Sample records for membrane-proximal amino-terminal residues

  1. Immunogenicity of Membrane-bound HIV-1 gp41 Membrane-proximal External Region (MPER) Segments Is Dominated by Residue Accessibility and Modulated by Stereochemistry*

    PubMed Central

    Kim, Mikyung; Song, Likai; Moon, James; Sun, Zhen-Yu J.; Bershteyn, Anna; Hanson, Melissa; Cain, Derek; Goka, Selasie; Kelsoe, Garnett; Wagner, Gerhard; Irvine, Darrell; Reinherz, Ellis L.

    2013-01-01

    Structural characterization of epitope-paratope pairs has contributed to the understanding of antigenicity. By contrast, few structural studies relate to immunogenicity, the process of antigen-induced immune responses in vivo. Using a lipid-arrayed membrane-proximal external region (MPER) of HIV-1 glycoprotein 41 as a model antigen, we investigated the influence of physicochemical properties on immunogenicity in relation to structural modifications of MPER/liposome vaccines. Anchoring the MPER to the membrane via an alkyl tail or transmembrane domain retained the MPER on liposomes in vivo, while preserving MPER secondary structure. However, structural modifications that affected MPER membrane orientation and antigenic residue accessibility strongly impacted induced antibody responses. The solvent-exposed MPER tryptophan residue (Trp-680) was immunodominant, focusing immune responses, despite sequence variability elsewhere. Nonetheless, immunogenicity could be readily manipulated using site-directed mutagenesis or structural constraints to modulate amino acid surface display. These studies provide fundamental insights for immunogen design aimed at targeting B cell antibody responses. PMID:24047898

  2. A mutational analysis of the cytosolic domain of the tomato Cf-9 disease-resistance protein shows that membrane-proximal residues are important for Avr9-dependent necrosis.

    PubMed

    Chakrabarti, Apratim; Velusamy, Thilaga; Tee, Choon Yang; Jones, David A

    2016-05-01

    The tomato Cf-9 gene encodes a membrane-anchored glycoprotein that imparts race-specific resistance against the tomato leaf mould fungus Cladosporium fulvum in response to the avirulence protein Avr9. Although the N-terminal half of the extracellular leucine-rich repeat (eLRR) domain of the Cf-9 protein determines its specificity for Avr9, the C-terminal half, including its small cytosolic domain, is postulated to be involved in signalling. The cytosolic domain of Cf-9 carries several residues that are potential sites for ubiquitinylation or phosphorylation, or signals for endocytic uptake. A targeted mutagenesis approach was employed to investigate the roles of these residues and cellular processes in Avr9-dependent necrosis triggered by Cf-9. Our results indicate that the membrane-proximal region of the cytosolic domain of Cf-9 plays an important role in Cf-9-mediated necrosis, and two amino acids within this region, a threonine (T835) and a proline (P838), are particularly important for Cf-9 function. An alanine mutation of T835 had no effect on Cf-9 function, but an aspartic acid mutation, which mimics phosphorylation, reduced Cf-9 function. We therefore postulate that phosphorylation/de-phosphorylation of T835 could act as a molecular switch to determine whether Cf-9 is in a primed or inactive state. Yeast two-hybrid analysis was used to show that the cytosolic domain of Cf-9 interacts with the cytosolic domain of tomato VAP27. This interaction could be disrupted by an alanine mutation of P838, whereas interaction with CITRX remained unaffected. We therefore postulate that a proline-induced kink in the membrane-proximal region of the cytosolic domain of Cf-9 may be important for interaction with VAP27, which may, in turn, be important for Cf-9 function. © 2015 BSPP AND JOHN WILEY & SONS LTD.

  3. Amino- and carboxy-terminal deletion mutants of Gs alpha are localized to the particulate fraction of transfected COS cells

    PubMed Central

    1992-01-01

    To elucidate the structural basis for membrane attachment of the alpha subunit of the stimulatory G protein (Gs alpha), mutant Gs alpha cDNAs with deletions of amino acid residues in the amino and/or carboxy termini were transiently expressed in COS-7 cells. The particulate and soluble fractions prepared from these cells were analyzed by immunoblot using peptide specific antibodies to monitor distribution of the expressed proteins. Transfection of mutant forms of Gs alpha with either 26 amino terminal residues deleted (delta 3-28) or with 59 amino terminal residues deleted (delta 1-59) resulted in immunoreactive proteins which localized primarily to the particulate fraction. Similarly, mutants with 10 (delta 385-394), 32 (delta 353-384), or 42 (delta 353-394) amino acid residues deleted from the carboxy terminus also localized to the particulate fraction, as did a mutant form of Gs alpha lacking amino acid residues at both the amino and carboxy termini (delta 3-28)/(delta 353-384). Mutant and wild type forms of Gs alpha demonstrated a similar degree of tightness in their binding to membranes as demonstrated by treatment with 2.5 M NaCl or 6 M urea, but some mutant forms were relatively resistant compared with wild type Gs alpha to solubilization by 15 mM NaOH or 1% sodium cholate. We conclude that: (a) deletion of significant portions of the amino and/or carboxyl terminus of Gs alpha is still compatible with protein expression; (b) deletion of these regions is insufficient to cause cytosolic localization of the expressed protein. The basis of Gs alpha membrane targeting remains to be elucidated. PMID:1400589

  4. Amino acid residue Y196E substitution and C-terminal peptide synergistically alleviate the toxicity of Clostridium perfringens epsilon toxin.

    PubMed

    Yao, Wenwu; Kang, Lin; Gao, Shan; Zhuang, Xiangjin; Zhang, Tao; Yang, Hao; Ji, Bin; Xin, Wenwen; Wang, Jinglin

    2015-06-15

    Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains, and is the causative agent of a lethal enterotoxemia in livestock animals and possibly in humans. However, many details of ETX structure and activity are not known. Therefore, it is important to clarify the relationship between ETX structure and activity. To explore the effect and mechanism of ETX amino acid residue Y196E substitution and C-terminal peptide on toxicity, four recombinant proteins, rETX (without 13 N-terminal peptides and 23 C-terminal peptides), rETX-C (rETX with 23 C-terminal peptides), rETX(Y196E) (rETX with an amino acid residue substitution at Y196) and rETX(Y196E)-C (rETX-C with a Y196E mutation), were constructed in this study. Both the amino acid residue Y196E substitution and the C-terminal peptide reduce ETX toxicity to a similar extent, and the two factors synergistically alleviate ETX toxicity. In addition, we demonstrated that the C-terminal peptides and Y196E amino acid mutation reduce the toxin toxicity in two different pathways: the C-terminal peptides inhibit the binding activity of toxins to target cells, and the Y196E amino acid mutation slightly inhibits the pore-forming or heptamer-forming process. Interaction between the two factors was not observed in pore-forming or binding assays but toxicity assays, which demonstrated that the relationship between domains of the toxin is more complicated than previously appreciated. However, the exact mechanism of synergistic action is not yet clarified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A five-residue sequence near the carboxyl terminus of the polytopic membrane protein lac permease is required for stability within the membrane.

    PubMed Central

    Roepe, P D; Zbar, R I; Sarkar, H K; Kaback, H R

    1989-01-01

    The lac permease (lacY gene product) of Escherichia coli contains 417 amino acid residues and is predicted to have a short hydrophilic amino terminus on the inner surface of the cytoplasmic membrane, multiple transmembrane hydrophobic segments in alpha-helical conformation, and a 17-amino acid residue hydrophilic carboxyl-terminal tail on the inner surface of the membrane. To assess the importance of the carboxyl terminus, the properties of several truncation mutants were studied. The mutants were constructed by site-directed mutagenesis such that stop codons were placed at specified positions, and the altered lacY genes were expressed at a relatively low rate from plasmid pACYC184. Permease truncated at position 407 or 401 retains full activity, and a normal complement of molecules is present in the membrane, as judged by immunoblot analyses. Thus, it is apparent that the carboxyl-terminal tail plays no direct role in membrane insertion of the permease, its stability, or in the mechanism of lactose/H+ symport. In marked contrast, when truncations are made at residues 396 (i.e., 4 amino acid residues from the carboxyl terminus of putative helix XII), 389, 372, or 346, the permease is no longer found in the membrane. Remarkably, however, when each of the mutated lacY genes is expressed at a high rate by means of the T7 RNA polymerase system [Tabor, S. & Richardson, C. C. (1985) Proc. Natl. Acad. Sci. USA 82, 1074-1079], all of the truncated permeases are present in the membrane, as indicated by [35S]methionine incorporation studies; however, permease truncated at residue 396, 389, 372, or 346 is defective with respect to lactose/H+ symport. Finally, pulse-chase experiments indicate that wild-type permease or permease truncated at residue 401 is stable, whereas permease truncated at or prior to residue 396 is degraded at a significant rate. The results are consistent with the notion that residues 396-401 in putative helix XII are important for protection against

  6. Amino terminal glutamate residues confer spermine sensitivity and affect voltage gating and channel conductance of rat connexin40 gap junctions.

    PubMed

    Musa, Hassan; Fenn, Edward; Crye, Mark; Gemel, Joanna; Beyer, Eric C; Veenstra, Richard D

    2004-06-15

    Connexin40 (Cx40) contains a specific binding site for spermine (affinity approximately 100 microm) whereas connexin43 (Cx43) is unaffected by identical concentrations of intracellular spermine. Replacement of two unique glutamate residues, E9 and E13, from the cytoplasmic amino terminal domain of Cx40 with the corresponding lysine residues from Cx43 eliminated the block by 2 mm spermine, reduced the transjunctional voltage (V(j)) gating sensitivity, and reduced the unitary conductance of this Cx40E9,13K gap junction channel protein. The single point mutations, Cx40E9K and Cx40E13K, predominantly affected the residual conductance state (G(min)) and V(j) gating properties, respectively. Heterotypic pairing of Cx40E9,13K with wild-type Cx40 in murine neuro2A (N2A) cells produced a strongly rectifying gap junction reminiscent of the inward rectification properties of the Kir (e.g. Kir2.x) family of potassium channels. The reciprocal Cx43K9,13E mutant protein exhibited reduced V(j) sensitivity, but displayed much less rectification in heterotypic pairings with wtCx43, negligible changes in the unitary channel conductance, and remained insensitive to spermine block. These data indicate that the connexin40 amino terminus may form a critical cytoplasmic pore-forming domain that serves as the receptor for V(j)-dependent closure and block by intracellular polyamines. Functional reciprocity between Cx40 and Cx43 gap junctions involves other amino acid residues in addition to the E or K 9 and 13 loci located on the amino terminal domain of these two connexins.

