhong, Lei Ray; Estes, Stephen; Artinian, Liana; Rehder, Vincent

    2013-07-01

    In addition to acting as a classical neurotransmitter in synaptic transmission, acetylcholine (ACh) has been shown to play a role in axonal growth and growth cone guidance. What is not well understood is how ACh acts on growth cones to affect growth cone filopodia, structures known to be important for neuronal pathfinding. We addressed this question using an identified neuron (B5) from the buccal ganglion of the pond snail Helisoma trivolvis in cell culture. ACh treatment caused pronounced filopodial elongation within minutes, an effect that required calcium influx and resulted in the elevation of the intracellular calcium concentration ([Ca]i ). Whole-cell patch clamp recordings showed that ACh caused a reduction in input resistance, a depolarization of the membrane potential, and an increase in firing frequency in B5 neurons. These effects were mediated via the activation of nicotinic acetylcholine receptors (nAChRs), as the nAChR agonist dimethylphenylpiperazinium (DMPP) mimicked the effects of ACh on filopodial elongation, [Ca]i elevation, and changes in electrical activity. Moreover, the nAChR antagonist tubucurarine blocked all DMPP-induced effects. Lastly, ACh acted locally at the growth cone, because growth cones that were physically isolated from their parent neuron responded to ACh by filopodial elongation with a similar time course as growth cones that remained connected to their parent neuron. Our data revealed a critical role for ACh as a modulator of growth cone filopodial dynamics. ACh signaling was mediated via nAChRs and resulted in Ca influx, which, in turn, caused filopodial elongation.

  19. Schwann cells and myasthenia gravis. Preferential uptake of soluble and membrane-bound AChR by normal and immortalized Schwann cells, and immunogenic presentation to AChR-specific T line lymphocytes.

    PubMed Central

    Zhang, Y. P.; Porter, S.; Wekerle, H.

    1990-01-01

    The normal neuromuscular synapse is formed by the intimate association of nerve endings, postsynaptic end-plate foldings in the muscle fiber, and nonmyelinating Schwann cells (SC) sealing the synaptic ramifications. Because SC have been recognized recently to have an immunogenic potential inducible to present protein autoantigens to autoimmune T lymphocytes, and considering their close proximity to the acetylcholine receptor (AChR)-bearing postsynaptic membranes, presentation of soluble and membrane vesicle-bound AChR to appropriate T cells was investigated. Short-term monolayer cultures of SC isolated from neonatal rat sciatic nerves, as well as cells of an immortalized SC line of similar origin, were fully able to present the relevant molecular epitopes to major histocompatibility complex (MHC) compatible AChR-specific T line lymphocytes immunogenically. Presentation of AChR was restricted by RT1.B (I-A) MHC class II products. Both types of cultured rat SC were inducible to expression of MHC class I and II products, and they were able to phagocytose AChR-enriched membrane vesicles preferentially. In contrast, phagocytosis of latex particles by SC was negligible. These data qualify perisynaptic SC as potential presenter cells of autoimmunogenic AChR in myasthenia gravis. Thus, SC may play a critical and as-yet unpredicted regulatory role in the cellular pathogenesis of myasthenia gravis. Images Figure 5 Figure 3 Figure 6 PMID:1688688

  20. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  1. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    ERIC Educational Resources Information Center

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  2. Clitoria ternatea root extract enhances acetylcholine content in rat hippocampus.

    PubMed

    Rai, K S; Murthy, K D; Karanth, K S; Nalini, K; Rao, M S; Srinivasan, K K

    2002-12-01

    Treatment with 100 mg/kg of Clitoria ternatea aqueous root extract (CTR), for 30 days in neonatal and young adult age groups of rat, significantly increased acetylcholine (ACh) content in their hippocampi as compared to age matched controls. Increase in ACh content in their hippocampus may be the neurochemical basis for their improved learning and memory.

  3. Mechanisms of Action of Anticholinesterases and Oximes on Acetylcholine Receptors

    DTIC Science & Technology

    1988-07-23

    J.F. and D.B. Sanders. The management of patients with myasthenia gravis , in Myasthenia Gravis (E.X. Albuquerque and A.T. Eldefrawi, eds.), Chapman...Eldefrawi. Affinity of myasthenia drugs to acetylcholinesterase and acetylcholine receptor. Biochem. Med. 10:258-265 (1974). 9. Carpenter, D.O., L.A

  4. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  5. Acetylcholine receptors in the retinas of the α7 nicotinic acetylcholine receptor knockout mouse

    PubMed Central

    Souza, Fred G. Oliveira; Bruce, Kady S.; Strang, Christianne E.; Morley, Barbara J.; Keyser, Kent T.

    2014-01-01

    Purpose The α7 nicotinic acetylcholine receptor (nAChR) is widely expressed in the nervous system, including in the inner retinal neurons in all species studied to date. Although reductions in the expression of α7 nAChRs are thought to contribute to the memory and visual deficits reported in Alzheimer’s disease (AD) and schizophrenia , the α7 nAChR knockout (KO) mouse is viable and has only slight visual dysfunction. The absence of a major phenotypic abnormality may be attributable to developmental mechanisms that serve to compensate for α7 nAChR loss. We hypothesized that the upregulation of genes encoding other nAChR subunits or muscarinic acetylcholine receptor (mAChR) subtypes during development partially accounts for the absence of major deficiencies in the α7 nAChR KO mouse. The purpose of this study was to determine whether the deletion of the α7 nAChR subunit in a mouse model resulted in changes in the regulation of other cholinergic receptors or other ion channels in an α7 nAChR KO mouse when compared to a wild-type (WT) mouse. Methods To examine gene expression changes, we employed a quantitative real-time polymerase chain reaction (qPCR) using whole retina RNA extracts as well as RNA extracted from selected regions of the retina. These extracts were collected using laser capture microdissection (LCM). The presence of acetylcholine receptor (AChR) subunit and subtype proteins was determined via western blotting. To determine any differences in the number and distribution of choline acetyltransferase (ChAT) amacrine cells, we employed wholemount and vertical immunohistochemistry (IHC) and cell counting. Additionally, in both WT and α7 nAChR KO mouse retinas, the distribution of the nAChR subunit and mAChR subtype proteins were determined via IHC for those KO mice that experienced mRNA changes. Results In the whole retina, there was a statistically significant upregulation of α2, α9, α10, β4, nAChR subunit, and m1 and m4 mAChR subtype

  6. Amino acids outside of the loops that define the agonist binding site are important for ligand binding to insect nicotinic acetylcholine receptors.

    PubMed

    Liu, Zewen; Han, Zhaojun; Liu, Shuhua; Zhang, Yixi; Song, Feng; Yao, Xiangmei; Gu, Jianhua

    2008-07-01

    Nicotinic acetylcholine (ACh) receptors (nAChRs) are the targets of several kinds of insecticides. Based on the mutagenesis studies of Torpedo californica nAChRs and solved structure of a molluscan, glial-derived soluble ACh-binding protein, a model of the agonist site was constructed with contributing amino acids from three distinct loops (A, B, and C) of the alpha subunits and another three loops (D, E, and F) of the non-alpha subunits. According to this model, most insect nAChR subunits can form the functional heteromeric or homomeric receptors. Actually, insect subunits themselves did not form any functional receptor at various combinations as yet, and only part of them can form the functional receptors with vertebrate non-alpha subunits. These findings suggested that the agonist binding for insect nAChRs was not only contributed by those key amino acids in six loops, but also some unidentified amino acids from other regions. In our previous studies on nAChRs for Nilaparvata lugens, a target-site mutation (Y151S) was found within two alpha subunits (Nlalpha1 and Nlalpha3). In Drosophila S2 cells and Xenopus oocytes, Nlalpha1 can form functional receptors with rat beta2 subunit. However, the same thing was not observed in Nlalpha3. In the present paper, by exchanging the corresponding regions between Nlalpha1 and Nlalpha3 to generate different chimeras, amino acid residues or residue clusters in the regions outside the six loops were found to play essential roles in agonist binding, especially for the amino acid clusters between loop B and C. This result indicated that the residues in the six loops could be necessary, but not enough for the activity of agonist binding.

  7. Binding sites for. alpha. -bungarotoxin and the noncompetitive inhibitor phencyclidine on a synthetic peptide comprising residues 172-227 of the. alpha. -subunit of the nicotinic acetylcholine receptor

    SciTech Connect

    Donnelly-Roberts, D.L.; Lentz, T.L. )

    1991-07-30

    The binding of the competitive antagonist {alpha}-bungarotoxin ({alpha}-Btx) and the noncompetitive inhibitor phencyclidine (PCP) to a synthetic peptide comprising residues 172-227 of the {alpha}-subunit of the Torpedo acetylcholine receptor has been characterized. {sup 125}I-{alpha}-Btx bound to the 172-227 peptide in a solid-phase assay and was competed by {alpha}-Btx d-tubocurarine and NaCl. In the presence of 0.02% sodium dodecyl sulfate, {sup 125}I-{alpha}-Btx bound to the 56-residue peptide with a K{sub D} of 3.5 nM, as determined by equilibrium saturation binding studies. Because {alpha}Btx binds to a peptide comprising residues 173-204 with the same affinity and does not bind to a peptide comprising residues 205-227, the competitive antagonist and hence agonist binding site lies between residues 173 and 204. After photoaffinity labeling, ({sup 3}H)PCP was bound to the 172-227 peptide. ({sup 3}H)PCP binding was inhibited by chlorpromazine, tetracaine, and dibucaine. It is concluded that a high-affinity binding site for PCP is located between residues 205 and 227, which includes the first 18 residues of transmembrane segment M1, and that a low-affinity site is located in the competitive antagonist binding site between residues 173 and 204. These results show that a synthetic peptide comprising residues 172-227 of the {alpha} subunit contains three binding sites, one for {alpha}-Btx and two for PCP. Previous studies on the intact receptor indicate high-affinity PCP binding occurs in the receptor channel.

  8. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    PubMed

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  9. Effect of externally added carnitine on the synthesis of acetylcholine in rat cerebral cortex cells.

    PubMed

    Wawrzeńczyk, A; Nałecz, K A; Nałecz, M J

    1995-06-01

    Acetylcholine synthesis from radiolabelled glucose was monitored in cerebral cortex cells isolated from brains of suckling and adult rats. Acetylcholine synthesis was found much higher in suckling animals, both in the absence and presence of acetylcholinesterase (acetylcholine hydrolase, EC 3.1.1.7) inhibitor, paraoxon. Together with choline (20 microM), carnitine was found to stimulate acetylcholine synthesis in a synergistic way in cortex cells from adult rats (18%). Choline, however, was incapable of reversing an inhibitory effect exerted by carnitine on acetylcholine synthesis in cortex cells from suckling animals. Distribution of carnitine derivatives was found significantly different in the cells from young and old animals, the content of acetylcarnitine decreased with age with a corresponding increase of free carnitine. The observed differences in carnitine effect on acetylcholine synthesis suggested that high acetylcarnitine in cells capable of beta-oxidation might be correlated with the lower level of acetylcholine synthesis.

  10. Glia of the cholinergic electromotor nucleus of Torpedo are the source of the cDNA encoding a GAT-1-like GABA transporter.

    PubMed

    Swanson, G T; Umbach, J A; Gundersen, C B

    1994-07-01

    A PCR-based strategy was used to clone DNAs encoding Na(+)- and Cl(-)-dependent cotransport proteins using DNA from the cholinergic electromotor nucleus of Torpedo californica. This cloning strategy resulted in the isolation of a cDNA clone that shows strong nucleotide sequence homology to the GABA transporter-1 (GAT-1) types of rat and human brain. When expressed in frog oocytes, this transporter mediates the uptake of GABA. Moreover, physiologically and pharmacologically, the Torpedo protein behaves very similarly to the rat and human GAT-1 proteins. However, in contrast to the predominantly neuronal localization of the mammalian GAT-1 proteins, the mRNA for the fish protein is found almost exclusively in glial elements of the electromotor nucleus. This unexpected discovery of a GABA transporter cDNA in a nucleus that has no previously characterized GABAergic innervation raises questions about the role of GABA and this transporter in the electromotor system. Several speculative models for GABA function are proposed.

  11. Calelectrin, a calcium-dependent membrane-binding protein associated with secretory granules in Torpedo cholinergic electromotor nerve endings and rat adrenal medulla.

    PubMed

    Walker, J H; Obrocki, J; Südhof, T C

    1983-07-01

    Calelectrin, a calcium-dependent membrane-binding protein of subunit molecular weight 32,000 has been isolated from the electric organ of Torpedo, and shown to occur in cholinergic neurones and in bovine adrenal medulla. In this study a monospecific antiserum against the Torpedo protein has been used to study the localization of calelectrin in the rat adrenal gland. The cortex was not stained, whereas in the medulla the cytoplasm of the chromaffin cells was stained in a particulate manner. An identical staining pattern was obtained with an antiserum against the chromaffin granule enzyme dopamine beta-hydroxylase, although the two antisera did not cross-react with the same antigen. The purified protein aggregates bovine chromaffin granule membranes and cholinergic synaptic vesicles and also self aggregates in a calcium-dependent manner. Negative staining results demonstrate that calcium induces a transformation of the purified protein from circular structures 30-80 nm in diameter into a highly aggregated structure. Calelectrin may have a structural or regulatory role in the intracellular organization of secretory cells.

  12. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  13. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  14. Nicotinic acetylcholine receptors control acetylcholine and noradrenaline release in the rodent habenulo-interpeduncular complex

    PubMed Central

    Beiranvand, F; Zlabinger, C; Orr-Urtreger, A; Ristl, R; Huck, S; Scholze, P

    2014-01-01

    Background and purpose Nicotinic acetylcholine receptors (nACh receptors) play a central role in the habenulo-interpeduncular system. We studied nicotine-induced release of NA and ACh in the habenula and interpeduncular nucleus (IPN). Experimental approach The habenula and IPN were loaded with [3H]-choline or [3H]-NA and placed in superfusion chambers. [3H]-ACh release was also stimulated using nicotinic agonists, electrical pulses and elevated [KCl]o in hippocampal and cortical slices from rats, wild-type mice and mice lacking α5, α7, β2, or β4 nACh receptor subunits. Finally, we analysed nACh receptor subtypes in the IPN using immunoprecipitation. Key results Nicotine induced release of [3H]-ACh in the IPN of rats and mice. This release was calcium-dependent but not blocked by tetrodotoxin (TTX); moreover, [3H]-ACh release was abolished in β4-knockout mice but was unaffected in β2- and α5-knockout mice. In contrast, nicotine-induced release of [3H]-NA in the IPN and habenula was blocked by TTX and reduced in both β2-knockout and β4-knockout mice, and dose–response curves were right-shifted in α5-knockout mice. Although electrical stimuli triggered the release of both transmitters, [3H]-ACh release required more pulses delivered at a higher frequency. Conclusions and implications Our results confirm previous findings that β4-containing nACh receptors are critical for [3H]-ACh release in the mouse IPN. Experiments using α5-knockout mice also revealed that unlike in the hippocampus, nicotine-induced [3H]-NA release in the habenulo-interpeduncular system is altered in this knockout model. As α5-containing nACh receptors play a key role in nicotine intake, our results add NA to the list of transmitters involved in this mechanism. PMID:25041479

  15. A Dynamical Role for Acetylcholine in Synaptic Renormalization

    PubMed Central

    Fink, Christian G.; Murphy, Geoffrey G.; Zochowski, Michal; Booth, Victoria

    2013-01-01

    Although sleep is a fundamental behavior observed in virtually all animal species, its functions remain unclear. One leading proposal, known as the synaptic renormalization hypothesis, suggests that sleep is necessary to counteract a global strengthening of synapses that occurs during wakefulness. Evidence for sleep-dependent synaptic downscaling (or synaptic renormalization) has been observed experimentally, but the physiological mechanisms which generate this phenomenon are unknown. In this study, we propose that changes in neuronal membrane excitability induced by acetylcholine may provide a dynamical mechanism for both wake-dependent synaptic upscaling and sleep-dependent downscaling. We show in silico that cholinergically-induced changes in network firing patterns alter overall network synaptic potentiation when synaptic strengths evolve through spike-timing dependent plasticity mechanisms. Specifically, network synaptic potentiation increases dramatically with high cholinergic concentration and decreases dramatically with low levels of acetylcholine. We demonstrate that this phenomenon is robust across variation of many different network parameters. PMID:23516342

  16. Optochemical control of genetically engineered neuronal nicotinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Tochitsky, Ivan; Banghart, Matthew R.; Mourot, Alexandre; Yao, Jennifer Z.; Gaub, Benjamin; Kramer, Richard H.; Trauner, Dirk

    2012-02-01

    Advances in synthetic chemistry, structural biology, molecular modelling and molecular cloning have enabled the systematic functional manipulation of transmembrane proteins. By combining genetically manipulated proteins with light-sensitive ligands, innately ‘blind’ neurobiological receptors can be converted into photoreceptors, which allows them to be photoregulated with high spatiotemporal precision. Here, we present the optochemical control of neuronal nicotinic acetylcholine receptors (nAChRs) with photoswitchable tethered agonists and antagonists. Using structure-based design, we produced heteromeric α3β4 and α4β2 nAChRs that can be activated or inhibited with deep-violet light, but respond normally to acetylcholine in the dark. The generation of these engineered receptors should facilitate investigation of the physiological and pathological functions of neuronal nAChRs and open a general pathway to photosensitizing pentameric ligand-gated ion channels.

