Sample records for membrane-bound torpedo acetylcholine

  1. Agelenopsis aperta venom and FTX, a purified toxin, inhibit acetylcholine release in Torpedo synaptosomes.

    PubMed

    Moulian, N; Gaudry-Talarmain, Y M

    1993-06-01

    The presence of P-type calcium channels in synaptosomes prepared from electric organ of Torpedo marmorata was investigated by using the venom of Agelenopsis aperta, a toxin purified from it, FTX, and its synthetic analog. We analysed the action of these agents on acetylcholine release which was continuously followed using a chemiluminescent assay. Agelenopsis aperta venom, FTX and synthetic FTX inhibit acetylcholine release from synaptosomes induced by a presynaptic membrane depolarization with 60 mM KCl. A stronger inhibition of acetylcholine release was observed with the venom than with FTX (70 and 50%, respectively). Another way of triggering acetylcholine release from Torpedo synaptosomes is to insert in the presynaptic membrane a calcium ionophore A23187 which allows the bypass of the natural calcium channels. The venom of Agelenopsis aperta inhibits A23187-evoked acetylcholine release. Purified and synthetic FTX does not possess this property, suggesting that this inhibition of acetylcholine release was due to other toxins of the venom. Another type of pharmacological sensitivity of Torpedo calcium channels was also demonstrated using omega-conotoxin GVIA. At a concentration of 20 microM, this toxin was able to inhibit about 35% of KCl-evoked acetylcholine release. When FTX + omega-conotoxin GVIA were applied together, the inhibitory effect on KCl-evoked acetylcholine release was not significantly increased in comparison with the one observed with FTX alone. In conclusion, we examined the effect of different agents on acetylcholine release from Torpedo marmorata electric organ synaptosomes; acetylcholine release was elicited with KCl depolarization and followed continuously with a chemiluminescent assay.(ABSTRACT TRUNCATED AT 250 WORDS)

  2. Dimeric arrangement and structure of the membrane-bound acetylcholine receptor studied by electron microscopy.

    PubMed Central

    Zingsheim, H P; Neugebauer, D C; Frank, J; Hänicke, W; Barrantes, F J

    1982-01-01

    The acetylcholine receptor protein (AChR) from the electric organ of Torpedo marmorata is studied in its membrane-bound form by electron microscopy and single-particle image averaging. About half the molecule protrudes from the membrane surface by approximately 5 nm. The low-resolution 3-D structure of this hydrated portion, including its handedness, can be deduced from averaged axial and lateral projections and from freeze-etched membrane surfaces. In native membrane fragments, a dimeric form of the AChR is observed and the relative orientation of the AChR monomers within the dimer is established. The dimers disappear upon disulfide reduction of the membrane preparations, whereas the average axial projections of the AChR monomer remain unaffected. Since the existence of disulfide bonds linking AChR monomers between their respective delta-subunits is well documented, the approximate position of the delta-subunit within the low-resolution structure of the AChR molecule can be deduced from the structure of the dimers. Images Fig. 1. Fig. 2. Fig. 3. PMID:7188351

  3. Coupling the Torpedo microplate-receptor binding assay with mass spectrometry to detect cyclic imine neurotoxins.

    PubMed

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M; Zakarian, Armen; Molgó, Jordi

    2012-12-04

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility.

  4. Coupling the Torpedo Microplate-Receptor Binding Assay with Mass Spectrometry to Detect Cyclic Imine Neurotoxins

    PubMed Central

    Aráoz, Rómulo; Ramos, Suzanne; Pelissier, Franck; Guérineau, Vincent; Benoit, Evelyne; Vilariño, Natalia; Botana, Luis M.; Zakarian, Armen; Molgó, Jordi

    2014-01-01

    Cyclic imine neurotoxins constitute an emergent family of neurotoxins of dinoflagellate origin that are potent antagonists of nicotinic acetylcholine receptors. We developed a target-directed functional method based on the mechanism of action of competitive agonists/antagonists of nicotinic acetylcholine receptors for the detection of marine cyclic imine neurotoxins. The key step for method development was the immobilization of Torpedo electrocyte membranes rich in nicotinic acetylcholine receptors on the surface of microplate wells and the use of biotinylated-α-bungarotoxin as tracer. Cyclic imine neurotoxins competitively inhibit biotinylated-α-bungarotoxin binding to Torpedo-nicotinic acetylcholine receptors in a concentration-dependent manner. The microplate-receptor binding assay allowed rapid detection of nanomolar concentrations of cyclic imine neurotoxins directly in shellfish samples. Although highly sensitive and specific for the detection of neurotoxins targeting nicotinic acetylcholine receptors as a class, the receptor binding assay cannot identify a given analyte. To address the low selectivity of the microplate-receptor binding assay, the cyclic imine neurotoxins tightly bound to the coated Torpedo nicotinic receptor were eluted with methanol, and the chemical nature of the eluted ligands was identified by mass spectrometry. The immobilization of Torpedo electrocyte membranes on the surface of microplate wells proved to be a high-throughput format for the survey of neurotoxins targeting nicotinic acetylcholine receptors directly in shellfish matrixes with high sensitivity and reproducibility. PMID:23131021

  5. Pressure reversal of the action of octanol on postsynaptic membranes from Torpedo.

    PubMed Central

    Braswell, L. M.; Miller, K. W.; Sauter, J. F.

    1984-01-01

    Octanol increases the binding of [3H]-acetylcholine to the desensitized state of the nicotinic receptor in postsynaptic membranes prepared from Torpedo californica. This increase in binding results from an increase in the affinity of [3H]-acetylcholine for its receptor without any change in the number of sites or the shape of the acetylcholine binding curve. High pressures of helium (300 atm) decrease [3H]-acetylcholine binding by a mechanism that changes only the affinity of acetylcholine binding. Helium pressure reverses the effect of octanol on the affinity of [3H]-acetylcholine for its receptor. This pressure reversal of the action of octanol at a postsynaptic membrane is consistent either with pressure counteracting an octanol-induced membrane expansion or with independent mechanisms for the actions of octanol and pressure. The data do not conform with a mechanism in which pressure displaces octanol from a binding site on the receptor protein. PMID:6487895

  6. Topological dispositions of lysine. alpha. 380 and lysine. gamma. 486 in the acetylcholine receptor from Torpedo californica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1991-04-23

    The locations have been determined, with respect to the plasma membrane, of lysine {alpha}380 and lysine {gamma}486 in the {alpha} subunit and the {gamma} subunit, respectively, of the nicotinic acetylcholine receptor from Torpedo californica. Immunoadsorbents were constructed that recognize the carboxy terminus of the peptide GVKYIAE released by proteolytic digestion from positions 378-384 in the amino acid sequence of the {alpha} subunit of the acetylcholine receptor and the carboxy terminus of the peptide KYVP released by proteolytic digestion from positions 486-489 in the amino acid sequence of the {gamma} subunit. They were used to isolate these peptides from proteolytic digestsmore » of polypeptides from the acetylcholine receptor. Sealed vesicles containing the native acetylcholine receptor were labeled with pyridoxal phosphate and sodium ({sup 3}H)-borohydride. The effect of saponin on the incorporation of pyridoxamine phosphate into lysine {alpha}380 and lysine {gamma}486 from the acetylcholine receptor in these vesicles was assessed with the immunoadsorbents. The conclusions that follow from these results are that lysine {alpha}380 is on the inside surface of a vesicle and lysine {gamma}486 is on the outside surface. Because a majority (85%) of the total binding sites for {alpha}-bungarotoxin bind the toxin in the absence of saponin, the majority of the vesicles are right side out with the inside of the vesicle corresponding to the cytoplasmic surface and the outside of the vesicle corresponding to the extracytoplasmic, synaptic surface. Because lysine {alpha}380 and lysine {gamma}486 lie on opposite sides of the membrane, a membrane-spanning segment must be located between the two positions occupied by these two amino acids in the common sequence of a polypeptide of the acetylcholine receptor.« less

  7. Specific stimulated uptake of acetylcholine by Torpedo electric organ synaptic vesicles.

    PubMed Central

    Parsons, S M; Koenigsberger, R

    1980-01-01

    The specificity of acetylcholine uptake by synaptic vesicles isolated from the electric organ of Torpedo californica was studied. In the absence of cofactors, [3H]acetylcholine was taken up identically to[14C]choline in the same solution (passive uptake), and the equilibrium concentration achieved inside the vesicles was equal to the concentration outside. In the presence of MgATP, [3H]acetylcholine and [14C]choline in the same solution were taken up identically, except only about half as much of each was taken up (suppressed uptake). [3H]Acetylcholine uptake was stimulated by MgATP and HCO3- about 4-fold relative to suppressed uptake, for a net concentrative uptake of about 2:1 (stimulated uptake). Uptake of [14C]choline in the same solution remained at the suppressed level. [3H]Acetylcholine taken up under stimulated conditions migrated with vesicles containing [14C]mannitol on analytical glycerol density gradients during centrifugation. Vesicle were treated with nine protein modification reagents under mild conditions. Two reagents had no effect on, dithiothreitol potentiated, and six reagents strongly inhibited subsequent stimulated uptake of [3H]acetylcholine. The results indicate that uptake of acetylcholine is conditionally specific for the transported substrate, is carried out by the synaptic vesicles rather than a contaminant of the preparation, and requires a functional protein system containing a critical sulfhydryl group. PMID:6934549

  8. Components of Torpedo electric organ and muscle that cause aggregation of acetylcholine receptors on cultured muscle cells

    PubMed Central

    1984-01-01

    The synaptic portion of a muscle fiber's basal lamina sheath has molecules tightly bound to it that cause aggregation of acetylcholine receptors (AChRs) on regenerating myofibers. Since basal lamina and other extracellular matrix constituents are insoluble in isotonic saline and detergent solutions, insoluble detergent-extracted fractions of tissues receiving cholinergic input may provide an enriched source of the AChR-aggregating molecules for detailed characterization. Here we demonstrate that such an insoluble fraction from Torpedo electric organ, a tissue with a high concentration of cholinergic synapses, causes AChRs on cultured chick muscle cells to aggregate. We have partially characterized the insoluble fraction, examined the response of muscle cells to it, and devised ways of extracting the active components with a view toward purifying them and learning whether they are similar to those in the basal lamina at the neuromuscular junction. The insoluble fraction from the electric organ was rich in extracellular matrix constituents; it contained structures resembling basal lamina sheaths and had a high density of collagen fibrils. It caused a 3- to 20-fold increase in the number of AChR clusters on cultured myotubes without significantly affecting the number or size of the myotubes. The increase was first seen 2-4 h after the fraction was added to cultures and it was maximal by 24 h. The AChR-aggregating effect was dose dependent and was due, at least in part, to lateral migration of AChRs present in the muscle cell plasma membrane at the time the fraction was applied. Activity was destroyed by heat and by trypsin. The active component(s) was extracted from the insoluble fraction with high ionic strength or pH 5.5 buffers. The extracts increased the number of AChR clusters on cultured myotubes without affecting the number or degradation rate of surface AChRs. Antiserum against the solubilized material blocked its effect on AChR distribution and bound to the

  9. Purification of Torpedo californica post-synaptic membranes and fractionation of their constituent proteins.

    PubMed Central

    Elliott, J; Blanchard, S G; Wu, W; Miller, J; Strader, C D; Hartig, P; Moore, H P; Racs, J; Raftery, M A

    1980-01-01

    A rapid methof for preparation of membrane fractions highly enriched in nicotinic acetylcholine receptor from Torpedo californica electroplax is described. The major step in this purification involves sucrose-density-gradient centrifugation in a reorienting rotor. Further purification of these membranes can be achieved by selective extraction of proteins by use of alkaline pH or by treatment with solutions of lithium di-idosalicylate. The alkali-treated membranes retain functional characteristics of the untreated membranes and in addition contain essentially only the four polypeptides (mol.wts. 40000, 50000, 60000 and 65000) characteristic of the receptor purified by affinity chromatography. Dissolution of the purified membranes or of the alkali-treated purified membranes in sodium cholate solution followed by sucrose-density-gradient centrifugation in the same detergent solution yields solubilized receptor preparations comparable with the most highly purified protein obtained by affinity-chromatographic procedures. Images Fig. 1. Fig. 2. Fig. 3. Fig. 5. Fig. 7. PLATE 1 PMID:7387629

  10. Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.; Wang, H.H.

    1990-02-06

    A photoactivatable analogue of phosphatidylserine, {sup 125}I-labeled 4-azidosalicylic acid-phosphatidylserine ({sup 125}I ASA-PS), was used to label both native acetylcholine receptor (AchR)-rich membranes from Torpedo californica and AchR membranes affinity purified from Torpedo reconstituted into asolectin vesicles. The radioiodinated arylazido group attaches directly to the phospholipid head group and thus probes for regions of the AchR structure in contact with the negatively charged head group of phosphatidylserine. All four subunits of the AchR incorporated the label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchRmore » {alpha} subunit that incorporated {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. The majority of label incorporated into fragments representing a more complete digestion of the {alpha} subunit was localized to 11.7- and 10.1-kDa V8 cleavage fragments, both beginning at Asn-339 and of sufficient length to contain the hydrophobic region M4. An 18.7-kDa fragment beginning at Ser-173 and of sufficient length to contain the hydrophobic regions M1, M2, and M3 was also significantly labeled. In contrast, V8 cleavage fragments representing roughly a third of the amino-terminal portion of the {alpha} subunit incorporated little or no detectable amount of probe.« less

  11. Functional analysis of Torpedo californica nicotinic acetylcholine receptors in multiple activation states by SSM-based electrophysiology.

    PubMed

    Niessen, K V; Muschik, S; Langguth, F; Rappenglück, S; Seeger, T; Thiermann, H; Worek, F

    2016-04-15

    Organophosphorus compounds (OPC), i.e. nerve agents or pesticides, are highly toxic due to their strong inhibition potency against acetylcholinesterase (AChE). Inhibited AChE results in accumulation of acetylcholine in the synaptic cleft and thus the desensitisation of the nicotinic acetylcholine receptor (nAChR) in the postsynaptic membrane is provoked. Direct targeting of nAChR to reduce receptor desensitisation might be an alternative therapeutic approach. For drug discovery, functional properties of potent therapeutic candidates need to be investigated in addition to affinity properties. Solid supported membrane (SSM)-based electrophysiology is useful for functional characterisation of ligand-gated ion channels like nAChRs, as charge translocations via capacitive coupling of the supporting membrane can be measured. By varying the agonist (carbamoylcholine) concentration, different functional states of the nAChR were initiated. Using plasma membrane preparations obtained from Torpedo californica electric organ, functional properties of selected nAChR ligands and non-oxime bispyridinium compounds were investigated. Depending on overall-size, the bispyridinium compounds enhanced or inhibited cholinergic signals induced by 100 μM carbamoylcholine. Applying excessive concentrations of the agonist carbamoylcholine provoked desensitisation of the nAChRs, whereas addition of bispyridinium compounds bearing short alkyl linkers exhibited functional recovery of previously desensitised nAChRs. The results suggest that these non-oxime bispyridinium compounds possibly interacted with nAChR subtypes in a manner of a positive allosteric modulator (PAM). The described newly developed functional assay is a valuable tool for the assessment of functional properties of potential compounds such as nAChR modulating ligands, which might be a promising approach in the therapeutically treatment of OPC-poisonings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Mapping of a binding site for ATP within the extracellular region of the Torpedo nicotinic acetylcholine receptor beta-subunit.

    PubMed

    Schrattenholz, A; Roth, U; Godovac-Zimmermann, J; Maelicke, A

    1997-10-28

    Using 2,8,5'-[3H]ATP as a direct photoaffinity label for membrane-bound nicotinic acetylcholine receptor (nAChR) from Torpedo marmorata, we have identified a binding site for ATP in the extracellular region of the beta-subunit of the receptor. Photolabeling was completely inhibited in the presence of saturating concentrations of nonradioactive ATP, whereas neither the purinoreceptor antagonists suramin, theophyllin, and caffeine nor the nAChR antagonists alpha-bungarotoxin and d-tubocurarine affected the labeling reaction. Competitive and noncompetitive nicotinic agonists and Ca2+ increased the yield of the photoreaction by up to 50%, suggesting that the respective binding sites are allosterically linked with the ATP site. The dissociation constant KD of binding of ATP to the identified site on the nAChR was of the order of 10(-4) M. Sites of labeling were found in the sequence regions Leu11-Pro17 and Asp152-His163 of the nAChR beta-subunit. These regions may represent parts of a single binding site for ATP, which is discontinuously distributed within the primary structure of the N-terminal extracellular domain. The existence of an extracellular binding site for ATP confirms, on the molecular level, that this nucleotide can directly act on nicotinic receptors, as has been suggested from previous electrophysiological and biochemical studies.

  13. Biosynthesis of acetyl-coenzyme A in the electric organ of Torpedo marmorata in relation to acetylcholine metabolism.

    PubMed Central

    Diebler, M F; Morot-Gaudry, Y

    1977-01-01

    Formation of acetyl-CoA through acetyl-CoA synthetase (forward reaction) and through choline acyltransferase (backward reaction) was investigated in tissue extract from the electric organ of Torpedo marmorata. When the tissue extract was submitted to gel filtration on Sephadex G-25, the formation of acetyl-CoA by acetyl-CoA synthetase appeared fully dependent on ATP and CoA and partially dependent on acetate (an endogenous supply of acetate is discussed). Choline acetyltransferase was a potent source of acetyl-CoA, only requiring acetylcholine and CoA, and was much more efficient than acetyl-CoA synthetase for concentrations of acetylcholine likely to be present in nerve endings. PMID:23101

  14. Contributions of Torpedo nicotinic acetylcholine receptor gamma Trp-55 and delta Trp-57 to agonist and competitive antagonist function.

    PubMed

    Xie, Y; Cohen, J B

    2001-01-26

    Results of affinity-labeling studies and mutational analyses provide evidence that the agonist binding sites of the nicotinic acetylcholine receptor (nAChR) are located at the alpha-gamma and alpha-delta subunit interfaces. For Torpedo nAChR, photoaffinity-labeling studies with the competitive antagonist d-[(3)H]tubocurarine (dTC) identified two tryptophans, gammaTrp-55 and deltaTrp-57, as the primary sites of photolabeling in the non-alpha subunits. To characterize the importance of gammaTrp-55 and deltaTrp-57 to the interactions of agonists and antagonists, Torpedo nAChRs were expressed in Xenopus oocytes, and equilibrium binding assays and electrophysiological recordings were used to examine the functional consequences when either or both tryptophans were mutated to leucine. Neither substitution altered the equilibrium binding of dTC. However, the deltaW57L and gammaW55L mutations decreased acetylcholine (ACh) binding affinity by 20- and 7,000-fold respectively. For the wild-type, gammaW55L, and deltaW57L nAChRs, the concentration dependence of channel activation was characterized by Hill coefficients of 1.8, 1.1, and 1.7. For the gammaW55L mutant, dTC binding at the alpha-gamma site acts not as a competitive antagonist but as a coactivator or partial agonist. These results establish that interactions with gamma Trp-55 of the Torpedo nAChR play a crucial role in agonist binding and in the agonist-induced conformational changes that lead to channel opening.

  15. Standardization of the experimental autoimmune myasthenia gravis (EAMG) model by immunization of rats with Torpedo californica acetylcholine receptors — Recommendations for methods and experimental designs

    PubMed Central

    Losen, Mario; Martinez-Martinez, Pilar; Molenaar, Peter C.; Lazaridis, Konstantinos; Tzartos, Socrates; Brenner, Talma; Duan, Rui-Sheng; Luo, Jie; Lindstrom, Jon; Kusner, Linda

    2015-01-01

    Myasthenia gravis (MG) with antibodies against the acetylcholine receptor (AChR) is characterized by a chronic, fatigable weakness of voluntary muscles. The production of autoantibodies involves the dysregulation of T cells which provide the environment for the development of autoreactive B cells. The symptoms are caused by destruction of the postsynaptic membrane and degradation of the AChR by IgG autoantibodies, predominantly of the G1 and G3 subclasses. Active immunization of animals with AChR from mammalian muscles, AChR from Torpedo or Electrophorus electric organs, and recombinant or synthetic AChR fragments generates a chronic model of MG, termed experimental autoimmune myasthenia gravis (EAMG). This model covers cellular mechanisms involved in the immune response against the AChR, e.g. antigen presentation, T cell-help and regulation, B cell selection and differentiation into plasma cells. Our aim is to define standard operation procedures and recommendations for the rat EAMG model using purified AChR from the Torpedo californica electric organ, in order to facilitate more rapid translation of preclinical proof of concept or efficacy studies into clinical trials and, ultimately, clinical practice. PMID:25796590

  16. Inhibition of cation channel function at the nicotinic acethylcholine receptor from Torpedo: Agonist self-inhibition and anesthetic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, S.A.

    1989-01-01

    Modulation of the nicotinic acethylcholine receptor from Torpedo by cholinergic agonists, local anesthetics, and n-alkanols was studied using {sup 86}Rb{sup +} flux studies in sealed native Torpedo electroplaque membrane vesicles. Reliable concentration-response and kinetic data were obtained using manual ten sec filtration assays in vesicles partially blocked with alpha-bungarotoxin to remove spare receptors and quenched-flow assays to assess initial {sup 86}Rb{sup +} flux rates or the rate of drug-induced receptor inactivation. Concentration response relationships for the agonists acetylcholine, carbamylcholine, suberyldicholine, phenyltrimethylammonium, and (-)-nicotine are all bell-shape due to stimulation of cation channel opening at low concentrations and inhibition of channelsmore » at higher concentrations. The rate of agonist-induced fast desensitization (k{sub d}) increases with (acetylcholine) in parallel with channel activation, suggesting that desensitization proceeds from the open state and/or states in rapid equilibrium with it. At self-inhibitory acetylcholine concentrations, a new rapid inactivation (rate = k{sub f}) is observed before fast desensitization. The rate and extent of rapid inactivation is compatible with bimolecular association between acethylcholine and inhibitory site with K{sub B} = 40 mM.« less

  17. Ciguatoxin extracted from poisonous moray eels Gymnothorax javanicus triggers acetylcholine release from Torpedo cholinergic synaptosomes via reversed Na(+)-Ca2+ exchange.

    PubMed

    Molgó, J; Gaudry-Talarmain, Y M; Legrand, A M; Moulian, N

    1993-09-17

    Ciguatoxin (CTX) (0.1 pM to 10 nM) added to a suspension of Torpedo synaptosomes incubated in Ca(2+)-free medium caused no detectable acetylcholine (ACh) release. However, subsequent addition of Ca2+ caused a large ACh release that depended on time of exposure, dose of CTX and on [Ca2+]. Tetrodotoxin completely prevented CTX-induced Ca(2+)-dependent ACh release. Simultaneous blockade of Ca2+ channel subtypes by FTX, a toxin extracted from the venom of the spider Agelenopsis aperta, omega-conotoxin and Gd3+ did not prevent ACh release caused by CTX, upon addition of Ca2+. These results suggest that CTX activates the reversed operation of the Na+/Ca2+ exchange system allowing the entry of Ca2+ in exchange for Na+. It is concluded that Torpedo synaptosomes are endowed with Na+ channels sensitive to pico- to nanomolar concentrations of CTX.

  18. Comparative effects of aluminum and ouabain on synaptosomal choline uptake, acetylcholine release and (Na+/K+)ATPase.

    PubMed

    Silva, Virgília S; Nunes, M Alexandra; Cordeiro, J Miguel; Calejo, Ana I; Santos, Sofia; Neves, Paulo; Sykes, António; Morgado, Fernando; Dunant, Yves; Gonçalves, Paula P

    2007-07-17

    Closing the gap between adverse health effects of aluminum and its mechanisms of action still represents a huge challenge. Cholinergic dysfunction has been implicated in neuronal injury induced by aluminum. Previously reported data also indicate that in vivo and in vitro exposure to aluminum inhibits the mammalian (Na(+)/K(+))ATPase, an ubiquitous plasma membrane pump. This study was undertaken with the specific aim of determining whether in vitro exposure to AlCl(3) and ouabain, the foremost utilized selective inhibitor of (Na(+)/K(+))ATPase, induce similar functional modifications of cholinergic presynaptic nerve terminals, by comparing their effects on choline uptake, acetylcholine release and (Na(+)/K(+))ATPase activity, on subcellular fractions enriched in synaptic nerve endings isolated from rat brain, cuttlefish optic lobe and torpedo electric organ. Results obtained show that choline uptake by rat synaptosomes was inhibited by submillimolar AlCl(3), whereas the amount of choline taken up by synaptosomes isolated from cuttlefish and torpedo remained unchanged. Conversely, choline uptake was reduced by ouabain to a large extent in all synaptosomal preparations analyzed. In contrast to ouabain, which modified the K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions, AlCl(3) induced reduction of stimulated acetylcholine release was only observed when rat synaptosomes were challenged. Finally, it was observed that the aluminum effect on cuttlefish and torpedo synaptosomal (Na(+)/K(+))ATPase activity was slight when compared to its inhibitory action on mammalian (Na(+)/K(+))ATPase. In conclusion, inhibition of (Na(+)/K(+))ATPase by AlCl(3) and ouabain jeopardized the high-affinity (Na(+)-dependent, hemicholinium-3 sensitive) uptake of choline and the Ca(2+)-dependent, K(+) depolarization evoked release of acetylcholine by rat, cuttlefish and torpedo synaptosomal fractions. The effects of submillimolar AlCl(3

  19. Relevance of CARC and CRAC Cholesterol-Recognition Motifs in the Nicotinic Acetylcholine Receptor and Other Membrane-Bound Receptors.

    PubMed

    Di Scala, Coralie; Baier, Carlos J; Evans, Luke S; Williamson, Philip T F; Fantini, Jacques; Barrantes, Francisco J

    2017-01-01

    Cholesterol is a ubiquitous neutral lipid, which finely tunes the activity of a wide range of membrane proteins, including neurotransmitter and hormone receptors and ion channels. Given the scarcity of available X-ray crystallographic structures and the even fewer in which cholesterol sites have been directly visualized, application of in silico computational methods remains a valid alternative for the detection and thermodynamic characterization of cholesterol-specific sites in functionally important membrane proteins. The membrane-embedded segments of the paradigm neurotransmitter receptor for acetylcholine display a series of cholesterol consensus domains (which we have coined "CARC"). The CARC motif exhibits a preference for the outer membrane leaflet and its mirror motif, CRAC, for the inner one. Some membrane proteins possess the double CARC-CRAC sequences within the same transmembrane domain. In addition to in silico molecular modeling, the affinity, concentration dependence, and specificity of the cholesterol-recognition motif-protein interaction have recently found experimental validation in other biophysical approaches like monolayer techniques and nuclear magnetic resonance spectroscopy. From the combined studies, it becomes apparent that the CARC motif is now more firmly established as a high-affinity cholesterol-binding domain for membrane-bound receptors and remarkably conserved along phylogenetic evolution. © 2017 Elsevier Inc. All rights reserved.

  20. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes

    PubMed Central

    Cash, Derek J.; Hess, George P.

    1980-01-01

    Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine

  1. Desensitization of the nicotinic acetylcholine receptor by diisopropylfluorophosphate.

    PubMed

    Eldefrawi, M E; Schweizer, G; Bakry, N M; Valdes, J J

    1988-01-01

    The interaction of diisopropylfluorophosphate (DFP) with the nicotinic acetylcholine (ACh) receptor of Torpedo electric organ was studied, using [3H]-phencyclidine ([3H]-PCP) as a reporter probe. Phencyclidine binds with different kinetics to resting, activated, and desensitized receptor conformations. Although DFP did not inhibit binding of [3H]-ACh or 125I-alpha-bungarotoxin (BGT) to the receptor recognition sites and potentiated in a time-dependent manner [3H]-PCP binding to the receptor's high-affinity allosteric site, it inhibited the ACh- or carbamylcholine-stimulated [3H]-PCP binding. This suggested that DFP bound to a third kind of site on the receptor and affected receptor conformation. Preincubation of the membranes with DFP increased the receptor's affinity for carbamylcholine by eightfold and raised the pseudo-first-order rate of [3H]-PCP binding to that of an agonist-desensitized receptor. Accordingly, it is suggested that DFP induces receptor desensitization by binding to a site that is distinct from the recognition or high-affinity noncompetitive sites.

  2. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  3. Design, synthesis, and characterization of a 39 amino acid peptide mimic of the main immunogenic region of the Torpedo acetylcholine receptor.

    PubMed

    Trinh, Vu B; Foster, Alex J; Fairclough, Robert H

    2014-05-01

    We have designed a 39 amino acid peptide mimic of the conformation-dependent main immunogenic region (MIR) of the Torpedo acetylcholine receptor (TAChR) that joins three discontinuous segments of the Torpedo α-subunit, α(1-12), α(65-79), and α(110 - 115) with two GS linkers: This 39MIR-mimic was expressed in E. coli as a fusion protein with an intein-chitin-binding domain (IChBD) to permit affinity collection on chitin beads. Six MIR-directed monoclonal antibodies (mAbs) bind to this complex and five agonist/antagonist site directed mAbs do not. The complex of MIR-directed mAb-132A with 39MIR has a Kd of (2.11±0.11)×10(-10)M, which is smaller than (7.13±1.20)×10(-10)M for the complex of mAb-132A with α(1-161) and about the same as 3.4×10(-10)M for that of mAb-132A with TAChR. Additionally, the 39MIR-IChBD adsorbs all MIR-directed antibodies (Abs) from an experimental autoimmune myasthenia gravis (EAMG) rat serum. Hence, the 39MIR-mimic has the potential to inactivate or remove pathogenic Torpedo MIR-directed Abs from EAMG sera and to direct a magic bullet to the memory B-cells that produce those pathogenic Abs. The hope is to use this as a guide to produce a mimic of the human MIR on the way to an antigen specific therapeutic agent to treat MG. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Aqueous fraction of Beta vulgaris ameliorates hyperglycemia in diabetic mice due to enhanced glucose stimulated insulin secretion, mediated by acetylcholine and GLP-1, and elevated glucose uptake via increased membrane bound GLUT4 transporters.

    PubMed

    Ul Kabir, Ashraf; Samad, Mehdi Bin; Ahmed, Arif; Jahan, Mohammad Rajib; Akhter, Farjana; Tasnim, Jinat; Hasan, S M Nageeb; Sayfe, Sania Sarker; Hannan, J M A

    2015-01-01

    The study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris. Aqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg). Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1), Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP), Insulin Like Growth Factor-1 (IGF-1), Pancreatic Polypeptides (PP), and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (p<0.05). Principal signaling molecules were quantified in isolated mice islets for the respective pathways to elucidate their activities. Elevated concentrations of Acetylcholine and GLP-1 in B. Vulgaris treated mice were found to be sufficient to activate the respective pathways for insulin secretion (p<0.05). The amount of membrane bound GLUT1 and GLUT4 transporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (p<0.05). Findings of the present study clearly prove the role of Acetylcholine and GLP-1 in the Insulin secreting activity of B. Vulgaris. Increased glucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in the anti-hyperglycemic activity of B. Vulgaris.

  5. Aqueous Fraction of Beta vulgaris Ameliorates Hyperglycemia in Diabetic Mice due to Enhanced Glucose Stimulated Insulin Secretion, Mediated by Acetylcholine and GLP-1, and Elevated Glucose Uptake via Increased Membrane Bound GLUT4 Transporters

    PubMed Central

    Kabir, Ashraf Ul; Samad, Mehdi Bin; Ahmed, Arif; Jahan, Mohammad Rajib; Akhter, Farjana; Tasnim, Jinat; Hasan, S. M. Nageeb; Sayfe, Sania Sarker; Hannan, J. M. A.

    2015-01-01

    Background The study was designed to investigate the probable mechanisms of anti-hyperglycemic activity of B. Vulgaris. Methodology/Principal Findings Aqueous fraction of B. Vulgaris extract was the only active fraction (50mg/kg). Plasma insulin level was found to be the highest at 30 mins after B. Vulgaris administration at a dose of 200mg/kg. B. Vulgaris treated mice were also assayed for plasma Acetylcholine, Glucagon Like Peptide-1 (GLP-1), Gastric Inhibitory Peptide (GIP), Vasoactive Intestinal Peptide, Pituitary Adenylate Cyclase-Activating Peptide (PACAP), Insulin Like Growth Factor-1 (IGF-1), Pancreatic Polypeptides (PP), and Somatostatin, along with the corresponding insulin levels. Plasma Acetylcholine and GLP-1 significantly increased in B. Vulgaris treated animals and were further studied. Pharmacological enhancers, inhibitors, and antagonists of Acetylcholine and GLP-1 were also administered to the test animals, and corresponding insulin levels were measured. These studies confirmed the role of acetylcholine and GLP-1 in enhanced insulin secretion (p<0.05). Principal signaling molecules were quantified in isolated mice islets for the respective pathways to elucidate their activities. Elevated concentrations of Acetylcholine and GLP-1 in B. Vulgaris treated mice were found to be sufficient to activate the respective pathways for insulin secretion (p<0.05). The amount of membrane bound GLUT1 and GLUT4 transporters were quantified and the subsequent glucose uptake and glycogen synthesis were assayed. We showed that levels of membrane bound GLUT4 transporters, glucose-6-phosphate in skeletal myocytes, activity of glycogen synthase, and level of glycogen deposited in the skeletal muscles all increased (p<0.05). Conclusion Findings of the present study clearly prove the role of Acetylcholine and GLP-1 in the Insulin secreting activity of B. Vulgaris. Increased glucose uptake in the skeletal muscles and subsequent glycogen synthesis may also play a part in

  6. Isolation and characterization of a cDNA clone for the complete protein coding region of the delta subunit of the mouse acetylcholine receptor.

    PubMed Central

    LaPolla, R J; Mayne, K M; Davidson, N

    1984-01-01

    A mouse cDNA clone has been isolated that contains the complete coding region of a protein highly homologous to the delta subunit of the Torpedo acetylcholine receptor (AcChoR). The cDNA library was constructed in the vector lambda 10 from membrane-associated poly(A)+ RNA from BC3H-1 mouse cells. Surprisingly, the delta clone was selected by hybridization with cDNA encoding the gamma subunit of the Torpedo AcChoR. The nucleotide sequence of the mouse cDNA clone contains an open reading frame of 520 amino acids. This amino acid sequence exhibits 59% and 50% sequence homology to the Torpedo AcChoR delta and gamma subunits, respectively. However, the mouse nucleotide sequence has several stretches of high homology with the Torpedo gamma subunit cDNA, but not with delta. The mouse protein has the same general structural features as do the Torpedo subunits. It is encoded by a 3.3-kilobase mRNA. There is probably only one, but at most two, chromosomal genes coding for this or closely related sequences. Images PMID:6096870

  7. 73. TORPEDO WORK SHOP FORWARD LOOKING AFT SHOWING TORPEDO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. TORPEDO WORK SHOP - FORWARD LOOKING AFT SHOWING TORPEDO ELEVATOR, HIGH PRESSURE AIR REDUCING STATION, SCUTTLEBUTT, TORPEDO AFTERBODY WORKSHOP, OVERHEAD CHAIN MOIST AND RAIL SYSTEM AND OVERHEAD SPRINKLER SYSTEM. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  8. Effects of Lipid-Analog Detergent Solubilization on the Functionality and Lipidic Cubic Phase Mobility of the Torpedo californica Nicotinic Acetylcholine Receptor

    PubMed Central

    Padilla-Morales, Luis F.; Morales-Pérez, Claudio L.; De La Cruz-Rivera, Pamela C.; Asmar-Rovira, Guillermo; Báez-Pagán, Carlos A.

    2011-01-01

    Over the past three decades, the Torpedo californica nicotinic acetylcholine receptor (nAChR) has been one of the most extensively studied membrane protein systems. However, the effects of detergent solubilization on nAChR stability and function are poorly understood. The use of lipid-analog detergents for nAChR solubilization has been shown to preserve receptor stability and functionality. The present study used lipid-analog detergents from phospholipid-analog and cholesterol-analog detergent families for solubilization and affinity purification of the receptor and probed nAChR ion channel function using planar lipid bilayers (PLBs) and stability using analytical size exclusion chromatography (A-SEC) in the detergent-solubilized state. We also examined receptor mobility on the lipidic cubic phase (LCP) by measuring the nAChR mobile fraction and diffusion coefficient through fluorescence recovery after photobleaching (FRAP) experiments using lipid-analog and non-lipid-analog detergents. Our results show that it is possible to isolate stable and functional nAChRs using lipid-analog detergents, with characteristic ion channel currents in PLBs and minimal aggregation as observed in A-SEC. Furthermore, fractional mobility and diffusion coefficient values observed in FRAP experiments were similar to the values observed for these parameters in the recently LCP-crystallized β2-adrenergic receptor. The overall results show that phospholipid-analog detergents with 16 carbon acyl-chains support nAChR stability, functionality and LCP mobility. PMID:21922299

  9. Integrated genomics and proteomics of the Torpedo californica electric organ: concordance with the mammalian neuromuscular junction

    PubMed Central

    2011-01-01

    Background During development, the branchial mesoderm of Torpedo californica transdifferentiates into an electric organ capable of generating high voltage discharges to stun fish. The organ contains a high density of cholinergic synapses and has served as a biochemical model for the membrane specialization of myofibers, the neuromuscular junction (NMJ). We studied the genome and proteome of the electric organ to gain insight into its composition, to determine if there is concordance with skeletal muscle and the NMJ, and to identify novel synaptic proteins. Results Of 435 proteins identified, 300 mapped to Torpedo cDNA sequences with ≥2 peptides. We identified 14 uncharacterized proteins in the electric organ that are known to play a role in acetylcholine receptor clustering or signal transduction. In addition, two human open reading frames, C1orf123 and C6orf130, showed high sequence similarity to electric organ proteins. Our profile lists several proteins that are highly expressed in skeletal muscle or are muscle specific. Synaptic proteins such as acetylcholinesterase, acetylcholine receptor subunits, and rapsyn were present in the electric organ proteome but absent in the skeletal muscle proteome. Conclusions Our integrated genomic and proteomic analysis supports research describing a muscle-like profile of the organ. We show that it is a repository of NMJ proteins but we present limitations on its use as a comprehensive model of the NMJ. Finally, we identified several proteins that may become candidates for signaling proteins not previously characterized as components of the NMJ. PMID:21798097

  10. International Workshop on Structural and Functional Aspects of the Cholinergic Synapse Held in Jerusalem, Isreal on 30 August-4 September 1987

    DTIC Science & Technology

    1987-09-01

    77) Large scale purification of the acetylcholine receptor protein In its membrane-bound and detergent extracted forms from Torpedo marmorata...maintenance of the postsynaptic apparatus in the adult. Our studies have alac led to the Identification of agrin, a protein that is extracted from the synapse...in extracts of muscle, and monoclonal antibodies directed against &grin recognize molecules highly concentrated in the synaptic basal lamina at the

  11. Synthetic. cap alpha. subunit peptide 125-147 of human nicotinic acetylcholine receptor induces antibodies to native receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, D.J.; Griesmann, G.E.; Huang, Z.

    1986-03-05

    A synthetic peptide corresponding to residues 125-147 of the Torpedo acetylcholine receptor (AChR) ..cap alpha.. subunit proved to be a major antigenic region of the AChR. Rats inoculated with 50 ..mu..g of peptide (T ..cap alpha.. 125-147) developed T cell immunity and antibodies to native AChR and signs of experimental autoimmune myasthenia gravis. They report the synthesis and preliminary testing of a disulfide-looped peptide comprising residues 125-147 of the human AChR ..cap alpha.. subunit. Peptide H ..cap alpha.. 125-147 differs from T ..cap alpha.. 125-147 at residues 139 (Glu for Gln) and 143 (Ser for Thr). In immunoprecipitation assays, antibodiesmore » to Torpedo AChR bound /sup 125/I-labelled H..cap alpha.. 125-147 antibody bound H..cap alpha.. 125-147, but monoclonal antibodies to an immunodominant region of native AChR bound neither H..cap alpha.. 125-147 nor T ..cap alpha.. 125-147. Rats immunized with H ..cap alpha.. 125-147 produced anti-mammalian muscle AChR antibodies that induced modulation of AChRs from cultured human myotubes. Thus, region 125-147 of the human AChR ..cap alpha.. subunit is extracellular in muscle, and is both antigenic and immunogenic. It remains to be determined whether or not autoantibodies to this region may in part cause the weakness or myasthenia gravis in man.« less

  12. Mapping of the acetylcholine binding site of the nicotinic acetylcholine receptor: ( sup 3 H)nicotine as an agonist photoaffinity label

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Middleton, R.E.; Cohen, J.B.

    1991-07-16

    The agonist ({sup 3}H)nicotine was used as a photoaffinity label for the acetylcholine binding sties on the Torpedo nicotinic acetylcholine receptor (AChR). ({sup 3}H)Nicotine binds at equilibrium with K{sub eq} = 0.6 {mu}M to the agonist binding sites. Irradiation with 254-nm light of AChR-rich membranes equilibrated with ({sup 3}H)nicotine resulted in covalent incorporation into the {alpha}- and {gamma}-subunits, which was inhibited by agonists and competitive antagonists but not by noncompetitive antagonists. Inhibition of labeling by d-tubocurarine demonstrated that the {alpha}-subunit was labeled via both agonist sites but the {gamma}-subunit was labeled only via the site that binds d-tubocurarine with highmore » affinity. Chymotryptic digestion of the {alpha}-subunit confirmed that Try-198 was the principal amino acid labeled by ({sup 3}H)nicotine. This confirmation required a novel radiosequencing strategy employing o-phthalaldehyde ({sup 3}H)Nicotine, which is the first photoaffinity agonist used, labels primarily Tyr-198 in contrast to competitive antagonist affinity labels, which label primarily Tyr-190 and Cys-192/Cys-193.« less

  13. The nicotinic acetylcholine receptor: Binding of nitroxide analogs of a local anesthetic and a photoactivatable analog of phosphatidylserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanton, M.P.

    1989-01-01

    Electron spin resonance was used to contrast the accessibility of tertiary and quaternary amine local anesthetics to their high affinity binding site in the desensitized Torpedo californica acetylcholine receptor (AchR). Preincubation of AchR-rich membranes with agonist resulted in a substantial reduction in the initial association of the quaternary amine local anesthetic C6SLMEI with the receptor. The time-dependent reduction in association follows a biphasic exponential function having rate constants of 0.19 min{sup {minus}1} and 0.03 min{sup {minus}1}. In contrast, agonist preincubation did not produce a comparable decrease in the association of C6SL, a tertiary amine analog, with the AchR. The resultsmore » are modeled in two ways: (1) A charge gate near the channel mouth in the desensitized receptor limits access of the permanently charged cationic local anesthetic (C6SLMEI), but not for the uncharged form of the tertiary amine anesthetic C6SL. (2) A hydrophobic pathway, possibly through a corridor in the annular lipid surrounding receptor subunits, allows the uncharged form of C6SL to reach the high affinity binding site in the AchR. A photoactivatable analog of phosphatidylserine {sup 125}I 4-azido salicylic acid-phosphatidylserine ({sup 125}I ASA-PS) was use to label both Torpedo californica acetylcholine receptor-rich membranes and reconstituted AchR membranes. All four subunits of the AchR were found to incorporate label, with the {alpha} subunit incorporating approximately twice as much as each of the other subunits on a per mole basis. The regions of the AchR {alpha} subunit that incorporate {sup 125}I ASA-PS were mapped by Staphylococcus aureus V8 protease digestion. Eighty-one per cent of the incorporated label was localized to 11.7 and 10.1 kdal V8 cleavage fragments.« less

  14. Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes

    NASA Astrophysics Data System (ADS)

    Miledi, Ricardo; Eusebi, Fabrizio; Martínez-Torres, Ataúlfo; Palma, Eleonora; Trettel, Flavia

    2002-10-01

    The Xenopus oocyte is a very powerful tool for studies of the structure and function of membrane proteins, e.g., messenger RNA extracted from the brain and injected into oocytes leads to the synthesis and membrane incorporation of many types of functional receptors and ion channels, and membrane vesicles from Torpedo electroplaques injected into oocytes fuse with the oocyte membrane and cause the appearance of functional Torpedo acetylcholine receptors and Cl channels. This approach was developed further to transplant already assembled neurotransmitter receptors from human brain cells to the plasma membrane of Xenopus oocytes. Membranes isolated from the temporal neocortex of a patient, operated for intractable epilepsy, were injected into oocytes and, within a few hours, the oocyte membrane acquired functional neurotransmitter receptors to -aminobutyric acid, -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, kainate, and glycine. These receptors were also expressed in the plasma membrane of oocytes injected with mRNA extracted from the temporal neocortex of the same patient. All of this makes the Xenopus oocyte a more useful model than it already is for studies of the structure and function of many human membrane proteins and opens the way to novel pathophysiological investigations of some human brain disorders.

  15. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane

    PubMed Central

    Olivera-Bravo, Silvia; Ivorra, Isabel; Morales, Andrés

    2004-01-01

    This work was aimed to determine if 1,5-bis(4-allyldimethylammoniumphenyl)pentan-3-one dibromide (BW284c51), the most selective acetylcholinesterase inhibitor (AchEI), affects the nicotinic acetylcholine (Ach) receptor (AchR) function. Purified Torpedo nicotinic AchRs were injected into Xenopus laevis oocytes and BW284c51 effects on Ach- and carbamylcholine (Cch)-elicited currents were assessed using the voltage-clamp technique. BW284c51 (up to 1 mM) did not evoke any change in the oocyte membrane conductance. When BW284c51 (10 pM–100 μM) and Ach were coapplied, Ach-evoked currents (IAch) were reversibly inhibited in a concentration-dependent manner (Hill coefficient, 1; IC50, 0.2–0.5 μM for 0.1–1000 μM Ach). Cch-elicited currents showed a similar inhibition by BW284c51. IAch blockade by BW284c51 showed a strong voltage dependence, being only apparent at hyperpolarising potentials. BW284c51 also enhanced IAch desensitisation. BW284c51 changed the Ach concentration-dependence curve of Torpedo AchR response from two-site to single-site kinetics, without noticeably affecting the EC50 value. The BW284c51 blocking effect was highly selective for nicotinic over muscarinic receptors. BW284c51 inhibition potency was stronger than that of tacrine, and similar to that of d-tubocurarine (d-TC). Coapplication of BW284c51 with either tacrine or d-TC revealed synergistic inhibitory effects. Our results indicate that BW284c51 antagonises nicotinic AchRs in a noncompetitive way by blocking the receptor channel, and possibly by other, yet unknown, mechanisms. Therefore, besides acting as a selective AchEI, BW284c51 constitutes a powerful and reversible blocker of nicotinic AchRs that might be used as a valuable tool for understanding their function. PMID:15644872

  16. The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grandič, Marjana; Aráoz, Romulo; Molgó, Jordi

    APS12-2, a non-competitive acetylcholinesterase inhibitor, is one of the synthetic analogs of polymeric alkylpyridinium salts (poly-APS) isolated from the marine sponge Reniera sarai. In the present work the effects of APS12-2 were studied on isolated mouse phrenic nerve–hemidiaphragm muscle preparations, using twitch tension measurements and electrophysiological recordings. APS12-2 in a concentration-dependent manner blocked nerve-evoked isometric muscle contraction (IC{sub 50} = 0.74 μM), without affecting directly-elicited twitch tension up to 2.72 μM. The compound (0.007–3.40 μM) decreased the amplitude of miniature endplate potentials until a complete block by concentrations higher than 0.68 μM, without affecting their frequency. Full size endplate potentials,more » recorded after blocking voltage-gated muscle sodium channels, were inhibited by APS12-2 in a concentration-dependent manner (IC{sub 50} = 0.36 μM) without significant change in the resting membrane potential of the muscle fibers up to 3.40 μM. The compound also blocked acetylcholine-evoked inward currents in Xenopus oocytes in which Torpedo (α1{sub 2}β1γδ) muscle-type nicotinic acetylcholine receptors (nAChRs) have been incorporated (IC{sub 50} = 0.0005 μM), indicating a higher affinity of the compound for Torpedo (α1{sub 2}β1γδ) than for the mouse (α1{sub 2}β1γε) nAChR. Our data show for the first time that APS12-2 blocks neuromuscular transmission by a non-depolarizing mechanism through an action on postsynaptic nAChRs of the skeletal neuromuscular junction. -- Highlights: ► APS12-2 produces concentration-dependent inhibition of nerve-evoked muscle contraction in vitro. ► APS12-2 blocks MEPPs and EPPs at the neuromuscular junction. APS12-2 blocks ACh-activated current in Xenopus oocytes incorporated with Torpedo nAChRs.« less

  17. Drug binding to the acetylcholine receptor: Nitroxide analogs of phencyclidine and a local anesthetic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palma, A.L.

    1988-01-01

    The interaction of noncompetitive inhibitors (NCIs) with Torpedo californica native nicotinic acetylcholine receptor (nAChR) membranes was examined primarily by the technique of electron paramagnetic resonance (EPR) spectroscopy. The goal of this work being to define some of the physical characteristics for the site(s) of association between an NCI and the nAChR membrane. A nitroxide labeled analog of a quaternary amine local anesthetic, 2-(N,N-dimethyl-N-4-(2,2,6,6-tetramethylpiperidinoxyl)amino)-ethyl 4-hexyloxybenzoate iodide (C6SLMeI), displays a strongly immobilized EPR component when added to nAChR membranes in the presence of carbamylcholine (carb). To further this work, a nitroxide labeled analog of phencyclidine (PCP), a potent NCI, was synthesized. 4-phenyl-4-(1-piperidinyl)-2,2,6,6-tetramethylpiperidinoxylmore » (PPT) exhibited one-third the potency of PCP in inhibiting nAChR mediated ion flux, and from competition binding studies with ({sup 3}H)PCP displayed a K{sub D} of 0.21 {mu}M towards a carb desensitized nAChR and a K{sub 0.5} of 18 {mu}M for a resting {alpha}-bungarotoxin treated nAChR.« less

  18. NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1.

    PubMed

    Lyukmanova, Ekaterina N; Shenkarev, Zakhar O; Shulepko, Mikhail A; Mineev, Konstantin S; D'Hoedt, Dieter; Kasheverov, Igor E; Filkin, Sergey Yu; Krivolapova, Alexandra P; Janickova, Helena; Dolezal, Vladimir; Dolgikh, Dmitry A; Arseniev, Alexander S; Bertrand, Daniel; Tsetlin, Victor I; Kirpichnikov, Mikhail P

    2011-03-25

    Discovery of proteins expressed in the central nervous system sharing the three-finger structure with snake α-neurotoxins provoked much interest to their role in brain functions. Prototoxin LYNX1, having homology both to Ly6 proteins and three-finger neurotoxins, is the first identified member of this family membrane-tethered by a GPI anchor, which considerably complicates in vitro studies. We report for the first time the NMR spatial structure for the water-soluble domain of human LYNX1 lacking a GPI anchor (ws-LYNX1) and its concentration-dependent activity on nicotinic acetylcholine receptors (nAChRs). At 5-30 μM, ws-LYNX1 competed with (125)I-α-bungarotoxin for binding to the acetylcholine-binding proteins (AChBPs) and to Torpedo nAChR. Exposure of Xenopus oocytes expressing α7 nAChRs to 1 μM ws-LYNX1 enhanced the response to acetylcholine, but no effect was detected on α4β2 and α3β2 nAChRs. Increasing ws-LYNX1 concentration to 10 μM caused a modest inhibition of these three nAChR subtypes. A common feature for ws-LYNX1 and LYNX1 is a decrease of nAChR sensitivity to high concentrations of acetylcholine. NMR and functional analysis both demonstrate that ws-LYNX1 is an appropriate model to shed light on the mechanism of LYNX1 action. Computer modeling, based on ws-LYNX1 NMR structure and AChBP x-ray structure, revealed a possible mode of ws-LYNX1 binding.

  19. Mark XIV Torpedo Case Study

    DTIC Science & Technology

    2011-02-26

    Bureau of Ordnance in the meantime had corresponded with Albert Einstein at Princeton University on a variety of issues including torpedo detonation... Einstein was paid $25/day as a consultant and quickly understood the problem. The contact exploder’s firing pin located in the very front warhead...were finally identified and corrected. In all seriousness, God only knows how many submariners died as a result of those defective torpedoes, which

  20. Structural study of Purkinje cell axonal torpedoes in essential tremor.

    PubMed

    Louis, Elan D; Yi, Hong; Erickson-Davis, Cordelia; Vonsattel, Jean-Paul G; Faust, Phyllis L

    2009-02-06

    Essential tremor (ET) is one of the most common neurological diseases. A basic understanding of its neuropathology is now emerging. Aside from Purkinje cell loss, a prominent finding is an abundance of torpedoes (rounded swellings of Purkinje cell axons). Such swellings often result from the mis-accumulation of cell constituents. Identifying the basic nature of these accumulations is an important step in understanding the underlying disease process. Torpedoes, only recently identified in ET, have not yet been characterized ultrastructurally. Light and electron microscopy were used to characterize the structural constituents of torpedoes in ET. Formalin-fixed cerebellar cortical tissue from four prospectively collected ET brains was sectioned and immunostained with a monoclonal phosphorylated neurofilament antibody (SMI-31, Covance, Emeryville, CA). Using additional sections from three ET brains, torpedoes were assessed using electron microscopy. Immunoreactivity for phosphorylated neurofilament protein revealed clear labeling of torpedoes in each case. Torpedoes were strongly immunoreactive; in many instances, two or more torpedoes were noted in close proximity to one another. On electron microscopy, torpedoes were packed with randomly arranged 10-12nm neurofilaments. Mitochondria and smooth endoplasmic reticulum were abundant as well, particularly at the periphery of the torpedo. We demonstrated that the torpedoes in ET represent the mis-accumulation of disorganized neurofilaments and other organelles. It is not known where in the pathogenic cascade these accumulations occur (i.e., whether these accumulations are the primary event or a secondary/downstream event) and this deserves further study.

  1. Antigenic role of single residues within the main immunogenic region of the nicotinic acetylcholine receptor.

    PubMed Central

    Papadouli, I; Potamianos, S; Hadjidakis, I; Bairaktari, E; Tsikaris, V; Sakarellos, C; Cung, M T; Marraud, M; Tzartos, S J

    1990-01-01

    The target of most of the autoantibodies against the acetylcholine receptor (AChR) in myasthenic sera is the main immunogenic region (MIR) on the extracellular side of the AChR alpha-subunit. Binding of anti-MIR monoclonal antibodies (mAbs) has been recently localized between residues alpha 67 and alpha 76 of Torpedo californica electric organ (WNPADYGGIK) and human muscle (WNPDDYGGVK) AChR. In order to evaluate the contribution of each residue to the antigenicity of the MIR, we synthesized peptides corresponding to residues alpha 67-76 from Torpedo and human AChRs, together with 13 peptide analogues. Nine of these analogues had one residue of the Torpedo decapeptide replaced by L-alanine, three had a structure which was intermediate between those of the Torpedo and human alpha 67-76 decapeptides, and one had D-alanine in position 73. Binding studies employing six anti-MIR mAbs and all 15 peptides revealed that some residues (Asn68 and Asp71) are indispensable for binding by all mAbs tested, whereas others are important only for binding by some mAbs. Antibody binding was mainly restricted to residues alpha 68-74, the most critical sequence being alpha 68-71. Fish electric organ and human MIR form two distinct groups of strongly overlapping epitopes. Some peptide analogues enhanced mAb binding compared with Torpedo and human peptides, suggesting that the construction of a very antigenic MIR is feasible. PMID:1695844

  2. The effect of anions on bound acetylcholine in frog sartorius muscle.

    PubMed Central

    Ceccarelli, B; Molenaar, P C; Oen, B S; Polak, R L; Torri-Tarelli, F; van Kempen, G T

    1989-01-01

    1. Frog sartorius muscles were treated with an irreversible cholinesterase inhibitor and then incubated in isotonic potassium propionate solution (isotonic KPr). Total and bound, presumably vesicular, acetylcholine (ACh) in the tissue and ACh in the medium were assayed by mass fragmentography, miniature end-plate potentials (MEPPs) were recorded and the end-plates were investigated by electron microscopy. 2. Incubation in isotonic KPr for 30 min stimulated ACh release and concomitantly decreased total and bound ACh. Nerve stimulation for 30 min by trains of impulses (0.1 s trains of 100 Hz, 1 train s-1) in normal-potassium propionate-containing solution had the same effects. 3. When the tissue was incubated in normal-K+ Ringer solution for 3 h, following chemical or electric stimulation, bound ACh recovered to about 75% of the initial value, provided that Cl- ions were present in the medium. In the presence of propionate instead of Cl- ions almost no recovery of bound ACh took place. There was also recovery of bound ACh in the presence of either NO3- or gluconate ions. In NO3- it was the same as in Cl-, but in gluconate it was less than found in Cl- -containing medium. 4. Recovery of total ACh, in contrast to bound ACh, took place even in the presence of propionate ions, showing that extracellular Cl- is not required for the synthesis of ACh. 5. In terminals recovered in normal Ringer solution, many synaptic vesicles were found, but terminals 'recovered' in propionate solution were depleted of vesicles. 6. From these and other results it is concluded that the recycling of synaptic vesicles normally requires the presence of extracellular chloride. Images Fig. 1 Fig. 2 PMID:2789283

  3. Conformational phases of membrane bound cytoskeletal filaments

    NASA Astrophysics Data System (ADS)

    Quint, David A.; Grason, Gregory; Gopinathan, Ajay

    2013-03-01

    Membrane bound cytoskeletal filaments found in living cells are employed to carry out many types of activities including cellular division, rigidity and transport. When these biopolymers are bound to a membrane surface they may take on highly non-trivial conformations as compared to when they are not bound. This leads to the natural question; What are the important interactions which drive these polymers to particular conformations when they are bound to a surface? Assuming that there are binding domains along the polymer which follow a periodic helical structure set by the natural monomeric handedness, these bound conformations must arise from the interplay of the intrinsic monomeric helicity and membrane binding. To probe this question, we study a continuous model of an elastic filament with intrinsic helicity and map out the conformational phases of this filament for various mechanical and structural parameters in our model, such as elastic stiffness and intrinsic twist of the filament. Our model allows us to gain insight into the possible mechanisms which drive real biopolymers such as actin and tubulin in eukaryotes and their prokaryotic cousins MreB and FtsZ to take on their functional conformations within living cells.

  4. Pancreatic and snake venom presynaptically active phospholipases A2 inhibit nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Kasheverov, Igor E; Kryukova, Elena V; Spirova, Ekaterina N; Shelukhina, Irina V; Starkov, Vladislav G; Andreeva, Tatyana V; Faure, Grazyna; Zouridakis, Marios; Tsetlin, Victor I; Utkin, Yuri N

    2017-01-01

    Phospholipases A2 (PLA2s) are enzymes found throughout the animal kingdom. They hydrolyze phospholipids in the sn-2 position producing lysophospholipids and unsaturated fatty acids, agents that can damage membranes. PLA2s from snake venoms have numerous toxic effects, not all of which can be explained by phospholipid hydrolysis, and each enzyme has a specific effect. We have earlier demonstrated the capability of several snake venom PLA2s with different enzymatic, cytotoxic, anticoagulant and antiproliferative properties, to decrease acetylcholine-induced currents in Lymnaea stagnalis neurons, and to compete with α-bungarotoxin for binding to nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding protein. Since nAChRs are implicated in postsynaptic and presynaptic activities, in this work we probe those PLA2s known to have strong presynaptic effects, namely β-bungarotoxin from Bungarus multicinctus and crotoxin from Crotalus durissus terrificus. We also wished to explore whether mammalian PLA2s interact with nAChRs, and have examined non-toxic PLA2 from porcine pancreas. It was found that porcine pancreatic PLA2 and presynaptic β-bungarotoxin blocked currents mediated by nAChRs in Lymnaea neurons with IC50s of 2.5 and 4.8 μM, respectively. Crotoxin competed with radioactive α-bungarotoxin for binding to Torpedo and human α7 nAChRs and to the acetylcholine binding protein. Pancreatic PLA2 interacted similarly with these targets; moreover, it inhibited radioactive α-bungarotoxin binding to the water-soluble extracellular domain of human α9 nAChR, and blocked acetylcholine induced currents in human α9α10 nAChRs heterologously expressed in Xenopus oocytes. These and our earlier results show that all snake PLA2s, including presynaptically active crotoxin and β-bungarotoxin, as well as mammalian pancreatic PLA2, interact with nAChRs. The data obtained suggest that this interaction may be a general property of all PLA2s, which should be proved by

  5. Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric-fish, Torpedo californica.

    PubMed Central

    Mehlert, A; Varon, L; Silman, I; Homans, S W; Ferguson, M A

    1993-01-01

    The structure of the glycan moiety of the glycosyl-phosphatidylinositol (GPI) membrane anchor from Torpedo californica (electric fish) electric-organ acetylcholinesterase was solved using n.m.r., methylation analysis and chemical and enzymic micro-sequencing. Two structures were found to be present: Glc alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol and Glc alpha 1-2Man alpha 1-2Man alpha 1-6(GalNAc beta 1-4)Man alpha 1-4GlcN alpha 1-6myo-inositol. The presence of glucose in this GPI anchor structure is a novel feature. The anchor was also shown to contain 2.3 residues of ethanolamine per molecule. PMID:8257440

  6. Structure-function relationships of curaremimetic neurotoxin loop 2 and of a structurally similar segment of rabies virus glycoprotein in their interaction with the nicotinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lentz, T.L.

    1991-11-12

    Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of {sup 125}I-{alpha}-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b and the structurally similarmore » segment of CVS rabies virus glycoprotein. These affinities were comparable to those of d-tubocurarine and suberyldicholine. These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Since this region of the glycoprotein contains residues corresponding to all of the functionally invariant neurotoxin residues, it may interact with the acetylcholine receptor through a mechanism similar to that of the neurotoxins.« less

  7. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    PubMed

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  8. [Membrane-bound cytokine and feedforward regulation].

    PubMed

    Wu, Ke-Fu; Zheng, Guo-Guang; Ma, Xiao-Tong; Song, Yu-Hua

    2013-10-01

    Feedback and feedforward widely exist in life system, both of them are the basic processes of control system. While the concept of feedback has been widely used in life science, feedforward regulation was systematically studied in neurophysiology, awaiting further evidence and mechanism in molecular biology and cell biology. The authors put forward a hypothesis about the feedforward regulation of membrane bound macrophage colony stimulation factor (mM-CSF) on the basis of their previous work. This hypothesis might provide a new direction for the study on the biological effects of mM-CSF on leukemia and solid tumors, and contribute to the study on other membrane bound cytokines.

  9. Metabolism of acetylcholine in human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, E.S.

    1990-01-01

    In order to examine the possible role of erythrocyte acetylcholinesterase in the maintenance of membrane phospholipid content and membrane fluidity, experiments were performed to monitor the activity of the enzyme and follow the fate of one of its hydrolytic products, choline. Intact human erythrocytes were incubated with acetylcholine (choline methyl-{sup 14}C). The incubation resulted in the hydrolysis of acetylcholine to acetate and choline; the reaction was catalyzed by membrane acetylcholinesterase. The studies demonstrate the further metabolism of choline. Experiments were carried out to determine rate of hydrolysis of acetylcholine, uptake of choline, identification of intracellular metabolites of choline, and identificationmore » of radiolabeled membrane components. Erythrocytes at a 25% hematocrit were incubated in an isoosmotic bicarbonate buffer pH 7.4, containing glucose, adenosine, streptomycin and penicillin with 0.3 {mu}Ci of acetylcholine (choline methyl-{sup 14}C), for 24 hours. Aliquots of the erythrocyte suspension were taken throughout for analysis. Erythrocytes were washed free of excess substrate, lysed, and the hemolysate was extracted for choline and its metabolites. Blank samples containing incubation buffer and radiolabeled acetylcholine only, and erythrocyte hemolysate extracts were analyzed for choline content, the difference between blank samples and hemolysate extracts was the amount of choline originating from acetylcholine and attributable to acetylcholinesterase activity. The conversion of choline to {sup 14}C-betaine is noted after several minutes of incubation; at 30 minutes, more than 80% of {sup 14}C-choline is taken up and after several hours, detectable levels of radiolabeled S-adenosylmethionine were present in the hemolysate extract.« less

  10. Molecular properties of muscarinic acetylcholine receptors

    PubMed Central

    HAGA, Tatsuya

    2013-01-01

    Muscarinic acetylcholine receptors, which comprise five subtypes (M1-M5 receptors), are expressed in both the CNS and PNS (particularly the target organs of parasympathetic neurons). M1-M5 receptors are integral membrane proteins with seven transmembrane segments, bind with acetylcholine (ACh) in the extracellular phase, and thereafter interact with and activate GTP-binding regulatory proteins (G proteins) in the intracellular phase: M1, M3, and M5 receptors interact with Gq-type G proteins, and M2 and M4 receptors with Gi/Go-type G proteins. Activated G proteins initiate a number of intracellular signal transduction systems. Agonist-bound muscarinic receptors are phosphorylated by G protein-coupled receptor kinases, which initiate their desensitization through uncoupling from G proteins, receptor internalization, and receptor breakdown (down regulation). Recently the crystal structures of M2 and M3 receptors were determined and are expected to contribute to the development of drugs targeted to muscarinic receptors. This paper summarizes the molecular properties of muscarinic receptors with reference to the historical background and bias to studies performed in our laboratories. PMID:23759942

  11. Mitochondrial rhodanese: membrane-bound and complexed activity.

    PubMed

    Ogata, K; Volini, M

    1990-05-15

    We have proposed that phosphorylated and dephosphorylated forms of the mitochondrial sulfurtransferase, rhodanese, function as converter enzymes that interact with membrane-bound iron-sulfur centers of the electron transport chain to modulate the rate of mitochondrial respiration (Ogata, K., Dai, X., and Volini, M. (1989) J. Biol. Chem. 204, 2718-2725). In the present studies, we have explored some structural aspects of the mitochondrial rhodanese system. By sequential extraction of lysed mitochondria with phosphate buffer and phosphate buffer containing 20 mM cholate, we have shown that 30% of the rhodanese activity of bovine liver is membrane-bound. Resolution of cholate extracts on Sephadex G-100 indicates that part of the bound rhodanese is complexed with other mitochondrial proteins. Tests with the complex show that it forms iron-sulfur centers when incubated with the rhodanese sulfur-donor substrate thiosulfate, iron ions, and a reducing agent. Experiments on the rhodanese activity of rat liver mitochondria give similar results. Taken together, the findings indicate that liver rhodanese is in part bound to the mitochondrial membrane as a component of a multiprotein complex that forms iron-sulfur centers. The findings are consistent with the role we propose for rhodanese in the modulation of mitochondrial respiratory activity.

  12. Determination of picomole quantities of acetylcholine and choline in physiologic salt solutions.

    PubMed

    Gilberstadt, M L; Russell, J A

    1984-04-01

    An assay capable of detecting tens-of-picomole quantities of choline and acetylcholine in milliliter volumes of a physiological salt solution has been developed. Silica column chromatography was used to bind and separate 10-3000 pmol [14C]choline and [14C]acetylcholine standards made up in 3 ml of a bicarbonate-buffered Krebs-Ringer solution. The silica columns bound 95-98% of both choline and acetylcholine. Of the bound choline 84-87% was eluted in 1.5 ml of 0.075 N HCl, whereas 95-98% of the bound acetylcholine was eluted in a subsequent wash with 1.5 ml of 0.030 N HCl in 10% 2-butanone. Vacuum centrifugation of the eluants yielded small white pellets with losses of choline and acetylcholine of only 1%. Dried pellets of unlabeled choline and acetylcholine standards were assayed radioenzymatically using [gamma-32P]ATP, choline kinase, and acetylcholinesterase. The net disintegrations per minute of choline[32P]phosphate product was proportional to both the acetylcholine (10-3000 pmol) and choline (30-3000 pmol) standards. The "limit sensitivity" was 8.5 pmol for acetylcholine and 11.4 pmol for choline. Cross-contamination of the choline assay by acetylcholine averaged 1.3%, whereas contamination of the acetylcholine assay by choline averaged 3.1%.

  13. Structure-function relationship in the binding of snake neurotoxins to the torpedo membrane receptor.

    PubMed

    Chicheportiche, R; Vincent, J P; Kopeyan, C; Schweitz, H; Lazdunski, M

    1975-05-20

    The Cys30-Cus34 bridge present in all long neutotoxins (71-74 amino acids, 5 disulfide bridges), but not in short toxins (60-63 amino acids, 4 disulfide bridges), is exposed at the surface since it can be reduced rapidly and selectively by sodium borohydride. Reduction and alkylation of the Cys30-Cys34 bridge of Naja haje neurotoxin III hardly alter the conformational properties of this model long toxin. Although alkylation by iodoacetic acid of th -SH groups liberated by reduction abolishes the toxicity, alkylation by iodoacetamide or ethylenimine does not affect the curarizing efficacy of the toxin. The Cys30-Cys34 bridge is not very important for the toxic activity of long neurotoxins. Reduction of the Cys30-Cys34 bridge followed by alkylation with radioactive iodoacetamide gave a labeled and active toxin which is a convenient derivative for binding experiments to the toxin receptor in membranes of the Torpedo electric organ. The binding capacity of these membrane is 1200 pmol of toxin/mg of membrane protein. The dissociation constant of the modified toxin-receptor complex at pH 7.4, 20 degrees is 10 minus 8m. Reduction with carbroxamidomethylation of the Cys30-Cys34 bridge decreases the affinity of the native Naja haje toxin only by a factor of 15. Carboxymethylation after reduction prevents binding to the membrane receptor. The binding properties of the derivative obtained by reduction and aminoethylation of Cys30-Cys34 are very similar to those of native neurotoxin III; the affinity is decreased only by a factor of 5. Binding properties to Toredo membrane of long neurotoxins (Naja haje neurotoxin III) and short neurotoxins (Naje haje toxin I and Naja mossambica toxin I) have been compared. Dissociation constants of receptor-long neurotoxin and receptor-short neurotoxin complexes are very similar (5.7 minus 8.2 times 10(-10) M at pH 7.4, 20degrees. However, the kinetics of complex formation and complex dissociation are quite different. Short neurotoxins

  14. Naturally occurring disulfide-bound dimers of three-fingered toxins: a paradigm for biological activity diversification.

    PubMed

    Osipov, Alexey V; Kasheverov, Igor E; Makarova, Yana V; Starkov, Vladislav G; Vorontsova, Olga V; Ziganshin, Rustam Kh; Andreeva, Tatyana V; Serebryakova, Marina V; Benoit, Audrey; Hogg, Ronald C; Bertrand, Daniel; Tsetlin, Victor I; Utkin, Yuri N

    2008-05-23

    Disulfide-bound dimers of three-fingered toxins have been discovered in the Naja kaouthia cobra venom; that is, the homodimer of alpha-cobratoxin (a long-chain alpha-neurotoxin) and heterodimers formed by alpha-cobratoxin with different cytotoxins. According to circular dichroism measurements, toxins in dimers retain in general their three-fingered folding. The functionally important disulfide 26-30 in polypeptide loop II of alpha-cobratoxin moiety remains intact in both types of dimers. Biological activity studies showed that cytotoxins within dimers completely lose their cytotoxicity. However, the dimers retain most of the alpha-cobratoxin capacity to compete with alpha-bungarotoxin for binding to Torpedo and alpha7 nicotinic acetylcholine receptors (nAChRs) as well as to Lymnea stagnalis acetylcholine-binding protein. Electrophysiological experiments on neuronal nAChRs expressed in Xenopus oocytes have shown that alpha-cobratoxin dimer not only interacts with alpha7 nAChR but, in contrast to alpha-cobratoxin monomer, also blocks alpha3beta2 nAChR. In the latter activity it resembles kappa-bungarotoxin, a dimer with no disulfides between monomers. These results demonstrate that dimerization is essential for the interaction of three-fingered neurotoxins with heteromeric alpha3beta2 nAChRs.

  15. The Dinoflagellate Toxin 20-Methyl Spirolide-G Potently Blocks Skeletal Muscle and Neuronal Nicotinic Acetylcholine Receptors

    PubMed Central

    Couesnon, Aurélie; Aráoz, Rómulo; Iorga, Bogdan I.; Benoit, Evelyne; Reynaud, Morgane; Servent, Denis; Molgó, Jordi

    2016-01-01

    The cyclic imine toxin 20-methyl spirolide G (20-meSPX-G), produced by the toxigenic dinoflagellate Alexandrium ostenfeldii/Alexandrium peruvianum, has been previously reported to contaminate shellfish in various European coastal locations, as revealed by mouse toxicity bioassay. The aim of the present study was to determine its toxicological profile and its molecular target selectivity. 20-meSPX-G blocked nerve-evoked isometric contractions in isolated mouse neuromuscular preparations, while it had no action on contractions elicited by direct electrical stimulation, and reduced reversibly nerve-evoked compound muscle action potential amplitudes in anesthetized mice. Voltage-clamp recordings in Xenopus oocytes revealed that 20-meSPX-G potently inhibited currents evoked by ACh on Torpedo muscle-type and human α7 nicotinic acetylcholine receptors (nAChR), whereas lower potency was observed in human α4β2 nAChR. Competition-binding assays showed that 20-meSPX-G fully displaced [3H]epibatidine binding to HEK-293 cells expressing the human α3β2 (Ki = 0.040 nM), whereas a 90-fold lower affinity was detected in human α4β2 nAChR. The spirolide displaced [125I]α-bungarotoxin binding to Torpedo membranes (Ki = 0.028 nM) and in HEK-293 cells expressing chick chimeric α7-5HT3 nAChR (Ki = 0.11 nM). In conclusion, this is the first study to demonstrate that 20-meSPX-G is a potent antagonist of nAChRs, and its subtype selectivity is discussed on the basis of molecular docking models. PMID:27563924

  16. Crocodilian perivitelline membrane-bound sperm detection.

    PubMed

    Augustine, Lauren

    2017-05-01

    Advanced reproductive technologies (ART's) are often employed with various taxa to enhance captive breeding programs and maintain genetic diversity. Perivitelline membrane-bound (PVM-bound) sperm detection has previously been demonstrated in avian and chelonian species as a useful technique for breeding management. In the absence of embryotic development within an egg, this technique can detect the presence of sperm trapped on the oocyte membrane confirming breeding, male reproductive status, and pair compatibility. PVM-bound sperm were successfully detected in three clutches of Cuban crocodile (Crocodylus rhombifer) eggs at the Smithsonian's National Zoological Park (NZP) for the first time in any crocodilian species. PVM-bound sperm were detected in fresh and incubated C. rhombifer eggs, as well as eggs that were developing (banded) and those that were not (not banded). The results of this study showed significant differences in average sperm densities per egg between clutches (p = 0.001). Additionally, there was not a significant difference within clutches between eggs that banded and those that did not band (Clutch A, p = 0.505; Clutch B, p = 0.665; Clutch C, p = 0.266). The results of this study demonstrate the necessity to microscopically examine eggs that do not develop (do not band), to determine if sperm is present, which can help animal managers problem solve reproductive shortcomings. PVM-bound sperm detection could be a useful technique in assessing crocodilian breeding programs, as well as have potential uses in studies assessing sperm storage, artificial insemination, and artificial incubation. This article is a U.S. Government work and is in the public domain in the USA.