  7. Role of the Cationic C-Terminal Segment of Melittin on Membrane Fragmentation.

    PubMed

    Therrien, Alexandre; Fournier, Alain; Lafleur, Michel

    2016-05-05

    The widespread distribution of cationic antimicrobial peptides capable of membrane fragmentation in nature underlines their importance to living organisms. In the present work, we determined the impact of the electrostatic interactions associated with the cationic C-terminal segment of melittin, a 26-amino acid peptide from bee venom (net charge +6), on its binding to model membranes and on the resulting fragmentation. In order to detail the role played by the C-terminal charges, we prepared a melittin analogue for which the four cationic amino acids in positions 21-24 were substituted with the polar residue citrulline, providing a peptide with the same length and amphiphilicity but with a lower net charge (+2). We compared the peptide bilayer affinity and the membrane fragmentation for bilayers prepared from 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC)/1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS) mixtures. It is shown that neutralization of the C-terminal considerably increased melittin affinity for zwitterionic membranes. The unfavorable contribution associated with transferring the cationic C-terminal in a less polar environment was reduced, leaving the hydrophobic interactions, which drive the peptide insertion in bilayers, with limited counterbalancing interactions. The presence of negatively charged lipids (DPPS) in bilayers increased melittin binding by introducing attractive electrostatic interactions, the augmentation being, as expected, greater for native melittin than for its citrullinated analogue. The membrane fragmentation power of the peptide was shown to be controlled by electrostatic interactions and could be modulated by the charge carried by both the membrane and the lytic peptide. The analysis of the lipid composition of the extracted fragments from DPPC/DPPS bilayers revealed no lipid specificity. It is proposed that extended phase separations are more susceptible to lead to the extraction of a lipid species in a specific manner

  8. Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex

    PubMed Central

    Choi, Ucheor B; Zhao, Minglei; Zhang, Yunxiang; Lai, Ying; Brunger, Axel T

    2016-01-01

    Complexin regulates spontaneous and activates Ca2+-triggered neurotransmitter release, yet the molecular mechanisms are still unclear. Here we performed single molecule fluorescence resonance energy transfer experiments and uncovered two conformations of complexin-1 bound to the ternary SNARE complex. In the cis conformation, complexin-1 induces a conformational change at the membrane-proximal C-terminal end of the ternary SNARE complex that specifically depends on the N-terminal, accessory, and central domains of complexin-1. The complexin-1 induced conformation of the ternary SNARE complex may be related to a conformation that is juxtaposing the synaptic vesicle and plasma membranes. In the trans conformation, complexin-1 can simultaneously interact with a ternary SNARE complex via the central domain and a binary SNARE complex consisting of syntaxin-1A and SNAP-25A via the accessory domain. The cis conformation may be involved in activation of synchronous neurotransmitter release, whereas both conformations may be involved in regulating spontaneous release. DOI: http://dx.doi.org/10.7554/eLife.16886.001 PMID:27253060

  9. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion*

    PubMed Central

    He, Tao; Gershenson, Anne; Eyles, Stephen J.; Lee, Yan-Jiun; Liu, Wenshe R.; Wang, Jiangyun; Gao, Jianmin; Roberts, Mary F.

    2015-01-01

    Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins. PMID:26092728

  10. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization.

    PubMed

    Shiheido, Hirokazu; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND356-58, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Involvement of arginine 878 together with Ca2+ in mouse aminopeptidase A substrate specificity for N-terminal acidic amino-acid residues

    PubMed Central

    Couvineau, Pierre; de Almeida, Hugo; Maigret, Bernard; Llorens-Cortes, Catherine

    2017-01-01

    Aminopeptidase A (APA) is a membrane-bound zinc metalloprotease cleaving, in the brain, the N-terminal aspartyl residue of angiotensin II to generate angiotensin III, which exerts a tonic stimulatory effect on the control of blood pressure in hypertensive animals. Using a refined APA structure derived from the human APA crystal structure, we docked the specific and selective APA inhibitor, EC33 in the presence of Ca2+. We report the presence in the S1 subsite of Arg-887 (Arg-878 in mouse APA), the guanidinium moiety of which established an interaction with the electronegative sulfonate group of EC33. Mutagenic replacement of Arg-878 with an alanine or a lysine residue decreased the affinity of the recombinant enzymes for the acidic substrate, α-L-glutamyl-β-naphthylamide, with a slight decrease in substrate hydrolysis velocity either with or without Ca2+. In the absence of Ca2+, the mutations modified the substrate specificity of APA for the acidic substrate, the mutated enzymes hydrolyzing more efficiently basic and neutral substrates, although the addition of Ca2+ partially restored the acidic substrate specificity. The analysis of the 3D models of the Arg-878 mutated APAs revealed a change in the volume of the S1 subsite, which may impair the binding and/or the optimal positioning of the substrate in the active site as well as its hydrolysis. These findings demonstrate the key role of Arg-878 together with Ca2 + in APA substrate specificity for N-terminal acidic amino acid residues by ensuring the optimal positioning of acidic substrates during catalysis. PMID:28877217

  12. A Simple Procedure for Constructing 5'-Amino-Terminated Oligodeoxynucleotides in Aqueous Solution

    NASA Technical Reports Server (NTRS)

    Bruick, Richard K.; Koppitz, Marcus; Joyce, Gerald F.; Orgel, Leslie E.

    1997-01-01

    A rapid method for the synthesis of oligodeoxynucleotides (ODNs) terminated by 5'-amino-5'-deoxythymidine is described. A 3'-phosphorylated ODN (the donor) is incubated in aqueous solution with 5'-amino- 5'-deoxythymidine in the presence of N-(3-dimethylaminopropyl)-)N'-ethylcarbodiimide hydrochloride (EDC), extending the donor by one residue via a phosphoramidate bond. Template- directed ligation of the extended donor and an acceptor ODN, followed by acid hydrolysis, yields the acceptor ODN extended by a single 5'-amino-5'-deoxythymidine residue at its 5'terminus.

  13. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain.

    PubMed

    Aoki, D; Lee, N; Yamaguchi, N; Dubois, C; Fukuda, M N

    1992-05-15

    Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and

  14. Golgi retention of a trans-Golgi membrane protein, galactosyltransferase, requires cysteine and histidine residues within the membrane-anchoring domain.

    PubMed Central

    Aoki, D; Lee, N; Yamaguchi, N; Dubois, C; Fukuda, M N

    1992-01-01

    Galactosyltransferase (GT; UDPgalactose:beta-D-N-acetylglucosaminide beta-1,4-galactosyltransferase, EC 2.4.1.22) is a type II membrane-anchored protein composed of a short N-terminal cytoplasmic tail, a signal/membrane-anchoring domain, and a stem region followed by a large catalytic domain including the C terminus. To identify the peptide segment and key amino acid residues that are critical for Golgi localization of GT, the expression vector pGT-hCG was designed to encode the entire GT molecule fused to the C-terminal region of human chorionic gonadotropin alpha subunit (hCG alpha) as a reporter. COS-1 cells transfected with pGT-hCG expressed the chimera in the Golgi region, as detected by immunofluorescence microscopy using anti-hCG antibodies. Two deletion mutants, delta tail and delta stem, which are lacking most of the N-terminal cytoplasmic tail or 10 amino acids immediately after the membrane-anchoring domain, were localized in the Golgi. Replacement mutations of the membrane-anchoring domain of GT showed that the second quarter of the transmembrane domain or Cys29-Ala30-Leu31-His32-Leu33 is necessary for GT to be retained in the Golgi. Furthermore, the point mutants Cys29----Ser29 and His32----Leu32 were partially transported to the plasma membrane, whereas an Ala30-Leu31----Phe30-Gly31 mutant was localized in the Golgi. Finally, a double mutant, Cys29/His32----Ser29/Leu32, was found to be transported efficiently to the plasma membrane. The signal-anchoring domain of the transferrin receptor, a type II plasma membrane protein, was then replaced by portions of the GT transmembrane domain. Although the Cys-Xaa-Xaa-His sequence by itself cannot retain the transferrin receptor in the Golgi, the cytoplasmic half of the transmembrane domain of GT was partially capable of retaining the transferrin receptor in the Golgi. These results suggest that the cytoplasmic (or N-terminal) half of the transmembrane domain of GT contributes to the Golgi retention signal and

  15. Suppression of retroviral MA deletions by the amino-terminal membrane-binding domain of p60src.

    PubMed Central

    Wills, J W; Craven, R C; Weldon, R A; Nelle, T D; Erdie, C R

    1991-01-01

    The molecular mechanism by which retroviral Gag proteins are directed to the plasma membrane for the formation of particles (budding) is unknown, but it is widely believed that the MA domain, located at the amino terminus, plays a critical role. Consistent with this idea, we found that small deletions in this segment of the Rous sarcoma virus Gag protein completely blocked particle formation. The mutant proteins appear to have suffered only localized structural damage since they could be rescued (i.e., packaged into particles) when coexpressed with Gag proteins that are competent for particle formation. To our surprise, the effects of the MA deletions could be completely suppressed by fusing as few as seven residues of the myristylated amino terminus of the oncoprotein p60src to the beginning of the mutant Gag proteins. Particles produced by the chimeras were of the same density as the wild type. Two myristylated peptides having sequences distinct from that of p60src were entirely unable to suppress MA deletions, indicating that myristate alone is not a sufficient membrane targeting signal. We hypothesize that the amino terminus of p60src suppresses the effects of MA deletions by diverting the Rous sarcoma virus Gag protein from its normal site of assembly to the Src receptor for particle formation. Images PMID:1710290

  16. C-terminal amino acid residue loss for deprotonated peptide ions containing glutamic acid, aspartic acid, or serine residues at the C-terminus.