  17. Spin labeled acetylcholine analogs: studies of cholinergic receptor.

    PubMed

    Rosen, G M; Abou-Donia, M B; Yeh, J Z; Menzel, D B

    1975-10-01

    Some spin-labeled acetylcholine analogs, in which the number of methylene groups between the quaternary nitrogen and the ether oxygen ranged between 1-5, were synthesized to study drug interacitons with acetylcholine receptors. None of the compounds tested, with the exception of the one that contained 2 methylene groups (SL-2) had any cholinergic activity. SL-2 was not capable of producing any nicotinic cholinomimetic activity. On the other hand it proved to have a very weak nicotinic cholinolytic activity on the receptors of the frog satorius muscle. This compound exhibited strong antagonism against muscarinic receptors of the isolated frog heart. The muscarinic cholinolytic action of the spin-label ACh analog is discussed in terms of the molecular perturbation theory of drug action.

  18. Acetylcholine mediates behavioral and neural post-error control.

    PubMed

    Danielmeier, Claudia; Allen, Elena A; Jocham, Gerhard; Onur, Oezguer A; Eichele, Tom; Ullsperger, Markus

    2015-06-01

    Humans often commit errors when they are distracted by irrelevant information and no longer focus on what is relevant to the task at hand. Adjustments following errors are essential for optimizing goal achievement. The posterior medial frontal cortex (pMFC), a key area for monitoring errors, has been shown to trigger such post-error adjustments by modulating activity in visual cortical areas. However, the mechanisms by which pMFC controls sensory cortices are unknown. We provide evidence for a mechanism based on pMFC-induced recruitment of cholinergic projections to task-relevant sensory areas. Using fMRI in healthy volunteers, we found that error-related pMFC activity predicted subsequent adjustments in task-relevant visual brain areas. In particular, following an error, activity increased in those visual cortical areas involved in processing task-relevant stimulus features, whereas activity decreased in areas representing irrelevant, distracting features. Following treatment with the muscarinic acetylcholine receptor antagonist biperiden, activity in visual areas was no longer under control of error-related pMFC activity. This was paralleled by abolished post-error behavioral adjustments under biperiden. Our results reveal a prominent role of acetylcholine in cognitive control that has not been recognized thus far. Regaining optimal performance after errors critically depends on top-down control of perception driven by the pMFC and mediated by acetylcholine. This may explain the lack of adaptivity in conditions with reduced availability of cortical acetylcholine, such as Alzheimer's disease.

  19. Identification of a family of muscarinic acetylcholine receptor genes

    SciTech Connect

    Bonner, T.I.; Buckley, N.J.; Young, A.C.; Brann, M.R.

    1987-07-31

    Complementary DNAs for three different muscarinic acetylcholine receptors were isolated from a rat cerebral cortex library, and the cloned receptors were expressed in mammalian cells. Analysis of human and rat genomic clones indicates that there are at least four functional muscarinic receptor genes and that these genes lack introns in the coding sequence. This gene family provides a new basis for evaluating the diversity of muscarinic mechanisms in the nervous system.

  20. Acetylcholine in the rat pituitary: a possible humoral factor.

    PubMed

    Egozi, Y; Kloog, Y; Fleminger, G; Sokolovsky, M

    1988-12-20

    Significant amounts of acetylcholine (ACh) were detected in each of the 3 lobes of the rat pituitary (3-6 pmol/anterior lobe, 3 pmol/intermediate lobe and 1.8 pmol/posterior lobe). In the anterior lobes of cyclic rats the levels of ACh varied with the estrous cycle, with daily peaks being observed on the days of proestrus and estrus. The occurrence of ACh, apparently as a humoral factor, appears to be unique to the anterior pituitary.

  1. A hyperpolarized choline molecular probe for monitoring acetylcholine synthesis.

    PubMed

    Allouche-Arnon, Hyla; Gamliel, Ayelet; Barzilay, Claudia M; Nalbandian, Ruppen; Gomori, J Moshe; Karlsson, Magnus; Lerche, Mathilde H; Katz-Brull, Rachel

    2011-01-01

    Choline as a reporter molecule has been investigated by in vivo magnetic resonance for almost three decades. Accumulation of choline metabolites (mainly the phosphorylated forms) had been observed in malignancy in preclinical models, ex-vivo, in vivo and in patients. The combined choline metabolite signal appears in (1) H-MRS of the brain and its relative intensity had been used as a diagnostic factor in various conditions. The advent of spin hyperpolarization methods for in vivo use has raised interest in the ability to follow the physiological metabolism of choline into acetylcholine in the brain. Here we present a stable-isotope labeled choline analog, [1,1,2,2-D(4) ,2-(13) C]choline chloride, that is suitable for this purpose. In this analog, the (13) C position showed 24% polarization in the liquid state, following DNP hyperpolarization. This nucleus also showed a long T(1) (35 s) at 11.8 T and 25 °C, which is a prerequisite for hyperpolarized studies. The chemical shift of this (13) C position differentiates choline and acetylcholine from each other and from the other water-soluble choline metabolites, namely phosphocholine and betaine. Enzymatic studies using an acetyltransferase enzyme showed the synthesis of the deuterated-acetylcholine form at thermal equilibrium conditions and in a hyperpolarized state. Analysis using a comprehensive model showed that the T(1) of the formed hyperpolarized [1,1,2,2-D(4) ,2-(13) C]acetylcholine was 34 s at 14.1 T and 37 °C. We conclude that [1,1,2,2-D(4) ,2-(13) C]choline chloride is a promising new molecular probe for hyperpolarized metabolic studies and discuss the factors related to its possible use in vivo.

  2. Acetylcholine-induced phosphorylation in isolated outer hair cells.

    PubMed

    Szõnyi, M; Csermely, P; Sziklai, I

    1999-03-01

    Two groups of isolated, surviving outer hair cells (OHCs) of guinea pig cochleas (n = 20, for each group) were treated with 10 microM acetylcholine or acetylcholine plus strichnine (an alpha9 nAChR antagonist), respectively, under short-term tissue culture conditions. The protein content of the cell homogenates was separated by SDS-polyacrylamide gel electrophoresis, Western blotted and labelled with an antibody against phosphoserine residues. Signals were detected using the ECL system. Acetylcholine challenge of the OHCs resulted in a difference in the pattern of phosphorylated proteins from those of strichnine pretreated cells. A 220 kDa and a 120 kDa protein expressed a more intense phosphorylated state in the ACh group compared with the ACh plus strichnine group. The 220 kDa phosphoprotein is in the range of the cytoskeletal protein beta-fodrin, whereas the 120 kDa fraction is similar to alpha-fodrin or an ankyrin isoform. Phosphorylation of proteins due to activation of the AChR by agonist can play a role in the signalling mechanism between receptor activation and increase in the electromotile capability of isolated OHCs.

  3. Nicotinic Acetylcholine Receptor Signaling in Tumor Growth and Metastasis

    PubMed Central

    Singh, Sandeep; Pillai, Smitha; Chellappan, Srikumar

    2011-01-01

    Cigarette smoking is highly correlated with the onset of a variety of human cancers, and continued smoking is known to abrogate the beneficial effects of cancer therapy. While tobacco smoke contains hundreds of molecules that are known carcinogens, nicotine, the main addictive component of tobacco smoke, is not carcinogenic. At the same time, nicotine has been shown to promote cell proliferation, angiogenesis, and epithelial-mesenchymal transition, leading to enhanced tumor growth and metastasis. These effects of nicotine are mediated through the nicotinic acetylcholine receptors that are expressed on a variety of neuronal and nonneuronal cells. Specific signal transduction cascades that emanate from different nAChR subunits or subunit combinations facilitate the proliferative and prosurvival functions of nicotine. Nicotinic acetylcholine receptors appear to stimulate many downstream signaling cascades induced by growth factors and mitogens. It has been suggested that antagonists of nAChR signaling might have antitumor effects and might open new avenues for combating tobacco-related cancer. This paper examines the historical data connecting nicotine tumor progression and the recent efforts to target the nicotinic acetylcholine receptors to combat cancer. PMID:21541211

  4. Mammalian Nicotinic Acetylcholine Receptors: From Structure to Function

    PubMed Central

    Albuquerque, Edson X.; Pereira, Edna F. R.; Alkondon, Manickavasagom; Rogers, Scott W.

    2009-01-01

    The classical studies of nicotine by Langley at the turn of the 20th century introduced the concept of a “receptive substance,” from which the idea of a “receptor” came to light. Subsequent studies aided by the Torpedo electric organ, a rich source of muscle-type nicotinic receptors (nAChRs), and the discovery of α-bungarotoxin, a snake toxin that binds pseudo-irreversibly to the muscle nAChR, resulted in the muscle nAChR being the best characterized ligand-gated ion channel hitherto. With the advancement of functional and genetic studies in the late 1980s, the existence of nAChRs in the mammalian brain was confirmed and the realization that the numerous nAChR subtypes contribute to the psychoactive properties of nicotine and other drugs of abuse and to the neuropathology of various diseases, including Alzheimer’s, Parkinson’s, and schizophrenia, has since emerged. This review provides a comprehensive overview of these findings and the more recent revelations of the impact that the rich diversity in function and expression of this receptor family has on neuronal and nonneuronal cells throughout the body. Despite these numerous developments, our understanding of the contributions of specific neuronal nAChR subtypes to the many facets of physiology throughout the body remains in its infancy. PMID:19126755

  5. Mechanism of Block of Single Protopores of the Torpedo Chloride Channel Clc-0 by 2-(p-Chlorophenoxybutyric) Acid (Cpb)

    PubMed Central

    Pusch, Michael; Accardi, Alessio; Liantonio, Antonella; Ferrera, Loretta; De Luca, Annamaria; Camerino, Diana Conte; Conti, Franco

    2001-01-01

    We investigated in detail the mechanism of inhibition by the S(−) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl− channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate “locked open” (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1–12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between −120 and −80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at −140 mV are half-inhibited by ∼0.5 mM CPB, but the inhibition decreases with V and vanishes for V ≥ 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V ≤ −40 mV, where a significant inhibition is observable for the CPB concentrations used in this study (≤10 mM), the concentration dependence of its onset kinetics is consistent with CPB binding according to a bimolecular reaction. At all voltages, only the openings of drug-free protopores appear to contribute significantly to the current observed at any time. Lowering internal Cl− hastens significantly the apparent “on” rate, suggesting that internal Cl− antagonizes CPB binding to closed pores. Vice versa, lowering external Cl− reduces the apparent rate of CPB dissociation from open pores. We studied also the point mutant K519E (in the context of the C212S mutant) that has altered conduction properties and slower single protopore

  6. Comparison of (/sup 3/H)nicotine and (/sup 3/H)acetylcholine binding in mouse brain: regional distribution

    SciTech Connect

    Sershen, H.; Reith, M.E.; Hashim, A.; Lajtha, A.

    1985-06-01

    In a continuing study of nicotine binding sites, the authors determined the relative amount of nicotine binding and acetylcholine binding in various brain regions of C57/BL and of DBA mice. Although midbrain showed the highest and cerebellum the lowest binding for both (/sup 3/H)nicotine and (/sup 3/H)acetylcholine, the ratio of nicotine to acetylcholine binding showed a three-fold regional variation. Acetylcholine inhibition of (/sup 3/H)nicotine binding indicated that a portion of nicotine binding was not inhibited by acetylcholine. These results indicate important differences between the binding of (+/-)-(/sup 3/H)nicotine and that of (/sup 3/H)acetylcholine.

  7. Nicotinic acetylcholine receptors: from basic science to therapeutics.

    PubMed

    Hurst, Raymond; Rollema, Hans; Bertrand, Daniel

    2013-01-01

    Substantial progress in the identification of genes encoding for a large number of proteins responsible for various aspects of neurotransmitter release, postsynaptic detection and downstream signaling, has advanced our understanding of the mechanisms by which neurons communicate and interact. Nicotinic acetylcholine receptors represent a large and well-characterized family of ligand-gated ion channels that is expressed broadly throughout the central and peripheral nervous system, and in non-neuronal cells. With 16 mammalian genes identified that encode for nicotinic receptors and the ability of the subunits to form heteromeric or homomeric receptors, the repertoire of conceivable receptor subtype combinations is enormous and offers unique possibilities for the design and development of new therapeutics that target nicotinic acetylcholine receptors. The aim of this review is to provide the reader with recent insights in nicotinic acetylcholine receptors from genes, structure and function to diseases, and with the latest findings on the pharmacology of these receptors. Although so far only a few nicotinic drugs have been marketed or are in late stage development, much progress has been made in the design of novel chemical entities that are being explored for the treatment of various diseases, including addiction, depression, ADHD, cognitive deficits in schizophrenia and Alzheimer's disease, pain and inflammation. A pharmacological analysis of these compounds, including those that were discontinued, can improve our understanding of the pharmacodynamic and pharmacokinetic requirements for nicotinic 'drug-like' molecules and will reveal if hypotheses on therapies based on targeting specific nicotinic receptor subtypes have been adequately tested in the clinic.

  8. Single acetylcholine receptor channel currents recorded at high hydrostatic pressures.

    PubMed Central

    Heinemann, S H; Stühmer, W; Conti, F

    1987-01-01

    A technique for performing patch-clamp experiments under high hydrostatic (oil) pressure is described. The method allows the transfer of whole cell or membrane patches in a recording configuration into a pressure vessel, where pressure can be increased up to 60 MPa (approximately equal to 600 bar). We have studied in this way the pressure dependence of single acetylcholine receptor channels in excised "outside-out" membrane patches from cultured rat muscle cells. In the range of 0.1 to 60 MPa the open channel conductance in 140 mM NaCl solutions did not vary by more than 2%, which implies that the translocation of sodium ions through the channel pore does not involve steps with significant activation volumes. At high acetylcholine concentrations (20 microM) bursts of single-channel activity allowed measurements of the mean open and mean closed times of the channel. Pressurization to 40 MPa increased both mean open and mean closed times giving apparent activation volumes of about 59 and 139 A3, respectively. This implies a net volume increase of 80 A3, associated with the transition from the agonist-free state to the open state of the channel, which may be partially associated with the agonist-binding step. All the observed pressure effects were reversible. The activation volumes for the gating of acetylcholine receptor channels are comparable to those of sodium and potassium channels in the squid giant axon, suggesting that there is some basic common mechanism in the operation of ion-channel proteins. Images PMID:2437577

  9. Neural Systems Governed by Nicotinic Acetylcholine Receptors: Emerging Hypotheses

    PubMed Central

    Miwa, Julie M.; Freedman, Robert; Lester, Henry A.

    2015-01-01

    Cholinergic neurons and nicotinic acetylcholine receptors (nAChRs) in the brain participate in diverse functions: reward, learning and memory, mood, sensory processing, pain, and neuroprotection. Nicotinic systems also have well-known roles in drug abuse. Here, we review recent insights into nicotinic function, linking exogenous and endogenous manipulations of nAChRs to alterations in synapses, circuits, and behavior. We also discuss how these contemporary advances can motivate attempts to exploit nicotinic systems therapeutically in Parkinson’s disease, cognitive decline, epilepsy, and schizophrenia. PMID:21482353

  10. Synthesis, Trafficking, and Localization of Muscarinic Acetylcholine Receptors

    PubMed Central

    Nathanson, Neil M.

    2008-01-01

    Muscarinic acetylcholine receptors are members of the G-protein coupled receptor superfamily that are expressed in and regulate the function of neurons, cardiac and smooth muscle, glands, and many other cell types and tissues. The correct trafficking of membrane proteins to the cell surface and their subsequent localization at appropriate sites in polarized cells are required for normal cellular signaling and physiological responses. This review will summarize work on the synthesis and trafficking of muscarinic receptors to the plasma membrane and their localization at the cell surface. PMID:18558434

  11. Polyethylene glycol-based homologated ligands for nicotinic acetylcholine receptors☆

    PubMed Central

    Scates, Bradley A.; Lashbrook, Bethany L.; Chastain, Benjamin C.; Tominaga, Kaoru; Elliott, Brandon T.; Theising, Nicholas J.; Baker, Thomas A.; Fitch, Richard W.

    2010-01-01

    A homologous series of polyethylene glycol (PEG) monomethyl ethers were conjugated with three ligand series for nicotinic acetylcholine receptors. Conjugates of acetylaminocholine, the cyclic analog 1-acetyl-4,4-dimethylpiperazinium, and pyridyl ether A-84543 were prepared. Each series was found to retain significant affinity at nicotinic receptors in rat cerebral cortex with tethers of up to six PEG units. Such compounds are hydrophilic ligands which may serve as models for fluorescent/affinity probes and multivalent ligands for nAChR. PMID:19006672

  12. Histamine H3 receptors regulate acetylcholine release from the guinea pig ileum myenteric plexus

    SciTech Connect

    Poli, E.; Coruzzi, G.; Bertaccini, G. )

    1991-01-01

    The effect of selective histamine H3-receptor agonists and antagonists on the acetylcholine release from peripheral nerves was evaluated in the guinea pig longitudinal muscle-myenteric plexus preparations, preloaded with ({sup 3}H)choline. In the presence of H1 and H2 blockade, histamine and (R)-{alpha}-methylhistamine inhibited the electrically-evoked acetylcholine release, being (R)-{alpha}-methylhistamine more active than histamine, but behaving as a partial agonist. The effect of histamine was completely reversed by selective H3-blocking drugs, thioperamide and impromidine, while only submaximal doses of (R)-{alpha}-methylhistamine were antagonized. Furthermore, thioperamide and impromidine enhanced the electrically-evoked acetylcholine release. On the contrary, the new H3-blocker, HST-7, was found substantially ineffective, both as histamine antagonist and as acetylcholine overflow enhancer. These data suggest that histamine exerts an inhibitory control on the acetylcholine release from intestinal cholinergic nerves through the activation of H3 receptors.