  17. Exercise and neuromodulators: choline and acetylcholine in marathon runners

    NASA Technical Reports Server (NTRS)

    Conlay, L. A.; Sabounjian, L. A.; Wurtman, R. J.

    1992-01-01

    Certain neurotransmitters (i.e., acetylcholine, catecholamines, and serotonin) are formed from dietary constituents (i.e., choline, tyrosine and tryptophan). Changing the consumption of these precursors alters release of their respective neurotransmitter products. The neurotransmitter acetylcholine is released from the neuromuscular junction and from brain. It is formed from choline, a common constituent in fish, liver, and eggs. Choline is also incorporated into cell membranes; membranes may likewise serve as an alternative choline source for acetylcholine synthesis. In trained athletes, running a 26 km marathon reduced plasma choline by approximately 40%, from 14.1 to 8.4 uM. Changes of similar magnitude have been shown to reduce acetylcholine release from the neuromuscular junction in vivo. Thus, the reductions in plasma choline associated with strenuous exercise may reduce acetylcholine release, and could thereby affect endurance or performance.

  18. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  19. New Method for Measuring the Anchoring Energy of Strongly-Bound Membrane-Associated Proteins [Method for measuring the anchoring energy of strongly-bound membrane-associated proteins].

    DOE PAGES

    Kent, Michael S.; La Bauve, Elisa; Vernon, Briana C.; ...

    2016-02-01

    Here, we describe a new method to measure the activation energy required to remove a strongly-bound membrane-associated protein from a lipid membrane (anchoring energy). It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method was used to determine anchoring energy for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. We also measured the binding energy of sE at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipidmore » bilayer. The anchoring energy (37 +/- 1.7 kcal/mol, 20% PG) was found to be much larger than the binding energy (7.8 +/- 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. But, trimerization alone is insufficient to account for the observed difference in energies, and we conclude that some energy dissipation occurs during the release process. This new method to determine anchoring energy should be useful to understand the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  20. Membrane-Bound Tomato Mosaic Virus Replication Proteins Participate in RNA Synthesis and Are Associated with Host Proteins in a Pattern Distinct from Those That Are Not Membrane Bound

    PubMed Central

    Nishikiori, Masaki; Dohi, Koji; Mori, Masashi; Meshi, Tetsuo; Naito, Satoshi; Ishikawa, Masayuki

    2006-01-01

    Extracts of vacuole-depleted, tomato mosaic virus (ToMV)-infected plant protoplasts contained an RNA-dependent RNA polymerase (RdRp) that utilized an endogenous template to synthesize ToMV-related positive-strand RNAs in a pattern similar to that observed in vivo. Despite the fact that only minor fractions of the ToMV 130- and 180-kDa replication proteins were associated with membranes, the RdRp activity was exclusively associated with membranes. A genome-sized, negative-strand RNA template was associated with membranes and was resistant to micrococcal nuclease unless treated with detergents. Non-membrane-bound replication proteins did not exhibit RdRp activity, even in the presence of ToMV RNA. While the non-membrane-bound replication proteins remained soluble after treatment with Triton X-100, the same treatment made the membrane-bound replication proteins in a form that precipitated upon low-speed centrifugation. On the other hand, the detergent lysophosphatidylcholine (LPC) efficiently solubilized the membrane-bound replication proteins. Upon LPC treatment, the endogenous template-dependent RdRp activity was reduced and exogenous ToMV RNA template-dependent RdRp activity appeared instead. This activity, as well as the viral 130-kDa protein and the host proteins Hsp70, eukaryotic translation elongation factor 1A (eEF1A), TOM1, and TOM2A copurified with FLAG-tagged viral 180-kDa protein from LPC-solubilized membranes. In contrast, Hsp70 and only small amounts of the 130-kDa protein and eEF1A copurified with FLAG-tagged non-membrane-bound 180-kDa protein. These results suggest that the viral replication proteins are associated with the intracellular membranes harboring TOM1 and TOM2A and that this association is important for RdRp activity. Self-association of the viral replication proteins and their association with other host proteins may also be important for RdRp activity. PMID:16912296

  1. Monoclonal antibodies against acetylcholinesterase from electric organs of Electrophorus and Torpedo.

    PubMed

    Musset, F; Frobert, Y; Grassi, J; Vigny, M; Boulla, G; Bon, S; Massoulié, J

    1987-02-01

    We studied the reactivity of monoclonal antibodies (mAbs) raised against acetylcholinesterase (AChE) purified from Electrophorus and Torpedo electric organs. We obtained IgG antibodies (Elec-21, Elec-106, Tor-3E5, Tor-ME8, Tor-1A5), all of them directed against the catalytic subunit of the corresponding species, with no significant cross-reactivity. These antibodies do not inhibit the enzyme and recognize all molecular forms, globular (G) and asymmetric (A). Tor-ME8 reacts specifically with the denatured A and G subunits of Torpedo AChE, in immunoblots. Several hybridomas raised against Electrophorus AChE produced IgM antibodies (Elec-39, Elec-118, Elec-121). These antibodies react with the A forms of Electrophorus electric organs and also with a subset of dimers (G2) from Torpedo electric organ. In addition, they react with a number of non-AChE components, in immunoblots. In contrast, they do not recognize AChE from other Electrophorus tissues or A forms from Torpedo electric organs.

  2. Dissociation and purification of the endogenous membrane-bound Vo complex from Pichia pastoris.

    PubMed

    Li, Sumei; Hong, Tao; Wang, Kun; Lu, Yinghong; Zhou, Min

    2017-10-01

    Most proteins occur and function in complexes rather than as isolated entities in membranes. In most cases macromolecules with multiple subunits are purified from endogenous sources. In this study, an endogenous membrane-protein complex was obtained from Pichia pastoris, which can be grown at high densities to significantly improve the membrane protein yield. We successfully isolated the membrane-bound Vo complex of V-ATPase from P. pastoris using a fusion FLAG tag attached to the C-terminus of subunit a to generate the vph-tag strain, which was used for dissociation and purification. After FLAG affinity and size exclusion chromatography purification, the production quantity and purity of the membrane-bound Vo complex was 20 μg l -1 and >98%, respectively. The subunits of the endogenous membrane-bound Vo complex observed in P. pastoris were similar to those obtained from S. cerevisiae, as demonstrated by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Therefore, successful dissociation and purification of the membrane-bound Vo complex at a high purity and sufficient quantity was achieved via a rapid and simple procedure that can be used to obtain the endogenous membrane-protein complexes from P. pastoris. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Thinking in cycles: MWC is a good model for acetylcholine receptor-channels

    PubMed Central

    Auerbach, Anthony

    2012-01-01

    Abstract Neuromuscular acetylcholine receptors have long been a model system for understanding the mechanisms of operation of ligand-gated ion channels and fast chemical synapses. These five subunit membrane proteins have two allosteric (transmitter) binding sites and a distant ion channel domain. Occupation of the binding sites by agonist molecules transiently increases the probability that the channel is ion-permeable. Recent experiments show that the Monod, Wyman and Changeux formalism for allosteric proteins, originally developed for haemoglobin, is an excellent model for acetylcholine receptors. By using mutations and single-channel electrophysiology, the gating equilibrium constants for receptors with zero, one or two bound agonist molecules, and the agonist association and dissociation rate constants from both the closed- and open-channel conformations, have been estimated experimentally. The change in affinity for each transmitter molecule between closed and open conformations provides ∼–5.1 kcal mol−1 towards the global gating isomerization of the protein. PMID:21807612

  4. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S.

    The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme’s buried active site. The membrane facilitated the openingmore » of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix.« less

  5. The Role of Cholesterol in the Activation of Nicotinic Acetylcholine Receptors.

    PubMed

    Baenziger, John E; Domville, Jaimee A; Therien, J P Daniel

    2017-01-01

    Cholesterol is a potent modulator of the nicotinic acetylcholine receptor (nAChR) from Torpedo. Here, we review current understanding of the mechanisms underlying cholesterol-nAChR interactions in the context of increasingly available high-resolution structural and functional data. Cholesterol and other lipids influence function by conformational selection and kinetic mechanisms, stabilizing varying proportions of activatable vs nonactivatable conformations, as well as influencing the rates of transitions between conformational states. In the absence of cholesterol and anionic lipids, the nAChR adopts an uncoupled conformation that binds agonist but does not undergo agonist-induced conformational transitions-unless the nAChR is located in a relatively thick lipid bilayer, such as that found in cholesterol-rich lipid rafts. We highlight different sites of cholesterol action, including the lipid-exposed M4 transmembrane α-helix. Cholesterol and other lipids likely alter function by modulating interactions between M4 and the adjacent transmembrane α-helices, M1 and M3. These same interactions have been implicated in both the folding and trafficking of nAChRs to the cell surface. We evaluate the nature of cholesterol-nAChR interactions, considering the evidence supporting the roles of both direct binding to allosteric sites and cholesterol-induced changes in bulk membrane physical properties. © 2017 Elsevier Inc. All rights reserved.

  6. Diverse inhibitory actions of quaternary ammonium cholinesterase inhibitors on Torpedo nicotinic ACh receptors transplanted to Xenopus oocytes

    PubMed Central

    Olivera-Bravo, Silvia; Ivorra, Isabel; Morales, Andrés

    2007-01-01

    Background and purpose: This work was aimed at comparing and analysing the effects and mechanisms of action of the quaternary ammonium cholinesterase inhibitors (QChEIs) BW284c51, decamethonium and edrophonium, on nicotinic ACh receptor (nAChR) function. Experimental approach: nAChRs purified from Torpedo electroplax were transplanted to oocytes and currents elicited by ACh (IACh) either alone or in presence of these QChEIs were recorded. Key results: None of the QChEIs, by itself, elicited changes in membrane conductance; however, when co-applied with ACh, all of them decreased IACh in a concentration-dependent way. The mechanisms of nAChR inhibition were different for these QChEIs. BW284c51 blockade was non-competitive and voltage-dependent, although it also affected the nH of the dose-response curve. By contrast, decamethonium and edrophonium inhibition, at –60 mV, was apparently competitive and did not modify either desensitisation or nH. Decamethonium effects were voltage-independent and washed out slowly after its removal; by contrast, edrophonium blockade had strong voltage dependence and its effects disappeared quickly after its withdrawal. Analysis of the voltage-dependent blockade indicated that BW284c51 bound to a shallow site into the channel pore, whereas edrophonium bound to a deeper locus. Accordingly, additive inhibitory effects on IACh were found among any pairs of these QChEIs. Conclusions and implications: The tested QChEIs bound to the nAChR at several and different loci, which might account for their complex inhibitory behaviour, acting both as allosteric effectors and, in the case of BW284c51 and edrophonium, as open channel blockers. PMID:17572698

  7. The impact of physiological crowding on the diffusivity of membrane bound proteins.

    PubMed

    Houser, Justin R; Busch, David J; Bell, David R; Li, Brian; Ren, Pengyu; Stachowiak, Jeanne C

    2016-02-21

    Diffusion of transmembrane and peripheral membrane-bound proteins within the crowded cellular membrane environment is essential to diverse biological processes including cellular signaling, endocytosis, and motility. Nonetheless we presently lack a detailed understanding of the influence of physiological levels of crowding on membrane protein diffusion. Utilizing quantitative in vitro measurements, here we demonstrate that the diffusivities of membrane bound proteins follow a single linearly decreasing trend with increasing membrane coverage by proteins. This trend holds for homogenous protein populations across a range of protein sizes and for heterogeneous mixtures of proteins of different sizes, such that protein diffusivity is controlled by the total coverage of the surrounding membrane. These results demonstrate that steric exclusion within the crowded membrane environment can fundamentally limit the diffusive rate of proteins, regardless of their size. In cells this "speed limit" could be modulated by changes in local membrane coverage, providing a mechanism for tuning the rate of molecular interaction and assembly.

  8. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    PubMed Central

    Tanaka, Yo; Funano, Shun-ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-01-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices. PMID:27241817

  9. An electric generator using living Torpedo electric organs controlled by fluid pressure-based alternative nervous systems

    NASA Astrophysics Data System (ADS)

    Tanaka, Yo; Funano, Shun-Ichi; Nishizawa, Yohei; Kamamichi, Norihiro; Nishinaka, Masahiro; Kitamori, Takehiko

    2016-05-01

    Direct electric power generation using biological functions have become a research focus due to their low cost and cleanliness. Unlike major approaches using glucose fuels or microbial fuel cells (MFCs), we present a generation method with intrinsically high energy conversion efficiency and generation with arbitrary timing using living electric organs of Torpedo (electric rays) which are serially integrated electrocytes converting ATP into electric energy. We developed alternative nervous systems using fluid pressure to stimulate electrocytes by a neurotransmitter, acetylcholine (Ach), and demonstrated electric generation. Maximum voltage and current were 1.5 V and 0.64 mA, respectively, with a duration time of a few seconds. We also demonstrated energy accumulation in a capacitor. The current was far larger than that using general cells other than electrocytes (~pA level). The generation ability was confirmed against repetitive cycles and also after preservation for 1 day. This is the first step toward ATP-based energy harvesting devices.

  10. Modification of erythrocyte membrane proteins, enzymes and transport mechanisms in chronic alcoholics: an in vivo and in vitro study.

    PubMed

    Maturu, Paramahamsa; Vaddi, Damodara Reddy; Pannuru, Padmavathi; Nallanchakravarthula, Varadacharyulu

    2013-01-01

    The aim of the study was to elucidate the molecular mechanisms underlying the alcohol perturbation leading to deleterious effects on erythrocyte membrane transport in chronic alcoholics. Membrane bound enzyme activities such as Na(+), K(+)-ATPase, Ca(2+),Mg(2+)-ATPase and acetylcholine esterase and membrane transport analysis by in vitro and erythrocyte membrane profile analysis in controls and chronic alcoholic red cells were analyzed. It was observed that decreased Na(+), K(+)-ATPase enzyme activity and increased activities of Ca(2+),Mg(2+)-ATPase and acetylcholine esterase in chronic alcoholics compared to controls. The in vitro studies of erythrocytes suggested that there is an increased uptake of glucose through chronic alcoholic red cells. However, glucose utilization by chronic alcoholic red cells was decreased. An increased sensitivity of ouabain for its binding site on Na(+), K(+)-ATPase in chronic alcoholic erythrocyte membrane was evident from this study. Though there appears to be an increased Na(+) influx in chronic alcoholic cells, the status of Na(+) transport is not altered much. However, ouabain caused slight disturbances in the transport of sodium, similar disturbances in the potassium transport resulting in much accumulation of potassium in red cells. It was concluded that chronic alcohol consumption modified certain membrane bound proteins, enzymes and transport mechanisms in chronic alcoholics.

  11. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor

    PubMed Central

    Caballero-Rivera, Daniel; Cruz-Nieves, Omar A; Oyola-Cintrón, Jessica; Torres-Núñez, David A; Otero-Cruz, José D

    2011-01-01

    The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and 125I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300–301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery. PMID:21785268

  12. Membrane-bound 2,3-diphosphoglycerate phosphatase of human erythrocytes.

    PubMed

    Schröter, W; Neuvians, M

    1970-12-01

    Gradual osmotic hemolysis of human erythrocytes reduces the cell content of whole protein, hemoglobin, 2,3-diphosphoglycerate and triosephosphate isomerase extensively, but not that of membrane protein and 2,3-diphosphoglycerate phosphatase. After the refilling of the ghosts with 2,3-diphosphoglycerate and reconstitution of the membrane, the 2,3-diphosphoglycerate phosphatase activity equals that of intact red cells. The membrane-bound 2,3-diphosphoglycerate phosphatase can be activated by sodium hyposulfite. The enzyme system of ghosts seems to differ from that of intact red cells with regard to the optima of pH and temperature. It remains to be elucidated if the membrane binding of the 2,3-diphosphoglycerate phosphatase is related to the transfer of inorganic phosphate across the red cell membrane.

  13. Probing the Interplay between Dendritic Spine Morphology and Membrane-Bound Diffusion.

    PubMed

    Adrian, Max; Kusters, Remy; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2017-11-21

    Dendritic spines are protrusions along neuronal dendrites that harbor the majority of excitatory postsynapses. Their distinct morphology, often featuring a bulbous head and small neck that connects to the dendritic shaft, has been shown to facilitate compartmentalization of electrical and cytoplasmic signaling stimuli elicited at the synapse. The extent to which spine morphology also forms a barrier for membrane-bound diffusion has remained unclear. Recent simulations suggested that especially the diameter of the spine neck plays a limiting role in this process. Here, we examine the connection between spine morphology and membrane-bound diffusion through a combination of photoconversion, live-cell superresolution experiments, and numerical simulations. Local photoconversion was used to obtain the timescale of diffusive equilibration in spines and followed by global sparse photoconversion to determine spine morphologies with nanoscopic resolution. These morphologies were subsequently used to assess the role of morphology on the diffusive equilibration. From the simulations, we could determine a robust relation between the equilibration timescale and a generalized shape factor calculated using both spine neck width and neck length, as well as spine head size. Experimentally, we found that diffusive equilibration was often slower, but rarely faster than predicted from the simulations, indicating that other biological confounders further reduce membrane-bound diffusion in these spines. This shape-dependent membrane-bound diffusion in mature spines may contribute to spine-specific compartmentalization of neurotransmitter receptors and signaling molecules and thereby support long-term plasticity of synaptic contacts. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Membrane-bound transcription factors: regulated release by RIP or RUP.

    PubMed

    Hoppe, T; Rape, M; Jentsch, S

    2001-06-01

    Regulated nuclear transport of transcription factors from cytoplasmic pools is a major route by which eukaryotes control gene expression. Exquisite examples are transcription factors that are kept in a dormant state in the cytosol by membrane anchors; such proteins are released from membranes by proteolytic cleavage, which enables these transcription factors to enter the nucleus. Cleavage can be mediated either by regulated intramembrane proteolysis (RIP) catalysed by specific membrane-bound proteases or by regulated ubiquitin/proteasome-dependent processing (RUP). In both cases processing can be controlled by cues that originate at or in the vicinity of the membrane.

  15. Structure Biology of Membrane Bound Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dax

    The overall goal of the proposed research is to understand the membrane-associated active processes catalyzed by an alkanemore » $$\\square$$-hydroxylase (AlkB) from eubacterium Pseudomonase oleovorans. AlkB performs oxygenation of unactivated hydrocarbons found in crude oils. The enzymatic reaction involves energy-demanding steps in the membrane with the uses of structurally unknown metal active sites featuring a diiron [FeFe] center. At present, a critical barrier to understanding the membrane-associated reaction mechanism is the lack of structural information. The structural biology efforts have been challenged by technical difficulties commonly encountered in crystallization and structural determination of membrane proteins. The specific aims of the current budget cycle are to crystalize AlkB and initiate X-ray analysis to set the stage for structural determination. The long-term goals of our structural biology efforts are to provide an atomic description of AlkB structure, and to uncover the mechanisms of selective modification of hydrocarbons. The structural information will help elucidating how the unactivated C-H bonds of saturated hydrocarbons are oxidized to initiate biodegradation and biotransformation processes. The knowledge gained will be fundamental to biotechnological applications to biofuel transformation of non-edible oil feedstock. Renewable biodiesel is a promising energy carry that can be used to reduce fossil fuel dependency. The proposed research capitalizes on prior BES-supported efforts on over-expression and purification of AlkB to explore the inner workings of a bioenergy-relevant membrane-bound enzyme.« less

  16. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins.

    PubMed

    Bauve, Elisa La; Vernon, Briana C; Ye, Dongmei; Rogers, David M; Siegrist, Cathryn M; Carson, Bryan D; Rempe, Susan B; Zheng, Aihua; Kielian, Margaret; Shreve, Andrew P; Kent, Michael S

    2016-11-01

    We describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u ) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH* u and ΔG* u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH5.5. ΔH* u is determined from the Arrhenius equation whereas ΔG* u is determined by fitting the data to a model based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20±3kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8±0.3kcal/mol for 30% PG, or est. 7.0kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH5.5, but assembles into trimers after associating with membranes. This new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei

    Here, we describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a modelmore » based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20 ± 3 kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8 ± 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. Furthermore, this new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  18. Method for measuring the unbinding energy of strongly-bound membrane-associated proteins

    DOE PAGES

    La Bauve, Elisa; Vernon, Briana C.; Ye, Dongmei; ...

    2016-07-15

    Here, we describe a new method to measure the activation energy for unbinding (enthalpy ΔH* u and free energy ΔG* u) of a strongly-bound membrane-associated protein from a lipid membrane. It is based on measuring the rate of release of a liposome-bound protein during centrifugation on a sucrose gradient as a function of time and temperature. The method is used to determine ΔH*u and ΔG*u for the soluble dengue virus envelope protein (sE) strongly bound to 80:20 POPC:POPG liposomes at pH 5.5. ΔH*u is determined from the Arrhenius equation whereas ΔG*u is determined by fitting the data to a modelmore » based on mean first passage time for escape from a potential well. The binding free energy ΔG b of sE was also measured at the same pH for the initial, predominantly reversible, phase of binding to a 70:30 PC:PG lipid bilayer. The unbinding free energy (20 ± 3 kcal/mol, 20% PG) was found to be roughly three times the binding energy per monomer, (7.8 ± 0.3 kcal/mol for 30% PG, or est. 7.0 kcal/mol for 20% PG). This is consistent with data showing that free sE is a monomer at pH 5.5, but assembles into trimers after associating with membranes. Furthermore, this new method to determine unbinding energies should be useful to understand better the complex interactions of integral monotopic proteins and strongly-bound peripheral membrane proteins with lipid membranes.« less

  19. Modeling study of mecamylamine block of muscle type acetylcholine receptors.

    PubMed

    Ostroumov, Konstantin; Shaikhutdinova, Asya; Skorinkin, Andrey

    2008-04-01

    The blocking action of mecamylamine on different types of nicotinic acetylcholine receptors (nAChRs) has been extensively studied and used as a tool to characterize the nAChRs from different synapses. However, mechanism of mecamylamine action was not fully explored for all types of nAChRs. In the present study, we provide brief description of the mecamylamine action on muscle nAChRs expressed at the frog neuromuscular junction. In this preparation mecamylamine block of nAChRs was accompanied by a use-dependent block relief induced by membrane depolarization combined with the activation of nAChRs by endogenous agonist acetylcholine (ACh). Further, three kinetic models of possible mecamylamine interaction with nAChRs were analyzed including simple open channel block, symmetrical trapping block and asymmetrical trapping block. This analysis suggested that mecamylamine action could be described on the basis of trapping mechanism, when the antagonist remained inside the channel even in the absence of bound agonist. Such receptors with trapped mecamylamine inside were predicted to have a closing rate constant about three times faster than resting one and a fast voltage-dependent unblocking rate constant. Specific experimental conditions and morphological organization of the neuromuscular synapses were considered to simulate time course of the mecamylamine block development. Thus, likewise for the neuronal nAChRs, the trapping mechanism determined the action of mecamylamine on synaptic neuromuscular currents evoked by the endogenous agonist acetylcholine (ACh), however specific morphological organization of the synaptic transmission delayed time development of the currents block.

  20. Torpedo maculopathy: Two case reports and a literature review.

    PubMed

    de Manuel-Triantafilo, S; Gili, P; Bañuelos Bañuelos, J

    2016-08-01

    The cases concern a 4 year-old boy and 25 year-old female with 20/20 visual acuity, who presented with a unilateral non-pigmented macular lesion, temporal to the fovea, a torpedo shaped defect in the retinal pigment epithelium (RPE). Optical coherence tomography showed attenuation of the RPE signal, and in the second patient there proved to be a neurosensory detachment, RPE atrophy, and thinning of the retinal layers. The lesion was hypoautofluorescent and hyperfluorescent on fluorescein angiography. Torpedo maculopathy is an asymptomatic characteristic lesion which should be considered in the differential diagnosis of macular lesions in children and young patients. Copyright © 2016 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.

  1. Mechanism of biological denitrification inhibition: procyanidins induce an allosteric transition of the membrane-bound nitrate reductase through membrane alteration.

    PubMed

    Bardon, Clément; Poly, Franck; Piola, Florence; Pancton, Muriel; Comte, Gilles; Meiffren, Guillaume; Haichar, Feth el Zahar

    2016-05-01

    Recently, it has been shown that procyanidins from Fallopia spp. inhibit bacterial denitrification, a phenomenon called biological denitrification inhibition (BDI). However, the mechanisms involved in such a process remain unknown. Here, we investigate the mechanisms of BDI involving procyanidins, using the model strain Pseudomonas brassicacearum NFM 421. The aerobic and anaerobic (denitrification) respiration, cell permeability and cell viability of P. brassicacearum were determined as a function of procyanidin concentration. The effect of procyanidins on the bacterial membrane was observed using transmission electronic microscopy. Bacterial growth, denitrification, NO3- and NO2-reductase activity, and the expression of subunits of NO3- (encoded by the gene narG) and NO2-reductase (encoded by the gene nirS) under NO3 or NO2 were measured with and without procyanidins. Procyanidins inhibited the denitrification process without affecting aerobic respiration at low concentrations. Procyanidins also disturbed cell membranes without affecting cell viability. They specifically inhibited NO3- but not NO2-reductase.Pseudomonas brassicacearum responded to procyanidins by over-expression of the membrane-bound NO3-reductase subunit (encoded by the gene narG). Our results suggest that procyanidins can specifically inhibit membrane-bound NO3-reductase inducing enzymatic conformational changes through membrane disturbance and that P. brassicacearum responds by over-expressing membrane-bound NO3-reductase. Our results lead the way to a better understanding of BDI. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Interaction of 18-methoxycoronaridine with nicotinic acetylcholine receptors in different conformational states

    PubMed Central

    Arias, Hugo R.; Rosenberg, Avraham; Feuerbach, Dominik; Targowska-Duda, Katarzyna M.; Maciejewski, Ryszard; Jozwiak, Krzysztof; Moaddel, Ruin; Glick, Stanley D.; Wainer, Irving W.

    2013-01-01

    The interaction of 18-methoxycoronaridine (18-MC) with nicotinic acetylcholine receptors (AChRs) was compared with that for ibogaine and phencyclidine (PCP). The results established that 18-MC: (a) is more potent than ibogaine and PCP inhibiting (±)-epibatidine-induced AChR Ca2+ influx. The potency of 18-MC is increased after longer pre-incubation periods, which is in agreement with the enhancement of [3H]cytisine binding to resting but activatable Torpedo AChRs, (b) binds to a single site in the Torpedo AChR with high affinity and inhibits [3H]TCP binding to desensitized AChRs in a steric fashion, suggesting the existence of overlapping sites. This is supported by our docking results indicating that 18-MC interacts with a domain located between the serine (position 6′) and valine (position 13′) rings, and (c) inhibits [3H]TCP, [3H] ibogaine, and [3H]18-MC binding to desensitized AChRs with higher affinity compared to resting AChRs. This can be partially attributed to a slower dissociation rate from the desensitized AChR compared to that from the resting AChR. The enthalpic contribution is more important than the entropic contribution when 18-MC binds to the desensitized AChR compared to that for the resting AChR, and vice versa. Ibogaine analogs inhibit the AChR by interacting with a luminal domain that is shared with PCP, and by inducing desensitization. PMID:20303928

  3. THE EFFECT OF IONIZING RADIATION ON ACETYLCHOLINE METABOLISM IN MACACA- RHESUS MONKEYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demin, N.N.; Korneeva, N.V.; Shaternikov, V.A.

    1961-11-01

    In macaca-rhesus monkeys the normal content of free acetylcholine in the mucosa of the small intestine was higher, as it was in brain and liver, than bound acetyl choline. The total cholinesterase activity and, particularly, the activity of acetylcholinesterase and non-specific cholinesterase in control monkeys is highest in brain, followed by intestinal mucosa and liver. One to three days after gamma -irradiation of the monkey at a dose of 600 r the amount of free and bound acetylcholine in the mucosa of the small intestine increased, while it decreased in liver. The total cholinesterase activity in the mucosa of themore » small intestine during this period increased, in general because of the increase in the activity of non-specific cholinesterase. In the liver the increase in total cholinesterase activity also occurred because of an increase in non-specific cholinesterase activity, but was less clear-cut and occurred later (the third day after irradiation). In animals irradiated 2 to 3 years before the investigation, an increased concentration of free acetylcholine in brain, liver, and mucosa of the small intestine was noted; but there were no ehanges in bound acetylcholine. The total cholinesterase activity increased in liver as a result of acetyl cholinesterase increase and non-specific enzymes, and in mucosa of the small intestine only as a result of acetylcholinesterase activity. In brain the total cholinesterase activity decreased as a consequence of a decrease in acetylcholinesterase activity. (auth)« less

  4. Interaction measurement of particles bound to a lipid membrane

    NASA Astrophysics Data System (ADS)

    Sarfati, Raphael; Dufresne, Eric

    2015-03-01

    The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.

  5. Sensing Size through Clustering in Non-Equilibrium Membranes and the Control of Membrane-Bound Enzymatic Reactions

    PubMed Central

    Vagne, Quentin; Turner, Matthew S.; Sens, Pierre

    2015-01-01

    The formation of dynamical clusters of proteins is ubiquitous in cellular membranes and is in part regulated by the recycling of membrane components. We show, using stochastic simulations and analytic modeling, that the out-of-equilibrium cluster size distribution of membrane components undergoing continuous recycling is strongly influenced by lateral confinement. This result has significant implications for the clustering of plasma membrane proteins whose mobility is hindered by cytoskeletal “corrals” and for protein clustering in cellular organelles of limited size that generically support material fluxes. We show how the confinement size can be sensed through its effect on the size distribution of clusters of membrane heterogeneities and propose that this could be regulated to control the efficiency of membrane-bound reactions. To illustrate this, we study a chain of enzymatic reactions sensitive to membrane protein clustering. The reaction efficiency is found to be a non-monotonic function of the system size, and can be optimal for sizes comparable to those of cellular organelles. PMID:26656912

  6. Crystallization and preliminary X-ray analysis of membrane-bound pyrophosphatases.

    PubMed

    Kellosalo, Juho; Kajander, Tommi; Honkanen, Riina; Goldman, Adrian

    2013-02-01

    Membrane-bound pyrophosphatases (M-PPases) are enzymes that enhance the survival of plants, protozoans and prokaryotes in energy constraining stress conditions. These proteins use pyrophosphate, a waste product of cellular metabolism, as an energy source for sodium or proton pumping. To study the structure and function of these enzymes we have crystallized two membrane-bound pyrophosphatases recombinantly produced in Saccharomyces cerevisae: the sodium pumping enzyme of Thermotoga maritima (TmPPase) and the proton pumping enzyme of Pyrobaculum aerophilum (PaPPase). Extensive crystal optimization has allowed us to grow crystals of TmPPase that diffract to a resolution of 2.6 Å. The decisive step in this optimization was in-column detergent exchange during the two-step purification procedure. Dodecyl maltoside was used for high temperature solubilization of TmPPase and then exchanged to a series of different detergents. After extensive screening, the new detergent, octyl glucose neopentyl glycol, was found to be the optimal for TmPPase but not PaPPase.

  7. Mixed matrix hollow fiber membranes for removal of protein-bound toxins from human plasma.

    PubMed

    Tijink, Marlon S L; Wester, Maarten; Glorieux, Griet; Gerritsen, Karin G F; Sun, Junfen; Swart, Pieter C; Borneman, Zandrie; Wessling, Matthias; Vanholder, Raymond; Joles, Jaap A; Stamatialis, Dimitrios

    2013-10-01

    In end stage renal disease (ESRD) waste solutes accumulate in body fluid. Removal of protein bound solutes using conventional renal replacement therapies is currently very poor while their accumulation is associated with adverse outcomes in ESRD. Here we investigate the application of a hollow fiber mixed matrix membrane (MMM) for removal of these toxins. The MMM hollow fiber consists of porous macro-void free polymeric inner membrane layer well attached to the activated carbon containing outer MMM layer. The new membranes have permeation properties in the ultrafiltration range. Under static conditions, they adsorb 57% p-cresylsulfate, 82% indoxyl sulfate and 94% of hippuric acid from spiked human plasma in 4 h. Under dynamic conditions, they adsorb on average 2.27 mg PCS/g membrane and 3.58 mg IS/g membrane in 4 h in diffusion experiments and 2.68 mg/g membrane PCS and 12.85 mg/g membrane IS in convection experiments. Based on the dynamic experiments we estimate that our membranes would suffice to remove the daily production of these protein bound solutes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Determining the Orientation and Localization of Membrane-Bound Peptides

    PubMed Central

    Hohlweg, Walter; Kosol, Simone; Zangger, Klaus

    2012-01-01

    Many naturally occurring bioactive peptides bind to biological membranes. Studying and elucidating the mode of interaction is often an essential step to understand their molecular and biological functions. To obtain the complete orientation and immersion depth of such compounds in the membrane or a membrane-mimetic system, a number of methods are available, which are separated in this review into four main classes: solution NMR, solid-state NMR, EPR and other methods. Solution NMR methods include the Nuclear Overhauser Effect (NOE) between peptide and membrane signals, residual dipolar couplings and the use of paramagnetic probes, either within the membrane-mimetic or in the solvent. The vast array of solid state NMR methods to study membrane-bound peptide orientation and localization includes the anisotropic chemical shift, PISA wheels, dipolar waves, the GALA, MAOS and REDOR methods and again the use of paramagnetic additives on relaxation rates. Paramagnetic additives, with their effect on spectral linewidths, have also been used in EPR spectroscopy. Additionally, the orientation of a peptide within a membrane can be obtained by the anisotropic hyperfine tensor of a rigidly attached nitroxide label. Besides these magnetic resonance techniques a series of other methods to probe the orientation of peptides in membranes has been developed, consisting of fluorescence-, infrared- and oriented circular dichroism spectroscopy, colorimetry, interface-sensitive X-ray and neutron scattering and Quartz crystal microbalance. PMID:22044140

  9. Summary of Recent Hybrid Torpedo Powerplant Studies

    DTIC Science & Technology

    2007-12-01

    engine (such as the one used in SCEPS), a generic open-cycle expander engine that operates on a mixture of combustion products, a Brayton cycle engine ...difficult to produce an efficient engine that operates at a high backpressure . This particular value was chosen because it was used in a study of various... Effect of Design High Speed .........................................................................13 Figure 4: Hybrid vs. Conventional Torpedo Range

  10. Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Pacific Coast Torpedo Station, Keyport Industrial District, Both sides of Second Street, between Dedrick Drive and Liberty Bay and one building west of Dedrick Drive and south of Second Street, Keyport, Kitsap County, WA

  11. Coupled Segmentation of Nuclear and Membrane-bound Macromolecules through Voting and Multiphase Level Set

    PubMed Central

    Wen, Quan

    2014-01-01

    Membrane-bound macromolecules play an important role in tissue architecture and cell-cell communication, and is regulated by almost one-third of the genome. At the optical scale, one group of membrane proteins expresses themselves as linear structures along the cell surface boundaries, while others are sequestered; and this paper targets the former group. Segmentation of these membrane proteins on a cell-by-cell basis enables the quantitative assessment of localization for comparative analysis. However, such membrane proteins typically lack continuity, and their intensity distributions are often very heterogeneous; moreover, nuclei can form large clump, which further impedes the quantification of membrane signals on a cell-by-cell basis. To tackle these problems, we introduce a three-step process to (i) regularize the membrane signal through iterative tangential voting, (ii) constrain the location of surface proteins by nuclear features, where clumps of nuclei are segmented through a delaunay triangulation approach, and (iii) assign membrane-bound macromolecules to individual cells through an application of multi-phase geodesic level-set. We have validated our method using both synthetic data and a dataset of 200 images, and are able to demonstrate the efficacy of our approach with superior performance. PMID:25530633

  12. Progesterone Modulates a Neuronal Nicotinic Acetylcholine Receptor

    NASA Astrophysics Data System (ADS)

    Valera, S.; Ballivet, M.; Bertrand, D.

    1992-10-01

    The major brain nicotinic acetylcholine receptor is assembled from two subunits termed α 4 and nα 1. When expressed in Xenopus oocytes, these subunits reconstitute a functional acetylcholine receptor that is inhibited by progesterone levels similar to those found in serum. In this report, we show that the steroid interacts with a site located on the extracellular part of the protein, thus confirming that inhibition by progesterone is not due to a nonspecific perturbation of the membrane bilayer or to the activation of second messengers. Because inhibition by progesterone does not require the presence of agonist, is voltage-independent, and does not alter receptor desensitization, we conclude that the steroid is not an open channel blocker. In addition, we show that progesterone is not a competitive inhibitor but may interact with the acetylcholine binding site and that its effect is independent of the ionic permeability of the receptor.

  13. Denitrification by plant roots? New aspects of plant plasma membrane-bound nitrate reductase.

    PubMed

    Eick, Manuela; Stöhr, Christine

    2012-10-01

    A specific form of plasma membrane-bound nitrate reductase in plants is restricted to roots. Two peptides originated from plasma membrane integral proteins isolated from Hordeum vulgare have been assigned as homologues to the subunit NarH of respiratory nitrate reductase of Escherichia coli. Corresponding sequences have been detected for predicted proteins of Populus trichocarpa with high degree of identities for the subunits NarH (75%) and NarG (65%), however, with less accordance for the subunit NarI. These findings coincide with biochemical properties, particularly in regard to the electron donors menadione and succinate. Together with the root-specific and plasma membrane-bound nitrite/NO reductase, nitric oxide is produced under hypoxic conditions in the presence of nitrate. In this context, a possible function in nitrate respiration of plant roots and an involvement of plants in denitrification processes are discussed.

  14. Dynamic heterogeneity and non-Gaussian statistics for acetylcholine receptors on live cell membrane

    NASA Astrophysics Data System (ADS)

    He, W.; Song, H.; Su, Y.; Geng, L.; Ackerson, B. J.; Peng, H. B.; Tong, P.

    2016-05-01

    The Brownian motion of molecules at thermal equilibrium usually has a finite correlation time and will eventually be randomized after a long delay time, so that their displacement follows the Gaussian statistics. This is true even when the molecules have experienced a complex environment with a finite correlation time. Here, we report that the lateral motion of the acetylcholine receptors on live muscle cell membranes does not follow the Gaussian statistics for normal Brownian diffusion. From a careful analysis of a large volume of the protein trajectories obtained over a wide range of sampling rates and long durations, we find that the normalized histogram of the protein displacements shows an exponential tail, which is robust and universal for cells under different conditions. The experiment indicates that the observed non-Gaussian statistics and dynamic heterogeneity are inherently linked to the slow-active remodelling of the underlying cortical actin network.

  15. Structural features and dynamic investigations of the membrane-bound cytochrome P450 17A1.

    PubMed

    Cui, Ying-Lu; Xue, Qiao; Zheng, Qing-Chuan; Zhang, Ji-Long; Kong, Chui-Peng; Fan, Jing-Rong; Zhang, Hong-Xing

    2015-10-01

    Cytochrome P450 (CYP) 17A1 is a dual-function monooxygenase with a critical role in the synthesis of many human steroid hormones. The enzyme is an important target for treatment of breast and prostate cancers that proliferate in response to estrogens and androgens. Despite the crystallographic structures available for CYP17A1, no membrane-bound structural features of this enzyme at atomic level are available. Accumulating evidence has indicated that the interactions between bounded CYPs and membrane could contribute to the recruitment of lipophilic substrates. To this end, we have investigated the effects on structural characteristics in the presence of the membrane for CYP17A1. The MD simulation results demonstrate a spontaneous insertion process of the enzyme to the lipid. Two predominant modes of CYP17A1 in the membrane are captured, characterized by the depths of insertion and orientations of the enzyme to the membrane surface. The measured heme tilt angles show good consistence with experimental data, thereby verifying the validity of the structural models. Moreover, conformational changes induced by the membrane might have impact on the accessibility of the active site to lipophilic substrates. The dynamics of internal aromatic gate formed by Trp220 and Phe224 are suggested to regulate tunnel opening motions. The knowledge of the membrane binding characteristics could guide future experimental and computational works on membrane-bound CYPs so that various investigations of CYPs in their natural, lipid environment rather than in artificially solubilized forms may be achieved. Copyright © 2015. Published by Elsevier B.V.

  16. Pancreatic acinar cells: ionic dependence of acetylcholine-induced membrane potential and resistance change.

    PubMed Central

    Nishiyama, A; Petersen, O H

    1975-01-01

    1. Intracellular recordings of membrane potential, input resistance and time constant have been made in vitro from the exocrine acinar cells of the mouse pancreas using glass micro-electrodes. The acinar cells were stimulated by acetylcholine (ACh). In some cases ACh was simply directly added to the tissue superfusion bath, in other experiments ACh was applied locally to pancreatic acini by micro-iontophoresis. 2. Current-voltage relations were investigated by injecting rectangular de- or hyperpolarizing current pulses through the recording micro-electrode. Within a relatively wide range (-20 to -70 mV) there was a linear relation between injected current and change in membrane potential. The slope of such linear curves corresponded to an input resistance of about 3-8 M omega. The membrane time constant was about 5-10 msec. 3. ACh depolarized the cell membrane and caused a marked reduction of input resistance and time constant. The minimum latency of the ACh-induced depolarization (microiontophoretic application) was 100-300 msec. Maximal depolarization was about 20 mV. The effect of this local ACh application was abolished by atropine (1-4 x 10-6 M). The blocking effect of atropine was fully reversible. 4. Stimulating with ACh during the passage of large depolarizing current pulses made it possible simultaneously to observe the effect of ACh at two different levels of resting potential (RP). At the spontaneous RP of about minus 40 mV ACh evoked a depolarization of usual magnitude (15-20 mV) while at the artificially displaced level of about -10 mV a small hyperpolarization (about 5 mV) was observed. It therefore appears that the reversal potential of the transmitter equilibrium potential is about -20 mV. 5. Replacement of the superfusion fluid C1 by sulphate or methylsulphate caused an initial short-lasting depolarization, thereafter the normal resting potential was reassumed... PMID:1142124

  17. Investigation of Single-Stage Modified Turbine of Mark 25 Torpedo Power Plant

    NASA Technical Reports Server (NTRS)

    Hoyt, Jack W.

    1947-01-01

    Efficiency investigations have been made on a single-stage modification of the turbine of a Mark 25 aerial torpedo to determine the performance of the unit with five different turbine nozzles. The output of the turbine blades was computed by analyzing the windage and mechanical-friction losses of the unit. The turbine was faund to be most efficient with a cast nozzle having sharp-edged inlets to the nine nozzle ports. An analysis af the effectiveness af the first and second stages of the standard Mark 25 torpedo turbine indicates that the first- stage turbine contributes nearly all the brake power produced at blade-jet speed ratios above 0.26.

  18. Synapsin I is associated with cholinergic nerve terminals in the electric organs of Torpedo, Electrophorus, and Malapterurus and copurifies with Torpedo synaptic vesicles.

    PubMed

    Volknandt, W; Naito, S; Ueda, T; Zimmermann, H

    1987-08-01

    Using an affinity-purified monospecific polyclonal antibody against bovine brain synapsin I, the distribution of antigenically related proteins was investigated in the electric organs of the three strongly electric fish Torpedo marmorata, Electrophorus electricus, Malapterurus electricus and in the rat diaphragm. On application of indirect fluorescein isothiocyanate-immunofluorescence and using alpha-bungarotoxin for identification of synaptic sites, intense and very selective staining of nerve terminals was found in all of these tissues. Immunotransfer blots of tissue homogenates revealed specific bands whose molecular weights are similar to those of synapsin Ia and synapsin Ib. Moreover, synapsin I-like proteins are still attached to the synaptic vesicles that were isolated in isotonic glycine solution from Torpedo electric organ by density gradient centrifugation and chromatography on Sephacryl-1000. Our results suggest that synapsin I-like proteins are also associated with cholinergic synaptic vesicles of electric organs and that the electric organ may be an ideal source for studying further the functional and molecular properties of synapsin.

  19. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors

    PubMed Central

    Moaddel, Ruin; Abdrakhmanova, Galia; Kozak, Joanna; Jozwiak, Krzysztof; Toll, Lawrence; Jimenez, Lucita; Rosenberg, Avraham; Tran, Thao; Xiao, Yingxian; Zarate, Carlos A.; Wainer, Irving W.

    2012-01-01

    The effect of the (R,S)-ketamine metabolites (R,S)-norketamine, (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)- hydroxynorketamine on the activity of α7 and α3β4 neuronal nicotinic acetylcholine receptors was investigated using patch-clamp techniques. The data indicated that (R,S)-dehydronorketamine inhibited acetylcholine-evoked currents in α7-nicotinic acetylcholine receptor, IC50 = 55 ± 6 nM, and that (2S,6S)-hydroxynorketamine, (2R,6R)-hydroxynorketamine and (R,S)-norketamine also inhibited α7-nicotinic acetylcholine receptor function at concentrations ≤1μM, while (R,S)-ketamine was inactive at these concentrations. The inhibitory effect of (R,S)-dehydronorketamine was voltage-independent and the compound did not competitively displace selective α7-nicotinic acetylcholine receptor ligands [125I]-α-bungarotoxin and [3H]-epibatidine indicating that (R,S)-dehydronorketamine is a negative allosteric modulator of the α7-nicotinic acetylcholine receptor. (R,S)-Ketamine and (R,S)-norketamine inhibited (S)-nicotine-induced whole-cell currents in cells expressing α3β4-nicotinic acetylcholine receptor, IC50 3.1 and 9.1μM, respectively, while (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine were weak inhibitors, IC50 >100μM. The binding affinities of (R,S)-dehydronorketamine, (2S,6S)-hydroxynorketamine and (2R,6R)-hydroxynorketamine at the NMDA receptor were also determined using rat brain membranes and the selective NMDA receptor antagonist [3H]-MK-801. The calculated Ki values were 38.95 μM for (S)-dehydronorketamine, 21.19 μM for (2S,6S)-hydroxynorketamine and > 100 μM for (2R,6R)-hydroxynorketamine. The results suggest that the inhibitory activity of ketamine metabolites at the α7-nicotinic acetylcholine receptor may contribute to the clinical effect of the drug. PMID:23183107

  20. Colorimetric microtiter plate receptor-binding assay for the detection of freshwater and marine neurotoxins targeting the nicotinic acetylcholine receptors

    USGS Publications Warehouse

    Rubio, Fernando; Kamp, Lisa; Carpino, Justin; Faltin, Erin; Loftin, Keith A.; Molgó, Jordi; Aráoz, Rómulo

    2014-01-01

    Anatoxin-a and homoanatoxin-a, produced by cyanobacteria, are agonists of nicotinic acetylcholine receptors (nAChRs). Pinnatoxins, spirolides, and gymnodimines, produced by dinoflagellates, are antagonists of nAChRs. In this study we describe the development and validation of a competitive colorimetric, high throughput functional assay based on the mechanism of action of freshwater and marine toxins against nAChRs. Torpedo electrocyte membranes (rich in muscle-type nAChR) were immobilized and stabilized on the surface of 96-well microtiter plates. Biotinylated α-bungarotoxin (the tracer) and streptavidin-horseradish peroxidase (the detector) enabled the detection and quantitation of anatoxin-a in surface waters and cyclic imine toxins in shellfish extracts that were obtained from different locations across the US. The method compares favorably to LC/MS/MS and provides accurate results for anatoxin-a and cyclic imine toxins monitoring. Study of common constituents at the concentrations normally found in drinking and environmental waters, as well as the tolerance to pH, salt, solvents, organic and inorganic compounds did not significantly affect toxin detection. The assay allowed the simultaneous analysis of up to 25 samples within 3.5 h and it is well suited for on-site or laboratory monitoring of low levels of toxins in drinking, surface, and ground water as well as in shellfish extracts.

  1. Effect of bacoside A on membrane-bound ATPases in the brain of rats exposed to cigarette smoke.

    PubMed

    Anbarasi, K; Vani, G; Balakrishna, K; Devi, C S Shyamala

    2005-01-01

    Membrane-bound enzymes play a vital role in neuronal function through maintenance of membrane potential and impulse propagation. We have evaluated the harmful effects of chronic cigarette smoking on membrane-bound ATPases and the protective effect of Bacoside A in rat brain. Adult male albino rats were exposed to cigarette smoke for a period of 12 weeks and simultaneously administered with Bacoside A (the active principle isolated from Bacopa monniera) at a dosage of 10 mg/kg b.w/day, p.o. The levels of lipid peroxides as marker for evaluating the extent of membrane damage, the activities of Na+/K+-ATPase, Ca2+-ATPase and Mg2+-ATPase, and associated cations sodium (Na+), potassium (K+), calcium (Ca2+), and magnesium (Mg2+) were investigated in the brain. Neuronal membrane damage was evident from the elevated levels of lipid peroxides and decreased activities of membrane-bound enzymes. Disturbances in the electrolyte balance with accumulation of Na+ and Ca2+ and depletion of K+ and Mg2+ were also observed. Administration of Bacoside A inhibited lipid peroxidation, improved the activities of ATPases, and maintained the ionic equilibrium. The results of our study indicate that Bacoside A protects the brain from cigarette smoking induced membrane damage. Copyright 2005 Wiley Periodicals, Inc.

  2. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  3. A multiscale approach to modelling drug metabolism by membrane-bound cytochrome P450 enzymes.

    PubMed

    Lonsdale, Richard; Rouse, Sarah L; Sansom, Mark S P; Mulholland, Adrian J

    2014-07-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes.

  4. Cellular Membrane Phospholipids Act as a Depository for Quaternary Amine containing Drugs thus competing with the Acetylcholine / Nicotinic Receptor

    PubMed Central

    Barbacci, Damon; Jackson, Shelley N.; Muller, Ludovic; Egan, Thomas; Lewis, Ernest K.; Schultz, J. Albert; Woods, Amina S.

    2014-01-01

    We previously demonstrated that ammonium- or guanidinium- phosphate interactions are key to forming non-covalent complexes (NCXs) through salt bridge formation with G-protein coupled receptors (GPCR), which are immersed in the cell membrane's lipids. The present work highlights MALDI ion mobility coupled to orthogonal time-of-flight mass spectrometry (MALDI IM oTOF MS) as a method to determine qualitative and relative quantitative affinity of drugs to form NCXs with targeted GPCRs' epitopes in a model system using, bis-quaternary amine based drugs, α- and β- subunit epitopes of the nicotinic acetylcholine receptor' (nAChR) and phospholipids. Bis-quaternary amines proved to have a strong affinity for all nAChR epitopes and negatively charged phospholipids, even in the presence of the physiological neurotransmitter acetylcholine. Ion mobility baseline separated isobaric phosphatidyl ethanolamine and a matrix cluster, providing an accurate estimate for phospholipid counts. Overall this technique is a powerful method for screening drugs' interactions with targeted lipids and protein respectively containing quaternary amines and guanidinium moieties. PMID:22506649

  5. Development of Membrane-Bound GM-CSF and IL-18 as an Effective Tumor Vaccine

    PubMed Central

    Cheng, Ta-Chun; Chuang, Chih-Hung; Kao, Chien-Han; Hsieh, Yuan-Chin; Cheng, Kuang-Hung; Wang, Jaw-Yuan; Cheng, Chiu-Min; Chen, Chien-Shu; Cheng, Tian-Lu

    2015-01-01

    The development of effective adjuvant is the key factor to boost the immunogenicity of tumor cells as a tumor vaccine. In this study, we expressed membrane-bound granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-18 (IL-18) as adjuvants in tumor cells to stimulate immune response. B7 transmembrane domain fused GM-CSF and IL-18 was successfully expressed in the cell membrane and stimulated mouse splenocyte proliferation. Co-expression of GM-CSF and IL-18 reduced tumorigenesis (P<0.05) and enhanced tumor protective efficacy (P<0.05) significantly in comparison with GM-CSF alone. These results indicated that the combination of GM-CSF andIL-18 will enhance the immunogenicity of a cell-based anti-tumor vaccine. This membrane-bound approach can be applied to other cytokines for the development of novel vaccine strategies. PMID:26186692

  6. Neuromuscular block after intra-arterially injected acetylcholine

    PubMed Central

    Pinelli, P.; Tonali, P.; Gambi, D.

    1973-01-01

    It has been suggested that the effect of ACTH in myasthenia gravis may be ascribed to an action involving neuromuscular transmission which favours repolarization processes, with a tendency towards hyperpolarization of the membranes of muscle fibres and motor nerve endings. A similar mechanism has been postulated for the action of ACTH in epilepsy (Klein, 1970). A direct or indirect action on nerve membrane would interfere with depolarization. There is evidence of raised concentration of intracellular potassium and increased outflow of sodium ions which would cause hyperpolarization of the membrane. This paper studies the effect of ACTH on the late block of neuromuscular transmission caused by acetylcholine (ACTH). Images PMID:4350704

  7. Transfer in SDS of biotinylated proteins from acrylamide gels to an avidin-coated membrane filter.

    PubMed

    Karlin, Arthur; Wang, Chaojian; Li, Jing; Xu, Qiang

    2004-06-01

    Avidin was covalently linked to aldehyde-derivatized polyethersulfone membrane filters. These filters were used in Western blot analysis of proteins reacted with biotinylation reagents and electrophoresed in sodium dodecyl sulfate (SDS) on polyacrylamide gels. Electrophoretic transfer from the gels to these filters was in 0.1% SDS, in which the covalently bound avidin retained its biotin-binding capacity. We compared Western blots on avidin-coated membrane filters of biotinylated and nonbiotinylated forms of mouse immunoglobulin G (IgG), mouse IgG heavy chain, muscle-type acetylcholine receptor alpha subunit, and fused alpha and beta subunits of receptor. Biotinylated proteins were captured with high specificity compared to their nonbiotinylated counterparts and sensitively detected on the avidin-coated membranes.

  8. Acetylcholine Mediates a Slow Synaptic Potential in Hippocampal Pyramidal Cells

    NASA Astrophysics Data System (ADS)

    Cole, A. E.; Nicoll, R. A.

    1983-09-01

    The hippocampal slice preparation was used to study the role of acetylcholine as a synaptic transmitter. Bath-applied acetylcholine had three actions on pyramidal cells: (i) depolarization associated with increased input resistance, (ii) blockade of calcium-activated potassium responses, and (iii) blockade of accommodation of cell discharge. All these actions were reversed by the muscarinic antagonist atropine. Stimulation of sites in the slice known to contain cholinergic fibers mimicked all the actions. Furthermore, these evoked synaptic responses were enhanced by the cholinesterase inhibitor eserine and were blocked by atropine. These findings provide electrophysiological support for the role of acetylcholine as a synaptic transmitter in the brain and demonstrate that nonclassical synaptic responses involving the blockade of membrane conductances exist in the brain.

  9. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  10. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  11. Expression of membrane-bound and cytosolic guanylyl cyclases in the rat inner ear.

    PubMed

    Seebacher, T; Beitz, E; Kumagami, H; Wild, K; Ruppersberg, J P; Schultz, J E

    1999-01-01

    Membrane-bound guanylyl cyclases (GCs) are peptide hormone receptors whereas the cytosolic isoforms are receptors for nitric oxide. In the inner ear, the membrane-bound GCs may be involved in the regulation of fluid homeostasis and the cytosolic forms possibly play a role in signal processing and regulation of local blood flow. In this comprehensive study, we examined, qualitatively and quantitatively, the transcription pattern of all known GC isoforms in the inner ear from rat by RT-PCR. The tissues used were endolymphatic sac, stria vascularis, organ of Corti, organ of Corti outer hair cells, cochlear nerve, Reissner's membrane, vestibular dark cells, and vestibular sensory cells. We show that multiple particulate (GC-A, GC-B, GC-D, GC-E, GC-F and GC-G) and several subunits of the heterodimeric cytosolic GCs (alpha1, alpha2, beta1 and beta2) are expressed, albeit at highly different levels. GC-C was not found. GC-A and the soluble subunits alpha1 and beta1 were transcribed ubiquitously. GC-B was present in all tissues except stria vascularis, which contained GC-A and traces of GC-E and GC-G. GC-B was by far the predominant membrane-bound isoform in the organ of Corti (86%), Reissner's membrane (75%) and the vestibulum (80%). Surprisingly, GC-E, a retinal isoform, was detected in significant amounts in the cochlear nerve (8%) and in the organ of Corti (4%). Although the cytosolic GC is a heterodimer composed of an alpha and a beta subunit, the mRNA transcription of these subunits was not stoichiometric. Particularly in the vestibulum, the transcription of the beta1 subunits was at least four-fold higher than of the alpha1 subunit. The data are compatible with earlier suggestions that membrane receptor GCs may be involved in the control of inner ear electrolyte and fluid composition whereas NO-stimulated GC isoforms mainly participate in the regulation of blood flow and supporting cell physiology.

  12. CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CAST FLOOR WITH VIEW OF TORPEDO LADLE (BENEATH CAST FLOOR) AND KEEPERS OF THE CAST HOUSE FLOOR, S.L. KIMBROUGH AND DAVID HOLMES. - U.S. Steel, Fairfield Works, Blast Furnace No. 8, North of Valley Road, West of Ensley-Pleasant Grove Road, Fairfield, Jefferson County, AL

  13. Torpedoes and Their Impact on Naval Warfare

    DTIC Science & Technology

    2017-01-01

    wind to get to their destinations. This meant ships were no Overview 11 longer at the mercy of nature since they were no longer dependent on wind and...ships had to slip their cables to avoid the exploding torpedoes. However, although 10 mines exploded, none of them came in contact with a French...ahead” just doesn’t have the same ring to it; this appears to be a case where it is better to be eloquent rather than technically accurate. The

  14. Hydrogen exchange mass spectrometry of functional membrane-bound chemotaxis receptor complexes.

    PubMed

    Koshy, Seena S; Eyles, Stephen J; Weis, Robert M; Thompson, Lynmarie K

    2013-12-10

    The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (∼2 Å) piston displacement of one helix of the periplasmic and transmembrane domains toward the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) measurements of global exchange of the CF demonstrate that the CF exhibits significantly slower exchange in functional complexes than in solution. Because the exchange rates in functional complexes are comparable to those of other proteins with similar structures, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system.

  15. Hydrogen Exchange Mass Spectrometry of Functional Membrane-bound Chemotaxis Receptor Complexes

    PubMed Central

    Koshy, Seena S.; Eyles, Stephen J.; Weis, Robert M.; Thompson, Lynmarie K.

    2014-01-01

    The transmembrane signaling mechanism of bacterial chemotaxis receptors is thought to involve changes in receptor conformation and dynamics. The receptors function in ternary complexes with two other proteins, CheA and CheW, that form extended membrane-bound arrays. Previous studies have shown that attractant binding induces a small (~2 Å) piston displacement of one helix of the periplasmic and transmembrane domains towards the cytoplasm, but it is not clear how this signal propagates through the cytoplasmic domain to control the kinase activity of the CheA bound at the membrane-distal tip, nearly 200 Å away. The cytoplasmic domain has been shown to be highly dynamic, which raises the question of how a small piston motion could propagate through a dynamic domain to control CheA kinase activity. To address this, we have developed a method for measuring dynamics of the receptor cytoplasmic fragment (CF) in functional complexes with CheA and CheW. Hydrogen exchange mass spectrometry (HDX-MS) measurements of global exchange of CF demonstrate that CF exhibits significantly slower exchange in functional complexes than in solution. Since the exchange rates in functional complexes are comparable to that of other proteins of similar structure, the CF appears to be a well-structured protein within these complexes, which is compatible with its role in propagating a signal that appears to be a tiny conformational change in the periplasmic and transmembrane domains of the receptor. We also demonstrate the feasibility of this protocol for local exchange measurements, by incorporating a pepsin digest step to produce peptides with 87% sequence coverage and only 20% back exchange. This method extends HDX-MS to membrane-bound functional complexes without detergents that may perturb the stability or structure of the system. PMID:24274333

  16. Membrane-bound amylopullulanase is essential for starch metabolism of Sulfolobus acidocaldarius DSM639.

    PubMed

    Choi, Kyoung-Hwa; Cha, Jaeho

    2015-09-01

    Sulfolobus acidocaldarius DSM639 produced an acid-resistant membrane-bound amylopullulanase (Apu) during growth on starch as a sole carbon and energy source. The physiological role of Apu in starch metabolism was investigated by the growth and starch degradation pattern of apu disruption mutant as well as biochemical properties of recombinant Apu. The Δapu mutant lost the ability to grow in minimal medium in the presence of starch, and the amylolytic activity observed in the membrane fraction of the wild-type strain was not detected in the Δapu mutant when the cells were grown in YT medium. The purified membrane-bound Apu initially hydrolyzed starch, amylopectin, and pullulan into various sizes of maltooligosaccharides, and then produced glucose, maltose, and maltotriose in the end, indicating Apu is a typical endo-acting glycoside hydrolase family 57 (GH57) amylopullulanase. The maltose and maltotriose observed in the culture medium during the exponential and stationary phase growth indicates that Apu is the essential enzyme to initially hydrolyze the starch into small maltooligosaccharides to be transported into the cell.

  17. Neutron Reflectometry Study of the Conformation of HIV Nef Bound to Lipid Membranes

    PubMed Central

    Kent, Michael S.; Murton, Jaclyn K.; Sasaki, Darryl Y.; Satija, Sushil; Akgun, Bulent; Nanda, Hirsh; Curtis, Joseph E.; Majewski, Jaroslaw; Morgan, Christopher R.; Engen, John R.

    2010-01-01

    Nef is an HIV-1 accessory protein that directly contributes to AIDS progression. Nef is myristoylated on the N-terminus, associates with membranes, and may undergo a transition from a solution conformation to a membrane-associated conformation. It has been hypothesized that conformational rearrangement enables membrane-associated Nef to interact with cellular proteins. Despite its medical relevance, to our knowledge there is no direct information about the conformation of membrane-bound Nef. In this work, we used neutron reflection to reveal what we believe are the first details of the conformation of membrane-bound Nef. The conformation of Nef was probed upon binding to Langmuir monolayers through the interaction of an N-terminal His tag with a synthetic metal-chelating lipid, which models one of the possible limiting cases for myr-Nef. The data indicate that residues are inserted into the lipid headgroups during interaction, and that the core domain lies directly against the lipid headgroups, with a thickness of ∼40 Å. Binding of Nef through the N-terminal His tag apparently facilitates insertion of residues, as no insertion occurred upon binding of Nef through weak electrostatic interactions in the absence of the specific interaction through the His tag. PMID:20858440

  18. Peptides from puff adder Bitis arietans venom, novel inhibitors of nicotinic acetylcholine receptors.

    PubMed

    Vulfius, Catherine A; Spirova, Ekaterina N; Serebryakova, Marina V; Shelukhina, Irina V; Kudryavtsev, Denis S; Kryukova, Elena V; Starkov, Vladislav G; Kopylova, Nina V; Zhmak, Maxim N; Ivanov, Igor A; Kudryashova, Ksenia S; Andreeva, Tatyana V; Tsetlin, Victor I; Utkin, Yuri N

    2016-10-01

    Phospholipase A 2 (named bitanarin) possessing capability to block nicotinic acetylcholine receptors (nAChRs) was isolated earlier (Vulfius et al., 2011) from puff adder Bitis arietans venom. Further studies indicated that low molecular weight fractions of puff adder venom inhibit nAChRs as well. In this paper, we report on isolation from this venom and characterization of three novel peptides called baptides 1, 2 and 3 that reversibly block nAChRs. To isolate the peptides, the venom of B. arietans was fractionated by gel-filtration and reversed phase chromatography. The amino acid sequences of peptides were established by de novo sequencing using MALDI mass spectrometry. Baptide 1 comprised 7, baptides 2 and 3-10 amino acid residues, the latter being acetylated at the N-terminus. This is the first indication for the presence of such post-translational modification in snake venom proteins. None of the peptides contain cysteine residues. For biological activity studies the peptides were prepared by solid phase peptide synthesis. Baptide 3 and 2 blocked acetylcholine-elicited currents in isolated Lymnaea stagnalis neurons with IC 50 of about 50 μM and 250 μM, respectively. In addition baptide 2 blocked acetylcholine-induced currents in muscle nAChR heterologously expressed in Xenopus oocytes with IC 50 of about 3 μM. The peptides did not compete with radioactive α-bungarotoxin for binding to Torpedo and α7 nAChRs at concentration up to 200 μM that suggests non-competitive mode of inhibition. Calcium imaging studies on α7 and muscle nAChRs heterologously expressed in mouse neuroblastoma Neuro2a cells showed that on α7 receptor baptide 2 inhibited acetylcholine-induced increasing intracellular calcium concentration with IC 50 of 20.6 ± 3.93 μM. On both α7 and muscle nAChRs the suppression of maximal response to acetylcholine by about 50% was observed at baptide 2 concentration of 25 μM, the value being close to IC 50 on α7 nAChR. These data are

  19. Structural characterization of agonist and antagonist-bound acetylcholine-binding protein from Aplysia californica.

    PubMed

    Hansen, Scott B; Sulzenbacher, Gerlind; Huxford, Tom; Marchot, Pascale; Bourne, Yves; Taylor, Palmer

    2006-01-01

    Nicotinic acetylcholine receptors (nAChRs) are well-characterized allosteric transmembrane proteins involved in the rapid gating of ions elicited by ACh. These receptors belong to the Cys-loop superfamily of ligand-gated ion channels, which also includes GABAA and GABAC, 5-HT3, and glycine receptors. The nAChRs are homo- or heteromeric pentamers of structurally related subunits that encompass an extracellular N-terminal ligand-binding domain, four transmembrane-spanning regions that form the ion channel, and an extended intracellular region between spans 3 and 4. Ligand binding triggers conformational changes that are transmitted to the transmembrane-spanning region, leading to gating and changes in membrane potential. The four transmembrane spans on each of the five subunits create a substantial region of hydrophobicity that precludes facile crystallization of this protein. However the freshwater snail, Lymnaea stagnalis, produces a soluble homopentameric protein, termed the ACh-binding protein (AChBP), which binds ACh (Smit et al., 2001). Its structure was determined recently (Brejc et al., 2001) at high resolution, revealing the structural scaffold for nAChR, and has become a functional and structural surrogate of the nAChR ligand-binding domain. We have characterized an AChBP from Aplysia californica and determined distinct ligand-binding properties when compared to those of L. stagnalis, including ligand specificity for the nAChR alpha7 subtype-specific alpha-conotoxin ImI (Hansen et al., 2004).

  20. Calcium Modulation of Plant Plasma Membrane-Bound Atpase Activities

    NASA Technical Reports Server (NTRS)

    Caldwell, C.

    1983-01-01

    The kinetic properties of barley enzyme are discussed and compared with those of other plants. Possibilities for calcium transport in the plasma membrane by proton pump and ATPase-dependent calcium pumps are explored. Topics covered include the ph phase of the enzyme; high affinity of barley for calcium; temperature dependence, activation enthalpy, and the types of ATPase catalytic sites. Attention is given to lipids which are both screened and bound by calcium. Studies show that barley has a calmodulin activated ATPase that is found in the presence of magnesium and calcium.

  1. Melatonin modulates rat myotube-acetylcholine receptors by inhibiting calmodulin.

    PubMed

    de Almeida-Paula, Lidiana Duarte; Costa-Lotufo, Leticia V; Silva Ferreira, Zulma; Monteiro, Amanda Elisa G; Isoldi, Mauro Cesar; Godinho, Rosely O; Markus, Regina P

    2005-11-21

    Melatonin, the pineal gland hormone, modulates alpha-bungarotoxin sensitive nicotinic acetylcholine receptors in sympathetic nerve terminals, cerebellum and chick retina imposing a diurnal variation in functional responses [Markus, R.P., Zago, W.M., Carneiro, R.C., 1996. Melatonin modulation of presynaptic nicotinic acetylcholine receptors in the rat vas deferens. J. Pharmacol. Exp. Ther. 279, 18-22; Markus, R.P., Santos, J.M., Zago, W., Reno, L.A., 2003. Melatonin nocturnal surge modulates nicotinic receptors and nicotine-induced [3HI] glutamate release in rat cerebellum slices. J. Pharmacol. Exp. Ther. 305, 525-530; Sampaio, L.F.S., Hamassaki-Britto, D.E., Markus, R.P., 2005. Influence of melatonin on the development of functional nicotinic acetylcholine receptors in cultured chick retinal cells. Braz. J. Med. Biol. Res. 38, 603-613]. Here we show that in rat myotubes forskolin and melatonin reduced the number of nicotinic acetylcholine receptors expressed in plasma membrane. In addition, these cells expressed melatonin MT1 receptors, which are known to be coupled to G(i)-protein. However, the pharmacological profile of melatonin analogs regarding the reduction in cyclic AMP accumulation and number of nicotinic acetylcholine receptors did not point to a mechanism mediated by activation of G(i)-protein coupled receptors. On the other hand, calmidazolium, a classical inhibitor of calmodulin, reduced in a similar manner both effects. Considering that one isoform of adenylyl cyclase present in rat myotubes is regulated by Ca2+/calmodulin, we propose that melatonin modulates the number of nicotinic acetylcholine receptors via reduction in cyclic AMP accumulation.

  2. Acetylcholine released from cholinergic nerves contributes to cutaneous vasodilation during heat stress

    NASA Technical Reports Server (NTRS)

    Shibasaki, Manabu; Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Nitric oxide (NO) contributes to active cutaneous vasodilation during a heat stress in humans. Given that acetylcholine is released from cholinergic nerves during whole body heating, coupled with evidence that acetylcholine causes vasodilation via NO mechanisms, it is possible that release of acetylcholine in the dermal space contributes to cutaneous vasodilation during a heat stress. To test this hypothesis, in seven subjects skin blood flow (SkBF) and sweat rate were simultaneously monitored over three microdialysis membranes placed in the dermal space of dorsal forearm skin. One membrane was perfused with the acetylcholinesterase inhibitor neostigmine (10 microM), the second membrane was perfused with the NO synthase inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME; 10 mM) dissolved in the aforementioned neostigmine solution (l-NAME(Neo)), and the third membrane was perfused with Ringer solution as a control site. Each subject was exposed to approximately 20 min of whole body heating via a water-perfused suit, which increased mean body temperature from 36.4 +/- 0.1 to 37.5 +/- 0.1 degrees C (P < 0.05). After the heat stress, SkBF at each site was normalized to its maximum value, identified by administration of 28 mM sodium nitroprusside. Mean body temperature threshold for cutaneous vasodilation was significantly lower at the neostigmine-treated site relative to the other sites (neostigmine: 36.6 +/- 0.1 degrees C, l-NAME(Neo): 37.1 +/- 0.1 degrees C, control: 36.9 +/- 0.1 degrees C), whereas no significant threshold difference was observed between the l-NAME(Neo)-treated and control sites. At the end of the heat stress, SkBF was not different between the neostigmine-treated and control sites, whereas SkBF at the l-NAME(Neo)-treated site was significantly lower than the other sites. These results suggest that acetylcholine released from cholinergic nerves is capable of modulating cutaneous vasodilation via NO synthase mechanisms early in the heat stress but

  3. Nonenzymatic all-solid-state coated wire electrode for acetylcholine determination in vitro.

    PubMed

    He, Cheng; Wang, Zhan; Wang, You; Hu, Ruifen; Li, Guang

    2016-11-15

    A nonenzymatic all-solid-state coated wire acetylcholine electrode was investigated. Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT/PSS) as conducting polymer was coated on one end of a gold wire (0.5mm in diameter). The acetylcholine selective membrane containing heptakis(2,3,6-tri-Ο-methyl)-β-cyclodextrin as an ionophore covered the conducting polymer layer. The electrode could work stably in a pH range of 6.5-8.5 and a temperature range of 15-40°C. It covered an acetylcholine concentration range of 10(-5)-10(-1)M with a slope of 54.04±1.70mV/decade, while detection limit was 5.69±1.06µM. The selectivity, dynamic response, reproducibility and stability were evaluated. The electrode could work properly in the rat brain homogenate to detect different concentrations of acetylcholine. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. The reaction pathway of membrane-bound rat liver mitochondrial monoamine oxidase

    PubMed Central

    Houslay, Miles D.; Tipton, Keith F.

    1973-01-01

    1. A preparation of a partly purified mitochondrial outer-membrane fraction suitable for kinetic investigations of monoamine oxidase is described. 2. An apparatus suitable for varying the O2 concentration in a spectrophotometer cuvette is described. 3. The reaction catalysed by the membrane-bound enzyme is shown to proceed by a double-displacement (Ping Pong) mechanism, and a formal mechanism is proposed. 4. KCN, NaN3, benzyl cyanide and 4-cyanophenol are shown to be reversible inhibitors of the enzyme. 5. The non-linear reciprocal plot obtained with impure preparations of benzylamine, which is typical of high substrate inhibition, is shown to be due to aldehyde contamination of the substrate. PMID:4778271

  5. Loss of Acetylcholine Signaling Reduces Cell Clearance Deficiencies in Caenorhabditis elegans.

    PubMed

    Pinto, Sérgio M; Almendinger, Johann; Cabello, Juan; Hengartner, Michael O

    2016-01-01

    The ability to eliminate undesired cells by apoptosis is a key mechanism to maintain organismal health and homeostasis. Failure to clear apoptotic cells efficiently can cause autoimmune diseases in mammals. Genetic studies in Caenorhabditis elegans have greatly helped to decipher the regulation of apoptotic cell clearance. In this study, we show that the loss of levamisole-sensitive acetylcholine receptor, but not of a typical neuronal acetylcholine receptor causes a reduction in the number of persistent cell corpses in worms suffering from an engulfment deficiency. This reduction is not caused by impaired or delayed cell death but rather by a partial restoration of the cell clearance capacity. Mutants in acetylcholine turn-over elicit a similar phenotype, implying that acetylcholine signaling is the process responsible for these observations. Surprisingly, tissue specific RNAi suggests that UNC-38, a major component of the levamisole-sensitive receptor, functions in the dying germ cell to influence engulfment efficiency. Animals with loss of acetylcholine receptor exhibit a higher fraction of cell corpses positive for the "eat-me" signal phosphatidylserine. Our results suggest that modulation by ion channels of ion flow across plasma membrane in dying cells can influence the dynamics of phosphatidylserine exposure and thus clearance efficiency.