    PubMed

    Li, Zhong; Yalcin, Talat; Cassady, Carolyn J

    2006-07-01

    Deprotonated peptides containing C-terminal glutamic acid, aspartic acid, or serine residues were studied by sustained off-resonance irradiation collision-induced dissociation (SORI-CID) in a Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometer with ion production by electrospray ionization (ESI). Additional studies were performed by post source decay (PSD) in a matrix-assisted laser desorption ionization/time-of-flight (MALDI/TOF) mass spectrometer. This work included both model peptides synthesized in our laboratory and bioactive peptides with more complex sequences. During SORI-CID and PSD, [M - H]- and [M - 2H]2- underwent an unusual cleavage corresponding to the elimination of the C-terminal residue. Two mechanisms are proposed to occur. They involve nucleophilic attack on the carbonyl carbon of the adjacent residue by either the carboxylate group of the C-terminus or the side chain carboxylate group of C-terminal glutamic acid and aspartic acid residues. To confirm the proposed mechanisms, AAAAAD was labelled by 18O specifically on the side chain of the aspartic acid residue. For peptides that contain multiple C-terminal glutamic acid residues, each of these residues can be sequentially eliminated from the deprotonated ions; a driving force may be the formation of a very stable pyroglutamatic acid neutral. For peptides with multiple aspartic acid residues at the C-terminus, aspartic acid residue loss is not sequential. For peptides with multiple serine residues at the C-terminus, C-terminal residue loss is sequential; however, abundant loss of other neutral molecules also occurs. In addition, the presence of basic residues (arginine or lysine) in the sequence has no effect on C-terminal residue elimination in the negative ion mode.

  17. Germline variant FGFR4  p.G388R exposes a membrane-proximal STAT3 binding site.

    PubMed

    Ulaganathan, Vijay K; Sperl, Bianca; Rapp, Ulf R; Ullrich, Axel

    2015-12-24

    Variant rs351855-G/A is a commonly occurring single-nucleotide polymorphism of coding regions in exon 9 of the fibroblast growth factor receptor FGFR4 (CD334) gene (c.1162G>A). It results in an amino-acid change at codon 388 from glycine to arginine (p.Gly388Arg) in the transmembrane domain of the receptor. Despite compelling genetic evidence for the association of this common variant with cancers of the bone, breast, colon, prostate, skin, lung, head and neck, as well as soft-tissue sarcomas and non-Hodgkin lymphoma, the underlying biological mechanism has remained elusive. Here we show that substitution of the conserved glycine 388 residue to a charged arginine residue alters the transmembrane spanning segment and exposes a membrane-proximal cytoplasmic signal transducer and activator of transcription 3 (STAT3) binding site Y(390)-(P)XXQ(393). We demonstrate that such membrane-proximal STAT3 binding motifs in the germline of type I membrane receptors enhance STAT3 tyrosine phosphorylation by recruiting STAT3 proteins to the inner cell membrane. Remarkably, such germline variants frequently co-localize with somatic mutations in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. Using Fgfr4 single nucleotide polymorphism knock-in mice and transgenic mouse models for breast and lung cancers, we validate the enhanced STAT3 signalling induced by the FGFR4 Arg388-variant in vivo. Thus, our findings elucidate the molecular mechanism behind the genetic association of rs351855 with accelerated cancer progression and suggest that germline variants of cell-surface molecules that recruit STAT3 to the inner cell membrane are a significant risk for cancer prognosis and disease progression.

  18. pK(a) Values of Titrable Amino Acids at the Water/Membrane Interface.

    PubMed

    Teixeira, Vitor H; Vila-Viçosa, Diogo; Reis, Pedro B P S; Machuqueiro, Miguel

    2016-03-08

    Peptides and proteins protonation equilibrium is strongly influenced by its surrounding media. Remarkably, until now, there have been no quantitative and systematic studies reporting the pK(a) shifts in the common titrable amino acids upon lipid membrane insertion. Here, we applied our recently developed CpHMD-L method to calculate the pK(a) values of titrable amino acid residues incorporated in Ala-based pentapeptides at the water/membrane interface. We observed that membrane insertion leads to desolvation and a clear stabilization of the neutral forms, and we quantified the increases/decreases of the pK(a) values in the anionic/cationic residues along the membrane normal. This work highlights the importance of properly modeling the protonation equilibrium in peptides and proteins interacting with membranes using molecular dynamics simulations.

  19. A few positively charged residues slow movement of a polypeptide chain across the endoplasmic reticulum membrane.

    PubMed

    Yamagishi, Marifu; Onishi, Yukiko; Yoshimura, Shotaro; Fujita, Hidenobu; Imai, Kenta; Kida, Yuichiro; Sakaguchi, Masao

    2014-08-26

    Many polypeptide chains are translocated across and integrated into the endoplasmic reticulum membrane through protein-conducting channels. During the process, amino acid sequences of translocating polypeptide chains are scanned by the channels and classified to be retained in the membrane or translocated into the lumen. We established an experimental system with which the kinetic effect of each amino acid residue on the polypeptide chain movement can be analyzed with a time resolution of tens of seconds. Positive charges greatly slow movement; only two lysine residues caused a remarkable slow down, and their effects were additive. The lysine residue was more effective than arginine. In contrast, clusters comprising three residues of each of the other 18 amino acids had little effect on chain movement. We also demonstrated that a four lysine cluster can exert the effect after being fully exposed from the ribosome. We concluded that as few as two to three residues of positively charged amino acids can slow the movement of the nascent polypeptide chain across the endoplasmic reticulum membrane. This effect provides a fundamental basis of the topogenic function of positively charged amino acids.

  20. Negatively-charged residues in the polar carboxy-terminal region in FSP27 are indispensable for expanding lipid droplets.

    PubMed

    Tamori, Yoshikazu; Tateya, Sanshiro; Ijuin, Takeshi; Nishimoto, Yuki; Nakajima, Shinsuke; Ogawa, Wataru

    2016-03-01

    FSP27 has an important role in large lipid droplet (LD) formation because it exchanges lipids at the contact site between LDs. In the present study, we clarify that the amino-terminal domain of FSP27 (amino acids 1-130) is dispensable for LD enlargement, although it accelerates LD growth. LD expansion depends on the carboxy-terminal domain of FSP27 (amino acids 131-239). Especially, the negative charge of the acidic residues (D215, E218, E219 and E220) in the polar carboxy-terminal region (amino acids 202-239) is essential for the enlargement of LD. We propose that the carboxy-terminal domain of FSP27 has a crucial role in LD expansion, whereas the amino-terminal domain only has a supportive role. © 2016 Federation of European Biochemical Societies.

  1. SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) N-terminal tyrosine residues regulate a dynamic signaling equilibrium involving feedback of proximal T-cell receptor (TCR) signaling.

    PubMed

    Ji, Qinqin; Ding, Yiyuan; Salomon, Arthur R

    2015-01-01

    SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is a cytosolic adaptor protein that plays an important role in the T-cell receptor-mediated T-cell signaling pathway. SLP-76 links proximal receptor stimulation to downstream effectors through interaction with many signaling proteins. Previous studies showed that mutation of three tyrosine residues, Tyr(112), Tyr(128), and Tyr(145), in the N terminus of SLP-76 results in severely impaired phosphorylation and activation of Itk and PLCγ1, which leads to defective calcium mobilization, Erk activation, and NFAT activation. To expand our knowledge of the role of N-terminal phosphorylation of SLP-76 from these three tyrosine sites, we characterized nearly 1000 tyrosine phosphorylation sites via mass spectrometry in SLP-76 reconstituted wild-type cells and SLP-76 mutant cells in which three tyrosine residues were replaced with phenylalanines (Y3F mutant). Mutation of the three N-terminal tyrosine residues of SLP-76 phenocopied SLP-76-deficient cells for the majority of tyrosine phosphorylation sites observed, including feedback on proximal T-cell receptor signaling proteins. Meanwhile, reversed phosphorylation changes were observed on Tyr(192) of Lck when we compared mutants to the complete removal of SLP-76. In addition, N-terminal tyrosine sites of SLP-76 also perturbed phosphorylation of Tyr(440) of Fyn, Tyr(702) of PLCγ1, Tyr(204), Tyr(397), and Tyr(69) of ZAP-70, revealing new modes of regulation on these sites. All these findings confirmed the central role of N-terminal tyrosine sites of SLP-76 in the pathway and also shed light on novel signaling events that are uniquely regulated by SLP-76 N-terminal tyrosine residues. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. SRC Homology 2 Domain-containing Leukocyte Phosphoprotein of 76 kDa (SLP-76) N-terminal Tyrosine Residues Regulate a Dynamic Signaling Equilibrium Involving Feedback of Proximal T-cell Receptor (TCR) Signaling*

    PubMed Central

    Ji, Qinqin; Ding, Yiyuan; Salomon, Arthur R.

    2015-01-01

    SRC homology 2 domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is a cytosolic adaptor protein that plays an important role in the T-cell receptor–mediated T-cell signaling pathway. SLP-76 links proximal receptor stimulation to downstream effectors through interaction with many signaling proteins. Previous studies showed that mutation of three tyrosine residues, Tyr112, Tyr128, and Tyr145, in the N terminus of SLP-76 results in severely impaired phosphorylation and activation of Itk and PLCγ1, which leads to defective calcium mobilization, Erk activation, and NFAT activation. To expand our knowledge of the role of N-terminal phosphorylation of SLP-76 from these three tyrosine sites, we characterized nearly 1000 tyrosine phosphorylation sites via mass spectrometry in SLP-76 reconstituted wild-type cells and SLP-76 mutant cells in which three tyrosine residues were replaced with phenylalanines (Y3F mutant). Mutation of the three N-terminal tyrosine residues of SLP-76 phenocopied SLP-76-deficient cells for the majority of tyrosine phosphorylation sites observed, including feedback on proximal T-cell receptor signaling proteins. Meanwhile, reversed phosphorylation changes were observed on Tyr192 of Lck when we compared mutants to the complete removal of SLP-76. In addition, N-terminal tyrosine sites of SLP-76 also perturbed phosphorylation of Tyr440 of Fyn, Tyr702 of PLCγ1, Tyr204, Tyr397, and Tyr69 of ZAP-70, revealing new modes of regulation on these sites. All these findings confirmed the central role of N-terminal tyrosine sites of SLP-76 in the pathway and also shed light on novel signaling events that are uniquely regulated by SLP-76 N-terminal tyrosine residues. PMID:25316710

  3. Occurrence of C-Terminal Residue Exclusion in Peptide Fragmentation by ESI and MALDI Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Dupré, Mathieu; Cantel, Sonia; Martinez, Jean; Enjalbal, Christine