  13. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    PubMed

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  14. The acetylcholine receptor as a cellular receptor for rabies virus.

    PubMed

    Lentz, T L; Burrage, T G; Smith, A L; Tignor, G H

    1983-01-01

    Characterization of specific host cell receptors for enveloped viruses is a difficult problem because many enveloped viruses bind to a variety of substrates which are not obviously related to tissue tropisms in the intact host. Viruses with a limited cellular tropism in infected animals present useful models for studying the mechanisms by which virus attachment regulates the disease process. Rabies virus is a rhabdovirus which exhibits a marked neuronotropism in infected animals. Limited data suggest that spread occurs by transsynaptic transfer of virus. The results of recent experiments at Yale suggest that viral antigen is localized very soon after injection at neuromuscular junctions, the motor nerve endings on muscle tissue. On cultured muscle cells, similar co-localization with the acetylcholine receptor is seen both before and after virus multiplication. Pretreatment of these cells with some ligands of the acetylcholine receptor results in reduced viral infection. These findings suggest that a neurotransmitter receptor or a closely associated molecule may serve as a specific host cell receptor for rabies virus and thus may be responsible for the tissue tropism exhibited by this virus. In addition to clarifying aspects of rabies virus pathogenesis, these studies have broad implications regarding the mechanism by which other viruses or viral immunizations might mediate autoimmune diseases such as myasthenia gravis.

  15. Effects of acetylcholine on neuronal properties in entorhinal cortex

    PubMed Central

    Heys, James G.; Schultheiss, Nathan W.; Shay, Christopher F.; Tsuno, Yusuke; Hasselmo, Michael E.

    2012-01-01

    The entorhinal cortex (EC) receives prominent cholinergic innervation from the medial septum and the vertical limb of the diagonal band of Broca (MSDB). To understand how cholinergic neurotransmission can modulate behavior, research has been directed toward identification of the specific cellular mechanisms in EC that can be modulated through cholinergic activity. This review focuses on intrinsic cellular properties of neurons in EC that may underlie functions such as working memory, spatial processing, and episodic memory. In particular, the study of stellate cells (SCs) in medial entorhinal has resulted in discovery of correlations between physiological properties of these neurons and properties of the unique spatial representation that is demonstrated through unit recordings of neurons in medial entorhinal cortex (mEC) from awake-behaving animals. A separate line of investigation has demonstrated persistent firing behavior among neurons in EC that is enhanced by cholinergic activity and could underlie working memory. There is also evidence that acetylcholine plays a role in modulation of synaptic transmission that could also enhance mnemonic function in EC. Finally, the local circuits of EC demonstrate a variety of interneuron physiology, which is also subject to cholinergic modulation. Together these effects alter the dynamics of EC to underlie the functional role of acetylcholine in memory. PMID:22837741

  16. Caenorhabditis elegans nicotinic acetylcholine receptors are required for nociception

    PubMed Central

    Cohen, Emiliano; Chatzigeorgiou, Marios; Husson, Steven J.; Steuer-Costa, Wagner; Gottschalk, Alexander; Schafer, William R.; Treinin, Millet

    2014-01-01

    Polymodal nociceptors sense and integrate information on injurious mechanical, thermal, and chemical stimuli. Chemical signals either activate nociceptors or modulate their responses to other stimuli. One chemical known to activate or modulate responses of nociceptors is acetylcholine (ACh). Across evolution nociceptors express subunits of the nicotinic acetylcholine receptor (nAChR) family, a family of ACh-gated ion channels. The roles of ACh and nAChRs in nociceptor function are, however, poorly understood. Caenorhabditis elegans polymodal nociceptors, PVD, express nAChR subunits on their sensory arbor. Here we show that mutations reducing ACh synthesis and mutations in nAChR subunits lead to defects in PVD function and morphology. A likely cause for these defects is a reduction in cytosolic calcium measured in ACh and nAChR mutants. Indeed, overexpression of a calcium pump in PVD mimics defects in PVD function and morphology found in nAChR mutants. Our results demonstrate, for the first time, a central role for nAChRs and ACh in nociceptor function and suggest that calcium permeating via nAChRs facilitates activity of several signaling pathways within this neuron. PMID:24518198

  17. Corelease of acetylcholine and GABA from cholinergic forebrain neurons

    PubMed Central

    Saunders, Arpiar; Granger, Adam J; Sabatini, Bernardo L

    2015-01-01

    Neurotransmitter corelease is emerging as a common theme of central neuromodulatory systems. Though corelease of glutamate or GABA with acetylcholine has been reported within the cholinergic system, the full extent is unknown. To explore synaptic signaling of cholinergic forebrain neurons, we activated choline acetyltransferase expressing neurons using channelrhodopsin while recording post-synaptic currents (PSCs) in layer 1 interneurons. Surprisingly, we observed PSCs mediated by GABAA receptors in addition to nicotinic acetylcholine receptors. Based on PSC latency and pharmacological sensitivity, our results suggest monosynaptic release of both GABA and ACh. Anatomical analysis showed that forebrain cholinergic neurons express the GABA synthetic enzyme Gad2 and the vesicular GABA transporter (Slc32a1). We confirmed the direct release of GABA by knocking out Slc32a1 from cholinergic neurons. Our results identify GABA as an overlooked fast neurotransmitter utilized throughout the forebrain cholinergic system. GABA/ACh corelease may have major implications for modulation of cortical function by cholinergic neurons. DOI: http://dx.doi.org/10.7554/eLife.06412.001 PMID:25723967

  18. Expression of cloned α6* nicotinic acetylcholine receptors.

    PubMed

    Wang, Jingyi; Kuryatov, Alexander; Lindstrom, Jon

    2015-09-01

    Nicotinic acetylcholine receptors (AChRs) are ACh-gated ion channels formed from five homologous subunits in subtypes defined by their subunit composition and stoichiometry. Some subtypes readily produce functional AChRs in Xenopus oocytes and transfected cell lines. α6β2β3* AChRs (subtypes formed from these subunits and perhaps others) are not easily expressed. This may be because the types of neurons in which they are expressed (typically dopaminergic neurons) have unique chaperones for assembling α6β2β3* AChRs, especially in the presence of the other AChR subtypes. Because these relatively minor brain AChR subtypes are of major importance in addiction to nicotine, it is important for drug development as well as investigation of their functional properties to be able to efficiently express human α6β2β3* AChRs. We review the issues and progress in expressing α6* AChRs. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.

  19. Physiological characterization of human muscle acetylcholine receptors from ALS patients.

    PubMed

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-12-13

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: "microtransplantation" of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease.

  20. Binding of Alpha-Bungarotoxin to Single Identified Neurons of ’Aplysia’ which have Different Ionic Responses to Acetylcholine,

    DTIC Science & Technology

    1976-09-01

    Identifiable Aplysia neurons have one or more of three different ionic responses to acetylcholine, due to Na, Cl, and K conductance increases... Aplysia acetylcholine receptors. Thus the inhibition of the Na response by hexamethonium may be a result of the binding to a site which prevent the conductance change rather than preventing acetylcholine from binding to its receptor.

  1. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  2. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice.

    PubMed

    Siegel, Jessica A; Park, Byung S; Raber, Jacob

    2011-10-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males.

  3. Acetylcholine receptor extracellular domain determines sensitivity to nicotine-induced inactivation.

    PubMed

    Kuryatov, A; Olale, F A; Choi, C; Lindstrom, J

    2000-03-30

    We have shown previously that chronic exposure to submicromolar concentrations of nicotine permanently inactivates alpha4beta2 and alpha7 neuronal nicotinic acetylcholine receptors while alpha3beta2 acetylcholine receptors are resistant to inactivation. Phosphorylation of the large cytoplasmic domain has been proposed to mediate functional inactivation. Chimeric subunits consisting of human alpha4 sequence from their N-terminus to either the beginning of the first transmembrane domain or the large cytoplasmic domain and alpha3 sequences thereafter formed acetylcholine receptors with beta2 subunits which were as susceptible to nicotine-induced inactivation as wild-type alpha4 acetylcholine receptors. The converse chimeras, containing the N-terminal parts of the alpha3 subunit and the C-terminal parts of the alpha4 subunit, formed acetylcholine receptors with beta2 subunits which were as resistant to nicotine-induced inactivation as wild-type alpha3beta2 acetylcholine receptors. Thus, inactivation of acetylcholine receptors produced by chronic exposure to nicotine results primarily from effects of the agonist on the extracellular and transmembrane domains of the alpha subunit.

  4. Stimulation of the Nonneuronal Cholinergic System by Highly Diluted Acetylcholine in Keratinocytes.

    PubMed

    Uberti, Francesca; Bardelli, Claudio; Morsanuto, Vera; Ghirlanda, Sabrina; Cochis, Andrea; Molinari, Claudio

    2017-01-01

    The physiological effects of acetylcholine on keratinocytes depend on the presence of nicotinic and muscarinic receptors. The role of nonneuronal acetylcholine in keratinocytes could have important clinical implications for patients with various skin disorders such as nonhealing wounds. In order to evaluate the efficacy of highly diluted acetylcholine solutions obtained by sequential kinetic activation, we aimed to investigate the effects of these solutions on normal human keratinocytes. Two different concentrations (10 fg/mL and 1 pg/mL) and formulations (kinetically activated and nonkinetically activated) of acetylcholine were used to verify keratinocyte viability, proliferation, and migration and the intracellular pathways involved using MTT, crystal violet, wound healing, and Western blot compared to 147 ng/mL acetylcholine. The activated formulations (1 pg/mL and 10 fg/mL) revealed a significant capacity to increase migration, cell viability, and cell proliferation compared to 147 ng/mL acetylcholine, and these effects were more evident after a single administration. Sequential kinetic activation resulted in a statistically significant decrease in reactive oxygen species production accompanied by an increase in mitochondrial membrane potential and a decrease in oxygen consumption compared to 147 ng/mL acetylcholine. The M1 muscarinic receptor was involved in these effects. Finally, the involvement of ERK/mitogen-activated protein kinases (MAPK) and KI67 confirmed the effectiveness of the single treatment on cell proliferation. The intracellular pathways of calcium were investigated as well. Our results indicate for the first time that highly diluted and kinetically activated acetylcholine seems to play an active role in an in vitro model of wound healing. Moreover, the administration of acetylcholine within the physiological range may not only be effective but is also likely to be safe.

  5. A model of the human M2 muscarinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Jöhren, Kirstin; Höltje, Hans-Dieter

    2002-11-01

    The M2 muscarinic acetylcholine receptor belongs to the family of rhodopsin like G-Protein Coupled Receptors. This subtype of muscarinic receptors is of special interest because it bears, aside from an orthosteric binding site, also an allosteric binding site. Based on the X-ray structure of bovine rhodopsin a complete homology model of the human M2 receptor was developed. For the orthosteric binding site point mutations and binding studies with different agonists and antagonists are available. This knowledge was utilized for an initial verification of the M2 model. Allosteric modulation of activity is mediated by structurally different ligands such as gallamine, caracurine V salts or W84 (a hexamethonium-derivative). Caracurine V derivatives with different affinities to M2 were docked using GRID-fields. Subsequent molecular dynamics simulations yielded different binding energies based on diverse electrostatic and lipophilic interactions. The calculated affinities are in good agreement to experimentally determined affinities.

  6. Caffeine potentiates the enhancement by choline of striatal acetylcholine release

    NASA Technical Reports Server (NTRS)

    Johnson, D. A.; Ulus, I. H.; Wurtman, R. J.

    1992-01-01

    We investigated the effect of peripherally administered caffeine (50 mg/kg), choline (30, 60, or 120 mg/kg) or combinations of both drugs on the spontaneous release of acetylcholine (ACh) from the corpus striatum of anesthetized rats using in vivo microdialysis. Caffeine alone or choline in the 30 or 60 mg/kg dose failed to increase ACh in microdialysis samples; the 120 mg/kg choline dose significantly enhanced ACh during the 80 min following drug administration. Coadministration of caffeine with choline significantly increased ACh release after each of the choline doses tested. Peak microdialysate levels with the 120 mg/kg dose were increased 112% when caffeine was additionally administered, as compared with 54% without caffeine. These results indicate that choline administration can enhance spontaneous ACh release from neurons, and that caffeine, a drug known to block adenosine receptors on these neurons, can amplify the choline effect.

  7. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    SciTech Connect

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jürgen; Kobilka, Brian K.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.

  8. Morphine Increases Acetylcholine Release in the Trigeminal Nuclear Complex

    PubMed Central

    Zhu, Zhenghong; Bowman, Heather R.; Baghdoyan, Helen A.; Lydic, Ralph

    2008-01-01

    Study Objectives: The trigeminal nuclear complex (V) contains cholinergic neurons and includes the principal sensory trigeminal nucleus (PSTN) which receives sensory input from the face and jaw, and the trigeminal motor nucleus (MoV) which innervates the muscles of mastication. Pain associated with pathologies of V is often managed with opioids but no studies have characterized the effect of opioids on acetylcholine (ACh) release in PSTN and MoV. Opioids can increase or decrease ACh release in brainstem nuclei. Therefore, the present experiments tested the 2-tailed hypothesis that microdialysis delivery of opioids to the PSTN and MoV significantly alters ACh release. Design: Using a within-subjects design and isoflurane-anesthetized Wistar rats (n = 53), ACh release in PSTN during microdialysis with Ringer's solution (control) was compared to ACh release during dialysis delivery of the sodium channel blocker tetrodotoxin, muscarinic agonist bethanechol, opioid agonist morphine, mu opioid agonist DAMGO, antagonists for mu (naloxone) and kappa (nor-binaltorphimine; nor-BNI) opioid receptors, and GABAA antagonist bicuculline. Measurements and Results: Tetrodotoxin decreased ACh, confirming action potential-dependent ACh release. Bethanechol and morphine caused a concentration-dependent increase in PSTN ACh release. The morphine-induced increase in ACh release was blocked by nor-BNI but not by naloxone. Bicuculline delivered to the PSTN also increased ACh release. ACh release in the MoV was increased by morphine, and this increase was not blocked by naloxone or nor-BNI. Conclusions: These data comprise the first direct measures of ACh release in PSTN and MoV and suggest synaptic disinhibition as one possible mechanism by which morphine increases ACh release in the trigeminal nuclei. Citation: Zhu Z; Bowman HR; Baghdoyan HA; Lydic R. Morphine increases acetylcholine release in the trigeminal nuclear complex. SLEEP 2008;31(12):1629–1637. PMID:19090318

  9. Physiological characterization of human muscle acetylcholine receptors from ALS patients

    PubMed Central

    Palma, Eleonora; Inghilleri, Maurizio; Conti, Luca; Deflorio, Cristina; Frasca, Vittorio; Manteca, Alessia; Pichiorri, Floriana; Roseti, Cristina; Torchia, Gregorio; Limatola, Cristina; Grassi, Francesca; Miledi, Ricardo

    2011-01-01

    Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: “microtransplantation” of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease. PMID:22128328

  10. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins.

    PubMed Central

    Burden, S J; Hartzell, H C; Yoshikami, D

    1975-01-01

    Phylogenetic differences in acetylcholine receptors from skeletal neuromuscular synapses of various species of snakes and lizards have been investigated, using the snake venom alpha-neurotoxins alpha-atratoxin (cobrotoxin) and alpha-bungarotoxin. The acetylcholine receptors of the phylogenetically primitive lizards, like those from all other vertebrates previously tested, are blocked by these alpha-neurotoxins. In contrast, receptors from snakes and advanced lizards are insensitive to one or both of the toxins. It is suggested that toxin-resistant acetylcholine receptors appeared early in the evolution of Squamata and preceded the appearance of alpha-neurotoxins. Images PMID:1081230

  11. Immunological relationship between acetylcholine receptor and thymus: a possible significance in myasthenia gravis.

    PubMed Central

    Aharonov, A; Tarrab-Hazdai, R; Abramsky, O; Fuchs, S

    1975-01-01

    A defined immunological cross-reaction was observed between acetylcholine receptor fraction from the electric eel, Electrophorus electricus, and two calf thymus fractions. The cross-reaction was demonstrated on the cellular level by means of the lymphocyte transformation technique, and on the humoral level, by means of the microcomplement fixation assay. In the human disease myasthenia gravis both acetylcholine receptor at the neuromuscular junction and the thymus are affected, probably by an autoimmune mechanism. The immunological cross-reaction between acetylcholine receptor and thymic components may explain the association between endplate and thymus disorders in myasthenia gravis. PMID:1055418

  12. Base-catalyzed and cholinesterase-catalyzed hydrolysis of acetylcholine and optically active analogs.

    PubMed

    Schowen, K B; Smissman, E E; Stephen, W F

    1975-03-01

    The base- and cholinestrase-catalyzed hydrolyses of the following optically active analogs of acetylcholine were studied: 3 (a)-trimethylammonium-2(a)-acetoxy-trans-decalin iodide, threo- and erythro-alpha, beta-dimethylacetylcholine iodide, alpha-methylacetylcholine, and beta-methylacetylcholine. Evidence that the optimum dihedral +N-C-C-O angle in the transition state for acetylcholinesterase hydrolysis of acetylcholine analogs is positive and anticlinal is given. The data obtained suggest that acetylcholine undergoes a geometrically flexible mode of attachment to the enzyme.