  6. Acetylcholine affects osteocytic MLO-Y4 cells via acetylcholine receptors.

    PubMed

    Ma, Yuanyuan; Li, Xianxian; Fu, Jing; Li, Yue; Gao, Li; Yang, Ling; Zhang, Ping; Shen, Jiefei; Wang, Hang

    2014-03-25

    The identification of the neuronal control of bone remodeling has become one of the many significant recent advances in bone biology. Cholinergic activity has recently been shown to favor bone mass accrual by complex cellular regulatory networks. Here, we identified the gene expression of the muscarinic and nicotinic acetylcholine receptors (m- and nAChRs) in mice tibia tissue and in osteocytic MLO-Y4 cells. Acetylcholine, which is a classical neurotransmitter and an osteo-neuromediator, not only influences the mRNA expression of the AChR subunits but also significantly induces the proliferation and viability of osteocytes. Moreover, acetylcholine treatment caused the reciprocal regulation of RANKL and OPG mRNA expression, which resulted in a significant increase in the mRNA ratio of RANKL:OPG in osteocytes via acetylcholine receptors. The expression of neuropeptide Y and reelin, which are two neurogenic markers, was also modulated by acetylcholine via m- and nAChRs in MLO-Y4 cells. These results indicated that osteocytic acetylcholine receptors might be a new valuable mediator for cell functions and even for bone remodeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor

    NASA Astrophysics Data System (ADS)

    McManus, D. J.; Forsyth, P. W. F.; Yap, M. J.; Ward, R. L.; Shaddock, D. A.; McClelland, D. E.; Slagmolen, B. J. J.

    2017-07-01

    Newtonian noise is likely to be a future challenge at low frequencies for Advanced LIGO and other second generation gravitational wave detectors. We present the TorPeDO system: a dual torsion pendulum sensor designed to measure local gravitational forces to high precision. Gravitational forces induce a differential rotation between the two torsion beams, which is measured with an optical read-out. Both torsion pendulums have a common suspension point, tunable centre of mass, and resonant frequency. This produces a high level of mechanical common mode noise cancellation. We report on a controls prototype of the TorPeDO system, presenting the frequency response and tuning range of both pendulums. A noise budget and mechanical cross-coupling model for this system are also presented. We demonstrate frequency tuning of the two torsion pendulums to a difference of 4.3 μHz.

  8. Stimulation of the Nonneuronal Cholinergic System by Highly Diluted Acetylcholine in Keratinocytes.

    PubMed

    Uberti, Francesca; Bardelli, Claudio; Morsanuto, Vera; Ghirlanda, Sabrina; Cochis, Andrea; Molinari, Claudio

    2017-01-01

    The physiological effects of acetylcholine on keratinocytes depend on the presence of nicotinic and muscarinic receptors. The role of nonneuronal acetylcholine in keratinocytes could have important clinical implications for patients with various skin disorders such as nonhealing wounds. In order to evaluate the efficacy of highly diluted acetylcholine solutions obtained by sequential kinetic activation, we aimed to investigate the effects of these solutions on normal human keratinocytes. Two different concentrations (10 fg/mL and 1 pg/mL) and formulations (kinetically activated and nonkinetically activated) of acetylcholine were used to verify keratinocyte viability, proliferation, and migration and the intracellular pathways involved using MTT, crystal violet, wound healing, and Western blot compared to 147 ng/mL acetylcholine. The activated formulations (1 pg/mL and 10 fg/mL) revealed a significant capacity to increase migration, cell viability, and cell proliferation compared to 147 ng/mL acetylcholine, and these effects were more evident after a single administration. Sequential kinetic activation resulted in a statistically significant decrease in reactive oxygen species production accompanied by an increase in mitochondrial membrane potential and a decrease in oxygen consumption compared to 147 ng/mL acetylcholine. The M1 muscarinic receptor was involved in these effects. Finally, the involvement of ERK/mitogen-activated protein kinases (MAPK) and KI67 confirmed the effectiveness of the single treatment on cell proliferation. The intracellular pathways of calcium were investigated as well. Our results indicate for the first time that highly diluted and kinetically activated acetylcholine seems to play an active role in an in vitro model of wound healing. Moreover, the administration of acetylcholine within the physiological range may not only be effective but is also likely to be safe. © 2016 S. Karger AG, Basel.

  9. Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins.

    PubMed

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-05-14

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  10. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    PubMed Central

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds. PMID:26008231

  11. Study of the Peripheral Nerve Fibers Myelin Structure Changes during Activation of Schwann Cell Acetylcholine Receptors

    PubMed Central

    Verdiyan, Ekaterina E.; Allakhverdiev, Elvin S.; Maksimov, Georgy V.

    2016-01-01

    In the present paper we consider a new type of mechanism by which neurotransmitter acetylcholine (ACh) regulates the properties of peripheral nerve fibers myelin. Our data show the importance of the relationship between the changes in the number of Schwann cell (SC) acetylcholine receptors (AChRs) and the axon excitation (different intervals between action potentials (APs)). Using Raman spectroscopy, an effect of activation of SC AChRs on the myelin membrane fluidity was investigated. It was found, that ACh stimulates an increase in lipid ordering degree of the myelin lipids, thus providing evidence for specific role of the “axon-SC” interactions at the axon excitation. It was proposed, that during the axon excitation, the SC membrane K+- depolarization and the Ca2+—influx led to phospholipase activation or exocytosis of intracellular membrane vesicles and myelin structure reorganization. PMID:27455410

  12. Soluble and Membrane-Bound β-Glucosidases Are Involved in Trimming the Xyloglucan Backbone.

    PubMed

    Sampedro, Javier; Valdivia, Elene R; Fraga, Patricia; Iglesias, Natalia; Revilla, Gloria; Zarra, Ignacio

    2017-02-01

    In many flowering plants, xyloglucan is a major component of primary cell walls, where it plays an important role in growth regulation. Xyloglucan can be degraded by a suite of exoglycosidases that remove specific sugars. In this work, we show that the xyloglucan backbone, formed by (1→4)-linked β-d-glucopyranosyl residues, can be attacked by two different Arabidopsis (Arabidopsis thaliana) β-glucosidases from glycoside hydrolase family 3. While BGLC1 (At5g20950; for β-glucosidase active against xyloglucan 1) is responsible for all or most of the soluble activity, BGLC3 (At5g04885) is usually a membrane-anchored protein. Mutations in these two genes, whether on their own or combined with mutations in other exoglycosidase genes, resulted in the accumulation of partially digested xyloglucan subunits, such as GXXG, GXLG, or GXFG. While a mutation in BGLC1 had significant effects on its own, lack of BGLC3 had only minor effects. On the other hand, double bglc1 bglc3 mutants revealed a synergistic interaction that supports a role for membrane-bound BGLC3 in xyloglucan metabolism. In addition, bglc1 bglc3 was complemented by overexpression of either BGLC1 or BGLC3 In overexpression lines, BGLC3 activity was concentrated in a microsome-enriched fraction but also was present in soluble form. Finally, both genes were generally expressed in the same cell types, although, in some cases, BGLC3 was expressed at earlier stages than BGLC1 We propose that functional specialization could explain the separate localization of both enzymes, as a membrane-bound β-glucosidase could specifically digest soluble xyloglucan without affecting the wall-bound polymer. © 2017 American Society of Plant Biologists. All Rights Reserved.

  13. Deletion and anergy of polyclonal B cells specific for ubiquitous membrane-bound self-antigen

    PubMed Central

    Taylor, Justin J.; Martinez, Ryan J.; Titcombe, Philip J.; Barsness, Laura O.; Thomas, Stephanie R.; Zhang, Na; Katzman, Shoshana D.; Jenkins, Marc K.

    2012-01-01

    B cell tolerance to self-antigen is critical to preventing antibody-mediated autoimmunity. Previous work using B cell antigen receptor transgenic animals suggested that self-antigen–specific B cells are either deleted from the repertoire, enter a state of diminished function termed anergy, or are ignorant to the presence of self-antigen. These mechanisms have not been assessed in a normal polyclonal repertoire because of an inability to detect rare antigen-specific B cells. Using a novel detection and enrichment strategy to assess polyclonal self-antigen–specific B cells, we find no evidence of deletion or anergy of cells specific for antigen not bound to membrane, and tolerance to these types of antigens appears to be largely maintained by the absence of T cell help. In contrast, a combination of deleting cells expressing receptors with high affinity for antigen with anergy of the undeleted lower affinity cells maintains tolerance to ubiquitous membrane-bound self-antigens. PMID:23071255

  14. Chemical stimulation of adherent cells by localized application of acetylcholine from a microfluidic system.

    PubMed

    Zibek, Susanne; Hagmeyer, Britta; Stett, Alfred; Stelzle, Martin

    2010-01-01

    Chemical stimulation of cells is inherently cell type selective in contrast to electro-stimulation. The availability of a system for localized application of minute amounts of chemical stimulants could be useful for dose related response studies to test new compounds. It could also bring forward the development of a novel type of neuroprostheses. In an experimental setup microdroplets of an acetylcholine solution were ejected from a fluidic microsystem and applied to the bottom of a nanoporous membrane. The solution traveled through the pores to the top of the membrane on which TE671 cells were cultivated. Calcium imaging was used to visualize cellular response with temporal and spatial resolution. Experimental demonstration of chemical stimulation for both threshold gated stimulation as well as accumulated dose-response was achieved by either employing acetylcholine as chemical stimulant or applying calcein uptake, respectively. Numerical modeling and simulation of transport mechanisms involved were employed to gain a theoretical understanding of the influence of pore size, concentration of stimulant and droplet volume on the spatial-temporal distribution of stimulant and on the cellular response. Diffusion, pressure driven flow and evaporation effects were taken into account. Fast stimulation kinetic is achieved with pores of 0.82 μm diameter, whereas sustained substance delivery is obtained with nanoporous membranes. In all cases threshold concentrations ranging from 0.01 to 0.015 μM acetylcholine independent of pore size were determined.

  15. A simple and rapid method for the reversible removal of lipids from a membrane-bound enzyme.

    PubMed Central

    Goodman, S L; Isern de Caldentey, M; Wheeler, K P

    1978-01-01

    A simple, rapid and reproducible method for the reversible removal of lipids from a membrane-bound enzyme is described. Essentially, a membrane preparation containing (Na+ + K+)-dependent adenosine triphosphatase was extracted with the non-ionic detergent Lubrol WX in the presence of glycerol, and partial separation of protein from lipid was achieved with the use of only two centrifugations. About 74% of the endogenous phospholipid and 79% of the cholesterol were removed, concomitant with a virtually complete loss of ouabain-sensitive adenosine triphosphatase activity, but with retention of 60-100% of the K+-dependent phosphatase activity. The addition of pure phosphatidylserine re-activated the enzyme to more than 80% of the initial activity, and up to 30% of the protein was recovered. Excess of phosphatidylserine could be washed off the enzyme to give a stable 'reconstituted' preparation. The effects of variation in the experimental conditions were examined, and the results are discussed with respect to the possibility of adapting the method to the study of other lipid-dependent enzymes bound to membranes. PMID:147078

  16. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.

    2015-01-01

    Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334

  17. Isolation and Characterization of Methanophenazine and Function of Phenazines in Membrane-Bound Electron Transport of Methanosarcina mazei Gö1

    PubMed Central

    Abken, Hans-Jörg; Tietze, Mario; Brodersen, Jens; Bäumer, Sebastian; Beifuss, Uwe; Deppenmeier, Uwe

    1998-01-01

    A hydrophobic, redox-active component with a molecular mass of 538 Da was isolated from lyophilized membranes of Methanosarcina mazei Gö1 by extraction with isooctane. After purification on a high-performance liquid chromatography column, the chemical structure was analyzed by mass spectroscopy and nuclear magnetic resonance studies. The component was called methanophenazine and represents a 2-hydroxyphenazine derivative which is connected via an ether bridge to a polyisoprenoid side chain. Since methanophenazine was almost insoluble in aqueous buffers, water-soluble phenazine derivatives were tested for their ability to interact with membrane-bound enzymes involved in electron transport and energy conservation. The purified F420H2 dehydrogenase from M. mazei Gö1 showed highest activity with 2-hydroxyphenazine and 2-bromophenazine as electron acceptors when F420H2 was added. Phenazine-1-carboxylic acid and phenazine proved to be less effective. The Km values for 2-hydroxyphenazine and phenazine were 35 and 250 μM, respectively. 2-Hydroxyphenazine was also reduced by molecular hydrogen catalyzed by an F420-nonreactive hydrogenase which is present in washed membrane preparations. Furthermore, the membrane-bound heterodisulfide reductase was able to use reduced 2-hydroxyphenazine as an electron donor for the reduction of CoB-S-S-CoM. Considering all these results, it is reasonable to assume that methanophenazine plays an important role in vivo in membrane-bound electron transport of M. mazei Gö1. PMID:9555882

  18. Endogenous acetylcholine increases alveolar epithelial fluid transport via activation of alveolar epithelial Na,K-ATPase in mice.

    PubMed

    Li, Xia; Yan, Xi Xin; Li, Hong Lin; Li, Rong Qin

    2015-10-01

    The contribution of endogenous acetylcholine to alveolar fluid clearance (AFC) and related molecular mechanisms were explored. AFC was measured in Balb/c mice after vagotomy and vagus nerve stimulation. Effects of acetylcholine chloride on AFC in Kunming mice and Na,K-ATPase function in A549 alveolar epithelial cells also were determined. AFC significantly decreased in mice with left cervical vagus nerve transection compared with controls (48.69 ± 2.57 vs. 66.88 ± 2.64, P ≤ 0.01), which was reversed by stimulation of the peripheral (60.81 ± 1.96, P ≤ 0.01). Compared with control, acetylcholine chloride dose-dependently increased AFC and elevated Na,K-ATPase activity, and these increases were blocked or reversed by atropine. These effects were accompanied by recruitment of Na,K-ATPase α1 to the cell membrane. Thus, vagus nerves participate in alveolar epithelial fluid transport by releasing endogenous acetylcholine in the infusion-induced pulmonary edema mouse model. Effects of endogenous acetylcholine on AFC are likely mediated by Na,K-ATPase function through activation of muscarinic acetylcholine receptors on alveolar epithelia. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A bursting potassium channel in isolated cholinergic synaptosomes of Torpedo electric organ.

    PubMed Central

    Edry-Schiller, J; Ginsburg, S; Rahamimoff, R

    1991-01-01

    1. Pinched-off cholinergic nerve terminals (synaptosomes) prepared from the electric organ of Torpedo ocelata were fused into large structures (greater than 20 microns) using dimethyl sulphoxide and polyethylene glycol 1500, as previously described for synaptic vesicles from the same organ. 2. The giant fused synaptosomes were easily amenable to the patch clamp technique and 293 seals with a resistance greater than 4 G omega were obtained in the 'cell-attached' configuration. In a large fraction of the experiments, an 'inside-out' patch configuration was achieved. 3. Several types of unitary ionic currents were observed. This study describes the most frequently observed single-channel activity which was found in 247 out of the 293 membrane patches (84.3%). 4. The single-channel current-voltage relation was linear between -60 and 20 mV and showed a slope conductance of 23.8 +/- 1.3 pS when the pipette contained 350-390 mM-Na+ and the bath facing the inside of the synaptosomal membrane contained 390 mM-K+. 5. From extrapolated reversal potential measurements, it was concluded that this channel has a large selectivity for K+ over Na+ (70.4 +/- 11.5, mean +/- S.E.M.). Chloride ions are not transported significantly through this potassium channel. 6. This potassium channel has a low probability of opening. The probability of being in the open state increases upon depolarization and reaches about 1% when the inside of the patch is 20 mV positive compared to the pipette side. 7. The mean channel open time increases with depolarization; thus the product current x time (= charge) also increases upon depolarization, showing properties of an outward rectifier. 8. The potassium channel in the giant synaptosome membrane has a bursting behaviour. Open-time distribution, closed-time distribution and a Poisson analysis indicate that the minimal kinetic scheme requires one open state and three closed states. PMID:1654418

  20. Summary of Investigations of Mark 25 Aerial-Torpedo Turbine

    NASA Technical Reports Server (NTRS)

    Schum, Harold J.; Whitney, Warren J.; Buckner, Howard A., Jr.

    1950-01-01

    The power plant from a Mark 25 aerial torpedo was investigated both as a two-stage turbine and as a single-stage modified turbine to determine the effect on overall performance of nozzle size and shape, first-stage rotor-blade configuration, and axial nozzle-rotor running clearance. Performance was evaluated in terms of brake, rotor, and blade efficiencies. All the performance data were obtained for inlet total to outlet static pressure ratios of 8, 15 (design), and 20 with inlet conditions maintained constant at 95 pounds per square inch gage and 1000 F for rotor speeds from approximately 6000 to 18,000 rpm.

  1. Catabolism of gastrin releasing peptide and substance P by gastric membrane-bound peptidases.

    PubMed

    Bunnett, N W; Kobayashi, R; Orloff, M S; Reeve, J R; Turner, A J; Walsh, J H

    1985-01-01

    The catabolism of two gastric neuropeptides, the C-terminal decapeptide of gastrin releasing peptide-27 (GRP10) and substance P (SP), by membrane-bound peptidases of the porcine gastric corpus and by porcine endopeptidase-24.11 ("enkephalinase") has been investigated. GRP10 was catabolized by gastric muscle peptidases (specific activity 1.8 nmol min-1 mg-1 protein) by hydrolysis of the His8-Leu9 bond and catabolism was inhibited by phosphoramidon (I50 approx. 10(-8) M), a specific inhibitor of endopeptidase-24.11. The same bond in GRP10 was cleaved by purified endopeptidase-24.11, and hydrolysis was equally sensitive to inhibition by phosphoramidon. SP was catabolized by gastric muscle peptidases (specific activity 1.7 nmol min-1 mg-1 protein) by hydrolysis of the Gln6-Phe7, Phe7-Phe8 and Gly9-Leu10 bonds, which is identical to the cleavage of SP by purified endopeptidase-24.11. The C-terminal cleavage of GRP10 and SP would inactivate the peptides. It is concluded that a membrane-bound peptidase in the stomach wall catabolizes and inactivates GRP10 and SP and that, in its specificity and sensitivity to phosphoramidon, this peptidase resembles endopeptidase-24.11.

  2. Membrane-bound heat shock proteins facilitate the uptake of dying cells and cross-presentation of cellular antigen.

    PubMed

    Zhu, Haiyan; Fang, Xiaoyun; Zhang, Dongmei; Wu, Weicheng; Shao, Miaomiao; Wang, Lan; Gu, Jianxin

    2016-01-01

    Heat shock proteins (HSPs) were originally identified as stress-responsive proteins and serve as molecular chaperones in different intracellular compartments. Translocation of HSPs to the cell surface and release of HSPs into the extracellular space have been observed during the apoptotic process and in response to a variety of cellular stress. Here, we report that UV irradiation and cisplatin treatment rapidly induce the expression of membrane-bound Hsp60, Hsp70, and Hsp90 upstream the phosphatidylserine exposure. Membrane-bound Hsp60, Hsp70 and Hsp90 could promote the release of IL-6 and IL-1β as well as DC maturation by the evaluation of CD80 and CD86 expression. On the other hand, Hsp60, Hsp70 and Hsp90 on cells could facilitate the uptake of dying cells by bone marrow-derived dendritic cells. Lectin-like oxidized LDL receptor-1 (LOX-1), as a common receptor for Hsp60, Hsp70, and Hsp90, is response for their recognition and mediates the uptake of dying cells. Furthermore, membrane-bound Hsp60, Hsp70 and Hsp90 could promote the cross-presentation of OVA antigen from E.G7 cells and inhibition of the uptake of dying cells by LOX-1 decreases the cross-presentation of cellular antigen. Therefore, the rapid exposure of HSPs on dying cells at the early stage allows for the recognition by and confers an activation signal to the immune system.

  3. Acetylcholine, ATP, and proteoglycan are common to synaptic vesicles isolated from the electric organs of electric eel and electric catfish as well as from rat diaphragm.

    PubMed

    Volknandt, W; Zimmermann, H

    1986-11-01

    Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.

  4. Mathematical Modeling of Cancer Invasion: The Role of Membrane-Bound Matrix Metalloproteinases

    PubMed Central

    Deakin, Niall E.; Chaplain, Mark A. J.

    2013-01-01

    One of the hallmarks of cancer growth and metastatic spread is the process of local invasion of the surrounding tissue. Cancer cells achieve protease-dependent invasion by the secretion of enzymes involved in proteolysis. These overly expressed proteolytic enzymes then proceed to degrade the host tissue allowing the cancer cells to disseminate throughout the microenvironment by active migration and interaction with components of the extracellular matrix (ECM) such as collagen. In this paper we develop a mathematical model of cancer invasion which consider the role of matrix metalloproteinases (MMPs). Specifically our model will focus on two distinct types of MMP, i.e., soluble, diffusible MMPs (e.g., MMP-2) and membrane-bound MMPs (e.g., MT1-MMP), and the roles each of these plays in cancer invasion. The implications of MMP-2 activation by MMP-14 and the tissue inhibitor of metalloproteinases-2 are considered alongside the effect the architecture of the matrix may have when applied to a model of cancer invasion. Elements of the ECM architecture investigated include pore size of the matrix, since in some highly dense collagen structures such as breast tissue, the cancer cells are unable to physically fit through a porous region, and the crosslinking of collagen fibers. In this scenario, cancer cells rely on membrane-bound MMPs to forge a path through which degradation by other MMPs and movement of cancer cells becomes possible. PMID:23565505

  5. Control of synthesis and release of radioactive acetylcholine in brain slices from the rat. Effects of neurotropic drugs

    PubMed Central

    Grewaal, D. S.; Quastel, J. H.

    1973-01-01

    1. Studies of the synthesis and release of radioactive acetylcholine in rat brain-cortex slices incubated in Locke–bicarbonate–[U-14C]glucose media, containing paraoxon as cholinesterase inhibitor, revealed the following phenomena: (a) dependence of K+-or protoveratrine-stimulated acetylcholine synthesis and release on the presence of Na+ and Ca2+ in the incubation medium, (b) enhanced release of radioactive acetylcholine by substances that promote depolarization at the nerve cell membrane (e.g. high K+, ouabain, protoveratrine, sodium l-glutamate, high concentration of acetylcholine), (c) failure of acetylcholine synthesis to keep pace with acetylcholine release under certain conditions (e.g. the presence of ouabain or lack of Na+). 2. Stimulation by K+ of radioactive acetylcholine synthesis was directly proportional to the external concentration of Na+, but some synthesis and release of radioactive acetylcholine occurred in the absence of Na+ as well as in the absence of Ca2+. 3. The Na+ dependence of K+-stimulated acetylcholine synthesis was partly due to suppression of choline transport, as addition of small concentrations of choline partly neutralized the effect of Na+ lack, and partly due to the suppression of the activity of the Na+ pump. 4. Protoveratrine caused a greatly increased release of radioactive acetylcholine without stimulating total radioactive acetylcholine synthesis. Protoveratrine was ineffective in the absence of Ca2+ from the incubation medium. It completely blocked K+ stimulation of acetylcholine synthesis and release. 5. Tetrodotoxin abolished the effects of protoveratrine on acetylcholine release. It had blocking effects (partial or complete) on the action of high K+, sodium l-glutamate and lack of Ca2+ on acetylcholine synthesis and release. 6. Unlabelled exogenous acetylcholine did not diminish the content of labelled tissue acetylcholine, derived from labelled glucose, suggesting that no exchange with vesicular acetylcholine took

  6. A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane-bound compartments.

    PubMed

    Sharma, Suruchi; Zaveri, Anisha; Visweswariah, Sandhya S; Krishnan, Yamuna

    2014-11-12

    cAMPhor: In the presence of cAMP, cAMPhor folds into a structure that binds DFHBI (green), increasing its fluorescence, while Alexa 647 (red) functions as a normalizing dye. It can thus be used to spatially image cAMP quantitatively in membrane-bound compartments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of steroid hormones on nuclear membrane and membrane-bound heterochromatin from breast cancer cells evaluated by fractal morphometry.

    PubMed

    Losa, G A; Graber, R; Baumann, G; Nonnenmacher, T F

    1999-10-01

    To evaluate the effect of steroid hormones on the ultrastructure of nuclear heterochromatin and perinuclear membranes in human MCF-7 breast cancer cells. MCF-7 cells were cultured briefly (five minutes) in the presence of 10(-9) M estrogen 17 beta-estradiol, a stimulator of cell proliferation and/or 10(-9) M glucocorticoid dexamethasone. Changes in the morphologic complexity of nuclear membrane-bound heterochromatin (NMBHC) and nuclear membranes (ENM) were assessed by means of the fractal capacity dimension, D, a noneuclidean geometric descriptor of complex, irregular bodies. 17 beta-estradiol (10(-9) M) enhanced the ultrastructural irregularity of NMBHC, as documented by the increased value of D, whereas dexamethasone (10(-9) M) reduced it when compared to NMBHC from untreated MCF-7 control cells. In contrast, neither steroid modified ENM ultrastructure. Changes in the nuclear heterochromatin complexity induced by estrogen 17 beta-estradiol occurred concomitantly with functional changes at the cell periphery, such as activation of the phospholipase C, a cell membrane-associated enzyme involved in signal transduction. Dexamethasone reduced the ultrastructural complexity of NMBHC without affecting functional processes. Fractal morphometry proved its usefulness in quantifying early ultrastructural changes in nuclear components induced in MCF-7 cells by steroid hormones, 17 beta-estradiol and dexamethasone.

  8. Hierarchy of stroma-derived factors in supporting growth of stroma-dependent hemopoietic cells: membrane-bound SCF is sufficient to confer stroma competence to epithelial cells.

    PubMed

    Friel, Jutta; Itoh, Katsuhiko; Bergholz, Ulla; Jücker, Manfred; Stocking, Carol; Harrison, Paul; Ostertag, Wolfram

    2002-03-01

    Hemopoiesis takes place in a microenvironment where hemopoietic cells are closely associated with stroma by various interactions. Stroma coregulates the proliferation and differentiation of hemopoietic cells. Stroma-hemopoietic-cell contact can be supported by locally produced membrane associated growth factors. The stroma derived growth factor, stem cell factor (SCF) is important in hemopoiesis. We examined the different biological interactions of membrane bound and soluble SCF with human hemopoietic cells expressing the SCF receptor, c-kit. To analyze the function of the SCF isoforms in inducing the proliferation of hemopoietic TF1 or Cord blood (CB) CD34+ cells we used stroma cell lines that differ in their presentation of no SCF, membrane SCF, or soluble SCF. We established a new coculture system using an epithelial cell line that excludes potential interfering effects with other known stroma encoded hemopoietic growth factors. We show that soluble SCF, in absence of membrane-bound SCF, inhibits long term clonal growth of primary or established CD34+ hemopoietic cells, whereas membrane-inserted SCF "dominantly" induces long term proliferation of these cells. We demonstrate a hierarchy of these SCF isoforms in the interaction of stroma with hemopoietic TF1 cells. Membrane-bound SCF is "dominant" over soluble SCF, whereas soluble SCF acts epistatically in interacting with hemopoietic cells compared with other stroma derived factors present in SCF deficient stroma. A hierarchy of stroma cell lines can be arranged according to their presentation of membrane SCF or soluble SCF. In our model system, membrane-bound SCF expression is sufficient to confer stroma properties to an epithelial cell line but soluble SCF does not.

  9. Separation of Membrane-Bound Compounds by Solid-Supported Bilayer Electrophoresis

    PubMed Central

    Daniel, Susan; Diaz, Arnaldo J.; Martinez, Kelly M.; Bench, Bennie J.; Albertorio, Fernando; Cremer, Paul S.

    2008-01-01

    A new method was developed to purify membrane bound species within a supported lipid bilayer (SLB) environment. SLBs consisting of phosphatidylcholine lipids and cholesterol were employed as the separation matrix. Cholesterol was used to reduce the diffusion of lipids within the bilayer and, therefore, substantially reduce mixing of the dye-conjugated lipids to be separated. These molecules were introduced into an SLB adjacent to the separations SLB and electrophoresis was employed to move these species through it. The method was powerful enough to completely resolve two isomers of Texas Red DHPE from each other. Moreover, these isomers could be separated from a BODIPY-conjugated lipid as well. Such procedures could be extended to the purification of peripheral and transmembrane proteins. PMID:17564451

  10. [The Role of Membrane-Bound Heat Shock Proteins Hsp90 in Migration of Tumor Cells in vitro and Involvement of Cell Surface Heparan Sulfate Proteoglycans in Protein Binding to Plasma Membrane].

    PubMed

    Snigireva, A V; Vrublevskaya, V V; Skarga, Y Y; Morenkov, O S

    2016-01-01

    Heat shock protein Hsp90, detected in the extracellular space and on the membrane of cells, plays an important role in cell motility, migration, invasion and metastasis of tumor cells. At present, the functional role and molecular mechanisms of Hsp90 binding to plasma membrane are not elucidated. Using isoform-specific antibodies against Hsp90, Hsp9α and Hsp90β, we showed that membrane-bound Hsp90α and Hsp90β play a significant role in migration of human fibrosarcoma (HT1080) and glioblastoma (A-172) cells in vitro. Disorders of sulfonation of cell heparan sulfates, cleavage of cell heparan. sulfates by heparinase I/III as well as treatment of cells with heparin lead to an abrupt reduction in the expression level of Hsp90 isoforms. Furthermore, heparin significantly inhibits tumor cell migration. The results obtained demonstrate that two isoforms of membrane-bound Hsp90 are involved in migration of tumor cells in vitro and that cell surface heparan sulfate proteoglycans play a pivotal role in the "anchoring" of Hsp90α and Hsp90β to the plasma membrane.

  11. In vivo release of non-neuronal acetylcholine from the human skin as measured by dermal microdialysis: effect of botulinum toxin

    PubMed Central

    Schlereth, Tanja; Birklein, Frank; Haack, Katrin an; Schiffmann, Susanne; Kilbinger, Heinz; Kirkpatrick, Charles James; Wessler, Ignaz

    2005-01-01

    Acetylcholine is synthesized in the majority of non-neuronal cells, for example in human skin. In the present experiments, the in vivo release of acetylcholine was measured by dermal microdialysis. Two microdialysis membranes were inserted intradermally at the medial shank of volunteers. Physiological saline containing 1 μM neostigmine was perfused at a constant rate of 4 μl min−1 and the effluent was collected in six subsequent 20 min periods. Acetylcholine was measured by high-pressure liquid chromatography (HPLC) combined with bioreactors and electrochemical detection. Analysis of the effluent by HPLC showed an acetylcholine peak that disappeared, when the analytical column was packed with acetylcholine-specific esterase, confirming the presence of acetylcholine. In the absence of neostigmine, 71±51 pmol acetylcholine (n=4) was found during a 120 min period. The amount increased to 183±43 pmol (n=34), when the perfusion medium contained 1 μM neostigmine. Injection of 100 MU botulinum toxin subcutaneously blocked sweating completely, but the release of acetylcholine was not affected (botulinum toxin treated skin: 116±70 pmol acetylcholine/120 min; untreated skin: 50±20 pmol; n=4). Quinine (1 mM), inhibitor of organic cation transporters, and carnitine (0.1 mM), substrate of the Na+-dependent carnitine transporter OCTN2, tended to reduce acetylcholine release (by 40%, not significant). Our experiments demonstrate, for the first time, the in vivo release of non-neuronal acetylcholine in human skin. Organic cation transporters are not predominantly involved in the release of non-neuronal acetylcholine from the human skin. PMID:16273117

  12. Detection of a Double Relic in the Torpedo Cluster: SPT-CL J0245-5302

    NASA Astrophysics Data System (ADS)

    Zheng, Q.; Johnston-Hollitt, M.; Duchesne, S. W.; Li, W. T.

    2018-06-01

    The Torpedo cluster, SPT-CL J0245-5302 (S0295) is a massive, merging cluster at a redshift of z = 0.300, which exhibits a strikingly similar morphology to the Bullet cluster 1E 0657-55.8 (z = 0.296), including a classic bow shock in the cluster's intra-cluster medium revealed by Chandra X-ray observations. We present Australia Telescope Compact Array data centred at 2.1 GHz and Murchison Widefield Array data at frequencies between 72 MHz and 231 MHz which we use to study the properties of the cluster. We characterise a number of discrete and diffuse radio sources in the cluster, including the detection of two previously unknown radio relics on the cluster periphery. The average spectral index of the diffuse emission between 70 MHz and 3.1 GHz is α =-1.63_{-0.10}^{+0.10} and a radio-derived Mach number for the shock in the west of the cluster is calculated as M = 2.04. The Torpedo cluster is thus a double relic system at moderate redshift.

  13. Hydrogen Production by a Hyperthermophilic Membrane-Bound Hydrogenase in Soluble Nanolipoprotein Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, S E; Hopkins, R C; Blanchette, C

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBH), poor water solubility. Nanolipoprotein particles (NLPs), formed from apolipoproteins and phospholipids, offer a novel means to incorporate MBH into in a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen production devices.

  14. Photolabeling a Nicotinic Acetylcholine Receptor (nAChR) with an (α4)3(β2)2 nAChR-Selective Positive Allosteric Modulator

    PubMed Central

    Deba, Farah; Wang, Ze-Jun; Cohen, Jonathan B.

    2016-01-01

    Positive allosteric modulators (PAMs) of nicotinic acetylcholine (ACh) receptors (nAChRs) have potential clinical applications in the treatment of nicotine dependence and many neuropsychiatric conditions associated with decreased brain cholinergic activity, and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI) has been identified as a PAM selective for neuronal nAChRs containing the α4 subunit. In this report, we compare CMPI interactions with low-sensitivity (α4)3(β2)2 and high-sensitivity (α4)2(β2)3 nAChRs, and with muscle-type nAChRs. In addition, we use the intrinsic reactivity of [3H]CMPI upon photolysis at 312 nm to identify its binding sites in Torpedo nAChRs. Recording from Xenopus oocytes, we found that CMPI potentiated maximally the responses of (α4)3(β2)2 nAChR to 10 μM ACh (EC10) by 400% and with an EC50 of ∼1 µM. CMPI produced a left shift of the ACh concentration-response curve without altering ACh efficacy. In contrast, CMPI inhibited (∼35% at 10 µM) ACh responses of (α4)2(β2)3 nAChRs and fully inhibited human muscle and Torpedo nAChRs with IC50 values of ∼0.5 µM. Upon irradiation at 312 nm, [3H]CMPI photoincorporated into each Torpedo [(α1)2β1γδ] nAChR subunit. Sequencing of peptide fragments isolated from [3H]CMPI-photolabeled nAChR subunits established photolabeling of amino acids contributing to the ACh binding sites (αTyr190, αTyr198, γTrp55, γTyr111, γTyr117, δTrp57) that was fully inhibitable by agonist and lower-efficiency, state-dependent [3H]CMPI photolabeling within the ion channel. Our results establish that CMPI is a potent potentiator of nAChRs containing an α4:α4 subunit interface, and that its intrinsic photoreactivy makes it of potential use to identify its binding sites in the (α4)3(β2)2 nAChR. PMID:26976945

  15. pH-dependent hydrolysis of acetylcholine: Consequences for non-neuronal acetylcholine.

    PubMed

    Wessler, Ignaz; Michel-Schmidt, Rosmarie; Kirkpatrick, Charles James

    2015-11-01

    Acetylcholine is inactivated by acetylcholinesterase and butyrylcholinesterase and thereby its cellular signalling is stopped. One distinguishing difference between the neuronal and non-neuronal cholinergic system is the high expression level of the esterase activity within the former and a considerably lower level within the latter system. Thus, any situation which limits the activity of both esterases will affect the non-neuronal cholinergic system to a much greater extent than the neuronal one. Both esterases are pH-dependent with an optimum at pH above 7, whereas at pH values below 6 particularly the specific acetylcholinesterase is more or less inactive. Thus, acetylcholine is prevented from hydrolysis at such low pH values. The pH of the surface of the human skin is around 5 and therefore non-neuronal acetylcholine released from keratinocytes can be detected in a non-invasive manner. Several clinical conditions like metabolic acidosis, inflammation, fracture-related haematomas, cardiac ischemia and malignant tumours are associated with local or systemic pH values below 7. Thus, the present article describes some consequences of an impaired inactivation of extracellular non-neuronal acetylcholine. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Raman scattering-based multiconformational analysis for probing the structural differences between acetylcholine and acetylthiocholine.

    PubMed

    Hernández, Belén; Houzé, Pascal; Pflüger, Fernando; Kruglik, Sergei G; Ghomi, Mahmoud

    2017-05-10

    Acetylcholine is the first discovered neurotransmitter that has received a great attention regarding its capability of binding to several cellular targets. The chemical composition of acetylcholine, including a positively charged trimethylammonium and a carbonyl group, as well as its conformational flexibility was pointed out as the key factors in the stabilization of its interactions. Here, the possibilities offered by a Raman scattering-based multiconformatioal analysis to access the most stable conformers of acetylcholine, is discussed. To control the validity of this protocol, acetylcholine and one of its closely structured analogues, acetylthiocholine, were simultaneously analyzed. Solution Raman spectra revealed distinct and well resolved strong markers for each molecule. Density functional theory calculations were consistent with the fact that the energy order of the low energy conformers is considerably affected by the acyloxy oxygen→sulfur atom substitution. Raman spectra were calculated on the basis of the thermal average of the spectra arising from the low energy conformers. It has been evidenced that the carbonyl and trimethylammonium groups are the most favorable hydration sites in aqueous environment. Taking into account the large gap between the carbonyl bond-stretch and aliphatic bending bands, Raman spectra also allowed separation of the HOH bending vibrations arising from the bound and bulk water molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. The novel protein kinase C epsilon isoform modulates acetylcholine release in the rat neuromuscular junction.

    PubMed

    Obis, Teresa; Hurtado, Erica; Nadal, Laura; Tomàs, Marta; Priego, Mercedes; Simon, Anna; Garcia, Neus; Santafe, Manel M; Lanuza, Maria A; Tomàs, Josep

    2015-12-01

    Various protein kinase C (PKC) isoforms contribute to the phosphorylating activity that modulates neurotransmitter release. In previous studies we showed that nPKCε is confined in the presynaptic site of the neuromuscular junction and its presynaptic function is activity-dependent. Furthermore, nPKCε regulates phorbol ester-induced acetylcholine release potentiation, which further indicates that nPKCε is involved in neurotransmission. The present study is designed to examine the nPKCε involvement in transmitter release at the neuromuscular junction. We use the specific nPKCε translocation inhibitor peptide εV1-2 and electrophysiological experiments to investigate the involvement of this isoform in acetylcholine release. We observed that nPKCε membrane translocation is key to the synaptic potentiation of NMJ, being involved in several conditions that upregulate PKC isoforms coupling to acetylcholine (ACh) release (incubation with high Ca(2+), stimulation with phorbol esters and protein kinase A, stimulation with adenosine 3',5'-cyclic monophosphorothioate, 8-Bromo-, Rp-isomer, sodium salt -Sp-8-BrcAMP-). In all these conditions, preincubation with the nPKCε translocation inhibitor peptide (εV1-2) impairs PKC coupling to acetylcholine release potentiation. In addition, the inhibition of nPKCε translocation and therefore its activity impedes that presynaptic muscarinic autoreceptors and adenosine autoreceptors modulate transmitter secretion. Together, these results point to the importance of nPKCε isoform in the control of acetylcholine release in the neuromuscular junction.

  18. Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases

    PubMed Central

    Flanagan, Lindsey A.; Parkin, Alison

    2016-01-01

    Hydrogenases are enzymes of great biotechnological relevance because they catalyse the interconversion of H2, water (protons) and electricity using non-precious metal catalytic active sites. Electrochemical studies into the reactivity of NiFe membrane-bound hydrogenases (MBH) have provided a particularly detailed insight into the reactivity and mechanism of this group of enzymes. Significantly, the control centre for enabling O2 tolerance has been revealed as the electron-transfer relay of FeS clusters, rather than the NiFe bimetallic active site. The present review paper will discuss how electrochemistry results have complemented those obtained from structural and spectroscopic studies, to present a complete picture of our current understanding of NiFe MBH. PMID:26862221

  19. TORPEDO: Networked Access to Full-Text and Page-Image Representations of Physics Journals and Technical Reports.

    ERIC Educational Resources Information Center

    Atkinson, Roderick D.; Stackpole, Laurie E.

    1995-01-01

    The Naval Research Laboratory (NRL) Library and the American Physical Society (APS) are experimenting with electronically disseminating journals and reports in a project called TORPEDO (The Optical Retrieval Project: Electronic Documents Online). Scanned journals and reports are converted to ASCII, then attached to bibliographic information, and…

  20. Palmitic acid acutely inhibits acetylcholine- but not GLP-1-stimulated insulin secretion in mouse pancreatic islets

    PubMed Central

    Qin, Wei; Vinogradov, Sergei A.; Wilson, David F.; Matschinsky, Franz M.

    2010-01-01

    Fatty acids, acetylcholine, and GLP-1 enhance insulin secretion in a glucose-dependent manner. However, the interplay between glucose, fatty acids, and the neuroendocrine regulators of insulin secretion is not well understood. Therefore, we studied the acute effects of PA (alone or in combination with glucose, acetylcholine, or GLP-1) on isolated cultured mouse islets. Two different sets of experiments were designed. In one, a fixed concentration of 0.5 mM of PA bound to 0.15 mM BSA was used; in the other, a PA ramp from 0 to 0.5 mM was applied at a fixed albumin concentration of 0.15 mM so that the molar PA/BSA ratio changed within the physiological range. At a fixed concentration of 0.5 mM, PA markedly inhibited acetylcholine-stimulated insulin release, the rise of intracellular Ca2+, and enhancement of cAMP production but did not influence the effects of GLP-1 on these parameters of islet cell function. 2-ADB, an IP3 receptor inhibitor, reduced the effect of acetylcholine on insulin secretion and reversed the effect of PA on acetylcholine-stimulated insulin release. Islet perfusion for 35–40 min with 0.5 mM PA significantly reduced the calcium storage capacity of ER measured by the thapsigargin-induced Ca2+ release. Oxygen consumption due to low but not high glucose was reduced by PA. When a PA ramp from 0 to 0.5 mM was applied in the presence of 8 mM glucose, PA at concentrations as low as 50 μM significantly augmented glucose-stimulated insulin release and markedly reduced acetylcholine's effects on hormone secretion. We thus demonstrate that PA acutely reduces the total oxygen consumption response to glucose, glucose-dependent acetylcholine stimulation of insulin release, Ca2+, and cAMP metabolism, whereas GLP-1's actions on these parameters remain unaffected or potentiated. We speculate that acute emptying of the ER calcium by PA results in decreased glucose stimulation of respiration and acetylcholine potentiation of insulin secretion. PMID:20606076

  1. Identification of Propofol Binding Sites in a Nicotinic Acetylcholine Receptor with a Photoreactive Propofol Analog*

    PubMed Central

    Jayakar, Selwyn S.; Dailey, William P.; Eckenhoff, Roderic G.; Cohen, Jonathan B.

    2013-01-01

    Propofol, a widely used intravenous general anesthetic, acts at anesthetic concentrations as a positive allosteric modulator of γ-aminobutyric acid type A receptors and at higher concentration as an inhibitor of nicotinic acetylcholine receptors (nAChRs). Here, we characterize propofol binding sites in a muscle-type nAChR by use of a photoreactive analog of propofol, 2-isopropyl-5-[3-(trifluoromethyl)-3H-diazirin-3-yl]phenol (AziPm). Based upon radioligand binding assays, AziPm stabilized the Torpedo nAChR in the resting state, whereas propofol stabilized the desensitized state. nAChR-rich membranes were photolabeled with [3H]AziPm, and labeled amino acids were identified by Edman degradation. [3H]AziPm binds at three sites within the nAChR transmembrane domain: (i) an intrasubunit site in the δ subunit helix bundle, photolabeling in the nAChR desensitized state (+agonist) δM2-18′ and two residues in δM1 (δPhe-232 and δCys-236); (ii) in the ion channel, photolabeling in the nAChR resting, closed channel state (−agonist) amino acids in the M2 helices (αM2-6′, βM2-6′ and -13′, and δM2-13′) that line the channel lumen (with photolabeling reduced by >90% in the desensitized state); and (iii) at the γ-α interface, photolabeling αM2-10′. Propofol enhanced [3H]AziPm photolabeling at αM2-10′. Propofol inhibited [3H]AziPm photolabeling within the δ subunit helix bundle at lower concentrations (IC50 = 40 μm) than it inhibited ion channel photolabeling (IC50 = 125 μm). These results identify for the first time a single intrasubunit propofol binding site in the nAChR transmembrane domain and suggest that this is the functionally relevant inhibitory binding site. PMID:23300078

  2. Release of Membrane-Bound Vesicles and Inhibition of Tumor Cell Adhesion by the Peptide Neopetrosiamide A

    PubMed Central

    Austin, Pamela; Heller, Markus; Williams, David E.; McIntosh, Lawrence P.; Vogl, A. Wayne; Foster, Leonard J.; Andersen, Raymond J.; Roberge, Michel; Roskelley, Calvin D.

    2010-01-01

    Background Neopetrosiamide A (NeoA) is a 28-amino acid tricyclic peptide originally isolated from a marine sponge as a tumor cell invasion inhibitor whose mechanism of action is unknown. Methodology/Principal Findings We show that NeoA reversibly inhibits tumor cell adhesion, disassembles focal adhesions in pre-attached cells, and decreases the level of β1 integrin subunits on the cell surface. NeoA also induces the formation of dynamic, membrane-bound protrusions on the surface of treated cells and the release of membrane-bound vesicles into the culture medium. Proteomic analysis indicates that the vesicles contain EGF and transferrin receptors as well as a number of proteins involved in adhesion and migration including: β1 integrin and numerous α integrin subunits; actin and actin-binding proteins such as cofilin, moesin and myosin 1C; and membrane modulating eps15 homology domain (EHD) proteins. Surface labeling, trafficking inhibition, and real-time imaging experiments all suggest that β1 integrin-containing vesicles are released directly from NeoA-induced cell surface protrusions rather than from vesicles generated intracellularly. The biological activity of NeoA is dependent on its disulfide bond pattern and NMR spectroscopy indicates that the peptide is globular with a continuous ridge of hydrophobic groups flanked by charged amino acid residues that could facilitate a simultaneous interaction with lipids and proteins in the membrane. Conclusions/Significance NeoA is an anti-adhesive peptide that decreases cell surface integrin levels through a novel, yet to be elucidated, mechanism that involves the release of adhesion molecule-containing vesicles from the cell surface. PMID:20520768

  3. Homogeneous purification and characterization of LePGT1--a membrane-bound aromatic substrate prenyltransferase involved in secondary metabolism of Lithospermum erythrorhizon.

    PubMed

    Ohara, Kazuaki; Mito, Koji; Yazaki, Kazufumi

    2013-06-01

    Membrane-bound type prenyltransferases for aromatic substrates play crucial roles in the biosynthesis of various natural compounds. Lithospermum erythrorhizon p-hydroxybenzoate: geranyltransferase (LePGT1), which contains multiple transmembrane α-helices, is involved in the biosynthesis of a red naphthoquinone pigment, shikonin. Taking LePGT1 as a model membrane-bound aromatic substrate prenyltransferase, we utilized a baculovirus-Sf9 expression system to generate a high yield LePGT1 polypeptide, reaching ~ 1000-fold higher expression level compared with a yeast expression system. Efficient solubilization procedures and biochemical purification methods were developed to extract LePGT1 from the membrane fraction of Sf9 cells. As a result, 80 μg of LePGT1 was purified from 150 mL culture to almost homogeneity as judged by SDS/PAGE. Using purified LePGT1, enzymatic characterization, e.g. substrate specificity, divalent cation requirement and kinetic analysis, was done. In addition, inhibition experiments revealed that aromatic compounds having two phenolic hydroxyl groups effectively inhibited LePGT1 enzyme activity, suggesting a novel recognition mechanism for aromatic substrates. As the first example of solubilization and purification of this membrane-bound protein family, the methods established in this study will provide valuable information for the precise biochemical characterization of aromatic prenyltransferases as well as for crystallographic analysis of this novel enzyme family. © 2013 The Authors Journal compilation © 2013 FEBS.

  4. Choline acetyltransferase and organic cation transporters are responsible for synthesis and propionate-induced release of acetylcholine in colon epithelium.

    PubMed

    Bader, Sandra; Klein, Jochen; Diener, Martin

    2014-06-15

    Acetylcholine is not only a neurotransmitter, but is found in a variety of non-neuronal cells. For example, the enzyme choline acetyltransferase (ChAT), catalyzing acetylcholine synthesis, is expressed by the colonic epithelium of different species. These cells release acetylcholine across the basolateral membrane after luminal exposure to propionate, a short-chain fatty acid. The functional consequence is the induction of chloride secretion, measurable as increase in short-circuit current (Isc) in Ussing chamber experiments. It is unclear how acetylcholine is produced and released by colonic epithelium. Therefore, the aim of the present study was the identification (on mRNA and protein level) and functional characterization (in Ussing chamber experiments combined with HPLC detection of acetylcholine) of transporters/enzymes in the cholinergic system of rat colonic epithelium. Immunohistochemical staining as well as RT-PCR revealed the expression of high-affinity choline transporter, ChAT, carnitine acetyltransferase (CarAT), vesicular acetylcholine transporter (VAChT), and organic cation transporters (OCT 1, 2, 3) in colonic epithelium. In contrast to blockade of ChAT with bromoacetylcholine, inhibition of CarAT with mildronate did not inhibit the propionate-induced increase in Isc, suggesting a predominant synthesis of epithelial acetylcholine by ChAT. Although being expressed, blockade of VAChT with vesamicol was ineffective, whereas inhibition of OCTs with omeprazole and corticosterone inhibited propionate-induced Isc and the release of acetylcholine into the basolateral compartment. In summary, OCTs seem to be involved in regulated acetylcholine release by colonic epithelium, which is assumed to be involved in chemosensing of luminal short-chain fatty acids by the intestinal epithelium. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. An immunoglobulin M monoclonal antibody, recognizing a subset of acetylcholinesterase molecules from electric organs of Electrophorus and Torpedo, belongs to the HNK-1 anti-carbohydrate family.

    PubMed

    Bon, S; Méflah, K; Musset, F; Grassi, J; Massoulié, J

    1987-12-01

    An immunoglobulin M (IgM) monoclonal antibody (mAb Elec-39), obtained against asymmetric acetylcholinesterase (AChE) from Electrophorus electric organs, also reacts with a fraction of globular AChE (amphiphilic G2 form) from Torpedo electric organs. This antibody does not react with asymmetric AChE from Torpedo electric organs or with the enzyme from other tissues of Electrophorus or Torpedo. The corresponding epitope is removed by endoglycosidase F, showing that it is a carbohydrate. The subsets of Torpedo G2 that react or do not react with Elec-39 (Elec-39+ and Elec-39-) differ in their electrophoretic mobility under nondenaturing conditions; the Elec-39+ component also binds the lectins from Pisum sativum and Lens culinaris. Whereas the Elec-39- component is present at the earliest developmental stages examined, an Elec-39+ component becomes distinguishable only around the 70-mm stage. Its proportion increases progressively, but later than the rapid accumulation of the total G2 form. In immunoblots, mAb Elec-39 recognizes a number of proteins other than AChE from various tissues of several species. The specificity of Elec-39 resembles that of a family of anti-carbohydrate antibodies that includes HNK-1, L2, NC-1, NSP-4, as well as IgMs that occur in human neuropathies. Although some human neuropathy IgMs that recognize the myelin-associated glycoprotein did not react with Elec-39+ AChE, mAbs HNK-1, NC-1, and NSP-4 showed the same selectivity as Elec-39 for Torpedo G2 AChE, but differed in the formation of immune complexes.

  6. Novel immunotoxin: a fusion protein consisting of gelonin and an acetylcholine receptor fragment as a potential immunotherapeutic agent for the treatment of Myasthenia gravis.

    PubMed

    Hossann, Martin; Li, Zhuoyu; Shi, Yawei; Kreilinger, Ulrike; Büttner, Jörn; Vogel, Pia D; Yuan, Jingming; Wise, John G; Trommer, Wolfgang E

    2006-03-01

    In continuation of our attempts for antigen-specific suppression of the immune system [I.L. Urbatsch, R.K.M. Sterz, K. Peper, W.E. Trommer, Eur. J. Immunol. 23(1993) 776-779] a novel fusion protein composed of amino acids 4-181 of the extracellular domain of the alpha-subunit of the human muscle acetylcholine receptor and the plant toxin gelonin was expressed in Escherichia coli. The fusion protein formed inclusion bodies but could be solubilized in the presence of guanidinium hydrochloride. After a simple two step purification and refolding procedure, it exhibited a native structure at least in the main immunogenic region as shown by antibodies recognizing a conformational epitope. Half maximal inhibition of translation was achieved at 46 ng/ml as compared to 4.6 ng/ml for native and 2.4 for recombinant gelonin. Its use as therapeutic agent for the treatment of Myasthenia gravis was investigated in an animal model. Female Lewis rats were immunized with complete acetylcholine receptor from the electric ray Torpedo californica and developed thereafter experimental autoimmune M. gravis. Quantitative assessment of the disease was achieved by repetitive stimulation of the Nervus tibialis. Rats showed no symptoms of M. gravis, neither visually nor electrophysiologically after treatment with the fusion protein as determined one and seven weeks after the second application. This approach may also be useful for the therapy of further autoimmune diseases by substituting other autoantigens for the AchR fragment in the fusion protein.

  7. Sorting receptor Rer1 controls surface expression of muscle acetylcholine receptors by ER retention of unassembled alpha-subunits.

    PubMed

    Valkova, Christina; Albrizio, Marina; Röder, Ira V; Schwake, Michael; Betto, Romeo; Rudolf, Rüdiger; Kaether, Christoph

    2011-01-11

    The nicotinic acetylcholine receptor of skeletal muscle is composed of five subunits that are assembled in a stepwise manner. Quality control mechanisms ensure that only fully assembled receptors reach the cell surface. Here, we show that Rer1, a putative Golgi-ER retrieval receptor, is involved in the biogenesis of acetylcholine receptors. Rer1 is expressed in the early secretory pathway in the myoblast line C2C12 and in mouse skeletal muscle, and up-regulated during myogenesis. Upon down-regulation of Rer1 in C2C12 cells, unassembled acetylcholine receptor α-subunits escape from the ER and are transported to the plasma membrane and lysosomes, where they are degraded. As a result, the amount of fully assembled receptor at the cell surface is reduced. In vivo Rer1 knockdown and genetic inactivation of one Rer1 allele lead to significantly smaller neuromuscular junctions in mice. Our data show that Rer1 is a functionally important unique factor that controls surface expression of muscle acetylcholine receptors by localizing unassembled α-subunits to the early secretory pathway.

  8. Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors

    PubMed Central

    Mika, Angela; Boenisch, Marike Johanne; Hopff, David; Lüthje, Sabine

    2010-01-01

    Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2a, pmPOX2b, and pmPOX3) was carried out. Total guaiacol peroxidase activities from soluble and microsomal fractions of maize roots were compared and showed weak changes. By contrast, total plasma membrane and washed plasma membrane peroxidase activities, representing peripheral and integral membrane proteins, revealed strong changes after all of the stresses applied. A proteomic approach using 2D-PAGE analysis showed that pmPOX3 was the most abundant class III peroxidase at plasma membranes of control plants, followed by pmPOX2a >pmPOX2b >pmPOX1. The molecular mass (63 kDa) and the isoelectric point (9.5) of the pmPOX2a monomer were identified for the first time. The protein levels of all four enzymes changed in response to multiple stresses. While pmPOX2b was the only membrane peroxidase down-regulated by wounding, all four enzymes were differentially but strongly stimulated by methyl jasmonate, salicylic acid, and elicitors (Fusarium graminearum and Fusarium culmorum extracts, and chitosan) indicating their function in pathogen defence. Oxidative stress applied as H2O2 treatment up-regulated pmPOX2b >pmPOX2a, while pmPOX3 was down-regulated. Treatment with the phosphatase inhibitor chantharidin resulted in distinct responses. PMID:20032108

  9. Targeting Membrane-Bound Viral RNA Synthesis Reveals Potent Inhibition of Diverse Coronaviruses Including the Middle East Respiratory Syndrome Virus

    PubMed Central

    Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R.; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A.; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-01-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS–CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections. PMID:24874215

  10. Acetylcholine-induced current in perfused rat myoballs

    PubMed Central

    1980-01-01

    Spherical "myoballs" were grown under tissue culture conditions from striated muscle of neonatal rat thighs. The myoballs were examined electrophysiologically with a suction pipette which was used to pass current and perfuse internally. A microelectrode was used to record membrane potential. Experiments were performed with approximately symmetrical (intracellular and extracellular) sodium aspartate solutions. The resting potential, acetylcholine (ACh) reversal potential, and sodium channel reversal potential were all approximately 0 mV. ACh-induced currents were examined by use of both voltage jumps and voltage ramps in the presence of iontophoretically applied agonist. The voltage-jump relaxations had a single exponential time-course. The time constant, tau, was exponentially related to membrane potential, increasing e-fold for 81 mV hyperpolarization. The equilibrium current- voltage relationship was also approximately exponential, from -120 to +81 mV, increasing e-fold for 104 mV hyperpolarization. The data are consistent with a first-order gating process in which the channel opening rate constant is slightly voltage dependent. The instantaneous current-voltage relationship was sublinear in the hyperpolarizing direction. Several models are discussed which can account for the nonlinearity. Evidence is presented that the "selectivity filter" for the ACh channel is located near the intracellular membrane surface. PMID:7381423

  11. Biosynthesis and secretion of catalytically active acetylcholinesterase in Xenopus oocytes microinjected with mRNA from rat brain and from Torpedo electric organ.

    PubMed

    Soreq, H; Parvari, R; Silman, I

    1982-02-01

    A novel technique was developed for monitoring the level of the mRNA species that direct the synthesis of acetylcholinesterase (AcChoEase; acetylcholine acetylhydrolase, EC 3.1.1.7), using microinjected Xenopus oocytes as a translation system. When injected with poly(A)-containing RNA from whole rat brain or rat cerebellum and from electric organ of Torpedo ocellata, Xenopus oocytes synthesize and secrete catalytically active cholinesterase. The newly synthesized enzyme, which is mostly secreted into the oocytes incubation medium, appears to be primarily AcChoEase because it is inhibited by the specific inhibitor BW 284C51. The new enzymatic activity can be detected after injection of as little as 12.5 ng of poly(A)-containing RNA per oocyte, and there is a linear dependence of the oocytes' ability to form AcChoEase on the amount of injected RNA. The AcChoEase mRNA displays a tau 1/2 of about 10 +/- 3 hr in injected oocytes. The abundance of AcChoEase mRNA in the total nonfractionated mRNA injected was calculated to be ca. 1 x 10(-5), a value similar to the level of AcChoEase protein determined in rat brain. The combination of the high turnover number of AcChoEase, the efficiency of the oocyte system, and the sensitivity of the assay used thus permit the accurate monitoring of the scarce mRNA species that direct the synthesis of this enzyme.

  12. [Interaction of surface-active base with fraction of membrane-bound Williams's protons].

    PubMed

    Iaguzhinskiĭ, L S; Motovilov, K A; Volkov, E M; Eremeev, S A

    2013-01-01

    In the process of mitochondrial respiratory H(+)-pumps functioning, the fraction membrane-bound protons (R-protons), which have an excess of free energy is formed. According to R.J. Williams this fraction is included as energy source in the reaction of ATP synthesis. Previously, in our laboratory was found the formation of this fraction was found in the mitochondria and on the outer surface of mitoplast. On the mitoslast model we strictly shown that non-equilibrium R-proton fraction is localized on the surface of the inner mitochondrial membrane. In this paper a surface-active compound--anion of 2,4,6-trichloro-3-pentadecylphenol (TCP-C15) is described, which selectively interacts with the R-protons fraction in mitochondria. A detailed description of the specific interaction of the TCP-C15 with R-protons fraction in mitochondria is presented. Moreover, in this work it was found that phosphate transport system reacts with the R-protons fraction in mitochondria and plays the role of the endogenous volume regulation system of this fraction. The results of experiments are discussed in the terms of a local coupling model of the phosphorylation mechanism.

  13. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors

    PubMed Central

    Natale, Christopher A; Duperret, Elizabeth K; Zhang, Junqian; Sadeghi, Rochelle; Dahal, Ankit; O'Brien, Kevin Tyler; Cookson, Rosa; Winkler, Jeffrey D; Ridky, Todd W

    2016-01-01

    The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics. DOI: http://dx.doi.org/10.7554/eLife.15104.001 PMID:27115344

  14. Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors.

    PubMed

    Natale, Christopher A; Duperret, Elizabeth K; Zhang, Junqian; Sadeghi, Rochelle; Dahal, Ankit; O'Brien, Kevin Tyler; Cookson, Rosa; Winkler, Jeffrey D; Ridky, Todd W

    2016-04-26

    The association between pregnancy and altered cutaneous pigmentation has been documented for over two millennia, suggesting that sex hormones play a role in regulating epidermal melanocyte (MC) homeostasis. Here we show that physiologic estrogen (17β-estradiol) and progesterone reciprocally regulate melanin synthesis. This is intriguing given that we also show that normal primary human MCs lack classical estrogen or progesterone receptors (ER or PR). Utilizing both genetic and pharmacologic approaches, we establish that sex steroid effects on human pigment synthesis are mediated by the membrane-bound, steroid hormone receptors G protein-coupled estrogen receptor (GPER), and progestin and adipoQ receptor 7 (PAQR7). Activity of these receptors was activated or inhibited by synthetic estrogen or progesterone analogs that do not bind to ER or PR. As safe and effective treatment options for skin pigmentation disorders are limited, these specific GPER and PAQR7 ligands may represent a novel class of therapeutics.

  15. [Role of acetylcholine in gelsenicine-induced death in mice].

    PubMed

    Lai, Zhou-Yi; Wang, Hai-Bo; Lv, Rui-Ling; Tan, Qiu-Chan; Deng, Zhi-Qin; Wang, Yuan; Sun, Xiao-Xue; Wu, Jia-Bao; Zhu, Lin-Yan; Wang, Lei; Chen, Li-Xin; Ye, Wen-Cai; Wang, Li-Wei

    2016-06-25

    The aim of this study was to investigate the relationship between the acetylcholine concentration in the blood and gelsenicine-induced death in mice. Kunming mice were given intraperitoneal injections of normal saline, gelsenicine or different doses of acetylcholine chloride. Atropine was given to the mice which received gelsenicine or medium dose acetylcholine chloride injection. The blood was sampled immediately when the mice died or survived for 20 min after injection. The acetylcholine concentration and acetylcholinesterase activity in the blood were measured by the testing kits, and the mortality was calculated and analyzed. The results showed that half lethal dose of gelsenicine (0.15 mg/kg) reduced the acetylcholinesterase activity and increased the blood acetylcholine concentration. The blood acetylcholine concentration of the dead mice in the gelsenicine group was increased to 43.0 μg/mL (from 31.1 μg/mL in the control), which was lower than that (53.9 μg/mL) of the dead mice in the medium dose acetylcholine chloride group, but almost equal to that (42.7 μg/mL) of the survival mice in the medium dose acetylcholine chloride group. Atropine could successfully rescue the mice from acetylcholine poisoning, but its efficiency of rescuing the mice from gelsenicine intoxication was weak. These results suggest that gelsenicine can inhibit acetylcholinesterase activity and increase blood acetylcholine concentration, but the accumulation of acetylcholine may not be the only or main cause of the death induced by gelsenicine in mice.

  16. Development of an amperometric biosensor based on acetylcholine esterase covalently bound to a new support material.

    PubMed

    Khayyami, M; Pérez Pita, M T; Peña Garcia, N; Johansson, G; Danielsson, B; Larsson, P O

    1998-01-01

    A new type of amperometric biosensor based on immobilised acetylcholine esterase was designed and constructed. The enzyme was immobilised on a flow-through working electrode, which was prepared from reticulated vitreous carbon (RVC) or from a composite material consisting of RVC and superporous agarose. The sensor was operated in FIA mode using acetylthiocholine as a substrate. The sensor responded to inhibitors such as paraoxon-10(-9) mol was detected by the sensor in a non-optimised configuration. The practical lifetime of the sensor was at least 1 month.

  17. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H

  18. Acetylcholine in adrenergic terminals of the cat iris

    PubMed Central

    Ehinger, B.; Falck, B.; Persson, H.; Rosengren, A.-M.; Sporrong, B.

    1970-01-01

    1. Acetylcholine was bio-assayed in the normal cat iris, and also after selective sympathetic or parasympathetic denervation. Sympathetic denervation caused no significant change in the acetylcholine content of the cat iris, whereas selective parasympathetic denervation reduced the acetylcholine content below the level of detectability, which on the average was at about 5% of the acetylcholine content of the normal iris. 2. It is concluded that if adrenergic terminals contain any acetylcholine, it is less than what is detectable with the methods available at present, and most certainly less than 6% of the acetylcholine content of cholinergic neurones. 3. On the basis of these and other recently obtained observations, the hypothesis of Burn & Rand (1965) of a cholinergic link in the adrenergic transmission is discussed. It is proposed that it is more reasonable to suppose an interaction between peripheral adrenergic and cholinergic terminals than to presume a cholinergic mechanism within adrenergic nerve fibres. PMID:5503282

  19. Acetylcholine in adrenergic terminals of the cat iris.

    PubMed

    Ehinger, B; Falck, B; Persson, H; Rosengren, A M; Sporrong, B

    1970-08-01

    1. Acetylcholine was bio-assayed in the normal cat iris, and also after selective sympathetic or parasympathetic denervation. Sympathetic denervation caused no significant change in the acetylcholine content of the cat iris, whereas selective parasympathetic denervation reduced the acetylcholine content below the level of detectability, which on the average was at about 5% of the acetylcholine content of the normal iris.2. It is concluded that if adrenergic terminals contain any acetylcholine, it is less than what is detectable with the methods available at present, and most certainly less than 6% of the acetylcholine content of cholinergic neurones.3. On the basis of these and other recently obtained observations, the hypothesis of Burn & Rand (1965) of a cholinergic link in the adrenergic transmission is discussed. It is proposed that it is more reasonable to suppose an interaction between peripheral adrenergic and cholinergic terminals than to presume a cholinergic mechanism within adrenergic nerve fibres.

  20. Membrane Bending by Protein Crowding

    NASA Astrophysics Data System (ADS)

    Stachowiak, Jeanne

    2014-03-01

    From endosomes and synaptic vesicles to the cristae of the mitochondria and the annulus of the nuclear pore, highly curved membranes are fundamental to the structure and physiology of living cells. The established view is that specific families of proteins are able to bend membranes by binding to them. For example, inherently curved proteins are thought to impose their structure on the membrane surface, while membrane-binding proteins with hydrophobic motifs are thought to insert into the membrane like wedges, driving curvature. However, computational models have recently revealed that these mechanisms would require specialized membrane-bending proteins to occupy nearly 100% of a curved membrane surface, an improbable physiological situation given the immense density and diversity of membrane-bound proteins, and the low expression levels of these specialized proteins within curved regions of the membrane. How then does curvature arise within the complex and crowded environment of cellular membranes? Our recent work using proteins involved in clathrin-mediated endocytosis, as well as engineered protein-lipid interactions, has suggested a new hypothesis - that lateral pressure generated by collisions between membrane-bound proteins can drive membrane bending. Specifically, by correlating membrane bending with quantitative optical measurements of protein density on synthetic membrane surfaces and simple physical models of collisions among membrane-bound proteins, we have demonstrated that protein-protein steric interactions can drive membrane curvature. These findings suggest that a simple imbalance in the concentration of membrane-bound proteins across a membrane surface can drive a membrane to bend, providing an efficient mechanism by which essentially any protein can contribute to shaping membranes.

  1. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of globular forms

    PubMed Central

    1992-01-01

    We analyzed the production of Torpedo marmorata acetylcholinesterase (AChE) in transfected COS cells. We report that the presence of an aspartic acid at position 397, homologous to that observed in other cholinesterases and related enzymes (Krejci, E., N. Duval, A. Chatonnet, P. Vincens, and J. Massoulie. 1991. Proc. Natl. Acad. Sci. USA. 88:6647-6651), is necessary for catalytic activity. The presence of an asparagine in the previously reported cDNA sequence (Sikorav, J.L., E. Krejci, and J. Massoulie. 1987. EMBO (Eur. Mol. Biol. Organ.) J. 6:1865-1873) was most likely due to a cloning error (codon AAC instead of GAC). We expressed the T and H subunits of Torpedo AChE, which differ in their COOH-terminal region and correspond respectively to the collagen-tailed asymmetric forms and to glycophosphatidylinositol-anchored dimers of Torpedo electric organs, as well as a truncated T subunit (T delta), lacking most of the COOH- terminal peptide. The transfected cells synthesized similar amounts of AChE immunoreactive protein at 37 degrees and 27 degrees C. However AChE activity was only produced at 27 degrees C and, even at this temperature, only a small proportion of the protein was active. We analyzed the molecular forms of active AChE produced at 27 degrees C. The H polypeptides generated glycophosphatidylinositol-anchored dimers, resembling the corresponding natural AChE form. The cells also released non-amphiphilic dimers G2na. The T polypeptides generated a series of active forms which are not produced in Torpedo electric organs: G1a, G2a, G4a, and G4na cellular forms and G2a and G4na secreted forms. The amphiphilic forms appeared to correspond to type II forms (Bon, S., J. P. Toutant, K. Meflah, and J. Massoulie. 1988. J. Neurochem. 51:776- 785; Bon, S., J. P. Toutant, K. Meflah, and J. Massoulie. 1988. J. Neurochem. 51:786-794), which are abundant in the nervous tissue and muscles of higher vertebrates (Bon, S., T. L. Rosenberry, and J. Massoulie. 1991. Cell

  2. Improved methodology to obtain large quantities of correctly folded recombinant N-terminal extracellular domain of the human muscle acetylcholine receptor for inducing experimental autoimmune myasthenia gravis in rats

    PubMed Central

    Sun, Chenjing; Zhang, Hongliang; Xu, Jiang; Gao, Jie

    2013-01-01

    Introduction Human myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular system. Experimental autoimmune myasthenia gravis (EAMG) is a well-established animal model for MG that can be induced by active immunization with the Torpedo californica-derived acetylcholine receptor (AChR). Due to the expensive cost of purifying AChR from Torpedo californica, the development of an easier and more economical way of inducing EAMG remains critically needed. Material and methods Full-length cDNA of the human skeletal muscle AChR α1 subunit was obtained from TE671 cells. The DNA fragment encoding the extracellular domain (ECD) was then amplified by polymerase chain reaction (PCR) and inserted into pET-16b. The reconstructed plasmid was transformed into the host strain BL21(DE3)pLysS, which was derived from Escherichia coli. Isopropyl-β-D-thiogalactopyranoside (IPTG) was used to induce the expression of the N-terminal ECD. The produced protein was purified with immobilized Ni2+ affinity chromatography and refolded by dialysis. Results The recombinant protein was efficiently refolded to soluble active protein, which was verified by ELISA. After immunization with the recombinant ECD, all rats acquired clinical signs of EAMG. The titer of AChR antibodies in the serum was significantly higher in the EAMG group than in the control group, indicating successful induction of EAMG. Conclusions We describe an improved procedure for refolding recombinant ECD of human muscle AChR. This improvement allows for the generation of large quantities of correctly folded recombinant ECD of human muscle AChR, which provides for an easier and more economical way of inducing the animal model of MG. PMID:24904677

  3. Sites of electron transfer to membrane-bound copper and hydroperoxide-induced damage in the respiratory chain of Escherichia coli.

    PubMed

    Rodríguez-Montelongo, L; Farías, R N; Massa, E M

    1995-10-20

    Previous studies in Escherichia coli as a model system for peroxide toxicity (L. Rodríguez-Montelongo, L. C. De la Cruz-Rodríguez, R. N. Farías, and E. M. Massa, 1993, Biochim. Biophys. Acta 1144, 77-84) have shown that electron flow through the respiratory chain supports a membrane-associated Cu(II)/Cu(I) redox cycle involved in irreversible impairment of the respiratory system by tert-butyl hydroperoxide (t-BOOH). In this paper, E. coli mutants deficient in specific respiratory chain components have been used to determine the sites of copper reduction and the targets inactivated by t-BOOH. Two sites of electron transfer to membrane-bound copper were identified: one in the region between NADH and ubiquinone supported by NADH as electron donor and another localized between ubiquinone and the cytochromes supported by electrons coming from NADH, succinate, or D-lactate. Electron flow through the former site in the presence of t-BOOH led to inactivation of NADH dehydrogenase II, whereas electron flow through the latter site in the presence of the hydroperoxide led to damage of ubiquinone. In agreement with the above in vitro results with isolated membranes, copper-dependent inactivation of NADH dehydrogenase and ubiquinone was demonstrated in E. coli cells exposed to t-BOOH. It is proposed that the t-BOOH-induced damage is a consequence of t-butylalkoxy radical generation through a Fenton-type reaction mediated by redox cycling of membrane-bound copper at those two loci of the respiratory chain.

  4. Nicotinic acetylcholine receptor probed with a photoactivatable agonist: improved labeling specificity by addition of CeIV/glutathione. Extension to laser flash photolabeling.