    2012-02-01

    By screening a data set of 392 synthetic peptides MS/MS spectra, we found that a known C-terminal rearrangement was unexpectedly frequently occurring from monoprotonated molecular ions in both ESI and MALDI tandem mass spectrometry upon low and high energy collision activated dissociations with QqTOF and TOF/TOF mass analyzer configuration, respectively. Any residue localized at the C-terminal carboxylic acid end, even a basic one, was lost, provided that a basic amino acid such arginine and to a lesser extent histidine and lysine was present in the sequence leading to a fragment ion, usually depicted as (bn-1 + H2O) ion, corresponding to a shortened non-scrambled peptide chain. Far from being an epiphenomenon, such a residue exclusion from the peptide chain C-terminal extremity gave a fragment ion that was the base peak of the MS/MS spectrum in certain cases. Within the frame of the mobile proton model, the ionizing proton being sequestered onto the basic amino acid side chain, it is known that the charge directed fragmentation mechanism involved the C-terminal carboxylic acid function forming an anhydride intermediate structure. The same mechanism was also demonstrated from cationized peptides. To confirm such assessment, we have prepared some of the peptides that displayed such C-terminal residue exclusion as a C-terminal backbone amide. As expected in this peptide amide series, the production of truncated chains was completely suppressed. Besides, multiply charged molecular ions of all peptides recorded in ESI mass spectrometry did not undergo such fragmentation validating that any mobile ionizing proton will prevent such a competitive C-terminal backbone rearrangement. Among all well-known nondirect sequence fragment ions issued from non specific loss of neutral molecules (mainly H2O and NH3) and multiple backbone amide ruptures (b-type internal ions), the described C-terminal residue exclusion is highly identifiable giving raise to a single fragment ion in

  4. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage.

    PubMed

    Ploss, Martin; Kuhn, Andreas

    2011-09-26

    Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies.

  5. Membrane insertion and assembly of epitope-tagged gp9 at the tip of the M13 phage

    PubMed Central

    2011-01-01

    Background Filamentous M13 phage extrude from infected Escherichia coli with a tip structure composed of gp7 and gp9. This tip structure is extended by the assembly of the filament composed of the major coat protein gp8. Finally, gp3 and gp6 terminate the phage structure at the proximal end. Up to now, gp3 has been the primary tool for phage display technology. However, gp7, gp8 and gp9 could also be used for phage display and these phage particles should bind to two different or more surfaces when the modified coat proteins are combined. Therefore, we tested here if the amino-terminal end of gp9 can be modified and whether the modified portion is exposed and detectable on the M13 phage particles. Results The amino-terminal region of gp9 was modified by inserting short sequences that encode antigenic epitopes. We show here that the modified gp9 proteins correctly integrate into the membrane using the membrane insertase YidC exposing the modified epitope into the periplasm. The proteins are then efficiently assembled onto the phage particles. Also extensions up to 36 amino acid residues at the amino-terminal end of gp9 did not interfere with membrane integration and phage assembly. The exposure of the antigenic tags on the phage was visualised with immunogold labelling by electron microscopy and verified by dot blotting with antibodies to the tags. Conclusions Our results suggest that gp9 at the phage tip is suitable for the phage display technology. The modified gp9 can be supplied in trans from a plasmid and fully complements M13 phage with an amber mutation in gene 9. The modified phage tip is very well accessible to antibodies. PMID:21943062

  6. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in membrane integration and agonist-stimulated internalization.

    PubMed

    Lindner, Diana; Walther, Cornelia; Tennemann, Anja; Beck-Sickinger, Annette G

    2009-01-01

    The N terminus is the most variable element in G protein-coupled receptors (GPCRs), ranging from seven residues up to approximately 5900 residues. For family B and C GPCRs it is described that at least part of the ligand binding site is located within the N terminus. Here we investigated the role of the N terminus in the neuropeptide Y receptor family, which belongs to the class A of GPCRs. We cloned differentially truncated Y receptor mutants, in which the N terminus was partially or completely deleted. We found, that eight amino acids are sufficient for full ligand binding and signal transduction activity. Interestingly, we could show that no specific amino acids but rather the extension of the first transmembrane helix by any residues is sufficient for receptor activity but also for membrane integration in case of the hY(1) and the hY(4) receptors. In contrast, the complete deletion of the N terminus in the hY(2) receptors resulted in a mutant that is fully integrated in the membrane but does not bind the ligand very well and internalizes much slower compared to the wild type receptor. Interestingly, also these effects could be reverted by any N-terminal extension. Accordingly, the most important function of the N termini seems to be the stabilization of the first transmembrane helix to ensure the correct receptor structure, which obviously is essential for ligand binding, integration into the cell membrane and receptor internalization.

  7. Pyrazole amino acids: hydrogen bonding directed conformations of 3-amino-1H-pyrazole-5-carboxylic acid residue.

    PubMed

    Kusakiewicz-Dawid, Anna; Porada, Monika; Ochędzan-Siodłak, Wioletta; Broda, Małgorzata A; Bujak, Maciej; Siodłak, Dawid

    2017-09-01

    A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  8. The Amino-Terminal PrP Domain Is Crucial to Modulate Prion Misfolding and Aggregation

    PubMed Central

    Cordeiro, Yraima; Kraineva, Julia; Gomes, Mariana P. B.; Lopes, Marilene H.; Martins, Vilma R.; Lima, Luís M. T. R.; Foguel, Débora; Winter, Roland; Silva, Jerson L.

    2005-01-01

    The main hypothesis for prion diseases is that the cellular protein (PrPC) can be altered into a misfolded, β-sheet-rich isoform (PrPSc), which undergoes aggregation and triggers the onset of transmissible spongiform encephalopathies. Here, we investigate the effects of amino-terminal deletion mutations, rPrPΔ51–90 and rPrPΔ32–121, on the stability and the packing properties of recombinant murine PrP. The region lacking in rPrPΔ51–90 is involved physiologically in copper binding and the other construct lacks more amino-terminal residues (from 32 to 121). The pressure stability is dramatically reduced with decreasing N-domain length and the process is not reversible for rPrPΔ51–90 and rPrPΔ32–121, whereas it is completely reversible for the wild-type form. Decompression to atmospheric pressure triggers immediate aggregation for the mutants in contrast to a slow aggregation process for the wild-type, as observed by Fourier-transform infrared spectroscopy. The temperature-induced transition leads to aggregation of all rPrPs, but the unfolding temperature is lower for the rPrP amino-terminal deletion mutants. The higher susceptibility to pressure of the amino-terminal deletion mutants can be explained by a change in hydration and cavity distribution. Taken together, our results show that the amino-terminal region has a pivotal role on the development of prion misfolding and aggregation. PMID:16040743

  9. Determination of the pKa of the N-terminal amino group of ubiquitin by NMR

    PubMed Central

    Oregioni, Alain; Stieglitz, Benjamin; Kelly, Geoffrey; Rittinger, Katrin; Frenkiel, Tom

    2017-01-01

    Ubiquitination regulates nearly every aspect of cellular life. It is catalysed by a cascade of three enzymes and results in the attachment of the C-terminal carboxylate of ubiquitin to a lysine side chain in the protein substrate. Chain extension occurs via addition of subsequent ubiquitin molecules to either one of the seven lysine residues of ubiquitin, or via its N-terminal α-amino group to build linear ubiquitin chains. The pKa of lysine side chains is around 10.5 and hence E3 ligases require a mechanism to deprotonate the amino group at physiological pH to produce an effective nucleophile. In contrast, the pKa of N-terminal α-amino groups of proteins can vary significantly, with reported values between 6.8 and 9.1, raising the possibility that linear chain synthesis may not require a general base. In this study we use NMR spectroscopy to determine the pKa for the N-terminal α-amino group of methionine1 of ubiquitin for the first time. We show that it is 9.14, one of the highest pKa values ever reported for this amino group, providing a rational for the observed need for a general base in the E3 ligase HOIP, which synthesizes linear ubiquitin chains. PMID:28252051

  10. Age-dependent loss of the C-terminal amino acid from alpha crystallin

    NASA Technical Reports Server (NTRS)

    Emmons, T.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum made against the C-terminal region of alpha-A crystallin was used to monitor the purification of a tryptic peptide containing the C-terminus of the molecule from fetal versus adult bovine lenses. Mass spectral analysis of the peptide preparations obtained from these lenses demonstrated the presence of a peptide (T20) containing an intact C-terminus from fetal lenses and the presence of an additional peptide (T20') from older lenses that contained a cleaved C-terminal serine. These results demonstrate an age-dependent processing of alpha-A crystallin in the bovine lens, resulting in removal of the C-terminal amino acid residue.

  11. Novel cystine transporter in renal proximal tubule identified as a missing partner of cystinuria-related plasma membrane protein rBAT/SLC3A1.

    PubMed

    Nagamori, Shushi; Wiriyasermkul, Pattama; Guarch, Meritxell Espino; Okuyama, Hirohisa; Nakagomi, Saya; Tadagaki, Kenjiro; Nishinaka, Yumiko; Bodoy, Susanna; Takafuji, Kazuaki; Okuda, Suguru; Kurokawa, Junko; Ohgaki, Ryuichi; Nunes, Virginia; Palacín, Manuel; Kanai, Yoshikatsu

    2016-01-19

    Heterodimeric amino acid transporters play crucial roles in epithelial transport, as well as in cellular nutrition. Among them, the heterodimer of a membrane protein b(0,+)AT/SLC7A9 and its auxiliary subunit rBAT/SLC3A1 is responsible for cystine reabsorption in renal proximal tubules. The mutations in either subunit cause cystinuria, an inherited amino aciduria with impaired renal reabsorption of cystine and dibasic amino acids. However, an unsolved paradox is that rBAT is highly expressed in the S3 segment, the late proximal tubules, whereas b(0,+)AT expression is highest in the S1 segment, the early proximal tubules, so that the presence of an unknown partner of rBAT in the S3 segment has been proposed. In this study, by means of coimmunoprecipitation followed by mass spectrometry, we have found that a membrane protein AGT1/SLC7A13 is the second partner of rBAT. AGT1 is localized in the apical membrane of the S3 segment, where it forms a heterodimer with rBAT. Depletion of rBAT in mice eliminates the expression of AGT1 in the renal apical membrane. We have reconstituted the purified AGT1-rBAT heterodimer into proteoliposomes and showed that AGT1 transports cystine, aspartate, and glutamate. In the apical membrane of the S3 segment, AGT1 is suggested to locate itself in close proximity to sodium-dependent acidic amino acid transporter EAAC1 for efficient functional coupling. EAAC1 is proposed to take up aspartate and glutamate released into luminal fluid by AGT1 due to its countertransport so that preventing the urinary loss of aspartate and glutamate. Taken all together, AGT1 is the long-postulated second cystine transporter in the S3 segment of proximal tubules and a possible candidate to be involved in isolated cystinuria.