  13. Synergistic effect of choline and carnitine on acetylcholine synthesis in neuroblastoma NB-2a cells.

    PubMed

    Wawrzeńczyk, A; Nałecz, K A; Nałecz, M J

    1994-07-15

    An influence of carnitine on acetylcholine synthesis from radiolabeled glucose was monitored in neuroblastoma NB-2a cells. Upon addition of carnitine the distribution of its derivatives was found significantly different than the values published for brain, the level of long-chain acyl derivatives being much higher and reaching 60%. Carnitine itself did not change acetylcholine level. Together with choline (20 microM), carnitine was observed to stimulate (by 36%) acetylcholine synthesis in a synergistic way, which indicated that both substrates could be limiting factors of this process in NB-2a cell line of neuroblastoma.

  14. Affinity labelling and identification of the high-affinity choline carrier from synaptic membranes of Torpedo electromotor nerve terminals with [3H]choline mustard.

    PubMed

    Rylett, R J

    1988-12-01

    The physiological mechanisms regulating activity of the sodium-dependent, high-affinity choline transporter and the molecular events in the translocation process remain unclear; the protein has not been purified or characterized biochemically. In the present study, [3H]choline mustard aziridinium ion [( 3H]ChM Az), a nitrogen mustard analogue of choline, bound irreversibly to presynaptic plasma membranes from Torpedo electric organ in a hemicholinium-sensitive, and sodium-, time-, and temperature-dependent manner. Specific binding of this ligand was greatest when it was incubated with membranes in the presence of sodium at 30 degrees C. Separation of the 3H-labelled membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that most of the radiolabel was associated with a polypeptide of apparent molecular mass of approximately 42,000 daltons; labelling of this species was abolished in membranes incubated with ligand in the presence of HC-3. Two other 3H-labelled polypeptides were detected, with apparent molecular masses of approximately 58,000 and 90,000 daltons; radiolabelling of the former was also HC-3 sensitive. [3H]ChM Az may be a useful affinity ligand in the purification of the choline carrier from cholinergic neurons.

  15. Synaptic vesicles isolated from the electric organ of Torpedo californica and from the central nervous system of Mus musculus contain small ribonucleic acids (sRNAs).

    PubMed

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2017-06-01

    Synaptic vesicles (SVs) are presynaptic organelles that load and release small molecule neurotransmitters at chemical synapses. In addition to classic neurotransmitters, we have demonstrated that SVs isolated from the Peripheral Nervous Systems (PNS) of the electric organ of Torpedo californica, a model cholinergic synapse, and SVs isolated from the Central Nervous System (CNS) of Mus musculus (mouse) contain small ribonucleic acids (sRNAs; ≤ 50 nucleotides) (Scientific Reports, 5:1-14(14918) Li et al. (2015) [1]). Our previous publication provided the five most abundant sequences associated with the T. californica SVs, and the ten most abundant sequences associated with the mouse SVs, representing 59% and 39% of the total sRNA reads sequenced, respectively). We provide here a full repository of the SV sRNAs sequenced from T. californica and the mouse deposited in the NCBI as biosamples. Three data studies are included: SVs isolated from the electric organ of T. californica using standard techniques, SVs isolated from the electric organ of T. californica using standard techniques with an additional affinity purification step, and finally, SVs isolated from the CNS of mouse. The three biosamples are available at https://www.ncbi.nlm.nih.gov/biosample/ SRS1523467, SRS1523466, and SRS1523472 respectively.

  16. Substituted 2-Aminopyrimidines Selective for α7-Nicotinic Acetylcholine Receptor Activation and Association with Acetylcholine Binding Proteins.

    PubMed

    Kaczanowska, Katarzyna; Camacho Hernandez, Gisela Andrea; Bendiks, Larissa; Kohs, Larissa; Cornejo-Bravo, Jose Manuel; Harel, Michal; Finn, M G; Taylor, Palmer

    2017-03-15

    Through studies with ligand binding to the acetylcholine binding protein (AChBP), we previously identified a series of 4,6-substituted 2-aminopyrimidines that associate with this soluble surrogate of the nicotinic acetylcholine receptor (nAChR) in a cooperative fashion, not seen for classical nicotinic agonists and antagonists. To examine receptor interactions of this structural family on ligand-gated ion channels, we employed HEK cells transfected with cDNAs encoding three requisite receptor subtypes: α7-nAChR, α4β2-nAChR, and a serotonin receptor (5-HT3AR), along with a fluorescent reporter. Initial screening of a series of over 50 newly characterized 2-aminopyrimidines with affinity for AChBP showed only two to be agonists on the α7-nAChR below 10 μM concentration. Their unique structural features were incorporated into design of a second subset of 2-aminopyrimidines yielding several congeners that elicited α7 activation with EC50 values of 70 nM and Kd values for AChBP in a similar range. Several compounds within this series exhibit specificity for the α7-nAChR, showing no activation or antagonism of α4β2-nAChR or 5-HT3AR at concentrations up to 10 μM, while others were weaker antagonists (or partial agonists) on these receptors. Analysis following cocrystallization of four ligand complexes with AChBP show binding at the subunit interface, but with an orientation or binding pose that differs from classical nicotinic agonists and antagonists and from the previously analyzed set of 2-aminopyrimidines that displayed distinct cooperative interactions with AChBP. Orientations of aromatic side chains of these complexes are distinctive, suggesting new modes of binding at the agonist-antagonist site and perhaps an allosteric action for heteromeric nAChRs.

  17. The Acetylcholine Receptor and Its Ionic Channel as Targets for Drugs and Toxins

    DTIC Science & Technology

    1981-12-10

    chemosensitivity of the frog sartorlus Ubscle. Cell. Mol. Neurobiol. 1: 209-230 (1981). Aguayo, L.G., Pazhenchlevshy, B., Daly, J.W., and Albuquerque, E.X. The...dependent and time-dependent effects on EPC of frog endplates causing nonlinearity in the current-voltage relationship and accelerating the EVC decay phase...imipra ine (IMIP). It selectively blocked the binding of [ H]H 1 2 -HTX, but not I HIACh or [ Hla-BGT to Torpedo membranes. On the frog endplate the

  18. Rabies virus interaction with various cell lines is independent of the acetylcholine receptor.

    PubMed

    Reagan, K J; Wunner, W H

    1985-01-01

    Rabies virus infects most cells in vitro. The presence of the nicotinic acetylcholine receptor on the plasma membrane of various cell lines is not an obligate factor for rabies virus susceptibility of those cells.

  19. Cyclic nucleotides of canine antral smooth muscle. Effects of acetylcholine, catecholamines and gastrin.

    PubMed

    Baur, S; Grant, B; Wooton, J

    1981-01-07

    1. The effects of acetylcholine, catecholamines and gastrin on the intracellular content of cyclic AMP and cyclic GMP in antral circular muscle have been determined. 2. Acetylcholine results in a significant but transient increase in intracellular cyclic GMP. 3. Isoproterenol and norepinephrine increase intracellular cyclic AMP. Based on half-maximal effective doses, isoproterenol is 2.7-times more effective than norepinephrine. The increase in intracellular cyclic AMP by both agents is inhibited by propranolol but not phentolamine, indicating that both agents act on the muscle cell by a beta-receptor-coupled mechanism. 4. Gastrin has no demonstrable effect on either cyclic AMP or cyclic GMP. This suggests that while gastrin and acetylcholine can produce a like myoelectric response in the muscle cell, the action of gastrin is mediated by a separate receptor, presumably on the muscle cell, and not by a release of acetylcholine.

  20. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    PubMed

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine.

  1. Notexin preferentially inhibits the release of newly synthesized acetylcholine from rat brain synaptosomal fractions

    SciTech Connect

    Gundersen, C.B.; Jenden, D.J.

    1981-01-01

    An investigation was made of the effects of the snake venom neurotoxin, notexin, on acetylcholine turnover in rat brain P2 fractions using a gas chromatographic mass spectrometric assay for acetylcholine and choline. In contrast to earlier reports, we found a stimulation of the uptake and acetylation of labeled choline by toxin-treated P2 fractions. More significantly, notexin inhibited the release of this newly synthesized transmitter. These effects were found to be dependent on the dose of the toxin and the time of exposure of the P2 fraction to notexin. Longer exposure to notexin or experiments involving resuspension of notexin-treated P2 fractions appeared to result in considerable lysis of the transmitter-containing particles. Thus, notexin may alter acetylcholine compartmentation in the nerve ending and thereby affect acetylcholine synthesis.

  2. Microtransplantation of acetylcholine receptors from normal or denervated rat skeletal muscles to frog oocytes

    PubMed Central

    Bernareggi, Annalisa; Reyes-Ruiz, Jorge Mauricio; Lorenzon, Paola; Ruzzier, Fabio; Miledi, Ricardo

    2011-01-01

    Cell membranes, carrying neurotransmitter receptors and ion channels, can be ‘microtransplanted’ into frog oocytes. This technique allows a direct functional characterization of the original membrane proteins, together with any associated molecules they may have, still embedded in their natural lipid environment. This approach has been previously demonstrated to be very useful to study neurotransmitter receptors and ion channels contained in cell membranes isolated from human brains. Here, we examined the possibility of using the microtransplantation method to study acetylcholine receptors from normal and denervated rat skeletal muscles. We found that the muscle membranes, carrying their fetal or adult acetylcholine receptor isoforms, could be efficiently microtransplanted to the oocyte membrane, making the oocytes become sensitive to acetylcholine. These results show that oocytes injected with skeletal muscle membranes efficiently incorporate functional acetylcholine receptors, thus making the microtransplantation approach a valuable tool to further investigate receptors and ion channels of human muscle diseases. PMID:21224230

  3. A role for acetylcholine receptors in the fusion of chick myoblasts

    PubMed Central

    1988-01-01

    The role of acetylcholine receptors in the control of chick myoblast fusion in culture has been explored. Spontaneous fusion of myoblasts was inhibited by the nicotinic acetylcholine receptor antagonists alpha- bungarotoxin, Naja naja toxin and monoclonal antibody mcAb 5.5. The muscarinic antagonists QNB and n-methyl scopolamine were without effect. Atropine had no effect below 1 microM, where it blocks muscarinic receptors; at higher concentrations, when it blocks nicotinic receptors also, atropine inhibited myoblast fusion. The inhibitions imposed by acetylcholine receptor antagonists lasted for approximately 12 h; fusion stimulated by other endogenous substances then took over. The inhibition was limited to myoblast fusion. The increases in cell number, DNA content, the level of creatine phosphokinase activity (both total and muscle-specific isozyme) and the appearance of heavy chain myosin, which accompany muscle differentiation, followed a normal time course. Pre-fusion myoblasts, fusing myoblasts, and young myotubes specifically bound labeled alpha- bungarotoxin, indicating the presence of acetylcholine receptors. The nicotinic acetylcholine receptor agonist, carbachol, induced uptake of [14C]Guanidinium through the acetylcholine receptor. Myoblasts, aligned myoblasts and young myotubes expressed the synthetic enzyme Choline acetyltransferase and stained positively with antibodies against acetylcholine. The appearance of ChAT activity in myogenic cultures was prevented by treatment with BUDR; nonmyogenic cells in the cultures expressed ChAT at a level which was too low to account for the activity in myogenic cultures. We conclude that activation of the nicotinic acetylcholine receptor is part of the mechanism controlling spontaneous myoblast fusion and that myoblasts synthesize an endogenous, fusion- inducing agent that activates the nicotinic ACh receptor. PMID:3372592

  4. Role of dopamine receptor and muscarinic acetylcholine receptor blockade in the antiapomorphine action of neuroleptics

    SciTech Connect

    Zharkovskii, A.M.; Langel, Yu.L.; Chereshka, K.S.; Zharkovskaya, T.A.

    1987-08-01

    The authors analyze the role of dopamine and muscarinic acetylcholine receptor blocking components in the antistereotypic action of neuroleptics with different chemical structure. To determine dopamine-blocking activity in vitro, binding of /sup 3/H-spiperone with membranes of the rat striatum was measured. To study the blocking action of the substances on muscarinic acetylcholine receptors, binding of /sup 3/H-quinuclidinyl benzylate with brain membranes was chosen.

  5. Acetylcholine test in patients with angina pectoris and normal coronary angiography

    NASA Astrophysics Data System (ADS)

    Barbieri, Enrico; Destro, Gianni; Oliva, Massimo; Zardini, Piero

    1994-02-01

    Angina pectoris with normal coronary artery on the coronary angiography is an intriguing issue. Intracoronary infusion of acetylcholine has recently been used to test the integrity of endothelial cells. We studied 16 patients with this syndrome. A relationship has been found between the acetylcholine test and the exercise stress test in normotensive patients. The presence of hypertension makes the evaluation of the test more unpredictable, probably because of the damage on the endothelial cells related to systemic hypertension.

  6. Determining the Topology of Membrane-Bound Proteins Using PEGylation.

    PubMed

    Howe, Vicky; Brown, Andrew J

    2017-01-01

    Biochemical methods can help elucidate the membrane topology of hydrophobic membrane proteins where X-ray crystallography is difficult or impractical, providing important structural data. Here, we describe the method of PEGylation, which uses a cysteine-reactive molecule, maleimide polyethylene glycol (mPEG), to determine the cytosolic accessibility of introduced cysteine residues. This accessibility is visualized using Western blotting to detect a band shift that indicates cysteine labeling by mPEG. Using scanning cysteine mutagenesis, followed by PEGylation, one can map the accessibility of the introduced cysteines, hence inferring the membrane topology of the protein.We used PEGylation to determine the membrane topology of the sterol regulatory domain of a cholesterol synthesis enzyme, squalene monooxygenase, identifying that it is anchored to the membrane via a re-entrant loop.

  7. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  8. Are soluble and membrane-bound rat brain acetylcholinesterase different

    SciTech Connect

    Andres, C.; el Mourabit, M.; Stutz, C.; Mark, J.; Waksman, A. )

    1990-11-01

    Salt-soluble and detergent-soluble acetylcholinesterases (AChE) from adult rat brain were purified to homogeneity and studied with the aim to establish the differences existing between these two forms. It was found that the enzymatic activities of the purified salt-soluble AChE as well as the detergent-soluble AChE were dependent on the Triton X-100 concentration. Moreover, the interaction of salt-soluble AChE with liposomes suggests amphiphilic behaviour of this enzyme. Serum cholinesterase (ChE) did not bind to liposomes but its activity was also detergent-dependent. Detergent-soluble AChE remained in solution below critical micellar concentrations of Triton X-100. SDS polyacrylamide gel electrophoresis of purified, Biobeads-treated and iodinated detergent-soluble 11 S AChE showed, under non reducing conditions, bands of 69 kD, 130 kD and greater than 250 kD corresponding, respectively, to monomers, dimers and probably tetramers of the same polypeptide chain. Under reducing conditions, only a 69 kD band was detected. It is proposed that an amphiphilic environment stabilizes the salt-soluble forms of AChE in the brain in vivo and that detergent-soluble Biobeads-treated 11 S AChE possess hydrophobic domain(s) different from the 20 kD peptide already described.

  9. Inhibition of membrane-bound succinate dehydrogenase by disulfiram.

    PubMed

    Jay, D

    1991-04-01

    The effect of disulfiram on succinate oxidase and succinate dehydrogenase activities of beef heart submitochondrial particles was studied. Results show that disulfiram inhibits both functions. Succinate and malonate suppress the inhibitory action of disulfiram when succinate dehydrogenase is stabilized in an active conformation. Disulfiram is not able to inhibit the enzyme when succinate dehydrogenase is inactivated by oxaloacetate. The inhibitory effect of disulfiram is reverted by the addition of dithiothreitol. From these results, it is proposed that disulfiram inhibits the utilization of succinate by a direct modification of an -SH group located in the catalytically active site of succinate dehydrogenase.