    PubMed

    Grutter, T; Goeldner, M; Kotzyba-Hibert, F

    1999-06-08

    The molecular structure of Torpedo marmorata acetylcholine binding sites has been investigated previously by photoaffinity labeling. However, besides the nicotine molecule [Middleton et al. (1991) Biochemistry 30, 6987-6997], all other photosensitive probes used for this purpose interacted only with closed receptor states. In the perspective of mapping the functional activated state, we synthesized and developed a new photoactivatable agonist of nAChR capable of alkylation of the acetylcholine (ACh) binding sites, as reported previously [Kotzyba-Hibert et al. (1997) Bioconjugate Chem. 8, 472-480]. Here, we describe the setup of experimental conditions that were made in order to optimize the photolabeling reaction and in particular its specificity. We found that subsequent addition of the oxidant ceric ion (CeIV) and reduced glutathione before the photolabeling step lowered considerably nonspecific labeling (over 90% protection with d-tubocurarine) without affecting the binding properties of the ACh binding sites. As a consequence, irradiation at 360 nm for 20 min in these new conditions gave satisfactory coupling yields (7.5%). A general mechanism was proposed to explain the successive reactions occurring and their drastic effect on the specificity of the labeling reaction. Last, these incubation conditions can be extended to nanosecond pulsed laser photolysis leading to the same specific photoincorporation as for usual irradiations (8.5% coupling yield of ACh binding sites, 77% protection with carbamylcholine). Laser flash photocoupling of a diazocyclohexadienoyl probe on nAChR was achieved for the first time. Taken together, these data indicate that future investigation of the molecular dynamics of allosteric transitions occurring at the activated ACh binding sites should be possible.

  5. Ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppressing nicotinic acetylcholine receptor-ion channels in cultured bovine adrenal medullary cells.

    PubMed

    Li, Xiaojia; Toyohira, Yumiko; Horisita, Takafumi; Satoh, Noriaki; Takahashi, Keita; Zhang, Han; Iinuma, Munekazu; Yoshinaga, Yukari; Ueno, Susumu; Tsutsui, Masato; Sata, Takeyoshi; Yanagihara, Nobuyuki

    2015-12-01

    Ikarisoside A is a natural flavonol glycoside derived from plants of the genus Epimedium, which have been used in Traditional Chinese Medicine as tonics, antirheumatics, and aphrodisiacs. Here, we report the effects of ikarisoside A and three other flavonol glycosides on catecholamine secretion and synthesis in cultured bovine adrenal medullary cells. We found that ikarisoside A (1-100 μM), but not icariin, epimedin C, or epimedoside A, concentration-dependently inhibited the secretion of catecholamines induced by acetylcholine, a physiological secretagogue and agonist of nicotinic acetylcholine receptors. Ikarisoside A had little effect on catecholamine secretion induced by veratridine and 56 mM K(+). Ikarisoside A (1-100 μM) also inhibited (22)Na(+) influx and (45)Ca(2+) influx induced by acetylcholine in a concentration-dependent manner similar to that of catecholamine secretion. In Xenopus oocytes expressing α3β4 nicotinic acetylcholine receptors, ikarisoside A (0.1-100 μM) directly inhibited the current evoked by acetylcholine. It also suppressed (14)C-catecholamine synthesis and tyrosine hydroxylase activity induced by acetylcholine at 1-100 μM and 10-100 μM, respectively. The present findings suggest that ikarisoside A inhibits acetylcholine-induced catecholamine secretion and synthesis by suppression of nicotinic acetylcholine receptor-ion channels in bovine adrenal medullary cells.

  6. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE PAGES

    Thal, David M.; Sun, Bingfa; Feng, Dan; ...

    2016-03-09

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  7. Crystal structures of the M 1 and M 4 muscarinic acetylcholine receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thal, David M.; Sun, Bingfa; Feng, Dan

    Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. In this paper, we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 andmore » M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. Finally, we also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains.« less

  8. Alteration of plasma membrane-bound redox systems of iron deficient pea roots by chitosan.

    PubMed

    Meisrimler, Claudia-Nicole; Planchon, Sebastien; Renaut, Jenny; Sergeant, Kjell; Lüthje, Sabine

    2011-08-12

    Iron is essential for all living organisms and plays a crucial role in pathogenicity. This study presents the first proteome analysis of plasma membranes isolated from pea roots. Protein profiles of four different samples (+Fe, +Fe/Chitosan, -Fe, and -Fe/Chitosan) were compared by native IEF-PAGE combined with in-gel activity stains and DIGE. Using DIGE, 89 proteins of interest were detected in plasma membrane fractions. Data revealed a differential abundance of several spots in all samples investigated. In comparison to the control and -FeCh the abundance of six protein spots increased whereas 56 spots decreased in +FeCh. Altered protein spots were analyzed by MALDI-TOF-TOF mass spectrometry. Besides stress-related proteins, transport proteins and redox enzymes were identified. Activity stains after native PAGE and spectrophotometric measurements demonstrated induction of a ferric-chelate reductase (-Fe) and a putative respiratory burst oxidase homolog (-FeCh). However, the activity of the ferric-chelate reductase decreased in -Fe plants after elicitor treatment. The activity of plasma membrane-bound class III peroxidases increased after elicitor treatment and decreased under iron-deficiency, whereas activity of quinone reductases decreased mostly after elicitor treatment. Possible functions of proteins identified and reasons for a weakened pathogen response of iron-deficient plants were discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Nicotinic Acetylcholine Receptors in Sensory Cortex

    ERIC Educational Resources Information Center

    Metherate, Raju

    2004-01-01

    Acetylcholine release in sensory neocortex contributes to higher-order sensory function, in part by activating nicotinic acetylcholine receptors (nAChRs). Molecular studies have revealed a bewildering array of nAChR subtypes and cellular actions; however, there is some consensus emerging about the major nAChR subtypes and their functions in…

  10. Influence of the lipid phase state and electrostatic surface potential on the conformations of a peripherally bound membrane protein.

    PubMed

    Decca, María B; Galassi, Vanesa V; Perduca, Massimiliano; Monaco, Hugo L; Montich, Guillermo G

    2010-11-25

    Avian liver bile acid-binding protein (L-BABP) binds peripherically to anionic lipid membranes. We previously showed that in the absence of added salt the binding to 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) occurs with changes in the secondary structure, the extent of which depends on the phase state of the lipid. In the present work, we used Fourier transform infrared spectroscopy to study the conformations of L-BABP bound to lipids with phosphoglycerol and phosphatidic acid polar head groups and with different transition temperatures in an aqueous medium with high ionic strength (0.1 M NaCl). When L-BABP was bound to the lipids with saturated acyl chains, DMPG, 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG), 1,2-dimyristoyl-sn-glycero-3-phosphate (DMPA), and 1,2-dilauroyl-sn-glycero-3-phosphate (DLPA), the conformation shifted from a native-like secondary structure to an unfolded state at the temperature of lipid chain melting. The protein was in the native-like conformation when it was bound to the unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in the liquid-crystalline phase. We also measured the electrokinetic surface potential of POPG and DMPG vesicles in the gel and in the liquid-crystalline phase and the protein binding constant to these lipid membranes. We found a correlation indicating that protein unfolding in the interface was due to the increase in the electrostatic surface potential that occurs in the lipid phase transition.

  11. A specific role for septohippocampal acetylcholine in memory?

    PubMed Central

    Easton, Alexander; Douchamps, Vincent; Eacott, Madeline; Lever, Colin

    2012-01-01

    Acetylcholine has long been implicated in memory, including hippocampal-dependent memory, but the specific role for this neurotransmitter is difficult to identify in human neuropsychology. Here, we review the evidence for a mechanistic model of acetylcholine function within the hippocampus and consider its explanatory power for interpreting effects resulting from both pharmacological anticholinergic manipulations and lesions of the cholinergic input to the hippocampus in animals. We argue that these effects indicate that acetylcholine is necessary for some, but not all, hippocampal-dependent processes. We review recent evidence from lesion, pharmacological and electrophysiological studies to support the view that a primary function of septohippocampal acetylcholine is to reduce interference in the learning process by adaptively timing and separating encoding and retrieval processes. We reinterpret cholinergic-lesion based deficits according to this view and propose that acetylcholine reduces the interference elicited by the movement of salient locations between events. PMID:22884957

  12. Acetylcholine activity in selective striatal regions supports behavioral flexibility.

    PubMed

    Ragozzino, Michael E; Mohler, Eric G; Prior, Margaret; Palencia, Carlos A; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m(2) muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility.

  13. Pharmacological and ionic characterizations of the muscarinic receptors modulating (/sup 3/H)acetylcholine release from rat cortical synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, E.M.; Otero, D.H.

    The muscarinic receptors that modulate acetylcholine release from rat cortical synaptosomes were characterized with respect to sensitivity to drugs that act selectively at M1 or M2 receptor subtypes, as well as to changes in ionic strength and membrane potential. The modulatory receptors appear to be of the M2 type, since they are activated by carbachol, acetylcholine, methacholine, oxotremorine, and bethanechol, but not by pilocarpine, and are blocked by atropine, scopolamine, and gallamine (at high concentrations), but not by pirenzepine or dicyclomine. The ED50S for carbachol, acetylcholine, and oxotremorine are less than 10 microM, suggesting that the high affinity state ofmore » the receptor is functional. High ionic strength induced by raising the NaCl concentration has no effect on agonist (oxotremorine) potency, but increases the efficacy of this compound, which disagrees with receptor-binding studies. On the other hand, depolarization with either KCl or with veratridine (20 microM) reduces agonist potencies by approximately an order of magnitude, suggesting a potential mechanism for receptor regulation.« less

  14. Characterization of soluble and membrane-bound alkaline phosphatase in Nilaparvata lugens and their potential relation to development and insecticide resistance.

    PubMed

    Wang, Zengxia; Liu, Shuhua; Yang, Baojun; Liu, Zewen

    2011-09-01

    Two forms (soluble and membrane-bound) of alkaline phosphatases (ALPs) were found in the brown planthopper, Nilaparvata lugens. In order to further study ALPs in N. lugens, two putative ALP genes (Nl-ALP1 and Nl-ALP2) were identified in this pest. Both Nl-ALP1 and Nl-ALP2 show approximately the same degree of sequence identity (40-50%) to other insect soluble and membrane-bound forms of ALP. Correlation of ALP activity and mRNA levels at different developmental stages, or following application of 20-hydroxyecdysone (20E) and insecticide fenvalerate, suggests that Nl-ALP1 and Nl-ALP2 might encode a soluble (sALP) and a membrane-bound ALP (mALP), respectively. Nl-ALP1-specific antibody Nl1-I detected only a specific band in soluble protein preparations and Nl-ALP2 specific antibody Nl2-I only detected a specific band in insoluble protein preparations, which provided conclusive linkages between Nl-ALP1 and a sALP and between Nl-ALP2 and a m ALP. Then, Nl-ALP1 was denoted as Nl-sALP for a sALP and Nl-ALP2 was denoted as Nl-mALP for a mALP. Only sALP activity and Nl-sALP mRNA level were induced by 20E and fenvalerate, which was confirmed by the density of specific band detected by Nl1-I in Sus strain with or without fenvalerate treatment. Additionally, the sALP activity, as well as Nl-sALP mRNA level, was significantly higher in a fenvalerate resistant population, compared with Sus strain. These results indicate that the sALP is more responsive to chemical stimulus, such as hormone and insecticide, and might play dual roles in development and insecticide tolerance. © 2011 Wiley Periodicals, Inc.

  15. General anaesthetics and the acetylcholine-sensitivity of cortical neurons.

    PubMed Central

    Smaje, J C

    1976-01-01

    1The effects of general anaesthetics on neuronal responses to iontophoretically-applied acetylcholine have been examined in slices of guinea-pig olfactory cortex maintained in vitro. 2 Acetylcholine excited 61% of the prepiriform neurones tested. The excitation was blocked by atropine, but not by dihydro-beta-erythroidine or gallamine. 3 Alphaxalone reversibly depressed the acetylcholine-sensitivity of prepiriform neurones. Pentobarbitone did not consistently depress the acetylcholine sensitivity of these cells. 4 Ether, methoxyflurane, trichloroethylene and halothane caused a dose-related augmentation of acetylcholine-induced firing. 5 These results show that general anaesthetics do not necessarily depress the sensitivity of nerve cells to all excitatory substances and that different anaesthetics may affect a particular excitatory process in various ways. PMID:990586

  16. Three-Dimensional Geometric Modeling of Membrane-bound Organelles in Ventricular Myocytes: Bridging the Gap between Microscopic Imaging and Mathematical Simulation

    PubMed Central

    Yu, Zeyun; Holst, Michael J.; Hayashi, Takeharu; Bajaj, Chandrajit L.; Ellisman, Mark H.; McCammon, J. Andrew; Hoshijima, Masahiko

    2009-01-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca2+-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca2+ mobilization in cardiomyocytes. PMID:18835449

  17. Three-dimensional geometric modeling of membrane-bound organelles in ventricular myocytes: bridging the gap between microscopic imaging and mathematical simulation.

    PubMed

    Yu, Zeyun; Holst, Michael J; Hayashi, Takeharu; Bajaj, Chandrajit L; Ellisman, Mark H; McCammon, J Andrew; Hoshijima, Masahiko

    2008-12-01

    A general framework of image-based geometric processing is presented to bridge the gap between three-dimensional (3D) imaging that provides structural details of a biological system and mathematical simulation where high-quality surface or volumetric meshes are required. A 3D density map is processed in the order of image pre-processing (contrast enhancement and anisotropic filtering), feature extraction (boundary segmentation and skeletonization), and high-quality and realistic surface (triangular) and volumetric (tetrahedral) mesh generation. While the tool-chain described is applicable to general types of 3D imaging data, the performance is demonstrated specifically on membrane-bound organelles in ventricular myocytes that are imaged and reconstructed with electron microscopic (EM) tomography and two-photon microscopy (T-PM). Of particular interest in this study are two types of membrane-bound Ca(2+)-handling organelles, namely, transverse tubules (T-tubules) and junctional sarcoplasmic reticulum (jSR), both of which play an important role in regulating the excitation-contraction (E-C) coupling through dynamic Ca(2+) mobilization in cardiomyocytes.

  18. Reduction of Mitochondria-Endoplasmic Reticulum Interactions by Acetylcholine Protects Human Umbilical Vein Endothelial Cells From Hypoxia/Reoxygenation Injury.

    PubMed

    He, Xi; Bi, Xue-Yuan; Lu, Xing-Zhu; Zhao, Ming; Yu, Xiao-Jiang; Sun, Lei; Xu, Man; Wier, W Gil; Zang, Wei-Jin

    2015-07-01

    We explored the role of endoplasmic reticulum (ER)-mitochondria Ca(2+) cross talk involving voltage-dependent anion channel-1 (VDAC1)/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 in endothelial cells during hypoxia/reoxygenation (H/R), and investigated the protective effects of acetylcholine. Acetylcholine treatment during reoxygenation prevented intracellular and mitochondrial Ca(2+) increases and alleviated ER Ca(2+) depletion during H/R in human umbilical vein endothelial cells. Consequently, acetylcholine enhanced mitochondrial membrane potential and inhibited proapoptotic cascades, thereby reducing cell death and preserving endothelial ultrastructure. This effect was likely mediated by the type-3 muscarinic acetylcholine receptor and the phosphatidylinositol 3-kinase/Akt pathway. In addition, interactions among members of the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex were increased after H/R and were associated with mitochondrial Ca(2+) overload and cell death. Inhibition of the partner of the Ca(2+) channeling complex (VDAC1 siRNA) or a reduction in ER-mitochondria tethering (mitofusin 2 siRNA) prevented the increased protein interaction within the complex and reduced mitochondrial Ca(2+) accumulation and subsequent endothelial cell death after H/R. Intriguingly, acetylcholine could modulate ER-mitochondria Ca(2+) cross talk by inhibiting the VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex and mitofusin 2 expression. Phosphatidylinositol 3-kinase siRNA diminished acetylcholine-mediated inhibition of mitochondrial Ca(2+) overload and VDAC1/glucose-regulated protein 75/inositol 1,4,5-trisphosphate receptor 1 complex formation induced by H/R. Our data suggest that ER-mitochondria interplay plays an important role in reperfusion injury in the endothelium and may be a novel molecular target for endothelial protection. Acetylcholine attenuates

  19. Guidelines for standard preclinical experiments in the mouse model of myasthenia gravis induced by acetylcholine receptor immunization.

    PubMed

    Tuzun, Erdem; Berrih-Aknin, Sonia; Brenner, Talma; Kusner, Linda L; Le Panse, Rozen; Yang, Huan; Tzartos, Socrates; Christadoss, Premkumar

    2015-08-01

    Myasthenia gravis (MG) is an autoimmune disorder characterized by generalized muscle weakness due to neuromuscular junction (NMJ) dysfunction brought by acetylcholine receptor (AChR) antibodies in most cases. Although steroids and other immunosuppressants are effectively used for treatment of MG, these medications often cause severe side effects and a complete remission cannot be obtained in many cases. For pre-clinical evaluation of more effective and less toxic treatment methods for MG, the experimental autoimmune myasthenia gravis (EAMG) induced by Torpedo AChR immunization has become one of the standard animal models. Although numerous compounds have been recently proposed for MG mostly by using the active immunization EAMG model, only a few have been proven to be effective in MG patients. The variability in the experimental design, immunization methods and outcome measurements of pre-clinical EAMG studies make it difficult to interpret the published reports and assess the potential for application to MG patients. In an effort to standardize the active immunization EAMG model, we propose standard procedures for animal care conditions, sampling and randomization of mice, experimental design and outcome measures. Utilization of these standard procedures might improve the power of pre-clinical EAMG experiments and increase the chances for identifying promising novel treatment methods that can be effectively translated into clinical trials for MG. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. New low-flux mixed matrix membranes that offer superior removal of protein-bound toxins from human plasma

    NASA Astrophysics Data System (ADS)

    Pavlenko, Denys; van Geffen, Esmée; van Steenbergen, Mies J.; Glorieux, Griet; Vanholder, Raymond; Gerritsen, Karin G. F.; Stamatialis, Dimitrios

    2016-10-01

    Hemodialysis is a widely available and well-established treatment for patients with End Stage Renal Disease (ESRD). However, although life-sustaining, patient mortality rates are very high. Several recent studies corroborated the link between dialysis patients’ outcomes and elevated levels of protein-bound uremic toxins (PBUT) that are poorly removed by conventional hemodialysis. Therefore, new treatments are needed to improve their removal. Recently, our group showed that the combination of dialysis and adsorption on one membrane, the mixed matrix membrane (MMM), can effectively remove those toxins from human plasma. However, these first MMMs were rather large in diameter and their mass transport characteristics needed improvement before application in the clinical setting. Therefore, in this study we developed a new generation of MMMs that have a smaller diameter and optimized characteristics offering superior ability in removing the PBUT indoxyl sulfate (IS) and p-cresyl sulfate (pCS) in comparison to first generation MMMs (30 and 125% respectively), as well as, a commercial dialysis membrane (more than 100% better removal).

  1. Acetylcholine Activity in Selective Striatal Regions Supports Behavioral Flexibility

    PubMed Central

    Ragozzino, Michael E.; Mohler, Eric G.; Prior, Margaret; Palencia, Carlos A.; Rozman, Suzanne

    2009-01-01

    Daily living often requires individuals to flexibly respond to new circumstances. There is considerable evidence that the striatum is part of a larger neural network that supports flexible adaptations. Cholinergic interneurons are situated to strongly influence striatal output patterns which may enable flexible adaptations. The present experiments investigated whether acetylcholine actions in different striatal regions support behavioral flexibility by measuring acetylcholine efflux during place reversal learning. Acetylcholine efflux selectively increased in the dorsomedial striatum, but not dorsolateral or ventromedial striatum during place reversal learning. In order to modulate the M2-class of autoreceptors, administration of oxotremorine sesquifumurate (100 nM) into the dorsomedial striatum, concomitantly impaired reversal learning and an increase in acetylcholine output. These effects were reversed by the m2 muscarinic receptor antagonist, AF-DX-116 (20 nM). The effects of oxotremorine sesquifumurate and AF-DX-116 on acetylcholine efflux were selective to behaviorally-induced changes as neither treatment affected acetylcholine output in a resting condition. In contrast to reversal learning, acetylcholine efflux in the dorsomedial striatum did not change during place acquisition. The results reveal an essential role for cholinergic activity and define its locus of control to the dorsomedial striatum in cognitive flexibility. PMID:18845266

  2. Acetylcholine receptor antibody

    MedlinePlus

    ... found in the blood of most people with myasthenia gravis . The antibody affects a chemical that sends signals ... Performed This test is used to help diagnose myasthenia gravis . Normal Results Normally, there is no acetylcholine receptor ...

  3. Albumin solder covalently bound to a polymer membrane: New approach to improve binding strength in laser tissue soldering in-vitro.

    PubMed

    Hiebl, B; Ascher, L; Luetzow, K; Kratz, K; Gruber, C; Mrowietz, C; Nehring, M E; Lendlein, A; Franke, R-P; Jung, F

    2018-01-01

    Laser tissue soldering (LTS) based on indocyanine green (ICG)-mediated heat-denaturation of proteins might be a promising alternative technique for micro-suturing, but up to now the problem of too weak shear strength of the solder welds in comparison to sutures is not solved. Earlier reports gave promising results showing that solder supported by carrier materials can enhance the cohesive strength of the liquid solder. In these studies, the solder was applied to the carriers by dip coating. Higher reliability of the connection between the solder and the carrier material is expected when the solder is bound covalently to the carrier material. In the present study a poly(ether imide) (PEI) membrane served as carrier material and ICG-supplemented albumin as solder substrate. The latter was covalently coupled to the carrier membrane under physiological conditions to prevent structural protein changes. As laser source a diode continuous-wave laser emitting at 808 nm with intensities between 250 mW and 1500 mW was utilized. The albumin functionalized carrier membrane was placed onto the tunica media of explanted pig thoracic aortae forming an overlapping area of approximately 0.5×0.5 cm2. All tests were performed in a dry state to prevent laser light absorption by water. Infrared spectroscopy, spectro-photometrical determination of the secondary and primary amine groups after acid orange II staining, contact angle measurements, and atomic force microscopy proved the successful functionalization of the PEI membrane with albumin. A laser power of 450 mW LTS could generate a membrane-blood vessel connection which was characterized by a shear strength of 0.08±0.002 MPa, corresponding to 15% of the tensile strength of the native blood vessel. Theoretically, an overlapping zone of 4.1 mm around the entire circumference of the blood vessel could have provided shear strength of the PEI membrane-blood vessel compound identical to the tensile strength of the native

  4. Autophagosomal membranes assemble at ER-plasma membrane contact sites.

    PubMed

    Nascimbeni, Anna Chiara; Codogno, Patrice; Morel, Etienne

    2017-01-01

    The biogenesis of autophagosome, the double membrane bound organelle related to macro-autophagy, is a complex event requiring numerous key-proteins and membrane remodeling events. Our recent findings identify the extended synaptotagmins, crucial tethers of Endoplasmic Reticulum-plasma membrane contact sites, as key-regulators of this molecular sequence.

  5. Voltage dependence of acetylcholine receptor channel gating in rat myoballs

    PubMed Central

    1992-01-01

    Whole-cell currents from nicotinic acetylcholine receptor (AChR) channels were studied in rat myoballs using a light-activated agonist to determine the voltage dependence of the macroscopic opening and closing rate constants. Myoballs were bathed in a solution containing a low concentration of the inactive isomer of the photoisomerizable azobenzene derivative, cis-Bis-Q. A light flash was then presented to produce a known concentration jump of agonist, trans-Bis-Q, across a wide range of membrane potentials in symmetrical solutions (NaCl or CsCl on both sides) or asymmetrical solutions (NaCl in the bath and CsCl in the pipette). At the low agonist concentration used in this study, the reciprocal of the macroscopic time constants gives an unambiguous measure of the effective closing rate. It showed an exponential decrease with membrane hyperpolarization between +20 and - 100 mV, but tended to level off at more depolarized and at more hyperpolarized membrane potentials. The relative effective opening rate was derived from the steady-state conductance, the single-channel conductance, and the apparent closing rate; it decreased sharply in the depolarizing region and tended to level off and then turn up in the hyperpolarizing region. The two effective rate constants were shown to depend on the first, second, and third power of membrane potential. PMID:1460456

  6. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    PubMed Central

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-01-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience. PMID:26442999

  7. Enzyme-linked DNA dendrimer nanosensors for acetylcholine.

    PubMed

    Walsh, Ryan; Morales, Jennifer M; Skipwith, Christopher G; Ruckh, Timothy T; Clark, Heather A

    2015-10-07

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  8. Enzyme-linked DNA dendrimer nanosensors for acetylcholine

    NASA Astrophysics Data System (ADS)

    Walsh, Ryan; Morales, Jennifer M.; Skipwith, Christopher G.; Ruckh, Timothy T.; Clark, Heather A.

    2015-10-01

    It is currently difficult to measure small dynamics of molecules in the brain with high spatial and temporal resolution while connecting them to the bigger picture of brain function. A step towards understanding the underlying neural networks of the brain is the ability to sense discrete changes of acetylcholine within a synapse. Here we show an efficient method for generating acetylcholine-detecting nanosensors based on DNA dendrimer scaffolds that incorporate butyrylcholinesterase and fluorescein in a nanoscale arrangement. These nanosensors are selective for acetylcholine and reversibly respond to levels of acetylcholine in the neurophysiological range. This DNA dendrimer architecture has the potential to overcome current obstacles to sensing in the synaptic environment, including the nanoscale size constraints of the synapse and the ability to quantify the spatio-temporal fluctuations of neurotransmitter release. By combining the control of nanosensor architecture with the strategic placement of fluorescent reporters and enzymes, this novel nanosensor platform can facilitate the development of new selective imaging tools for neuroscience.

  9. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine.

    PubMed

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M; DeSimone, John A; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol.

  10. Nicotinic Acetylcholine Receptor (nAChR) Dependent Chorda Tympani Taste Nerve Responses to Nicotine, Ethanol and Acetylcholine

    PubMed Central

    Ren, Zuo Jun; Mummalaneni, Shobha; Qian, Jie; Baumgarten, Clive M.; DeSimone, John A.; Lyall, Vijay

    2015-01-01

    Nicotine elicits bitter taste by activating TRPM5-dependent and TRPM5-independent but neuronal nAChR-dependent pathways. The nAChRs represent common targets at which acetylcholine, nicotine and ethanol functionally interact in the central nervous system. Here, we investigated if the nAChRs also represent a common pathway through which the bitter taste of nicotine, ethanol and acetylcholine is transduced. To this end, chorda tympani (CT) taste nerve responses were monitored in rats, wild-type mice and TRPM5 knockout (KO) mice following lingual stimulation with nicotine free base, ethanol, and acetylcholine, in the absence and presence of nAChR agonists and antagonists. The nAChR modulators: mecamylamine, dihydro-β-erythroidine, and CP-601932 (a partial agonist of the α3β4* nAChR), inhibited CT responses to nicotine, ethanol, and acetylcholine. CT responses to nicotine and ethanol were also inhibited by topical lingual application of 8-chlorophenylthio (CPT)-cAMP and loading taste cells with [Ca2+]i by topical lingual application of ionomycin + CaCl2. In contrast, CT responses to nicotine were enhanced when TRC [Ca2+]i was reduced by topical lingual application of BAPTA-AM. In patch-clamp experiments, only a subset of isolated rat fungiform taste cells exposed to nicotine responded with an increase in mecamylamine-sensitive inward currents. We conclude that nAChRs expressed in a subset of taste cells serve as common receptors for the detection of the TRPM5-independent bitter taste of nicotine, acetylcholine and ethanol. PMID:26039516

  11. Local induction of acetylcholine receptor clustering in myotube cultures using microfluidic application of agrin.

    PubMed

    Tourovskaia, Anna; Kosar, T Fettah; Folch, Albert

    2006-03-15

    During neuromuscular synaptogenesis, the exchange of spatially localized signals between nerve and muscle initiates the coordinated focal accumulation of the acetylcholine (ACh) release machinery and the ACh receptors (AChRs). One of the key first steps is the release of the proteoglycan agrin focalized at the axon tip, which induces the clustering of AChRs on the postsynaptic membrane at the neuromuscular junction. The lack of a suitable method for focal application of agrin in myotube cultures has limited the majority of in vitro studies to the application of agrin baths. We used a microfluidic device and surface microengineering to focally stimulate muscle cells with agrin at a small portion of their membrane and at a time and position chosen by the user. The device is used to verify the hypothesis that focal application of agrin to the muscle cell membrane induces local aggregation of AChRs in differentiated C2C12 myotubes.

  12. Expression of membrane-bound mucins in human nasal mucosa: different patterns for MUC4 and MUC16.

    PubMed

    Woo, Hyun-Jae; Bae, Chang Hoon; Song, Si-Youn; Lee, Heung-Man; Kim, Yong-Dae

    2010-06-01

    To acquire basic information concerning the function of the membrane-bound mucin MUC16 in nasal mucosa compared with the best-characterized membrane-bound mucin, MUC4. In vitro study using semiquantatitive reverse transcription-polymerase chain reaction analysis and immunoassay. Yeungnam University College of Medicine. We examined the nasal polyps obtained during endoscopic sinus surgery in 10 patients, the normal ethmoid sinus mucosa obtained from 10 patients, and human nasal polyp epithelial (HNPE) cells. Gene expression of MUC4 and MUC16 in nasal polyps and normal nasal mucosa. In addition, we evaluated the effect of 4 physiologically relevant agents, including retinoic acid, interleukin 1beta, phorbol 12-myristate 13-acetate (PMA), and dexamethasone, on the expression of MUC4 and MUC16 in HNPE cells at the gene and protein levels. In nasal polyps, MUC4 was upregulated compared with normal nasal mucosa (P = .009), whereas MUC16 expression did not differ between nasal polyps and normal nasal mucosa. Retinoic acid and interleukin 1beta increased MUC4 expression at the gene and protein level in HNPE cells, whereas MUC16 expression was not affected. Unlike retinoic acid and interleukin 1beta, PMA and dexamethasone increased MUC16 expression, whereas they had no significant effect on MUC4 expression. Expression of MUC4 and MUC16 are regulated differently in nasal mucosa. Dexamethasone and PMA are potent mediators for the expression of MUC16 in nasal polyps.

  13. Membrane-bound (MUC1) and secretory (MUC2, MUC3, and MUC4) mucin gene expression in human lung cancer.

    PubMed

    Nguyen, P L; Niehans, G A; Cherwitz, D L; Kim, Y S; Ho, S B

    1996-01-01

    Abnormalities of mucin-type glycoproteins have been described in lung cancers, but their molecular basis is unknown. In this study, mucin-core-peptide-specific antibodies and cDNA probes were used to determine the relative expression of mucin genes corresponding to one membrane-bound mucin (MUC1), two intestinal mucins (MUC2 and MUC3), and one tracheobronchial mucin (MUC4) in normal (nonneoplastic) lung, and in lung neoplasms. Normal lung tissues exhibited a distinct pattern of mucin gene expression, with high levels of MUC1 and MUC4 mRNA and low to absent levels of MUC2 and MUC3 mucin immunoreactivity and mRNA. In contrast, lung adenocarcinomas, especially well-differentiated cancers, exhibited increased MUC1, MUC3, and MUC4 mRNA levels. Lung squamous-cell, adenosquamous, and large-cell carcinomas were characterized by increased levels of MUC4 mucin only. We conclude that the expression of one membrane-bound and several secretory-type mucins is independently regulated and markedly altered in lung neoplasms. The frequent occurrence of increased MUC4 transcripts in a variety of non-small-cell lung cancers indicates the potential importance of this type of mucin in lung cancer biology.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, J.V.; Lukas, R.J.; Bennett, E.L.

    The agonist binding affinity of nicotinic acetylcholine receptor (nAChR) from Torpedo californica electroplax, as inferred from ability of agonist to inhibit specific curaremimetic neurotoxin binding to nAChR, is sensitive to the duration of exposure to agonist. The concentration of carbachol necessary to prevent one-half of toxin binding over a 30 min incubation with nAChR (K/sub 30/) is 10 ..mu..M when toxin and carbachol are simultaneously added to membrane-bound nAChR, and 3 ..mu..M when nAChR are pretreated with carbachol for 30 min prior to the addition of toxin. These alterations in agonist affinity may be mimicked by modification of nAChR thiolmore » groups. Affinity of nAChR for carbachol is decreased following treatment with dithiothreitol (DTT). Dithio-bis-nitrobenzoic acid treatment of DTT-reduced membranes yields K/sub 30/ values of 5 ..mu..M for carbachol, while N-ethylmaleimide treatment of DTT-reduced nAChR produces nAChR with reduced affinity for carbachol, reflected to K/sub 30/ values of about 400 ..mu..M. In the absence of Ca/sup + +/, K/sub 30/ values for carbachol binding to native and DTT-reduced nAChR are diminished 3 to 6 fold. These affinity alterations are not observed with d-tubocurarine (antagonist) binding to nAChR. Thus, Ca/sup + +/ and the oxidation state of nAChR thiols appear to affect the affinity of nAChR for agonists (but not antagonists), and may therefore be related to agonist-mediated events in receptor activation and/or desensitization.« less

  15. Structural insights into the mechanism of activation of the TRPV1 channel by a membrane-bound tarantula toxin

    PubMed Central

    Bae, Chanhyung; Anselmi, Claudio; Kalia, Jeet; Jara-Oseguera, Andres; Schwieters, Charles D; Krepkiy, Dmitriy; Won Lee, Chul; Kim, Eun-Hee; Kim, Jae Il; Faraldo-Gómez, José D; Swartz, Kenton J

    2016-01-01

    Venom toxins are invaluable tools for exploring the structure and mechanisms of ion channels. Here, we solve the structure of double-knot toxin (DkTx), a tarantula toxin that activates the heat-activated TRPV1 channel. We also provide improved structures of TRPV1 with and without the toxin bound, and investigate the interactions of DkTx with the channel and membranes. We find that DkTx binds to the outer edge of the external pore of TRPV1 in a counterclockwise configuration, using a limited protein-protein interface and inserting hydrophobic residues into the bilayer. We also show that DkTx partitions naturally into membranes, with the two lobes exhibiting opposing energetics for membrane partitioning and channel activation. Finally, we find that the toxin disrupts a cluster of hydrophobic residues behind the selectivity filter that are critical for channel activation. Collectively, our findings reveal a novel mode of toxin-channel recognition that has important implications for the mechanism of thermosensation. DOI: http://dx.doi.org/10.7554/eLife.11273.001 PMID:26880553

  16. Axon Response to Guidance Cues Is Stimulated by Acetylcholine in Caenorhabditis elegans

    PubMed Central

    Xu, Yan; Ren, Xing-Cong; Quinn, Christopher C.; Wadsworth, William G.

    2011-01-01

    Gradients of acetylcholine can stimulate growth cone turning when applied to neurons grown in culture, and it has been suggested that acetylcholine could act as a guidance cue. However, the role acetylcholine plays in directing axon migrations in vivo is not clear. Here, we show that acetylcholine positively regulates signaling pathways that mediate axon responses to guidance cues in Caenorhabditis elegans. Mutations that disrupt acetylcholine synthesis, transportation, and secretion affect circumferential axon guidance of the AVM neuron and in these mutants exogenously supplied acetylcholine improves AVM circumferential axon guidance. These effects are not observed for the circumferential guidance of the DD and VD motor neuron axons, which are neighbors of the AVM axon. Circumferential guidance is directed by the UNC-6 (netrin) and SLT-1 (slit) extracellular cues, and exogenously supplied acetylcholine can improve AVM axon guidance in mutants when either UNC-6– or SLT-1–induced signaling is disrupted, but not when both signaling pathways are perturbed. Not in any of the mutants does exogenously supplied acetylcholine improve DD and VD axon guidance. The ability of acetylcholine to enhance AVM axon guidance only in the presence of either UNC-6 or SLT-1 indicates that acetylcholine potentiates UNC-6 and SLT-1 guidance activity, rather than acting itself as a guidance cue. Together, our results show that for specific neurons acetylcholine plays an important role in vivo as a modulator of axon responses to guidance cues. PMID:21868605

  17. Acetylcholine-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia.

    PubMed Central

    Fieber, L A; Adams, D J

    1991-01-01

    1. The properties of acetylcholine (ACh)-activated ion channels of parasympathetic neurones from neonatal rat cardiac ganglia grown in tissue culture were examined using patch clamp recording techniques. Membrane currents evoked by ACh were mimicked by nicotine, attenuated by neuronal bungarotoxin, and unaffected by atropine, suggesting that the ACh-induced currents are mediated by nicotinic receptor activation. 2. The current-voltage (I-V) relationship for whole-cell ACh-evoked currents exhibited strong inward rectification and a reversal (zero current) potential of -3 mV (NaCl outside, CsCl inside). The rectification was not alleviated by changing the main permeant cation or by removal of divalent cations from the intracellular or extracellular solutions. Unitary ACh-activated currents exhibited a linear I-V relationship with slope conductances of 32 pS in cell-attached membrane patches and 38 pS in excised membrane patches with symmetrical CsCl solutions. 3. Acetylcholine-induced currents were reversibly inhibited in a dose-dependent manner by the ganglionic antagonists, mecamylamine (Kd = 37 nM) and hexamethonium (IC50 approximately 1 microM), as well as by the neuromuscular relaxant, d-tubocurarine (Kd = 3 microM). Inhibition of ACh-evoked currents by hexamethonium could not be described by a simple blocking model for drug-receptor interaction. 4. The amplitude of the ionic current through the open channel was dependent on the extracellular Na+ concentration. The direction of the shift in reversal potential upon replacement of NaCl by mannitol indicates that the neuronal nicotinic receptor channel is cation selective and the magnitude suggests a high cation to anion permeability ratio. The cation permeability (PX/PNa) followed the ionic selectivity sequence Cs+ (1.06) greater than Na+ (1.0) greater than Ca2+ (0.93). Anion substitution experiments showed a relative anion permeability, PCl/PNa less than or equal to 0.05. 5. The nicotinic ACh-activated channels

  18. Local anaesthetics transiently block currents through single acetylcholine-receptor channels.

    PubMed Central

    Neher, E; Steinbach, J H

    1978-01-01

    1. Single channel currents through acetylcholine receptor channels (ACh channels) were recorded at chronically denervated frog muscle extrajunctional membranes in the absence and presence of the lidocaine derivatives QX-222 and QX-314. 2. The current wave forms due to the opening and closing of single ACh channels (activated by suberyldicholine) normally are square pulses. These single pulses appear to be chopped into bursts of much shorter pulses, when the drug QX-222 is present in addition to the agonist. 3. The mean duration of the bursts is comparable to or longer than the normal channel open time, and increases with increasing drug concentration. 4. The duration of the short pulses within a burst decreases with increasing drug concentration. 5. It is concluded that drug molecules reversibly block open end-plate channels and that the flickering within a burst represents this fast, repeatedly occurring reaction. 6. The voltage dependence of the reaction rates involved, suggested that the site of the blocking reaction is in the centre of the membrane, probably inside the ionic channel. PMID:306437

  19. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo

    PubMed Central

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-01-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible. PMID:21887044

  20. Organophosphate acetylcholine esterase inhibitor poisoning from a home-made shampoo.

    PubMed

    Sadaka, Yair; Broides, Arnon; Tzion, Raffi Lev; Lifshitz, Matitiahu

    2011-07-01

    Organophosphate acetylcholine esterase inhibitor poisoning is a major health problem in children. We report an unusual cause of organophosphate acetylcholine esterase inhibitor poisoning. Two children were admitted to the pediatric intensive care unit due to organophosphate acetylcholine esterase inhibitor poisoning after exposure from a home-made shampoo that was used for the treatment of head lice. Owing to no obvious source of poisoning, the diagnosis of organophosphate acetylcholine esterase inhibitor poisoning in one of these patients was delayed. Both patients had an uneventful recovery. Organophosphate acetylcholine esterase inhibitor poisoning from home-made shampoo is possible. In cases where the mode of poisoning is unclear, direct questioning about the use of home-made shampoo is warranted, in these cases the skin and particularly the scalp should be rinsed thoroughly as soon as possible.

  1. Autoradiographic identification of acetylcholine in the rabbit retina

    PubMed Central

    1979-01-01

    Rabbit retinas were studied in vitro under conditions known to maintain their physiological function. Retinas incubated in the presence of [3H]choline synthesized substantial amounts of both [3H]phosphorylcholine and [3H]acetylcholine. With time, [3H]phosphorylcholine proceeded into phospholipids, primarily phosphatidylcholine. Retinas pulse-labeled by a 15-min exposure to 0.3 microM [3H]choline were incubated for a subsequent hour under chase conditions designed either to retain newly synthesized acetylcholine within synapses or to promote its release. At the end of this time the two groups of retinas were found to contain equal amounts of radioactivity in the phospholipid pathway, but only the retinas incubated under the acetylcholine-protecting conditions contained [3H]acetylcholine. Freeze-dried, vacuum-embedded tissue from each retina was autoradiographed on dry emulsion. All retinas showed silver grains over the photoreceptor cells and faint labeling of all ganglion cells. In the retinas that contained [3H]acetylcholine, silver grains also accumulated densely over a few cells with the position of amacrine cells, over a subset of the cells of the ganglion cell layer, and in two bands over the inner plexiform layer. Fixation of the retina with aqueous osmium tetroxide retained only the radioactive compounds located in the photoreceptor and ganglion cells. Sections from freeze- dried tissue lost their water-soluble choline metabolites when exposed to water, and autoradiography of such sections again revealed radioactivity primarily in the photoreceptor and ganglion cells. Radioactive compounds extracted from the sections were found to faithfully reflect those present in the tissue before processing; analysis of the compounds eluted from sections microdissected along the outer plexiform layer showed [3H]acetylcholine to have been synthesized only by cells of the inner retina. Taken together, these results indicate that the photoreceptor and ganglion cells are

  2. Visualization and functional testing of acetylcholine receptor-like molecules in cochlear outer hair cells.

    PubMed

    Plinkert, P K; Gitter, A H; Zimmermann, U; Kirchner, T; Tzartos, S; Zenner, H P

    1990-02-01

    The efferent nerve endings at outer hair cells (OHCs) have been suggested to regulate active mechanical processes in the cochlea. The discovery of acetylcholine (ACh)-producing and -degrading enzymes in these synapses gave rise to the speculation that ACh might be one of the efferent transmitters. However, there has as yet been no identification and characterization of any corresponding receptor in OHCs which is required for further clarification of this question. In the present paper existence, location and first characterization of acetylcholine receptors (AChRs) in OHCs are reported. Using two anti-AChR monoclonal antibodies, AChR epitopes were found forming a cup at the basal end of the OHCs opposite to the efferent nerve endings. Furthermore, the studied molecules could be shown to extend through the cell membrane. In addition, the denervated OHC AChR-epitopes seem to move by lateral diffusion. Application of Carbachol and ACh to the basal pole of OHCs induced a weak, reversible cell contraction. Pharmacological controls revealed, that hte motile responses were mediated by the AChRs.

  3. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta

    PubMed Central

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. l-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase. PMID:26273653

  4. Lipid Emulsion Attenuates Acetylcholine-Induced Relaxation in Isolated Rat Aorta.

    PubMed

    Ok, Seong-Ho; Lee, Soo Hee; Yu, Jongsun; Park, Jungchul; Shin, Il-Woo; Lee, Youngju; Cho, Hyunhoo; Choi, Mun-Jeoung; Baik, Jiseok; Hong, Jeong-Min; Han, Jeong Yeol; Lee, Heon Keun; Chung, Young-Kyun; Sohn, Ju-Tae

    2015-01-01

    We investigated the effect of Lipofundin MCT/LCT and Intralipid on acetylcholine-induced nitric oxide- (NO-) mediated relaxation in rat aorta to determine which lipid emulsion (LE) is more potent in terms of inhibition of NO-induced relaxation. Dose-response curves of responses induced by acetylcholine, the calcium ionophore A23187, and sodium nitroprusside were generated using isolated rat aorta with or without LE. The effect of Lipofundin MCT/LCT on acetylcholine-induced endothelial nitric oxide synthase (eNOS) phosphorylation in human umbilical vein endothelial cells (HUVECs) was investigated using western blotting. Lipofundin MCT/LCT (0.1 and 0.2%) attenuated acetylcholine-induced relaxation in endothelium-intact aorta with or without tiron, whereas 0.2% Intralipid only inhibited relaxation. Lipofundin MCT/LCT inhibited relaxation induced by the calcium ionophore A23187 and sodium nitroprusside in endothelium-intact aorta, but Lipofundin MCT/LCT had no effect on sodium nitroprusside-induced relaxation in the endothelium-denuded aorta. Combined pretreatment with l-arginine plus Lipofundin MCT/LCT increased acetylcholine-induced maximal relaxation in endothelium-intact aorta compared with Lipofundin MCT/LCT alone. L-Arginine attenuated Lipofundin MCT/LCT-mediated inhibition of acetylcholine-induced eNOS phosphorylation in HUVECs. Taken together, Lipofundin MCT/LCT attenuated acetylcholine-induced NO-mediated relaxation via an inhibitory effect on the endothelium including eNOS, which is proximal to activation of guanylyl cyclase.

  5. First evidence of a membrane-bound, tyramine and beta-phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: a two-dimensional electrophoresis proteomic study.

    PubMed

    Pessione, Enrica; Pessione, Alessandro; Lamberti, Cristina; Coïsson, Daniel Jean; Riedel, Kathrin; Mazzoli, Roberto; Bonetta, Silvia; Eberl, Leo; Giunta, Carlo

    2009-05-01

    The soluble and membrane proteome of a tyramine producing Enterococcus faecalis, isolated from an Italian goat cheese, was investigated. A detailed analysis revealed that this strain also produces small amounts of beta-phenylethylamine. Kinetics of tyramine and beta-phenylethylamine accumulation, evaluated in tyrosine plus phenylalanine-enriched cultures (stimulated condition), suggest that the same enzyme, the tyrosine decarboxylase (TDC), catalyzes both tyrosine and phenylalanine decarboxylation: tyrosine was recognized as the first substrate and completely converted into tyramine (100% yield) while phenylalanine was decarboxylated to beta-phenylethylamine (10% yield) only when tyrosine was completely depleted. The presence of an aspecific aromatic amino acid decarboxylase is a common feature in eukaryotes, but in bacteria only indirect evidences of a phenylalanine decarboxylating TDC have been presented so far. Comparative proteomic investigations, performed by 2-DE and MALDI-TOF/TOF MS, on bacteria grown in conditions stimulating tyramine and beta-phenylethylamine biosynthesis and in control conditions revealed 49 differentially expressed proteins. Except for aromatic amino acid biosynthetic enzymes, no significant down-regulation of the central metabolic pathways was observed in stimulated conditions, suggesting that tyrosine decarboxylation does not compete with the other energy-supplying routes. The most interesting finding is a membrane-bound TDC highly over-expressed during amine production. This is the first evidence of a true membrane-bound TDC, longly suspected in bacteria on the basis of the gene sequence.

  6. Acetylcholine-Like Molecular Arrangement in Psychomimetic Anticholinergic Drugs

    PubMed Central

    Maayani, Saul; Weinstein, Harel; Cohen, Sasson; Sokolovsky, Mordechai

    1973-01-01

    A study of the relation between the psychotropic activity and the antagonism to acetylcholine observed for some heterocyclic amino esters and compounds of the phencyclidine series suggests some common molecular structural requirements for their properties. Criteria obtained from quantum mechanical calculations of acetylcholine-like molecules indicate that their molecular reactivity with the cholinergic receptor site follows a certain dynamic interaction pattern. This pattern suggests a certain molecular arrangement essential for the interaction, which is based on the electronic properties of the molecules and therefore remains valid for the evaluation of compounds which lack any apparent similarity to acetylcholine. This type of molecular arrangement is shown to be shared by both activators and inhibitors of the acetylcholine receptor discussed here, thus supporting the hypothesis of their binding to a common receptor. The differences in biological activity are attributed to the effect of molecular structural factors which are not commonly included in the molecular arrangement based on the active groups of acetylcholine. The role of such factors is revealed by a study of the observed differences in the cholinergic and psychomimetic activities of related pairs of isomers and enantiomers of the molecules investigated. Structural factors which interfere with the conformational changes occurring in the receptor protein induced by an activator are characterized through differences obtained by the comparative investigation of the activities of the agonist acetate and the antagonist benzilate amino esters of quinuclidine, tropine, and pseudotropine. The same factors are shown in studies of the phencyclidine series to contribute to the antagonism to acetylcholine activity that is closely related to the psychomimetic activity of these drugs in the central nervous system. Similarly, phencyclidine derivatives in which the characteristic acetylcholine-like molecular

  7. Structure-activity relationship of ibogaine analogs interacting with nicotinic acetylcholine receptors in different conformational states.

    PubMed

    Arias, Hugo R; Feuerbach, Dominik; Targowska-Duda, Katarzyna M; Jozwiak, Krzysztof

    2011-09-01

    The interaction of ibogaine analogs with nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that ibogaine analogs: (a) inhibit (±)-epibatidine-induced Ca²⁺ influx in human embryonic muscle AChRs with the following potency sequence (IC(50) in μM): (±)-18-methylaminocoronaridine (5.9±0.3)∼(±)-18-methoxycoronaridine (18-MC) (6.8±0.8)>(-)-ibogaine (17±3)∼(+)-catharanthine (20±1)>(±)-albifloranine (46±13), (b) bind to the [³H]TCP binding site with higher affinity when the Torpedo AChR is in the desensitized state compared to that in the resting state. Similar results were obtained using [³H]18-MC. These and docking results suggest a steric interaction between TCP and ibogaine analogs for the same site, (c) enhance [³H]cytisine binding to resting but not to desensitized AChRs, with desensitizing potencies (apparent EC₅₀) that correlate very well with the pK(i) values in the desensitized state, and (d) there are good bilinear correlations between the ligand molecular volumes and their affinities in the desensitized and resting states, with an optimal volume of ∼345 ų for the ibogaine site. These results indicate that the size of the binding sites for ibogaine analogs, located between the serine and nonpolar rings and shared with TCP, is an important structural feature for binding and for inducing desensitization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Rines/RNF180, a novel RING finger gene-encoded product, is a membrane-bound ubiquitin ligase.

    PubMed

    Ogawa, Miyuki; Mizugishi, Kiyomi; Ishiguro, Akira; Koyabu, Yoshio; Imai, Yuzuru; Takahashi, Ryosuke; Mikoshiba, Katsuhiko; Aruga, Jun

    2008-04-01

    We identified and characterized a novel RING finger gene, Rines/RNF180, which is well conserved among vertebrates. Putative Rines gene product (Rines) contains a RING finger domain, a basic coiled-coil domain, a novel conserved domain (DSPRC) and a C-terminal hydrophobic region that is predicted to be a transmembrane domain. N-terminally epitope tagged-Rines (Nt-Rines) was detected in the endoplasmic reticulum membrane/nuclear envelope in cultured mammalian cells. Nt-Rines was not extracted by high salt or alkaline buffers and was degraded in intact endoplasmic reticulum treated with proteinase K, indicating that Nt-Rines is an integral membrane protein with most of its N-terminal regions in the cytoplasm. Rines was expressed in brain, kidney, testis and uterus of adult mice, and in developing lens and brain, particularly in the ventricular layer of the cerebral cortex at embryonic stages. In cultured cells, Nt-Rines can bind another protein and promoted its degradation. The degradation was inhibited by proteasomal inhibitors. In addition, Nt-Rines itself was heavily ubiquitinated and degraded by proteasome. The involvement of Rines in the ubiquitin-proteasome pathway was further supported by its binding to the UbcH6 ubiquitin-conjugating enzyme and by its trans-ubiquitination enhancing activities. These results suggest that Rines is a membrane-bound E3 ubiquitin ligase.

  9. Equilibration kinetics in isolated and membrane-bound photosynthetic reaction centers upon illumination: a method to determine the photoexcitation rate.

    PubMed

    Manzo, Anthony J; Goushcha, Alexander O; Barabash, Yuri M; Kharkyanen, Valery N; Scott, Gary W

    2009-07-01

    Kinetics of electron transfer, following variation of actinic light intensity, for photosynthetic reaction centers (RCs) of purple bacteria (isolated and membrane-bound) were analyzed by measuring absorbance changes in the primary photoelectron donor absorption band at 865 nm. The bleaching of the primary photoelectron donor absorption band in RCs, following a sudden increase of illumination from the dark to an actinic light intensity of I(exp), obeys a simple exponential law with the rate constant alphaI(exp) + k(rec), in which alpha is a parameter relating the light intensity, measured in mW/cm(2), to a corresponding theoretical rate in units of reciprocal seconds, and k(rec) is the effective rate constant of the charge recombination in the photosynthetic RCs. In this work, a method for determining the alpha parameter value is developed and experimentally verified for isolated and membrane-bound RCs, allowing for rigorous modeling of RC macromolecule dynamics under varied photoexcitation conditions. Such modeling is necessary for RCs due to alterations of the forward photoexcitation rates and relaxation rates caused by illumination history and intramolecular structural dynamics effects. It is demonstrated that the classical Bouguer-Lambert-Beer formalism can be applied for the samples with relatively low scattering, which is not necessarily the case with strongly scattering media or high light intensity excitation.

  10. Free and membrane-bound calcium in microgravity and microgravity effects at the membrane level

    NASA Astrophysics Data System (ADS)

    Belyavskaya, N. A.

    The changes of [Ca^2+]_i controlled is known to play a key regulatory role in numerous cellular processes especially associated with membranes. Previous studies from our laboratory have demonstrated an increase in calcium level in root cells of pea seedlings grown aboard orbital station ``Salyut 6'' /1/. These results: 1) indicate that observed Ca^2+-binding sites of membranes also consist in proteins and phospholipids; 2) suggest that such effects of space flight in membrane Ca-binding might be due to the enhancement of Ca^2+ influx through membranes. In model presented, I propose that Ca^2+-activated channels in plasma membrane in response to microgravity allow the movement of Ca^2+ into the root cells, causing a rise in cytoplasmic free Ca^2+ levels. The latter, in its turn, may induce the inhibition of a Ca^2+ efflux by Ca^2+-activated ATPases and through a Ca^2+/H^+ antiport. It is possible that increased cytosolic levels of Ca^2+ ions have stimulated hydrolysis and turnover of phosphatidylinositols, with a consequent elevation of cytosolic [Ca^2+]_i. Plant cell can response to such a Ca^2+ rise by an enhancement of membranous Ca^2+-binding activities to rescue thus a cell from an abundance of a cytotoxin. A Ca^2+-induced phase separation of membranous lipids assists to appear the structure nonstable zones with high energy level at the boundary of microdomains which are rich by some phospholipid components; there is mixing of molecules of the membranes contacted in these zones, the first stage of membranous fusion, which was found in plants exposed to microgravity. These results support the hypothesis that a target for microgravity effect is the flux mechanism of Ca^2+ to plant cell.

  11. Peripheral Protein Unfolding Drives Membrane Bending.

    PubMed

    Siaw, Hew Ming Helen; Raghunath, Gokul; Dyer, R Brian

    2018-06-20

    Dynamic modulation of lipid membrane curvature can be achieved by a number of peripheral protein binding mechanisms such as hy-drophobic insertion of amphipathic helices and membrane scaffolding. Recently, an alternative mechanism was proposed in which crowding of peripherally bound proteins induces membrane curvature through steric pressure generated by lateral collisions. This effect was enhanced using intrinsically disordered proteins that possess high hydrodynamic radii, prompting us to explore whether membrane bending can be triggered by the folding-unfolding transition of surface-bound proteins. We utilized histidine-tagged human serum albumin bound to Ni-NTA-DGS containing liposomes as our model system to test this hypothesis. We found that reduction of the disulfide bonds in the protein resulted in unfolding of HSA, which subsequently led to membrane tubule formation. The frequency of tubule formation was found to be significantly higher when the proteins were unfolded while being localized to a phase-separated domain as opposed to randomly distributed in fluid phase liposomes, indicating that the steric pressure generated from protein unfolding is directly responsible for membrane deformation. Our results are critical for the design of peripheral membrane protein-immobilization strategies and open new avenues for exploring mechanisms of membrane bending driven by conformational changes of peripheral membrane proteins.

  12. Thymus cells in myasthenia gravis selectively enhance production of anti-acetylcholine-receptor antibody by autologous blood lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newsom-Davis, J.; Willcox, N.; Calder, L.

    1981-11-26

    We investigated the role of the thymus in 16 patients with myasthenia gravis without thymoma by studying the production of anti-acetylcholine-receptor antibody by thymic and blood lymphocytes cultured alone or together. In 10 responders (with the highest receptor-antibody titers in their plasma), cultured thymic cells spontaneously produced measurable receptor antibody. Receptor-antibody production by autologous blood lymphocytes was enhanced by the addition of responder's thymic cells, irradiated to abrogate antibody production and suppression (P<0.01). This enhancement was greater and more consistent than that by pokeweed mitogen; it depended on viable thymic cells, appeared to be selective for receptor antibody, and correlatedmore » with the ratio of thymic helper (OKT4-positive or OKT4+) to suppressor (OKT8+) T cells (P<0.01). These results suggest that myasthenic thymus contains cell-bound acetylcholine-receptor-like material or specific T cells (or both) that can aid receptor-antibody production. This may be relevant to the benefits of thymectomy in myasthenia and to the breakdown in self-tolerance in this and other autoimmune diseases.« less

  13. EVP-6124, a novel and selective α7 nicotinic acetylcholine receptor partial agonist, improves memory performance by potentiating the acetylcholine response of α7 nicotinic acetylcholine receptors.

    PubMed

    Prickaerts, Jos; van Goethem, Nick P; Chesworth, Richard; Shapiro, Gideon; Boess, Frank G; Methfessel, Christoph; Reneerkens, Olga A H; Flood, Dorothy G; Hilt, Dana; Gawryl, Maria; Bertrand, Sonia; Bertrand, Daniel; König, Gerhard

    2012-02-01

    EVP-6124, (R)-7-chloro-N-quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide, is a novel partial agonist of α7 neuronal nicotinic acetylcholine receptors (nAChRs) that was evaluated here in vitro and in vivo. In binding and functional experiments, EVP-6124 showed selectivity for α7 nAChRs and did not activate or inhibit heteromeric α4β2 nAChRs. EVP-6124 had good brain penetration and an adequate exposure time. EVP-6124 (0.3 mg/kg, p.o.) significantly restored memory function in scopolamine-treated rats (0.1 mg/kg, i.p.) in an object recognition task (ORT). Although donepezil at 0.1 mg/kg, p.o. or EVP-6124 at 0.03 mg/kg, p.o. did not improve memory in this task, co-administration of these sub-efficacious doses fully restored memory. In a natural forgetting test, an ORT with a 24 h retention time, EVP-6124 improved memory at 0.3 mg/kg, p.o. This improvement was blocked by the selective α7 nAChR antagonist methyllycaconitine (0.3 mg/kg, i.p. or 10 μg, i.c.v.). In co-application experiments of EVP-6124 with acetylcholine, sustained exposure to EVP-6124 in functional investigations in oocytes caused desensitization at concentrations greater than 3 nM, while lower concentrations (0.3-1 nM) caused an increase in the acetylcholine-evoked response. These actions were interpreted as representing a co-agonist activity of EVP-6124 with acetylcholine on α7 nAChRs. The concentrations of EVP-6124 that resulted in physiological potentiation were consistent with the free drug concentrations in brain that improved memory performance in the ORT. These data suggest that the selective partial agonist EVP-6124 improves memory performance by potentiating the acetylcholine response of α7 nAChRs and support new therapeutic strategies for the treatment of cognitive impairment. This article is part of a Special Issue entitled 'Post-Traumatic Stress Disorder'. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Gamma irradiation induces acetylcholine-evoked, endothelium-independent relaxation and activatesk-channels of isolated pulmonary artery of rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, Veronique; Gautier, Mathieu; Boissiere, Julien

    2004-12-01

    Purpose: To test the effects of irradiation (R*) on the pulmonary artery (PA). Methods and materials: Isolated PA rings were submitted to gamma irradiation (cesium, 8 Gy/min{sup -1}) at doses of 20 Gy-140 Gy. Rings were placed in an organ chamber, contracted with serotonin (10{sup -4} M 5-hydroxytryptamine [5-HT]), then exposed to acetylcholine (ACh) in incremental concentrations. Smooth muscle cell (SMC) membrane potential was measured with microelectrodes. Results: A high dose of irradiation (60 Gy) increased 5HT contraction by 20%, whereas lower (20 Gy) doses slightly decreased it compared with control. In the absence of the endothelium, 5-HT precontracted ringsmore » exposed to 20 Gy irradiation developed a dose-dependent relaxation induced by acetylcholine (EI-ACh) with maximal relaxation of 60 {+-} 17% (n = 13). This was totally blocked by L-NAME (10{sup -4} M), partly by 7-nitro indazole; it was abolished by hypoxia and iberiotoxin, decreased by tetra-ethyl-ammonium, and not affected by free radical scavengers. In irradiated rings, hypoxia induced a slight contraction which was never observed in control rings. No differences in SMC membrane potential were observed between irradiated and nonirradiated PA rings. Conclusion: Irradiation mediates endothelium independent relaxation by a mechanism involving the nitric oxide pathway and K-channels.« less

  15. Oxotremorine does not enhance acetylcholine release from rat diaphragm preparations.

    PubMed Central

    Gundersen, C. B.; Jenden, D. J.

    1980-01-01

    We have reinvestigated the dramatic effect of oxotremorine on acetylcholine release from the rat diaphragm reported by Das, Ganguly & Vedasiromoni (1978), using a rigorous gas chromatographic mass spectrometric/isotope dilution method for identification and measurement of acetylcholine and choline. Oxotremorine (10 microM) causes no significant change in the spontaneous or evoked (1 or 10 Hz) release or in the tissue levels of acetylcholine or choline. PMID:7426831

  16. Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase.

    PubMed

    Saggu, Miguel; Ludwig, Marcus; Friedrich, Bärbel; Hildebrandt, Peter; Bittl, Robert; Lendzian, Friedhelm; Lenz, Oliver; Zebger, Ingo

    2010-04-26

    [NiFe] hydrogenases are widespread among microorganisms and catalyze the reversible cleavage of molecular hydrogen. However, only a few bacteria, such as Ralstonia eutropha H16 (Re), synthesize [NiFe] hydrogenases that perform H(2) cycling in the presence of O(2). These enzymes are of special interest for biotechnological applications. To gain further insight into the mechanism(s) responsible for the remarkable O(2) tolerance, we employ FTIR and EPR spectroscopy to study mutant variants of the membrane-bound hydrogenase (MBH) of Re-carrying substitutions of a particular cysteine residue in the vicinity of the [NiFe] active site that is characteristic of O(2)-tolerant membrane-bound [NiFe] hydrogenases. We demonstrate that these MBH variants, despite minor changes in the electronic structure and in the interaction behavior with the embedding protein matrix, display all relevant catalytic and noncatalytic states of the wild-type enzyme, as long as they are still located in the cytoplasmic membrane. Notably, in the oxidized Ni(r)-B state and the fully reduced forms, the CO stretching frequency increases with increasing polarity of the respective amino acid residue at the specific position of the cysteine residue. We purified the MBH mutant protein with a cysteine-to-alanine exchange to apparent homogeneity as dimeric enzyme after detergent solubilization from the membrane. This purified version displays increased oxygen sensitivity, which is reflected by detection of the oxygen-inhibited Ni(u)-A state, an irreversible inactive redox state, and the light-induced Ni(a)-L state even at room temperature.

  17. Studies on the effects of acetylcholine and antiepileptic drugs on /sup 32/P incorporation into phospholipids of rat brain synaptosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, M.I.; Abdel-Latif, A.A.

    1982-02-01

    Studies were conducted on the effects of antiepileptic drugs on the acetylcholine-stimulated /sup 32/P labeling of phospholipids in rat brain synaptosomes. Of the four antiepileptic drugs investigated in the present study, namely phenytoin, carbamazepine, phenobarbital, and valproate, only phenytoin blocked the acetylcholine-stimulated /sup 32/P labeling of phosphatidylinositol and phosphatidic acid, and the acetylcholine-stimulated breakdown of polyphosphoinositides. Phenytoin alone, like atropine alone, had no effect on the /sup 32/P labeling of phospholipids nor on the specific radioactivity of (/sup 32/P)ATP. Omission of Na/sup +/ drastically reduced both the /sup 32/P labeling of synaptosomal phospholipids and the specific radioactivity of (/sup 32/P)ATPmore » and furthermore it significantly decreased the phosphoinositide effect. It was concluded that certain antiepileptic drugs, such as phenytoin, could exert their pharmacological actions through their antimuscarinic effects. In addition the finding that phenytoin, which acts to regulate NA/sup +/ and Ca/sup 2 +/ permeability of neuronal membranes, also inhibited the phosphoinositide effects in synaptosomes, support the conclusions that Ca2+ and Na+ are probably involved in the molecular mechanism underlying this phenomenon in excitable tissues.« less

  18. Intracellular calcium dynamics and acetylcholine-induced triggered activity in the pulmonary veins of dogs with pacing-induced heart failure

    PubMed Central

    Chou, Chung-Chuan; Nguyen, Bich Lien; Tan, Alex Y.; Chang, Po-Cheng; Lee, Hui-Ling; Lin, Fun-Chung; Yeh, San-Jou; Fishbein, Michael C.; Lin, Shien-Fong; Wu, Delon; Wen, Ming-Shien; Chen, Peng-Sheng

    2009-01-01

    BACKGROUND Heart failure increases autonomic nerve activities and changes intracellular calcium (Cai) dynamics. OBJECTIVE The purpose of this study was to investigate the hypothesis that abnormal Cai dynamics are responsible for triggered activity in the pulmonary veins (PVs) during acetylcholine infusion in a canine model of heart failure. METHODS Simultaneous optical mapping of and membrane Cai potential was performed in isolated Langendorff-perfused PV–left atrial (LA) preparations from nine dogs with ventricular pacing-induced heart failure. Mapping was performed at baseline, during acetylcholine (1 μmol/L) infusion (N = 9), and during thapsigargin and ryanodine infusion (N = 6). RESULTS Acetylcholine abbreviated the action potential. In four tissues, long pauses were followed by elevated diastolic Cai, late phase 3 early afterdepolarizations, and atrial fibrillation (AF). The incidence of PV focal discharges during AF was increased by acetylcholine from 2.4 ± 0.6 beats/s (N = 4) to 6.5 ± 2.2 beats/s (N = 8; P = .003). PV focal discharge and PV–LA microreentry coexisted in 6 of 9 preparations. The spatial distribution of dominant frequency demonstrated a focal source pattern, with the highest dominant frequency areas colocalized with PV focal discharge sites in 35 (95%) of 37 cholinergic AF episodes (N = 8). Thapsigargin and ryanodine infusion eliminated focal discharges in 6 of 6 preparations and suppressed the inducibility of AF in 4 of 6 preparations. PVs with focal discharge have higher densities of parasympathetic nerves than do PVs without focal discharges (P = .01), and periodic acid–Schiff (PAS)-positive cells were present at the focal discharge sites. CONCLUSION Cai dynamics are important in promoting triggered activity during acetylcholine infusion in PVs from pacing-induced heart failure. PV focal discharge sites have PAS-positive cells and high densities of parasympathetic nerves. PMID:18554987

  19. Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defence and electron link with periplasmic hydrogen oxidation.

    PubMed

    Ramel, F; Amrani, A; Pieulle, L; Lamrabet, O; Voordouw, G; Seddiki, N; Brèthes, D; Company, M; Dolla, A; Brasseur, G

    2013-12-01

    Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (Cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the WT strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxidase (Km, 300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km, 620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2-scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defence of the strictly anaerobic bacterium Desulfovibrio against oxygen stress.

  20. Effects of DHA-phospholipids, melatonin and tryptophan supplementation on erythrocyte membrane physico-chemical properties in elderly patients suffering from mild cognitive impairment.

    PubMed

    Cazzola, Roberta; Rondanelli, Mariangela; Faliva, Milena; Cestaro, Benvenuto

    2012-12-01

    A randomized, double-blind placebo-controlled clinical trial was carried out to assess the efficacy of a docosahexenoic acid (DHA)-phospholipids, melatonin and tryptophan supplemented diet in improving the erythrocyte oxidative stress, membrane fluidity and membrane-bound enzyme activities of elderly subjects suffering from mild cognitive impairment (MCI). These subjects were randomly assigned to the supplement group (11 subjects, 9F and 2M; age 85.3±5.3y) or placebo group (14-matched subjects, 11F and 3M; 86.1±6.5). The duration of the treatment was 12weeks. The placebo group showed no significant changes in erythrocyte membrane composition and function. The erythrocyte membranes of the supplement group showed a significant increase in eicosapentenoic acid, docosapentenoic acid and DHA concentrations and a significant decrease in arachidonic acid, malondialdehyde and lipofuscin levels. These changes in membrane composition resulted in an increase in the unsaturation index, membrane fluidity and acetylcholine esterase activity. Moreover, a significant increase in the ratio between reduced and oxidized glutathione was observed in the erythrocyte of the supplement group. Although this study is a preliminary investigation, we believe these findings to be of great speculative and interpretative interest to better understand the complex and multi-factorial mechanisms behind the possible links between diets, their functional components and possible molecular processes that contribute to increasing the risk of developing MCI and Alzheimer's. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Interactions between oxiracetam, aniracetam and scopolamine on behavior and brain acetylcholine.

    PubMed

    Spignoli, G; Pepeu, G

    1987-07-01

    The effect of cognition-enhancing agents oxiracetam and aniracetam on scopolamine-induced amnesia and brain acetylcholine decrease was investigated in the rat. Acetylcholine levels were measured by means of a gas-chromatographic method. Scopolamine (0.63 mg/kg IP 60 min before training) prevented the acquisition of a passive avoidance conditioned response ("step through": retest 30 min after training) and brought about a 64, 56 and 42% decrease in acetylcholine level in the cortex, hippocampus and striatum respectively. Oxiracetam (50 and 100 mg/kg IP) administered 30 min before scopolamine reduced the scopolamine-induced amnesic effect and decrease in acetylcholine level in the cortex and hippocampus, but not in the striatum. Lower and higher doses of oxiracetam were ineffective. Aniracetam (100 mg/kg PO) also prevented scopolamine-induced amnesia but attenuated acetylcholine decrease in the hippocampus only. Aniracetam (300 mg PO) reduced acetylcholine decrease in the hippocampus but did not prevent scopolamine-amnesia. In conclusion, oxiracetam and aniracetam exert a stimulatory effect on specific central cholinergic pathways. However, a direct relationship between cognition-enhancing properties and cholinergic activation needs further confirmation.

  2. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c

    PubMed Central

    Mandal, Abhishek; Hoop, Cody L.; DeLucia, Maria; Kodali, Ravindra; Kagan, Valerian E.; Ahn, Jinwoo; van der Wel, Patrick C.A.

    2015-01-01

    The cellular process of intrinsic apoptosis relies on the peroxidation of mitochondrial lipids as a critical molecular signal. Lipid peroxidation is connected to increases in mitochondrial reactive oxygen species, but there is also a required role for mitochondrial cytochrome c (cyt-c). In apoptotic mitochondria, cyt-c gains a new function as a lipid peroxidase that catalyzes the reactive oxygen species-mediated chemical modification of the mitochondrial lipid cardiolipin (CL). This peroxidase activity is caused by a conformational change in the protein, resulting from interactions between cyt-c and CL. The nature of the conformational change and how it causes this gain-of-function remain uncertain. Via a combination of functional, structural, and biophysical experiments we investigate the structure and peroxidase activity of cyt-c in its membrane-bound state. We reconstituted cyt-c with CL-containing lipid vesicles, and determined the increase in peroxidase activity resulting from membrane binding. We combined these assays of CL-induced proapoptotic activity with structural and dynamic studies of the membrane-bound protein via solid-state NMR and optical spectroscopy. Multidimensional magic angle spinning (MAS) solid-state NMR of uniformly 13C,15N-labeled protein was used to detect site-specific conformational changes in oxidized and reduced horse heart cyt-c bound to CL-containing lipid bilayers. MAS NMR and Fourier transform infrared measurements show that the peripherally membrane-bound cyt-c experiences significant dynamics, but also retains most or all of its secondary structure. Moreover, in two-dimensional and three-dimensional MAS NMR spectra the CL-bound cyt-c displays a spectral resolution, and thus structural homogeneity, that is inconsistent with extensive membrane-induced unfolding. Cyt-c is found to interact primarily with the membrane interface, without significantly disrupting the lipid bilayer. Thus, membrane binding results in cyt-c gaining the

  3. Beta-phenylethylamine stimulates striatal acetylcholine release through activation of the AMPA glutamatergic pathway.

    PubMed

    Ishida, Kota; Murata, Mikio; Kato, Masatoshi; Utsunomiya, Iku; Hoshi, Keiko; Taguchi, Kyoji

    2005-09-01

    Using an in vivo intra-striatal microdialysis technique, we examined the effects of systemically administered beta-phenylethylamine (beta-PEA), a psychomotor stimulating trace amine, on striatal acetylcholine release in freely moving rats. Infusion of N-methyl-D-aspartic acid (NMDA; 10(-5) M) significantly increased acetylcholine release. In addition, locally applied amino-3-hydroxy-5-methylisozasole-4-propionic acid (AMPA; 10(-5) M) significantly increased acetylcholine release in the striatum. Intra-striatal application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; 10(-5) M), an AMPA-type glutamatergic receptor antagonist, had little effect on acetylcholine release, while application of MK-801 (10(-5) M, 10(-6) M), an NMDA-type glutamatergic receptor antagonist, significantly reduced acetylcholine release. Acetylcholine within striatal perfusate was significantly increased by intraperitoneal administration of beta-PEA in a dose-dependent manner. This increase in acetylcholine release was completely blocked by application of CNQX (10(-5) M) through the microdialysis probe into the striatum. However, increased acetylcholine response to systemic beta-PEA was unaltered by addition of MK-801 to the perfusion medium. These results suggest a regulatory function of beta-PEA, mediated by AMPA-type glutamatergic receptors, on the release of acetylcholine in the rat striatum.

  4. Acetylcholine and lobster sensory neurones

    PubMed Central

    Barker, David L.; Herbert, Edward; Hildebrand, John G.; Kravitz, Edward A.