  12. The role of aspartic acid residues 405 and 416 of the kidney isotype of sodium-bicarbonate cotransporter 1 in its targeting to the plasma membrane

    PubMed Central

    Kucher, Volodymyr; Li, Emily Y.; Conforti, Laura; Zahedi, Kamyar A.

    2012-01-01

    The NH2 terminus of the sodium-bicarbonate cotransporter 1 (NBCe1) plays an important role in its targeting to the plasma membrane. To identify the amino acid residues that contribute to the targeting of NBCe1 to the plasma membrane, polarized MDCK cells were transfected with expression constructs coding for green fluorescent protein (GFP)-tagged NBCe1 NH2-terminal deletion mutants, and the localization of GFP-tagged proteins was analyzed by confocal microscopy. Our results indicate that the amino acids between residues 399 and 424 of NBCe1A contain important sequences that contribute to its localization to the plasma membrane. Site-directed mutagenesis studies showed that GFP-NBCe1A mutants D405A and D416A are retained in the cytoplasm of the polarized MDCK epithelial cells. Examination of functional activities of D405A and D416A reveals that their activities are reduced compared with the wild-type NBCe1A. Similarly, aspartic acid residues 449 and 460 of pancreatic NBCe1 (NBCe1B), which correspond to residues 405 and 416 of NBCe1A, are also required for its full functional activity and accurate targeting to the plasma membrane. In addition, while replacement of D416 with glutamic acid did not affect the targeting or functional activity of NBCe1A, substitution of D405 with glutamic acid led to the retention of the mutated protein in the intracellular compartment and impaired functional activity. These studies demonstrate that aspartic acid residues 405 and 416 in the NH2 terminus of NBCe1A are important in its accurate targeting to the plasma membrane. PMID:22442137

  13. Septal membrane localization by C-terminal amphipathic α-helices of MinD in Bacillus subtilis mutant cells lacking MinJ or DivIVA.

    PubMed

    Ishikawa, Kazuki; Matsuoka, Satoshi; Hara, Hiroshi; Matsumoto, Kouji

    2017-10-18

    The Min system, which inhibits assembly of the cytokinetic protein FtsZ, is largely responsible for positioning the division site in rod-shaped bacteria. It has been reported that MinJ, which bridges DivIVA and MinD, is targeted to the cell poles by an interaction with DivIVA, and that MinJ in turn recruits MinCD to the cell poles. MinC, however, is located primarily at active division sites at mid-cell when expressed from its native promoter. Surprisingly, we found that Bacillus subtilis MinD is located at nascent septal membranes and at an asymmetric site on lateral membranes between nascent septal membranes in filamentous cells lacking MinJ or DivIVA. Bacillus subtilis MinD has two amphipathic α-helices rich in basic amino acid residues at its C-terminus; one of these, named MTS1 here, is the counterpart of the membrane targeting sequence (MTS) in Escherichia coli MinD while the other, named MTS-like sequence (MTSL), is the nearest helix to MTS1. These amphipathic helices were located independently at nascent septal membranes in cells lacking MinJ or DivIVA, whereas elimination of the helices from the wild type protein reduced its localization considerably. MinD variants with altered MTS1 and MTSL, in which basic amino acid residues were replaced with proline or acidic residues, were not located at nascent septal membranes, indicating that the binding to the nascent septal membranes requires basic residues and a helical structure. The septal localization of MTSL, but not of MTS1, was dependent on host cell MinD. These results suggest that MinD is targeted to nascent septal membranes via its C-terminal amphipathic α-helices in B. subtilis cells lacking MinJ or DivIVA. Moreover, the diffuse distribution of MinD lacking both MTSs suggests that only a small fraction of MinD depends on MinJ for its localization to nascent septal membranes.

  14. Amino-terminal residues of ΔNp63, mutated in ectodermal dysplasia, are required for its transcriptional activity.

    PubMed

    Lena, Anna Maria; Duca, Sara; Novelli, Flavia; Melino, Sonia; Annicchiarico-Petruzzelli, Margherita; Melino, Gerry; Candi, Eleonora

    2015-11-13

    p63, a member of the p53 family, is a crucial transcription factor for epithelial development and skin homeostasis. Heterozygous mutations in TP63 gene have been associated with human ectodermal dysplasia disorders. Most of these TP63 mutations are missense mutations causing amino acidic substitutions at p63 DNA binding or SAM domains that reduce or abolish the transcriptional activity of mutants p63. A significant number of mutants, however, resides in part of the p63 protein that apparently do not affect DNA binding and/or transcriptional activity, such as the N-terminal domain. Here, we characterize five p63 mutations at the 5' end of TP63 gene aiming to understand the pathogenesis of the diseases and to uncover the role of ΔNp63α N-terminus residues in determining its transactivation potential. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Conformational transition of membrane-associated terminally-acylated HIV-1 Nef

    PubMed Central

    Akgun, Bulent; Satija, Sushil; Nanda, Hirsh; Pirrone, Gregory F.; Shi, Xiaomeng; Engen, John R.; Kent, Michael S.

    2013-01-01

    Many proteins are post-translationally modified by acylation targetting them to lipid membranes. While methods such as X-ray crystallography and NMR are available to determine the structure of folded proteins in solution, the precise position of folded domains relative to a membrane remains largely unknown. We used neutron and X-ray reflection methods to measure the displacement of the core domain of HIV Nef from lipid membranes upon insertion of the N-terminal myristate group. Nef is one of several HIV-1 accessory proteins and an essential factor in AIDS progression. Upon insertion of the myristate and residues from the N-terminal arm, Nef transitions from a closed to open conformation that positions the core domain 70 Å from the lipid headgroups. This work rules out speculation that the Nef core remains closely associated with the membrane to optimize interactions with the cytoplasmic domain of MHC-1. PMID:24035710

  16. The amino-terminal hydrophilic region of the vacuolar transporter Avt3p is dispensable for the vacuolar amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Kawano-Kawada, Miyuki; Chardwiriyapreecha, Soracom; Manabe, Kunio; Sekito, Takayuki; Akiyama, Koichi; Takegawa, Kaoru; Kakinuma, Yoshimi

    2016-12-01

    Avt3p, a vacuolar amino acid exporter (656 amino acid residues) that is important for vacuolar amino acid compartmentalization as well as spore formation in Schizosaccharomyces pombe, has an extremely long hydrophilic region (approximately 290 amino acid residues) at its N-terminus. Because known functional domains have not been found in this region, its functional role was examined with a deletion mutant avt3 (∆1-270) expressed in S. pombe avt3∆ cells. The deletion of this region did not affect its intracellular localization or vacuolar contents of basic amino acids as well as neutral ones. The defect of avt3Δ cells in spore formation was rescued by the expression of avt3 + but was not completely rescued by the expression of avt3 (∆1-270) . The N-terminal region is thus dispensable for the function of Avt3p as an amino acid exporter, but it is likely to be involved in the role of Avt3p under nutritional starvation conditions.

  17. Amino-terminal sequence of glycoprotein D of herpes simplex virus types 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenberg, R.J.; Long, D.; Hogue-Angeletti, R.

    1984-01-01

    Glycoprotein D (gD) of herpes simplex virus is a structural component of the virion envelope which stimulates production of high titers of herpes simplex virus type-common neutralizing antibody. The authors caried out automated N-terminal amino acid sequencing studies on radiolabeled preparations of gD-1 (gD of herpes simplex virus type 1) and gD-2 (gD of herpes simplex virus type 2). Although some differences were noted, particularly in the methionine and alanine profiles for gD-1 and gD-2, the amino acid sequence of a number of the first 30 residues of the amino terminus of gD-1 and gD-2 appears to be quite similar.more » For both proteins, the first residue is a lysine. When we compared out sequence data for gD-1 with those predicted by nucleic acid sequencing, the two sequences could be aligned (with one exception) starting at residue 26 (lysine) of the predicted sequence. Thus, the first 25 amino acids of the predicted sequence are absent from the polypeptides isolated from infected cells.« less

  18. Export of FepA::PhoA fusion proteins to the outer membrane of Escherichia coli K-12.

    PubMed

    Murphy, C K; Klebba, P E

    1989-11-01

    A library of fepA::phoA gene fusions was generated in order to study the structure and secretion of the Escherichia coli K-12 ferric enterobactin receptor, FepA. All of the fusion proteins contained various lengths of the amino-terminal portion of FepA fused in frame to the catalytic portion of bacterial alkaline phosphatase. Localization of FepA::PhoA fusion proteins in the cell envelope was dependent on the number of residues of mature FepA present at the amino terminus. Hybrids containing up to one-third of the amino-terminal portion of FepA fractionated with their periplasm, while those containing longer sequences of mature FepA were exported to the outer membrane. Outer membrane-localized fusion proteins expressed FepA sequences on the external face of the outer membrane and alkaline phosphatase moieties in the periplasmic space. From sequence determinations of the fepA::phoA fusion joints, residues within FepA which may be exposed on the periplasmic side of the outer membrane were identified.