  10. Substrate access channel topology in membrane-bound prostacyclin synthase.

    PubMed Central

    Deng, Hui; Huang, Aimin; So, Shui-Ping; Lin, Yue-Zhen; Ruan, Ke-He

    2002-01-01

    Results from our molecular-modelling and site-directed-mutagenesis studies of prostaglandin I(2) synthase (PGIS) have suggested that the large PGIS cytoplasmic domain is anchored to the endoplasmic reticulum (ER) membrane by the N-terminal segment in a way that orients the substrate access channel opening to face the membrane. To test this hypothesis we have explored the accessibility of the PGIS substrate channel opening to site-specific antibodies. The working three-dimensional PGIS model constructed by protein homology modelling was used to predict surface portions near the substrate access channel opening. Two peptides corresponding to the surface immediately near the opening [residues 66-75 (P66-75) and 95-116 (P95-116)], and two other peptides corresponding to the surface about 10-20 A (1 A=0.1 nm) away from the opening [residues 366-382 (P366-382) and 472-482 (P472-482)] were used to prepare site-specific antibodies. All four antipeptide antibodies specifically recognized the synthetic segments of human PGIS and recombinant PGIS, as shown by binding assays and Western-blot analysis. The site-specific antibodies were used to probe the accessibility of the substrate access channel opening in transiently transfected COS-1 cells expressing recombinant human PGIS, and in spontaneously transformed human endothelial cell line ECV cells expressing endogenous human PGIS. Immunofluorescence staining was performed for cells selectively permeabilized with streptolysin O and for cells whose membranes were permeabilized with detergent. Antibodies to peptides in the immediate vicinity of the substrate channel (P66-75 and P95-116) bound to their targets only after general permeabilization with Triton X-100. In contrast, the two antibodies to peptides further from the channel opening (P366-382 and P472-482) bound to their targets even in cells with intact ER membranes. These observations support our topology model in which the PGIS substrate access channel opening is positioned close to the ER membrane. PMID:11879180

  11. Transient domain formation in membrane-bound organelles undergoing maturation

    NASA Astrophysics Data System (ADS)

    Dmitrieff, Serge; Sens, Pierre

    2013-12-01

    The membrane components of cellular organelles have been shown to segregate into domains as the result of biochemical maturation. We propose that the dynamical competition between maturation and lateral segregation of membrane components regulates domain formation. We study a two-component fluid membrane in which enzymatic reaction irreversibly converts one component into another and phase separation triggers the formation of transient membrane domains. The maximum domain size is shown to depend on the maturation rate as a power law similar to the one observed for domain growth with time in the absence of maturation, despite this time dependence not being verified in the case of irreversible maturation. This control of domain size by enzymatic activity could play a critical role in regulating exchange between organelles or within compartmentalized organelles such as the Golgi apparatus.

  12. Subpopulations of rat dorsal root ganglion neurons express active vesicular acetylcholine transporter.

    PubMed

    Tata, Ada Maria; De Stefano, M Egle; Tomassy, Giulio Srubek; Vilaró, M Teresa; Levey, Allan I; Biagioni, Stefano

    2004-01-15

    The vesicular acetylcholine transporter (VAChT) is a transmembrane protein required, in cholinergic neurons, for selective storage of acetylcholine into synaptic vesicles. Although dorsal root ganglion (DRG) neurons utilize neuropeptides and amino acids for neurotransmission, we have previously demonstrated the presence of a cholinergic system. To investigate whether, in sensory neurons, the vesicular accumulation of acetylcholine relies on the same mechanisms active in classical cholinergic neurons, we investigated VAChT presence, subcellular distribution, and activity. RT-PCR and Western blot analysis demonstrated the presence of VAChT mRNA and protein product in DRG neurons and in the striatum and cortex, used as positive controls. Moreover, in situ hybridization and immunocytochemistry showed VAChT staining located mainly in the medium/large-sized subpopulation of the sensory neurons. A few small neurons were also faintly labeled by immunocytochemistry. In the electron microscope, immunolabeling was associated with vesicle-like elements distributed in the neuronal cytoplasm and in both myelinated and unmyelinated intraganglionic nerve fibers. Finally, [(3)H]acetylcholine active transport, evaluated either in the presence or in the absence of ATP, also demonstrated that, as previously reported, the uptake of acetylcholine by VAChT is ATP dependent. This study suggests that DRG neurons not only are able to synthesize and degrade ACh and to convey cholinergic stimuli but also are capable of accumulating and, possibly, releasing acetylcholine by the same mechanism used by the better known cholinergic neurons.

  13. Detection of basal and potassium-evoked acetylcholine release from embryonic DRG explants.

    PubMed

    Bernardini, Nadia; Tomassy, Giulio Srubek; Tata, Ada Maria; Augusti-Tocco, Gabriella; Biagioni, Stefano

    2004-03-01

    Spontaneous and potassium-induced acetylcholine release from embryonic (E12 and E18) chick dorsal root ganglia explants at 3 and 7 days in culture was investigated using a chemiluminescent procedure. A basal release ranging from 2.4 to 13.8 pm/ganglion/5 min was detected. Potassium application always induced a significant increase over the basal release. The acetylcholine levels measured in E12 explants were 6.3 and 38.4 pm/ganglion/5 min at 3 and 7 days in culture, respectively, while in E18 explant cultures they were 10.7 and 15.5 pm/ganglion/5 min. In experiments performed in the absence of extracellular Ca2+ ions, acetylcholine release, both basal and potassium-induced, was abolished and it was reduced by cholinergic antagonists. A morphometric analysis of explant fibre length suggested that acetylcholine release was directly correlated to neurite extension. Moreover, treatment of E12 dorsal root ganglion-dissociated cell cultures with carbachol as cholinergic receptor agonist was shown to induce a higher neurite outgrowth compared with untreated cultures. The concomitant treatment with carbachol and the antagonists at muscarinic receptors atropine and at nicotinic receptors mecamylamine counteracted the increase in fibre outgrowth. Although the present data have not established whether acetylcholine is released by neurones or glial cells, these observations provide the first evidence of a regulated release of acetylcholine in dorsal root ganglia.

  14. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca(2+) influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  15. High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic receptors

    SciTech Connect

    Kellar, K.J.; Martino, A.M.; Hall, D.P. Jr.; Schwartz, R.D.; Taylor, R.L.

    1985-06-01

    High-affinity binding of (/sup 3/H)acetylcholine to muscarinic cholinergic sites in rat CNS and peripheral tissues was measured in the presence of cytisin, which occupies nicotinic cholinergic receptors. The muscarinic sites were characterized with regard to binding kinetics, pharmacology, anatomical distribution, and regulation by guanyl nucleotides. These binding sites have characteristics of high-affinity muscarinic cholinergic receptors with a Kd of approximately 30 nM. Most of the muscarinic agonist and antagonist drugs tested have high affinity for the (/sup 3/H)acetylcholine binding site, but pirenzepine, an antagonist which is selective for M-1 receptors, has relatively low affinity. The ratio of high-affinity (/sup 3/H)acetylcholine binding sites to total muscarinic binding sites labeled by (/sup 3/H)quinuclidinyl benzilate varies from 9 to 90% in different tissues, with the highest ratios in the pons, medulla, and heart atrium. In the presence of guanyl nucleotides, (/sup 3/H) acetylcholine binding is decreased, but the extent of decrease varies from 40 to 90% in different tissues, with the largest decreases being found in the pons, medulla, cerebellum, and heart atrium. The results indicate that (/sup 3/H)acetylcholine binds to high-affinity M-1 and M-2 muscarinic receptors, and they suggest that most M-2 sites have high affinity for acetylcholine but that only a small fraction of M-1 sites have such high affinity.

  16. Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly

    PubMed Central

    1990-01-01

    The structural elements required for normal maturation and assembly of the nicotinic acetylcholine receptor alpha subunit were investigated by expression of mutated subunits in transfected fibroblasts. Normally, the wild-type alpha subunit acquires high affinity alpha bungarotoxin binding in a time-dependent manner; however, mutation of the 128 and/or 142 cysteines to either serine or alanine, as well as deletion of the entire 14 amino acids in this region abolished all detectable high affinity binding. Nonglycosylated subunits that had a serine to glycine mutation in the consensus sequence also did not efficiently attain high affinity binding to toxin. In contrast, mutation of the proline at position 136 to glycine or alanine, or a double mutation of the cysteines at position 192 and 193 to serines had no effect on the acquisition of high affinity toxin binding. These data suggest that a disulfide bridge between cysteines 128 and 142 and oligosaccharide addition at asparagine 141 are required for the normal maturation of alpha subunit as assayed by high affinity toxin binding. The unassembled wild-type alpha subunit expressed in fibroblasts is normally degraded with a t1/2 of 2 h; upon assembly with the delta subunit, the degradation rate slows significantly (t1/2 greater than 13 h). All mutated alpha subunits retained the capacity to assemble with a delta subunit coexpressed in fibroblasts; however, mutated alpha subunits that were not glycosylated or did not acquire high affinity toxin binding were rapidly degraded (t1/2 = 20 min to 2 h) regardless of whether or not they assembled with the delta subunit. Assembly and rapid degradation of nonglycosylated acetylcholine receptor (AChR) subunits and subunit complexes were also observed in tunicamycin- treated BC3H-1 cells, a mouse musclelike cell line that normally expresses functional AChR. Hence, rapid degradation may be one form of regulation assuring that only correctly processed and assembled subunits

  17. Performance of Single-Stage Turbine of Mark 25 Torpedo Power Plant with Two Nozzles and Three Rotor-Blade Designs

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Whitney, Warren J.

    1949-01-01

    A single-stage modification of the turbine from a Mark 25 torpedo power plant was investigated to determine the performance with two nozzles and three rotor-blade designs. The performance was evaluated in terms of brake, rotor, and blade efficiencies at pressure ratios of 8, 15 (design), and 20. The blade efficiencies with the two nozzles are compared with those obtained with four other nozzles previously investigated with the same three rotor-blade designs. Blade efficiency with the cast nozzle of rectangular cross section (J) was higher than that with the circular reamed nozzle (K) at all speeds and pressure ratios with a rotor having a 0.45-inch 17 degree-inlet-angle blades. The efficiencies for both these nozzles were generally low compared with those of the four other nozzles previously investigated in combination with this rotor. At pressure ratios of 15 and 20, the blade efficiencies with nozzle K and the two rotors with 0.40-inch blades having different inlet angles were higher than with the four other nozzles, but the efficiency with nozzle J was generally low. Increasing the blade inlet angle from 17 degrees to 20 degrees had little effect on turbine performance, whereas changing the blade length from 0.40 to 0.45 inch had a marked effect. Although a slight correlation of efficiency with nozzle size was noted for the rotor with 0.45-inch 17 degree-inlet-angle blades, no such effect was discernible ,for the two rotors with 0.40-inch blades.Losses in the supersonic air stream resulting from the complex flow path in the small air passages are probably a large percentage of the total losses, and apparently the effects of changing nozzle size and shape within the limits investigated are of secondary importance.

  18. Looking below the surface of nicotinic acetylcholine receptors

    PubMed Central

    Stokes, Clare; Treinin, Millet; Papke, Roger L.

    2015-01-01

    The amino acid sequences of nicotinic acetylcholine receptors (nAChRs) from diverse species can be compared across extracellular, transmembrane, and intracellular domains. The intracellular domains are most divergent among subtypes, yet relatively consistent among species. The diversity indicates that each nAChR subtype possesses a unique language for communication with its host cell. The conservation across species also suggests that the intracellular domains may play defining functional roles for each subtype. Secondary structure prediction indicates two relatively conserved alpha helices within the intracellular domains of all nAChRs. Among all subtypes, the intracellular domain of α7 nAChR is one of the most-well conserved, and α7 nAChRs have effects in non-neuronal cells independent of generating ion currents, making it likely that the α7 intracellular domain directly mediates signal transduction. There are potential phosphorylation and protein binding sites in the α7 intracellular domain, which are conserved and may be the basis for α7-mediated signal transduction. PMID:26067101

  19. Vasoactive intestinal polypeptide provokes acetylcholine release from the myenteric plexus

    SciTech Connect

    Kusunoki, M.; Tsai, L.H.; Taniyama, K.; Tanaka, C.

    1986-07-01

    Effects of vasoactive intestinal polypeptide (VIP) on the release of acetylcholine (ACh) from longitudinal muscle strips with myenteric plexus (LM) preparations were examined in the guinea pig small intestine. VIP (10 to 10 W M) induced a concentration-dependent contraction of LM preparation. The VIP-induced contractions seem to be related to three components, the scopolamine-sensitive, the scopolamine-insensitive, the tetrodotoxin-sensitive, and the tetrodotoxin-insensitive contractions. VIP (10 to 10 W M) induced a concentration-dependent increase in the release of (TH)ACh from LM preparations preloaded with (TH)choline. The VIP-evoked (TH)ACh release was inhibited by removal of CaS from the perfusion medium and by treatment with tetrodotoxin but not by scopolamine and hexamethonium. The spontaneous and VIP-evoked (TH)ACh release was not affected by phentolamine, propranolol, methysergide, diphenhydramine, cimetidine, bicuculline, or (D-ProS, D-Trp/sup 7,9/)substance P. The result demonstrates that VIP induces contractions of longitudinal smooth muscle directly and indirectly by the stimulation of both cholinergic neurons and noncholinergic excitatory neurons.

  20. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors

    PubMed Central

    Griguoli, Marilena; Cherubini, Enrico

    2012-01-01

    The hippocampal network comprises a large variety of locally connected GABAergic interneurons exerting a powerful control on network excitability and which are responsible for the oscillatory behaviour crucial for information processing. GABAergic interneurons receive an important cholinergic innervation from the medial septum-diagonal band complex of the basal forebrain and are endowed with a variety of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs) that regulate their activity. Deficits in the cholinergic system lead to the impairment of high cognitive functions, which are particularly relevant in neurodegenerative pathologies such as Alzheimer's and Parkinson's diseases as well as in schizophrenia. Here, we highlight some recent advances in the mechanisms by which cholinergic signalling via nAChRs regulates local inhibitory circuits in the hippocampus, early in postnatal life and in adulthood. We also discuss recent findings concerning the functional role of nAChRs in controlling short- and long-term modifications of synaptic efficacy. Insights into these processes may provide new targets for the therapeutic control of pathological conditions associated with cholinergic dysfunctions. PMID:22124144

  1. Discovery of new muscarinic acetylcholine receptor antagonists from Scopolia tangutica

    PubMed Central

    Du, Nana; Liu, Yanfang; Zhang, Xiuli; Wang, Jixia; Zhao, Jianqiang; He, Jian; Zhou, Han; Mei, Lijuan; Liang, Xinmiao

    2017-01-01

    Scopolia tangutica (S. tangutica) is a traditional Chinese medicinal plant used for antispasmodics, anesthesia, analgesia and sedation. Its pharmacological activities are mostly associated with the antagonistic activity at muscarinic acetylcholine receptors (mAchRs) of several known alkaloids such as atropine and scopolamine. With our recent identification of four hydroxycinnamic acid amides from S. tangutica, we hypothesized that this plant may contain previously unidentified alkaloids that may also contribute to its in vivo effect. Herein, we used a bioassay-guided multi-dimension separation strategy to discover novel mAchR antagonists from S. tangutica. The core of this approach is to use label-free cell phenotypic assay to first identify active fractions, and then to guide purification of active ligands. Besides four tropanes and six cinnamic acid amides that have been previously isolated from S. tangutica, we recently identified two new tropanes, one new cinnamic acid amide, and nine other compounds. Six tropane compounds purified from S. tangutica for the first time were confirmed to be competitive antagonists of muscarinic receptor 3 (M3), including the two new ones 8 and 12 with IC50 values of 1.97 μM and 4.47 μM, respectively. Furthermore, the cinnamic acid amide 17 displayed 15-fold selectivity for M1 over M3 receptors. These findings will be useful in designing lead compounds for mAchRs and elucidating mechanisms of action of S. tangutica. PMID:28387362

  2. Oseltamivir blocks human neuronal nicotinic acetylcholine receptor-mediated currents.

    PubMed

    Muraki, Katsuhiko; Hatano, Noriyuki; Suzuki, Hiroka; Muraki, Yukiko; Iwajima, Yui; Maeda, Yasuhiro; Ono, Hideki

    2015-02-01

    The effects of oseltamivir, a neuraminidase inhibitor, were tested on the function of neuronal nicotinic acetylcholine receptors (nAChRs) in a neuroblastoma cell line IMR32 derived from human peripheral neurons and on recombinant human α3β4 nAChRs expressed in HEK cells. IMR32 cells predominately express α3β4 nAChRs. Nicotine (nic, 30 μm)-evoked currents recorded at -90 mV in IMR32 cells using the whole-cell patch clamp technique were reversibly blocked by oseltamivir in a concentration-dependent manner. In contrast, an active metabolite of oseltamivir, oseltamivir carboxylate (OC) at 30 μm had little effect on the nic-evoked currents. Oseltamivir also blocked nic-evoked currents derived from HEK cells with recombinant α3β4 nAChRs. This blockade was voltage-dependent with 10, 30 and 100 μm oseltamivir inhibiting ~50% at -100, -60 and -40 mV, respectively. Non-inactivating currents in IMR32 cells and in HEK cells with α3β4 nAChRs, which were evoked by an endogenous nicotinic agonist, ACh (5 μm), were reversibly blocked by oseltamivir. These data demonstrate that oseltamivir blocks nAChRs, presumably via binding to a site in the channel pore.

  3. Muscarinic acetylcholine receptors: location of the ligand binding site

    SciTech Connect

    Hulme, E.; Wheatley, M.; Curtis, C.; Birdsall, N.