    1972-01-01

    Experiments are presented in support of the hypothesis that acetylcholine functions as a sensory transmitter in the lobster nervous system. 1. Several different peripheral sensory structures incorporate radioactive choline into acetylcholine. The preparation most enriched in sensory as opposed to other nervous elements (the antennular sense organs of the distal outer flagellum) does not incorporate significant amounts of glutamate, tyrosine or tryptophan into any of the other major transmitter candidates. 2. There is a parallel between the distribution of the enzyme choline acetyltransferase and the proportion of sensory fibres in nervous tissue from many parts of the lobster nervous system. 3. Isolated sensory axons contain at least 500 times as much choline acetyltransferase per cm of axon as do efferent excitatory and inhibitory fibres. 4. Abdominal ganglia and root stumps show a decline in the rate of incorporation of choline into acetylcholine 2 to 8 weeks after severing the first and second roots bilaterally (leaving the connectives and third roots intact). Extracts of the root stumps exhibit a significantly lower level of choline acetyltransferase 2 weeks after this operation. 5. Curare and atropine partially block an identified sensory synapse in the lobster abdominal ganglion. ImagesText-fig. 4Text-fig. 5Plate 1 PMID:4343316

  5. Acetylcholine is released from taste cells, enhancing taste signalling

    PubMed Central

    Dando, Robin; Roper, Stephen D

    2012-01-01

    Acetylcholine (ACh), a candidate neurotransmitter that has been implicated in taste buds, elicits calcium mobilization in Receptor (Type II) taste cells. Using RT-PCR analysis and pharmacological interventions, we demonstrate that the muscarinic acetylcholine receptor M3 mediates these actions. Applying ACh enhanced both taste-evoked Ca2+ responses and taste-evoked afferent neurotransmitter (ATP) secretion from taste Receptor cells. Blocking muscarinic receptors depressed taste-evoked responses in Receptor cells, suggesting that ACh is normally released from taste cells during taste stimulation. ACh biosensors confirmed that, indeed, taste Receptor cells secrete acetylcholine during gustatory stimulation. Genetic deletion of muscarinic receptors resulted in significantly diminished ATP secretion from taste buds. The data demonstrate a new role for acetylcholine as a taste bud transmitter. Our results imply specifically that ACh is an autocrine transmitter secreted by taste Receptor cells during gustatory stimulation, enhancing taste-evoked responses and afferent transmitter secretion. PMID:22570381

  6. The morphogenetic MreBCD proteins of Escherichia coli form an essential membrane-bound complex.

    PubMed

    Kruse, Thomas; Bork-Jensen, Jette; Gerdes, Kenn

    2005-01-01

    MreB proteins of Escherichia coli, Bacillus subtilis and Caulobacter crescentus form actin-like cables lying beneath the cell surface. The cables are required to guide longitudinal cell wall synthesis and their absence leads to merodiploid spherical and inflated cells prone to cell lysis. In B. subtilis and C. crescentus, the mreB gene is essential. However, in E. coli, mreB was inferred not to be essential. Using a tight, conditional gene depletion system, we systematically investigated whether the E. coli mreBCD-encoded components were essential. We found that cells depleted of mreBCD became spherical, enlarged and finally lysed. Depletion of each mre gene separately conferred similar gross changes in cell morphology and viability. Thus, the three proteins encoded by mreBCD are all essential and function in the same morphogenetic pathway. Interestingly, the presence of a multicopy plasmid carrying the ftsQAZ genes suppressed the lethality of deletions in the mre operon. Using GFP and cell fractionation methods, we showed that the MreC and MreD proteins were associated with the cell membrane. Using a bacterial two-hybrid system, we found that MreC interacted with both MreB and MreD. In contrast, MreB and MreD did not interact in this assay. Thus, we conclude that the E. coli MreBCD form an essential membrane-bound complex. Curiously, MreB did not form cables in cell depleted for MreC, MreD or RodA, indicating a mutual interdependency between MreB filament morphology and cell shape. Based on these and other observations we propose a model in which the membrane-associated MreBCD complex directs longitudinal cell wall synthesis in a process essential to maintain cell morphology.

  7. Polyphosphazene semipermeable membranes

    DOEpatents

    Allen, Charles A.; McCaffrey, Robert R.; Cummings, Daniel G.; Grey, Alan E.; Jessup, Janine S.; McAtee, Richard E.

    1988-01-01

    A semipermeable, inorganic membrane is disclosed; the membrane is prepared from a phosphazene polymer and, by the selective substitution of the constituent groups bound to the phosphorous in the polymer structure, the selective passage of fluid from a feedstream can be controlled. Resistance to high temperatures and harsh chemical environments is observed in the use of the phosphazene polymers as semipermeable membranes.

  8. Intracoronary Acetylcholine Provocation Testing for Assessment of Coronary Vasomotor Disorders.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-18

    Intracoronary acetylcholine provocation testing (ACH-test) is an established method for assessment of epicardial coronary artery spasm in the catheterization laboratory which was introduced more than 30 years ago. Due to the short half-life of acetylcholine it can only be applied directly into the coronary arteries. Several studies have demonstrated the safety and clinical usefulness of this test. However, acetylcholine testing is only rarely applied in the U.S. or Europe. Nevertheless, it has been shown that 62% of Caucasian patients with stable angina and unobstructed coronary arteries on coronary angiography suffer from coronary vasomotor disorders that can be diagnosed with acetylcholine testing. In recent years it has been appreciated that the ACH-test not only assesses the presence of epicardial spasm but that it can also be useful for the detection of coronary microvascular spam. In such cases no epicardial spasm is seen after injection of acetylcholine but ischemic ECG shifts are present together with a reproduction of the patient's symptoms during the test. This article describes the experience with the ACH-test and its implementation in daily clinical routine.

  9. Blood coagulation reactions on nanoscale membrane surfaces

    NASA Astrophysics Data System (ADS)

    Pureza, Vincent S.

    Blood coagulation requires the assembly of several membrane-bound protein complexes composed of regulatory and catalytic subunits. The biomembranes involved in these reactions not only provide a platform for these procoagulant proteins, but can also affect their function. Increased exposure of acidic phospholipids on the outer leaflet of the plasma membrane can dramatically modulate the catalytic efficiencies of such membrane-bound enzymes. Under physiologic conditions, however, these phospholipids spontaneously cluster into a patchwork of membrane microdomains upon which membrane binding proteins may preferentially assemble. As a result, the membrane composition surrounding these proteins is largely unknown. Through the development and use of a nanometer-scale bilayer system that provides rigorous control of the phospholipid membrane environment, I investigated the role of phosphatidylserine, an acidic phospholipid, in the direct vicinity (within nanometers) of two critical membrane-bound procoagulant protein complexes and their respective natural substrates. Here, I present how the assembly and function of the tissue factor˙factor VIIa and factor Va˙factor Xa complexes, the first and final cofactor˙enzyme complexes of the blood clotting cascade, respectively, are mediated by changes in their immediate phospholipid environments.

  10. Overview of the pharmacological spasm provocation test: Comparisons between acetylcholine and ergonovine.

    PubMed

    Sueda, Shozo; Kohno, Hiroaki; Ochi, Takaaki; Uraoka, Tadao; Tsunemitsu, Kensuke

    2017-01-01

    The spasm provocation tests of ergonovine and acetylcholine have been employed in the cardiac catheterization laboratory. Ergonovine acts through the serotogenic receptors, while acetylcholine acts through the muscarinic cholinergic receptors. Different mediators may have the potential to cause different coronary responses. However, there are few reports concerning the coronary response between ergonovine and acetylcholine in the same patients. Acetylcholine is supersensitive for females; spasm provoked by ergonovine is focal and proximal, whereas provoked spasm by acetylcholine is diffuse and distal. We should use both tests as supplementary in the clinic because ergonovine and acetylcholine have self-limitations to induce coronary spasms during daily life. The maximal pharmacological doses, administration methods, and the angiographical positive definition are remarkably different for each institution in the world. We recommend the pharmacological spasm provocation tests as Class I in the guidelines in patients with vasospastic angina throughout the world. Copyright © 2016 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  11. Co-overexpressing a plasma membrane and a vacuolar membrane sodium/proton antiporter significantly improves salt tolerance in transgenic Arabidopsis plants.

    USDA-ARS?s Scientific Manuscript database

    The Arabidopsis gene AtNHX1 encodes a vacuolar membrane bound sodium/proton (Sodium/Hydrogen) antiporter that transports sodium into the vacuole and exports hydrogen into the cytoplasm. The Arabidopsis gene SOS1 encodes a plasma membrane bound sodium/hydrogen antiporter that exports sodium to the ex...

  12. Substance P and acetylcholine are co-localized in the pathway mediating mucociliary activity in Rana pipiens.

    PubMed

    Hernández, C J; Ortíz, T; Rosa, C; Foster, K; Tyagi, M; Lugo, N; Albrecht, R; Chinapen, S

    2007-04-01

    Mucociliary activity is an important clearance mechanism in the respiratory system of air breathing vertebrates. Substance P (SP) and acetylcholine play a key role in the stimulation of the mucociliary transport in the frog palate. In this study, retrograde neuronal tracing was combined with immunocytochemistry for SP and choline acetyl transferase (ChAT) in the trigeminal ganglion and for neurokinin-1 receptor (NK1R) in the palate of Rana pipiens. The cells of origin of the palatine nerve were identified in the trigeminal ganglion using the retrograde tracer Fluorogold (FG). Optimal labeling of FG cells in the trigeminal ganglion was obtained at 96 h of exposure. Immunoflorescent shows that SP and acetylcholine are co-localized in 92% of the cells labeled with FG in the trigeminal ganglion. NK1 receptors were found in the membrane of epithelial and goblet cells of the palate. Ultrastructural study of the palate showed axonal-like endings with vesicles in connection with epithelial and goblet cells. These results further support the concerted action of both neurotransmitters in the regulation of mucociliary activity in the frog palate.

  13. Acetylcholine-induced seizure-like activity and modified cholinergic gene expression in chronically epileptic rats.

    PubMed

    Zimmerman, Gabriel; Njunting, Marleisje; Ivens, Sebastian; Tolner, Else A; Tolner, Elsa; Behrens, Christoph J; Gross, Miriam; Soreq, Hermona; Heinemann, Uwe; Friedman, Alon

    2008-02-01

    The entorhinal cortex (EC) plays an important role in temporal lobe epilepsy. Under normal conditions, the enriched cholinergic innervation of the EC modulates local synchronized oscillatory activity; however, its role in epilepsy is unknown. Enhanced neuronal activation has been shown to induce transcriptional changes of key cholinergic genes and thus alter cholinergic responses. To examine cholinergic modulations in epileptic tissue we studied molecular and electrophysiological cholinergic responses in the EC of chronically epileptic rats following exposure to pilocarpine or kainic acid. We confirmed that while the total activity of the acetylcholine (ACh)-hydrolysing enzyme, acetylcholinesterase (AChE) was not altered, epileptic rats showed alternative splicing of AChE pre-mRNA transcripts, accompanied by a shift from membrane-bound AChE tetramers to soluble monomers. This was associated with increased sensitivity to ACh application: thus, in control rats, ACh (10-100 microm) induced slow (< 1Hz), periodic events confined to the EC; however, in epileptic rats, ACh evoked seconds-long seizure-like events with initial appearance in the EC, and frequent propagation to neighbouring cortical regions. ACh-induced seizure-like events could be completely blocked by the non-specific muscarinic antagonist, atropine, and were partially blocked by the muscarinic-1 receptor antagonist, pirenzepine; but were not affected by the non-specific nicotinic antagonist, mecamylamine. Epileptic rats presented reduced transcript levels of muscarinic receptors with no evidence of mRNA editing or altered mRNA levels for nicotinic ACh receptors. Our findings suggest that altered cholinergic modulation may initiate seizure events in the epileptic temporal cortex.

  14. Intravacuolar Membranes Regulate CD8 T Cell Recognition of Membrane-Bound Toxoplasma gondii Protective Antigen.

    PubMed

    Lopez, Jodie; Bittame, Amina; Massera, Céline; Vasseur, Virginie; Effantin, Grégory; Valat, Anne; Buaillon, Célia; Allart, Sophie; Fox, Barbara A; Rommereim, Leah M; Bzik, David J; Schoehn, Guy; Weissenhorn, Winfried; Dubremetz, Jean-François; Gagnon, Jean; Mercier, Corinne; Cesbron-Delauw, Marie-France; Blanchard, Nicolas

    2015-12-15

    Apicomplexa parasites such as Toxoplasma gondii target effectors to and across the boundary of their parasitophorous vacuole (PV), resulting in host cell subversion and potential presentation by MHC class I molecules for CD8 T cell recognition. The host-parasite interface comprises the PV limiting membrane and a highly curved, membranous intravacuolar network (IVN) of uncertain function. Here, using a cell-free minimal system, we dissect how membrane tubules are shaped by the parasite effectors GRA2 and GRA6. We show that membrane association regulates access of the GRA6 protective antigen to the MHC I pathway in infected cells. Although insertion of GRA6 in the PV membrane is key for immunogenicity, association of GRA6 with the IVN limits presentation and curtails GRA6-specific CD8 responses in mice. Thus, membrane deformations of the PV regulate access of antigens to the MHC class I pathway, and the IVN may play a role in immune modulation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Membrane Curvature Sensing by Amphipathic Helices

    PubMed Central

    Jensen, Martin Borch; Bhatia, Vikram Kjøller; Jao, Christine C.; Rasmussen, Jakob Ewald; Pedersen, Søren L.; Jensen, Knud J.; Langen, Ralf; Stamou, Dimitrios

    2011-01-01

    Preferential binding of proteins on curved membranes (membrane curvature sensing) is increasingly emerging as a general mechanism whereby cells may effect protein localization and trafficking. Here we use a novel single liposome fluorescence microscopy assay to examine a common sensing motif, the amphipathic helix (AH), and provide quantitative measures describing and distinguishing membrane binding and sensing behavior. By studying two AH-containing proteins, α-synuclein and annexin B12, as well as a range of AH peptide mutants, we reveal that both the hydrophobic and hydrophilic faces of the helix greatly influence binding and sensing. Although increased hydrophobic and electrostatic interactions with the membrane both lead to greater densities of bound protein, the former yields membrane curvature-sensitive binding, whereas the latter is not curvature-dependent. However, the relative contributions of both components determine the sensing of AHs. In contrast, charge density in the lipid membrane seems important primarily in attracting AHs to the membrane but does not significantly influence sensing. These observations were made possible by the ability of our assay to distinguish within our samples liposomes with and without bound protein as well as the density of bound protein. Our findings suggest that the description of membrane curvature-sensing requires consideration of several factors such as short and long range electrostatic interactions, hydrogen bonding, and the volume and structure of inserted hydrophobic residues. PMID:21953452

  16. Force Generation by Membrane-Associated Myosin-I

    PubMed Central

    Pyrpassopoulos, Serapion; Arpağ, Göker; Feeser, Elizabeth A.; Shuman, Henry; Tüzel, Erkan; Ostap, E. Michael

    2016-01-01

    Vertebrate myosin-IC (Myo1c) is a type-1 myosin that links cell membranes to the cytoskeleton via its actin-binding motor domain and its phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding tail domain. While it is known that Myo1c bound to PtdIns(4,5)P2 in fluid-lipid bilayers can propel actin filaments in an unloaded motility assay, its ability to develop forces against external load on actin while bound to fluid bilayers has not been explored. Using optical tweezers, we measured the diffusion coefficient of single membrane-bound Myo1c molecules by force-relaxation experiments, and the ability of ensembles of membrane-bound Myo1c molecules to develop and sustain forces. To interpret our results, we developed a computational model that recapitulates the basic features of our experimental ensemble data and suggests that Myo1c ensembles can generate forces parallel to lipid bilayers, with larger forces achieved when the myosin works away from the plane of the membrane or when anchored to slowly diffusing regions. PMID:27156719

  17. Acetylcholine beyond bronchoconstriction: roles in inflammation and remodeling.

    PubMed

    Kistemaker, Loes E M; Gosens, Reinoud

    2015-03-01

    Acetylcholine is the primary parasympathetic neurotransmitter in the airways, where it not only induces bronchoconstriction and mucus secretion, but also regulates airway inflammation and remodeling. In this review, we propose that these effects are all primarily mediated via the muscarinic M3 receptor. Acetylcholine promotes inflammation and remodeling via direct effects on airway cells, and via mechanical stress applied to the airways sequential to bronchoconstriction. The effects on inflammation and remodeling are regulated by both neuronal and non-neuronal acetylcholine. Taken together, we believe that the combined effects of anticholinergic therapy on M3-mediated bronchoconstriction, mucus secretion, inflammation, and remodeling may account for the positive outcome of treatment with these drugs for patients with chronic pulmonary obstructive disease (COPD) or asthma. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Muscimol increases acetylcholine release by directly stimulating adult striatal cholinergic interneurons.

    PubMed

    Login, I S; Pal, S N; Adams, D T; Gold, P E

    1998-01-01

    Because GabaA ligands increase acetylcholine (ACh) release from adult striatal slices, we hypothesized that activation of GabaA receptors on striatal cholinergic interneurons directly stimulates ACh secretion. Fractional [3H]ACh release was recorded during perifusion of acutely dissociated, [3H]choline-labeled, adult male rat striata. The GabaA agonist, muscimol, immediately stimulated release maximally approximately 300% with EC50 = approximately 1 microM. This action was enhanced by the allosteric GabaA receptor modulators, diazepam and secobarbital, and inhibited by the GabaA antagonist, bicuculline, by ligands for D2 or muscarinic cholinergic receptors or by low calcium buffer, tetrodotoxin or vesamicol. Membrane depolarization inversely regulated muscimol-stimulated secretion. Release of endogenous and newly synthesized ACh was stimulated in parallel by muscimol without changing choline release. Muscimol pretreatment inhibited release evoked by K+ depolarization or by receptor-mediated stimulation with glutamate. Thus, GabaA receptors on adult striatal cholinergic interneurons directly stimulate voltage- and calcium-dependent exocytosis of ACh stored in vesamicol-sensitive synaptic vesicles. The action depends on the state of membrane polarization and apparently depolarizes the membrane in turn. This functional assay demonstrates that excitatory GabaA actions are not limited to neonatal tissues. GabaA-stimulated ACh release may be prevented in situ by normal tonic dopaminergic and muscarinic input to cholinergic neurons.

  19. Intact functional fourteen-subunit respiratory membrane-bound [NiFe]-hydrogenase complex of the hyperthermophilic archaeon Pyrococcus furiosus.

    PubMed

    McTernan, Patrick M; Chandrayan, Sanjeev K; Wu, Chang-Hao; Vaccaro, Brian J; Lancaster, W Andrew; Yang, Qingyuan; Fu, Dax; Hura, Greg L; Tainer, John A; Adams, Michael W W

    2014-07-11

    The archaeon Pyrococcus furiosus grows optimally at 100 °C by converting carbohydrates to acetate, CO2, and H2, obtaining energy from a respiratory membrane-bound hydrogenase (MBH). This conserves energy by coupling H2 production to oxidation of reduced ferredoxin with generation of a sodium ion gradient. MBH is encoded by a 14-gene operon with both hydrogenase and Na(+)/H(+) antiporter modules. Herein a His-tagged MBH was expressed in P. furiosus and the detergent-solubilized complex purified under anaerobic conditions by affinity chromatography. Purified MBH contains all 14 subunits by electrophoretic analysis (13 subunits were also identified by mass spectrometry) and had a measured iron:nickel ratio of 15:1, resembling the predicted value of 13:1. The as-purified enzyme exhibited a rhombic EPR signal characteristic of the ready nickel-boron state. The purified and membrane-bound forms of MBH both preferentially evolved H2 with the physiological donor (reduced ferredoxin) as well as with standard dyes. The O2 sensitivities of the two forms were similar (half-lives of ∼ 15 h in air), but the purified enzyme was more thermolabile (half-lives at 90 °C of 1 and 25 h, respectively). Structural analysis of purified MBH by small angle x-ray scattering indicated a Z-shaped structure with a mass of 310 kDa, resembling the predicted value (298 kDa). The angle x-ray scattering analyses reinforce and extend the conserved sequence relationships of group 4 enzymes and complex I (NADH quinone oxidoreductase). This is the first report on the properties of a solubilized form of an intact respiratory MBH complex that is proposed to evolve H2 and pump Na(+) ions. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The membrane-bound [NiFe]-hydrogenase (Ech) from Methanosarcina barkeri: unusual properties of the iron-sulphur clusters.

    PubMed

    Kurkin, Sergei; Meuer, Jörn; Koch, Jürgen; Hedderich, Reiner; Albracht, Simon P J

    2002-12-01

    The purified membrane-bound [NiFe]-hydrogenase from Methanosarcina barkeri was studied with electron paramagnetic resonance (EPR) focusing on the properties of the iron-sulphur clusters. The EPR spectra showed signals from three different [4Fe-4S] clusters. Two of the clusters could be reduced under 101 kPa of H2, whereas the third cluster was only partially reduced. Magnetic interaction of one of the clusters with an unpaired electron localized on the Ni-Fe site indicated that this was the proximal cluster as found in all [NiFe]-hydrogenases. Hence, this cluster was assigned to be located in the EchC subunit. The other two clusters could therefore be assigned to be bound to the EchF subunit, which has two conserved four-Cys motifs for the binding of a [4Fe-4S] cluster. Redox titrations at different pH values demonstrated that the proximal cluster and one of the clusters in the EchF subunit had a pH-dependent midpoint potential. The possible relevance of these properties for the function of this proton-pumping [NiFe]-hydrogenase is discussed.

  1. The role of bound potassium ions in the hydrolysis of low concentrations of adenosine triphosphate by preparations of membrane fragments from ox brain cerebral cortex

    PubMed Central

    Goldfarb, P. S. G.; Rodnight, R.

    1970-01-01

    1. The intrinsic Na+, K+, Mg2+ and Ca2+ contents of a preparation of membrane fragments from ox brain were determined by emission flame photometry. 2. Centrifugal washing of the preparation with imidazole-buffered EDTA solutions decreased the bound Na+ from 90±20 to 24±12, the bound K+ from 27±3 to 7±2, the bound Mg2+ from 20±2 to 3±1 and the bound calcium from 8±1 to <1nmol/mg of protein. 3. The activities of the Na++K++Mg2+-stimulated adenosine triphosphatase and the Na+-dependent reaction forming bound phosphate were compared in the unwashed and washed preparations at an ATP concentration of 2.5μm (ATP/protein ratio 12.5pmol/μg). 4. The Na+-dependent hydrolysis of ATP as well as the plateau concentration of bound phosphate and the rate of dephosphorylation were decreased in the washed preparation. The time-course of formation and decline of bound phosphate was fully restored by the addition of 2.5μm-magnesium chloride and 2μm-potassium chloride. Addition of 2.5μm-magnesium chloride alone fully restored the plateau concentration of bound phosphate, but the rate of dephosphorylation was only slightly increased. Na+-dependent ATP hydrolysis was partly restored with 2.5μm-magnesium chloride; addition of K+ in the range 2–10μm-potassium chloride then further restored hydrolysis but not to the control rate. 5. Pretreatment of the washed preparation at 0°C with 0.5nmol of K+/mg of protein so that the final added K+ in the reaction mixture was 0.1μm restored the Na+-dependent hydrolysis of ATP and the time-course of the reaction forming bound phosphate. 6. The binding of [42K]potassium chloride by the washed membrane preparation was examined. Binding in a solution containing 10nmol of K+/mg of protein was linear over a period of 20min and was inhibited by Na+. Half-maximal inhibition of 42K+-binding required a 100-fold excess of sodium chloride. 7. It was concluded (a) that a significant fraction of the apparent Na+-dependent hydrolysis of ATP observed

  2. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  3. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less

  4. Vector-averaged gravity does not alter acetylcholine receptor single channel properties

    NASA Technical Reports Server (NTRS)

    Reitstetter, R.; Gruener, R.

    1994-01-01

    To examine the physiological sensitivity of membrane receptors to altered gravity, we examined the single channel properties of the acetylcholine receptor (AChR), in co-cultures of Xenopus myocytes and neurons, to vector-averaged gravity in the clinostat. This experimental paradigm produces an environment in which, from the cell's perspective, the gravitational vector is "nulled" by continuous averaging. In that respect, the clinostat simulates one aspect of space microgravity where the gravity force is greatly reduced. After clinorotation, the AChR channel mean open-time and conductance were statistically not different from control values but showed a rotation-dependent trend that suggests a process of cellular adaptation to clinorotation. These findings therefore suggest that the ACHR channel function may not be affected in the microgravity of space despite changes in the receptor's cellular organization.

  5. Endoplasmic reticulum stress contributes to acetylcholine receptor degradation by promoting endocytosis in skeletal muscle cells.

    PubMed

    Du, Ailian; Huang, Shiqian; Zhao, Xiaonan; Zhang, Yun; Zhu, Lixun; Ding, Ji; Xu, Congfeng

    2016-01-15

    After binding by acetylcholine released from a motor neuron, a nicotinic acetylcholine receptor at the neuromuscular junction produces a localized end-plate potential, which leads to muscle contraction. Improper turnover and renewal of acetylcholine receptors contributes to the pathogenesis of myasthenia gravis. In the present study, we demonstrate that endoplasmic reticulum (ER) stress contributes to acetylcholine receptor degradation in C2C12 myocytes. We further show that ER stress promotes acetylcholine receptor endocytosis and lysosomal degradation, which was dampened by blocking endocytosis or treating with lysosome inhibitor. Knockdown of ER stress proteins inhibited acetylcholine receptor endocytosis and degradation, while rescue assay restored its endocytosis and degradation, confirming the effects of ER stress on promoting endocytosis-mediated degradation of junction acetylcholine receptors. Thus, our studies identify ER stress as a factor promoting acetylcholine receptor degradation through accelerating endocytosis in muscle cells. Blocking ER stress and/or endocytosis might provide a novel therapeutic approach for myasthenia gravis. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice

    PubMed Central

    Siegel, Jessica A.; Park, Byung S.; Raber, Jacob

    2013-01-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. PMID:21824143

  7. Antitumor effects of a tumor cell vaccine expressing a membrane-bound form of the IL-12 p35 subunit.

    PubMed

    Lim, Ho Yong; Ju, Hee Young; Chung, Hee-Yong; Kim, Young Sang

    2010-08-15

    We investigated whether expression of the IL-12 p35 subunit in membrane-bound form in tumor cells enhanced their immunogenicity. Since p35 is only secreted when associated with the IL-12 p40 subunit, we generated tumor cells expressing membrane-bound forms of p35 and p40 as chimeras with the transmembrane/cytoplasmic region of TNFα (mbIL-12p35 and mbIL-12p40). The relevant vectors were transfected into MethA fibrosarcoma cells, and mbIL-12p35 or mbIL-12p40-expressing tumor clones were isolated and their ability to induce antitumor immunity studied. Cells of the mbIL-12p35 tumor clone induced CD69 expression and IFNγ production in purified CD8(+) T cells in vitro, and their in vivo tumorigenicity was reduced. Cells of the mbIL-12p40 tumor clone failed to show either of these activities. Mice that had rejected cells of the mbIL-12p35 tumor clone possessed systemic antitumor immunity to wild type tumor cells. The growth rate of mbIL-12p35 tumor cells was greater in CD8(+) T cell-depleted mice than in CD4(+) T-cell- and NK cell-depleted mice or normal mice, suggesting that CD8(+) T cells were mainly responsible for the antitumor immunity. These results indicate that expression of mbIL-12p35 on tumor cells enhances their immunogenicity by increasing their ability to activate CD8(+) T cells, possibly by direct priming.

  8. Membrane-bound Dickkopf-1 in Foxp3+ regulatory T cells suppresses T-cell-mediated autoimmune colitis.

    PubMed

    Chae, Wook-Jin; Park, Jong-Hyun; Henegariu, Octavian; Yilmaz, Saliha; Hao, Liming; Bothwell, Alfred L M

    2017-10-01

    Induction of tolerance is a key mechanism to maintain or to restore immunological homeostasis. Here we show that Foxp3 + regulatory T (Treg) cells use Dickkopf-1 (DKK-1) to regulate T-cell-mediated tolerance in the T-cell-mediated autoimmune colitis model. Treg cells from DKK-1 hypomorphic doubleridge mice failed to control CD4 + T-cell proliferation, resulting in CD4 T-cell-mediated autoimmune colitis. Thymus-derived Treg cells showed a robust expression of DKK-1 but not in naive or effector CD4 T cells. DKK-1 expression in Foxp3 + Treg cells was further increased upon T-cell receptor stimulation in vitro and in vivo. Interestingly, Foxp3 + Treg cells expressed DKK-1 in the cell membrane and the functional inhibition of DKK-1 using DKK-1 monoclonal antibody abrogated the suppressor function of Foxp3 + Treg cells. DKK-1 expression was dependent on de novo protein synthesis and regulated by the mitogen-activated protein kinase pathway but not by the canonical Wnt pathway. Taken together, our results highlight membrane-bound DKK-1 as a novel Treg-derived mediator to maintain immunological tolerance in T-cell-mediated autoimmune colitis. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.

  9. Electrophysiological and mechanical effects of substance P and acetylcholine on rabbit aorta.

    PubMed Central

    Bény, J L; Brunet, P C

    1988-01-01

    1. The mechanical and electrical properties of smooth muscle cells of the rabbit aorta were recorded simultaneously using respectively a force transducer and a 3 M-KCl-filled glass microelectrode. 2. Acetylcholine had two effects depending on concentration. At low concentration, it caused a persistent endothelium-dependent relaxation and hyperpolarization. At higher concentrations the acetylcholine endothelium-dependent relaxation summed with an endothelium-independent contraction. 3. Substance P caused a transient endothelium-dependent relaxation and hyperpolarization. 4. Acetylcholine and substance P depolarized and contracted de-endothelialized smooth muscle. When the de-endothelialized strip was pre-contracted by noradrenaline, acetylcholine depolarized the muscle but substance P did not. 5. In a 'cascade' experiment, the perfusate from an upstream intact aorta passed over a downstream de-endothelialized strip. Acetylcholine and substance P relaxed the downstream strip showing that they released an endothelial humoral factor which relaxes smooth muscle. 6. The results suggest a constant release of a factor from the endothelial cells which hyperpolarizes the smooth muscle cells in the media. Activation of acetylcholine and substance P receptors on the endothelium accelerates the release of this factor and causes vasodilatation. PMID:2455799

  10. Arabidopsis Type II Phosphatidylinositol 4-Kinase PI4Kγ5 Regulates Auxin Biosynthesis and Leaf Margin Development through Interacting with Membrane-Bound Transcription Factor ANAC078

    PubMed Central

    Tan, Shu-Tang; Xue, Hong-Wei

    2016-01-01

    Normal leaf margin development is important for leaf morphogenesis and contributes to diverse leaf shapes in higher plants. We here show the crucial roles of an atypical type II phosphatidylinositol 4-kinase, PI4Kγ5, in Arabidopsis leaf margin development. PI4Kγ5 presents a dynamics expression pattern along with leaf development and a T-DNA mutant lacking PI4Kγ5, pi4kγ5–1, presents serrated leaves, which is resulted from the accelerated cell division and increased auxin concentration at serration tips. Studies revealed that PI4Kγ5 interacts with and phosphorylates a membrane-bound NAC transcription factor, ANAC078. Previous studies demonstrated that membrane-bound transcription factors regulate gene transcription by undergoing proteolytic process to translocate into nucleus, and ANAC078 undergoes proteolysis by cleaving off the transmembrane region and carboxyl terminal. Western blot analysis indeed showed that ANAC078 deleting of carboxyl terminal is significantly reduced in pi4kγ5–1, indicating that PI4Kγ5 is important for the cleavage of ANAC078. This is consistent with the subcellular localization observation showing that fluorescence by GFP-ANAC078 is detected at plasma membrane but not nucleus in pi4kγ5–1 mutant and that expression of ANAC078 deleting of carboxyl terminal, driven by PI4Kγ5 promoter, could rescue the leaf serration defects of pi4kγ5–1. Further analysis showed that ANAC078 suppresses the auxin synthesis by directly binding and regulating the expression of auxin synthesis-related genes. These results indicate that PI4Kγ5 interacts with ANAC078 to negatively regulate auxin synthesis and hence influences cell proliferation and leaf development, providing informative clues for the regulation of in situ auxin synthesis and cell division, as well as the cleavage and functional mechanism of membrane-bound transcription factors. PMID:27529511

  11. The effects of bound state motion on macromolecular diffusion

    NASA Astrophysics Data System (ADS)

    Hough, Loren; Stefferson, Michael; Norris, Samantha; Maguire, Laura; Vernerey, Franck; Betterton, Meredith

    The diffusion of macromolecules is modified in crowded environments by both inert obstacles and interaction sites. Molecules are generally slowed in their movement inducing transient anomalous subdiffusion. Obstacles also modify the kinetics and equilibrium behavior of interaction between mobile proteins. In some biophysical contexts, bound molecules can still experience mobility, for example transcription factors sliding along DNA, membrane proteins with some entry and diffusion within lipid domains, or proteins that can enter into non-membrane bound compartments such as the nucleolus. We used lattice and continuum models to study the diffusive behavior of tracer particles which bind to obstacles and can diffuse within them. We show that binding significantly alters the motion of tracers. The type and degree of motion while bound is a key determinant of the tracer mobility. Our work has implications for protein-protein movement and interactions within living cells, including those involving intrinsically disordered proteins.

  12. Sls1p is a membrane-bound regulator of transcription-coupled processes involved in Saccharomyces cerevisiae mitochondrial gene expression.

    PubMed Central

    Bryan, Anthony C; Rodeheffer, Matthew S; Wearn, Christopher M; Shadel, Gerald S

    2002-01-01

    Mitochondrial translation is largely membrane-associated in S. cerevisiae. Recently, we discovered that the matrix protein Nam1p binds the amino-terminal domain of yeast mtRNA polymerase to couple translation and/or RNA-processing events to transcription. To gain additional insight into these transcription-coupled processes, we performed a genetic screen for genes that suppress the petite phenotype of a point mutation in mtRNA polymerase (rpo41-R129D) when overexpressed. One suppressor identified in this screen was SLS1, which encodes a mitochondrial membrane protein required for assembly of respiratory-chain enzyme complexes III and IV. The mtRNA-processing defects associated with the rpo41-R129D mutation were corrected in the suppressed strain, linking Sls1p to a pathway that includes mtRNA polymerase and Nam1p. This was supported by the observation that SLS1 overexpression rescued the petite phenotype of a NAM1 null mutation. In contrast, overexpression of Nam1p did not rescue the petite phenotype of a SLS1 null mutation, indicating that Nam1p and Sls1p are not functionally redundant but rather exist in an ordered pathway. On the basis of these data, a model in which Nam1p coordinates the delivery of newly synthesized transcripts to the membrane, where Sls1p directs or regulates their subsequent handling by membrane-bound factors involved in translation, is proposed. PMID:11805046

  13. Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bleil, J.D.; Wassarman, P.M.

    1986-04-01

    The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O-linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetratemore » the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only background levels to heads of both acrosome-intact and -reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.« less

  14. Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724

  15. Synthesis of poly(ester-carbonate) with a pendant acetylcholine analog for promoting neurite growth.

    PubMed

    Xing, Dongming; Ma, Lie; Gao, Changyou

    2014-10-01

    The modification of biodegradable polyesters with bioactive molecules has become an important strategy for controlling neuron adhesion and neurite outgrowth in nerve regeneration. In this study we report a biodegradable poly(ester-carbonate) with a pendant acetylcholine analog, which a neurotransmitter for the enhancement of neuron adhesion and outgrowth. The acetylcholine-functionalized poly(ester-carbonate) (Ach-P(LA-ClTMC)) was prepared by copolymerizing l-lactide (LA) and 5-methyl-5-chloroethoxycarbonyl trimethylene carbonate (ClTMC), followed by quaternization with trimethylamine. The acetylcholine analog content could be modulated by changing the molar feeding fraction of ClTMC. The incorporation of the acetylcholine analog improved the hydrophilicity of the films, but the acetylcholine analog content did not significantly influence the surface morphology of the acetylcholine-functionalized films. The results of PC12 cell culture showed that the acetylcholine analog promoted cell viability and neurite outgrowth in a concentration-dependent manner. The longest length of neurite and the percentage of cells bearing neurites were obtained on the Ach-P(LA-ClTMC)-10 film. All the results indicate that the integration of the acetylcholine analog at an appropriate fraction could be an effective strategy for optimizing the existing biodegradable polyesters for nerve regeneration applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Pharmaco-mechanical coupling in the response to acetylcholine and substance P in the smooth muscle of the rat iris sphincter.

    PubMed Central

    Banno, H.; Imaizumi, Y.; Watanabe, M.

    1985-01-01

    In the rat iris sphincter muscle contractile responses to transmural stimulation consisted of two components, a fast cholinergic followed by a slow non-adrenergic, non-cholinergic (NANC) one. The magnitude of the latter varied widely and was on average 5% of that of the cholinergic component. Exogenous substance P (1 nM-1 microM) produced a concentration-dependent contraction, the maximum amplitude of which was as large as that produced by acetylcholine (ACh). Capsaicin (10 microM) induced a transient contraction only once in each preparation. After the treatment with capsaicin the NANC component disappeared. Neither nerve nor direct electrical stimulation with short pulses elicited any active change in the membrane potential under physiological conditions, but an action potential was triggered by direct stimulation when the extracellular Ca ion was totally replaced by Ba ion. Under the latter conditions spontaneous spike potentials occurred repetitively. ACh and substance P produced a large contraction without modifying the membrane potential. This was also the case in the presence of 5 mM Ba. These results suggest that substance P-ergic innervation may have a far lesser physiological significance than that which has been described in rabbits and that pure pharmaco-mechanical coupling is characteristic of the responses to acetylcholine, substance P, and nerve stimulation in the rat iris sphincter muscle. PMID:2412624

  17. Galanin antagonizes acetylcholine on a memory task in basal forebrain-lesioned rats.

    PubMed

    Mastropaolo, J; Nadi, N S; Ostrowski, N L; Crawley, J N

    1988-12-01

    Galanin coexists with acetylcholine in medial septal neurons projecting to the ventral hippocampus, a projection thought to modulate memory functions. Neurochemical lesions of the nucleus basalis-medial septal area in rats impaired choice accuracy on a delayed alternation t-maze task. Acetylcholine (7.5 or 10 micrograms intraventricularly or 1 micrograms micro-injected into the ventral hippocampus) significantly improved performance in the lesioned rats. Atropine (5 mg/kg intraperitoneally or 10 micrograms intraventricularly), but not mecamylamine (3 mg/kg intraperitoneally or 20 micrograms intraventricularly), blocked this action of acetylcholine, suggesting involvement of a muscarinic receptor. Galanin (100-500 ng intraventricularly or 200 ng into the ventral hippocampus) attenuated the ability of acetylcholine to reverse the deficit in working memory in the lesioned rats. The antagonistic interaction between galanin and acetylcholine suggests that endogenous galanin may inhibit cholinergic function in memory processes, particularly in pathologies such as Alzheimer disease that involve degeneration of basal forebrain neurons.

  18. Oxotremorine suppresses thalamocortical oscillations via thalamic muscarinic acetylcholine receptors.

    PubMed

    Puoliväli, J; Jäkälä, P; Koivisto, E; Riekkinen, P

    1998-12-01

    We investigated whether the local intrathalamic infusion of a muscarinic acetylcholine receptor agonist (oxotremorine) at either the reticular nucleus of thalamus (NRT) or the ventroposteromedial nucleus of thalamus (VPM) suppresses thalamocortically generated neocortical high-voltage spindles (HVSs). In addition, we studied whether the intracerebroventricular (ICV) infusion of a selective muscarinic M2 acetylcholine receptor antagonist (methoctramine) could block the suppression of HVSs induced by either systemic (IP) administration of an anticholinesterase drug [tetrahydroaminoacridine (THA)] or ICV infusion of oxotremorine in rats. Intrathalamic administration of oxotremorine at 3 and 15 microg in the NRT, and at 15 microg in the VPM suppressed HVSs. ICV oxotremorine at 30 and 100 microg and IP THA at 3 mg/kg decreased HVSs. ICV methoctramine at 100 microg increased HVSs and completely blocked the decrease in HVSs produced by oxotremorine 100 microg and THA 3 mg/kg. The results suggest that activation of muscarinic M2 acetylcholine receptors in thalamic nuclei (NRT and VPM) can suppress thalamocortical oscillations and that ICV or systemically administered drugs that activate either directly (oxotremorine and methoctramine) or indirectly (THA) the muscarinic M2 acetylcholine receptors may modulate neocortical HVSs via the thalamus.

  19. Capsaicin modulates acetylcholine release at the myoneural junction.

    PubMed

    Thyagarajan, Baskaran; Potian, Joseph G; Baskaran, Padmamalini; McArdle, Joseph J

    2014-12-05

    Transient receptor potential (TRP) proteins are non-selective cation channel proteins that are expressed throughout the body. Previous studies demonstrated the expression of TRP Vanilloid 1 (TRPV1), capsaicin (CAP) receptor, in sensory neurons. Recently, we reported TRPV1 expression in mouse motor nerve terminals [MNTs; (Thyagarajan et al., 2009)], where we observed that CAP protected MNTs from botulinum neurotoxin A (BoNT/A). Phrenic nerve diaphragm nerve muscle preparations (NMP) isolated from isoflurane anesthetized adult mice were analyzed for twitch tension, spontaneous (mEPCs) and nerve stimulus evoked (EPCs) acetylcholine release. When acutely applied to isolated NMP, CAP produced a concentration-dependent decline of twitch tension and produced a significant decline in the amplitude of EPCs and quantal content without any effect on the mEPCs. The suppression of nerve stimulus evoked acetylcholine release by CAP was antagonized by capsazepine (CPZ), a TRPV1 antagonist. CAP did not suppress phrenic nerve stimulus evoked acetylcholine release in TRPV1 knockout mice. Also, CAP treatment, in vitro, interfered with the localization of adapter protein 2 in cholinergic Neuro 2a cells. Wortmannin, (WMN; non-selective phosphoinositol kinase inhibitor), mimicked the effects of CAP by inhibiting the acetylcholine exocytosis. Our data suggest that TRPV1 proteins expressed at the MNT are coupled to the exo-endocytic mechanisms to regulate neuromuscular functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Interaction of angiotensin-converting enzyme (ACE) with membrane-bound carboxypeptidase M (CPM) - a new function of ACE.

    PubMed

    Sun, Xiaoou; Wiesner, Burkhard; Lorenz, Dorothea; Papsdorf, Gisela; Pankow, Kristin; Wang, Po; Dietrich, Nils; Siems, Wolf-Eberhard; Maul, Björn

    2008-12-01

    Angiotensin-converting enzyme (ACE) demonstrates, besides its typical dipeptidyl-carboxypeptidase activity, several unusual functions. Here, we demonstrate with molecular, biochemical, and cellular techniques that the somatic wild-type murine ACE (mACE), stably transfected in Chinese Hamster Ovary (CHO) or Madin-Darby Canine Kidney (MDCK) cells, interacts with endogenous membranal co-localized carboxypeptidase M (CPM). CPM belongs to the group of glycosylphosphatidylinositol (GPI)-anchored proteins. Here we report that ACE, completely independent of its known dipeptidase activities, has GPI-targeted properties. Our results indicate that the spatial proximity between mACE and the endogenous CPM enables an ACE-evoked release of CPM. These results are discussed with respect to the recently proposed GPI-ase activity and function of sperm-bound ACE.

  1. Activation and modulation of human α4β2 nicotinic acetylcholine receptors by the neonicotinoids clothianidin and imidacloprid

    PubMed Central

    Li, Ping; Ann, Jason; Akk, Gustav

    2013-01-01

    Neonicotinoids are synthetic, nicotine-derived insecticides used for agricultural and household pest control. While highly effective at activating insect nicotinic receptors, many neonicotinoids are also capable of directly activating and/or modulating the activation of vertebrate nicotinic receptors. In this study, we have investigated the actions of the neonicotinoids clothianidin (CTD) and imidacloprid (IMI) on human neuronal α4β2 nicotinic acetylcholine receptors. The data demonstrate that the compounds are weak agonists of the human receptors with relative peak currents of 1–4 % of the response to 1 mM acetylcholine (ACh). Coapplication of IMI strongly inhibited currents elicited by ACh. From Schild plot analysis, we estimate that the affinity of IMI to the human α4β2 receptor is 18 µM. The application of low concentrations of CTD potentiated responses to low concentrations of ACh, suggesting that receptors occupied by one ACh and one CTD molecule have a higher gating efficacy than receptors with one ACh bound. Interestingly, subunit stoichiometry affected inhibition by CTD, with (α4)2(β2)3 receptors significantly more strongly inhibited than the (α4)3(β2)2 receptors. PMID:21538459

  2. Substance P and acetylcholine are co-localized in the pathway mediating mucociliary activity in Rana pipiens

    PubMed Central

    Hernández, C. J.; Ortíz, T.; Foster, C. Rosa K.; Tyagi, M; Lugo, N.; Albrecht, R.; Chinapen, S.

    2007-01-01

    Mucociliary activity is an important clearance mechanism in the respiratory system of air breathing vertebrates. Substance P (SP) and acetylcholine play a key role in the stimulation of the mucociliary transport in the frog palate. In this study, retrograde neuronal tracing was combined with immunocytochemistry for SP and choline acetyl transferase (ChAT) in the trigeminal ganglion and for neurokinin-1 receptor (NK1R) in the palate of Rana pipiens. The cells of origin of the palatine nerve were identified in the trigeminal ganglion using the retrograde tracer Fluorogold (FG). Optimal labeling of FG cells in the trigeminal ganglion was obtained at 96 h of exposure. Immunoflorescent shows that SP and acetylcholine are co-localized in 92% of the cells labeled with FG in the trigeminal ganglion. NK1 receptors were found in the membrane of epithelial and goblet cells of the palate. Ultrastructural study of the palate showed axonal-like endings with vesicles in connection with epithelial and goblet cells. These results further support the concerted action of both neurotransmitters in the regulation of mucociliary activity in the frog palate. PMID:17276713

  3. Nanosensors for the Chemical Imaging of Acetylcholine Using Magnetic Resonance Imaging.

    PubMed

    Luo, Yi; Kim, Eric H; Flask, Chris A; Clark, Heather A

    2018-06-06

    A suite of imaging tools for detecting specific chemicals in the central nervous system could accelerate the understanding of neural signaling events critical to brain function and disease. Here, we introduce a class of nanoparticle sensors for the highly specific detection of acetylcholine in the living brain using magnetic resonance imaging. The nanosensor is composed of acetylcholine-catalyzing enzymes and pH-sensitive gadolinium contrast agents co-localized onto the surface of polymer nanoparticles, which leads to changes in T 1 relaxation rate (1/ T 1 ). The mechanism of the sensor involves the enzymatic hydrolysis of acetylcholine leading to a localized decrease in pH which is detected by the pH-sensitive gadolinium chelate. The concomitant change in 1/ T 1 in vitro measured a 20% increase from 0 to 10 μM acetylcholine concentration. The applicability of the nanosensors in vivo was demonstrated in the rat medial prefrontal cortex showing distinct changes in 1/ T 1 induced by pharmacological stimuli. The highly specific acetylcholine nanosensor we present here offers a promising strategy for detection of cholinergic neurotransmission and will facilitate our understanding of brain function through chemical imaging.

  4. Dimethylaminoethanol (deanol) metabolism in rat brain and its effect on acetylcholine synthesis.

    PubMed

    Jope, R S; Jenden, D J

    1979-12-01

    Specific methods utilizing combined gas chromatography mass spectrometry were used to measure the metabolism of [2H6] deanol and its effects on acetylcholine concentration in vitro and in vivo. In vitro [2H6]deanol was rapidly taken up by rat brain synaptosomes, but was neither methylated nor acetylated. [2H6]Deanol was a weak competitive inhibitor of the high affinity transport of [2H4]choline, thus reducing the synthesis of [2H4]acetylcholine. In vivo [2H6]deanol was present in the brain after i.p. or p.o. administration, but was not methylated or acetylated. Treatment of rats with [2H6]deanol significantly increased the concentration of choline in the plasma and brain but did not alter the concentration of acetylcholine in the brain. Treatment of rats with atropine (to stimulate acetylcholine turnover) or with hemicholinium-3 (to inhibit the high affinity transport of choline) did not reveal any effect of [2H6]deanol on acetylcholine synthesis in vivo. However, since [2H6]deanol did increase brain choline, it may prove therapeutically useful when the production of choline is reduced or when the utilization of choline for the synthesis of acetylcholine is impaired.

  5. Fast Collisional Lipid Transfer Among Polymer-Bounded Nanodiscs

    NASA Astrophysics Data System (ADS)

    Cuevas Arenas, Rodrigo; Danielczak, Bartholomäus; Martel, Anne; Porcar, Lionel; Breyton, Cécile; Ebel, Christine; Keller, Sandro

    2017-04-01

    Some styrene/maleic acid (SMA) copolymers solubilise membrane lipids and proteins to form polymer-bounded nanodiscs termed SMA/lipid particles (SMALPs). Although SMALPs preserve a lipid-bilayer core, they appear to be more dynamic than other membrane mimics. We used time-resolved Förster resonance energy transfer and small-angle neutron scattering to determine the kinetics and the mechanisms of phospholipid transfer among SMALPs. In contrast with vesicles or protein-bounded nanodiscs, SMALPs exchange lipids not only by monomer diffusion but also by fast collisional transfer. Under typical experimental conditions, lipid exchange occurs within seconds in the case of SMALPs but takes minutes to days in the other bilayer particles. The diffusional and second-order collisional exchange rate constants for SMALPs at 30 °C are kdif = 0.287 s-1 and kcol = 222 M-1s-1, respectively. Together with the fast kinetics, the observed invariability of the rate constants with probe hydrophobicity and the moderate activation enthalpy of ~70 kJ mol-1 imply that lipids exchange through a “hydrocarbon continuum” enabled by the flexible nature of the SMA belt surrounding the lipid-bilayer core. Owing to their fast lipid-exchange kinetics, SMALPs represent highly dynamic equilibrium rather than kinetically trapped membrane mimics, which has important implications for studying protein/lipid interactions in polymer-bounded nanodiscs.

  6. Back to the future: Rational maps for exploring acetylcholine receptor space and time.

    PubMed

    Tessier, Christian J G; Emlaw, Johnathon R; Cao, Zhuo Qian; Pérez-Areales, F Javier; Salameh, Jean-Paul J; Prinston, Jethro E; McNulty, Melissa S; daCosta, Corrie J B

    2017-11-01

    Global functions of nicotinic acetylcholine receptors, such as subunit cooperativity and compatibility, likely emerge from a network of amino acid residues distributed across the entire pentameric complex. Identification of such networks has stymied traditional approaches to acetylcholine receptor structure and function, likely due to the cryptic interdependency of their underlying amino acid residues. An emerging evolutionary biochemistry approach, which traces the evolutionary history of acetylcholine receptor subunits, allows for rational mapping of acetylcholine receptor sequence space, and offers new hope for uncovering the amino acid origins of these enigmatic properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Electrophysiological properties of the membrane and acetylcholine receptor in developing rat and chick myotubes

    PubMed Central

    1975-01-01

    Membrane properties of rat and chick myotubes in various stages of development were studied. Resting membrane potentials (Em) increased from -8 to -55 mV in both rat and chick as the myotubes developed from myoblasts to large multinucleated fibers. In the rat myotubes, this increase was not accompanied by significant changes in specific membrane resistivity or changes in Na+ and K+ ion distribution. Nor have we observed a significant electrogenic component to the resting Em of mature rat myotubes under normal circumstances. A progressive increase in the passive permeability of the membrane to K+ relative to Na+ ions has been observed which can account for the changes in Em with development. In contrast to the changes in the ionic selectivity of the membrane, we have found that the ionic selectivity of the ACh receptor of rat and chick myotubes remains constant during the same period of myotube development. PMID:1176950

  8. Synthesis, in vitro and in vivo studies, and molecular modeling of N-alkylated dextromethorphan derivatives as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptor.

    PubMed

    Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz

    2014-12-15

    9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  10. Characterization of the membrane-bound succinic dehydrogenase of Micrococcus lysodeikticus.

    PubMed

    Pollock, J J; Linder, R; Salton, M R

    1971-07-01

    The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 x g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca(2+) and Mg(2+) exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents.

  11. Why we forget our dreams: Acetylcholine and norepinephrine in wakefulness and REM sleep.

    PubMed

    Becchetti, Andrea; Amadeo, Alida

    2016-01-01

    The ascending fibers releasing norepinephrine and acetylcholine are highly active during wakefulness. In contrast, during rapid-eye-movement sleep, the neocortical tone is sustained mainly by acetylcholine. By comparing the different physiological features of the norepinephrine and acetylcholine systems in the light of the GANE (glutamate amplifies noradrenergic effects) model, we suggest how to interpret some functional differences between waking and rapid-eye-movement sleep.

  12. Differential effects of subtype-specific nicotinic acetylcholine receptor agonists on early and late hippocampal LTP.

    PubMed

    Kroker, Katja S; Rast, Georg; Rosenbrock, Holger

    2011-12-05

    Brain nicotinic acetylcholine receptors are involved in several neuropsychiatric disorders, e.g. Alzheimer's and Parkinson's diseases, Tourette's syndrome, schizophrenia, depression, autism, attention deficit hyperactivity disorder, and anxiety. Currently, approaches selectively targeting the activation of specific nicotinic acetylcholine receptors are in clinical development for treatment of memory impairment of Alzheimer's disease patients. These are α4β2 and α7 nicotinic acetylcholine receptor agonists which are believed to enhance cholinergic and glutamatergic neurotransmission, respectively. In order to gain a better insight into the mechanistic role of these two nicotinic acetylcholine receptors in learning and memory, we investigated the effects of the α4β2 nicotinic acetylcholine receptor agonist TC-1827 and the α7 nicotinic acetylcholine receptor partial agonist SSR180711 on hippocampal long-term potentiation (LTP), a widely accepted cellular experimental model of memory formation. Generally, LTP is distinguished in an early and a late form, the former being protein-synthesis independent and the latter being protein-synthesis dependent. TC-1827 was found to increase early LTP in a bell-shaped dose dependent manner, but did not affect late LTP. In contrast, the α7 nicotinic acetylcholine receptor partial agonist SSR180711 showed enhancing effects on both early and late LTP in a bell-shaped manner. Furthermore, SSR180711 not only increased early LTP, but also transformed it into late LTP, which was not observed with the α4β2 nicotinic acetylcholine receptor agonist. Therefore, based on these findings α7 nicotinic acetylcholine receptor (partial) agonists appear to exhibit stronger efficacy on memory improvement than α4β2 nicotinic acetylcholine receptor agonists. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Predictive energy landscapes for folding membrane protein assemblies

    NASA Astrophysics Data System (ADS)

    Truong, Ha H.; Kim, Bobby L.; Schafer, Nicholas P.; Wolynes, Peter G.

    2015-12-01

    We study the energy landscapes for membrane protein oligomerization using the Associative memory, Water mediated, Structure and Energy Model with an implicit membrane potential (AWSEM-membrane), a coarse-grained molecular dynamics model previously optimized under the assumption that the energy landscapes for folding α-helical membrane protein monomers are funneled once their native topology within the membrane is established. In this study we show that the AWSEM-membrane force field is able to sample near native binding interfaces of several oligomeric systems. By predicting candidate structures using simulated annealing, we further show that degeneracies in predicting structures of membrane protein monomers are generally resolved in the folding of the higher order assemblies as is the case in the assemblies of both nicotinic acetylcholine receptor and V-type Na+-ATPase dimers. The physics of the phenomenon resembles domain swapping, which is consistent with the landscape following the principle of minimal frustration. We revisit also the classic Khorana study of the reconstitution of bacteriorhodopsin from its fragments, which is the close analogue of the early Anfinsen experiment on globular proteins. Here, we show the retinal cofactor likely plays a major role in selecting the final functional assembly.

  14. Acetylcholine protects mesenteric arteries against hypoxia/reoxygenation injury via inhibiting calcium-sensing receptor.

    PubMed

    Zhao, Ming; He, Xi; Yang, Yong-Hua; Yu, Xiao-Jiang; Bi, Xue-Yuan; Yang, Yang; Xu, Man; Lu, Xing-Zhu; Sun, Qiang; Zang, Wei-Jin

    2015-04-01

    The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Characterization of the Membrane-Bound Succinic Dehydrogenase of Micrococcus lysodeikticus

    PubMed Central

    Pollock, Jerry J.; Linder, Regina; Salton, Milton R. J.

    1971-01-01

    The occurrence of succinic dehydrogenase [succinic:(acceptor) oxidoreductase, EC 1.3.99.1] in membrane fractions of Micrococcus lysodeikticus was investigated. The enzyme could be purified 10-fold, by deoxycholate treatment. Butanol extraction of membranes yielded an active fraction, nonsedimentable at 130,000 × g for 2 hr and altered in its phospholipid content relative to membranes. The activity of the enzyme in particulate preparations was decreased in the presence of competitive inhibitors and by compounds known to react with iron, sulfhydryl groups, and flavine. In this respect, the bacterial succinic dehydrogenase is similar to the enzyme derived from yeast and mammalian sources. In certain membrane fractions, Ca2+ and Mg2+ exhibited inhibitory effects whereas Triton X-100 caused activation. The enzyme could also be activated by substrate. In the phenazine reductase assay, incomplete reduction of electron acceptor was observed upon addition of divalent cations and iron binding agents. Images PMID:4327510

  16. Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites.

    PubMed

    Lopes, Jose L S; Beltramini, Leila M; Wallace, Bonnie A; Araujo, Ana P U

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates.

  17. The challenges of modulating the 'rest and digest' system: acetylcholine receptors as drug targets.

    PubMed

    VanPatten, Sonya; Al-Abed, Yousef

    2017-01-01

    Acetylcholine, a major neurotransmitter of the parasympathetic and sympathetic nervous systems, was discovered in the early 1900s. Over the years, researchers have revealed much about its regulation, properties of its receptors and features of the downstream signaling that influence its terminal effects. The acetylcholine system, traditionally associated with neuromuscular communication, is now known to play a crucial part in modulation of the immune system and other 'rest and digest' effects. Recent research seeks to elucidate the system's role in brain functions including cognition, sleep, arousal, motivation, reward and pain. We highlight clinically approved and experimental drugs that modulate the acetylcholine receptors. The complexities in targeting the acetylcholine receptors are vast and finding future indications for drug development associated with specific acetylcholine receptors remains a challenge. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The structure of Serratia marcescens Lip, a membrane-bound component of the type VI secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Vincenzo A.; Shepherd, Sharon M.; English, Grant

    2011-12-01

    The high-resolution crystal structure of S. marcescens Lip reveals a new member of the transthyretin family of proteins. Lip, a core component of the type VI secretion apparatus, is localized to the outer membrane and is positioned to interact with other proteins forming this complex system. Lip is a membrane-bound lipoprotein and a core component of the type VI secretion system found in Gram-negative bacteria. The structure of a Lip construct (residues 29–176) from Serratia marcescens (SmLip) has been determined at 1.92 Å resolution. Experimental phases were derived using a single-wavelength anomalous dispersion approach on a sample cocrystallized with iodide.more » The membrane localization of the native protein was confirmed. The structure is that of the globular domain lacking only the lipoprotein signal peptide and the lipidated N-terminus of the mature protein. The protein fold is dominated by an eight-stranded β-sandwich and identifies SmLip as a new member of the transthyretin family of proteins. Transthyretin and the only other member of the family fold, 5-hydroxyisourate hydrolase, form homotetramers important for their function. The asymmetric unit of SmLip is a tetramer with 222 symmetry, but the assembly is distinct from that previously noted for the transthyretin protein family. However, structural comparisons and bacterial two-hybrid data suggest that the SmLip tetramer is not relevant to its role as a core component of the type VI secretion system, but rather reflects a propensity for SmLip to participate in protein–protein interactions. A relatively low level of sequence conservation amongst Lip homologues is noted and is restricted to parts of the structure that might be involved in interactions with physiological partners.« less

  19. Membrane-Induced Structural Rearrangement and Identification of a Novel Membrane Anchor in Talin F2F3

    PubMed Central

    Arcario, Mark J.; Tajkhorshid, Emad

    2014-01-01

    Experimental challenges associated with characterization of the membrane-bound form of talin have prevented us from understanding the molecular mechanism of its membrane-dependent integrin activation. Here, utilizing what we believe to be a novel membrane mimetic model, we present a reproducible model of membrane-bound talin observed across multiple independent simulations. We characterize both local and global membrane-induced structural transitions that successfully reconcile discrepancies between biochemical and structural studies and provide insight into how talin might modulate integrin function. Membrane binding of talin, captured in unbiased simulations, proceeds through three distinct steps: initial electrostatic recruitment of the F2 subdomain to anionic lipids via several basic residues; insertion of an initially buried, conserved hydrophobic anchor into the membrane; and association of the F3 subdomain with the membrane surface through a large, interdomain conformational change. These latter two steps, to our knowledge, have not been observed or described previously. Electrostatic analysis shows talin F2F3 to be highly polarized, with a highly positive underside, which we attribute to the initial electrostatic recruitment, and a negative top face, which can help orient the protein optimally with respect to the membrane, thereby reducing the number of unproductive membrane collision events. PMID:25418091

  20. Helix Fraying and Lipid-Dependent Structure of a Short Amphipathic Membrane-Bound Peptide Revealed by Solid-State NMR.

    PubMed

    Strandberg, Erik; Grau-Campistany, Ariadna; Wadhwani, Parvesh; Bürck, Jochen; Rabanal, Francesc; Ulrich, Anne S

    2018-06-14

    The amphipathic α-helical peptide KIA14 [(KIAGKIA) 2 -NH 2 ] was studied in membranes using circular dichroism and solid-state NMR spectroscopy to obtain global as well as local structural information. By analyzing 2 H NMR data from 10 analogues of KIA14 that were selectively labeled with Ala- d 3 , those positions that are properly folded into a helix could be determined within the membrane-bound peptide. The N-terminus was found to be unraveled, whereas positions 4-14 formed an ideal helix all the way to the C-terminus. The helicity did not change when Gly residues were replaced by Ala- d 3 but was reduced when Ile was replaced, indicating that large hydrophobic residues are required for membrane binding and helix formation. The reduced helicity was strongly correlated with a decrease in peptide-induced leakage from lipid vesicles. The orientation of the short KIA14 peptide was assessed in several lipid systems and compared with that of the longer KIA21 sequence [(KIAGKIA) 3 -NH 2 ]. In 1,2-dioleoyl- sn-glycero-3-phosphatidylcholine, both peptides are aligned flat on the membrane surface, whereas in 1,2-dimyristoyl- sn-glycero-3-phosphatidylcholine (DMPC)/1-myristoyl-2-hydroxy- sn-glycero-3-phosphatidylcholine (lyso-MPC) both are inserted into the membrane in an upright orientation. These two types of lipid systems had been selected for their strongly negative and positive spontaneous curvature, respectively. We propose that in these cases, the peptide orientation is largely determined by the lipid properties. On the other hand, in plain DMPC and 1,2-dilauroyl- sn-glycero-3-phosphatidylcholine, which have only a slight positive curvature, a marked difference in orientation is evident: the short KIA14 lies almost flat on the membrane surface, whereas the longer KIA21 is more tilted. We thus propose that out of the lipid systems tested here, DMPC (with hardly any curvature) is the least biased lipid system in which peptide orientation and realignment can be

  1. Nonanesthetic alcohols dissolve in synaptic membranes without perturbing their lipids.

    PubMed Central

    Miller, K W; Firestone, L L; Alifimoff, J K; Streicher, P

    1989-01-01

    While many theories of general anesthesia postulate a lipid site of action, there has been no adequate explanation for the lack of anesthetic potency of the highly hydrophobic primary alkanols with more than 12 carbons (the cut-off). Some work suggests that these nonanesthetic alcohols do not dissolve in membranes. Other work contradicts this and suggests that an anesthetic site on a protein provides a better explanation. Here we show that both the anesthetic dodecanol and the nonanesthetic tetradecanol are taken up equally well into the tissues of animals and into isolated postsynaptic membranes. When a group of Rana pipiens tadpoles were treated with dodecanol, half were anesthetized by 4.7 microM (free aqueos concentration), and the corresponding concentration in the tissues was found to be 0.4 mmol per kg wet weight. Prolonged exposure (92 hr) to tetradecanol produced even higher tissue concentrations (0.7 mmol per kg wet weight), yet no anesthetic effects were observed. Furthermore, general anesthetics are thought to act on postsynaptic membranes but both alkanols partitioned into postsynaptic membranes from Torpedo electroplaques. The spin label, 12-doxyl stearate, was incorporated into these membranes. The lipid order parameter it reported was decreased by the anesthetic alcohols (octanol, decanol, and dodecanol), whereas the nonanesthetic alcohols either did not change it significantly (tetradecanol) or actually increased it (hexadecanol and octadecanol). Thus, although lipid solubility is unable to account for the pharmacology of the cut-off in potency of the long-chain alcohols, lipid perturbations provide an accurate description. PMID:2783782

  2. Functional Expression of Two Neuronal Nicotinic Acetylcholine Receptors from cDNA Clones Identifies a Gene Family

    NASA Astrophysics Data System (ADS)

    Boulter, Jim; Connolly, John; Deneris, Evan; Goldman, Dan; Heinemann, Steven; Patrick, Jim

    1987-11-01

    A family of genes coding for proteins homologous to the α subunit of the muscle nicotinic acetylcholine receptor has been identified in the rat genome. These genes are transcribed in the central and peripheral nervous systems in areas known to contain functional nicotinic receptors. In this paper, we demonstrate that three of these genes, which we call alpha3, alpha4, and beta2, encode proteins that form functional nicotinic acetylcholine receptors when expressed in Xenopus oocytes. Oocytes expressing either alpha3 or alpha4 protein in combination with the beta2 protein produced a strong response to acetylcholine. Oocytes expressing only the alpha4 protein gave a weak response to acetylcholine. These receptors are activated by acetylcholine and nicotine and are blocked by Bungarus toxin 3.1. They are not blocked by α -bungarotoxin, which blocks the muscle nicotinic acetylcholine receptor. Thus, the receptors formed by the alpha3, alpha4, and beta2 subunits are pharmacologically similar to the ganglionic-type neuronal nicotinic acetylcholine receptor. These results indicate that the alpha3, alpha4, and beta2 genes encode functional nicotinic acetylcholine receptor subunits that are expressed in the brain and peripheral nervous system.

  3. Comparison of (/sup 3/H)nicotine and (/sup 3/H)acetylcholine binding in mouse brain: regional distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sershen, H.; Reith, M.E.; Hashim, A.

    1985-06-01

    In a continuing study of nicotine binding sites, the authors determined the relative amount of nicotine binding and acetylcholine binding in various brain regions of C57/BL and of DBA mice. Although midbrain showed the highest and cerebellum the lowest binding for both (/sup 3/H)nicotine and (/sup 3/H)acetylcholine, the ratio of nicotine to acetylcholine binding showed a three-fold regional variation. Acetylcholine inhibition of (/sup 3/H)nicotine binding indicated that a portion of nicotine binding was not inhibited by acetylcholine. These results indicate important differences between the binding of (+/-)-(/sup 3/H)nicotine and that of (/sup 3/H)acetylcholine.

  4. Role of Lactobacillus plantarum MTCC1325 in membrane-bound transport ATPases system in Alzheimer’s disease-induced rat brain

    PubMed Central

    Mallikarjuna, Nimgampalle; Praveen, Kukkarasapalli; Yellamma, Kuna

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is a neurodegenerative disorder, clinically characterized by memory dysfunction and progressive loss of cognition. No curative therapeutic or drug is available for the complete cure of this disease. The present study was aimed to evaluate the efficacy of Lactobacillus plantarum MTCC1325 in ATPases activity in the selected brain regions of rats induced with Alzheimer’s. Methods: For the study, 48 healthy Wistar rats were divided into four groups: group I as control group, group II as AD model (AD induced by intraperitoneal injection of D-Galactose, 120 mg/kg body weight for 6 weeks), group III as normal control rats which were orally administered only with L. plantarum MTCC1325 for 60 days, and group IV where the AD-induced rats simultaneously received oral treatment of L. plantarum MTCC1325 (10ml/kg body weight, 12×108 CFU/mL) for 60 days. The well known membrane bound transport enzymes including Na+, K+-ATPases, Ca2+-ATPases, and Mg2+-ATPases were assayed in the selected brain regions of hippocampus and cerebral cortex in all four groups of rats at selected time intervals. Results: Chronic injection of D-Galactose caused lipid peroxidation, oxidative stress, and mitochondrial dysfunction leading to the damage of neurons in the brain, finally bringing a significant decrease (-20%) in the brain total membrane bound ATPases over the controls. Contrary to this, treatment of AD-induced rats with L. plantarum MTCC1325 reverted all the constituents of ATPase enzymes to near normal levels within 30 days. Conclusion: Lactobacillus plantarum MTCC1325 exerted a beneficial action on the entire ATPases system in AD-induced rat brain by delaying neurodegeneration. PMID:28265536

  5. Appearance of Membrane-bound Iron-Sulfur Centers and the Photosystem I Reaction Center during Greening of Barley Leaves 1

    PubMed Central

    Baltimore, Barbara G.; Malkin, Richard

    1977-01-01

    Dark-grown barley (Hordeum vulgare) etioplasts were examined for their content of membrane-bound iron-sulfur centers by electron paramagnetic resonance spectroscopy at 15K. They were found to contain the high potential iron-sulfur center characterized (in the reduced state) by an electron paramagnetic resonance g value of 1.89 (the “Rieske” center) but did not contain any low potential iron-sulfur centers. Per mole of cytochrome f, dark-grown etioplasts and fully developed chloroplasts had the same content of the Rieske center. During greening of etioplasts under continuous light, low potential bound iron-sulfur centers appear. In addition, the photosystem I reaction center, as measured by the photooxidation of P700 at 15K, also became functional; during greening the appearance of a photoreducible low potential iron-sulfur center paralleled the appearance of P700 photoactivity. These findings indicate the close association of the low potential iron-sulfur centers with the photosystem I reaction center; they also support the concept that the development of stable charge separation in the photosystem I reaction center requires, in addition to P700, a low potential iron-sulfur center. PMID:16660048

  6. Electrolyte and protein secretion by the perfused rabbit mandibular gland stimulated with acetylcholine or catecholamines

    PubMed Central

    Case, R. M.; Conigrave, A. D.; Novak, I.; Young, J. A.

    1980-01-01

    1. A method is described for the isolation and vascular perfusion in vitro of the mandibular gland of the rabbit. The perfusate is a physiological salt solution containing glucose as the only metabolic substrate. 2. During perfusion with solutions containing acetylcholine, the gland secretes vigorously at a rate and in a manner similar to that seen in vivo. Although the gland becomes oedematous during perfusion, the extent of this oedema appears to have no influence on secretory ability: the perfused glands were capable of functioning for at least 4 h, and often for more than 6 h. 3. Acetylcholine evoked a small secretory response at a concentration of 8 × 10-9 mol l-1 and a maximum response at 8 × 10-7 mol l-1. Eserine (2 × 10-5 mol l-1) evoked secretory responses comparable to those evoked by acetylcholine in a concentration of 8 × 10-9 mol l-1. Secretion, whether unstimulated or evoked by acetylcholine or eserine, could be blocked completely by atropine. 4. During prolonged stimulation with acetylcholine, the fluid secretory response declined rapidly over a period of about 15 min from an initial high value to a much lower plateau value. After 3 or more hours of stimulation, the secretory response began once more to decline, this time towards zero. If, before the second period of decline begins, stimulation is interrupted for about 30 min, the gland recovers its initial responsiveness to further stimulation with acetylcholine. 5. The Na, K, Cl and HCO3 concentrations and the osmolality of acetylcholine evoked saliva exhibited flow-dependency similar to that seen in vivo. The concentrations of Na and Cl, but not K and HCO3, increased by about 25 mmol l-1 during periods of prolonged stimulation with acetylcholine even though the salivary secretory rate was constant. The concentrations of K and HCO3, but not Na and Cl, increased progressively as the concentration of infused acetylcholine was increased. 6. Salivary protein secretion increased with increasing

  7. Dietary supplementation with uridine-5'-monophosphate (UMP), a membrane phosphatide precursor, increases acetylcholine level and release in striatum of aged rat.

    PubMed

    Wang, Lei; Albrecht, Meredith A; Wurtman, Richard J

    2007-02-16

    The biosynthesis of brain membrane phosphatides, e.g., phosphatidylcholine (PtdCho), may utilize three circulating compounds: choline, uridine (a precursor for UTP, CTP, and CDP-choline), and a PUFA (e.g., docosahexaenoic acid); moreover, oral administration of the uridine source uridine-5'-monophosphate (UMP) can significantly increase levels of the phosphatides throughout the rodent brain. Since PtdCho can provide choline for acetylcholine (ACh) synthesis, we determined whether UMP administration also affects ACh levels in striatum and striatal extracellular fluid, in aged and young rats. Among aged animals consuming a UMP-containing diet (2.5%, w/w) for 1 or 6 weeks, baseline ACh levels in striatal dialysates rose from 73 fmol/min to 148 or 197 fmol/min (P<0.05). Consuming a lower dose (0.5%) for 1 week produced a smaller but still significant increase (from 75 to 92 fmol/min, P<0.05), and elevated striatal ACh content (by 16%; P<0.05). Dietary UMP (0.5%, 1 week) also amplified the increase in ACh caused by giving atropine (10 microM in the aCSF); atropine alone increased ACh concentrations from 81 to 386 fmol/min in control rats and from 137 to 680 fmol/min in those consuming UMP (P<0.05). Young rats eating the UMP-containing diet exhibited similar increases in basal ECF ACh (from 105 to 118 fmol/min) and in the increase produced by atropine (from 489 to 560 fmol/min; P<0.05). These data suggest that giving a uridine source may enhance some cholinergic functions, perhaps by increasing brain phosphatide levels.