  19. Mapping and mutagenesis of the amino-terminal transcriptional repression domain of the Drosophila Krüppel protein.

    PubMed Central

    Licht, J D; Hanna-Rose, W; Reddy, J C; English, M A; Ro, M; Grossel, M; Shaknovich, R; Hansen, U

    1994-01-01

    We previously demonstrated that the Drosophila Krüppel protein is a transcriptional repressor with separable DNA-binding and transcriptional repression activities. In this study, the minimal amino (N)-terminal repression region of the Krüppel protein was defined by transferring regions of the Krüppel protein to a heterologous DNA-binding protein, the lacI protein. Fusion of a predicted alpha-helical region from amino acids 62 to 92 in the N terminus of the Krüppel protein was sufficient to transfer repression activity. This putative alpha-helix has several hydrophobic surfaces, as well as a glutamine-rich surface. Mutants containing multiple amino acid substitutions of the glutamine residues demonstrated that this putative alpha-helical region is essential for repression activity of a Krüppel protein containing the entire N-terminal and DNA-binding regions. Furthermore, one point mutant with only a single glutamine on this surface altered to lysine abolished the ability of the Krüppel protein to repress, indicating the importance of the amino acid at residue 86 for repression. The N terminus also contained an adjacent activation region localized between amino acids 86 and 117. Finally, in accordance with predictions from primary amino acid sequence similarity, a repression region from the Drosophila even-skipped protein, which was six times more potent than that of the Krüppel protein in the mammalian cells, was characterized. This segment included a hydrophobic stretch of 11 consecutive alanine residues and a proline-rich region. Images PMID:8196644

  20. The role of a conserved membrane proximal cysteine in altering αPS2CβPS integrin diffusion.

    PubMed

    Syed, Aleem; Arora, Neha; Bunch, Thomas A; Smith, Emily A

    2016-11-15

    Cysteine residues (Cys) in the membrane proximal region are common post-translational modification (PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-subunit Cys 1368 on the diffusion properties of αPS2CβPS integrins are reported. Sequence alignment shows that this cysteine is palmitoylated in human α3 and α6 integrin subunits. Replacing Cys 1368 in wild-type integrins with valine (Val 1368 ) putatively blocks a PTM site and alters integrins' ligand binding and diffusion characteristics. Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion measurements show Val 1368 integrins are more mobile compared to wild-type integrins. Approximately 33% and 8% more Val 1368 integrins are mobile as measured by FRAP and SPT, respectively. The mobile Val 1368 integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass spectrometry data suggest that Cys 1368 contains a redox or palmitoylation PTM in αPS2CβPS integrins. This membrane proximal Cys may play an important role in the diffusion of other alpha subunits that contain this conserved residue.

  1. The role of a conserved membrane proximal cysteine in altering αPS2CβPS integrin diffusion

    NASA Astrophysics Data System (ADS)

    Syed, Aleem; Arora, Neha; Bunch, Thomas A.; Smith, Emily A.

    2016-12-01

    Cysteine residues (Cys) in the membrane proximal region are common post-translational modification (PTM) sites in transmembrane proteins. Herein, the effects of a highly conserved membrane proximal α-subunit Cys1368 on the diffusion properties of αPS2CβPS integrins are reported. Sequence alignment shows that this cysteine is palmitoylated in human α3 and α6 integrin subunits. Replacing Cys1368 in wild-type integrins with valine (Val1368) putatively blocks a PTM site and alters integrins’ ligand binding and diffusion characteristics. Both fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT) diffusion measurements show Val1368 integrins are more mobile compared to wild-type integrins. Approximately 33% and 8% more Val1368 integrins are mobile as measured by FRAP and SPT, respectively. The mobile Val1368 integrins also exhibit less time-dependent diffusion, as measured by FRAP. Tandem mass spectrometry data suggest that Cys1368 contains a redox or palmitoylation PTM in αPS2CβPS integrins. This membrane proximal Cys may play an important role in the diffusion of other alpha subunits that contain this conserved residue.

  2. Complete complementary DNA-derived amino acid sequence of canine cardiac phospholamban.

    PubMed Central

    Fujii, J; Ueno, A; Kitano, K; Tanaka, S; Kadoma, M; Tada, M

    1987-01-01

    Complementary DNA (cDNA) clones specific for phospholamban of sarcoplasmic reticulum membranes have been isolated from a canine cardiac cDNA library. The amino acid sequence deduced from the cDNA sequence indicates that phospholamban consists of 52 amino acid residues and lacks an amino-terminal signal sequence. The protein has an inferred mol wt 6,080 that is in agreement with its apparent monomeric mol wt 6,000, estimated previously by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Phospholamban contains two distinct domains, a hydrophilic region at the amino terminus (domain I) and a hydrophobic region at the carboxy terminus (domain II). We propose that domain I is localized at the cytoplasmic surface and offers phosphorylatable sites whereas domain II is anchored into the sarcoplasmic reticulum membrane. PMID:3793929

  3. NH2-Terminal Residues of Neurospora crassa Proteins

    PubMed Central

    Rho, Hyune Mo; DeBusk, A. Gib

    1971-01-01

    The NH2-terminal amino acid composition of the soluble and ribosomal proteins from Neurospora crassa mycelia and conidia was determined by the dinitrophenyl method. A nonrandom distribution of NH2-terminal amino acids was observed in the complex protein mixtures. Glycine, alanine, and serine accounted for 75% of the NH2-terminal amino acids, and glycine appeared most frequently in mature proteins of mycelia. The appearance of phenylalanine as one of the major NH2-termini in crude conidial fraction suggests that the composition of proteins may vary in different developmental stages. PMID:5095291

  4. Specific electrostatic interactions between charged amino acid residues regulate binding of von Willebrand factor to blood platelets.

    PubMed

    Interlandi, Gianluca; Yakovenko, Olga; Tu, An-Yue; Harris, Jeff; Le, Jennie; Chen, Junmei; López, José A; Thomas, Wendy E

    2017-11-10

    The plasma protein von Willebrand factor (VWF) is essential for hemostasis initiation at sites of vascular injury. The platelet-binding A1 domain of VWF is connected to the VWF N-terminally located D'D3 domain through a relatively unstructured amino acid sequence, called here the N-terminal linker. This region has previously been shown to inhibit the binding of VWF to the platelet surface receptor glycoprotein Ibα (GpIbα). However, the molecular mechanism underlying the inhibitory function of the N-terminal linker has not been elucidated. Here, we show that an aspartate at position 1261 is the most critical residue of the N-terminal linker for inhibiting binding of the VWF A1 domain to GpIbα on platelets in blood flow. Through a combination of molecular dynamics simulations, mutagenesis, and A1-GpIbα binding experiments, we identified a network of salt bridges between Asp 1261 and the rest of A1 that lock the N-terminal linker in place such that it reduces binding to GpIbα. Mutations aimed at disrupting any of these salt bridges activated binding unless the mutated residue also formed a salt bridge with GpIbα, in which case the mutations inhibited the binding. These results show that interactions between charged amino acid residues are important both to directly stabilize the A1-GpIbα complex and to indirectly destabilize the complex through the N-terminal linker. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Membrane interaction of the N-terminal domain of chemokine receptor CXCR1.

    PubMed

    Haldar, Sourav; Raghuraman, H; Namani, Trishool; Rajarathnam, Krishna; Chattopadhyay, Amitabha

    2010-06-01

    The N-terminal domain of chemokine receptors constitutes one of the two critical ligand binding sites, and plays important roles by mediating binding affinity, receptor selectivity, and regulating function. In this work, we monitored the organization and dynamics of a 34-mer peptide of the CXC chemokine receptor 1 (CXCR1) N-terminal domain and its interaction with membranes by utilizing a combination of fluorescence-based approaches and surface pressure measurements. Our results show that the CXCR1 N-domain 34-mer peptide binds vesicles of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and upon binding, the tryptophan residues of the peptide experience motional restriction and exhibit red edge excitation shift (REES) of 19nm. These results are further supported by increase in fluorescence anisotropy and mean fluorescence lifetime upon membrane binding. These results constitute one of the first reports demonstrating membrane interaction of the N-terminal domain of CXCR1 and gain relevance in the context of the emerging role of cellular membranes in chemokine signaling.

  6. Transport characteristics of L-citrulline in renal apical membrane of proximal tubular cells.

    PubMed

    Mitsuoka, Keisuke; Shirasaka, Yoshiyuki; Fukushi, Akimasa; Sato, Masanobu; Nakamura, Toshimichi; Nakanishi, Takeo; Tamai, Ikumi

    2009-04-01

    L-Citrulline has diagnostic potential for renal function, because its plasma concentration increases with the progression of renal failure. Although L-citrulline extracted by glomerular filtration in kidney is mostly reabsorbed, the mechanism involved is not clearly understood. The present study was designed to characterize L-citrulline transport across the apical membranes of renal epithelial tubular cells, using primary-cultured rat renal proximal tubular cells, as well as the human kidney proximal tubular cell line HK-2. L-Citrulline was transported in a Na(+)-dependent manner from the apical side of both cell types cultured on permeable supports with a microporous membrane. Kinetic analysis indicated that the transport involves two distinct Na(+)-dependent saturable systems and one Na(+)-independent saturable system in HK-2 cells. The uptake was competitively inhibited by neutral and cationic, but not anionic amino acids. Relatively large cationic and anionic compounds inhibited the uptake, but smaller ones did not. In HK-2 cells, mRNA expression of SLC6A19 and SLC7A9, which encode B(0)AT1 and b(0,+)AT, respectively, was detected by RT-PCR. In addition, L-citrulline transport was significantly decreased in HK-2 cells in which either SLC6A19 or SLC7A9 was silenced. Hence, these results suggest that amino acid transporters B(0)AT1 and b(0,+)AT are involved in the reabsorption of L-citrulline in the kidney, at least in part, by mediating the apical membrane transport of L-citrulline in renal tubule cells.

  7. Modulation of procaspase-7 self-activation by PEST amino acid residues of the N-terminal prodomain and intersubunit linker.

    PubMed

    Alves, Juliano; Garay-Malpartida, Miguel; Occhiucci, João M; Belizário, José E

    2017-12-01

    Procaspase-7 zymogen polypeptide is composed of a short prodomain, a large subunit (p20), and a small subunit (p10) connected to an intersubunit linker. Caspase-7 is activated by an initiator caspase-8 and -9, or by autocatalysis after specific cleavage at IQAD 198 ↓S located at the intersubunit linker. Previously, we identified that PEST regions made of amino acid residues Pro (P), Glu (E), Asp (D), Ser (S), Thr (T), Asn (N), and Gln (Q) are conserved flanking amino acid residues in the cleavage sites within a prodomain and intersubunit linker of all caspase family members. Here we tested the impact of alanine substitution of PEST amino acid residues on procaspase-7 proteolytic self-activation directly in Escherichia coli. The p20 and p10 subunit cleavage were significantly delayed in double caspase-7 mutants in the prodomain (N18A/P26A) and intersubunit linker (S199A/P201A), compared with the wild-type caspase-7. The S199A/P201A mutants effectively inhibited the p10 small subunit cleavage. However, the mutations did not change the kinetic parameters (k cat /K M ) and optimal tetrapeptide specificity (DEVD) of the purified mutant enzymes. The results suggest a role of PEST-amino acid residues in the molecular mechanism for prodomain and intersubunit cleavage and caspase-7 self-activation.