    1987-05-01

    The key to understanding the pharmacological specificity of muscarinic acetylcholine receptors (mAChR's) is the location within the receptor sequence of the amino acid residues responsible for ligand binding. To approach this problem, they have purified mAChR's from rat brain to homogeneity by sequential ion-exchange chromatography, affinity chromatography and molecular weight fractionation. Following labelling of the binding site with an alkylating affinity label, /sup 3/H-propylbenzilycholine mustard aziridinium ion (/sup 3/H-PrBCM), the mAChR was digested with a lysine-specific endoproteinase, and a ladder of peptides of increasing molecular weight, each containing the glycosylated N-terminus, isolated by chromatography on wheat-germ agglutinin sepharose. The pattern of labelling showed that a residue in the peptides containing transmembrane helices 2 and/or 3 of the mAChR was alkylated. The linkage was cleaved by 1 M hydroxylamine, showing that /sup 3/H-PrBCM was attached to an acidic residue, whose properties strongly suggested it to be embedded in a hydrophobic intramembrane region of the mAChR. Examination of the cloned sequence of the mAChR reveals several candidate residues, the most likely of which is homologous to an aspartic acid residue thought to protonate the retinal Schiff's base in the congeneric protein rhodopsin.

  4. Molecular alteration of a muscarinic acetylcholine receptor system during synaptogenesis

    SciTech Connect

    Large, T.H.; Cho, N.J.; De Mello, F.G.; Klein, W.L.

    1985-07-25

    Biochemical properties of the muscarinic acetylcholine receptor system of the avian retina were found to change during the period when synapses form in ovo. Comparison of ligand binding to membranes obtained before and after synaptogenesis showed a significant increase in the affinity, but not proportion, of the high affinity agonist-binding state. There was no change in receptor sensitivity to antagonists during this period. Pirenzepine binding, which can discriminate muscarinic receptor subtypes, showed the presence of a single population of low affinity sites (M2) before and after synaptogenesis. The change in agonist binding was not due to the late development of receptor function. However, detergent-solubilization of membranes eliminated differences in agonist binding between receptors from embryos and hatched chicks, suggesting a developmental change in interactions of the receptor with functionally related membrane components. A possible basis for altered interactions was obtained from isoelectric point data showing that the muscarinic receptor population underwent a transition from a predominantly low pI form (4.25) in 13 day embryos to a predominantly high pI form (4.50) in newly hatched chicks. The possibility that biochemical changes in the muscarinic receptor play a role in differentiation of the system by controlling receptor position on the surface of nerve cells is discussed.

  5. Nicotinic acetylcholine receptor agonist attenuates ILC2-dependent airway hyperreactivity

    PubMed Central

    Galle-Treger, Lauriane; Suzuki, Yuzo; Patel, Nisheel; Sankaranarayanan, Ishwarya; Aron, Jennifer L.; Maazi, Hadi; Chen, Lin; Akbari, Omid

    2016-01-01

    Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/β. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma. PMID:27752043

  6. Nicotinic Acetylcholine Receptors at the Single-Channel Level.

    PubMed

    Bouzat, Cecilia; Sine, Steven M

    2017-03-05

    Over the past four decades, the patch clamp technique and nicotinic acetylcholine (nACh) receptors have established an enduring partnership. Like all good partnerships, each partner has proven significant in its own right, while their union has spurred innumerable advances in life science research. A member and prototype of the superfamily of pentameric ligand-gated ion channels, the nACh receptor is a chemo-electric transducer, binding nerve-released ACh and rapidly opening its channel to cation flow to elicit cellular excitation. A subject of a Nobel Prize in Physiology or Medicine, the patch clamp technique provides unprecedented resolution of currents through single ion channels in their native cellular environments. Here, focusing on muscle and α7 nACh receptors, we describe the extraordinary contribution of the patch clamp technique toward understanding how they activate in response to neurotransmitter, how subtle structural and mechanistic differences among nACh receptor subtypes translate into significant physiological differences, and how nACh receptors are being exploited as therapeutic drug targets.

  7. Acetylcholine-induced current in perfused rat myoballs

    PubMed Central

    1980-01-01

    Spherical "myoballs" were grown under tissue culture conditions from striated muscle of neonatal rat thighs. The myoballs were examined electrophysiologically with a suction pipette which was used to pass current and perfuse internally. A microelectrode was used to record membrane potential. Experiments were performed with approximately symmetrical (intracellular and extracellular) sodium aspartate solutions. The resting potential, acetylcholine (ACh) reversal potential, and sodium channel reversal potential were all approximately 0 mV. ACh-induced currents were examined by use of both voltage jumps and voltage ramps in the presence of iontophoretically applied agonist. The voltage-jump relaxations had a single exponential time-course. The time constant, tau, was exponentially related to membrane potential, increasing e-fold for 81 mV hyperpolarization. The equilibrium current- voltage relationship was also approximately exponential, from -120 to +81 mV, increasing e-fold for 104 mV hyperpolarization. The data are consistent with a first-order gating process in which the channel opening rate constant is slightly voltage dependent. The instantaneous current-voltage relationship was sublinear in the hyperpolarizing direction. Several models are discussed which can account for the nonlinearity. Evidence is presented that the "selectivity filter" for the ACh channel is located near the intracellular membrane surface. PMID:7381423

  8. Revisiting the endocytosis of the m2 muscarinic acetylcholine receptor.

    PubMed

    Ockenga, Wymke; Tikkanen, Ritva

    2015-05-12

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles.

  9. Anesthetics Target Interfacial Transmembrane Sites in Nicotinic Acetylcholine Receptors

    PubMed Central

    Forman, Stuart A.; Chiara, David C.; Miller, Keith W.

    2014-01-01

    General anesthetics are a heterogeneous group of small amphiphilic ligands that interact weakly at multiple allosteric sites on many pentameric ligand gated ion channels (pLGICs), resulting in either inhibition, potentiation of channel activity, or both. Allosteric principles imply that modulator sites must change configuration and ligand affinity during receptor state transitions. Thus, general anesthetics and related compounds are useful both as state-dependent probes of receptor structure and as potentially selective modulators of pLGIC functions. This review focuses on general anesthetic sites in nicotinic acetylcholine receptors, which were among the first anesthetic-sensitive pLGIC experimental models studied, with particular focus on sites formed by transmembrane domain elements. Structural models place many of these sites at interfaces between two or more pLGIC transmembrane helices both within subunits and between adjacent subunits, and between transmembrane helices and either lipids (the lipid-protein interface) or water (i.e. the ion channel). A single general anesthetic may bind at multiple allosteric sites in pLGICs, producing a net effect of either inhibition (e.g. blocking the ion channel) or enhanced channel gating (e.g. inter-subunit sites). Other general anesthetic sites identified by photolabeling or crystallography are tentatively linked to functional effects, including intra-subunit helix bundle sites and the lipid-protein interface. PMID:25316107

  10. Acetylcholine-Atropine Interactions: Paradoxical Effects on Atrial Fibrillation Inducibility.

    PubMed

    Liu, Yu; Scherlag, Benjamin J; Fan, Youqi; Xia, Wenfang; Huang, He; Po, Sunny S

    2017-03-21

    Atropine (ATr) is well known as a cholinergic antagonist, however, at low concentrations ATr could paradoxically accentuate the parasympathetic actions of acetylcholine (ACh). In 22 pentobarbital anesthetized dogs, via a left and right thoracotomy, a leak proof barrier was attached to isolate the atrial appendages (AAs) from the rest of the atria. In Group 1(Ach+ATr+Ach), ACh, 100 mM, was placed on the AA followed by the application of ATr, 2mg/cc. The average AFdur was 17±7 minutes. After ATr was applied to the AA and ACh again tested, the AFdur was markedly attenuated (2±2 minutes, p<0.05). In Group 2 (ATr+Ach), ATr was initially applied to the AA followed by the application of ACh, 100 mM. There was no significant difference in AF duration (16±4 minutes vs 18±2 minutes, p=NS). The inhibitory effect of ATr on induced HR reduction (electrical stimulation of the anterior right ganglionated plexi and vagal nerves) was no difference between Groups 1 and 2. These observations suggest that when ATr is initially administered it attaches to the allosteric site of the muscarinic ACh receptor (M2 AChRs) leaving the orthosteric site free to be occupied by ACh. The M3 receptor that controls HR slowing does not show the same allosteric properties.

  11. Revisiting the Endocytosis of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Tikkanen, Ritva

    2015-01-01

    The agonist-induced endocytosis of the muscarinic acetylcholine receptor M2 is different from that of the other members of the muscarinic receptor family. The uptake of the M2 receptor involves the adapter proteins of the β-arrestin family and the small GTPase ADP-ribosylation factor 6. However, it has remained inconclusive if M2 endocytosis is dependent on clathrin or the large GTPase dynamin. We here show by means of knocking down the clathrin heavy chain that M2 uptake upon agonist stimulation requires clathrin. The expression of various dominant-negative dynamin-2 mutants and the use of chemical inhibitors of dynamin function revealed that dynamin expression and membrane localization as such appear to be necessary for M2 endocytosis, whereas dynamin GTPase activity is not required for this process. Based on the data from the present and from previous studies, we propose that M2 endocytosis takes place by means of an atypical clathrin-mediated pathway that may involve a specific subset of clathrin-coated pits/vesicles. PMID:25985102

  12. Neuronal Nicotinic Acetylcholine Receptor Modulators Reduce Sugar Intake

    PubMed Central

    Shariff, Masroor; Quik, Maryka; Holgate, Joan; Morgan, Michael; Patkar, Omkar L.; Tam, Vincent; Belmer, Arnauld; Bartlett, Selena E.

    2016-01-01

    Excess sugar consumption has been shown to contribute directly to weight gain, thus contributing to the growing worldwide obesity epidemic. Interestingly, increased sugar consumption has been shown to repeatedly elevate dopamine levels in the nucleus accumbens (NAc), in the mesolimbic reward pathway of the brain similar to many drugs of abuse. We report that varenicline, an FDA-approved nicotinic acetylcholine receptor (nAChR) partial agonist that modulates dopamine in the mesolimbic reward pathway of the brain, significantly reduces sucrose consumption, especially in a long-term consumption paradigm. Similar results were observed with other nAChR drugs, namely mecamylamine and cytisine. Furthermore, we show that long-term sucrose consumption increases α4β2 * and decreases α6β2* nAChRs in the nucleus accumbens, a key brain region associated with reward. Taken together, our results suggest that nAChR drugs such as varenicline may represent a novel treatment strategy for reducing sugar consumption. PMID:27028298

  13. Serotonergic modulation of muscle acetylcholine receptors of different subunit composition.

    PubMed Central

    García-Colunga, J; Miledi, R

    1996-01-01

    Modulation of muscle acetylcholine (AcCho) receptors (AcChoRs) by serotonin [5-hydroxytryptamine (5HT)] and other serotonergic compounds was studied in Xenopus laevis oocytes. Various combinations of alpha, beta, gamma, and delta subunit RNAs were injected into oocytes, and membrane currents elicited by AcCho were recorded under voltage clamp. Judging by the amplitudes of AcCho currents generated, the levels of functional receptor expression were: alpha beta gamma delta > alpha beta delta > alpha beta gamma > alpha gamma delta. The alpha beta gamma delta and alpha beta delta AcChoR Subtypes were strongly blocked by 5HT, whereas the alpha beta gamma receptor was blocked only slightly. The order of blocking potency of AcChoRs by 5HT was: alpha beta delta > alpha beta gamma delta > alpha beta gamma. 5HT receptor antagonists, such as methysergide and spiperone, were even more potent blockers of AcChoRs than 5HT but did not show much subunit selectivity. Blockage of alpha beta gamma delta and alpha beta delta receptors by 5HT was voltage-dependent, and the voltage dependence was abolished when the delta subunit was omitted. These findings may need to be taken into consideration when trying to elucidate the mode of action of many clinically important serotonergic compounds. Images Fig. 3 PMID:8633003

  14. Paroxysmal atrial fibrillation during intracoronary acetylcholine provocation test.

    PubMed

    Saito, Yuichi; Kitahara, Hideki; Shoji, Toshihiro; Tokimasa, Satoshi; Nakayama, Takashi; Sugimoto, Kazumasa; Fujimoto, Yoshihide; Kobayashi, Yoshio

    2016-12-22

    Intracoronary acetylcholine (ACh) provocation test is useful to diagnose vasospastic angina. However, paroxysmal atrial fibrillation (AF) often occurs during intracoronary ACh provocation test, leading to disabling symptoms. The aim of this study was to investigate the incidence and predictors of paroxysmal AF during the test. A total of 377 patients without persistent AF who underwent intracoronary ACh provocation test were included. Paroxysmal AF during ACh provocation test was defined as documented AF on electrocardiogram during the procedure. There were 31 patients (8%) with paroxysmal AF during the test. Of these, 11 (35%) required antiarrhythmic drugs, but none received electrical cardioversion. All of them recovered sinus rhythm within 48 h. At procedure, paroxysmal AF occurred mostly during provocation for the right coronary artery (RCA) rather than for the left coronary artery (LCA) (90 vs. 10%). Multivariate logistic regression analysis demonstrated that a history of paroxysmal AF (OR 4.38 CI 1.42-13.51, p = 0.01) and body mass index (OR 0.88 CI 0.78-0.99, p = 0.03) were independent predictors for occurrence of paroxysmal AF during intracoronary ACh provocation test. In conclusions, paroxysmal AF mostly occurs during ACh provocation test for the RCA, especially in patients with a history of paroxysmal AF and lower body mass index. It may be better to initially administer intracoronary ACh in the LCA when the provocation test is performed.

  15. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    PubMed Central

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  16. Inhibition of nicotinic acetylcholine receptors, a novel facet in the pleiotropic activities of snake venom phospholipases A2.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Starkov, Vladislav G; Osipov, Alexey V; Andreeva, Tatyana V; Filkin, Sergey Yu; Gorbacheva, Elena V; Astashev, Maxim E; Tsetlin, Victor I; Utkin, Yuri N

    2014-01-01

    Phospholipases A2 represent the most abundant family of snake venom proteins. They manifest an array of biological activities, which is constantly expanding. We have recently shown that a protein bitanarin, isolated from the venom of the puff adder Bitis arietans and possessing high phospholipolytic activity, interacts with different types of nicotinic acetylcholine receptors and with the acetylcholine-binding protein. To check if this property is characteristic to all venom phospholipases A2, we have studied the capability of these enzymes from other snakes to block the responses of Lymnaea stagnalis neurons to acetylcholine or cytisine and to inhibit α-bungarotoxin binding to nicotinic acetylcholine receptors and acetylcholine-binding proteins. Here we present the evidence that phospholipases A2 from venoms of vipers Vipera ursinii and V. nikolskii, cobra Naja kaouthia, and krait Bungarus fasciatus from different snake families suppress the acetylcholine- or cytisine-elicited currents in L. stagnalis neurons and compete with α-bungarotoxin for binding to muscle- and neuronal α7-types of nicotinic acetylcholine receptor, as well as to acetylcholine-binding proteins. As the phospholipase A2 content in venoms is quite high, under some conditions the activity found may contribute to the deleterious venom effects. The results obtained suggest that the ability to interact with nicotinic acetylcholine receptors may be a general property of snake venom phospholipases A2, which add a new target to the numerous activities of these enzymes.

  17. Docking of 6-chloropyridazin-3-yl derivatives active on nicotinic acetylcholine receptors into molluscan acetylcholine binding protein (AChBP).

    PubMed

    Artali, Roberto; Bombieri, Gabriella; Meneghetti, Fiorella

    2005-04-01

    The crystal structure of Acetylcholine Binding Protein (AChBP), homolog of the ligand binding domain of nAChR, has been used as model for computational investigations on the ligand-receptor interactions of derivatives of 6-chloropyridazine substituted at C3 with 3,8-diazabicyclo[3.2.1]octane, 2,5-diazabicyclo[2.2.1]heptane and with piperazine and homopiperazine, substituted or not at N4. The ligand-receptor complexes have been analyzed by docking techniques using the binding site of HEPES complexed with AChBP as template. The good relationship between the observed binding affinity and the calculated docking energy confirms that this model provides a good starting point for understanding the binding domain of neuronal nicotinic receptors. An analysis of the possible factors significant for the ligand recognition has evidenced, besides the cation-pi interaction, the distance between the chlorine atom of the pyridazinyl group and the carbonylic oxygen of Leu B112 as an important parameter in the modulation of the binding energy.

  18. Circulating antibodies against nicotinic acetylcholine receptors in chagasic patients

    PubMed Central

    GOIN, J C; VENERA, G; BONINO, M BISCOGLIO DE JIMÉNEZ; STERIN-BORDA, L

    1997-01-01

    Human and experimental Chagas' disease causes peripheral nervous system damage involving neuromuscular transmission alterations at the neuromuscular junction. Additionally, autoantibodies directed to peripheral nerves and sarcolemmal proteins of skeletal muscle have been described. In this work, we analyse the ability of serum immunoglobulin factors associated with human chagasic infection to bind the affinity-purified nicotinic acetylcholine receptor (nAChR) from electric organs of Discopyge tschudii and to identify the receptor subunits involved in the interaction. The frequency of serum anti-nAChR reactivity assayed by dot-blot was higher in seropositive chagasic patients than in uninfected subjects. Purified IgG obtained from chagasic patients immunoprecipitated a significantly higher fraction of the solubilized nAChR than normal IgG. Furthermore, immunoblotting assays indicated that α and β are the main subunits involved in the interaction. Chagasic IgG was able to inhibit the binding of α-bungarotoxin to the receptor in a concentration-dependent manner, confirming the contribution of the α-subunit in the autoantibody-receptor interaction. The presence of anti-nAChR antibodies was detected in 73% of chagasic patients with impairment of neuromuscular transmission in conventional electromyographical studies, indicating a strong association between seropositive reactivity against nAChR and electromyographical abnormalities in chagasic patients. The chronic binding of these autoantibodies to the nAChR could induce a decrease in the population of functional nAChRs at the neuromuscular junction and consequently contribute to the electrophysiological neuromuscular alterations described in the course of chronic Chagas' disease. PMID:9367405

  19. Cell-surface translational dynamics of nicotinic acetylcholine receptors

    PubMed Central

    Barrantes, Francisco J.