  8. Acetylcholine and acetylcarnitine transport in peritoneum: Role of the SLC22A4 (OCTN1) transporter.

    PubMed

    Pochini, Lorena; Scalise, Mariafrancesca; Di Silvestre, Sara; Belviso, Stefania; Pandolfi, Assunta; Arduini, Arduino; Bonomini, Mario; Indiveri, Cesare

    2016-04-01

    A suitable experimental tool based on proteoliposomes for assaying Organic Cation Transporter Novel member 1 (OCTN1) of peritoneum was pointed out. OCTN1, recently acknowledged as acetylcholine transporter, was immunodetected in rat peritoneum. Transport was assayed following flux of radiolabelled TEA, acetylcholine or acetylcarnitine in proteoliposomes reconstituted with peritoneum extract. OCTN1 mediated, besides TEA, also acetylcholine and a slower acetylcarnitine transport. External sodium inhibited acetylcholine uptake but not its release from proteoliposomes. Differently, sodium did not affect acetylcarnitine uptake. These results suggested that physiologically, acetylcholine should be released while acetylcarnitine was taken up by peritoneum cells. Transport was impaired by OCTN1 inhibitors, butyrobetaine, spermine, and choline. Biotin was also found as acetylcholine transport inhibitor. Anti-OCTN1 antibody specifically inhibited acetylcholine transport confirming the involvement of OCTN1. The transporter was also immunodetected in human mesothelial primary cells. Extract from these cells was reconstituted in proteoliposomes. Transport features very similar to those found with rat peritoneum were observed. Validation of the proteoliposome model for peritoneal transport study was then achieved assaying transport in intact mesothelial cells. TEA, butyrobetaine and Na(+) inhibited acetylcholine transport in intact cells while efflux was Na(+) insensitive. Therefore transport features in intact cells overlapped those found in proteoliposomes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Local cardiac effects of substance P: roles of acetylcholine and noradrenaline.

    PubMed Central

    Chiao, H; Caldwell, R W

    1995-01-01

    1. The local cardiac actions of substance P were examined in isolated perfused hearts and atria of the guinea-pig. 2. In both hearts and right atria, substance P caused negative inotropic and chronotropic effects. 3. Atropine (10(-6) M) or depletion of acetylcholine, by electrical stimulation and hemicholinium-3 perfusion, significantly attenuated the negative inotropic and chronotropic effects of substance P. alpha- and beta-adrenoceptor blockade by nadolol and phentolamine (10(-6) M each) did not prevent the negative inotropic and chronotropic effects of substance P. This indicates that cholinergic neurones, but not adrenergic neurones, partially mediate the effects of substance P. 4. There was no significant difference in the effects of substance P observed between groups with acetylcholine depletion and with cholinoceptor blockade. This suggests that substance P elicits its effects mainly through release of acetylcholine. 5. These results indicate that substance P has negative inotropic and chronotropic effects in guinea-pig hearts and right atria mediated partly by release of acetylcholine. Substance P also appears to have direct effects on cardiac tissue. PMID:7533612

  10. An ab initio study of the conformational energy map of acetylcholine

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Boyes, R. N.

    An ab initio density functional theory study is reported of the conformational energy map of acetylcholine, with respect to the two central dihedral angles of the molecule. The acetylcholine molecule pays a central role in neurotransmission and has been studied widely using semi-empirical computational modelling. The ab initio results are compared with a number of previous investigations and with experiment. The ab initio data indicate that the most stable conformation of acetylcholine is the trans , gauche arrangement of the central dihedral angles. Furthermore, Mulliken population analysis of the electronic structure of the molecule in this conformation indicates that the positive charge of the molecule is spread over the exterior of the cationic head of the molecule.

  11. Synthetic membrane-targeted antibiotics.

    PubMed

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  12. Na+/K+ ATPase regulates the expression and localization of acetylcholine receptors in a pump activity-independent manner

    PubMed Central

    Doi, Motomichi; Iwasaki, Kouichi

    2008-01-01

    Na+/K+ ATPase is a plasma membrane-localized sodium pump that maintains the ion gradients between the extracellular and intracellular environments, which in turn controls the cellular resting membrane potential. Recent evidence suggests that the pump is also localized at synapses and regulates synaptic efficacy. However, its precise function at the synapse is unknown. Here we show that two mutations in the α subunit of the eat-6 Na+/K+ ATPase in Caenorhabditis elegans dramatically increase the sensitivity to acetylcholine (Ach) agonists and alter the localization of nicotinic Ach receptors at the neuromuscular junction (NMJ). These defects can be rescued by mutated EAT-6 proteins which lack its pump activity, suggesting the presence of a novel function for Ach signaling. The Na+/K+ ATPase accumulates at postsynaptic sites and appears to surround Ach receptors to maintain rigid clusters at the NMJ. Our findings suggest a critical pump activity-independent, allele –specific role for Na+/K+ ATPase on postsynaptic organization and synaptic efficacy. PMID:18599311

  13. Acetylcholine release from the rabbit isolated superior cervical ganglion preparation.

    PubMed

    Dawes, P M; Vizi, E S

    1973-06-01

    1. The rabbit isolated superior cervical ganglion preparation has been used to measure the release of acetylcholine from the tissue at rest and during preganglionic nerve stimulation.2. In the presence of physostigmine, the resting release of acetylcholine was 0.13 +/- 0.01 (nmol/g)/min (10 experiments) and that during stimulation with 300 shocks at 10 Hz was 3.1 +/- 0.4 (pmol/g)/volley in 4 experiments (means +/- S.E.M.). The volley output was independent of the frequency of stimulation over the range 1 to 10 Hz but was higher at 0.3 Hz.3. Tetrodotoxin, 0.8 muM, had no effect on the resting release of acetylcholine but reduced the stimulated release below detectable levels (2 pmol). Lowering the temperature of the bathing fluid to 5 degrees C reduced to below detectable levels both the resting release and that produced by nerve stimulation.4. The resting release of acetylcholine was increased by a potassium-rich (49.4 mM K(+)) bathing solution and by replacing the sodium chloride in the solution with lithium chloride (113 mM Li(+)).5. (-)-Noradrenaline bitartrate, 3 muM, and (+/-)-adrenaline bitartrate, 1.5 muM, reduced by 70% the output of acetylcholine induced by stimulation at 0.3 Hz, but failed to reduce the resting release or that evoked by stimulation at 10 Hz. The inhibition was reversed by phentolamine.6. It is concluded that the rabbit superior cervical ganglion in vitro is a suitable preparation for studying transmitter release and that the ganglion blocking effect of catecholamines is due to a reduction in transmitter release.

  14. A Quorum-Sensing Antagonist Targets Both Membrane-Bound and Cytoplasmic Receptors And Controls Bacterial Pathogenicity

    PubMed Central

    Swem, Lee R.; Swem, Danielle L.; O’Loughlin, Colleen T.; Gatmaitan, Raleene; Zhao, Bixiao; Ulrich, Scott M.; Bassler, Bonnie L.

    2009-01-01

    Summary Quorum sensing is a process of bacterial communication involving production and detection of secreted molecules called autoinducers. Gram-negative bacteria use acyl-homoserine lactone (AHL) autoinducers, which are detected by one of two receptor types. First, cytoplasmic LuxR-type receptors bind accumulated intracellular AHLs. AHL-LuxR complexes bind DNA and alter gene expression. Second, membrane-bound LuxN-type receptors bind accumulated extracellular AHLs. AHL-LuxN complexes relay information internally by phosphorylation cascades that direct gene-expression changes. Here we show that a small molecule, previously identified as an antagonist of LuxN-type receptors, is also a potent antagonist of the LuxR family, despite differences in receptor structure, localization, AHL specificity, and signaling mechanism. Derivatives were synthesized and optimized for potency, and in each case, we characterized the mode of action of antagonism. The most potent antagonist protects Caenorhabditis elegans from quorum-sensing-mediated killing by Chromobacterium violaceum, validating the notion that targeting quorum sensing has potential for antimicrobial drug development. PMID:19647512

  15. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment.

    PubMed

    Lombardo, Sylvia; Maskos, Uwe

    2015-09-01

    Alzheimer's Disease (AD) is the major form of senile dementia, characterized by neuronal loss, extracellular deposits, and neurofibrillary tangles. It is accompanied by a loss of cholinergic tone, and acetylcholine (ACh) levels in the brain, which were hypothesized to be responsible for the cognitive decline observed in AD. Current medication is restricted to enhancing cholinergic signalling for symptomatic treatment of AD patients. The nicotinic acetylcholine receptor family (nAChR) and the muscarinic acetylcholine receptor family (mAChR) are the target of ACh in the brain. Both families of receptors are affected in AD. It was demonstrated that amyloid beta (Aβ) interacts with nAChRs. Here we discuss how Aβ activates or inhibits nAChRs, and how this interaction contributes to AD pathology. We will discuss the potential role of nAChRs as therapeutic targets. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior

    PubMed Central

    Picciotto, Marina R.; Higley, Michael J.; Mineur, Yann S.

    2012-01-01

    Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss the consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on the site of release, the receptor subtypes, and the target neuronal population, however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors. PMID:23040810

  17. B-973, a novel piperazine positive allosteric modulator of the α7 nicotinic acetylcholine receptor.

    PubMed

    Post-Munson, Debra J; Pieschl, Rick L; Molski, Thaddeus F; Graef, John D; Hendricson, Adam W; Knox, Ronald J; McDonald, Ivar M; Olson, Richard E; Macor, John E; Weed, Michael R; Bristow, Linda J; Kiss, Laszlo; Ahlijanian, Michael K; Herrington, James

    2017-03-15

    The alpha7 (α7) nicotinic acetylcholine receptor is a therapeutic target for cognitive disorders. Here we describe 3-(3,4-difluorophenyl)-N-(1-(6-(4-(pyridin-2-yl)piperazin-1-yl)pyrazin-2-yl)ethyl)propanamide (B-973), a novel piperazine-containing molecule that acts as a positive allosteric modulator of the α7 receptor. We characterize the action of B-973 on the α7 receptor using electrophysiology and radioligand binding. At 0.1mM acetylcholine, 1μM B-973 potentiated peak acetylcholine-induced currents 6-fold relative to maximal acetylcholine (3mM) and slowed channel desensitization, resulting in a 6900-fold increase in charge transfer. The EC 50 of B-973 was approximately 0.3μM at acetylcholine concentrations ranging from 0.03 to 3mM. At a concentration of 1μM, B-973 shifted the acetylcholine EC 50 of peak currents from 0.30mM in control to 0.007mM. B-973 slowed channel deactivation upon acetylcholine removal (τ=50s) and increased the affinity of the α7 agonist [ 3 H]A-585539. In the absence of exogenously added acetylcholine, application of B-973 at concentrations >1μM induced large methyllycaconitine-sensitive currents, suggesting B-973 can function as an Ago-PAM at high concentrations. B-973 will be a useful probe for investigating the biological consequences of increasing α7 receptor activity through allosteric modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evidence for membrane-bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish.

    PubMed

    Gervais, M R; Tufts, B L

    1998-07-01

    The purpose of this study was to examine the subcellular distribution and isoenzyme characteristics of carbonic anhydrase from the gills and respiratory air bladder of bowfin Amia calva, a primitive air-breathing fish. Separation of subcellular fractions by differential centrifugation revealed that the vast majority of carbonic anhydrase from the gills of bowfin originated from the cytoplasmic fraction. Washing of the gill microsomal pellet also indicated that the carbonic anhydrase originally associated with this pellet was largely due to contamination from the cytoplasmic fraction. Experiments with a carbonic anhydrase inhibitor, sulphanilamide, and the plasma carbonic anhydrase inhibitor from this species confirmed that the bowfin gill probably contains only one carbonic anhydrase isoenzyme which had properties resembling those of CA II. In contrast to the situation in the gills, a relatively large percentage (27%) of the total air bladder carbonic anhydrase was associated with the microsomal fraction. Washing of the air bladder microsomal pellet removed little of the carbonic anhydrase activity, indicating that most of the carbonic anhydrase in the microsomal fraction was associated with the membranes. Like the mammalian pulmonary CA IV isoenzyme, microsomal carbonic anhydrase from the bowfin air bladder was less sensitive to the bowfin plasma carbonic anhydrase inhibitor, sodium dodecylsulphate (SDS) and sulphanilamide than was cytoplasmic carbonic anhydrase from the air bladder. Microsomal carbonic anhydrase from the bowfin air bladder also resembled CA IV in that it appears to be anchored to the membrane via a phosphatidylinositol-glycan linkage which could be cleaved by phosphatidylinositol-specific phospholipase C. Taken together, these results suggest that a membrane-bound carbonic anhydrase isoenzyme resembling mammalian CA IV in terms of inhibition characteristics and membrane attachment is present in the air-breathing organ of one of the most primitive

  19. Role of a membrane-bound aldehyde dehydrogenase complex AldFGH in acetic acid fermentation with Acetobacter pasteurianus SKU1108.

    PubMed

    Yakushi, Toshiharu; Fukunari, Seiya; Kodama, Tomohiro; Matsutani, Minenosuke; Nina, Shun; Kataoka, Naoya; Theeragool, Gunjana; Matsushita, Kazunobu

    2018-05-01

    Acetic acid fermentation is widely considered a consequence of ethanol oxidation by two membrane-bound enzymes-alcohol dehydrogenase and aldehyde dehydrogenase (ALDH)-of acetic acid bacteria. Here, we used a markerless gene disruption method to construct a mutant of the Acetobacter pasteurianus strain SKU1108 with a deletion in the aldH gene, which encodes the large catalytic subunit of a heterotrimeric ALDH complex (AldFGH), to examine the role of AldFGH in acetic acid fermentation. The ΔaldH strain grew less on ethanol-containing medium, i.e., acetic acid fermentation conditions, than the wild-type strain and significantly accumulated acetaldehyde in the culture medium. Unexpectedly, acetaldehyde oxidase activity levels of the intact ΔaldH cells and the ΔaldH cell membranes were similar to those of the wild-type strain, which might be attributed to an additional ALDH isozyme (AldSLC). The apparent K M values of the wild-type and ΔaldH membranes for acetaldehyde were similar to each other, when the cells were cultured in nonfermentation conditions, where ΔaldH cells grow as well as the wild-type cells. However, the membranes of the wild-type cells grown under fermentation conditions showed a 10-fold lower apparent K M value than those of the cells grown under nonfermentation conditions. Under fermentation conditions, transcriptional levels of a gene for AldSLC were 10-fold lower than those under nonfermentation conditions, whereas aldH transcript levels were not dramatically changed under the two conditions. We suggest that A. pasteurianus SKU1108 has two ALDHs, and the AldFGH complex is indispensable for acetic acid fermentation and is the major enzyme under fermentation conditions.

  20. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth.

    PubMed

    Wang, Shaofei; Jeffries, Eric; Gao, Jin; Sun, Lijie; You, Zhengwei; Wang, Yadong

    2016-04-20

    Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in

  1. From The Cover: Microtransplantation of functional receptors and channels from the Alzheimer's brain to frog oocytes

    NASA Astrophysics Data System (ADS)

    Miledi, R.; Dueñas, Z.; Martinez-Torres, A.; Kawas, C. H.; Eusebi, F.

    2004-02-01

    About a decade ago, cell membranes from the electric organ of Torpedo and from the rat brain were transplanted to frog oocytes, which thus acquired functional Torpedo and rat neurotransmitter receptors. Nevertheless, the great potential that this method has for studying human diseases has remained virtually untapped. Here, we show that cell membranes from the postmortem brains of humans that suffered Alzheimer's disease can be microtransplanted to the plasma membrane of Xenopus oocytes. We show also that these postmortem membranes carry neurotransmitter receptors and voltage-operated channels that are still functional, even after they have been kept frozen for many years. This method provides a new and powerful approach to study directly the functional characteristics and structure of receptors, channels, and other membrane proteins of the Alzheimer's brain. This knowledge may help in understanding the basis of Alzheimer's disease and also help in developing new treatments. -aminobutyric acid receptors | sodium channels | calcium channels | postmortem brain

  2. Acetylcholine release from the rabbit isolated superior cervical ganglion preparation

    PubMed Central

    Dawes, P. M.; Vizi, E. S.

    1973-01-01

    1. The rabbit isolated superior cervical ganglion preparation has been used to measure the release of acetylcholine from the tissue at rest and during preganglionic nerve stimulation. 2. In the presence of physostigmine, the resting release of acetylcholine was 0·13 ± 0·01 (nmol/g)/min (10 experiments) and that during stimulation with 300 shocks at 10 Hz was 3·1 ± 0·4 (pmol/g)/volley in 4 experiments (means ± S.E.M.). The volley output was independent of the frequency of stimulation over the range 1 to 10 Hz but was higher at 0·3 Hz. 3. Tetrodotoxin, 0·8 μM, had no effect on the resting release of acetylcholine but reduced the stimulated release below detectable levels (2 pmol). Lowering the temperature of the bathing fluid to 5° C reduced to below detectable levels both the resting release and that produced by nerve stimulation. 4. The resting release of acetylcholine was increased by a potassium-rich (49·4 mM K+) bathing solution and by replacing the sodium chloride in the solution with lithium chloride (113 mM Li+). 5. (-)-Noradrenaline bitartrate, 3 μM, and (±)-adrenaline bitartrate, 1·5 μM, reduced by 70% the output of acetylcholine induced by stimulation at 0·3 Hz, but failed to reduce the resting release or that evoked by stimulation at 10 Hz. The inhibition was reversed by phentolamine. 6. It is concluded that the rabbit superior cervical ganglion in vitro is a suitable preparation for studying transmitter release and that the ganglion blocking effect of catecholamines is due to a reduction in transmitter release. PMID:4733726

  3. Can membrane-bound carotenoid pigment zeaxanthin carry out a transmembrane proton transfer?

    PubMed

    Kupisz, Kamila; Sujak, Agnieszka; Patyra, Magdalena; Trebacz, Kazimierz; Gruszecki, Wiesław I

    2008-10-01

    Polar carotenoid pigment zeaxanthin (beta,beta-carotene-3,3'-diol) incorporated into planar lipid membranes formed with diphytanoyl phosphatidylcholine increases the specific electric resistance of the membrane from ca. 4 to 13 x 10(7) Omega cm2 (at 5 mol% zeaxanthin with respect to lipid). Such an observation is consistent with the well known effect of polar carotenoids in decreasing fluidity and structural stabilization of lipid bilayers. Zeaxanthin incorporated into the lipid membrane at 1 mol% has very small effect on the overall membrane resistance but facilitates equilibration of the transmembrane proton gradient, as demonstrated with the application of the H+-sensitive antimony electrodes. Relatively low changes in the electrical potential suggest that the equilibration process may be associated with a symport/antiport activity or with a transmembrane transfer of the molecules of acid. UV-Vis linear dichroism analysis of multibilayer formed with the same lipid-carotenoid system shows that the transition dipole moment of the pigment molecules forms a mean angle of 21 degrees with respect to the axis normal to the plane of the membrane. This means that zeaxanthin spans the membrane and tends to have its two hydroxyl groups anchored in the opposite polar zones of the membrane. Detailed FTIR analysis of beta-carotene and zeaxanthin indicates that the polyene chain of carotenoids is able to form weak hydrogen bonds with water molecules. Possible molecular mechanisms responsible for proton transport by polyenes are discussed, including direct involvement of the polyene chain in proton transfer and indirect effect of the pigment on physical properties of the membrane.

  4. Polymeric capsule-cushioned leukocyte cell membrane vesicles as a biomimetic delivery platform

    NASA Astrophysics Data System (ADS)

    Gao, Changyong; Wu, Zhiguang; Lin, Zhihua; Lin, Xiankun; He, Qiang

    2016-02-01

    We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural cell membrane camouflaged polymeric multilayer capsules with the immunosuppressive and tumor-recognition functionalities of natural leukocytes provide a new biomimetic delivery platform for disease therapy.We report a biomimetic delivery of microsized capsule-cushioned leukocyte membrane vesicles (CLMVs) through the conversion of freshly reassembled leukocyte membrane vesicles (LMVs), including membrane lipids and membrane-bound proteins onto the surface of layer-by-layer assembled polymeric multilayer microcapsules. The leukocyte membrane coating was verified by using electron microscopy, a quartz crystal microbalance, dynamic light scattering, and confocal laser scanning microscopy. The resulting CLMVs have the ability to effectively evade clearance by the immune system and thus prolong the circulation time in mice. Moreover, we also show that the right-side-out leukocyte membrane coating can distinctly improve the accumulation of capsules in tumor sites through the molecular recognition of membrane-bound proteins of CLMVs with those of tumor cells in vitro and in vivo. The natural

  5. Activation of alpha-latrotoxin receptors in neuromuscular synapses leads to a prolonged splash acetylcholine release.

    PubMed

    Lelyanova, V G; Thomson, D; Ribchester, R R; Tonevitsky, E A; Ushkaryov, Y A

    2009-06-01

    The mechanisms of acetylcholine release in presynaptic terminals of motoneurons induced by mutant alpha-latrotoxin (LT(N4C)) were analyzed. In contrast to wild-type alpha-latrotoxin that causes both continuous and splash secretion of acetylcholine and necessarity block neuromuscular transmission, LT(N4C) causes only splash release lasting over many hours. Thus, activation of alpha-latrotoxin receptors controls long-lasting enhanced secretion of acetylcholine.

  6. Molecular Characterization of a Membrane-bound Prenyltransferase Specific for Isoflavone from Sophora flavescens*

    PubMed Central

    Sasaki, Kanako; Tsurumaru, Yusuke; Yamamoto, Hirobumi; Yazaki, Kazufumi

    2011-01-01

    Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases. PMID:21576242

  7. Molecular characterization of a membrane-bound prenyltransferase specific for isoflavone from Sophora flavescens.

    PubMed

    Sasaki, Kanako; Tsurumaru, Yusuke; Yamamoto, Hirobumi; Yazaki, Kazufumi

    2011-07-08

    Prenylated isoflavones are secondary metabolites that are mainly distributed in legume plants. They often possess divergent biological activities such as anti-bacterial, anti-fungal, and anti-oxidant activities and thus attract much attention in food, medicinal, and agricultural research fields. Prenyltransferase is the key enzyme in the biosynthesis of prenylated flavonoids by catalyzing a rate-limiting step, i.e. the coupling process of two major metabolic pathways, the isoprenoid pathway and shikimate/polyketide pathway. However, so far only two genes have been isolated as prenyltransferases involved in the biosynthesis of prenylated flavonoids, namely naringenin 8-dimethylallyltransferase from Sophora flavescens (SfN8DT-1) specific for some limited flavanones and glycinol 4-dimethylallyltransferase from Glycine max (G4DT), specific for pterocarpan substrate. We have in this study isolated two novel genes coding for membrane-bound flavonoid prenyltransferases from S. flavescens, an isoflavone-specific prenyltransferase (SfG6DT) responsible for the prenylation of the genistein at the 6-position and a chalcone-specific prenyltransferase designated as isoliquiritigenin dimethylallyltransferase (SfiLDT). These prenyltransferases were enzymatically characterized using a yeast expression system. Analysis on the substrate specificity of chimeric enzymes between SfN8DT-1 and SfG6DT suggested that the determinant region for the specificity of the flavonoids was the domain neighboring the fifth transmembrane α-helix of the prenyltransferases.

  8. Non-cooperative immobilization of residual water bound in lyophilized photosynthetic lamellae.

    PubMed

    Harańczyk, Hubert; Baran, Ewelina; Nowak, Piotr; Florek-Wojciechowska, Małgorzata; Leja, Anna; Zalitacz, Dorota; Strzałka, Kazimierz

    2015-12-01

    This study applied 1H-NMR in time and in frequency domain measurements to monitor the changes that occur in bound water dynamics at decreased temperature and with increased hydration level in lyophilizates of native wheat photosynthetic lamellae and in photosynthetic lamellae reconstituted from lyophilizate. Proton relaxometry (measured as free induction decay = FID) distinguishes a Gaussian component S within the NMR signal (o). This comes from protons of the solid matrix of the lamellae and consists of (i) an exponentially decaying contribution L1 from mobile membrane protons, presumably from lipids, and from water that is tightly bound to the membrane surface and thus restricted in mobility; and (ii) an exponentially decaying component L2 from more mobile, loosely bound water pool. Both proton relaxometry data and proton spectroscopy show that dry lyophilizate incubated in dry air, i.e., at a relative humidity (p/p0) of 0% reveals a relatively high hydration level. The observed liquid signal most likely originates from mobile membrane protons and a tightly bound water fraction that is sealed in pores of dry lyophilizate and thus restricted in mobility. The estimations suggest that the amount of sealed water does not exceed the value characteristic for the main hydration shell of a phospholipid. Proton spectra collected for dry lyophilizate of photosynthetic lamellae show a continuous decrease in the liquid signal component without a distinct freezing transition when it is cooled down to -60ºC, which is significantly lower than the homogeneous ice nucleation temperature [Bronshteyn, V.L. et al. Biophys. J. 65 (1993) 1853].

  9. Presynaptic Type III Neuregulin1-ErbB signaling targets α7 nicotinic acetylcholine receptors to axons

    PubMed Central

    Hancock, Melissa L.; Canetta, Sarah E.; Role, Lorna W.; Talmage, David A.

    2008-01-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function. PMID:18458158

  10. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-05-05

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  11. Presynaptic type III neuregulin1-ErbB signaling targets alpha7 nicotinic acetylcholine receptors to axons.

    PubMed

    Hancock, Melissa L; Canetta, Sarah E; Role, Lorna W; Talmage, David A

    2008-06-01

    Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of alpha7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface alpha7 nAChRs, which results from a redistribution of preexisting intracellular pools of alpha7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting alpha7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.

  12. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors.

    PubMed

    Jadey, Snehal; Auerbach, Anthony

    2012-07-01

    In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes ("catch" and "hold") that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement ("capping"). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation.

  13. Molecular-Dynamics Simulations of ELIC a Prokaryotic Homologue of the Nicotinic Acetylcholine Receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Xiaolin; Ivanov, Ivaylo N; Wang, Hailong

    2009-01-01

    The ligand-gated ion channel from Erwinia chrysanthemi (ELIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor (nAChR) that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. ELIC is similar to the nAChR in its primary sequence and overall subunit organization, but despite their structural similarity, it is not clear whether these two ligand-gated ion channels operate in a similar manner. Further, it is not known to what extent mechanistic insights gleaned from the ELIC structure translate to eukaryotic counterparts such as the nAChR. Here we use molecular-dynamics simulations to probe the conformational dynamics andmore » hydration of the transmembrane pore of ELIC. The results are compared with those from our previous simulation of the human ?7 nAChR. Overall, ELIC displays increased stability compared to the nAChR, whereas the two proteins exhibit remarkable similarity in their global motion and flexibility patterns. The majority of the increased stability of ELIC does not stem from the deficiency of the models used in the simulations, and but rather seems to have a structural basis. Slightly altered dynamical correlation features are also observed among several loops within the membrane region. In sharp contrast to the nAChR, ELIC is completely dehydrated from the pore center to the extracellular end throughout the simulation. Finally, the simulation of an ELIC mutant substantiates the important role of F246 on the stability, hydration and possibly function of the ELIC channel.« less

  14. Interactions between acetylcholine, 5-hydroxytryptamine, nicotine and morphine on isolated rabbit atria

    PubMed Central

    Chittal, S. M.; Dadkar, N. K.; Gaitondé, B. B.

    1968-01-01

    1. The effects of 5-hydroxytryptamine (5-HT) and morphine on the responses to acetylcholine and nicotine of isolated rabbit atria were studied. 2. 5-Hydroxytryptamine (10 μg/ml.) and morphine (20 μg/ml.) blocked the negative chronotropic and inotropic actions of acetylcholine. 3. Nicotine (20 μg/ml.) produced stimulation of the atria, which was blocked by dichlorisoprenaline, morphine, 5-HT, bretylium and hemicholinium. Hemicholinium block was reversed by choline. 4. In reserpinized preparations, nicotine produced inhibition of atria and this action was also blocked by atropine, 5-HT and morphine. Inhibition induced by nicotine was potentiated by physostigmine. 5. 5-Hydroxytryptamine (20 μg/ml.) produced stimulation of atria. This was blocked by bretylium and reduced by hemicholinium. Hemicholinium block was reversed by choline. 6. It is concluded that 5-HT in low concentrations acts as a weak agonist at the cholinoceptive receptors and therefore blocks the action of acetylcholine. Furthermore, nicotine and larger doses of 5-HT have actions on ganglionic structures and liberate acetylcholine, which in turn releases catecholamines. PMID:4386371

  15. Poly(acrylonitrile)chitosan composite membranes for urease immobilization.

    PubMed

    Gabrovska, Katya; Georgieva, Aneliya; Godjevargova, Tzonka; Stoilova, Olya; Manolova, Nevena

    2007-05-10

    (Poly)acrylonitrile/chitosan (PANCHI) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of PAN and PANCHI membranes were determined by TEM and SEM analyses. It was found that the average size of the pore under a selective layer base PAN membrane is 7 microm, while the membrane coated with 0.25% chitosan shows a reduced pore size--small or equal to 5 microm and with 0.35% chitosan--about 4 microm. The amounts of the functional groups, the degree of hydrophilicity and transport characteristics of PAN/Chitosan composite membranes were determined. Urease was covalently immobilized onto all kinds of PAN/chitosan composite membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (94%) was measured for urease bound to PANCHI2 membranes (0.25% chitosan). The basic characteristics (pH(opt), pH(stability), T(opt), T(stability), heat inactivation and storage stability) of immobilized urease were determined. The obtained results show that the poly(acrylonitrile)chitosan composite membranes are suitable for enzyme immobilization.

  16. beta-Phenylethylamine modulates acetylcholine release in the rat striatum: involvement of a dopamine D(2) receptor mechanism.

    PubMed

    Kato, M; Ishida, K; Chuma, T; Abe, K; Shigenaga, T; Taguchi, K; Miyatake, T

    2001-04-20

    We examined the effects of beta-phenylethylamine on striatal acetylcholine release in freely moving rats using in vivo microdialysis. beta-Phenylethylamine at 12.5 mg/kg, i.p. did not affect acetylcholine release in the striatum, whereas 25 and 50 mg/kg, i.p. immediately induced an increase in acetylcholine release in the striatum at 15-45 min. This increase following intraperitoneal administration of beta-phenylethylamine (25 mg/kg) was not affected by locally applied SCH-23390 (R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine, 10 microM), a dopamine D(1) receptor antagonist, nor by raclopride (10 microM), a dopamine D(2) receptor antagonist. The increased release of acetylcholine induced by beta-phenylethylamine was suppressed by local infusion of tetrodotoxin (1 microM). In contrast, the extracellular acetylcholine level in the striatum was significantly decreased by local application of beta-phenylethylamine (10 and 100 microM) in the striatum via a microdialysis probe. The decrease was completely blocked by local co-application of raclopride (10 microM). The beta-phenylethylamine-induced decrease in striatal acetylcholine release was not affected by co-perfusion with SCH-23390 (10 microM). These results indicate that systemic administration of beta-phenylethylamine increases acetylcholine release, whereas locally applied beta-phenylethylamine decreases striatal acetylcholine release in freely moving rats. Furthermore, the dopaminergic system, through the dopamine D(2) receptor, is involved in the locally applied beta-phenylethylamine-induced decrease in acetylcholine in the striatum.

  17. The incorporation of hydrophobic protein receptors and artificial lipid membranes.

    PubMed

    Reader, T A; Fiszer de Plazas, S; Salas, P J; de Robertis, E

    1976-01-01

    The mechanism of chemical synaptic transmission implies: 1) the existence of a specific protein receptor at the postsynaptic membrane, and 2) the interaction between the transmitter released and the receptor, thus producing a change in ionic permeability. Previous studies from our laboratory have shown that special hydrophobic proteins extracted from postsynpatic membranes of different tissues showed a high affinity binding for the different pharmacological agents. The present paper describes experiments in which different hydrophobic protein binding acetylcholine, noradrenaline, gamma-aminobutyric acid, and glutamate were incorporated into artificial lipid membranes, similar to those first described by Mueller et al. (19). The effect of the different pharmacological agents was tested under experimental conditions of voltage clamp and the d.c. current changes measured. The results were then compared for the different lipid-protein membranes employed during the steady state and during transient conductance changes. The specificity of the responses indicate that artificial lipid membranes containing these hydrophobic proteins from electroplax, myocardium, spleen capsule and shrimp muscle can be used as a model to study pharmacologic receptors.

  18. Decreased acetylcholine release delays the consolidation of object recognition memory.

    PubMed

    De Jaeger, Xavier; Cammarota, Martín; Prado, Marco A M; Izquierdo, Iván; Prado, Vania F; Pereira, Grace S

    2013-02-01

    Acetylcholine (ACh) is important for different cognitive functions such as learning, memory and attention. The release of ACh depends on its vesicular loading by the vesicular acetylcholine transporter (VAChT). It has been demonstrated that VAChT expression can modulate object recognition memory. However, the role of VAChT expression on object recognition memory persistence still remains to be understood. To address this question we used distinct mouse lines with reduced expression of VAChT, as well as pharmacological manipulations of the cholinergic system. We showed that reduction of cholinergic tone impairs object recognition memory measured at 24h. Surprisingly, object recognition memory, measured at 4 days after training, was impaired by substantial, but not moderate, reduction in VAChT expression. Our results suggest that levels of acetylcholine release strongly modulate object recognition memory consolidation and appear to be of particular importance for memory persistence 4 days after training. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Orientation and cellular distribution of membrane-bound catechol-O-methyltransferase in cortical neurons: implications for drug development.

    PubMed

    Chen, Jingshan; Song, Jian; Yuan, Peixiong; Tian, Qingjun; Ji, Yuanyuan; Ren-Patterson, Renee; Liu, Guangping; Sei, Yoshitasu; Weinberger, Daniel R

    2011-10-07

    Catechol-O-methyltransferase (COMT) is a key enzyme for inactivation and metabolism of catechols, including dopamine, norepinephrine, caffeine, and estrogens. It plays an important role in cognition, arousal, pain sensitivity, and stress reactivity in humans and in animal models. The human COMT gene is associated with a diverse spectrum of human behaviors and diseases from cognition and psychiatric disorders to chronic pain and cancer. There are two major forms of COMT proteins, membrane-bound (MB) COMT and soluble (S) COMT. MB-COMT is the main form in the brain. The cellular distribution of MB-COMT in cortical neurons remains unclear and the orientation of MB-COMT on the cellular membrane is controversial. In this study, we demonstrate that MB-COMT is located in the cell body and in axons and dendrites of rat cortical neurons. Analyses of MB-COMT orientation with computer simulation, flow cytometry and a cell surface enzyme assay reveal that the C-terminal catalytic domain of MB-COMT is in the extracellular space, which suggests that MB-COMT can inactivate synaptic and extrasynaptic dopamine on the surface of presynaptic and postsynaptic neurons. Finally, we show that the COMT inhibitor tolcapone induces cell death via the mechanism of apoptosis, and its cytotoxicity is dependent on dosage and correlated with COMT Val/Met genotypes in human lymphoblastoid cells. These results suggest that MB-COMT specific inhibitors can be developed and that tolcapone may be less hazardous at low doses and in specific genetic backgrounds.

  20. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩

    PubMed Central

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2013-01-01

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654

  1. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Functional advantages conferred by extracellular prokaryotic membrane vesicles.

    PubMed

    Manning, Andrew J; Kuehn, Meta J

    2013-01-01

    The absence of subcellular organelles is a characteristic typically used to distinguish prokaryotic from eukaryotic cells. But recent discoveries do not support this dogma. Over the past 50 years, researchers have begun to appreciate and characterize Gram-negative bacterial outer membrane-derived vesicles and Gram-positive and archaeal membrane vesicles. These extracellular, membrane-bound organelles can perform a variety of functions, including binding and delivery of DNA, transport of virulence factors, protection of the cell from outer membrane targeting antimicrobials and ridding the cell of toxic envelope proteins. Here, we review the contributions of these extracellular organelles to prokaryotic physiology and compare these with the contributions of the bacterial interior membrane-bound organelles responsible for harvesting light energy and for generating magnetic crystals of heavy metals. Understanding the roles of these multifunctional extracellular vesicle organelles as microbial tools will help us to better realize the diverse interactions that occur in our polymicrobial world. Copyright © 2013 S. Karger AG, Basel.

  3. Optical Waveguide Lightmode Spectroscopic Techniques for Investigating Membrane-Bound Ion Channel Activities

    PubMed Central

    Székács, Inna; Kaszás, Nóra; Gróf, Pál; Erdélyi, Katalin; Szendrő, István; Mihalik, Balázs; Pataki, Ágnes; Antoni, Ferenc A.; Madarász, Emilia

    2013-01-01

    Optical waveguide lightmode spectroscopic (OWLS) techniques were probed for monitoring ion permeation through channels incorporated into artificial lipid environment. A novel sensor set-up was developed by depositing liposomes or cell-derived membrane fragments onto hydrophilic polytetrafluoroethylene (PTFE) membrane. The fibrous material of PTFE membrane could entrap lipoid vesicles and the water-filled pores provided environment for the hydrophilic domains of lipid-embedded proteins. The sensor surface was kept clean from the lipid holder PTFE membrane by a water- and ion-permeable polyethylene terephthalate (PET) mesh. The sensor set-up was tested with egg yolk lecithin liposomes containing gramicidin ion channels and with cell-derived membrane fragments enriched in GABA-gated anion channels. The method allowed monitoring the move of Na+ and organic cations through gramicidin channels and detecting the Cl–-channel functions of the (α5β2γ2) GABAA receptor in the presence or absence of GABA and the competitive GABA-blocker bicuculline. PMID:24339925

  4. Dynamic interactions between a membrane binding protein and lipids induce fluctuating diffusivity

    PubMed Central

    Yamamoto, Eiji; Akimoto, Takuma; Kalli, Antreas C.; Yasuoka, Kenji; Sansom, Mark S. P.

    2017-01-01

    Pleckstrin homology (PH) domains are membrane-binding lipid recognition proteins that interact with phosphatidylinositol phosphate (PIP) molecules in eukaryotic cell membranes. Diffusion of PH domains plays a critical role in biological reactions on membrane surfaces. Although diffusivity can be estimated by long-time measurements, it lacks information on the short-time diffusive nature. We reveal two diffusive properties of a PH domain bound to the surface of a PIP-containing membrane using molecular dynamics simulations. One is fractional Brownian motion, attributed to the motion of the lipids with which the PH domain interacts. The other is temporally fluctuating diffusivity; that is, the short-time diffusivity of the bound protein changes substantially with time. Moreover, the diffusivity for short-time measurements is intrinsically different from that for long-time measurements. This fluctuating diffusivity results from dynamic changes in interactions between the PH domain and PIP molecules. Our results provide evidence that the complexity of protein-lipid interactions plays a crucial role in the diffusion of proteins on biological membrane surfaces. Changes in the diffusivity of PH domains and related membrane-bound proteins may in turn contribute to the formation/dissolution of protein complexes in membranes. PMID:28116358

  5. Increased acetylcholine levels in skin biopsies of patients with atopic dermatitis.

    PubMed

    Wessler, Ignaz; Reinheimer, Torsten; Kilbinger, Heinz; Bittinger, Fernando; Kirkpatrick, Charles James; Saloga, Joachim; Knop, Jürgen

    2003-03-28

    Recent experimental evidence indicates that non-neuronal acetylcholine is involved in the regulation of basic cell functions. Here we investigated the cholinergic system in the skin of healthy volunteers and patients with atopic dermatitis (AD). The synthesizing enzyme, choline-acetyltransferase (ChAT), was studied by anti-ChAT immunohistochemistry and enzyme assay. Skin biopsies taken from healthy volunteers and from AD patients were separated into the 2 mm superfical (epidermis and upper dermis) and 3 mm underlying portion (deeper dermis and subcutis). ChAT enzyme activity was detected in homogenized skin and subcutaneous fat (about 13 nmol/mg protein/h). ChAT immunoreactivity was expressed in keratinocytes, hair papilla, sebaceous and eccrine sweat glands, endothelial cells and mast cells. In healthy volunteers the superficial and underlying portion of skin biopsies contained 130 +/- 30 and 550 +/- 170 pmol/g acetylcholine (n = 12), respectively. In AD patients (n = 7) acetylcholine was increased 14-fold in the superficial and 3-fold in the underlying biopsy portion. The present study demonstrates the widespread expression of ChAT protein in the vast majority of human skin cells. Tissue levels of acetylcholine are greatly (14-fold) enhanced in the superficial 2 mm skin of AD patients. Copyright 2003 Elsevier Science Inc.

  6. Comparison of membrane-bound and soluble polyphenol oxidase in Fuji apple (Malus domestica Borkh. cv. Red Fuji).

    PubMed

    Liu, Fang; Zhao, Jin-Hong; Gan, Zhi-Lin; Ni, Yuan-Ying

    2015-04-15

    This study compared membrane-bound with soluble polyphenol oxidase (mPPO and sPPO, respectively) from Fuji apple. Purified mPPO and partially purified sPPO were used. mPPO was purified by temperature-induced phase partitioning and ion exchange chromatography. The specific activity of mPPO was 34.12× higher than that of sPPO. mPPO was more stable than sPPO at pH 5.0-8.5. Although mPPO was more easily inactivated at 25-55 °C, it is still more active than sPPO in this temperature range. The optimum substrate of mPPO was 4-methyl catechol, followed by catechol. L-cysteine had the highest inhibitory effects on mPPO followed by ascorbic acid and glutathione. Surprisingly, EDTA increased mPPO activity. The results revealed that purified mPPO is a dimer with a molecular weight of approximately 67 kDa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Effects of acute chlorpyrifos exposure on in vivo acetylcholine accumulation in rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karanth, Subramanya; Liu, Jing; Mirajkar, Nikita

    2006-10-01

    This study examined the acute effects of chlorpyrifos (CPF) on cholinesterase inhibition and acetylcholine levels in the striatum of freely moving rats using in vivo microdialysis. Adult, male Sprague-Dawley rats were treated with vehicle (peanut oil, 2 ml/kg) or CPF (84, 156 or 279 mg/kg, sc) and functional signs of toxicity, body weight and motor activity recorded. Microdialysis was conducted at 1, 4 and 7 days after CPF exposure for measurement of acetylcholine levels in striatum. Rats were then sacrificed and the contralateral striatum and diaphragm were collected for biochemical measurements. Few overt signs of cholinergic toxicity were noted inmore » any rats. Body weight gain was significantly affected in the high-dose (279 mg/kg) group only, while motor activity (nocturnal rearing) was significantly reduced in all CPF-treated groups at one day (84 mg/kg) or from 1-4 days (156 and 279 mg/kg) after dosing. Cholinesterase activities in both diaphragm and striatum were markedly inhibited (50-92%) in a time-dependent manner, but there were relatively minimal dose-related changes. In contrast, time- and dose-dependent changes in striatal acetylcholine levels were noted, with significantly higher levels noted in the high-dose group compared to other groups. Maximal increases in striatal acetylcholine levels were observed at 4-7 days after dosing (84 mg/kg, 7-9-fold; 156 mg/kg, 10-13-fold; 279 mg/kg, 35-57-fold). Substantially higher acetylcholine levels were noted when an exogenous cholinesterase inhibitor was included in the perfusion buffer, but CPF treatment-related differences were substantially lower in magnitude under those conditions. The results suggest that marked differences in acetylcholine accumulation can occur with dosages of CPF eliciting relatively similar degrees of cholinesterase inhibition. Furthermore, the minimal expression of classic signs of cholinergic toxicity in the presence of extensive brain acetylcholine accumulation suggests that

  8. Studies of the molecular effects of a solid support upon lipid membranes and membrane bound proteins

    NASA Astrophysics Data System (ADS)

    Hartshorn, Christopher M.

    Often, membrane/protein systems are studied and/or utilized on solid supports. The underlying substrate in solid supported lipid bilayer assemblies causes large perturbations to the membrane, but the nature of these effects are not well understood. To gain an understanding, these effects were studied on two fronts: the effect upon the membrane by itself, and then the effects upon a membrane/protein system. First, all-atom molecular dynamics (MD) simulations of DLPC, DMPC, POPC, and DEPC on a hydroxylated nanocrystalline alpha-quartz (011) slab revealed a pronounced thinning effect in the lipid bilayers. It was shown that this thinning effect proceeded by one of two mechanisms: the first through a curling of the terminal methyl groups at the interface of the opposing leaflets, and the second through increased interdigitation of the alkyl chains. Also, with the introduction of the solid support, marked asymmetries in a number of structural properties were reported. These asymmetries included (a) the surface area per lipid, (b) the electron densities of the polar head groups, (c) the radial distributions of the choline groups, and (d) the average orientation of water surrounding the membranes. Next, the free energy perturbation method was used to begin calculating the change in free energy (DeltaGbinding) from a Gramicidin monomer to its dimeric state, which were simulated via MD of supported DLPC, DMPC, and DEPC bilayers. The most notable effect was an asymmetry of the calculated free energies relative to the bilayer side closest to the solid support. In all three systems, there was a large difference in free energy between the Gramicidin monomers that were close to the support and the monomers further from the support.

  9. Ultra-long acting calcium channel blockers may decrease accuracy of the acetylcholine provocation test.

    PubMed

    Kurabayashi, Manabu; Asano, Mitsutoshi; Shimura, Tsukasa; Suzuki, Hidetoshi; Aoyagi, Hideshi; Yamauchi, Yasuteru; Okishige, Kaoru; Ashikaga, Takashi; Isobe, Mitsuaki

    2017-06-01

    When drug-induced coronary spasm provocation tests are performed, a washout period of >48h for calcium channel blockers (CCBs) is uniformly recommended. However, each CCB has a distinct half-life, and little is known about the influence of prior oral administration of CCBs on acetylcholine provocation test to evaluate coronary vasomotor reaction. We examined 245 consecutive patients with suspected vasospastic angina who had undergone acetylcholine provocation test. Of those patients, 29 patients had been on amlodipine, an ultra-long term acting CCB (group A), 34 on other CCBs (group O), and 182 patients on no CCB (group N). After CCBs had been withheld > 48h, we performed acetylcholine provocation, which resulted in 152 positive, 36 intermediate, and 57 negative reactions. We evaluated coronary artery tone calculated as follows: (luminal diameter after nitrate-baseline luminal diameter)÷(luminal diameter after nitrate)×100 (%). In group A patients, coronary artery tone was lower (A:9.1±6.9% vs. O:11.7±8.3% vs. N:12.1±8.5%, p=0.0011) and the positive rate of acetylcholine provocation test was lower than group O and group N (A:41% vs. O:68% vs. N:64%, p=0.047). Multivariate logistic analysis showed that taking amlodipine until 2days before acetylcholine provocation test was a significant inverse predictor for acetylcholine-provoked coronary spasm (odds ratio 0.327; 95% confidence interval 0.125-0.858, p=0.023). Residual vasodilatory effects of ultra-long acting CCB may decrease coronary artery tone and the vasoconstrictive reaction to acetylcholine suggesting that a 2-day pre-test drug holiday may not be long enough. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Membrane-bound LERK2 ligand can signal through three different Eph-related receptor tyrosine kinases.

    PubMed Central

    Brambilla, R; Schnapp, A; Casagranda, F; Labrador, J P; Bergemann, A D; Flanagan, J G; Pasquale, E B; Klein, R

    1995-01-01

    The Eph-related family of receptor tyrosine kinases consists of at least 13 members, several of which display distinctive expression patterns in the developing and adult nervous system. Recently, a small family of ligands, structurally related to the B61 protein, was identified. Binding of these ligands to Eph-related receptors did not, however, elicit measurable biological signals in cultured cells. In order to study functional interactions between B61-related ligands and Eph-related receptors, we constructed chimeric receptors, containing an Eph-related ectodomain and the cytoplasmic domain of the TrkB neurotrophin receptor. Expression and activation of such chimeric receptors in NIH 3T3 cells induced transformation in focus formation assays. Membrane-bound LERK2 ligand is shown to signal through three different Eph-related receptors, namely Cek5, Cek10 and Elk. LERK2, however, fails to interact functionally with the Cek9 receptor. Quantitative analysis including binding assays indicates that Cek10 is the preferred LERK2 receptor. Preliminary mutagenesis of the LERK2 protein suggests a negative regulatory role for its cytoplasmic domain in LERK2 signaling. Images PMID:7621826

  11. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state.

    PubMed

    Irudayam, Sheeba J; Pobandt, Tobias; Berkowitz, Max L

    2013-10-31

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. Experiments measure the fraction of peptides in the surface state and the transmembrane state, but no computational study exists that quantifies the free energy curve for the reorientation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight in understanding the peptide-lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increases. In addition, we study the cooperative effect; specifically we investigate if the reorientation barrier is smaller for a second melittin, given that another neighboring melittin was already in the transmembrane orientation. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.

  12. Modulatory Effect of Taurine on 7,12-Dimethylbenz(a)Anthracene-Induced Alterations in Detoxification Enzyme System, Membrane Bound Enzymes, Glycoprotein Profile and Proliferative Cell Nuclear Antigen in Rat Breast Tissue.

    PubMed

    Vanitha, Manickam Kalappan; Baskaran, Kuppusamy; Periyasamy, Kuppusamy; Selvaraj, Sundaramoorthy; Ilakkia, Aruldoss; Saravanan, Dhiravidamani; Venkateswari, Ramachandran; Revathi Mani, Balasundaram; Anandakumar, Pandi; Sakthisekaran, Dhanapal

    2016-08-01

    The modulatory effect of taurine on 7,12-dimethylbenz(a)anthracene (DMBA)-induced breast cancer in rats was studied. DMBA (25 mg/kg body weight) was administered to induce breast cancer in rats. Protein carbonyl levels, activities of membrane bound enzymes (Na(+) /K(+) ATPase, Ca(2+) ATPase, and Mg(2+) ATPase), phase I drug metabolizing enzymes (cytochrome P450, cytochrome b5, NADPH cytochrome c reductase), phase II drug metabolizing enzymes (glutathione-S-transferase and UDP-glucuronyl transferase), glycoprotein levels, and proliferative cell nuclear antigen (PCNA) were studied. DMBA-induced breast tumor bearing rats showed abnormal alterations in the levels of protein carbonyls, activities of membrane bound enzymes, drug metabolizing enzymes, glycoprotein levels, and PCNA protein expression levels. Taurine treatment (100 mg/kg body weight) appreciably counteracted all the above changes induced by DMBA. Histological examination of breast tissue further supported our biochemical findings. The results of the present study clearly demonstrated the chemotherapeutic effect of taurine in DMBA-induced breast cancer. © 2016 Wiley Periodicals, Inc.

  13. alpha 4 beta 2 subunit combination specific pharmacology of neuronal nicotinic acetylcholine receptors in N1E-115 neuroblastoma cells.

    PubMed

    Zwart, R; Abraham, D; Oortgiesen, M; Vijverberg, H P

    1994-08-22

    Pharmacological characteristics of native neuronal nicotinic acetylcholine receptor-mediated ion currents in mouse N1E-115 neuroblastoma cells have been investigated by superfusion of voltage clamped cells with known concentrations of the agonists acetylcholine, nicotine and cytisine, and the antagonists alpha-bungarotoxin and neuronal bungarotoxin. The sensitivity of the nicotinic acetylcholine receptor for agonists followed the agonist potency rank-order: nicotine approximately acetylcholine > cytisine. The EC50 values of acetylcholine and nicotine are 78 microM and 76 microM, respectively. Equal concentrations of acetylcholine and nicotine induce inward currents with approximately the same peak amplitude whereas cytisine induces much smaller inward currents. Acetylcholine-induced currents are unaffected by high concentrations of alpha-bungarotoxin. Conversely, at 10 and 90 nM neuronal bungarotoxin reduces the amplitude of the 1 mM acetylcholine-induced inward current to 47% and 11% of control values, respectively. Both the agonist potency rank-order and the differential sensitivity to snake toxins of nicotinic receptors in N1E-115 cells are consistent with the known pharmacological profile of alpha 4 beta 2 nicotinic receptors expressed in Xenopus oocytes and distinct from those of all other nicotinic acetylcholine receptors of known functional subunit compositions. All data indicate that the native nicotinic acetylcholine receptor in N1E-115 cells is an assembly of alpha 4 and beta 2 subunits, the putative major subtype of nicotinic acetylcholine receptor in the brain.

  14. Effects of anti-inflammatory and anti-rheumatic drugs on the activities of purified and membrane-bound Na+/K+ adenosine triphosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, M.K.; Minta, J.O.

    1985-08-01

    The authors have examined the effects of anti-inflammatory and anti-rheumatic drugs on membrane-bound and purified Na /K -ATPase activity in vitro. Only the gold-containing compounds (gold sodium thiomalate and auranofin) were found to inhibit the enzyme activity in a dose-dependent manner. Sodium thiomalate and triethylphosphine, the ligand compounds for gold sodium thiomalate and auranofin, respectively, had no effect on ATPase activity. The antagonistic properties was abolished by preincubation of the gold compounds with dithiothreitol. Lineweaver-Burke analysis of the inhibitions of purified ATPase by the gold compounds was found to follow uncompetitive kinetics. Inhibition of ATPase by gold may cause disruptionmore » of transmembrane cation transport and thus result in impairment of several metabolic processes and cellular functions.« less

  15. Characterization of soluble and bound EPS obtained from 2 submerged membrane bioreactors by 3D-EEM and HPSEC.

    PubMed

    Domínguez Chabaliná, Liuba; Rodríguez Pastor, Manuel; Prats Rico, Daniel

    2013-10-15

    This research study deals with the quantification and characterization of the EPS obtained from two 25 L bench scale membrane bioreactors (MBRs) with micro-(MF-MBR) and ultrafiltration (UF-MBR) submerged membranes. Both reactors were fed with synthetic water and operated for 168 days without sludge extraction, increasing their mixed liquor suspended solid (MLSS) concentration during the experimentation time. The characterization of soluble EPS (EPSs) was achieved by the centrifugation of mixed liquor and bound EPS (EPSb) by extraction using a cationic resin exchange (CER). EPS characterization was carried out by applying the 3-dimensional excitation-emission matrix fluorescence spectroscopy (3D-EEM) and high-performance size exclusion chromatography (HPSEC) with the aim of obtaining structural and functional information thereof. With regard to the 3D-EEM analysis, fluorescence spectra of EPSb and EPSs showed 2 peaks in both MBRs at all the MLSS concentrations studied. The peaks obtained for EPSb were associated to soluble microbial by-product-like (predominantly protein-derived compounds) and to aromatic protein. For EPSs, the peaks were associated with humic and fulvic acids. In both MBRs, the fluorescence intensity (FI) of the peaks increased as MLSS and protein concentrations increased. The FI of the EPSs peaks was much lower than for EPSb. It was verified that the evolution of the FI clearly depends on the concentration of protein and humic acids for EPSb and EPSs, respectively. Chromatographic analysis showed that the intensity of the EPSb peak increased while the concentrations of MLSS did. Additionally, the mean MW calculated was always higher the higher the MLSS concentrations in the reactors. MW was higher for the MF-MBR than for the UF-MBR for the same MLSS concentrations demonstrating that the filtration carried out with a UF membrane lead to retentions of lower MW particles. © 2013 Elsevier B.V. All rights reserved.

  16. Revealing the membrane-bound structure of neurokinin A using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Darkes, Malcolm J. M.; Hauss, Thomas; Dante, Silvia; Bradshaw, Jeremy P.

    2000-03-01

    Neurokinin A (or substance K) belongs to the tachykinin family, a group of small amphipathic peptides that bind to specific membrane-embedded, G-protein coupled receptors. The agonist/receptor complex is quaternary in nature because the receptor binding sites are thought to be located within the lipid bilayer and because the role of water cannot be ignored. The cell membrane acts as a solvent to accumulate peptide and an inducer of peptide secondary structure. The three-dimensional shape that the peptide assumes when associated to the cell membrane will be an important parameter with regards to the receptor selectivity and affinity. Neutron diffraction measurements were carried out in order to define the location of the N-terminus of the peptide in synthetic phospholipid multi-bilayer stacks.

  17. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model

    PubMed Central

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F.; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon

    2015-01-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. PMID:26092919

  18. The effects of atropine and oxotremorine on acetylcholine release in rat phrenic nerve-diaphragm preparations.

    PubMed Central

    Abbs, E. T.; Joseph, D. N.

    1981-01-01

    1 Atropine (10(-5) M) enhanced the release of [3H]-acetylcholine from rat isolated hemidiaphragms, previously incubated with [3H-methyl]-choline, stimulated via their phrenic nerves. 2 Oxotremorine (10(-5) M) did not affect the stimulated release of [3H]-acetylcholine but antagonized the facilitatory effects of atropine (10(-5) M). 3 It is suggested that there are presynaptic inhibitory muscarinic receptors that modulate the release of acetylcholine in the phrenic nerves of the rat. PMID:7236997

  19. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  20. Acetylcholine test in patients with angina pectoris and normal coronary angiography

    NASA Astrophysics Data System (ADS)

    Barbieri, Enrico; Destro, Gianni; Oliva, Massimo; Zardini, Piero

    1994-02-01

    Angina pectoris with normal coronary artery on the coronary angiography is an intriguing issue. Intracoronary infusion of acetylcholine has recently been used to test the integrity of endothelial cells. We studied 16 patients with this syndrome. A relationship has been found between the acetylcholine test and the exercise stress test in normotensive patients. The presence of hypertension makes the evaluation of the test more unpredictable, probably because of the damage on the endothelial cells related to systemic hypertension.

  1. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    PubMed

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  2. FRET-based sensors for the human M1-, M3-, and M5-acetylcholine receptors.

    PubMed

    Ziegler, Nicole; Bätz, Julia; Zabel, Ulrike; Lohse, Martin J; Hoffmann, Carsten

    2011-02-01

    Based on the recently developed approach to generate fluorescence resonance energy transfer (FRET)-based sensors to measure GPCR activation, we generated sensor constructs for the human M(1)-, M(3)-, and M(5)-acetylcholine receptor. The receptors were labeled with cyan fluorescent protein (CFP) at their C-terminus, and with fluorescein arsenical hairpin binder (FlAsH) via tetra-cysteine tags inserted in the third intracellular loop. We then measured FRET between the donor CFP and the acceptor FlAsH in living cells and real time. Agonists like acetylcholine, carbachol, or muscarine activate each receptor construct with half-maximal activation times between 60 and 70ms. Removal of the agonist caused the reversal of the signal. Compared with all other agonists, oxotremorine M differed in two major aspects: it caused significantly slower signals at M(1)- and M(5)-acetylcholine receptors and the amplitude of these signals was larger at the M(1)-acetylcholine receptor. Concentration-response curves for the agonists reveal that all agonists tested, with the mentioned exception of oxotremorine M, caused similar maximal FRET-changes as acetylcholine for the M(1)-, M(3)- and M(5)-acetylcholine receptor constructs. Taken together our data support the notion that orthosteric agonists behave similar at different muscarinic receptor subtypes but that kinetic differences can be observed for receptor activation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Acetylcholine content and viability of cholinergic neurons are influenced by the activity of protein histidine phosphatase

    PubMed Central

    2012-01-01

    Background The first mammalian protein histidine phosphatase (PHP) was discovered in the late 90s of the last century. One of the known substrates of PHP is ATP-citrate lyase (ACL), which is responsible - amongst other functions - for providing acetyl-CoA for acetylcholine synthesis in neuronal tissues. It has been shown in previous studies that PHP downregulates the activity of ACL by dephosphorylation. According to this our present work focused on the influence of PHP activity on the acetylcholine level in cholinergic neurons. Results The amount of PHP in SN56 cholinergic neuroblastoma cells was increased after overexpression of PHP by using pIRES2-AcGFP1-PHP as a vector. We demonstrated that PHP overexpression reduced the acetylcholine level and induced cell death. The acetylcholine content of SN56 cells was measured by fast liquid chromatography-tandem mass spectrometry method. Overexpression of the inactive H53A-PHP mutant also induced cell damage, but in a significantly reduced manner. However, this overexpression of the inactive PHP mutant did not change the acetylcholine content of SN56 cells significantly. In contrast, PHP downregulation, performed by RNAi-technique, did not induce cell death, but significantly increased the acetylcholine content in SN56 cells. Conclusions We could show for the first time that PHP downregulation increased the acetylcholine level in SN56 cells. This might be a potential therapeutic strategy for diseases involving cholinergic deficits like Alzheimer's disease. PMID:22436051

  4. Molecular Dynamics Simulations of Membrane-Bound STIM1 to Investigate Conformational Changes during STIM1 Activation upon Calcium Release.

    PubMed

    Mukherjee, Sreya; Karolak, Aleksandra; Debant, Marjolaine; Buscaglia, Paul; Renaudineau, Yves; Mignen, Olivier; Guida, Wayne C; Brooks, Wesley H

    2017-02-27

    Calcium is involved in important intracellular processes, such as intracellular signaling from cell membrane receptors to the nucleus. Typically, calcium levels are kept at less than 100 nM in the nucleus and cytosol, but some calcium is stored in the endoplasmic reticulum (ER) lumen for rapid release to activate intracellular calcium-dependent functions. Stromal interacting molecule 1 (STIM1) plays a critical role in early sensing of changes in the ER's calcium level, especially when there is a sudden release of stored calcium from the ER. Inactive STIM1, which has a bound calcium ion, is activated upon ion release. Following activation of STIM1, there is STIM1-assisted initiation of extracellular calcium entry through channels in the cell membrane. This extracellular calcium entering the cell then amplifies intracellular calcium-dependent actions. At the end of the process, ER levels of stored calcium are reestablished. The main focus of this work was to study the conformational changes accompanying homo- or heterodimerization of STIM1. For this purpose, the ER luminal portion of STIM1 (residues 58-236), which includes the sterile alpha motif (SAM) domain plus the calcium-binding EF-hand domains 1 and 2 attached to the STIM1 transmembrane region (TM), was modeled and embedded in a virtual membrane. Next, molecular dynamics simulations were performed to study the conformational changes that take place during STIM1 activation and subsequent protein-protein interactions. Indeed, the simulations revealed exposure of residues in the EF-hand domains, which may be important for dimerization steps. Altogether, understanding conformational changes in STIM1 can help in drug discovery when targeting this key protein in intracellular calcium functions.

  5. Stabilization of a metastable state of Torpedo californica acetylcholinesterase by chemical chaperones

    PubMed Central

    Millard, Charles B.; Shnyrov, Valery L.; Newstead, Simon; Shin, Irina; Roth, Esther; Silman, Israel; Weiner, Lev

    2003-01-01

    Chemical modification of Torpedo californica acetylcholinesterase by the natural thiosulfinate allicin produces an inactive enzyme through reaction with the buried cysteine Cys 231. Optical spectroscopy shows that the modified enzyme is “native-like,” and inactivation can be reversed by exposure to reduced glutathione. The allicin-modified enzyme is, however, metastable, and is converted spontaneously and irreversibly, at room temperature, with t1/2 ≃ 100 min, to a stable, partially unfolded state with the physicochemical characteristics of a molten globule. Osmolytes, including trimethylamine-N-oxide, glycerol, and sucrose, and the divalent cations, Ca2+, Mg2+, and Mn2+ can prevent this transition of the native-like state for >24 h at room temperature. Trimethylamine-N-oxide and Mg2+ can also stabilize the native enzyme, with only slight inactivation being observed over several hours at 39°C, whereas in their absence it is totally inactivated within 5 min. The stabilizing effects of the osmolytes can be explained by their differential interaction with the native and native-like states, resulting in a shift of equilibrium toward the native state. The stabilizing effects of the divalent cations can be ascribed to direct stabilization of the native state, as supported by differential scanning calorimetry. PMID:14500892

  6. Acetylcholine attenuated TNF-α-induced intracellular Ca2+ overload by inhibiting the formation of the NCX1-TRPC3-IP3R1 complex in human umbilical vein endothelial cells.

    PubMed

    Zhao, Ming; Jia, Hang-Huan; Liu, Long-Zhu; Bi, Xue-Yuan; Xu, Man; Yu, Xiao-Jiang; He, Xi; Zang, Wei-Jin

    2017-06-01

    The endoplasmic reticulum (ER) forms discrete junctions with the plasma membrane (PM) that play a critical role in the regulation of Ca 2+ signaling during cellular bioenergetics, apoptosis and autophagy. We have previously confirmed that acetylcholine can inhibit ER stress and apoptosis after inflammatory injury. However, limited research has focused on the effects of acetylcholine on ER-PM junctions. In this work, we evaluated the structure and function of the supramolecular sodium-calcium exchanger 1 (NCX1)-transient receptor potential canonical 3 (TRPC3)-inositol 1,4,5-trisphosphate receptor 1 (IP3R1) complex, which is involved in regulating Ca 2+ homeostasis during inflammatory injury. The width of the ER-PM junctions of human umbilical vein endothelial cells (HUVECs) was measured in nanometres using transmission electron microscopy and a fluorescent probe for Ca 2+ . Protein-protein interactions were assessed by immunoprecipitation. Ca 2+ concentration was measured using a confocal microscope. An siRNA assay was employed to silence specific proteins. Our results demonstrated that the peripheral ER was translocated to PM junction sites when induced by tumour necrosis factor-alpha (TNF-α) and that NCX1-TRPC3-IP3R1 complexes formed at these sites. After down-regulating the protein expression of NCX1 or IP3R1, we found that the NCX1-mediated inflow of Ca 2+ and the release of intracellular Ca 2+ stores were reduced in TNF-α-treated cells. We also observed that acetylcholine attenuated the formation of NCX1-TRPC3-IP3R1 complexes and maintained calcium homeostasis in cells treated with TNF-α. Interestingly, the positive effects of acetylcholine were abolished by the selective M3AChR antagonist darifenacin and by AMPK siRNAs. These results indicate that acetylcholine protects endothelial cells from TNF-alpha-induced injury, [Ca 2+ ] cyt overload and ER-PM interactions, which depend on the muscarinic 3 receptor/AMPK pathway, and that acetylcholine may be a new

  7. Acetylcholine Protects against Candida albicans Infection by Inhibiting Biofilm Formation and Promoting Hemocyte Function in a Galleria mellonella Infection Model.

    PubMed

    Rajendran, Ranjith; Borghi, Elisa; Falleni, Monica; Perdoni, Federica; Tosi, Delfina; Lappin, David F; O'Donnell, Lindsay; Greetham, Darren; Ramage, Gordon; Nile, Christopher

    2015-08-01

    Both neuronal acetylcholine and nonneuronal acetylcholine have been demonstrated to modulate inflammatory responses. Studies investigating the role of acetylcholine in the pathogenesis of bacterial infections have revealed contradictory findings with regard to disease outcome. At present, the role of acetylcholine in the pathogenesis of fungal infections is unknown. Therefore, the aim of this study was to determine whether acetylcholine plays a role in fungal biofilm formation and the pathogenesis of Candida albicans infection. The effect of acetylcholine on C. albicans biofilm formation and metabolism in vitro was assessed using a crystal violet assay and phenotypic microarray analysis. Its effect on the outcome of a C. albicans infection, fungal burden, and biofilm formation were investigated in vivo using a Galleria mellonella infection model. In addition, its effect on modulation of host immunity to C. albicans infection was also determined in vivo using hemocyte counts, cytospin analysis, larval histology, lysozyme assays, hemolytic assays, and real-time PCR. Acetylcholine was shown to have the ability to inhibit C. albicans biofilm formation in vitro and in vivo. In addition, acetylcholine protected G. mellonella larvae from C. albicans infection mortality. The in vivo protection occurred through acetylcholine enhancing the function of hemocytes while at the same time inhibiting C. albicans biofilm formation. Furthermore, acetylcholine also inhibited inflammation-induced damage to internal organs. This is the first demonstration of a role for acetylcholine in protection against fungal infections, in addition to being the first report that this molecule can inhibit C. albicans biofilm formation. Therefore, acetylcholine has the capacity to modulate complex host-fungal interactions and plays a role in dictating the pathogenesis of fungal infections. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  8. Agonist activation of α7 nicotinic acetylcholine receptors via an allosteric transmembrane site

    PubMed Central

    Gill, JasKiran K.; Savolainen, Mari; Young, Gareth T.; Zwart, Ruud; Sher, Emanuele; Millar, Neil S.

    2011-01-01

    Conventional nicotinic acetylcholine receptor (nAChR) agonists, such as acetylcholine, act at an extracellular “orthosteric” binding site located at the interface between two adjacent subunits. Here, we present evidence of potent activation of α7 nAChRs via an allosteric transmembrane site. Previous studies have identified a series of nAChR-positive allosteric modulators (PAMs) that lack agonist activity but are able to potentiate responses to orthosteric agonists, such as acetylcholine. It has been shown, for example, that TQS acts as a conventional α7 nAChR PAM. In contrast, we have found that a compound with close chemical similarity to TQS (4BP-TQS) is a potent allosteric agonist of α7 nAChRs. Whereas the α7 nAChR antagonist metyllycaconitine acts competitively with conventional nicotinic agonists, metyllycaconitine is a noncompetitive antagonist of 4BP-TQS. Mutation of an amino acid (M253L), located in a transmembrane cavity that has been proposed as being the binding site for PAMs, completely blocks agonist activation by 4BP-TQS. In contrast, this mutation had no significant effect on agonist activation by acetylcholine. Conversely, mutation of an amino acid located within the known orthosteric binding site (W148F) has a profound effect on agonist potency of acetylcholine (resulting in a shift of ∼200-fold in the acetylcholine dose-response curve), but had little effect on the agonist dose-response curve for 4BP-TQS. Computer docking studies with an α7 homology model provides evidence that both TQS and 4BP-TQS bind within an intrasubunit transmembrane cavity. Taken together, these findings provide evidence that agonist activation of nAChRs can occur via an allosteric transmembrane site. PMID:21436053

  9. Amphetamine regulation of acetylcholine and gamma-aminobutyric acid in nucleus accumbens.

    PubMed

    Lindefors, N; Hurd, Y L; O'Connor, W T; Brené, S; Persson, H; Ungerstedt, U

    1992-01-01

    In situ hybridization histochemistry and in vivo microdialysis were combined to study the effect of amphetamine on the expression of choline acetyltransferase and glutamate decarboxylase67 mRNA and in vivo release of acetylcholine and GABA in rat medial nucleus accumbens. Differential effects on acetylcholine and GABA neurons by a single challenge injection of amphetamine (1.5 mg/kg, s.c.) were apparent in saline-pretreated and amphetamine-pretreated (same dose, twice daily for the previous seven days) rats. Extracellular acetylcholine levels were increased up to 50% over a prolonged period following both single and repeated amphetamine. In contrast, extracellular concentrations of GABA were gradually decreased to half the control values, but only in rats receiving repeated amphetamine. Although the increase of acetylcholine release was not associated with any change in choline acetyltransferase mRNA levels, the number of neurons expressing high levels of glutamate decarboxylase67 mRNA was decreased (28%) following repeated injections. Thus we suggest that amphetamine decreases extracellular GABA levels by a slow mechanism, associated with the decreased expression of glutamate decarboxylase67 mRNA in a subpopulation of densely labeled neurons in the medial nucleus accumbens. The delayed response by GABA to amphetamine may reflect supersensitivity in the activity of postsynaptic gamma-aminobutyric acid-containing neurons in nucleus accumbens as a consequence of the repeated amphetamine treatment.

  10. Single-particle tracking: applications to membrane dynamics.

    PubMed

    Saxton, M J; Jacobson, K

    1997-01-01

    Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.

  11. DNA probes for monitoring dynamic and transient molecular encounters on live cell membranes

    NASA Astrophysics Data System (ADS)

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Sam Wu, Cuichen; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-05-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, mimicking motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within the same lipid domains.