  8. Networks of high mutual information define the structural proximity of catalytic sites: implications for catalytic residue identification.

    PubMed

    Marino Buslje, Cristina; Teppa, Elin; Di Doménico, Tomas; Delfino, José María; Nielsen, Morten

    2010-11-04

    Identification of catalytic residues (CR) is essential for the characterization of enzyme function. CR are, in general, conserved and located in the functional site of a protein in order to attain their function. However, many non-catalytic residues are highly conserved and not all CR are conserved throughout a given protein family making identification of CR a challenging task. Here, we put forward the hypothesis that CR carry a particular signature defined by networks of close proximity residues with high mutual information (MI), and that this signature can be applied to distinguish functional from other non-functional conserved residues. Using a data set of 434 Pfam families included in the catalytic site atlas (CSA) database, we tested this hypothesis and demonstrated that MI can complement amino acid conservation scores to detect CR. The Kullback-Leibler (KL) conservation measurement was shown to significantly outperform both the Shannon entropy and maximal frequency measurements. Residues in the proximity of catalytic sites were shown to be rich in shared MI. A structural proximity MI average score (termed pMI) was demonstrated to be a strong predictor for CR, thus confirming the proposed hypothesis. A structural proximity conservation average score (termed pC) was also calculated and demonstrated to carry distinct information from pMI. A catalytic likeliness score (Cls), combining the KL, pC and pMI measures, was shown to lead to significantly improved prediction accuracy. At a specificity of 0.90, the Cls method was found to have a sensitivity of 0.816. In summary, we demonstrate that networks of residues with high MI provide a distinct signature on CR and propose that such a signature should be present in other classes of functional residues where the requirement to maintain a particular function places limitations on the diversification of the structural environment along the course of evolution.

  9. Highly potent antimicrobial peptides from N-terminal membrane-binding region of E. coli MreB.

    PubMed

    Saikia, Karabi; Sravani, Yalavarthi Durga; Ramakrishnan, Vibin; Chaudhary, Nitin

    2017-02-23

    Microbial pathogenesis is a serious health concern. The threat escalates as the existing conventional antimicrobials are losing their efficacy against the evolving pathogens. Peptides hold promise to be developed into next-generation antibiotics. Antimicrobial peptides adopt amphipathic structures that could selectively bind to and disrupt the microbial membranes. Interaction of proteins with membranes is central to all living systems and we reasoned that the membrane-binding domains in microbial proteins could be developed into efficient antimicrobials. This is an interesting approach as self-like sequences could elude the microbial strategies of degrading the antimicrobial peptides, one of the mechanisms of showing resistance to antimicrobials. We selected the 9-residue-long membrane-binding region of E. coli MreB protein. The 9-residue peptide (C-terminal amide) and its N-terminal acetylated analog displayed broad-spectrum activity, killing Gram-negative bacteria, Gram-positive bacteria, and fungi. Extension with a tryptophan residue at the N-terminus drastically improved the activity of the peptides with lethal concentrations ≤10 μM against all the organisms tested. The tryptophan-extended peptides caused complete killing of C. albicans as well as gentamicin and methicillin resistant S. aureus at 5 μM concentration. Lipid-binding studies and electron microscopic analyses of the peptide-treated microbes suggest membrane disruption as the mechanism of killing.

  10. Structural organization of intercellular channels II. Amino terminal domain of the connexins: sequence, functional roles, and structure.

    PubMed

    Beyer, Eric C; Lipkind, Gregory M; Kyle, John W; Berthoud, Viviana M

    2012-08-01

    The amino terminal domain (NT) of the connexins consists of their first 22-23 amino acids. Site-directed mutagenesis studies have demonstrated that NT amino acids are determinants of gap junction channel properties including unitary conductance, permeability/selectivity, and gating in response to transjunctional voltage. The importance of this region has also been emphasized by the identification of multiple disease-associated connexin mutants affecting amino acid residues in the NT region. The first part of the NT is α-helical. The structure of the Cx26 gap junction channel shows that the NT α-helix localizes within the channel, and lines the wall of the pore. Interactions of the amino acid residues in the NT with those in the transmembrane helices may be critical for holding the channel open. The predicted sites of these interactions and the applicability of the Cx26 structure to the NT of other connexins are considered. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics. Copyright © 2011. Published by Elsevier B.V.

  11. The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function.

    PubMed

    Pathania, Amit; Gupta, Arvind Kumar; Dubey, Swati; Gopal, Balasubramanian; Sardesai, Abhijit A

    2016-12-01

    ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an N in -C out configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit. The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology that is distinct

  12. The Topology of the l-Arginine Exporter ArgO Conforms to an Nin-Cout Configuration in Escherichia coli: Requirement for the Cytoplasmic N-Terminal Domain, Functional Helical Interactions, and an Aspartate Pair for ArgO Function

    PubMed Central

    Pathania, Amit; Gupta, Arvind Kumar; Dubey, Swati; Gopal, Balasubramanian

    2016-01-01

    ABSTRACT ArgO and LysE are members of the LysE family of exporter proteins and ordinarily mediate the export of l-arginine (Arg) in Escherichia coli and l-lysine (Lys) and Arg in Corynebacterium glutamicum, respectively. Under certain conditions, ArgO also mediates Lys export. To delineate the arrangement of ArgO in the cytoplasmic membrane of E. coli, we have employed a combination of cysteine accessibility in situ, alkaline phosphatase fusion reporters, and protein modeling to arrive at a topological model of ArgO. Our studies indicate that ArgO assumes an Nin-Cout configuration, potentially forming a five-transmembrane helix bundle flanked by a cytoplasmic N-terminal domain (NTD) comprising roughly its first 38 to 43 amino acyl residues and a short periplasmic C-terminal region (CTR). Mutagenesis studies indicate that the CTR, but not the NTD, is dispensable for ArgO function in vivo and that a pair of conserved aspartate residues, located near the opposing edges of the cytoplasmic membrane, may play a pivotal role in facilitating transmembrane Arg flux. Additional studies on amino acid substitutions that impair ArgO function in vivo and their derivatives bearing compensatory amino acid alterations indicate a role for intramolecular interactions in the Arg export mechanism, and some interactions are corroborated by normal-mode analyses. Lastly, our studies suggest that ArgO may exist as a monomer in vivo, thus highlighting the requirement for intramolecular interactions in ArgO, as opposed to interactions across multiple ArgO monomers, in the formation of an Arg-translocating conduit. IMPORTANCE The orthologous proteins LysE of C. glutamicum and ArgO of E. coli function as exporters of the basic amino acids l-arginine and l-lysine and the basic amino acid l-arginine, respectively, and LysE can functionally substitute for ArgO when expressed in E. coli. Notwithstanding this functional equivalence, studies reported here show that ArgO possesses a membrane topology

  13. The Amino Terminus of Herpes Simplex Virus 1 Glycoprotein K (gK) Is Required for gB Binding to Akt, Release of Intracellular Calcium, and Fusion of the Viral Envelope with Plasma Membranes.

    PubMed

    Musarrat, Farhana; Jambunathan, Nithya; Rider, Paul J F; Chouljenko, V N; Kousoulas, K G

    2018-03-15

    Previously, we have shown that the amino terminus of glycoprotein K (gK) binds to the amino terminus of gB and that deletion of the amino-terminal 38 amino acids of gK prevents herpes simplex virus 1 (HSV-1) infection of mouse trigeminal ganglia after ocular infection and virus entry into neuronal axons. Recently, it has been shown that gB binds to Akt during virus entry and induces Akt phosphorylation and intracellular calcium release. Proximity ligation and two-way immunoprecipitation assays using monoclonal antibodies against gB and Akt-1 phosphorylated at S473 [Akt-1(S473)] confirmed that HSV-1(McKrae) gB interacted with Akt-1(S473) during virus entry into human neuroblastoma (SK-N-SH) cells and induced the release of intracellular calcium. In contrast, the gB specified by HSV-1(McKrae) gKΔ31-68, lacking the amino-terminal 38 amino acids of gK, failed to interact with Akt-1(S473) and induce intracellular calcium release. The Akt inhibitor miltefosine inhibited the entry of McKrae but not the gKΔ31-68 mutant into SK-N-SH cells. Importantly, the entry of the gKΔ31-68 mutant but not McKrae into SK-N-SH cells treated with the endocytosis inhibitors pitstop-2 and dynasore hydrate was significantly inhibited, indicating that McKrae gKΔ31-68 entered via endocytosis. These results suggest that the amino terminus of gK functions to regulate the fusion of the viral envelope with cellular plasma membranes. IMPORTANCE HSV-1 glycoprotein B (gB) functions in the fusion of the viral envelope with cellular membranes during virus entry. Herein, we show that a deletion in the amino terminus of glycoprotein K (gK) inhibits gB binding to Akt-1(S473), the release of intracellular calcium, and virus entry via fusion of the viral envelope with cellular plasma membranes. Copyright © 2018 American Society for Microbiology.

  14. Functional evidence for the critical amino-terminal conserved domain and key amino acids of Arabidopsis 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE.