    2014-01-01

    Synapse efficacy heavily relies on the number of neurotransmitter receptors available at a given time. In addition to the equilibrium between the biosynthetic production, exocytic delivery and recycling of receptors on the one hand, and the endocytic internalization on the other, lateral diffusion and clustering of receptors at the cell membrane play key roles in determining the amount of active receptors at the synapse. Mobile receptors traffic between reservoir compartments and the synapse by thermally driven Brownian motion, and become immobilized at the peri-synaptic region or the synapse by: (a) clustering mediated by homotropic inter-molecular receptor–receptor associations; (b) heterotropic associations with non-receptor scaffolding proteins or the subjacent cytoskeletal meshwork, leading to diffusional “trapping,” and (c) protein-lipid interactions, particularly with the neutral lipid cholesterol. This review assesses the contribution of some of these mechanisms to the supramolecular organization and dynamics of the paradigm neurotransmitter receptor of muscle and neuronal cells -the nicotinic acetylcholine receptor (nAChR). Currently available information stemming from various complementary biophysical techniques commonly used to interrogate the dynamics of cell-surface components is critically discussed. The translational mobility of nAChRs at the cell surface differs between muscle and neuronal receptors in terms of diffusion coefficients and residence intervals at the synapse, which cover an ample range of time regimes. A peculiar feature of brain α7 nAChR is its ability to spend much of its time confined peri-synaptically, vicinal to glutamatergic (excitatory) and GABAergic (inhibitory) synapses. An important function of the α7 nAChR may thus be visiting the territories of other neurotransmitter receptors, differentially regulating the dynamic equilibrium between excitation and inhibition, depending on its residence time in each domain. PMID

  20. Acetylcholine Receptor Organization in Membrane Domains in Muscle Cells

    PubMed Central

    Piguet, Joachim; Schreiter, Christoph; Segura, Jean-Manuel; Vogel, Horst; Hovius, Ruud

    2011-01-01

    Nicotinic acetylcholine receptors (nAChR) in muscle fibers are densely packed in the postsynaptic region at the neuromuscular junction. Rapsyn plays a central role in directing and clustering nAChR during cellular differentiation and neuromuscular junction formation; however, it has not been demonstrated whether rapsyn is the only cause of receptor immobilization. Here, we used single-molecule tracking methods to investigate nAChR mobility in plasma membranes of myoblast cells during their differentiation to myotubes in the presence and absence of rapsyn. We found that in myoblasts the majority of nAChR were immobile and that ∼20% of the receptors showed restricted diffusion in small domains of ∼50 nm. In myoblasts devoid of rapsyn, the fraction of mobile nAChR was considerably increased, accompanied by a 3-fold decrease in the immobile population of nAChR with respect to rapsyn-expressing cells. Half of the mobile receptors were confined to domains of ∼120 nm. Measurements performed in heterologously transfected HEK cells confirmed the direct immobilization of nAChR by rapsyn. However, irrespective of the presence of rapsyn, about one-third of nAChR were confined in 300-nm domains. Our results show (i) that rapsyn efficiently immobilizes nAChR independently of other postsynaptic scaffold components; (ii) nAChR is constrained in confined membrane domains independently of rapsyn; and (iii) in the presence of rapsyn, the size of these domains is strongly reduced. PMID:20978122

  1. Neuronal nicotinic acetylcholine receptors are modulated by zinc.

    PubMed

    Vázquez-Gómez, Elizabeth; García-Colunga, Jesús

    2009-01-01

    It is known that zinc modulates nicotinic acetylcholine receptors (nAChRs). Here, we studied the effects of zinc on neuronal alpha4beta4 nAChRs, expressed in Xenopus oocytes and activated by nicotine. Membrane ion currents elicited by nicotine (10 nM to 100 microM) were enhanced by zinc (100 microM). Maximal zinc potentiation of the nicotine-activated current (2530%) occurred at 50 nM nicotine, and potentiation gradually decreased as the nicotine concentration increased. The EC(50) and IC(50) for the nicotine-activated current were 639 nM and 14.7 microM nicotine, respectively. Both parameters decreased in the presence of zinc to 160 nM and 4.6 microM, respectively, probably due to an increase of sensitivity of nAChRs for nicotine. We used different concentrations and durations of exposure to nicotine, due to desensitization of nAChRs directly depends on both these factors. With 500 nM nicotine and 20 min washing periods between nicotine applications, zinc potentiation remained constant, 901% for 2 min and 813% for 20 min of nicotine exposure. With continuous application of nicotine, zinc potentiation decreased as the time of nicotine exposure increased, 721% for 2 min and 254% for 48 min of nicotine exposure. Our results indicate that zinc-potentiating effects on alpha4beta4 nAChRs strongly depend on both concentration and time of exposure to nicotine, suggesting that zinc potentiation depends on the degree of desensitization.

  2. Generation of choline for acetylcholine synthesis by phospholipase D isoforms

    PubMed Central

    Zhao, Di; Frohman, Michael A; Blusztajn, Jan Krzysztof

    2001-01-01

    Dedication This article is dedicated to the memory of Sue Kim Hanson, a graduate student in the department of Pathology and Laboratory Medicine at Boston University School of Medicine, who perished in the terrorist attacks of September 11, 2001. Abstract Background In cholinergic neurons, the hydrolysis of phosphatidylcholine (PC) by a phospholipase D (PLD)-type enzyme generates some of the precursor choline used for the synthesis of the neurotransmitter acetylcholine (ACh). We sought to determine the molecular identity of the relevant PLD using murine basal forebrain cholinergic SN56 cells in which the expression and activity of the two PLD isoforms, PLD1 and PLD2, were experimentally modified. ACh levels were examined in cells incubated in a choline-free medium, to ensure that their ACh was synthesized entirely from intracellular choline. Results PLD2, but not PLD1, mRNA and protein were detected in these cells and endogenous PLD activity and ACh synthesis were stimulated by phorbol 12-myristate 13-acetate (PMA). Introduction of a PLD2 antisense oligonucleotide into the cells reduced PLD2 mRNA and protein expression by approximately 30%. The PLD2 antisense oligomer similarly reduced basal- and PMA-stimulated PLD activity and ACh levels. Overexpression of mouse PLD2 by transient transfection increased basal- (by 74%) and PMA-stimulated (by 3.2-fold) PLD activity. Moreover, PLD2 transfection increased ACh levels by 26% in the absence of PMA and by 2.1-fold in the presence of PMA. Overexpression of human PLD1 by transient transfection increased PLD activity by 4.6-fold and ACh synthesis by 2.3-fold in the presence of PMA as compared to controls. Conclusions These data identify PLD2 as the endogenous enzyme that hydrolyzes PC to generate choline for ACh synthesis in cholinergic cells, and indicate that in a model system choline generated by PLD1 may also be used for this purpose. PMID:11734063

  3. Developmental regulation of nicotinic acetylcholine receptors within midbrain dopamine neurons

    PubMed Central

    Azam, Layla; Chen, Yiling; Leslie, Frances M.

    2007-01-01

    We have combined anatomical and functional methodologies to provide a comprehensive analysis of the properties of nicotinic acetylcholine receptors (nAChRs) on developing dopamine (DA) neurons. Double-labeling in situ hybridization was used to examine the expression of nAChR subunit mRNAs within developing midbrain DA neurons. As brain maturation progressed there was a change in the pattern of subunit mRNA expression within DA neurons, such that α3 and α4 subunits declined and α6 mRNA increased. Although there were strong similarities in subunit mRNA expression in substantia nigra (SNc) and ventral tegmental area (VTA), there was higher expression of α4 mRNA in SNc than VTA at gestational day (G)15, and of α5, α6 and β3 mRNAs during postnatal development. Using a superfusion neurotransmitter release paradigm to functionally characterize nicotine-stimulated release of [3H]DA from striatal slices, the properties of the nAChRs on DA terminals were also found to change with age. Functional nAChRs were detected on striatal terminals at G18. There was a decrease in maximal release in the first postnatal week, followed by an increase in nicotine efficacy and potency during the second and third postnatal weeks. In the transition from adolescence (postnatal days (P) 30 and 40) to adulthood, there was a complex pattern of functional maturation of nAChRs in ventral, but not dorsal, striatum. In males, but not females, there were significant changes in both nicotine potency and efficacy during this developmental period. These findings suggest that nAChRs may play critical functional roles throughout DA neuronal maturation. PMID:17197101

  4. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors.

  5. Inhibition of human α7 nicotinic acetylcholine receptors by cyclic monoterpene carveol.

    PubMed

    Lozon, Yosra; Sultan, Ahmed; Lansdell, Stuart J; Prytkova, Tatiana; Sadek, Bassem; Yang, Keun-Hang Susan; Howarth, Frank Christopher; Millar, Neil S; Oz, Murat

    2016-04-05

    Cyclic monoterpenes are a group of phytochemicals with antinociceptive, local anesthetic, and anti-inflammatory actions. Effects of cyclic monoterpenes including vanilin, pulegone, eugenole, carvone, carvacrol, carveol, thymol, thymoquinone, menthone, and limonene were investigated on the functional properties of the cloned α7 subunit of the human nicotinic acetylcholine receptor expressed in Xenopus oocytes. Monoterpenes inhibited the α7 nicotinic acetylcholine receptor in the order carveol>thymoquinone>carvacrol>menthone>thymol>limonene>eugenole>pulegone≥carvone≥vanilin. Among the monoterpenes, carveol showed the highest potency on acetylcholine-induced responses, with IC50 of 8.3µM. Carveol-induced inhibition was independent of the membrane potential and could not be reversed by increasing the concentration of acetylcholine. In line with functional experiments, docking studies indicated that cyclic monoterpenes such as carveol may interact with an allosteric site located in the α7 transmembrane domain. Our results indicate that cyclic monoterpenes inhibit the function of human α7 nicotinic acetylcholine receptors, with varying potencies.

  6. Non-Neuronal Functions of the M2 Muscarinic Acetylcholine Receptor

    PubMed Central

    Ockenga, Wymke; Kühne, Sina; Bocksberger, Simone; Banning, Antje; Tikkanen, Ritva

    2013-01-01

    Acetylcholine is an important neurotransmitter whose effects are mediated by two classes of receptors. The nicotinic acetylcholine receptors are ion channels, whereas the muscarinic receptors belong to the large family of G protein coupled seven transmembrane helix receptors. Beyond its function in neuronal systems, it has become evident that acetylcholine also plays an important role in non-neuronal cells such as epithelial and immune cells. Furthermore, many cell types in the periphery are capable of synthesizing acetylcholine and express at least some of the receptors. In this review, we summarize the non-neuronal functions of the muscarinic acetylcholine receptors, especially those of the M2 muscarinic receptor in epithelial cells. We will review the mechanisms of signaling by the M2 receptor but also the cellular trafficking and ARF6 mediated endocytosis of this receptor, which play an important role in the regulation of signaling events. In addition, we provide an overview of the M2 receptor in human pathological conditions such as autoimmune diseases and cancer. PMID:24705159

  7. Purinergic component in the coronary vasodilatation to acetylcholine after ischemia-reperfusion in perfused rat hearts.

    PubMed

    García-Villalón, Ángel Luis; Granado, Miriam; Monge, Luis; Fernández, Nuria; Carreño-Tarragona, Gonzalo; Amor, Sara

    2014-01-01

    To determine the involvement of purinergic receptors in coronary endothelium-dependent relaxation, the response to acetylcholine (1 × 10(-8) to 3 × 10(-7)M) was recorded in isolated rat hearts perfused according to the Langendorff procedure before and after 30 min of ischemia and 15 min of reperfusion and after the inhibition of nitric oxide synthesis with L-NAME (10(-4)M), in the absence and presence of the antagonist of purinergic P2X receptors, PPADS (3 × 10(-6)M), and of the antagonist of purinergic P2Y receptors, Reactive Blue 2 (3 × 10(-7)M). In control conditions, the relaxation to acetylcholine was not altered by PPADS or Reactive Blue 2. The relaxation to acetylcholine was reduced after ischemia-reperfusion, and, in this condition, it was further reduced by treatment with PPADS or Reactive Blue 2. Likewise, the relaxation to acetylcholine was reduced by L-NAME, and reduced further by Reactive Blue 2 but not by PPADS. These results suggest that the relaxation to acetylcholine may be partly mediated by purinergic receptors after ischemia-reperfusion, due to the reduction of nitric oxide release in this condition.

  8. Modulation of the anti-acetylcholine receptor response and experimental autoimmune myasthenia gravis by recombinant fragments of the acetylcholine receptor.

    PubMed

    Barchan, D; Asher, O; Tzartos, S J; Fuchs, S; Souroujon, M C

    1998-02-01

    Myasthenia gravis (MG) is a neuromuscular disorder of man caused by a humoral response to the acetylcholine receptor (AChR). Most of the antibodies in MG and in experimental autoimmune myasthenia gravis (EAMG) are directed to the extracellular portion of the AChR alpha subunit, and within it, primarily to the main immunogenic region (MIR). We have cloned and expressed recombinant fragments, corresponding to the entire extracellular domain of the AChR alpha subunit (H alpha1-210), and to portions of it that encompass either the MIR (H alpha1-121) or the ligand binding site of AChR (H alpha122-210), and studied their ability to interfere with the immunopathological anti-AChR response in vitro and in vivo. All fragments were expressed as fusion proteins with glutathione S-transferase. Fragments H alpha1-121 and H alpha1-210 protected AChR in TE671 cells against accelerated degradation induced by the anti-MIR monoclonal antibody (mAb)198 in a dose-dependent manner. Moreover, these fragments had a similar effect on the antigenic modulation of AChR by other anti-MIR mAb and by polyclonal rat anti-AChR antibodies. Fragments H alpha1-121 and H alpha1-210 were also able to modulate in vivo muscle AChR loss and development of clinical symptoms of EAMG, passively transferred to rats by mAb 198. Fragment H alpha122-210 did not have such a protective activity. Our results suggest that the appropriate recombinant fragments of the human AChR may be employed in the future for antigen-specific therapy of myasthenia.

  9. Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB).

    PubMed

    Pusch, M; Accardi, A; Liantonio, A; Ferrera, L; De Luca, A; Camerino, D C; Conti, F

    2001-07-01

    We investigated in detail the mechanism of inhibition by the S(-) enantiomer of 2-(p-chlorophenoxy)butyric acid (CPB) of the Torpedo Cl(-)channel, ClC-0. The substance has been previously shown to inhibit the homologous skeletal muscle channel, CLC-1. ClC-0 is a homodimer with probably two independently gated protopores that are conductive only if an additional common gate is open. As a simplification, we used a mutant of ClC-0 (C212S) that has the common gate "locked open" (Lin, Y.W., C.W. Lin, and T.Y. Chen. 1999. J. Gen. Physiol. 114:1-12). CPB inhibits C212S currents only when applied to the cytoplasmic side, and single-channel recordings at voltages (V) between -120 and -80 mV demonstrate that it acts independently on individual protopores by introducing a long-lived nonconductive state with no effect on the conductance and little effect on the lifetime of the open state. Steady-state macroscopic currents at -140 mV are half-inhibited by approximately 0.5 mM CPB, but the inhibition decreases with V and vanishes for V > or = 40 mV. Relaxations of CPB inhibition after voltage steps are seen in the current responses as an additional exponential component that is much slower than the gating of drug-free protopores. For V = 60 mV) with an IC50 of approximately 30-40 mM. Altogether, these findings support a model for the mechanism of CPB inhibition in which the drug competes with Cl(-) for binding to a site of the pore where it blocks permeation. CPB binds preferentially to closed channels, and thereby also strongly alters the gating of the single protopore. Since the affinity of CPB for open WT pores is extremely low, we cannot decide in this case if it acts also as an open pore blocker. However, the experiments with the mutant K519E strongly support this interpretation. CPB block may become a useful tool to study the pore of ClC channels. As a first application, our results provide additional evidence for a double-barreled structure of ClC-0 and ClC-1.

  10. Prejunctional inhibition of norepinephrine release caused by acetylcholine in the human saphenous vein

    SciTech Connect

    Rorie, D.K.; Rusch, N.J.; Shepherd, J.T.; Vanhoutte, P.M.; Tyce, G.M.

    1981-08-01

    We performed experiments to determine whether or not acetylcholine exerts a prejunctional inhibitory effect on adrenergic neurotransmission in the human blood vessel wall. Rings of human greater saphenous veins were prepared 2 to 15 hours after death and mounted for isometric tension recording in organ chambers filled with Krebs-Ringer solution. Acetylcholine depressed contractile responses to electric activation of the sympathetic nerve endings significantly more than those to exogenous norepinephrine; the relaxations caused by the cholinergic transmitter were antagonized by atropine. Helical strips were incubated with (/sub 3/H)norepinephrine and mounted for superfusion. Electric stimulation augmented the fractional release of labeled norepinephrine. Acetylcholine caused a depression of the evoked /sub 3/H release which was antagonized by atropine but not by hexamethonium. These experiments demonstrate that, as in animal cutaneous veins, there are prejunctional inhibitory muscarinic receptors on the adrenergic nerve endings in the human saphenous vein. By contrast, the human vein also contains postjunctional inhibitory muscarinic receptors.