  12. DNA probe for monitoring dynamic and transient molecular encounters on live cell membranes

    PubMed Central

    You, Mingxu; Lyu, Yifan; Han, Da; Qiu, Liping; Liu, Qiaoling; Chen, Tao; Wu, Cuichen Sam; Peng, Lu; Zhang, Liqin; Bao, Gang; Tan, Weihong

    2017-01-01

    Cells interact with the extracellular environment through molecules expressed on the membrane. Disruption of these membrane-bound interactions (or encounters) can result in disease progression. Advances in super-resolution microscopy have allowed membrane encounters to be examined, however, these methods cannot image entire membranes and cannot provide information on the dynamic interactions between membrane-bound molecules. Here, we show a novel DNA probe that can transduce transient membrane encounter events into readable cumulative fluorescence signals. The probe, which translocates from one anchor site to another, such as motor proteins, is realized through a toehold-mediated DNA strand displacement reaction. Using this probe, we successfully monitored rapid encounter events of membrane lipid domains using flow cytometry and fluorescence microscopy. Our results show a preference for encounters within different lipid domains. PMID:28319616

  13. An integrated catch-and-hold mechanism activates nicotinic acetylcholine receptors

    PubMed Central

    Jadey, Snehal

    2012-01-01

    In neuromuscular acetylcholine (ACh) receptor channels (AChRs), agonist molecules bind with a low affinity (LA) to two sites that can switch to high affinity (HA) and increase the probability of channel opening. We measured (by using single-channel kinetic analysis) the rate and equilibrium constants for LA binding and channel gating for several different agonists of adult-type mouse AChRs. Almost all of the variation in the equilibrium constants for LA binding was from differences in the association rate constants. These were consistently below the limit set by diffusion and were substantially different even though the agonists had similar sizes and the same charge. This suggests that binding to resting receptors is not by diffusion alone and, hence, that each binding site can undergo two conformational changes (“catch” and “hold”) that connect three different structures (apo-, LA-bound, and HA-bound). Analyses of ACh-binding protein structures suggest that this binding site, too, may adopt three discrete structures having different degrees of loop C displacement (“capping”). For the agonists we tested, the logarithms of the equilibrium constants for LA binding and LA↔HA gating were correlated. Although agonist binding and channel gating have long been considered to be separate processes in the activation of ligand-gated ion channels, this correlation implies that the catch-and-hold conformational changes are energetically linked and together comprise an integrated process having a common structural basis. We propose that loop C capping mainly reflects agonist binding, with its two stages corresponding to the formation of the LA and HA complexes. The catch-and-hold reaction coordinate is discussed in terms of preopening states and thermodynamic cycles of activation. PMID:22732309

  14. Towards timely Alzheimer diagnosis: A self-powered amperometric biosensor for the neurotransmitter acetylcholine.

    PubMed

    Moreira, Felismina T C; Sale, M Goreti F; Di Lorenzo, Mirella

    2017-01-15

    Serious brain disorders, such as the Alzheimer's Disease (AD), are associated with a marked drop in the levels of important neurotransmitters, such as acetylcholine (ACh). Real time monitoring of such biomarkers can therefore play a critical role in enhancing AD therapies by allowing timely diagnosis, verifications of treatment effectiveness, and developments of new medicines. In this study, we present the first acetylcholine/oxygen hybrid enzymatic fuel cell for the self-powered on site detection of ACh in plasma, which is based on the combination of an enzymatic anode with a Pt cathode. Firstly, an effective acetylcholinesterase immobilized electrode was developed and its electrochemical performance evaluated. Highly porous gold was used as the electrode material, and the enzyme was immobilized via a one step rapid and simple procedure that does not require the use of harsh chemicals or any electrode/enzyme pre-treatments. The resulting enzymatic electrode was subsequently used as the anode of a miniature flow-through membrane-less fuel cell and showed excellent response to varying concentrations of ACh. The peak power generated by the fuel cell was 4nW at a voltage of 260mV and with a current density of 9μAcm -2 . The limit of detection of the fuel cell sensor was 10μM, with an average response time as short as 3min. These exciting results open new horizons for point-of-care Alzheimer diagnosis and provide an attractive potential alternative to established methods that require laborious and time-consuming sample treatments and expensive instruments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Non-linear solitary sound waves in lipid membranes and their possible role in biological signaling

    NASA Astrophysics Data System (ADS)

    Shrivastava, Shamit

    Biological macromolecules self-assemble under entropic forces to form a dynamic 2D interfacial medium where the elastic properties arise from the curvature of the entropic potential of the interface. Elastic interfaces should be capable of propagating localized perturbations analogous to sound waves. However, (1) the existence and (2) the possible role of such waves in affecting biological functions remain unexplored. Both these aspects of "sound" as a signaling mechanism in biology are explored experimentally on mixed monolayers of lipids-fluorophores-proteins at the air/water interface as a model biological interface. This study shows - for the first time - that the nonlinear susceptibility near a thermodynamic transition in a lipid monolayer results in nonlinear solitary sound waves that are of 'all or none' nature. The state dependence of the nonlinear propagation is characterized by studying the velocity-amplitude relationship and results on distance dependence, effect of geometry and collision of solitary waves are presented. Given that the lipid bilayers and real biological membranes have such nonlinearities in their susceptibility diagrams, similar solitary phenomenon should be expected in biological membranes. In fact the observed characteristics of solitary sound waves such as, their all or none nature, a biphasic pulse shape with a long tail and optp-mechano-electro-thermal coupling etc. are strikingly similar to the phenomenon of nerve pulse propagation as observed in single nerve fibers. Finally given the strong correlation between the activity of membrane bound enzymes and the susceptibility and the fact that the later varies within a single solitary pulse, a new thermodynamic basis for biological signaling is proposed. The state of the interface controls both the nature of sound propagation and its impact on incorporated enzymes and proteins. The proof of concept is demonstrated for acetylcholine esterase embedded in a lipid monolayer, where the

  16. Evaluation of membrane-bound and soluble forms of human leucocyte antigen-G in systemic sclerosis.

    PubMed

    Contini, P; Negrini, S; Murdaca, G; Borro, M; Puppo, F

    2018-04-16

    Systemic sclerosis (SSc) is a complex disease characterized by immune dysregulation, extensive vascular damage and widespread fibrosis. Human leucocyte antigen-G (HLA-G) is a non-classic class I major histocompatibility complex (MHC) molecule characterized by complex immunomodulating properties. HLA-G is expressed on the membrane of different cell lineages in both physiological and pathological conditions. HLA-G is also detectable in soluble form (sHLA-G) deriving from the shedding of surface isoforms (sHLA-G1) or the secretion of soluble isoforms (HLA-G5). Several immunosuppressive functions have been attributed to both membrane-bound and soluble HLA-G molecules. The plasma levels of sHLA-G were higher in SSc patients (444·27 ± 304·84 U/ml) compared to controls (16·74 ± 20·58 U/ml) (P < 0·0001). The plasma levels of transforming growth factor (TGF)-β were higher in SSc patients (18 937 ± 15 217 pg/ml) compared to controls (11 099 ± 6081 pg/ml; P = 0·003), and a significant correlation was found between TGF-β and the plasma levels of total sHLA-G (r = 0·65; P < 0·01), sHLA-G1 (r = 0·60; P = 0·003) and HLA-G5 (r = 0·47; P = 0·02). The percentage of HLA-G-positive monocytes (0·98 ± 1·72), CD4 + (0·37 ± 0·68), CD8 + (2·05 ± 3·74) and CD4 + CD8 + double-positive cells (14·53 ± 16·88) was higher in SSc patients than in controls (0·11 ± 0·08, 0·01 ± 0·01, 0·01 ± 0·01 and 0·39 ± 0·40, respectively) (P < 0·0001). These data indicate that in SSc the secretion and/or shedding of soluble HLA-G molecules and the membrane expression of HLA-G by peripheral blood mononuclear cells (PBMC) is clearly elevated, suggesting an involvement of HLA-G molecules in the immune dysregulation of SSc. © 2018 British Society for Immunology.

  17. Alternative splicing in nicotinic acetylcholine receptor subunits from Locusta migratoria and its influence on acetylcholine potencies.

    PubMed

    Zhang, Yixi; Liu, Yang; Bao, Haibo; Sun, Huahua; Liu, Zewen

    2017-01-18

    Due to the great abundance within insect central nervous system (CNS), nicotinic acetylcholine receptors (nAChRs) play key roles in insect CNS, which makes it to be the targets of several classes of insecticides, such as neonicotinoids. Insect nAChRs are pentameric complexes consisting of five subunits, and a dozen subunits in one insect species can theoretically comprise diverse nAChRs. The alternative splicing in insect nAChR subunits may increase the diversity of insect nAChRs. In the oriental migratory locust (Locusta migratoria manilensis Meyen), a model insect species with agricultural importance, the alternative splicing was found in six α subunits among nine α and two β subunits, such as missing conserved residues in Loop D from Locα1, Locα6 and Locα9, a 34-residue insertion in Locα8 cytoplasmic loop, and truncated transcripts for Locα4, Locα7 and Locα9. Hybrid nAChRs were successfully constructed in Xenopus oocytes through co-expression with rat β2 and one α subunit from L. migratoria, which included Locα1, Locα2, Locα3, Locα4, Locα5, Locα8 and Locα9. Influences of alternative splicing in Locα1, Locα8 and Locα9 on acetylcholine potency were tested on hybrid nAChRs. The alternative splicing in Locα1 and Locα9 could increase acetylcholine sensitivities on recombinant receptors, while the splicing in Locα8 showed significant influences on the current amplitudes of oocytes. The results revealed that the alternative splicing at or close to the ligand-binding sites, as well as at cytoplasmic regions away from the ligand-binding sites, in insect nAChR subunits would change the agonist potencies on the receptors, which consequently increased nAChR diversity in functional and pharmacological properties. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. α7 Nicotinic Acetylcholine Receptor Signaling Inhibits Inflammasome Activation by Preventing Mitochondrial DNA Release

    PubMed Central

    Lu, Ben; Kwan, Kevin; Levine, Yaakov A; Olofsson, Peder S; Yang, Huan; Li, Jianhua; Joshi, Sonia; Wang, Haichao; Andersson, Ulf; Chavan, Sangeeta S; Tracey, Kevin J

    2014-01-01

    The mammalian immune system and the nervous system coevolved under the influence of cellular and environmental stress. Cellular stress is associated with changes in immunity and activation of the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome, a key component of innate immunity. Here we show that α7 nicotinic acetylcholine receptor (α7 nAchR)-signaling inhibits inflammasome activation and prevents release of mitochondrial DNA, an NLRP3 ligand. Cholinergic receptor agonists or vagus nerve stimulation significantly inhibits inflammasome activation, whereas genetic deletion of α7 nAchR significantly enhances inflammasome activation. Acetylcholine accumulates in macrophage cytoplasm after adenosine triphosphate (ATP) stimulation in an α7 nAchR-independent manner. Acetylcholine significantly attenuated calcium or hydrogen oxide–induced mitochondrial damage and mitochondrial DNA release. Together, these findings reveal a novel neurotransmitter-mediated signaling pathway: acetylcholine translocates into the cytoplasm of immune cells during inflammation and inhibits NLRP3 inflammasome activation by preventing mitochondrial DNA release. PMID:24849809

  19. Transferred-NOE NMR experiments on intact human platelets: receptor-bound conformation of RGD-peptide mimics.

    PubMed

    Potenza, Donatella; Belvisi, Laura

    2008-01-21

    The aim of this work is to show that transferred-NOE provides useful and detailed information on membrane-bound receptor-ligand interactions in living cells. Here, we study the interaction between intact human platelets and some ligands containing the RGD sequence. Conformational properties of the free and bound pentapeptides are reported.

  20. Membrane-bound IL-12 and IL-23 serve as potent mucosal adjuvants when co-presented on whole inactivated influenza vaccines.

    PubMed

    Khan, Tila; Heffron, Connie L; High, Kevin P; Roberts, Paul C

    2014-05-03

    Potent and safe adjuvants are needed to improve the efficacy of parenteral and mucosal vaccines. Cytokines, chemokines and growth factors have all proven to be effective immunomodulatory adjuvants when administered with a variety of antigens. We have previously evaluated the efficacy of membrane-anchored interleukins (IL) such as IL-2 and IL-4 co-presented as Cytokine-bearing Influenza Vaccines (CYT-IVACs) using a mouse model of influenza challenge. Here, we describe studies evaluating the parenteral and mucosal adjuvanticity of membrane-bound IL-12 and IL-23 CYT-IVACs in young adult mice. Mucosal immunization using IL-12 and IL-23 bearing whole influenza virus vaccine (WIV) was more effective at eliciting virus-specific nasal IgA and reducing viral lung burden following challenge compared to control WIV vaccinated animals. Both IL-12 and IL-23 bearing WIV elicited the highest anti-viral IgA levels in serum and nasal washes. This study highlights for the first time the mucosal adjuvant potential of IL-12 and IL-23 CYT-IVAC formulations in eliciting mucosal immune responses and reducing viral lung burden. The co-presentation of immunomodulators in direct context with viral antigen in whole inactivated viral vaccines may provide a means to significantly lower the dose of vaccine required for protection.

  1. Biophysics of α-Synuclein Membrane Interactions

    PubMed Central

    Pfefferkorn, Candace M.; Jiang, Zhiping; Lee, Jennifer C.

    2011-01-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson’s disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. PMID:21819966

  2. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  3. Penconazole alters redox status, cholinergic function, and membrane-bound ATPases in the cerebrum and cerebellum of adult rats.

    PubMed

    Chaâbane, M; Ghorbel, I; Elwej, A; Mnif, H; Boudawara, T; Chaâbouni, S Ellouze; Zeghal, N; Soudani, N

    2017-08-01

    Pesticides exposure causes usually harmful effects to the environment and human health. The present study aimed to investigate the potential toxic effects of penconazole, a triazole fungicide, on the cerebrum and cerebellum of adult rats. Penconazole was administered intraperitoneally to male Wistar rats at a dose of 67 mg kg -1 body weight every 2 days during 9 days. Results showed that penconazole induced oxidative stress in rat cerebrum and cerebellum tissues. In fact, we have found a significant increase in malondialdehyde, hydrogen peroxide, and advanced oxidation protein product levels, as well as an alteration of the antioxidant status, enzymatic (superoxide dismutase and catalase) and nonenzymatic (glutathione), the cholinergic function, and membrane-bound ATPases (Na + /K + -ATPase and Mg 2+ -ATPase). Penconazole also provoked histological alterations marked by pyknotic and vacuolated neurons in the cerebrum and apoptosis and edema in the cerebellum Purkinje cells' layer. Therefore, the use of this neurotoxicant fungicide must be regularly monitored in the environment.

  4. Actions of piperidine alkaloid teratogens at fetal nicotinic acetylcholine receptors.

    PubMed

    Green, Benedict T; Lee, Stephen T; Panter, Kip E; Welch, Kevin D; Cook, Daniel; Pfister, James A; Kem, William R

    2010-01-01

    Teratogenic alkaloids are found in many species of plants including Conium maculatum L., Nicotiana glauca, Nicotiana tabaccum, and multiple Lupinus spp. Fetal musculoskeletal defects produced by alkaloids from these plants include arthrogyropisis, scoliosis, torticollis, kyposis, lordosis, and cleft palate. A pharmacodynamic comparison of the alkaloids ammodendrine, anabasine, anabaseine, anagyrine, and coniine in SH-SY5Y cells and TE-671 cells was made. These alkaloids and their enantiomers were more effective in depolarizing TE-671 cells which express the human fetal-muscle type nicotinic acetylcholine receptor (nAChR) relative to SH-SY5Y cells which predominately express autonomic nAChRs. The rank order of potency in TE-671 cells was: anabaseine>(+)-anabasine>(-)-anabasine > (+/-)-anabasine>anagyrine>(-)-coniine > (+/-)-coniine>(+)-coniine>(+/-)-ammodendrine>(+)-ammodendrine. The rank order potency in SH-SY5Y cells was: anabaseine>(+)-anabasine>(-)-coniine>(+)-coniine>(+)-ammodendrine>anagyrine>(-)-anabasine>(+/-)-coniine>(+/-)-anabasine>(-)-ammodendrine. The actions of these alkaloids at nAChRs in both cell lines could be distinguished by their maximum effects in depolarizing cell membrane potential. The teratogenic action of these compounds may be related to their ability to activate and subsequently desensitize nAChRs.

  5. Menthol Binding and Inhibition of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Ashoor, Abrar; Nordman, Jacob C.; Veltri, Daniel; Yang, Keun-Hang Susan; Al Kury, Lina; Shuba, Yaroslav; Mahgoub, Mohamed; Howarth, Frank C.; Sadek, Bassem; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-01-01

    Menthol is a common compound in pharmaceutical and commercial products and a popular additive to cigarettes. The molecular targets of menthol remain poorly defined. In this study we show an effect of menthol on the α7 subunit of the nicotinic acetylcholine (nACh) receptor function. Using a two-electrode voltage-clamp technique, menthol was found to reversibly inhibit α7-nACh receptors heterologously expressed in Xenopus oocytes. Inhibition by menthol was not dependent on the membrane potential and did not involve endogenous Ca2+-dependent Cl− channels, since menthol inhibition remained unchanged by intracellular injection of the Ca2+ chelator BAPTA and perfusion with Ca2+-free bathing solution containing Ba2+. Furthermore, increasing ACh concentrations did not reverse menthol inhibition and the specific binding of [125I] α-bungarotoxin was not attenuated by menthol. Studies of α7- nACh receptors endogenously expressed in neural cells demonstrate that menthol attenuates α7 mediated Ca2+ transients in the cell body and neurite. In conclusion, our results suggest that menthol inhibits α7-nACh receptors in a noncompetitive manner. PMID:23935840

  6. Detection of proteins on blot transfer membranes.

    PubMed

    Sasse, Joachim; Gallagher, Sean R

    2003-11-01

    In the basic and alternate protocols of this unit, proteins are stained after electroblotting from polyacrylamide gels to blot transfer membranes. If the samples of interest are electrophoresed in duplicate and transferred to a blot transfer membrane, half of the membrane can be stained to determine the efficiency of transfer to the membrane and the other half can be used for immunoblotting (i.e., western blotting). Detection limits of each staining method are given along with a list of compatible blot transfer membranes and gels. A support protocol describes a method for alkali treatment that enhances subsequent staining of bound proteins.

  7. Inactivation by Phenylglyoxal of the Specific Binding of 1-Naphthyl Acetic Acid with Membrane-Bound Auxin Binding Sites from Maize Coleoptiles

    PubMed Central

    Navé, Jean-François; Benveniste, Pierre

    1984-01-01

    The specific binding of 1-[3H]naphthyl acetic acid (NAA) to membrane-bound binding sites from maize (Zea mays cv INRA 258) coleoptiles is inactivated by phenylglyoxal. The inactivation obeys pseudo first-order kinetics. The rate of inactivation is proportional to phenylglyoxal concentration. Under conditions at which significant binding occurs, NAA, R and S-1-naphthyl 2-propionic acids protect the auxin binding site against inactivation by phenylglyoxal. Scatchard analysis shows that the inhibition of binding corresponds to a decrease in the concentration of sites but not in the affinity. The results of the present chemical modification study indicate that at least one arginyl residue is involved in the positively charged recognition site of the carboxylate anion of NAA. PMID:16663499

  8. Tracking the route of molecular oxygen in O2-tolerant membrane-bound [NiFe] hydrogenase

    PubMed Central

    Kalms, Jacqueline; Schmidt, Andrea; Utesch, Tillmann; von Stetten, David; van der Linden, Peter; Royant, Antoine; Mroginski, Maria Andrea; Carpentier, Philippe; Scheerer, Patrick

    2018-01-01

    [NiFe] hydrogenases catalyze the reversible splitting of H2 into protons and electrons at a deeply buried active site. The catalytic center can be accessed by gas molecules through a hydrophobic tunnel network. While most [NiFe] hydrogenases are inactivated by O2, a small subgroup, including the membrane-bound [NiFe] hydrogenase (MBH) of Ralstonia eutropha, is able to overcome aerobic inactivation by catalytic reduction of O2 to water. This O2 tolerance relies on a special [4Fe3S] cluster that is capable of releasing two electrons upon O2 attack. Here, the O2 accessibility of the MBH gas tunnel network has been probed experimentally using a “soak-and-freeze” derivatization method, accompanied by protein X-ray crystallography and computational studies. This combined approach revealed several sites of O2 molecules within a hydrophobic tunnel network leading, via two tunnel entrances, to the catalytic center of MBH. The corresponding site occupancies were related to the O2 concentrations used for MBH crystal derivatization. The examination of the O2-derivatized data furthermore uncovered two unexpected structural alterations at the [4Fe3S] cluster, which might be related to the O2 tolerance of the enzyme. PMID:29463722

  9. Functional characterization of mongoose nicotinic acetylcholine receptor alpha-subunit: resistance to alpha-bungarotoxin and high sensitivity to acetylcholine.

    PubMed

    Asher, O; Lupu-Meiri, M; Jensen, B S; Paperna, T; Fuchs, S; Oron, Y

    1998-07-24

    The mongoose is resistant to snake neurotoxins. The mongoose muscle nicotinic acetylcholine receptor (AChR) alpha-subunit contains a number of mutations in the ligand-binding domain and exhibits poor binding of alpha-bungarotoxin (alpha-BTX). We characterized the functional properties of a hybrid (alpha-mongoose/beta gamma delta-rat) AChR. Hybrid AChRs, expressed in Xenopus oocytes, respond to acetylcholine with depolarizing current, the mean maximal amplitude of which was greater than that mediated by the rat AChR. The IC50 of alpha-BTX to the hybrid AChR was 200-fold greater than that of the rat, suggesting much lower affinity for the toxin. Hybrid AChRs exhibited an apparent higher rate of desensitization and higher affinity for ACh (EC50 1.3 vs. 23.3 microM for the rat AChR). Hence, changes in the ligand-binding domain of AChR not only affect the binding properties of the receptor, but also result in marked changes in the characteristics of the current.

  10. Fatigue and Muscle Atrophy in a Mouse Model of Myasthenia Gravis Is Paralleled by Loss of Sarcolemmal nNOS

    PubMed Central

    Meinen, Sarina; Lin, Shuo; Rüegg, Markus A.; Punga, Anna Rostedt

    2012-01-01

    Myasthenia Gravis (MG) patients suffer from chronic fatigue of skeletal muscles, even after initiation of proper immunosuppressive medication. Since the localization of neuronal nitric oxide synthase (nNOS) at the muscle membrane is important for sustained muscle contraction, we here study the localization of nNOS in muscles from mice with acetylcholine receptor antibody seropositive (AChR+) experimental autoimmune MG (EAMG). EAMG was induced in 8 week-old male mice by immunization with AChRs purified from torpedo californica. Sham-injected wild type mice and mdx mice, a model for Duchenne muscular dystrophy, were used for comparison. At EAMG disease grade 3 (severe myasthenic weakness), the triceps, sternomastoid and masseter muscles were collected for analysis. Unlike in mdx muscles, total nNOS expression as well as the presence of its binding partner syntrophin α-1, were not altered in EAMG. Immunohistological and biochemical analysis showed that nNOS was lost from the muscle membrane and accumulated in the cytosol, which is likely the consequence of blocked neuromuscular transmission. Atrophy of all examined EAMG muscles were supported by up-regulated transcript levels of the atrogenes atrogin-1 and MuRF1, as well as MuRF1 protein, in combination with reduced muscle fiber diameters. We propose that loss of sarcolemmal nNOS provides an additional mechanism for the chronic muscle fatigue and secondary muscle atrophy in EAMG and MG. PMID:22952904

  11. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  12. Neuromodulation: acetylcholine and memory consolidation.

    PubMed

    Hasselmo

    1999-09-01

    Clinical and experimental evidence suggests that hippocampal damage causes more severe disruption of episodic memories if those memories were encoded in the recent rather than the more distant past. This decrease in sensitivity to damage over time might reflect the formation of multiple traces within the hippocampus itself, or the formation of additional associative links in entorhinal and association cortices. Physiological evidence also supports a two-stage model of the encoding process in which the initial encoding occurs during active waking and deeper consolidation occurs via the formation of additional memory traces during quiet waking or slow-wave sleep. In this article I will describe the changes in cholinergic tone within the hippocampus in different stages of the sleep-wake cycle and will propose that these changes modulate different stages of memory formation. In particular, I will suggest that the high levels of acetylcholine that are present during active waking might set the appropriate dynamics for encoding new information in the hippocampus, by partially suppressing excitatory feedback connections and so facilitating encoding without interference from previously stored information. By contrast, the lower levels of acetylcholine that are present during quiet waking and slow-wave sleep might release this suppression and thereby allow a stronger spread of activity within the hippocampus itself and from the hippocampus to the entorhinal cortex, thus facilitating the process of consolidation of separate memory traces.

  13. Neutrophilic leukocyte membrane proteins. I. Isolation.

    PubMed

    Hawkins, D; Sauvé, M

    1978-03-01

    Rabbit exudate-derived PMN were homogenized and the cell membranes isolated on a two-phase aqueous system. Glycoproteins were extracted from cell membranes with lithium diiodosalicylate. SDS polyacrylamide gel electrophoretic analysis showed a consistent pattern of three major glycoprotein entities. Cells radioiodinated supravitally showed most of the radioactivity associated with larger glycoprotein entities whereas PMN membranes radiolabeled after isolation yielded a single major peak of radioactivity associated with a much smaller protein entity. Heterologous antisera against rabbit PMN, PMN membranes, and membrane glycoproteins were all cytotoxic for PMN in the presence of complement, and all bound to the PMN surface as demonstrated with immunocolloidal gold on electron microscopy. The data suggest that one or more glycoprotein entities are membrane-associated ectoglycoproteins which can be radiolabeled supravitally.

  14. Coordinated Acetylcholine Release in Prefrontal Cortex and Hippocampus Is Associated with Arousal and Reward on Distinct Timescales.

    PubMed

    Teles-Grilo Ruivo, Leonor M; Baker, Keeley L; Conway, Michael W; Kinsley, Peter J; Gilmour, Gary; Phillips, Keith G; Isaac, John T R; Lowry, John P; Mellor, Jack R

    2017-01-24

    Cholinergic neurotransmission throughout the neocortex and hippocampus regulates arousal, learning, and attention. However, owing to the poorly characterized timing and location of acetylcholine release, its detailed behavioral functions remain unclear. Using electrochemical biosensors chronically implanted in mice, we made continuous measurements of the spatiotemporal dynamics of acetylcholine release across multiple behavioral states. We found that tonic levels of acetylcholine release were coordinated between the prefrontal cortex and hippocampus and maximal during training on a rewarded working memory task. Tonic release also increased during REM sleep but was contingent on subsequent wakefulness. In contrast, coordinated phasic acetylcholine release occurred only during the memory task and was strongly localized to reward delivery areas without being contingent on trial outcome. These results show that coordinated acetylcholine release between the prefrontal cortex and hippocampus is associated with reward and arousal on distinct timescales, providing dual mechanisms to support learned behavior acquisition during cognitive task performance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Concomitant Release of Ventral Tegmental Acetylcholine and Accumbal Dopamine by Ghrelin in Rats

    PubMed Central

    Jerlhag, Elisabet; Janson, Anna Carin; Waters, Susanna; Engel, Jörgen A.

    2012-01-01

    Ghrelin, an orexigenic peptide, regulates energy balance specifically via hypothalamic circuits. Growing evidence suggest that ghrelin increases the incentive value of motivated behaviours via activation of the cholinergic-dopaminergic reward link. It encompasses the cholinergic afferent projection from the laterodorsal tegmental area (LDTg) to the dopaminergic cells of the ventral tegmental area (VTA) and the mesolimbic dopamine system projecting from the VTA to nucleus accumbens (N.Acc.). Ghrelin receptors (GHS-R1A) are expressed in these reward nodes and ghrelin administration into the LDTg increases accumbal dopamine, an effect involving nicotinic acetylcholine receptors in the VTA. The present series of experiments were undertaken directly to test this hypothesis. Here we show that ghrelin, administered peripherally or locally into the LDTg concomitantly increases ventral tegmental acetylcholine as well as accumbal dopamine release. A GHS-R1A antagonist blocks this synchronous neurotransmitter release induced by peripheral ghrelin. In addition, local perfusion of the unselective nicotinic antagonist mecamylamine into the VTA blocks the ability of ghrelin (administered into the LDTg) to increase N.Acc.-dopamine, but not VTA-acetylcholine. Collectively our data indicate that ghrelin activates the LDTg causing a release of acetylcholine in the VTA, which in turn activates local nicotinic acetylcholine receptors causing a release of accumbal dopamine. Given that a dysfunction in the cholinergic-dopaminergic reward system is involved in addictive behaviours, including compulsive overeating and alcohol use disorder, and that hyperghrelinemia is associated with such addictive behaviours, ghrelin-responsive circuits may serve as a novel pharmacological target for treatment of alcohol use disorder as well as binge eating. PMID:23166710

  16. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors

    PubMed Central

    Matsuda, K; Buckingham, S D; Freeman, J C; Squire, M D; Baylis, H A; Sattelle, D B

    1998-01-01

    Imidacloprid is a new insecticide with selective toxicity for insects over vertebrates. Recombinant (α4β2) chicken neuronal nicotinic acetylcholine receptors (AChRs) and a hybrid nicotinic AChR formed by co-expression of a Drosophila melanogaster neuronal α subunit (SAD) with the chicken β2 subunit were heterologously expressed in Xenopus oocytes by nuclear injection of cDNAs. The agonist actions of imidacloprid and other nicotinic AChR ligands ((+)-epibatidine, (−)-nicotine and acetylcholine) were compared on both recombinant nicotinic AChRs by use of two-electrode, voltage-clamp electrophysiology. Imidacloprid alone of the 4 agonists behaved as a partial agonist on the α4β2 receptor; (+)-epibatidine, (−)-nicotine and acetylcholine were all full, or near full, agonists. Imidacloprid was also a partial agonist of the hybrid Drosophila SAD chicken β2 receptor, as was (−)-nicotine, whereas (+)-epibatidine and acetylcholine were full agonists. The EC50 of imidacloprid was decreased by replacing the chicken α4 subunit with the Drosophila SAD α subunit. This α subunit substitution also resulted in an increase in the EC50 for (+)-epibatidine, (−)-nicotine and acetylcholine. Thus, the Drosophila (SAD) α subunit contributes to the greater apparent affinity of imidacloprid for recombinant insect/vertebrate nicotinic AChRs. Imidacloprid acted as a weak antagonist of ACh-mediated responses mediated by SADβ2 hybrid receptors and as a weak potentiator of ACh responses mediated by α4β2 receptors. This suggests that imidacloprid has complex effects upon these recombinant receptors, determined at least in part by the α subunit. PMID:9504393

  17. Mode of action of triflumezopyrim: A novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor.

    PubMed

    Cordova, Daniel; Benner, Eric A; Schroeder, Mark E; Holyoke, Caleb W; Zhang, Wenming; Pahutski, Thomas F; Leighty, Robert M; Vincent, Daniel R; Hamm, Jason C

    2016-07-01

    Triflumezopyrim, a newly commercialized molecule from DuPont Crop Protection, belongs to the novel class of mesoionic insecticides. This study characterizes the biochemical and physiological action of this novel insecticide. Using membranes from the aphid, Myzus persicae, triflumezopyrim was found to displace (3)H-imidacloprid with a Ki value of 43 nM with competitive binding results indicating that triflumezopyrim binds to the orthosteric site of the nicotinic acetylcholine receptor (nAChR). In voltage clamp studies using dissociated Periplaneta americana neurons, triflumezopyrim inhibits nAChR currents with an IC50 of 0.6 nM. Activation of nAChR currents was minimal and required concentrations ≥100 μM. Xenopus oocytes expressing chimeric nAChRs (Drosophila α2/chick β2) showed similar inhibitory effects from triflumezopyrim. In P. americana neurons, co-application experiments with acetylcholine reveal the inhibitory action of triflumezopyrim to be rapid and prolonged in nature. Such physiological action is distinct from other insecticides in IRAC Group 4 in which the toxicological mode of action is attributed to nAChR agonism. Mesoionic insecticides act via inhibition of the orthosteric binding site of the nAChR despite previous beliefs that such action would translate to poor insect control. Triflumezopyrim is the first commercialized insecticide from this class and provides outstanding control of hoppers, including the brown planthopper, Nilaparvata lugens, which is already displaying strong resistance to neonicotinoids such as imidacloprid. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Regulation of the protein-conducting channel by a bound ribosome

    PubMed Central

    Gumbart, James; Trabuco, Leonardo G.; Schreiner, Eduard; Villa, Elizabeth; Schulten, Klaus

    2009-01-01

    Summary During protein synthesis, it is often necessary for the ribosome to form a complex with a membrane-bound channel, the SecY/Sec61 complex, in order to translocate nascent proteins across a cellular membrane. Structural data on the ribosome-channel complex are currently limited to low-resolution cryo-electron microscopy maps, including one showing a bacterial ribosome bound to a monomeric SecY complex. Using that map along with available atomic-level models of the ribosome and SecY, we have determined, through molecular dynamics flexible fitting (MDFF), an atomic-resolution model of the ribosome-channel complex. We characterized computationally the sites of ribosome-SecY interaction within the complex and determined the effect of ribosome binding on the SecY channel. We also constructed a model of a ribosome in complex with a SecY dimer by adding a second copy of SecY to the MDFF-derived model. The study involved 2.7-million-atom simulations over altogether nearly 50 ns. PMID:19913480

  19. Aromaticity at the water-hydrocarbon core interface of the membrane

    PubMed Central

    Lizardi-Ortiz, José E.; Hyzinski-García, María C.; Fernández-Gerena, José L.; Osorio-Martínez, Karen M.; Velázquez-Rivera, Eric; Valle-Avilés, Félix L.; Lasalde-Dominicci, José A.

    2011-01-01

    Almost all lipid-exposed transmembrane domains of integral proteins contain aromatic residues flanking the hydrophobic segment of the domains. These residues generally reside close to the carbonyl region of the membrane, and several structural and functional roles have been associated to these residues. Although the roles and physicochemical reasons for aromatic preference have been extensively studied using model systems, few studies have been done in a native membrane system. To gain insight about the mechanistic implication for this aromatic preference, we selected position αF426 of the muscle-type nicotinic acetylcholine receptor (nAChR). αF426 is a lipid-exposed residue at the extracellular segment of the αM4 transmembrane domain and is highly conserved among different nAChR subunits and species. We used site-directed mutagenesis, α-Bungarotoxin-binding assay, and two-electrodes voltage clamp in Xenopus laevis oocytes to characterize mutations at position αF426, which impart different physicochemical properties like volume, polarity, hydrogen bonds, aromaticity and net electrical charge. All mutations except the aromatic residues resulted in a significant reduction of the nAChR cell-surface levels and the macroscopic currents to acetylcholine. These results suggest that position αF426 contributes to structural stability and open-close transitions of the nAChR. Finally, the present study also provides information about how intermolecular interactions at position α426 modulate open-close transitions of the nAChR. PMID:18836298

  20. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming human beta cell function

    PubMed Central

    Rodriguez-Diaz, Rayner; Dando, Robin; Jacques-Silva, M. Caroline; Fachado, Alberto; Molina, Judith; Abdulreda, Midhat; Ricordi, Camillo; Roper, Stephen D.; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    Acetylcholine is a neurotransmitter that plays a major role in the function of the insulin secreting pancreatic beta cell1,2. Parasympathetic innervation of the endocrine pancreas, the islets of Langerhans, has been shown to provide cholinergic input to the beta cell in several species1,3,4, but the role of autonomic innervation in human beta cell function is at present unclear. Here we show that, in contrast to mouse islets, cholinergic innervation of human islets is sparse. Instead, we find that the alpha cells of the human islet provide paracrine cholinergic input to surrounding endocrine cells. Human alpha cells express the vesicular acetylcholine transporter and release acetylcholine when stimulated with kainate or a lowering in glucose concentration. Acetylcholine secretion by alpha cells in turn sensitizes the beta cell response to increases in glucose concentration. Our results demonstrate that in human islets acetylcholine is a paracrine signal that primes the beta cell to respond optimally to subsequent increases in glucose concentration. We anticipate these results to revise models about neural input and cholinergic signaling in the endocrine pancreas. Cholinergic signaling within the islet represents a potential therapeutic target in diabetes5, highlighting the relevance of this advance to future drug development. PMID:21685896

  1. Retinal co-mediator acetylcholine evokes muscarinic inhibition of recurrent excitation in frog tectum column.

    PubMed

    Baginskas, Armantas; Kuras, Antanas

    2016-08-26

    Acetylcholine receptors contribute to the control of neuronal and neuronal network activity from insects to humans. We have investigated the action of acetylcholine receptors in the optic tectum of Rana temporaria (common frog). Our previous studies have demonstrated that acetylcholine activates presynaptic nicotinic receptors, when released into the frog optic tectum as a co-mediator during firing of a single retinal ganglion cell, and causes: a) potentiation of retinotectal synaptic transmission, and b) facilitation of transition of the tectum column to a higher level of activity. In the present study we have shown that endogenous acetylcholine also activates muscarinic receptors, leading to a delayed inhibition of recurrent excitatory synaptic transmission in the tectum column. The delay of muscarinic inhibition was evaluated to be of ∼80ms, with an extent of inhibition of ∼2 times. The inhibition of the recurrent excitation determines transition of the tectum column back to its resting state, giving a functional sense for the inhibition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Effect of Turbine Axial Nozzle-Wheel Clearance on Performance of Mark 25 Torpedo Power Plant

    NASA Technical Reports Server (NTRS)

    Hoyt, Jack W.; Kottas, Harry

    1948-01-01

    Investigations were made of the turbine from a Mark 25 torpedo to determine the performance of the unit with three different turbine nozzles at various axial nozzle-wheel clearances. Turbine efficiency with a reamed nondivergent nozzle that uses the axial clearance space for gas expansion was little affected by increasing the axial running clearance from 0.030 to 0.150 inch. Turbine efficiency with cast nozzles that expanded the gas inside the nozzle passage was found to be sensitive to increased axial nozzle-wheel clearance. A cast nozzle giving a turbine brake efficiency of 0.525 at an axial running clearance of 0.035 inch gave a brake efficiency of 0.475 when the clearance was increased to 0.095 inch for the same inlet-gas conditions and blade-jet speed ratio. If the basis for computing the isentropic power available to the turbine is the temperature inside the nozzle rather then the temperature in the inlet-gas pipe, an increase in turbine efficiency of about 0.01 is indicated.

  3. A computational model of the nicotinic acetylcholine binding site

    NASA Astrophysics Data System (ADS)

    Gálvez-ruano, Enrique; Iriepa-Canalda, Isabel; Morreale, Antonio; Lipkowitz, Kenny B.

    1999-01-01

    We have derived a model of the nicotinic acetylcholine binding site. This was accomplished by using three known agonists (acetylcholine, nicotine and epibatidine) as templates around which polypeptide side chains, found to be part of the receptor cavity from published molecular biology studies, are allowed to flow freely in molecular dynamics simulations and mold themselves around these templates. The resulting supramolecular complex should thus be a complement, both in terms of steric effects as well as electronic effects, to the agonists and it should be a good estimation of the true receptor cavity structure. The shapes of those minireceptor cavities equilibrated rapidly on the simulation time scale and their structural congruence is very high, implying that a satisfactory model of the nicotinic acetylcholine binding site has been achieved. The computational methodology was internally tested against two rigid and specific antagonists (dihydro-β-erytroidine and erysoidine), that are expected to give rise to a somewhat differently shaped binding site compared to that derived from the agonists. Using these antagonists as templates there were structural reorganizations of the initial receptor cavities leading to distinctly different cavities compared to agonists. This indicates that adequate times and temperatures were used in our computational protocols to achieve equilibrium structures for the agonists. Overall, both minireceptor geometries for agonists and antagonists are similar with the exception of one amino acid (ARG209).

  4. Biophysics of α-synuclein membrane interactions.

    PubMed

    Pfefferkorn, Candace M; Jiang, Zhiping; Lee, Jennifer C

    2012-02-01

    Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson's disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis. This article is part of a Special Issue entitled: Membrane protein structure and function. Copyright © 2011. Published by Elsevier B.V.

  5. Ceruleotoxin: identification in the venom of Bungarus fasciatus, molecular properties and importance of phospholipase A2 activity for neurotoxicity.

    PubMed

    Bon, C; Saliou, B

    1983-01-01

    Ceruleotoxin is a potent neurotoxin which was originally purified from a batch of venom labelled Bungarus caeruleus, from the Pasteur Institute. Since NOBLE et al. have shown that this batch differs in its protein composition from that of B. caeruleus provided by Miami Serpentarium, we decided to clarify this point by comparing the composition of venoms from various Bungarus species of several origins. Although individual variations exist between samples of the same species, the venom from B. multicinctus, B. caeruleus and B. fasciatus possess characteristic protein compositions which allowed us to identify the batch used to purify ceruleotoxin as a B. fasciatus venom. We identified and purified ceruleotoxin from each of the five samples of B. fasciatus venoms tested. We failed to find this neurotoxin in either B. multicinctus or B. caeruleus venoms. Purified ceruleotoxin is a slightly basic protein with an isoelectric point of 7.4 which possesses a significant phospholipase A2 activity (200 mumoles lecithin hydrolyzed per min per mg) and a high lethal potency (i.v. LD50 in mice 0.03-0.07 mg/kg). It is composed of two identical subunits of 13,000 mol. wt. which resemble pancreas and snake venom phospholipases in their amino acid composition. Like crotoxin, ceruleotoxin irreversibly blocks the postsynaptic response of Torpedo and Electrophorus electroplaques to cholinergic agonists without preventing the binding of acetylcholine to its receptor. By hydrolyzing critical lipids of the postsynaptic membrane, it stabilizes the acetylcholine receptor - ionophore assembly in a desensitized state.

  6. Regulation of Neuronal Muscarinic Acetylcholine Receptors

    DTIC Science & Technology

    1989-01-01

    N1E - 115 cells with pertussis toxin blocks mAChR-mediated inhibition of adenylate cyclase but not mAChR-mediated stimulation of PI turnover...determine the effects of electrical depolarization on muscarinic acetylcholine receptors (mAChR) in the cultured neuroblastoma cell line, N E- 115 ...evidence that Gi and Go may differentially regulate cellular signaling mechanisms, these results suggest that depolarization may regulate specific

  7. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than tomore » intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.« less

  8. Identification of the Muscarinic Acetylcholine Receptor Subtype Mediating Cholinergic Vasodilation in Murine Retinal Arterioles

    PubMed Central

    Sniatecki, Jan J.; Goloborodko, Evgeny; Steege, Andreas; Zavaritskaya, Olga; Vetter, Jan M.; Grus, Franz H.; Patzak, Andreas; Wess, Jürgen; Pfeiffer, Norbert

    2011-01-01

    Purpose. To identify the muscarinic acetylcholine receptor subtype that mediates cholinergic vasodilation in murine retinal arterioles. Methods. Muscarinic receptor gene expression was determined in murine retinal arterioles using real-time PCR. To assess the functional relevance of muscarinic receptors for mediating vascular responses, retinal vascular preparations from muscarinic receptor–deficient mice were studied in vitro. Changes in luminal arteriole diameter in response to muscarinic and nonmuscarinic vasoactive substances were measured by video microscopy. Results. Only mRNA for the M3 receptor was detected in retinal arterioles. Thus, M3 receptor–deficient mice (M3R−/−) and respective wild-type controls were used for functional studies. Acetylcholine concentration-dependently dilated retinal arterioles from wild-type mice. In contrast, vasodilation to acetylcholine was almost completely abolished in retinal arterioles from M3R−/− mice, whereas responses to the nitric oxide (NO) donor nitroprusside were retained. Carbachol, an acetylcholinesterase-resistant analog of acetylcholine, also evoked dilation in retinal arterioles from wild-type, but not from M3R−/−, mice. Vasodilation responses from wild-type mice to acetylcholine were negligible after incubation with the non–subtype-selective muscarinic receptor blocker atropine or the NO synthase inhibitor Nω-nitro-l-arginine methyl ester, and were even reversed to contraction after endothelial damage with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Conclusions. These findings provide evidence that endothelial M3 receptors mediate cholinergic vasodilation in murine retinal arterioles via activation of NO synthase. PMID:21873683

  9. Treatment of experimental myasthenia gravis with total lymphoid irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Silva, S.; Blum, J.E.; McIntosh, K.R.

    1988-07-01

    Total lymphoid irradiation (TLI) has been reported to be effective in the immunosuppressive treatment of certain human and experimental autoimmune disorders. We have investigated the effects of TLI in Lewis rats with experimental autoimmune myasthenia gravis (EAMG) produced by immunization with purified torpedo acetylcholine receptor (AChR). The radiation is given in 17 divided fractions of 200 rad each, and nonlymphoid tissues are protected by lead shielding. This technique suppresses the immune system, while minimizing side effects, and permits the repopulation of the immune system by the patient's own bone marrow cells. Our results show that TLI treatment completely prevented themore » primary antibody response to immunization with torpedo AChR, it rapidly abolished the ongoing antibody response in established EAMG, and it suppressed the secondary (anamnestic) response to a boost of AChR. No EAMG animals died during TLI treatment, compared with six control animals that died of EAMG. TLI produces powerful and prompt immunosuppression and may eventually prove useful in the treatment of refractory human myasthenia gravis.« less

  10. Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid.

    PubMed

    Ohara, Kazuaki; Muroya, Ayumu; Fukushima, Nobuhiro; Yazaki, Kazufumi

    2009-06-26

    The AS-PT (aromatic substrate prenyltransferase) family plays a critical role in the biosynthesis of important quinone compounds such as ubiquinone and plastoquinone, although biochemical characterizations of AS-PTs have rarely been carried out because most members are membrane-bound enzymes with multiple transmembrane alpha-helices. PPTs [PHB (p-hydroxybenzoic acid) prenyltransferases] are a large subfamily of AS-PTs involved in ubiquinone and naphthoquinone biosynthesis. LePGT1 [Lithospermum erythrorhizon PHB geranyltransferase] is the regulatory enzyme for the biosynthesis of shikonin, a naphthoquinone pigment, and was utilized in the present study as a representative of membrane-type AS-PTs to clarify the function of this enzyme family at the molecular level. Site-directed mutagenesis of LePGT1 with a yeast expression system indicated three out of six conserved aspartate residues to be critical to the enzymatic activity. A detailed kinetic analysis of mutant enzymes revealed the amino acid residues responsible for substrate binding were also identified. Contrary to ubiquinone biosynthetic PPTs, such as UBIA in Escherichia coli which accepts many prenyl substrates of different chain lengths, LePGT1 can utilize only geranyl diphosphate as its prenyl substrate. Thus the substrate specificity was analysed using chimeric enzymes derived from LePGT1 and UBIA. In vitro and in vivo analyses of the chimeras suggested that the determinant region for this specificity was within 130 amino acids of the N-terminal. A 3D (three-dimensional) molecular model of the substrate-binding site consistent with these biochemical findings was generated.

  11. Inhibition of neutrophil migration by aggregated immunoglobulin attached to micropore membranes.

    PubMed Central

    Kemp, A S; Brown, S

    1980-01-01

    The effect of substrate-bound immunoglobulin on neutrophil migration was examined. Immunoglobulin aggregates bound to micropore membranes inhibited the neutrophil response to a chemotactic stimulus. This inhibition was reversed by the presence of aggregates in suspension suggesting competition between substrate-bound and free aggregates for neutrophil surface binding sites. The immobilization of neutrophils by substrate-bound aggregated immunoglobulin suggests a mechanism for the accumulation of neutrophils at sites of immune complex deposition and tissue-bound antibodies in vivo. PMID:7380477

  12. Cell membrane-bound CD200 signals both via an extracellular domain and following nuclear translocation of a cytoplasmic fragment.

    PubMed

    Chen, Zhiqi; Kapus, Andras; Khatri, Ismat; Kos, Olha; Zhu, Fang; Gorczynski, Reginald M

    2018-06-01

    In previous studies we had reported that the immunosuppressive cell membrane bound molecule CD200 is released from the cell following cleavage by matrix metalloproteases, with the released soluble CD200 acting as an immunosuppressant following binding to, and signaling through, its cognate receptor CD200R expressed on target cells. We now show that although the intracellular cytoplasmic tail (CD200 C-tail ) of CD200 has no consensus sites for adapter molecules which might signal the CD200 + cell directly, cleavage of the CD200 C-tail from the membrane region of CD200 by a consensus γ-secretase, leads to nuclear translocation and DNA binding (identified by chromatin immunoprecipitation followed by sequencing, Chip-sequencing) of the CD200 C-tail . Subsequently there occurs an altered expression of a limited number of genes, many of which are transcription factors (TFs) known to be associated with regulation of cell proliferation. Altered expression of these TFs was also prominent following transfection of CD200 + B cell lines and fresh patient CLL cells with a vector construct containing the CD200 C-tail . Artificial transfection of non CD200 + Hek293 cells with this CD200 C-tail construct resulted in altered expression of most of these same genes. Introduction of a siRNA for one of these TFs, POTEA, reversed CD200 C-tail regulation of altered cell proliferation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Retigabine diminishes the effects of acetylcholine, adrenaline and adrenergic agonists on the spontaneous activity of guinea pig smooth muscle strips in vitro.

    PubMed

    Apostolova, Elisaveta; Zagorchev, Plamen; Kokova, Vesela; Peychev, Lyudmil

    2017-03-01

    The aim of this study is to evaluate the effect of retigabine on the smooth muscle response to acetylcholine, adrenaline, α-and β-adrenoceptor agonists. We studied the change in the spontaneous smooth muscle contraction of guinea pig gastric corpus strips before and after 20-min treatment with 2μM retigabine. We also evaluated the effect of retigabine on the smooth muscle response to 10μM acetylcholine, 1 and 10μM adrenaline, 1μM methoxamine, 0.1μM p-iodoclonidine and 10μM isoproterenol. We observed a significant reduction in the effects of all studied mediators and agonists when they were added to organ baths in the presence of retigabine. Retigabine diminished the effect of acetylcholine on the spontaneous smooth muscle activity. The effect was fully antagonized by XE-991 (Kv7 channel blocker), which supports our hypothesis about the role of KCNQ channels in the registered changes. The increase in the contraction force after adding of 1μM adrenaline, methoxamine, and 0.1μM p-iodoclonidine was also significantly smaller in presence of retigabine. However, comparing the effect of 10μM adrenaline on the contractility before and after treatment with retigabine, we observed increased contractility when retigabine was present in the organ baths. A possible explanation for the observed diminished effects of mediators and receptor agonists is that the effect of retigabine on smooth muscle contractility is complex. The membrane hyperpolarization, the interaction between Kv7 channels and adrenoceptors, and the influence on signaling pathways may contribute to the summary smooth muscle response. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Identification and Functional Characterization of a Novel Acetylcholine-binding Protein from the Marine Annelid Capitella teleta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormack, T.; Petrovich,; Mercier, K

    2010-01-01

    We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) {alpha} subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has beenmore » implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and {alpha}-bungarotoxin bind to ct-AChBP with high affinity, with KD values of 28.7 {micro}M, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K{sub D} = 163 {micro}M). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.« less

  15. Changes in Acetylcholine Extracellular Levels during Cognitive Processes

    ERIC Educational Resources Information Center

    Pepeu, Giancarlo; Giovannini, Maria Grazia

    2004-01-01

    Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular…

  16. Hyoscine butylbromide potently blocks human nicotinic acetylcholine receptors in SH-SY5Y cells.

    PubMed

    Weiser, Thomas; Just, Stefan

    2009-02-06

    Hyoscine butylbromide (HBB; tradenames: Buscopan/Buscapina is an antispasmodic drug for the treatment of abdominal pain associated with gastrointestinal cramping. As a hyoscine derivative, this compound competitively inhibits muscarinic acetylcholine (ACh) receptors on smooth muscle cells in the gastrointestinal tract. Preliminary investigations suggested that it might also inhibit nicotinic ACh receptors. This study investigated the effect of HBB on nicotinic ACh receptor-mediated membrane currents in SH-SY5Y cells. ACh and nicotine application-induced comparable membrane currents with EC(50) values of 25.9+/-0.6 and 40.1+/-0.4microM, respectively. When coapplied with 100microM ACh, HBB concentration-dependently suppressed currents with an IC(50) value of 0.19+/-0.04microM, and was approximately seven-times more potent than the ganglionic blocker, hexamethonium (IC(50)=1.3+/-0.3microM). Increasing the agonist concentration to 5mM did not affect the amount of block by HBB, which suggests a non-competitive mode of action. These functional in vitro data demonstrate for the first time that HBB blocks neuronal nicotinic ACh receptors in the same concentration range as it inhibits muscarinic ACh receptors. If one hypothesizes that HBB might also affect nicotinic receptors in autonomic neurons in vivo (e. g. in the enteric nervous system), this effect could contribute to its spasmolytic activity.

  17. Cell-secreted flavins bound to membrane cytochromes dictate electron transfer reactions to surfaces with diverse charge and pH.

    PubMed

    Okamoto, Akihiro; Kalathil, Shafeer; Deng, Xiao; Hashimoto, Kazuhito; Nakamura, Ryuhei; Nealson, Kenneth H

    2014-07-11

    The variety of solid surfaces to and from which microbes can deliver electrons by extracellular electron transport (EET) processes via outer-membrane c-type cytochromes (OM c-Cyts) expands the importance of microbial respiration in natural environments and industrial applications. Here, we demonstrate that the bifurcated EET pathway of OM c-Cyts sustains the diversity of the EET surface in Shewanella oneidensis MR-1 via specific binding with cell-secreted flavin mononucleotide (FMN) and riboflavin (RF). Microbial current production and whole-cell differential pulse voltammetry revealed that RF and FMN enhance EET as bound cofactors in a similar manner. Conversely, FMN and RF were clearly differentiated in the EET enhancement by gene-deletion of OM c-Cyts and the dependency of the electrode potential and pH. These results indicate that RF and FMN have specific binding sites in OM c-Cyts and highlight the potential roles of these flavin-cytochrome complexes in controlling the rate of electron transfer to surfaces with diverse potential and pH.

  18. Myristoylation Restricts Orientation of the GRASP Domain on Membranes and Promotes Membrane Tethering*

    PubMed Central

    Heinrich, Frank; Nanda, Hirsh; Goh, Haw Zan; Bachert, Collin; Lösche, Mathias; Linstedt, Adam D.

    2014-01-01

    The mammalian Golgi reassembly stacking protein (GRASP) proteins are Golgi-localized homotypic membrane tethers that organize Golgi stacks into a long, contiguous ribbon-like structure. It is unknown how GRASPs undergo trans pairing given that cis interactions between the proteins in the plane of the membrane are intrinsically favored. To test the hypothesis that myristoylation of the self-interacting GRASP domain restricts its orientation on the membrane to favor trans pairing, we established an in vitro assay that recapitulates GRASP-dependent membrane tethering and used neutron reflection under similar conditions to determine the orientation of the GRASP domain. In vivo, the membrane association of GRASP proteins is conferred by the simultaneous insertion of an N-terminal myristic acid and binding to a Golgi-associated binding partner. In our assay, the latter contact was replaced using a C-terminal hexa-His moiety, which bound to Ni2+-conjugated lipids incorporated into a substrate-supported bilayer lipid membrane. Nonmyristoylated protein lacked a fixed orientation on the membrane and inefficiently tethered liposomes. In contrast, myristoylated GRASP promoted tethering and exhibited a unique membrane complex. Thus, myristoylation restricts the membrane orientation of the GRASP domain favoring interactions in trans for membrane tethering. PMID:24505136

  19. Efficient DNP NMR of Membrane Proteins: Sample Preparation Protocols, Sensitivity, and Radical Location

    PubMed Central

    Liao, Shu Y.; Lee, Myungwoon; Wang, Tuo; Sergeyev, Ivan V.; Hong, Mei

    2016-01-01

    Although dynamic nuclear polarization (DNP) has dramatically enhanced solid-state NMR spectral sensitivities of many synthetic materials and some biological macromolecules, recent studies of membrane-protein DNP using exogenously doped paramagnetic radicals as polarizing agents have reported varied and sometimes surprisingly limited enhancement factors. This motivated us to carry out a systematic evaluation of sample preparation protocols for optimizing the sensitivity of DNP NMR spectra of membrane-bound peptides and proteins at cryogenic temperatures of ~110 K. We show that mixing the radical with the membrane by direct titration instead of centrifugation gives a significant boost to DNP enhancement. We quantify the relative sensitivity enhancement between AMUPol and TOTAPOL, two commonly used radicals, and between deuterated and protonated lipid membranes. AMUPol shows ~4 fold higher sensitivity enhancement than TOTAPOL, while deuterated lipid membrane does not give net higher sensitivity for the membrane peptides than protonated membrane. Overall, a ~100 fold enhancement between the microwave-on and microwave-off spectra can be achieved on lipid-rich membranes containing conformationally disordered peptides, and absolute sensitivity gains of 105–160 can be obtained between low-temperature DNP spectra and high-temperature non-DNP spectra. We also measured the paramagnetic relaxation enhancement of lipid signals by TOTAPOL and AMUPol, to determine the depths of these two radicals in the lipid bilayer. Our data indicate a bimodal distribution of both radicals, a surface-bound fraction and a membrane-bound fraction where the nitroxides lie at ~10 Å from the membrane surface. TOTAPOL appears to have a higher membrane-embedded fraction than AMUPol. These results should be useful for membrane-protein solid-state NMR studies under DNP conditions and provide insights into how biradicals interact with phospholipid membranes. PMID:26873390

  20. The synthesis of acetylcholine by plants.

    PubMed Central

    Smallman, B N; Maneckjee, A

    1981-01-01

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms. PMID:6796060

  1. The synthesis of acetylcholine by plants.

    PubMed

    Smallman, B N; Maneckjee, A

    1981-01-15

    Choline acetyltransferase was demonstrated in nettles (Urtica dioica), peas (Pisum sativum), spinach (Spinacia oleracea), sunflower (Helianthus annuus) and blue--green algae by using a Sepharose--CoASH affinity column. The column effected a 1500-fold purification of the enzyme from nettle homogenates and was required for demonstrating activity in the other higher plants. Demonstration of the enzyme in blue-green algae suggests that acetylcholine was a biochemical necessity in the earliest photosynthetic organisms.

  2. Dynamic Structure of Bombolitin II Bound to Lipid Bilayers as Revealed by Solid-state NMR and Molecular-Dynamics Simulation

    PubMed Central

    Toraya, Shuichi; Javkhlantugs, Namsrai; Mishima, Daisuke; Nishimura, Katsuyuki; Ueda, Kazuyoshi; Naito, Akira

    2010-01-01

    Bombolitin II (BLT2) is one of the hemolytic heptadecapeptides originally isolated from the venom of a bumblebee. Structure and orientation of BLT2 bound to 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) membranes were determined by solid-state 31P and 13C NMR spectroscopy. 31P NMR spectra showed that BLT2-DPPC membranes were disrupted into small particles below the gel-to-liquid crystalline phase transition temperature (Tc) and fused to form a magnetically oriented vesicle system where the membrane surface is parallel to the magnetic fields above the Tc. 13C NMR spectra of site-specifically 13C-labeled BLT2 at the carbonyl carbons were observed and the chemical shift anisotropies were analyzed to determine the dynamic structure of BLT2 bound to the magnetically oriented vesicle system. It was revealed that the membrane-bound BLT2 adopted an α-helical structure, rotating around the membrane normal with the tilt angle of the helical axis at 33°. Interatomic distances obtained from rotational-echo double-resonance experiments further showed that BLT2 adopted a straight α-helical structure. Molecular dynamics simulation performed in the BLT2-DPPC membrane system showed that the BLT2 formed a straight α-helix and that the C-terminus was inserted into the membrane. The α-helical axis is tilted 30° to the membrane normal, which is almost the same as the value obtained from solid-state NMR. These results suggest that the membrane disruption induced by BLT2 is attributed to insertion of BLT2 into the lipid bilayers. PMID:21081076

  3. Imaging synaptic vesicle recycling by staining and destaining vesicles with FM dyes.

    PubMed

    Hoopmann, Peer; Rizzoli, Silvio O; Betz, William J

    2012-01-01

    The synaptic vesicle is the essential organelle of the synapse. Many approaches for studying synaptic vesicle recycling have been devised, one of which, the styryl (FM) dye, is well suited for this purpose. FM dyes reversibly stain, but do not permeate, membranes; hence they can specifically label membrane-bound organelles. Their quantum yield is drastically higher when bound to membranes than when in aqueous solution. This protocol describes the imaging of synaptic vesicle recycling by staining and destaining vesicles with FM dyes. Nerve terminals are stimulated (electrically or by depolarization with high K(+)) in the presence of dye, their vesicles are then allowed to recycle, and finally dye is washed from the chamber. In neuromuscular junction (NMJ) preparations, movements of the muscle must be inhibited if imaging during stimulation is desired (e.g., by application of curare, a potent acetylcholine receptor inhibitor). The main characteristics of FM dyes are also reviewed here, as are recent FM dye monitoring techniques that have been used to investigate the kinetics of synaptic vesicle fusion.

  4. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  5. Rubredoxin-related Maturation Factor Guarantees Metal Cofactor Integrity during Aerobic Biosynthesis of Membrane-bound [NiFe] Hydrogenase*

    PubMed Central

    Fritsch, Johannes; Siebert, Elisabeth; Priebe, Jacqueline; Zebger, Ingo; Lendzian, Friedhelm; Teutloff, Christian; Friedrich, Bärbel; Lenz, Oliver

    2014-01-01

    The membrane-bound [NiFe] hydrogenase (MBH) supports growth of Ralstonia eutropha H16 with H2 as the sole energy source. The enzyme undergoes a complex biosynthesis process that proceeds during cell growth even at ambient O2 levels and involves 14 specific maturation proteins. One of these is a rubredoxin-like protein, which is essential for biosynthesis of active MBH at high oxygen concentrations but dispensable under microaerobic growth conditions. To obtain insights into the function of HoxR, we investigated the MBH protein purified from the cytoplasmic membrane of hoxR mutant cells. Compared with wild-type MBH, the mutant enzyme displayed severely decreased hydrogenase activity. Electron paramagnetic resonance and infrared spectroscopic analyses revealed features resembling those of O2-sensitive [NiFe] hydrogenases and/or oxidatively damaged protein. The catalytic center resided partially in an inactive Niu-A-like state, and the electron transfer chain consisting of three different Fe-S clusters showed marked alterations compared with wild-type enzyme. Purification of HoxR protein from its original host, R. eutropha, revealed only low protein amounts. Therefore, recombinant HoxR protein was isolated from Escherichia coli. Unlike common rubredoxins, the HoxR protein was colorless, rather unstable, and essentially metal-free. Conversion of the atypical iron-binding motif into a canonical one through genetic engineering led to a stable reddish rubredoxin. Remarkably, the modified HoxR protein did not support MBH-dependent growth at high O2. Analysis of MBH-associated protein complexes points toward a specific interaction of HoxR with the Fe-S cluster-bearing small subunit. This supports the previously made notion that HoxR avoids oxidative damage of the metal centers of the MBH, in particular the unprecedented Cys6[4Fe-3S] cluster. PMID:24448806

  6. Metrifonate, like acetylcholine, up-regulates neurotrophic activity of cultured rat astrocytes.

    PubMed

    Mele, Tina; Jurič, Damijana Mojca

    2014-08-01

    Metrifonate is an inhibitor of acetylcholinesterase (AChE). Several studies confirmed its positive effects on cognitive impairment in Alzheimer's disease but it was due to adverse events withdrawn from clinical trials. Based on the importance of astrocytes in physiological and pathological brain activities we investigated the impact of metrifonate and, for comparison, acetylcholine on intrinsic neurotrophic activity in these cells. Metabolic activity, intracellular adenosine 5'-triphosphate (ATP) levels and lactate dehydrogenase (LDH) release was measured to examine the impact of metrifonate on viability and integrity of cultured rat cortical astrocytes. The influence of metrifonate, acetylcholine and selective cholinergic ligands on nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) synthesis and secretion was determined by specific two-site enzyme immunoassays. Exposure of cultured astrocytes to metrifonate displayed no toxic effects on cell viability. Metrifonate and acetylcholine potently and transiently elevated NGF and BDNF, but not NT-3, protein levels and secretion with different intensity and time frame of their maximal response. Stimulatory effect on NGF was mimicked by selective nicotinic receptor agonist nicotine and completely blocked by nicotinic antagonist mecamylamine. The impact on BDNF synthesis was mimicked by muscarinic receptor agonist pilocarpine and abolished by selective muscarinic antagonist scopolamine. Metrifonate up-regulates astrocytic NGF and BDNF synthesis in the same manner as acetylcholine, their effect depends on different cholinergic pathways. These results suggest a trophic role of metrifonate, based on a well-known neurotrophic activity of NGF and BDNF in vivo. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Enzyme-Controlled Nanodevice for Acetylcholine-Triggered Cargo Delivery Based on Janus Au-Mesoporous Silica Nanoparticles.

    PubMed

    Llopis-Lorente, Antoni; Díez, Paula; de la Torre, Cristina; Sánchez, Alfredo; Sancenón, Félix; Aznar, Elena; Marcos, María D; Martínez-Ruíz, Paloma; Martínez-Máñez, Ramón; Villalonga, Reynaldo

    2017-03-28

    This work reports a new gated nanodevice for acetylcholine-triggered cargo delivery. We prepared and characterized Janus Au-mesoporous silica nanoparticles functionalized with acetylcholinesterase on the Au face and with supramolecular β-cyclodextrin:benzimidazole inclusion complexes as caps on the mesoporous silica face. The nanodevice is able to selectively deliver the cargo in the presence of acetylcholine via enzyme-mediated acetylcholine hydrolysis, locally lowering the pH and opening the supramolecular gate. Given the key role played by ACh and its relation with Parkinson's disease and other nervous system diseases, we believe that these findings could help design new therapeutic strategies. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    PubMed

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  9. Changes in Extracellular Striatal Acetylcholine and Brain Seizure Activity Following Acute Exposure to Nerve Against in Freely Moving Guinea Pigs

    DTIC Science & Technology

    2010-01-01

    Literature 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Changes in extracellular striatal acetylcholine and brain seizure activity following...Acetylcholine, acetylcholinesterase, choline, guinea pig, in vivo microdialysis, nerve agents, organophosphorus compounds, sarin, seizure activity ...RESEARCH ARTICLE Changes in extracellular striatal acetylcholine and brain seizure activity following acute exposure to nerve agents in freely

  10. Characterization of the activation of small GTPases by their GEFs on membranes using artificial membrane tethering.

    PubMed

    Peurois, François; Veyron, Simon; Ferrandez, Yann; Ladid, Ilham; Benabdi, Sarah; Zeghouf, Mahel; Peyroche, Gérald; Cherfils, Jacqueline

    2017-03-23

    Active, GTP-bound small GTPases need to be attached to membranes by post-translational lipid modifications in order to process and propagate information in cells. However, generating and manipulating lipidated GTPases has remained difficult, which has limited our quantitative understanding of their activation by guanine nucleotide exchange factors (GEFs) and their termination by GTPase-activating proteins. Here, we replaced the lipid modification by a histidine tag in 11 full-length, human small GTPases belonging to the Arf, Rho and Rab families, which allowed to tether them to nickel-lipid-containing membranes and characterize the kinetics of their activation by GEFs. Remarkably, this strategy uncovered large effects of membranes on the efficiency and/or specificity in all systems studied. Notably, it recapitulated the release of autoinhibition of Arf1, Arf3, Arf4, Arf5 and Arf6 GTPases by membranes and revealed that all isoforms are efficiently activated by two GEFs with different regulatory regimes, ARNO and Brag2. It demonstrated that membranes stimulate the GEF activity of Trio toward RhoG by ∼30 fold and Rac1 by ∼10 fold, and uncovered a previously unknown broader specificity toward RhoA and Cdc42 that was undetectable in solution. Finally, it demonstrated that the exceptional affinity of the bacterial RabGEF DrrA for the phosphoinositide PI(4)P delimits the activation of Rab1 to the immediate vicinity of the membrane-bound GEF. Our study thus validates the histidine-tag strategy as a potent and simple means to mimic small GTPase lipidation, which opens a variety of applications to uncover regulations brought about by membranes. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Fallen fontanelle: culture-bound or cross-cultural?

    PubMed

    Kay, M A

    1993-04-01

    Rather than bound to one culture, fallen fontanelle has been labeled as an illness or recognized as a symptom through time and space. The condition may be called siriasus, sitibundum, fontanellae collapsus, el apostema cálido del cerebro, Blatfallen, Blattschiessen, entzündung des Gehirns und der Gehirnhäute der Kleinen Kinder, coup de soleil, sorte de maladie causée par l'inflammation des membranes du cerveau, head-mould-shot, mollera caída, desmollerado, gual, split skull, sutt, nhova, kubabula, chipande, phogwana and dehydration. Defining features of this condition as well as prevention and treatment have corresponded to the specific cultural setting and ethnographic present. Fallen fontanelle (or fontanel) is "a culturally interpreted symptom rather than culture-bound" (Low 1985). The methodological perspective is an ethnohistorical recounting of change in the meaning of this symptom.

  12. ExPPNing how acetylcholine improves gait in Parkinson's disease: An Editorial Highlight for 'Deletion of the Vesicular Acetylcholine Transporter from Pedunculopontine/laterodorsal tegmental neurons modifies gait'.

    PubMed

    Falkenburger, Björn

    2017-03-01

    Read the highlighted article 'Deletion of the Vesicular Acetylcholine Transporter from Pedunculopontine/laterodorsal tegmental neurons modifies gait' on page 787. © 2017 International Society for Neurochemistry.

  13. H2 conversion in the presence of O2 as performed by the membrane-bound [NiFe]-hydrogenase of Ralstonia eutropha.

    PubMed

    Lenz, Oliver; Ludwig, Marcus; Schubert, Torsten; Bürstel, Ingmar; Ganskow, Stefanie; Goris, Tobias; Schwarze, Alexander; Friedrich, Bärbel

    2010-04-26

    [NiFe]-hydrogenases catalyze the oxidation of H(2) to protons and electrons. This reversible reaction is based on a complex interplay of metal cofactors including the Ni-Fe active site and several [Fe-S] clusters. H(2) catalysis of most [NiFe]-hydrogenases is sensitive to dioxygen. However, some bacteria contain hydrogenases that activate H(2) even in the presence of O(2). There is now compelling evidence that O(2) affects hydrogenase on three levels: 1) H(2) catalysis, 2) hydrogenase maturation, and 3) H(2)-mediated signal transduction. Herein, we summarize the genetic, biochemical, electrochemical, and spectroscopic properties related to the O(2) tolerance of hydrogenases resident in the facultative chemolithoautotroph Ralstonia eutropha H16. A focus is given to the membrane-bound [NiFe]-hydogenase, which currently represents the best-characterized member of O(2)-tolerant hydrogenases.

  14. Topical Non-Iontophoretic Application of Acetylcholine and Nitroglycerin via a Translucent Patch: A New Means for Assessing Microvascular Reactivity

    PubMed Central

    Schonberger, Robert B.; Worden, William S.; Shahmohammadi, Kaveh; Menn, Kirsten; Silverman, Tyler J.; Stout, Robert G.; Shelley, Kirk H.; Silverman, David G.

    2007-01-01

    Objective: Assessments of endothelial cell function with acetylcholine have typically used systemic, regional intra-arterial, or iontophoretic delivery of drug. Each of these techniques induces systemic and/or local changes that compromise their safety or effectiveness. Using translucent drug preparations applied under laser Doppler flowmetry (LDF) probes, we tested whether local vasodilation can be induced with non-iontophoretic transdermal delivery of acetylcholine and how such dilation would compare to the dilation achieved with topical nitroglycerin in healthy volunteers. Methods: Ten subjects without known vascular disease were recruited for LDF monitoring at sites of drug application for this preliminary investigation. Topical acetylcholine chloride, nitroglycerin, and placebo were applied via translucent patches to the forehead directly below LDF probes. Results: LDF readings increased by 406 percent (245 percent to 566 percent) and 36 percent (26 percent to 46 percent), respectively, at the acetylcholine and placebo sites (p = .005 by Wilcoxon Signed Rank Test (WSRT) for acetylcholine vs. placebo); and they increased by 365 percent (179 percent to 550 percent) at the nitroglycerin site (p = .005 by WSRT for nitroglycerin vs. placebo; p = .6 vs. acetylcholine). Conclusion: Transdermal delivery of acetylcholine can induce significant local vasodilatory responses comparable to those achieved with nitroglycerin without requiring iontophoresis. The means of transdermal delivery and monitoring described herein may constitute a new minimally invasive way to interrogate the microvasculature and thereby assess the microcirculatory changes induced by various disorders and therapeutic interventions. PMID:17876370

  15. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration.

    PubMed

    Hainke, Susanne; Wildmann, Johannes; Del Rey, Adriana

    2015-11-01

    The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Nicotinic acetylcholine receptor properties are modulated by surrounding lipids: an in vivo study.

    PubMed

    Morales, Andrés; de Juan, Emilio; Fernández-Carvajal, Asia M; Martinez-Pinna, José; Poveda, Juan Antonio; Encinar, José A; Ivorra, Isabel; González-Ros, José Manuel

    2006-01-01

    In vitro studies carried out on liposomes of defined composition showed that nicotinic acetylcholine receptors (nAChRs) are fully functional when they are reconstituted in a heterogeneous lipid matrix, such as that provided by crude soybean (asolectin [R-Aso]) lipids. However, when they are reconstituted in plain phosphatidylcholine (R-PC) lipids, their functional activity is completely lost (Fong and McNamee, 1986). This kind of study also pointed out that phosphatidic acid (PA) and cholesterol (Chol) play an important role in preserving the ability of this protein to exhibit an optimal channel activity (Fong and McNamee, 1986). Furthermore, it has been shown recently that nAChR, itself, induces the formation of specific PA-rich lipid domains (Poveda et al., 2002). Because Xenopus oocytes incorporate functionally into their plasma membrane nAChRs after intracellular injection of liposomes bearing this protein (Morales et al., 1995), the aim of this work was to determine the effect of the reconstitution lipid matrix on the functional properties of the transplanted nAChRs.

  17. Regulation of synaptic acetylcholine concentrations by acetylcholine transport in rat striatal cholinergic transmission.

    PubMed

    Muramatsu, Ikunobu; Uwada, Junsuke; Masuoka, Takayoshi; Yoshiki, Hatsumi; Sada, Kiyonao; Lee, Kung-Shing; Nishio, Matomo; Ishibashi, Takaharu; Taniguchi, Takanobu

    2017-10-01

    In addition to hydrolysis by acetylcholine esterase (AChE), acetylcholine (ACh) is also directly taken up into brain tissues. In this study, we examined whether the uptake of ACh is involved in the regulation of synaptic ACh concentrations. Superfusion experiments with rat striatal segments pre-incubated with [ 3 H]choline were performed using an ultra-mini superfusion vessel, which was developed to minimize superfusate retention within the vessel. Hemicholinium-3 (HC-3) at concentrations less than 1 μM, selectively inhibited the uptake of [ 3 H]choline by the high affinity-choline transporter 1 and had no effect on basal and electrically evoked [ 3 H]efflux in superfusion experiments. In contrast, HC-3 at higher concentrations, as well as tetraethylammonium (>10 μM), which inhibited the uptake of both [ 3 H]choline and [ 3 H]ACh, increased basal [ 3 H]overflow and potentiated electrically evoked [ 3 H]efflux. These effects of HC-3 and tetraethylammonium were also observed under conditions where tissue AChE was irreversibly inactivated by diisopropylfluorophosphate. Specifically, the potentiation of evoked [ 3 H]efflux was significantly higher in AChE-inactivated preparations and was attenuated by atropine. On the other hand, striatal segments pre-incubated with [ 3 H]ACh failed to increase [ 3 H]overflow in response to electrical stimulation. These results show that synaptic ACh concentrations are significantly regulated by the postsynaptic uptake of ACh, as well as by AChE hydrolysis and modulation of ACh release mediated through presynaptic muscarinic ACh receptors. In addition, these data suggest that the recycling of ACh-derived choline may be minor in cholinergic terminals. This study reveals a new mechanism of cholinergic transmission in the central nervous system. © 2017 International Society for Neurochemistry.

  18. IRAP inhibition using HFI419 prevents moderate to severe acetylcholine mediated vasoconstriction in a rabbit model.

    PubMed

    El-Hawli, Aisha; Qaradakhi, Tawar; Hayes, Alan; Rybalka, Emma; Smith, Renee; Caprnda, Martin; Opatrilova, Radka; Gazdikova, Katarina; Benckova, Maria; Kruzliak, Peter; Zulli, Anthony

    2017-02-01

    Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Use of Monoclonal Antibodies to Study the Structural Basis of the Function of Nicotinic Acetylcholine Receptors on Electric Organ and Muscle and to Determine the Structure of Nicotinic Acetylcholine Receptors on Neurons

    DTIC Science & Technology

    1989-09-30

    polyethylenimine . The filters were washed with 3x4 ml of the same buffer and bound radioactivity was determined by scintillation counting. Nonspecific binding was...then autoradiographed for 6 hours on preflashed8 Kodak XAR film . Samples in 5..pl aliquots were applied to freshly glow- discharged carbon support...quench buffer containing 0.5% Triton X-100. The membrane was washed with buffer and autoradiographed orn preflashed Kodak XAR5 film . Geysen Epitope

  20. [Intern(euron)al affairs : The role of specific neocortical interneuron classes in the interaction between acetylcholine and GABAergic anesthetics].