  11. Synergistic activation of ENaC by three membrane-bound channel-activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum- and glucocorticoid-regulated kinase (Sgk1) in Xenopus Oocytes.

    PubMed

    Vuagniaux, Grégoire; Vallet, Véronique; Jaeger, Nicole Fowler; Hummler, Edith; Rossier, Bernard C

    2002-08-01

    Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (I(Na)) by a GPI-anchored serine protease (mouse channel-activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase I(Na) 6-10-fold in the Xenopus oocyte expression system. I(Na) and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I(125)-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases I(Na) 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcP(o)). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances I(Na) by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcP(o). Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in I(Na) (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on I(Na) was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.

  12. Differences in the osmotic fragility of recycling and reserve synaptic vesicles from the cholinergic electromotor nerve terminals of Torpedo and their possible significance for vesicle recycling.

    PubMed

    Giompres, P E; Whittaker, V P

    1984-03-14

    In this study we demonstrate differences in the osmotic fragility of two metabolically and physically heterogeneous synaptic vesicle populations from stimulated electromotor nerve terminals. When synaptic vesicles isolated on sucrose density gradients are submitted to solutions of decreasing osmolarity 50% of VP2-type vesicles lysed at (mean + S.E. (number of experiments] 332 +/- 14 (4) mosM and 50% of VP1-type vesicles lysed at 573 +/- 8 (3) mosM. These results indicate that recycling vesicles are more resistant to hypo-osmotic lysis and they are consistent with our earlier conclusion that changes in water content on recycling are secondary to changes in the content of the osmotically active small-molecular-mass constituents acetylcholine and ATP.

  13. Modification by ouabain of the electrical and mechanical effects of acetylcholine in isolated rabbit atria

    PubMed Central

    Kajimoto, N.; Toda, N.

    1970-01-01

    1. Left atrial preparations isolated from rabbits were stimulated electrically at frequencies between 6 and 240/min. Tension-frequency curves were obtained from control preparations and preparations treated with ouabain and acetylcholine. Transmembrane potentials were recorded from single cells of the left atrium stimulated at different frequencies. 2. The tension-frequency curve was moved downwards by acetylcholine (10-6 g/ml). Ouabain (10-6 g/ml) caused characteristic alterations in the tension-frequency relationship, enhancing the contractile tension at low but not high frequencies. The negative inotropic effect of acetylcholine was reduced by treatment with ouabain. 3. Action potential durations were significantly influenced by alterations in frequency of contraction. The 10% duration increased with frequency within the range between 6 and 60/min but decreased at frequencies higher than 120/min. The 50% duration increased with frequency between 6 and 120/min but decreased at frequencies higher than 180/min. The dependence of the 50% duration upon frequency paralleled that of contractile tension. The 90% duration, the overshoot and the resting potential were not affected by frequency of contraction. 4. Acetylcholine (10-6 g/ml) shifted the 10%, 50% and 90% duration-frequency curves downwards, but did not significantly alter the overshoot and the resting potential. Ouabain (10-6 g/ml) shifted the duration-frequency curves downwards and also reduced the size of the overshoot and the resting potential. Treatment of atrial preparations with 10-6 g/ml ouabain potentiated the membrane effects of acetylcholine. 5. The inhibition by ouabain of the negative inotropic effect of acetylcholine did not appear to be due to antagonism at the receptor level, but to interference with the mechanisms responsible for the mechanical events. PMID:5425273

  14. Computer modeling of the neurotoxin binding site of acetylcholine receptor spanning residues 185 through 196

    NASA Technical Reports Server (NTRS)

    Garduno-Juarez, R.; Shibata, M.; Zielinski, T. J.; Rein, R.

    1987-01-01

    A model of the complex between the acetylcholine receptor and the snake neurotoxin, cobratoxin, was built by molecular model building and energy optimization techniques. The experimentally identified functionally important residues of cobratoxin and the dodecapeptide corresponding to the residues 185-196 of acetylcholine receptor alpha subunit were used to build the model. Both cis and trans conformers of cyclic L-cystine portion of the dodecapeptide were examined. Binding residues independently identified on cobratoxin are shown to interact with the dodecapeptide AChR model.

  15. Subtype Differences in Pre-Coupling of Muscarinic Acetylcholine Receptors

    PubMed Central

    Jakubík, Jan; Janíčková, Helena; Randáková, Alena; El-Fakahany, Esam E.; Doležal, Vladimír

    2011-01-01

    Based on the kinetics of interaction between a receptor and G-protein, a myriad of possibilities may result. Two extreme cases are represented by: 1/Collision coupling, where an agonist binds to the free receptor and then the agonist-receptor complex “collides” with the free G-protein. 2/Pre-coupling, where stable receptor/G-protein complexes exist in the absence of agonist. Pre-coupling plays an important role in the kinetics of signal transduction. Odd-numbered muscarinic acetylcholine receptors preferentially couple to Gq/11, while even-numbered receptors prefer coupling to Gi/o. We analyzed the coupling status of the various subtypes of muscarinic receptors with preferential and non-preferential G-proteins. The magnitude of receptor-G-protein coupling was determined by the proportion of receptors existing in the agonist high-affinity binding conformation. Antibodies directed against the C-terminus of the α-subunits of the individual G-proteins were used to interfere with receptor-G-protein coupling. Effects of mutations and expression level on receptor-G-protein coupling were also investigated. Tested agonists displayed biphasic competition curves with the antagonist [3H]-N-methylscopolamine. Antibodies directed against the C-terminus of the α-subunits of the preferential G-protein decreased the proportion of high-affinity sites, and mutations at the receptor-G-protein interface abolished agonist high-affinity binding. In contrast, mutations that prevent receptor activation had no effect. Expression level of preferential G-proteins had no effect on pre-coupling to non-preferential G-proteins. Our data show that all subtypes of muscarinic receptors pre-couple with their preferential classes of G-proteins, but only M1 and M3 receptors also pre-couple with non-preferential Gi/o G-proteins. Pre-coupling is not dependent on agonist efficacy nor on receptor activation. The ultimate mode of coupling is therefore dictated by a combination of the receptor subtype

  16. Dynamical State Transition by Neuromodulation Due to Acetylcholine in Neural Network Model for Oscillatory Phenomena in Thalamus

    NASA Astrophysics Data System (ADS)

    Omori, Toshiaki; Horiguchi, Tsuyoshi

    2004-12-01

    We propose a two-layered neural network model for oscillatory phenomena in the thalamic system and investigate an effect of neuromodulation due to the acetylcholine on the oscillatory phenomena by numerical simulations. The proposed model consists of a layer of the thalamic reticular neurons and that of the cholinergic neurons. We introduce a dynamics of concentration of the acetylcholine which depends on a state of the cholinergic neurons, and assume that the conductance of the thalamic reticular neurons is dynamically regulated by the acetylcholine. From the results obtained by numerical simulations, we find that a dynamical transition between a bursting state and a resting state occurs successively in the layer of the thalamic reticular neurons due to the acetylcholine. Therefore it turns out that the neuromodulation due to the acetylcholine is important for the dynamical state transition in the thalamic system.

  17. Rabies virus binding to an acetylcholine receptor alpha-subunit peptide.

    PubMed

    Lentz, T L

    1990-04-01

    The binding of 125I-labeled rabies virus to a synthetic peptide comprising residues 173-204 of the alpha 1-subunit of the nicotinic acetylcholine receptor was investigated. Binding of rabies virus to the receptor peptide was dependent on pH, could be competed with by unlabeled homologous virus particles, and was saturable. Synthetic peptides of snake venom, curaremimetic neurotoxins and of the structurally similar segment of the rabies virus glycoprotein, were effective in competing with labeled virus binding to the receptor peptide at micromolar concentrations. Similarly, synthetic peptides of the binding domain on the acetylcholine receptor competed for binding. These findings suggest that both rabies virus and neurotoxins bind to residues 173-204 of the alpha 1-subunit of the acetylcholine receptor. Competition studies with shorter alpha-subunit peptides within this region indicate that the highest affinity virus binding determinants are located within residues 179-192. A rat nerve alpha 3-subunit peptide, that does not bind alpha-bungarotoxin, inhibited binding of virus to the alpha 1 peptide, suggesting that rabies binds to neuronal nicotinic acetylcholine receptors. These studies indicate that synthetic peptides of the glycoprotein binding domain and of the receptor binding domain may represent useful antiviral agents by targeting the recognition event between the viral attachment protein and the host cell receptor, and inhibiting attachment of virus to the receptor.

  18. AGE-RELATED EFFECTS OF CHLORPYRIFOS ON ACETYLCHOLINE RELEASE IN RAT BRAIN. (R825811)

    EPA Science Inventory

    Chlorpyrifos (CPF) is an organophosphorus insecticide that elicits toxicity through inhibition of acetylcholinesterase (AChE). Young animals are markedly more sensitive than adults to the acute toxicity of CPF. We evaluated acetylcholine (ACh) release and its muscarinic recept...

  19. Ligand binding to nicotinic acetylcholine receptor investigated by surface plasmon resonance.

    PubMed

    Kröger, D; Hucho, F; Vogel, H

    1999-08-01

    Ligand binding to the nicotinic acetylcholine receptor is studied by surface plasmon resonance. Biotinylated bungarotoxin, immobilized on a streptavidin-coated gold film, binds nicotinic acetylcholine receptor both in detergent-solubilized and in lipid vesicle-reconstituted form with high specificity. In the latter case, nonspecific binding to the sensor surface is significantly reduced by reconstituting the receptor into poly(ethylene glycol)-lipid-containing sterically stabilized vesicles. By preincubation of a bulk nicotinic acetylcholine receptor sample with the competing ligands carbamoylcholine and decamethonium bromide, the subsequent specific binding of the receptor to the surface-immobilized bungarotoxin is reduced, depending on the concentration of competing ligand. This competition assay allows the determination of the dissociation constants of the acetylcholine receptor-carbamoylcholine complex. A K(D) = 3.5 × 10(-)(6) M for the detergent-solubilized receptor and a K(D) = 1.4 × 10(-)(5) M for the lipid vesicle-reconstituted receptor are obtained. For decamethonium bromide, a K(D) = 4.5 × 10(-)(5) M is determined for the detergent-solubilized receptor. This approach is of general importance for investigating ligand-receptor interactions in case of small ligand molecules by mass-sensitive techniques.

  20. Anterior Thalamic Lesions Alter Both Hippocampal-Dependent Behavior and Hippocampal Acetylcholine Release in the Rat

    ERIC Educational Resources Information Center

    Savage, Lisa M.; Hall, Joseph M.; Vetreno, Ryan P.

    2011-01-01

    The anterior thalamic nuclei (ATN) are important for learning and memory as damage to this region produces a persistent amnestic syndrome. Dense connections between the ATN and the hippocampus exist, and importantly, damage to the ATN can impair hippocampal functioning. Acetylcholine (ACh) is a key neurotransmitter in the hippocampus, and in vivo…

  1. Septohippocampal Acetylcholine: Involved in but Not Necessary for Learning and Memory?

    ERIC Educational Resources Information Center

    Parent, Marise B.; Baxter, Mark G.

    2004-01-01

    The neurotransmitter acetylcholine (ACh) has been accorded an important role in supporting learning and memory processes in the hippocampus. Cholinergic activity in the hippocampus is correlated with memory, and restoration of ACh in the hippocampus after disruption of the septohippocampal pathway is sufficient to rescue memory. However, selective…

  2. Hydrogen bonding. Part 33. NMR study of the hydration of choline and acetylcholine halides

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Akin, Anne C.; Avci, Günsel F.; Nowos, Lydia S.; Tierney, Mary Beth

    1991-04-01

    The hydration of choline and acetylcholine halides has been studied through observation of the development of 14N to β-CH 2 coupling as H 2O is added in increments to the lowest liquid hydrates of these salts. Choline cation forms an initial strong, anion-independent association with ca. 4.5 H 2O. Further addition of H 2O leads to a larger, looser hydration shell with choline chloride; this effect is not seen with the bromide or iodide. Hydrogen bonding between cation hydroxyl group and Cl - is observed up to about 5 H 2O for choline chloride; this type of interaction is weak or absent in solutions of the Br - and I - salts. Acetylcholine cation forms an initial strong, anion- independent association with ca. 7 H 2O; both Cl - and Br - show subsequent formation of a looser hydration shell up to ca. 10-13 H 2O. This is in accord with a previous phase diagram study that indicated formation of a low temperature crystalline hydrate of acetylcholine chloride with similar H 2O content. Both choline and acetylcholine cations retain the preferred gauche conformations from the lowest liquid hydrate to dilute solutions.

  3. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  4. Cytochemical Studies on Acetylcholine Synthesis and Metabolism in the Vestibular Cerebellum.

    DTIC Science & Technology

    1987-05-31

    proportion of their spinal input from the more distal parts of the lower limbs release taurine in their synaptic projection field, probably together with GABA ...Purkinje cells have GAD, motilin, and CSAD immunoreactivity. Existence and coexistence of GABA , motilin and taurine . in: Coexistence of Neuroactive...primate neuromuscular junctions of enzymes synthesizing four neuroactive substances: Acetylcholine, catecholamine, GABA , and taurine . In: Coexistence

  5. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist.

    PubMed

    Haga, Kazuko; Kruse, Andrew C; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I; Okada, Tetsuji; Kobilka, Brian K; Haga, Tatsuya; Kobayashi, Takuya

    2012-01-25

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  6. Unique pharmacology of heteromeric α7β2 nicotinic acetylcholine receptors expressed in Xenopus laevis oocytes.

    PubMed

    Zwart, Ruud; Strotton, Merrick; Ching, Jennifer; Astles, Peter C; Sher, Emanuele

    2014-03-05

    α7β2 is a novel type of nicotinic acetylcholine receptor shown to be uniquely expressed in cholinergic neurons of the basal forebrain and in hippocampal interneurons. We have compared the pharmacological properties of recombinant homomeric α7 and heteromeric α7β2 nicotinic acetylcholine receptors in order to reveal the pharmacological consequences of β2 subunit incorporation into the pentamer. The non-selective agonist epibatidine did not distinguish α7β2 from α7 nicotinic acetylcholine receptors, but three other non-selective agonists (nicotine, cytisine and varenicline) were less efficacious on α7β2 than on α7. A more dramatic change in efficacy was seen with eight different selective α7 agonists. Because of their very low intrinsic efficacy, some compounds became very efficacious functional antagonists at α7β2 receptors. Three α4β2 nicotinic receptor selective agonists that were not active on α7, were also inactive on α7β2, and dihydro-β-erythroidine, an α4β2 receptor-preferring antagonist, inhibited α7 and α7β2 in a similar manner. These results reveal significant effects of β2 incorporation in determining the relative efficacy of several non-selective and α7 selective agonists, and also show that incorporation of β2 subunits does not cause a shift to a more “β2-like” pharmacology of α7 nicotinic acetylcholine receptors.

  7. INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.

    EPA Science Inventory

    INHIBITORY EFFECTS OF VOLATILE ORGANIC COMPOUNDS ON NEURONAL NICOTINIC ACETYLCHOLINE RECEPTORS.
    A.S. Bale*; P.J. Bushnell; C.A. Meacham; T.J. Shafer
    Neurotoxicology Division, NHEERL, ORD, US Environmental Protection Agency, Research Triangle Park, NC, USA
    Toluene (TOL...

  8. The effects of methyllycaconitine on the response of TE-671 cells to acetylcholine and epibatidine

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Methyllycaconitine (MLA) is a norditerpenoid alkaloid found in Delphinium spp., and is a potent and selective antagonist of a7-nicotinic acetylcholine receptors. Plants with high concentrations of MLA are responsible for many livestock poisonings in the Intermountain West of the United States of Am...

  9. Acetylcholine Release in the Hippocampus and Striatum during Place and Response Training

    ERIC Educational Resources Information Center

    Pych, Jason C.; Chang, Qing; Colon-Rivera, Cynthia; Haag, Renee; Gold, Paul E.

    2005-01-01

    These experiments examined the release of acetylcholine in the hippocampus and striatum when rats were trained, within single sessions, on place or response versions of food-rewarded mazes. Microdialysis samples of extra-cellular fluid were collected from the hippocampus and striatum at 5-min increments before, during, and after training. These…

  10. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    SciTech Connect

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu; Yurugi-Kobayashi, Takami; Shiroishi, Mitsunori; Zhang, Cheng; Weis, William I.; Okada, Tetsuji; Kobilka, Brian K.; Haga, Tatsuya; Kobayashi, Takuya

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structure of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.

  11. Effect of a nicotinic acetylcholine receptor agonists and antagonists on motor function in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nicotinic acetylcholine receptors (nAChR) are ligand-gated cation channels found throughout the body, and serve to mediate diverse physiological functions. Muscle-type nAChR located in the motor endplate region of muscle fibers play an integral role in muscle contraction and thus motor function. The...

  12. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  13. Synthetic peptides in the study of the interaction of rabies virus and the acetylcholine receptor.

    PubMed

    Lentz, T L; Hawrot, E; Donnelly-Roberts, D; Wi