    PubMed

    Liebig, L; Grasshoff, C; Hentschke, H

    2016-08-01

    Acetylcholine is a neuromodulator which is released throughout the central nervous system and plays an essential role in consciousness and cognitive processes including attention and learning. Due to its 'activating' effect on the neuronal and behavioral level its interaction with anesthetics has long been of interest to anesthesiologists. It is widely held that a reduction of the release of acetylcholine by general anesthetics constitutes part of the anesthetic effect. This notion is backed by numerous human and animal studies, but is also in seeming contradiction to findings that acetylcholine activates specific classes of inhibitory neurons: if acetylcholine excites elements within the neuronal network responsible for the release of the inhibitory neurotransmitter γ-aminobutyric acid (GABA), its withdrawal should diminish, not enhance, the effect of anesthetics.Focusing on cortical circuits, we present an overview of recent advances in cellular neurophysiology, particularly the interactions between inhibitory neuron classes, which provide insights on the interaction between acetylcholine and GABA.

  1. Central nervous system promotes thermotolerance via FoxO/DAF-16 activation through octopamine and acetylcholine signaling in Caenorhabditis elegans.

    PubMed

    Furuhashi, Tsubasa; Sakamoto, Kazuichi

    2016-03-25

    The autonomic nervous system (ANS) responds to many kinds of stressors to maintain homeostasis. Although the ANS is believed to regulate stress tolerance, the exact mechanism underlying this is not well understood. To understand this, we focused on longevity genes, which have functions such as lifespan extension and promotion of stress tolerance. To understand the relationship between ANS and longevity genes, we analyzed stress tolerance of Caenorhabditis elegans treated with octopamine, which has an affinity to noradrenaline in insects, and acetylcholine. Octopamine and acetylcholine did not show resistance against H2O2, but the neurotransmitters promoted thermotolerance via DAF-16. However, chronic treatment with octopamine and acetylcholine did not extend the lifespan, although DAF-16 plays an important role in longevity. In conclusion, our results show that octopamine and acetylcholine activate DAF-16 in response to stress, but chronic induction of octopamine and acetylcholine is not beneficial for increasing longevity. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Species differences in the negative inotropic effect of acetylcholine and soman in rat, guinea pig, and rabbit hearts. (Reannouncement with new availability information)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, D.M.; Thomsen, R.H.; Baskin, S.I.

    1991-12-31

    Acetylcholine reduced atrial contractions by 82.5% in guinea pig, 50.8% in rat, and 41.5% in rabbit. 2. The EC50, values for the negative inotropic effect of acetylcholine were 3.3 x 10(-7) M in rat and guinea pig atria and 4.1 x 10(-6) M in rabbit atria. 3. There was no correlation between the species differences in the negative inotropic effect of acetylcholine in atria and the density or affinity of acetylcholinesterase or muscarinic receptors. 4. Inhibition of atrial acetylcholinesterase with soman reduced the EC50 of acetylcholine three-fold in all species, but did not change the maximal inotropic effect of acetylcholine.more » 5. Species differences in the negative inotropic effect of acetylcholine may be caused by differences in the coupling between myocardial muscarinic receptors and the ion channels that mediate negative inotropy. Acetylcholine, cardiovascular response, species variation negative inotropic response.« less

  3. Polyamide membranes with nanoscale Turing structures for water purification

    NASA Astrophysics Data System (ADS)

    Tan, Zhe; Chen, Shengfu; Peng, Xinsheng; Zhang, Lin; Gao, Congjie

    2018-05-01

    The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.

  4. Membrane hydraulic permeability changes during cooling of mammalian cells.

    PubMed

    Akhoondi, Maryam; Oldenhof, Harriëtte; Stoll, Christoph; Sieme, Harald; Wolkers, Willem F

    2011-03-01

    In order to predict optimal cooling rates for cryopreservation of cells, the cell-specific membrane hydraulic permeability and corresponding activation energy for water transport need to be experimentally determined. These parameters should preferably be determined at subzero temperatures in the presence of ice. There is, however, a lack of methods to study membrane properties of cells in the presence of ice. We have used Fourier transform infrared spectroscopy to study freezing-induced membrane dehydration of mouse embryonic fibroblast (3T3) cells and derived the subzero membrane hydraulic permeability and the activation energy for water transport from these data. Coulter counter measurements were used to determine the suprazero membrane hydraulic permeability parameters from cellular volume changes of cells exposed to osmotic stress. The activation energy for water transport in the ice phase is about three fold greater compared to that at suprazero temperatures. The membrane hydraulic permeability at 0 °C that was extrapolated from suprazero measurements is about five fold greater compared to that extrapolated from subzero measurements. This difference is likely due to a freezing-induced dehydration of the bound water around the phospholipid head groups. Using Fourier transform infrared spectroscopy, two distinct water transport processes, that of free and membrane bound water, can be identified during freezing with distinct activation energies. Dimethylsulfoxide, a widely used cryoprotective agent, did not prevent freezing-induced membrane dehydration but decreased the activation energy for water transport. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. A constitutively active G protein-coupled acetylcholine receptor regulates motility of larval Schistosoma mansoni.

    PubMed

    MacDonald, Kevin; Kimber, Michael J; Day, Tim A; Ribeiro, Paula

    2015-07-01

    The neuromuscular system of helminths controls a variety of essential biological processes and therefore represents a good source of novel drug targets. The neuroactive substance, acetylcholine controls movement of Schistosoma mansoni but the mode of action is poorly understood. Here, we present first evidence of a functional G protein-coupled acetylcholine receptor in S. mansoni, which we have named SmGAR. A bioinformatics analysis indicated that SmGAR belongs to a clade of invertebrate GAR-like receptors and is related to vertebrate muscarinic acetylcholine receptors. Functional expression studies in yeast showed that SmGAR is constitutively active but can be further activated by acetylcholine and, to a lesser extent, the cholinergic agonist, carbachol. Anti-cholinergic drugs, atropine and promethazine, were found to have inverse agonist activity towards SmGAR, causing a significant decrease in the receptor's basal activity. An RNAi phenotypic assay revealed that suppression of SmGAR activity in early-stage larval schistosomulae leads to a drastic reduction in larval motility. In sum, our results provide the first molecular evidence that cholinergic GAR-like receptors are present in schistosomes and are required for proper motor control in the larvae. The results further identify SmGAR as a possible candidate for antiparasitic drug targeting. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Acetylcholine Attenuates Hydrogen Peroxide-Induced Intracellular Calcium Dyshomeostasis Through Both Muscarinic and Nicotinic Receptors in Cardiomyocytes.

    PubMed

    Palee, Siripong; Apaijai, Nattayaporn; Shinlapawittayatorn, Krekwit; Chattipakorn, Siriporn C; Chattipakorn, Nipon

    2016-01-01

    Oxidative stress induced intracellular Ca2+ overload plays an important role in the pathophysiology of several heart diseases. Acetylcholine (ACh) has been shown to suppress reactive oxygen species generation during oxidative stress. However, there is little information regarding the effects of ACh on the intracellular Ca2+ regulation in the presence of oxidative stress. Therefore, we investigated the effects of ACh applied before or after hydrogen peroxide (H2O2) treatment on the intracellular Ca2+ regulation in isolated cardiomyocytes. Single ventricular myocytes were isolated from the male Wistar rats for the intracellular Ca2+ transient study by a fluorimetric ratio technique. H2O2 significantly decreased both of intracellular Ca2+ transient amplitude and decay rate. ACh applied before, but not after, H2O2 treatment attenuated the reduction of intracellular Ca2+ transient amplitude and decay rate. Both atropine (a muscarinic acetylcholine receptor blocker) and mecamylamine (a nicotinic acetylcholine receptor blocker) significantly decreased the protective effects of acetylcholine on the intracellular Ca2+ regulation. Moreover, the combination of atropine and mecamylamine completely abolished the protective effects of acetylcholine on intracellular Ca2+ transient amplitude and decay rate. ACh pretreatment attenuates H2O2-induced intracellular Ca2+ dyshomeostasis through both muscarinic and nicotinic receptors. © 2016 The Author(s) Published by S. Karger AG, Basel.

  7. Influence of fermentation liquid from waste activated sludge on anoxic/oxic- membrane bioreactor performance: Nitrogen removal, membrane fouling and microbial community.

    PubMed

    Han, Xiaomeng; Zhou, Zhen; Mei, Xiaojie; Ma, Yan; Xie, Zhenfang

    2018-02-01

    In order to investigate effects of waste activated sludge (WAS) fermentation liquid on anoxic/oxic- membrane bioreactor (A/O-MBR), two A/O-MBRs with and without WAS fermentation liquid addition were operated in parallel. Results show that addition of WAS fermentation liquid clearly improved denitrification efficiency without deterioration of nitrification, while severe membrane fouling occurred. WAS fermentation liquid resulted in an elevated production of proteins and humic acids in bound extracellular polymeric substance (EPS) and release of organic matter with high MW fractions in soluble microbial product (SMP) and loosely bound EPS (LB-EPS). Measurement of deposition rate and fluid structure confirmed increased fouling potential of SMP and LB-EPS. γ-Proteobacteria and Ferruginibacter, which can secrete and export EPS, were also found to be abundant in the MBR with WAS fermentation liquid. It is implied that when WAS fermentation liquid was applied, some operational steps to control membrane fouling should be employed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Detection of Proteins on Blot Membranes

    PubMed Central

    Goldman, Aaron; Harper, Sandra; Speicher, David W.

    2017-01-01

    Staining of blot membranes enables the visualization of bound proteins. Proteins are usually transferred to blot membranes by electroblotting, by direct spotting of protein solutions, or by contact blots. Staining allows the efficiency of transfer to the membrane to be monitored. This unit describes protocols for staining proteins after electroblotting from polyacrylamide gels to blot membranes such as polyvinylidene difluoride (PVDF), nitrocellulose, or nylon membranes. The same methods can be used if proteins are directly spotted, either manually or using robotics. Protocols are included for seven general protein stains (amido black, Coomassie blue, Ponceau S, colloidal gold, colloidal silver, India ink, and MemCode) and three fluorescent protein stains (fluorescamine, IAEDANS, and SYPRO Ruby). Also included is an in-depth discussion of the different blot membrane types and the compatibility of different protein stains with downstream applications, such as immunoblotting or N-terminal Edman sequencing. PMID:27801518

  9. Location and ion-binding of membrane-associated valinomycin, a proton nuclear magnetic resonance study.

    PubMed

    Meers, P; Feigenson, G W

    1988-03-03

    Valinomycin, incorporated in small unilamellar vesicles of perdeuterated dimyristoylphosphatidylcholine, reveals several well-resolved 1H-NMR resonances. These resonances were used to examine the location, orientation and ion-binding of membrane-bound valinomycin. The order of affinity of membrane-bound valinomycin for cations is Rb+ greater than K+ greater than Cs+ greater than Ba2+, and binding is sensitive to surface change. The exchange between bound and free forms is fast on the NMR time scale. The intrinsic binding constants, extrapolated to zero anion concentration, are similar to those determined in aqueous solution. Rb+ and K+ show 1:1 binding to valinomycin, whereas the stoichiometry of Cs+ and Ba2+ is not certain. Paramagnetic chemical shift reagents and nitroxide spin label relaxation probes were used to study the location and orientation of valinomycin in the membrane. Despite relatively fast exchange of bound cations, the time average location of the cation-free form of valinomycin is deep within the bilayer under the conditions of these experiments. Upon complexation to K+, valinomycin moves closer to the interfacial region.

  10. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    PubMed

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  11. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (-)-[(18)F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain.

    PubMed

    Hillmer, A T; Esterlis, I; Gallezot, J D; Bois, F; Zheng, M Q; Nabulsi, N; Lin, S F; Papke, R L; Huang, Y; Sabri, O; Carson, R E; Cosgrove, K P

    2016-11-01

    The positron emission tomography (PET) radioligand (-)-[(18)F]flubatine is specific to α4β2(⁎) nicotinic acetylcholine receptors (nAChRs) and has promise for future investigation of the acetylcholine system in neuropathologies such as Alzheimer's disease, schizophrenia, and substance use disorders. The two goals of this work were to develop a simplified method for α4β2(⁎) nAChR quantification with bolus plus constant infusion (B/I) (-)-[(18)F]flubatine administration, and to assess the radioligand's sensitivity to acetylcholine fluctuations in humans. Healthy human subjects were imaged following either bolus injection (n=8) or B/I (n=4) administration of (-)-[(18)F]flubatine. The metabolite-corrected input function in arterial blood was measured. Free-fraction corrected distribution volumes (VT/fP) were estimated with modeling and graphical analysis techniques. Next, sensitivity to acetylcholine was assessed in two ways: 1. A bolus injection paradigm with two scans (n=6), baseline (scan 1) and physostigmine challenge (scan 2; 1.5mg over 60min beginning 5min prior to radiotracer injection); 2. A single scan B/I paradigm (n=7) lasting up to 240min with 1.5mg physostigmine administered over 60min beginning at 125min of radiotracer infusion. Changes in VT/fP were measured. Baseline VT/fP values were 33.8±3.3mL/cm(3) in thalamus, 12.9±1.6mL/cm(3) in cerebellum, and ranged from 9.8 to 12.5mL/cm(3) in other gray matter regions. The B/I paradigm with equilibrium analysis at 120min yielded comparable VT/fP values with compartment modeling analysis of bolus data in extrathalamic gray matter regions (regional means <4% different). Changes in VT/fP following physostigmine administration were small and most pronounced in cortical regions, ranging from 0.8 to 4.6% in the two-scan paradigm and 2.8 to 6.5% with the B/I paradigm. These results demonstrate the use of B/I administration for accurate quantification of (-)-[(18)F]flubatine VT/fP in 120min, and suggest

  12. Acetylcholine-modulated plasticity in reward-driven navigation: a computational study.

    PubMed

    Zannone, Sara; Brzosko, Zuzanna; Paulsen, Ole; Clopath, Claudia

    2018-06-21

    Neuromodulation plays a fundamental role in the acquisition of new behaviours. In previous experimental work, we showed that acetylcholine biases hippocampal synaptic plasticity towards depression, and the subsequent application of dopamine can retroactively convert depression into potentiation. We also demonstrated that incorporating this sequentially neuromodulated Spike-Timing-Dependent Plasticity (STDP) rule in a network model of navigation yields effective learning of changing reward locations. Here, we employ computational modelling to further characterize the effects of cholinergic depression on behaviour. We find that acetylcholine, by allowing learning from negative outcomes, enhances exploration over the action space. We show that this results in a variety of effects, depending on the structure of the model, the environment and the task. Interestingly, sequentially neuromodulated STDP also yields flexible learning, surpassing the performance of other reward-modulated plasticity rules.

  13. Theoretical investigation of interaction between the set of ligands and α7 nicotinic acetylcholine receptor

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Prytkova, T. R.; Shmygin, D. S.

    2016-03-01

    Nicotinic acetylcholine receptors (nAChRs) are neuron receptor proteins that provide a transmission of nerve impulse through the synapses. They are composed of a pentametric assembly of five homologous subunits (5 α7 subunits for α7nAChR, for example), oriented around the central pore. These receptors might be found in the chemical synapses of central and peripheral nervous system, and also in the neuromuscular synapses. Transmembrane domain of the one of such receptors constitutes ion channel. The conductive properties of ion channel strongly depend on the receptor conformation changes in the response of binding with some molecule, f.e. acetylcholine. Investigation of interaction between ligands and acetylcholine receptor is important for drug design. In this work we investigate theoretically the interaction between the set of different ligands (such as vanillin, thymoquinone, etc.) and the nicotinic acetylcholine receptor (primarily with subunit of the α7nAChR) by different methods and packages (AutodockVina, GROMACS, KVAZAR, HARLEM, VMD). We calculate interaction energy between different ligands in the subunit using molecular dynamics. On the base of obtained calculation results and using molecular docking we found an optimal location of different ligands in the subunit.

  14. Formation of membrane-bound inclusions and their associations with cytoplasmic channels in early prophase male meiocytes of Althaea rosea (L.) Cavan.

    PubMed

    Luo, Xin Juan; Liu, Xu Hao; Wang, Chong Ying; Wang, Xin Yu

    2008-04-01

    To characterize the cytoplasmic structure reorganization during plant meiosis, the male meiocytes of Althaea rosea (L.) Cavan were examined under the combination of light and electron microscopy. Light microscopic observation of the toluidine blue-stained thick resin sections of young anthers revealed that the meiocytes of sporogenous cell stage were extremely voluminous and variable in shape and division plane. The cell walls (CWs) between some meiocytes were discontinuous at one or several site(s). These discontinuous portions varied between 0.2 and 3.0 microm in length. In addition, it was found that some meiocytes were able to produce protuberances that extended into another meiocyte. When transversally sectioned, the protuberance extending to another cell looked like a small cell lying in another cell. Transmission electron microscopy (TEM) showed that there were many long flat ER cisternae that were actively wrapping around a portion of cytoplasm in the male meiocytes at the sporogenous cell stage. During pre-meiosis interphase and early prophase I, a number of huge (0.5-1.0 microm diameter) spherical membrane-bound inclusions (MBIs) lined by single or double layer(s) of membrane were formed, each membrane actually representing one tightly appressed endoplasmic reticulum (ER) cisterna. The MBIs contained many granular, lamellar and fibrillar structures, and even small MBIs. Moreover, it was found that the MBIs could associate with the cytoplasmic channels (CCs) on CWs to release their contents into the cytoplasm of the opposite cell or directly extend from one cell to another through the CC. Taking all the data together, it is suggested that association of the MBIs and other organelles with CCs possibly functions in eliminating the non-identity of cytoplasm of the male meiocytes caused probably by the random asymmetric division observed at sporogenous cell phase, so as to ensure production of a large number of identical functional male gametes required for

  15. [Architecture of receptor-operated ionic channels of biological membranes].

    PubMed

    Bregestovski, P D

    2011-01-01

    Ion channels of biological membranes are the key proteins, which provide bioelectric functioning of living systems. These proteins are homo- or heterooligomers assembled from several identical or different subunits. Understanding the architectural organization and functioning of ion channels has been significantly extended due to resolving the crystal structure of several types of voltage-gated and receptor-operated channels. This review summarizes the information obtained from crystal structures of potassium, nicotinic acetylcholine receptor, P2X, and other ligand-gated ion channels. Despite the differences in the function, topology, ionic selectivity, and the subunit stoichiometry, a high similarity in the principles of organization of these macromolecular complexes has been revealed.

  16. Functional Characterization of a Novel Class of Morantel-Sensitive Acetylcholine Receptors in Nematodes

    PubMed Central

    Courtot, Elise; Charvet, Claude L.; Beech, Robin N.; Harmache, Abdallah; Wolstenholme, Adrian J.; Holden-Dye, Lindy; O’Connor, Vincent; Peineau, Nicolas; Woods, Debra J.; Neveu, Cedric

    2015-01-01

    Acetylcholine receptors are pentameric ligand–gated channels involved in excitatory neuro-transmission in both vertebrates and invertebrates. In nematodes, they represent major targets for cholinergic agonist or antagonist anthelmintic drugs. Despite the large diversity of acetylcholine-receptor subunit genes present in nematodes, only a few receptor subtypes have been characterized so far. Interestingly, parasitic nematodes affecting human or animal health possess two closely related members of this gene family, acr-26 and acr-27 that are essentially absent in free-living or plant parasitic species. Using the pathogenic parasitic nematode of ruminants, Haemonchus contortus, as a model, we found that Hco-ACR-26 and Hco-ACR-27 are co-expressed in body muscle cells. We demonstrated that co-expression of Hco-ACR-26 and Hco-ACR-27 in Xenopus laevis oocytes led to the functional expression of an acetylcholine-receptor highly sensitive to the anthelmintics morantel and pyrantel. Importantly we also reported that ACR-26 and ACR-27, from the distantly related parasitic nematode of horses, Parascaris equorum, also formed a functional acetylcholine-receptor highly sensitive to these two drugs. In Caenorhabditis elegans, a free-living model nematode, we demonstrated that heterologous expression of the H. contortus and P. equorum receptors drastically increased its sensitivity to morantel and pyrantel, mirroring the pharmacological properties observed in Xenopus oocytes. Our results are the first to describe significant molecular determinants of a novel class of nematode body wall muscle AChR. PMID:26625142

  17. Uptake of /sup 3/H-choline and synthesis of /sup 3/H-acetylcholine by human penile corpus cavernosum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanco, R.; Saenz de Tejada, I.; Azadzoi, K.

    1986-03-05

    The neuroeffectors which relax penile smooth muscle and lead to erection are unknown; physiological studies of human corpus cavernosum, in vitro, have suggested a significant role of cholinergic neurotransmission. To further characterize the importance of cholinergic nerves, biopsies of human corpus cavernosum were obtained at the time of penile prosthesis implantation. Tissues were incubated in /sup 3/H-choline (10/sup -5/M, 80 Ci/mmol) in oxygenated physiological salt solution at 37/sup 0/C, pH 7.4 for 1 hour. Radiolabelled compounds were extracted with perchloric acid (0.4 M) and acetylcholine and choline were separated by HPLC; /sup 14/C-acetylcholine was used as internal standard. /sup 3/H-cholinemore » was accumulated by the tissues (20 +/- 1.9 fmol/mg), and /sup 3/H-acetylcholine was synthesized (4.0 +/- 1.1 fmol/mg). In control experiments, heating of the tissue blocked synthesis of /sup 3/H-acetylcholine. Inhibition of high affinity choline transport by hemicholinium-3 (10/sup -5/M) diminished tissue accumulation of /sup 3/H-choline and significantly reduced the synthesis of /sup 3/H-acetylcholine (0.5 +/ 0.2 fmol/mg, p < 0.05). These results provide direct evidence of neuronal accumulation of choline and enzymatic conversion to acetylcholine in human corpus cavernosum. Taken together with the physiological studies, it can be concluded that cholinergic neurotransmission in human corpus cavernosum plays a role in penile erection.« less

  18. Elemental maps in human allantochorial placental vessels cells: 1. High K + and acetylcholine effects

    NASA Astrophysics Data System (ADS)

    Michelet-Habchi, C.; Barberet, Ph.; Dutta, R. K.; Guiet-Bara, A.; Bara, M.; Moretto, Ph.

    2003-09-01

    Regulation of vascular tone in the fetal extracorporeal circulation most likely depends on circulating hormones, local paracrine mechanisms and changes in membrane potential of vascular smooth muscle cells (VSMCs) and of vascular endothelial cells (VECs). The membrane potential is a function of the physiological activities of ionic channels (particularly, K + and Ca 2+ channels in these cells). These channels regulate the ionic distribution into these cells. Micro-particle induced X-ray emission (PIXE) analysis was applied to determine the ionic composition of VSMC and of VEC in the placental human allantochorial vessels in a physiological survival medium (Hanks' solution) modified by the addition of acetylcholine (ACh: which opens the calcium-sensitive K + channels, K Ca) and of high concentration of K + (which blocks the voltage-sensitive K + channels, K df). In VSMC (media layer), the addition of ACh induced no modification of the Na, K, Cl, P, S, Mg and Ca concentrations and high K + medium increased significantly the Cl and K concentrations, the other ion concentrations remaining constant. In endothelium (VEC), ACh addition implicated a significant increase of Na and K concentration, and high K + medium, a significant increase in Cl and K concentration. These results indicated the importance of K df, K Ca and K ATP channels in the regulation of K + intracellular distribution in VSMC and VEC and the possible intervention of a Na-K-2Cl cotransport and corroborated the previous electrophysiological data.

  19. Effect of oxotremorine on resting membrane potential and cell volume in skeletal muscle fibers in rats after in vivo blockade of NO-synthase.

    PubMed

    Khairova, R A; Malomuzh, A I; Naumenko, N V; Urazaev, A Kh

    2003-02-01

    Denervation of rat phrenic muscle or block of NO-synthase in vivo increased the cross-section area of muscle fibers and decreased membrane resting potential. Oxotremorine prevented the development of denervation-induced or denervation-like (i.e. induced by NO-synthase blockade) membrane depolarization and increase of the cross-sectional area of muscle fibers. Pirenzepine abolished the effects of oxotremorine. It was concluded that non-quantal acetylcholine can be involved in the regulation of skeletal muscle fiber volume via activation of M1 muscarinic receptors followed by NO synthesis.

  20. Characterization of a major 31-kilodalton peptidoglycan-bound protein of Legionella pneumophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, C.A.; Hoffman, P.S.

    1990-05-01

    A 31-kilodalton (kDa) protein was solubilized from the peptidoglycan (PG) fraction of Legionella pneumophila after treatment with either N-acetylmuramidase from the fungus Chalaropsis sp. or with mutanolysin from Streptomyces globisporus. The protein exhibited a ladderlike banding pattern by autoradiography when radiolabeled ((35S)cysteine or (35S)methionine) PG material was extensively treated with hen lysozyme. The banding patterns ranging between 31 and 45 kDa and between 55 and 60 kDa resolved as a single 31-kDa protein when the material was subsequently treated with N-acetylmuramidase. Analysis of the purified 31-kDa protein for diaminopimelic acid by gas chromatography revealed 1 mol of diaminopimelic acid permore » mol of protein. When outer membrane PG material containing the major outer membrane porin protein was treated with N-acetylmuramidase or mutanolysin, both the 28.5-kDa major outer membrane protein and the 31-kDa protein were solubilized from the PG material under reducing conditions. In the absence of 2-mercaptoethanol, a high-molecular-mass complex (100 kDa) was resolved. The results of this study indicate that a 31-kDa PG-bound protein is a major component of the cell wall of L. pneumophila whose function may be to anchor the major outer membrane protein to PG. Finally, a survey of other Legionella species and other serogroups of L. pneumophila suggested that PG-bound proteins may be a common feature of this genus.« less

  1. Sigma receptor ligand N,N'-di-(ortho-tolyl)guanidine inhibits release of acetylcholine in the guinea pig ileum.

    PubMed

    Cambell, B G; Keana, J F; Weber, E

    1991-11-26

    The inhibition of stimulated contractions of the guinea pig ileum longitudinal muscle/myenteric plexus preparation by sigma receptor ligands has been previously described. In this study, the stimulated release of [3H]acetylcholine from cholinergic nerve terminals in this same preparation was monitored in the presence and absence of sigma receptor ligands. N,N'-Di-(orthotolyl)guanidine (DTG) and other compounds selective for the sigma receptor inhibited stimulated [3H]acetylcholine release. These results suggest that their inhibition of stimulated contractions in this preparation was mediated by inhibition of acetylcholine release.

  2. Homologous kappa-neurotoxins exhibit residue-specific interactions with the alpha 3 subunit of the nicotinic acetylcholine receptor: a comparison of the structural requirements for kappa-bungarotoxin and kappa-flavitoxin binding.

    PubMed

    McLane, K E; Weaver, W R; Lei, S; Chiappinelli, V A; Conti-Tronconi, B M

    1993-07-13

    kappa-Flavotoxin (kappa-FTX), a snake neurotoxin that is a selective antagonist of certain neuronal nicotinic acetylcholine receptors (AChRs), has recently been isolated and characterized [Grant, G. A., Frazier, M. W., & Chiappinelli, V. A. (1988) Biochemistry 27, 1532-1537]. Like the related snake toxin kappa-bungarotoxin (kappa-BTX), kappa-FTX binds with high affinity to alpha 3 subtypes of neuronal AChRs, even though there are distinct sequence differences between the two toxins. To further characterize the sequence regions of the neuronal AChR alpha 3 subunit involved in formation of the binding site for this family of kappa-neurotoxins, we investigated kappa-FTX binding to overlapping synthetic peptides screening the alpha 3 subunit sequence. A sequence region forming a "prototope" for kappa-FTX was identified within residues alpha 3 (51-70), confirming the suggestions of previous studies on the binding of kappa-BTX to the alpha 3 subunit [McLane, K. E., Tang, F., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 1537-1544] and alpha-bungarotoxin to the Torpedo AChR alpha subunit [Conti-Tronconi, B. M., Tang, F., Diethelm, B. M., Spencer, S. R., Reinhardt-Maelicke, S., & Maelicke, A. (1990) Biochemistry 29, 6221-6230] that this sequence region is involved in formation of a cholinergic site. Single residue substituted analogues, where each residue of the sequence alpha 3 (51-70) was sequentially replaced by a glycine, were used to identify the amino acid side chains involved in the interaction of this prototope with kappa-FTX.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Detection of Proteins on Blot Membranes.

    PubMed

    Goldman, Aaron; Harper, Sandra; Speicher, David W

    2016-11-01

    Staining of blot membranes enables the visualization of bound proteins. Proteins are usually transferred to blot membranes by electroblotting, by direct spotting of protein solutions, or by contact blots. Staining allows the efficiency of transfer to the membrane to be monitored. This unit describes protocols for staining proteins after electroblotting from polyacrylamide gels to blot membranes such as polyvinylidene difluoride (PVDF), nitrocellulose, or nylon membranes. The same methods can be used if proteins are directly spotted, either manually or using robotics. Protocols are included for seven general protein stains (amido black, Coomassie blue, Ponceau S, colloidal gold, colloidal silver, India ink, and MemCode) and three fluorescent protein stains (fluorescamine, IAEDANS, and SYPRO Ruby). Also included is an in-depth discussion of the different blot membrane types and the compatibility of different protein stains with downstream applications, such as immunoblotting or N-terminal Edman sequencing. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  4. Evolution and development of model membranes for physicochemical and functional studies of the membrane lateral heterogeneity.

    PubMed

    Morigaki, Kenichi; Tanimoto, Yasushi

    2018-03-14

    One of the main questions in the membrane biology is the functional roles of membrane heterogeneity and molecular localization. Although segregation and local enrichment of protein/lipid components (rafts) have been extensively studied, the presence and functions of such membrane domains still remain elusive. Along with biochemical, cell observation, and simulation studies, model membranes are emerging as an important tool for understanding the biological membrane, providing quantitative information on the physicochemical properties of membrane proteins and lipids. Segregation of fluid lipid bilayer into liquid-ordered (Lo) and liquid-disordered (Ld) phases has been studied as a simplified model of raft in model membranes, including giant unilamellar vesicles (GUVs), giant plasma membrane vesicles (GPMVs), and supported lipid bilayers (SLB). Partition coefficients of membrane proteins between Lo and Ld phases were measured to gauze their affinities to lipid rafts (raftophilicity). One important development in model membrane is patterned SLB based on the microfabrication technology. Patterned Lo/Ld phases have been applied to study the partition and function of membrane-bound molecules. Quantitative information of individual molecular species attained by model membranes is critical for elucidating the molecular functions in the complex web of molecular interactions. The present review gives a short account of the model membranes developed for studying the lateral heterogeneity, especially focusing on patterned model membranes on solid substrates. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Binding of N-methylscopolamine to the extracellular domain of muscarinic acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Jakubík, Jan; Randáková, Alena; Zimčík, Pavel; El-Fakahany, Esam E.; Doležal, Vladimír

    2017-01-01

    Interaction of orthosteric ligands with extracellular domain was described at several aminergic G protein-coupled receptors, including muscarinic acetylcholine receptors. The orthosteric antagonists quinuclidinyl benzilate (QNB) and N-methylscopolamine (NMS) bind to the binding pocket of the muscarinic acetylcholine receptor formed by transmembrane α-helices. We show that high concentrations of either QNB or NMS slow down dissociation of their radiolabeled species from all five subtypes of muscarinic acetylcholine receptors, suggesting allosteric binding. The affinity of NMS at the allosteric site is in the micromolar range for all receptor subtypes. Using molecular modelling of the M2 receptor we found that E172 and E175 in the second extracellular loop and N419 in the third extracellular loop are involved in allosteric binding of NMS. Mutation of these amino acids to alanine decreased affinity of NMS for the allosteric binding site confirming results of molecular modelling. The allosteric binding site of NMS overlaps with the binding site of some allosteric, ectopic and bitopic ligands. Understanding of interactions of NMS at the allosteric binding site is essential for correct analysis of binding and action of these ligands.

  6. Imaging of cerebral α4β2* nicotinic acetylcholine receptors with (−)-[18F]Flubatine PET: Implementation of bolus plus constant infusion and sensitivity to acetylcholine in human brain☆

    PubMed Central

    Hillmer, A.T.; Esterlis, I.; Gallezot, J.D.; Bois, F.; Zheng, M.Q.; Nabulsi, N.; Lin, S.F.; Papke, R.L.; Huang, Y.; Sabri, O.; Carson, R.E.; Cosgrove, K.P.

    2016-01-01

    The positron emission tomography (PET) radioligand (−)-[18F]flubatine is specific to α4β2∗ nicotinic acetylcholine receptors (nAChRs) and has promise for future investigation of the acetylcholine system in neuropathologies such as Alzheimer's disease, schizophrenia, and substance use disorders. The two goals of this work were to develop a simplified method for α4β2∗ nAChR quantification with bolus plus constant infusion (B/I) (−)-[18F]flubatine administration, and to assess the radioligand's sensitivity to acetylcholine fluctuations in humans. Healthy human subjects were imaged following either bolus injection (n = 8) or B/I (n = 4) administration of (−)-[18F]flubatine. The metabolite-corrected input function in arterial blood was measured. Free-fraction corrected distribution volumes (VT/fP) were estimated with modeling and graphical analysis techniques. Next, sensitivity to acetylcholine was assessed in two ways: 1. A bolus injection paradigm with two scans (n = 6), baseline (scan 1) and physostigmine challenge (scan 2; 1.5 mg over 60 min beginning 5 min prior to radiotracer injection); 2. A single scan B/I paradigm (n = 7) lasting up to 240 min with 1.5 mg physostigmine administered over 60 min beginning at 125 min of radiotracer infusion. Changes in VT/fP were measured. Baseline VT/fP values were 33.8 ± 3.3 mL/cm3 in thalamus, 12.9 ± 1.6 mL/cm3 in cerebellum, and ranged from 9.8 to 12.5 mL/cm3 in other gray matter regions. The B/I paradigm with equilibrium analysis at 120 min yielded comparable VT/fP values with compartment modeling analysis of bolus data in extrathalamic gray matter regions (regional means <4% different). Changes in VT/fP following physostigmine administration were small and most pronounced in cortical regions, ranging from 0.8 to 4.6% in the two-scan paradigm and 2.8 to 6.5% with the B/I paradigm. These results demonstrate the use of B/I administration for accurate quantification of (−)-[18F]flubatine VT/fP in 120 min, and

  7. Antigenic Structure of the Human Muscle Nicotinic Acetylcholine Receptor Main Immunogenic Region

    PubMed Central

    Luo, Jie; Lindstrom, Jon

    2009-01-01

    The main immunogenic region on the α1 subunits of muscle nicotinic acetylcholine receptors provokes half or more of the autoantibodies in myasthenia gravis and its animal model. Many of these autoantibodies depend on the native conformation of the receptor for their ability to bind with high affinity. We mapped this region and explained the conformation-dependence of its epitopes by making chimeras in which sequences of human muscle α1 subunits were replaced in human neuronal α7 subunits or Aplysia acetylcholine binding protein. These chimeras also revealed that the main immunogenic region can play a major role in promoting conformational maturation, and, consequently, assembly of receptor subunits. PMID:19705087

  8. Modulation of TNF Release by Choline Requires α7 Subunit Nicotinic Acetylcholine Receptor-Mediated Signaling

    PubMed Central

    Parrish, William R; Rosas-Ballina, Mauricio; Gallowitsch-Puerta, Margot; Ochani, Mahendar; Ochani, Kanta; Yang, Li-Hong; Hudson, LaQueta; Lin, Xinchun; Patel, Nirav; Johnson, Sarah M; Chavan, Sangeeta; Goldstein, Richard S; Czura, Christopher J; Miller, Edmund J; Al-Abed, Yousef; Tracey, Kevin J; Pavlov, Valentin A

    2008-01-01

    The α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR) is an essential component in the vagus nerve-based cholinergic anti-inflammatory pathway that regulates the levels of TNF, high mobility group box 1 (HMGB1), and other cytokines during inflammation. Choline is an essential nutrient, a cell membrane constituent, a precursor in the biosynthesis of acetylcholine, and a selective natural α7nAChR agonist. Here, we studied the anti-inflammatory potential of choline in murine endotoxemia and sepsis, and the role of the α7nAChR in mediating the suppressive effect of choline on TNF release. Choline (0.1–50 mM) dose-dependently suppressed TNF release from endotoxin-activated RAW macrophage-like cells, and this effect was associated with significant inhibition of NF-κB activation. Choline (50 mg/kg, intraperitoneally [i.p.]) treatment prior to endotoxin administration in mice significantly reduced systemic TNF levels. In contrast to its TNF suppressive effect in wild type mice, choline (50 mg/kg, i.p.) failed to inhibit systemic TNF levels in α7nAChR knockout mice during endotoxemia. Choline also failed to suppress TNF release from endotoxin-activated peritoneal macrophages isolated from α7nAChR knockout mice. Choline treatment prior to endotoxin resulted in a significantly improved survival rate as compared with saline-treated endotoxemic controls. Choline also suppressed HMGB1 release in vitro and in vivo, and choline treatment initiated 24 h after cecal ligation and puncture (CLP)-induced polymicrobial sepsis significantly improved survival in mice. In addition, choline suppressed TNF release from endotoxin-activated human whole blood and macrophages. Collectively, these data characterize the anti-inflammatory efficacy of choline and demonstrate that the modulation of TNF release by choline requires α7nAChR-mediated signaling. PMID:18584048

  9. Spontaneous vesicle formation at lipid bilayer membranes.

    PubMed

    Edwards, D A; Schneck, F; Zhang, I; Davis, A M; Chen, H; Langer, R

    1996-09-01

    Unilamellar vesicles are observed to form spontaneously at planar lipid bilayers agitated by exothermic chemical reactions. The membrane-binding reaction between biotin and streptavidin, two strong transmembrane neutralization reactions, and a weak neutralization reaction involving an "antacid" buffer, all lead to spontaneous vesicle formation. This formation is most dramatic when a viscosity differential exists between the two phases bounding the membrane, in which case vesicles appear exclusively in the more viscous phase. A hydrodynamic analysis explains the phenomenon in terms of a membrane flow driven by liberated reaction energy, leading to vesicle formation. These results suggest that energy liberated by intra- and extracellular chemical reactions near or at cell and internal organelle membranes can play an important role in vesicle formation, membrane agitation, or enhanced transmembrane mass transfer.

  10. Membrane bending: the power of protein imbalance.

    PubMed

    Derganc, Jure; Antonny, Bruno; Copič, Alenka

    2013-11-01

    Many cellular processes require membrane deformation, which is driven by specialized protein machinery and can often be recapitulated using pure lipid bilayers. However, biological membranes contain a large amount of embedded proteins. Recent research suggests that membrane-bound proteins with asymmetric distribution of mass across the bilayer can influence membrane bending in a nonspecific manner due to molecular crowding. This mechanism is physical in nature and arises from collisions between such 'mushroom-shaped' proteins. It can either facilitate or impede the action of protein coats, for example COPII, during vesicle budding. We describe the physics of how molecular crowding can influence membrane bending and discuss the implications for other cellular processes, such as sorting of glycosylphosphatidylinositol-anchored proteins (GPI-APs) and production of intraluminal vesicles. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Rapamycin mitigates erythrocyte membrane transport functions and oxidative stress during aging in rats.

    PubMed

    Singh, Abhishek Kumar; Singh, Sandeep; Garg, Geetika; Rizvi, Syed Ibrahim

    2018-02-01

    Erythrocyte membrane is a suitable model to study various metabolic and physiological functions as it undergoes variety of biochemical changes during aging. An age-dependent modulatory effect of rapamycin on erythrocyte membrane functions is completely unknown. Therefore, the present study was undertaken to investigate the effect of rapamycin on age-dependent impaired activities of transporters/exchangers, altered levels of redox biomarkers, viz. protein carbonyl (PC), lipid hydroperoxides (LHs), total thiol (-SH), sialic acid (SA) and intracellular calcium ion [Ca 2+ ]i, and osmotic fragility of erythrocyte membrane. A significant reduction in membrane-bound activities of Na + /K + -ATPase (NKA) and Ca 2+ -ATPase (PMCA), and levels of -SH and SA was observed along with a simultaneous induction in Na + /H + exchanger (NHE) activity and levels of [Ca 2+ ]i, PC, LH and osmotic fragility in old-aged rats. Rapamycin was found to be a promising age-delaying drug that significantly reversed the aging-induced impaired activities of membrane-bound ATPases and altered levels of redox biomarkers.

  12. MEMBRANE IMMUNOGLOBULINS OF B LYMPHOCYTES

    PubMed Central

    Fu, S. M.; Kunkel, H. G.

    1974-01-01

    Hemagglutination and fluorescent antibody studies have provided strong evidence for the unavailability or absence of specific antigenic sites on membrane-bound IgM which are present in serum and intracellular IgM. Antisera specific for different parts of the molecule indicated that a portion but not all of the Fc was involved. Absorption experiments with normal and leukemic viable B lymphocytes failed to remove a population of Fc antibodies found in IgM-specific antisera. Similar findings were made for IgD, the other major membrane immunoglobulin of human peripheral blood B cells. Various interpretations of these observations are discussed. The most likely possibility appears that the C-terminal portion of the heavy chains of the immunoglobulin molecule is buried in the membrane. PMID:4139226

  13. Evaluation of the sensitivity of the novel α4β2* nicotinic acetylcholine receptor PET radioligand 18F-(-)-NCFHEB to increases in synaptic acetylcholine levels in rhesus monkeys.

    PubMed

    Gallezot, Jean-Dominique; Esterlis, Irina; Bois, Frederic; Zheng, Ming-Qiang; Lin, Shu-Fei; Kloczynski, Tracy; Krystal, John H; Huang, Yiyun; Sabri, Osama; Carson, Richard E; Cosgrove, Kelly P

    2014-11-01

    18F-(-)-NCFHEB (also known as 18F-(-)-Flubatine) is a new radioligand to image α4β2* nicotinic acetylcholine receptors in vivo with positron emission tomography (PET), with faster kinetics than previous radioligands such as 18F-2-F-A85380. The goal of this study was to assess the sensitivity of 18F-(-)-NCFHEB-PET to increases in synaptic acetylcholine concentration induced by acetylcholinesterase inhibitors. Two rhesus monkeys were scanned four times each on a Focus 220 scanner: first at baseline, then during two bolus plus infusions of physostigmine (0.06-0.28 mg/kg), and finally following a bolus injection of donepezil (0.25 mg/kg). The arterial input function and the plasma free fraction fP were measured. 18F-(-)-NCFHEB volume of distribution VT was estimated using the multilinear analysis MA1 and then normalized by plasma free fraction fP . 18F-(-)-NCFHEB fP was 0.89±0.04. At baseline, 18F-(-)-NCFHEB VT /fP ranged from 7.9±1.3 mL plasma/cm3 tissue in the cerebellum to 34.3±8.4 mL plasma/cm3 tissue in the thalamus. Physostigmine induced a dose-dependent reduction of 18F-(-)-NCFHEB VT /fP of 34±9% in the putamen, 32±8% in the thalamus, 25±8% in the cortex, and 23±10% in the hippocampus. With donepezil, 18F-(-)-NCFHEB VT /fP was reduced by 24±2%, 14+3% and 14±5%, 10±6% in the same regions. 18F-(-)-NCFHEB can be used to detect changes in synaptic acetylcholine concentration and is a promising tracer to study acetylcholine dynamics with shorter scan durations than previous radioligands. © 2014 Wiley Periodicals, Inc.

  14. Membrane binding of human immunodeficiency virus type 1 matrix protein in vivo supports a conformational myristyl switch mechanism.

    PubMed Central

    Spearman, P; Horton, R; Ratner, L; Kuli-Zade, I

    1997-01-01

    The interaction of the human immunodeficiency virus (HIV) Gag protein with the plasma membrane of a cell is a critical event in the assembly of HIV particles. The matrix protein region (MA) of HIV type 1 (HIV-1) Pr55Gag has previously been demonstrated to confer membrane-binding properties on the precursor polyprotein. Both the myristic acid moiety and additional determinants within MA are essential for plasma membrane binding and subsequent particle formation. In this study, we demonstrated the myristylation-dependent membrane interaction of MA in an in vivo membrane-binding assay. When expressed within mammalian cells, MA was found both in association with cellular membranes and in a membrane-free form. In contrast, the intact precursor Pr55Gag molecule analyzed in an identical manner was found almost exclusively bound to membranes. Both membrane-bound and membrane-free forms of MA were myristylated and phosphorylated. Differential membrane binding was not due to the formation of multimers, as dimeric and trimeric forms of MA were also found in both membrane-bound and membrane-free fractions. To define the requirements for membrane binding of MA, we analyzed the membrane binding of a series of MA deletion mutants. Surprisingly, deletions within alpha-helical regions forming the globular head of MA led to a dramatic increase in overall membrane binding. The stability of the MA-membrane interaction was not affected by these deletions, and no deletion eliminated membrane binding of the molecule. These results establish that myristic acid is a primary determinant of the stability of the Gag protein-membrane interaction and provide support for the hypothesis that a significant proportion of HIV-1 MA molecules may adopt a conformation in which myristic acid is hidden and unavailable for membrane interaction. PMID:9261380

  15. Studies of Water Diffusion on Single-Supported Bilayer Lipid Membranes by Quasielastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Wang, S.-K.; Taub, H.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Hansen, F. Y.

    2010-03-01

    Bilayer lipid membranes supported on a solid surface are attractive model systems for understanding the structure and dynamics of more complex biological membranes that form the outer boundary of living cells. We have recently demonstrated the feasibility of using quasielastic neutron scattering to study on a ˜1 ns time scale the diffusion of water bound to single-supported bilayer lipid membranes. Two different membrane samples characterized by AFM were investigated: protonated DMPC + D2O and tail-deuterated DMPC + H2O. Both fully hydrated membranes were deposited onto SiO2-coated Si(100) substrates. Measurements of elastic neutron intensity as a function of temperature on the High Flux Backscattering Spectrometer at NIST reveal features in the diffusive motion of water that have not been observed previously using multilayer membrane stacks. On slow cooling, the elastic intensity shows sharp step-like increases in the temperature range 265 to 272 K that we tentatively interpret as successive mobile-to-immobile transitions of water bound to the membrane.

  16. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    PubMed Central

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-01-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm. PMID:23947891

  17. Anthrax toxin-induced rupture of artificial lipid bilayer membranes

    NASA Astrophysics Data System (ADS)

    Nablo, Brian J.; Panchal, Rekha G.; Bavari, Sina; Nguyen, Tam L.; Gussio, Rick; Ribot, Wil; Friedlander, Art; Chabot, Donald; Reiner, Joseph E.; Robertson, Joseph W. F.; Balijepalli, Arvind; Halverson, Kelly M.; Kasianowicz, John J.

    2013-08-01

    We demonstrate experimentally that anthrax toxin complexes rupture artificial lipid bilayer membranes when isolated from the blood of infected animals. When the solution pH is temporally acidified to mimic that process in endosomes, recombinant anthrax toxin forms an irreversibly bound complex, which also destabilizes membranes. The results suggest an alternative mechanism for the translocation of anthrax toxin into the cytoplasm.

  18. A mirror code for protein-cholesterol interactions in the two leaflets of biological membranes

    NASA Astrophysics Data System (ADS)

    Fantini, Jacques; di Scala, Coralie; Evans, Luke S.; Williamson, Philip T. F.; Barrantes, Francisco J.

    2016-02-01

    Cholesterol controls the activity of a wide range of membrane receptors through specific interactions and identifying cholesterol recognition motifs is therefore critical for understanding signaling receptor function. The membrane-spanning domains of the paradigm neurotransmitter receptor for acetylcholine (AChR) display a series of cholesterol consensus domains (referred to as “CARC”). Here we use a combination of molecular modeling, lipid monolayer/mutational approaches and NMR spectroscopy to study the binding of cholesterol to a synthetic CARC peptide. The CARC-cholesterol interaction is of high affinity, lipid-specific, concentration-dependent, and sensitive to single-point mutations. The CARC motif is generally located in the outer membrane leaflet and its reverse sequence CRAC in the inner one. Their simultaneous presence within the same transmembrane domain obeys a “mirror code” controlling protein-cholesterol interactions in the outer and inner membrane leaflets. Deciphering this code enabled us to elaborate guidelines for the detection of cholesterol-binding motifs in any membrane protein. Several representative examples of neurotransmitter receptors and ABC transporters with the dual CARC/CRAC motifs are presented. The biological significance and potential clinical applications of the mirror code are discussed.

  19. Influence of water and membrane microstructure on the transport properties of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Siu, Ana Rosa

    Proton transport in proton exchange membranes (PEMs) depends on interaction between water and acid groups covalently bound to the polymer. Although the presence of water is important in maintaining the PEM's functions, a thorough understanding of this topic is still lacking. The objective of this work is to provide a better understanding of how the nature water, confined to ionic domains of the polymer, influences the membrane's ability to transport protons, methanol and water. Understanding this topic will facilitate development of new materials with favorable transport properties for fuel cells use. Five classes of polymer membranes were used in this work: polyacrylonitrile-graft-poly(styrenesulfonic) acid (PAN-g-macPSSA); poly(vinylidene difluoride) irradiation-graft-poly(styrenesulfonic) acid (PVDF-g-PSSA); poly(ethylenetetrafluoroethylene) irradiation-graft-poly(styrenesulfonic) acid (ETFE-gPSSA); PVDF-g-PSSA with hydroxyethylmethacrylate (HEMA); and perfluorosulfonic acid membrane (Nafion). The nature of water within the polymers (freezable versus non-freezable states) was measured by systematically freezing samples, and observing the temperature at which water freezes and the amount of heat released in the process. Freezing water-swollen membranes resulted in a 4-fold decrease in the proton conductivity of the PEM. Activation energies of proton transport before and after freezing were ˜ 0.15 eV and 0.5 eV, consistent with proton transport through liquid water and bound water, respectively. Reducing the content of water in membrane samples decreased the amount of freezable and non-freezable water. Calorimetric measurements of membranes in various degrees of hydration showed that water molecules became non-freezable when lambda, (water molecules per sulfonic acid group) was less than ˜14. Proton conduction through membranes containing only non-freezable water was demonstrated to be feasible. Diffusion experiments showed that the permeability of methanol

  20. Interaction of arginine oligomer with model membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, Dandan; Guoming, Li; Gao, Li

    2007-08-10

    Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions,more » negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.« less

  1. Nicotinic acetylcholine receptors in porcine hypophyseal intermediate lobe cells.

    PubMed Central

    Zhang, Z W; Feltz, P

    1990-01-01

    1. Acetylcholine (ACh) was found to depolarize isolated porcine intermediate lobe cells maintained in primary cells culture. We investigated the ACh-induced responses in both whole-cell and cell-attached configurations of the patch-clamp technique. 2. From noise analysis of ACh-evoked whole-cell currents, we estimated an elementary conductance of 20 pS and a channel open duration of about 1.7 ms at -60 mV. From single-channel recordings, we obtained a slope conductance of 26 pS and a mean open time of 1.8 ms at membrane potentials between -60 and -80 mV. 3. ACh-evoked responses were blocked by d-tubocurarine (d-TC), hexamethonium and mecamylamine, but were insensitive to alpha-bungarotoxin. These characteristics define a neuronal type of nicotinic receptors. 4. The whole-cell current induced by ACh showed a strong inward rectification with no outward current being obtained. This phenomenon was observed when the intracellular ion is either sodium or caesium, and even when Ca2+ and Mg2+ were totally removed from the intracellular medium. 5. ACh-gated channels in intermediate lobe cells were cation selective and were permeable to Na+ and Cs+. In Ca2(+)-free extracellular solution, single-channel conductances were much larger (46 pS) than in the presence of 2 mM-Ca2+ (26 pS). 6. The possibility of an excitatory cholinergic control of intermediate lobe cells is discussed. PMID:1693685

  2. Structural Sensitivity of a Prokaryotic Pentameric Ligand-gated Ion Channel to Its Membrane Environment*

    PubMed Central

    Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.

    2013-01-01

    Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505

  3. Amperometric determination of acetylcholine-A neurotransmitter, by chitosan/gold-coated ferric oxide nanoparticles modified gold electrode.

    PubMed

    Chauhan, Nidhi; Pundir, C S

    2014-11-15

    An amperometric acetylcholine biosensor was constructed by co-immobilizing covalently, a mixture of acetylcholinesterase (AChE) and choline oxidase (ChO) onto nanocomposite of chitosan (CHIT)/gold-coated ferric oxide nanoparticles (Fe@AuNPs) electrodeposited onto surface of a Au electrode and using it as a working electrode, Ag/AgCl as reference electrode and Pt wire as auxiliary electrode connected through potentiostat. The biosensor is based on electrochemical measurement of H2O2 generated from oxidation of choline by immobilized ChO, which in turn is produced from hydrolysis of acetylcholine by immobilized AChE. The biosensor exhibited optimum response within 3s at +0.2V, pH 7.0 and 30°C. The enzyme electrode had a linear working range of 0.005-400 µM, with a detection limit of 0.005 µM for acetylcholine. The biosensor measured plasma acetylcholine in apparently healthy and persons suffering from Alzheimer's disease. The enzyme electrode was unaffected by a number of serum substances but lost 50% of its initial activity after its 100 uses over a period of 3 months, when stored at 4°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. IMPROVING THE QUALITY, AVAILABILITY AND SUSTAINABILITY OF DRINKING WATER SUPPLIES THROUGH ANTIFOULING AND ANTISCALING DESALINATION MEMBRANES

    EPA Science Inventory

    Surface modification with the selected polymers is expected to reduce the fouling and scaling propensity of desalination membranes by strongly binding water at the membrane surface. Foulants will interact with this bound water layer and not with the membrane surface itself....

  5. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides.

    PubMed

    Cravatt, B F; Giang, D K; Mayfield, S P; Boger, D L; Lerner, R A; Gilula, N B

    1996-11-07

    Endogenous neuromodulatory molecules are commonly coupled to specific metabolic enzymes to ensure rapid signal inactivation. Thus, acetylcholine is hydrolysed by acetylcholine esterase and tryptamine neurotransmitters like serotonin are degraded by monoamine oxidases. Previously, we reported the structure and sleep-inducing properties of cis-9-octadecenamide, a lipid isolated from the cerebrospinal fluid of sleep-deprived cats. cis-9-Octadecenamide, or oleamide, has since been shown to affect serotonergic systems and block gap-junction communication in glial cells (our unpublished results). We also identified a membrane-bound enzyme activity that hydrolyses oleamide to its inactive acid, oleic acid. We now report the mechanism-based isolation, cloning and expression of this enzyme activity, originally named oleamide hydrolase, from rat liver plasma membranes. We also show that oleamide hydrolase converts anandamide, a fatty-acid amide identified as the endogenous ligand for the cannabinoid receptor, to arachidonic acid, indicating that oleamide hydrolase may serve as the general inactivating enzyme for a growing family of bioactive signalling molecules, the fatty-acid amides. Therefore we will hereafter refer to oleamide hydrolase as fatty-acid amide hydrolase, in recognition of the plurality of fatty-acid amides that the enzyme can accept as substrates.

  6. Are acetylcholine-induced acetyl groups driving fuel cells in the systems of transducin, t and G proteins?

    PubMed

    Nyberg-Swenson, B E

    2002-05-01

    Life is completely dependent on a support of energy which is generated by the direct absorption of light or by the reduction of oxygen. Metabolized food yields ac(et)yl groups which are utilized in the reduction of oxygen with the assistance of many other compounds. Acetylcholine appears to be an important substance for the transportation of acetyl groups. Acetylcholine activates systems regulated by transducin, t and G proteins, probably Se enzymes, reacting by similar mechanisms in triggered reactions ending in nerve or muscle signals. These activations are performed by GTP (or ATP), probably resulting from the reactions of acetylcholine-induced acetyl groups. The inactivation-activation states of these systems are regulated by changes of GTP to cGMP to GMP which form a loop.Diminished support of energy to systems, because of impaired charge transfer to oxygen, may be responsible for many diseases. For example, there is a low level of acetylcholine in the brains of patients with Alzheimer's disease. Copyright 2002 Elsevier Science Ltd. All Rights reserved.

  7. How actin binds and assembles onto plasma membranes from Dictyostelium discoideum

    PubMed Central

    1988-01-01

    We have shown previously (Schwartz, M. A., and E. J. Luna. 1986. J. Cell Biol. 102: 2067-2075) that actin binds with positive cooperativity to plasma membranes from Dictyostelium discoideum. Actin is polymerized at the membrane surface even at concentrations well below the critical concentration for polymerization in solution. Low salt buffer that blocks actin polymerization in solution also prevents actin binding to membranes. To further explore the relationship between actin polymerization and binding to membranes, we prepared four chemically modified actins that appear to be incapable of polymerizing in solution. Three of these derivatives also lost their ability to bind to membranes. The fourth derivative (EF actin), in which histidine-40 is labeled with ethoxyformic anhydride, binds to membranes with reduced affinity. Binding curves exhibit positive cooperativity, and cross- linking experiments show that membrane-bound actin is multimeric. Thus, binding and polymerization are tightly coupled, and the ability of these membranes to polymerize actin is dramatically demonstrated. EF actin coassembles weakly with untreated actin in solution, but coassembles well on membranes. Binding by untreated actin and EF actin are mutually competitive, indicating that they bind to the same membrane sites. Hill plots indicate that an actin trimer is the minimum assembly state required for tight binding to membranes. The best explanation for our data is a model in which actin oligomers assemble by binding to clustered membrane sites with successive monomers on one side of the actin filament bound to the membrane. Individual binding affinities are expected to be low, but the overall actin-membrane avidity is high, due to multivalency. Our results imply that extracellular factors that cluster membrane proteins may create sites for the formation of actin nuclei and thus trigger actin polymerization in the cell. PMID:3392099

  8. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures.

    PubMed

    Ou, Yangguang; Wu, Juanfang; Sandberg, Mats; Weber, Stephen G

    2014-10-01

    This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push-pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push-pull perfusion can distinguish ectoenzyme activity with a ~100 μm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus.

  9. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures

    PubMed Central

    Ou, Yangguang; Wu, Juanfang; Sandberg, Mats

    2014-01-01

    This review covers recent advances in sampling fluid from the extracellular space of brain tissue by electroosmosis (EO). Two techniques, EO sampling with a single fused-silica capillary and EO push–pull perfusion, have been developed. These tools were used to investigate the function of membrane-bound enzymes with outward-facing active sites, or ectoenzymes, in modulating the activity of the neuropeptides leu-enkephalin and galanin in organotypic-hippocampal-slice cultures (OHSCs). In addition, the approach was used to determine the endogenous concentration of a thiol, cysteamine, in OHSCs. We have also investigated the degradation of coenzyme A in the extracellular space. The approach provides information on ectoenzyme activity, including Michaelis constants, in tissue, which, as far as we are aware, has not been done before. On the basis of computational evidence, EO push–pull perfusion can distinguish ectoenzyme activity with a ~100 µm spatial resolution, which is important for studies of enzyme kinetics in adjacent regions of the rat hippocampus. PMID:25168111

  10. High-resolution Structures of Protein-Membrane Complexes by Neutron Reflection and MD Simulation: Membrane Association of the PTEN Tumor Suppressor

    NASA Astrophysics Data System (ADS)

    Lösche, Matthias

    2012-02-01

    The lipid matrix of biomembranes is an in-plane fluid, thermally and compositionally disordered leaflet of 5 nm thickness and notoriously difficult to characterize in structural terms. Yet, biomembranes are ubiquitous in the cell, and membrane-bound proteins are implicated in a variety of signaling pathways and intra-cellular transport. We developed methodology to study proteins associated with model membranes using neutron reflection measurements and showed recently that this approach can resolve the penetration depth and orientation of membrane proteins with ångstrom resolution if their crystal or NMR structure is known. Here we apply this technology to determine the membrane bindung and unravel functional details of the PTEN phosphatase, a key player in the PI3K apoptosis pathway. PTEN is an important regulatory protein and tumor suppressor that performs its phosphatase activity as an interfacial enzyme at the plasma membrane-cytoplasm boundary. Acting as an antagonist to phosphoinositide-3-kinase (PI3K) in cell signaling, it is deleted in many human cancers. Despite its importance in regulating the levels of the phosphoinositoltriphosphate PI(3,4,5)P3, there is little understanding of how PTEN binds to membranes, is activated and then acts as a phosphatase. We investigated the structure and function of PTEN by studying its membrane affinity and localization on in-plane fluid, thermally disordered synthetic membrane models. The membrane association of the protein depends strongly on membrane composition, where phosphatidylserine (PS) and phosphatidylinositol diphosphate (PI(4,5)P2) act synergetically in attracting the enzyme to the membrane surface. Membrane affinities depend strongly on membrane fluidity, which suggests multiple binding sites on the protein for PI(4,5)P2. Neutron reflection measurements show that the PTEN phosphatase ``scoots'' along the membrane surface (penetration < 5 å) but binds the membrane tightly with its two major domains, the C2 and

  11. Degradation of neurotensin by rat brain synaptic membranes: involvement of a thermolysin-like metalloendopeptidase (enkephalinase), angiotensin-converting enzyme, and other unidentified peptidases.

    PubMed

    Checler, F; Vincent, J P; Kitabgi, P

    1983-08-01

    Neurotensin was inactivated by membrane-bound and soluble degrading activities present in purified preparations of rat brain synaptic membranes. Degradation products were identified by HPLC and amino acid analysis. The major points of cleavage of neurotensin were the Arg8-Arg9, Pro10-Tyr11, and Tyr11-Ile12 peptide bonds with the membrane-bound activity and the Arg8-Arg9 and Pro10-Tyr11 bonds with the soluble activity. Several lines of evidence indicated that the cleavage of the Arg8-Arg9 bond by the membrane-bound activity resulted mainly from the conversion of neurotensin1-10 to neurotensin1-8 by a dipeptidyl carboxypeptidase. In particular, captopril inhibited this cleavage with an IC50 (5.7 nM) close to its K1 (7 nM) for angiotensin-converting enzyme. Thiorphan inhibited the cleavage at the Tyr11-Ile12 bond by the membrane-bound activity with an IC50 (17 nM) similar to its K1 (4.7 nM) for enkephalinase. Both cleavages were inhibited by 1,10-phenanthroline. These and other data suggested that angiotensin-converting enzyme and a thermolysin-like metalloendopeptidase (enkephalinase) were the membrane-bound peptidases responsible for cleavages at the Arg8-Arg9 and Tyr11-Ile12 bonds, respectively. In contrast, captopril had no effect on the cleavage at the Arg8-Arg9 bond by the soluble activity, indicating that the enzyme responsible for this cleavage was different from angiotensin-converting enzyme. The cleavage at the Pro10-Tyr11 bond by both the membrane-bound and the soluble activities appeared to be catalyzed by an endopeptidase different from known brain proline endopeptidases. The possibility is discussed that the enzymes described here participate in physiological mechanisms of neurotensin inactivation at the synaptic level.

  12. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  13. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta-Gamma Coupling during Cue Detection.

    PubMed

    Howe, William M; Gritton, Howard J; Lusk, Nicholas A; Roberts, Erik A; Hetrick, Vaughn L; Berke, Joshua D; Sarter, Martin

    2017-03-22

    The capacity for using external cues to guide behavior ("cue detection") constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta-gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding ("cue detection") is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex contribute to

  14. Acetylcholine Release in Prefrontal Cortex Promotes Gamma Oscillations and Theta–Gamma Coupling during Cue Detection

    PubMed Central

    Hetrick, Vaughn L.; Berke, Joshua D.

    2017-01-01

    The capacity for using external cues to guide behavior (“cue detection”) constitutes an essential aspect of attention and goal-directed behavior. The cortical cholinergic input system, via phasic increases in prefrontal acetylcholine release, plays an essential role in attention by mediating such cue detection. However, the relationship between cholinergic signaling during cue detection and neural activity dynamics in prefrontal networks remains unclear. Here we combined subsecond measures of cholinergic signaling, neurophysiological recordings, and cholinergic receptor blockade to delineate the cholinergic contributions to prefrontal oscillations during cue detection in rats. We first confirmed that detected cues evoke phasic acetylcholine release. These cholinergic signals were coincident with increased neuronal synchrony across several frequency bands and the emergence of theta–gamma coupling. Muscarinic and nicotinic cholinergic receptors both contributed specifically to gamma synchrony evoked by detected cues, but the effects of blocking the two receptor subtypes were dissociable. Blocking nicotinic receptors primarily attenuated high-gamma oscillations occurring during the earliest phases of the cue detection process, while muscarinic (M1) receptor activity was preferentially involved in the transition from high to low gamma power that followed and corresponded to the mobilization of networks involved in cue-guided decision making. Detected cues also promoted coupling between gamma and theta oscillations, and both nicotinic and muscarinic receptor activity contributed to this process. These results indicate that acetylcholine release coordinates neural oscillations during the process of cue detection. SIGNIFICANCE STATEMENT The capacity of learned cues to direct attention and guide responding (“cue detection”) is a key component of goal-directed behavior. Rhythmic neural activity and increases in acetylcholine release in the prefrontal cortex

  15. Propagating Cell-Membrane Waves Driven by Curved Activators of Actin Polymerization

    PubMed Central

    Peleg, Barak; Disanza, Andrea; Scita, Giorgio; Gov, Nir

    2011-01-01

    Cells exhibit propagating membrane waves which involve the actin cytoskeleton. One type of such membranal waves are Circular Dorsal Ruffles (CDR) which are related to endocytosis and receptor internalization. Experimentally, CDRs have been associated with membrane bound activators of actin polymerization of concave shape. We present experimental evidence for the localization of convex membrane proteins in these structures, and their insensitivity to inhibition of myosin II contractility in immortalized mouse embryo fibroblasts cell cultures. These observations lead us to propose a theoretical model which explains the formation of these waves due to the interplay between complexes that contain activators of actin polymerization and membrane-bound curved proteins of both types of curvature (concave and convex). Our model predicts that the activity of both types of curved proteins is essential for sustaining propagating waves, which are abolished when one type of curved activator is removed. Within this model waves are initiated when the level of actin polymerization induced by the curved activators is higher than some threshold value, which allows the cell to control CDR formation. We demonstrate that the model can explain many features of CDRs, and give several testable predictions. This work demonstrates the importance of curved membrane proteins in organizing the actin cytoskeleton and cell shape. PMID:21533032

  16. Radiosynthesis and evaluation of novel acetylcholine receptor radioligands

    NASA Astrophysics Data System (ADS)

    Pimlott, Sally L.

    Neuroreceptor single photon emission computed tomography (SPECT) imaging provides a powerful tool for the evaluation of the function of a neurotransmitter system in normal and or disease states in the living human brain. The cholinergic system is involved in the control of a variety of complex functions including learning, memory and modulation of behaviour. Deficits in the cholinergic system have been found in a number of neurological diseases, such as Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Epilepsy. Acetylcholine receptors (AChRs) are divided into two classes, muscarinic and nicotinic. The aim of this project was to develop two novel SPECT AChR ligands: (R,R)[123I]I-QNB, a M1 subtype selective muscarinic acetylcholine receptor (mAChR) ligand, and 5-[123I]-A-85380, a alpha4beta2 subtype selective nicotinic receptor (nAChR) ligand, for use in human SPECT imaging studies. The calculation of the binding potential of a ligand can be used to obtain quantitative information from a SPECT scan, enabling comparisons to be made between studies. Methodological issues involved in the calculation of binding potential are therefore crucial for the accuracy of results. A particularly important parameter is the amount of authentic radioligand available to cross the blood brain barrier. This was characterised in the research performed for this thesis. The radiosynthesis of two novel neuroreceptor radioligands has been optimised for use in humans. (R, R)[123I]I-QNB has been used in human studies to provide useful information on the human mAChR function in disease. Pre-clinical evaluation of 5-[123I]-A-85380 provided useful information for in vivo human studies. Both radioligands are concluded to successfully provide novel information on the function of the acetylcholine system. Methodological issues involved in the blood metabolite analysis and measurement of plasma protein binding have been investigated and discussed, with particular reference made

  17. Size-dependent protein segregation at membrane interfaces

    NASA Astrophysics Data System (ADS)

    Schmid, Eva M.; Bakalar, Matthew H.; Choudhuri, Kaushik; Weichsel, Julian; Ann, Hyoung Sook; Geissler, Phillip L.; Dustin, Michael L.; Fletcher, Daniel A.

    2016-07-01

    Membrane interfaces formed at cell-cell junctions are associated with characteristic patterns of membrane proteins whose organization is critical for intracellular signalling. To isolate the role of membrane protein size in pattern formation, we reconstituted model membrane interfaces in vitro using giant unilamellar vesicles decorated with synthetic binding and non-binding proteins. We show that size differences between membrane proteins can drastically alter their organization at membrane interfaces, with as little as a ~5 nm increase in non-binding protein size driving its exclusion from the interface. Combining in vitro measurements with Monte Carlo simulations, we find that non-binding protein exclusion is also influenced by lateral crowding, binding protein affinity, and thermally driven membrane height fluctuations that transiently limit access to the interface. This sensitive and highly effective means of physically segregating proteins has implications for cell-cell contacts such as T-cell immunological synapses (for example, CD45 exclusion) and epithelial cell junctions (for example, E-cadherin enrichment), as well as for protein sorting at intracellular contact points between membrane-bound organelles.

  18. Lipid nanotechnologies for structural studies of membrane-associated proteins.

    PubMed

    Stoilova-McPhie, Svetla; Grushin, Kirill; Dalm, Daniela; Miller, Jaimy

    2014-11-01

    We present a methodology of lipid nanotubes (LNT) and nanodisks technologies optimized in our laboratory for structural studies of membrane-associated proteins at close to physiological conditions. The application of these lipid nanotechnologies for structure determination by cryo-electron microscopy (cryo-EM) is fundamental for understanding and modulating their function. The LNTs in our studies are single bilayer galactosylceramide based nanotubes of ∼20 nm inner diameter and a few microns in length, that self-assemble in aqueous solutions. The lipid nanodisks (NDs) are self-assembled discoid lipid bilayers of ∼10 nm diameter, which are stabilized in aqueous solutions by a belt of amphipathic helical scaffold proteins. By combining LNT and ND technologies, we can examine structurally how the membrane curvature and lipid composition modulates the function of the membrane-associated proteins. As proof of principle, we have engineered these lipid nanotechnologies to mimic the activated platelet's phosphtaidylserine rich membrane and have successfully assembled functional membrane-bound coagulation factor VIII in vitro for structure determination by cryo-EM. The macromolecular organization of the proteins bound to ND and LNT are further defined by fitting the known atomic structures within the calculated three-dimensional maps. The combination of LNT and ND technologies offers a means to control the design and assembly of a wide range of functional membrane-associated proteins and complexes for structural studies by cryo-EM. The presented results confirm the suitability of the developed methodology for studying the functional structure of membrane-associated proteins, such as the coagulation factors, at a close to physiological environment. © 2014 Wiley Periodicals, Inc.

  19. Acetylcholine and the alpha 7 nicotinic receptor: a potential therapeutic target for the treatment of periodontal disease?

    PubMed Central

    2013-01-01

    Objectives The aim of this review is to examine the evidence for a functional cholinergic system operating within the periodontium and determine the evidence for its role in periodontal immunity. Introduction Acetylcholine can influence the immune system via the ‘cholinergic anti-inflammatory pathway’. This pathway is mediated by the vagus nerve which releases acetylcholine to interact with the α7 subunit of the nicotinic acetylcholine receptor (α7nAChR) on proximate immuno-regulatory cells. Activation of the α7nAChR on these cells leads to down-regulated expression of pro-inflammatory mediators and thus regulates localised inflammatory responses. The role of the vagus nerve in periodontal pathophysiology is currently unknown. However, non-neuronal cells can also release acetylcholine and express the α7nAChR; these include keratinocytes, fibroblasts, T cells, B cells and macrophages. Therefore, by both autocrine and paracrine methods non-neuronal acetylcholine can also be hypothesised to modulate the localised immune response. Methods A Pubmed database search was performed for studies providing evidence for a functional cholinergic system operating in the periodontium. In addition, literature on the role of the ‘cholinergic anti-inflammatory pathway’ in modulating the immune response was extrapolated to hypothesise that similar mechanisms of immune regulation occur within the periodontium. Conclusion The evidence suggests a functional nonneuronal ‘cholinergic anti-inflammatory pathway’ may operate in the periodontium and that this may be targeted therapeutically to treat periodontal disease. PMID:22777144

  20. Cholecystokinin octa- and tetrapeptide degradation by synaptic membranes. II. Solubilization and separation of membrane-bound CCK-8 cleaving enzymes.

    PubMed

    Deschodt-Lanckman, M; Bui, N D; Koulischer, D; Paroutaud, P; Strosberg, A D

    1983-01-01

    Solubilization of rat synaptic membranes by Triton X-100, followed by DEAE-cellulose chromatography allowed the identification of different CCK-8 cleaving enzymes. The first one (in the order of elution) removed the N-terminal aspartic acid residue of CCK-8 and was active on L-aspartic acid beta naphtylamide, suggesting that a corresponded to an aminopeptidase A. Two aminopeptidases of broad specificity hydrolyzed sequentially all the peptide bonds of CCK-8 as far as the release of free tryptophan. The removal of the sulfated tyrosine residue of CCK-8 occurred at a slower rate than that of the unsulfated residue. Another peptidase converted CCK-8 into its C-terminal heptapeptide. This enzyme had a lower affinity for the sulfated octapeptide in comparison with the unsulfated form (app Km of respectively 180 and 40 muM). The CCK-7 generating proteases displayed a moderate regional variation in five rat brain areas, with the highest activity in olfactory bulbs membranes and the lowest in cerebellar membranes. This distribution followed (with a lower amplitude) that of the CCK receptors.