    PubMed

    Hsieh, Wei-Yu; Sung, Tzu-Ying; Wang, Hsin-Tzu; Hsieh, Ming-Hsiun

    2014-09-01

    The plant 4-HYDROXY-3-METHYLBUT-2-ENYL DIPHOSPHATE REDUCTASE (HDR) catalyzes the last step of the methylerythritol phosphate pathway to synthesize isopentenyl diphosphate and its allyl isomer dimethylallyl diphosphate, which are common precursors for the synthesis of plastid isoprenoids. The Arabidopsis (Arabidopsis thaliana) genomic HDR transgene-induced gene-silencing lines are albino, variegated, or pale green, confirming that HDR is essential for plants. We used Escherichia coli isoprenoid synthesis H (Protein Data Bank code 3F7T) as a template for homology modeling to identify key amino acids of Arabidopsis HDR. The predicted model reveals that cysteine (Cys)-122, Cys-213, and Cys-350 are involved in iron-sulfur cluster formation and that histidine (His)-152, His-241, glutamate (Glu)-242, Glu-243, threonine (Thr)-244, Thr-312, serine-379, and asparagine-381 are related to substrate binding or catalysis. Glu-242 and Thr-244 are conserved only in cyanobacteria, green algae, and land plants, whereas the other key amino acids are absolutely conserved from bacteria to plants. We used site-directed mutagenesis and complementation assay to confirm that these amino acids, except His-152 and His-241, were critical for Arabidopsis HDR function. Furthermore, the Arabidopsis HDR contains an extra amino-terminal domain following the transit peptide that is highly conserved from cyanobacteria, and green algae to land plants but not existing in the other bacteria. We demonstrated that the amino-terminal conserved domain was essential for Arabidopsis and cyanobacterial HDR function. Further analysis of conserved amino acids in the amino-terminal conserved domain revealed that the tyrosine-72 residue was critical for Arabidopsis HDR. These results suggest that the structure and reaction mechanism of HDR evolution have become specific for oxygen-evolving photosynthesis organisms and that HDR probably evolved independently in cyanobacteria versus other prokaryotes. © 2014

  15. Fine tuning of the spectral properties of LH2 by single amino acid residues.

    PubMed

    Silber, Martina V; Gabriel, Günther; Strohmann, Brigitte; Garcia-Martin, Adela; Robert, Bruno; Braun, Paula

    2008-05-01

    The peripheral light-harvesting complex, LH2, of Rhodobacter sphaeroides consists of an assembly of membrane-spanning alpha and beta polypeptides which assemble the photoactive bacteriochlorophyll and carotenoid molecules. In this study we systematically investigated bacteriochlorophyll-protein interactions and their effect on functional bacteriochlorophyll assembly by site-directed mutations of the LH2 alpha-subunit. The amino acid residues, isoleucine at position -1 and serine at position -4 were replaced by 12 and 13 other residues, respectively. All residues replacing isoleucine at position -1 supported the functional assembly of LH2. The replacement of isoleucine by glycine, glutamine or asparagine, however, produced LH2 complex with significantly altered spectral properties in comparison to LH2 WT. As indicated by resonance Raman spectroscopy extensive rearrangement of the bacteriochlorophyll-B850 macrocycle(s) took place in LH2 in which isoleucine -1 was replaced by glycine. The replacement results in disruption of the H-bond between the C3 acetyl groups and the aromatic residues +13/+14 without affecting the H-bond involving the C13(1) keto group. In contrast, nearly all amino acid replacements of serine at position -4 resulted in shifting of the bacteriochlorophyll-B850 red most absorption maximum. Interestingly, the extent of shifting closely correlated with the volume of the residue at position -4. These results illustrate that fine tuning of the spectral properties of the bacteriochlorophyll-B850 molecules depend on their packing with single amino acid residues at distinct positions.

  16. Interaction of N-terminal peptide analogues of the Na+,K+-ATPase with membranes.

    PubMed

    Nguyen, Khoa; Garcia, Alvaro; Sani, Marc-Antoine; Diaz, Dil; Dubey, Vikas; Clayton, Daniel; Dal Poggetto, Giovanni; Cornelius, Flemming; Payne, Richard J; Separovic, Frances; Khandelia, Himanshu; Clarke, Ronald J

    2018-06-01

    The Na + ,K + -ATPase, which is present in the plasma membrane of all animal cells, plays a crucial role in maintaining the Na + and K + electrochemical potential gradients across the membrane. Recent studies have suggested that the N-terminus of the protein's catalytic α-subunit is involved in an electrostatic interaction with the surrounding membrane, which controls the protein's conformational equilibrium. However, because the N-terminus could not yet be resolved in any X-ray crystal structures, little information about this interaction is so far available. In measurements utilising poly-l-lysine as a model of the protein's lysine-rich N-terminus and using lipid vesicles of defined composition, here we have identified the most likely origin of the interaction as one between positively charged lysine residues of the N-terminus and negatively charged headgroups of phospholipids (notably phosphatidylserine) in the surrounding membrane. Furthermore, to isolate which segments of the N-terminus could be involved in membrane binding, we chemically synthesized N-terminal fragments of various lengths. Based on a combination of results from RH421 UV/visible absorbance measurements and solid-state 31 P and 2 H NMR using these N-terminal fragments as well as MD simulations it appears that the membrane interaction arises from lysine residues prior to the conserved LKKE motif of the N-terminus. The MD simulations indicate that the strength of the interaction varies significantly between different enzyme conformations. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Solid-state nuclear magnetic resonance measurements of HIV fusion peptide 13CO to lipid 31P proximities support similar partially inserted membrane locations of the α helical and β sheet peptide structures.

    PubMed

    Gabrys, Charles M; Qiang, Wei; Sun, Yan; Xie, Li; Schmick, Scott D; Weliky, David P

    2013-10-03

    Fusion of the human immunodeficiency virus (HIV) membrane and the host cell membrane is an initial step of infection of the host cell. Fusion is catalyzed by gp41, which is an integral membrane protein of HIV. The fusion peptide (FP) is the ∼25 N-terminal residues of gp41 and is a domain of gp41 that plays a key role in fusion catalysis likely through interaction with the host cell membrane. Much of our understanding of the FP domain has been accomplished with studies of "HFP", i.e., a ∼25-residue peptide composed of the FP sequence but lacking the rest of gp41. HFP catalyzes fusion between membrane vesicles and serves as a model system to understand fusion catalysis. HFP binds to membranes and the membrane location of HFP is likely a significant determinant of fusion catalysis perhaps because the consequent membrane perturbation reduces the fusion activation energy. In the present study, many HFPs were synthesized and differed in the residue position that was (13)CO backbone labeled. Samples were then prepared that each contained a singly (13)CO labeled HFP incorporated into membranes that lacked cholesterol. HFP had distinct molecular populations with either α helical or oligomeric β sheet structure. Proximity between the HFP (13)CO nuclei and (31)P nuclei in the membrane headgroups was probed by solid-state NMR (SSNMR) rotational-echo double-resonance (REDOR) measurements. For many samples, there were distinct (13)CO shifts for the α helical and β sheet structures so that the proximities to (31)P nuclei could be determined for each structure. Data from several differently labeled HFPs were then incorporated into a membrane location model for the particular structure. In addition to the (13)CO labeled residue position, the HFPs also differed in sequence and/or chemical structure. "HFPmn" was a linear peptide that contained the 23 N-terminal residues of gp41. "HFPmn_V2E" contained the V2E mutation that for HIV leads to greatly reduced extent of fusion and

  18. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation.

    PubMed

    Kang, H; Sayner, S L; Gross, K L; Russell, L C; Chinkers, M

    2001-09-04

    Protein phosphatase 5 (PP5) exhibits low basal activity due to the autoinhibitory properties of its N-terminal and C-terminal domains but can be activated approximately 40-fold in vitro by polyunsaturated fatty acids. To identify residues involved in regulating PP5 activity, we performed scanning mutagenesis of its N-terminal tetratricopeptide repeat (TPR) domain and deletion mutagenesis of its C-terminal domain. Mutating residues in a groove of the TPR domain that binds to heat shock protein 90 had no effect on basal phosphatase activity. Mutation of Glu-76, however, whose side chain projects away from this groove, resulted in a 10-fold elevation of basal activity without affecting arachidonic acid-stimulated activity. Thus, the interface of the TPR domain involved in PP5 autoinhibition appears to be different from that involved in heat shock protein 90 binding. We also observed a 10-fold elevation of basal phosphatase activity upon removing the C-terminal 13 amino acids of PP5, with a concomitant 50% decrease in arachidonic acid-stimulated activity. These two effects were accounted for by two distinct amino acid deletions: deleting the four C-terminal residues (496-499) of PP5 had no effect on its activity, but removing Gln-495 elevated basal activity 10-fold. Removal of a further three amino acids had no additional effect, but deleting Asn-491 resulted in a 50% reduction in arachidonic acid-stimulated activity. Thus, Glu-76 in the TPR domain and Gln-495 at the C-terminus were implicated in maintaining the low basal activity of PP5. While the TPR domain alone has been thought to mediate fatty acid activation of PP5, our data suggest that Asn-491, near its C-terminus, may also be involved in this process.

  19. C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein

    PubMed Central

    Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis

    2011-01-01

    The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223

  20. Amino acid substitutions of conserved residues in the carboxyl-terminal domain of the [alpha]I(X) chain of type X collagen occur in two unrelated families with metaphyseal chondrodysplasia type Schmid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallis, G.A.; Rash, B.; Sweetman, W.A.

    1994-02-01

    Type X collagen is a homotrimeric, short-chain, nonfibrillar extracellular-matrix component that is specifically and transiently synthesized by hypertrophic chondrocytes at the site of endochondral ossification. The precise function of type X collagen is not known, but its specific pattern of expression suggests that mutations within the encoding gene (COL10A1) that alter the structure or synthesis of the protein may cause heritable forms of chondrodysplasia. The authors used the PCR and the SSCP techniques to analyze the coding and upstream promoter regions of the COL10A1 gene in a number of individuals with forms of chondrodysplasia. Using this approach, they identified twomore » individuals with metaphyseal chondrodysplasia type Schmid (MCDS) with SSCP changes in the region of the gene encoding the carboxyl-terminal domain. Sequence analysis demonstrated that the individuals were heterozygous for two unique single-base-pair transitions that led to the substitution of the highly conserved amino acid residue tyrosine at position 598 by aspartic acid in one person and of leucine at position 614 by proline in the other. The substitution at residue 598 segregated with the phenotype in a family of eight (five affected and three unaffected) related persons. The substitutions at residue 614 occurred in a sporadically affected individual but not in her unaffected mother and brother. Additional members of this family were not available for further study. These results suggest that certain amino acid substitutions within the carboxyl-terminal domain of the chains of the type X collagen molecule cause MCDS. These amino acid substitutions are likely to alter either chain recognition or assembly of the type X collagen molecule, thereby depleting the amount of normal type X collagen deposited in the extracellular matrix, with consequent aberrations in bone growth and development. 36 refs., 5 figs.« less

  1. [The importance of C-terminal aspartic acid residue (D141) to the antirestriction activity of the ArdB (R64) protein].

    PubMed

    Kudryavtseva, A A; Osetrova, M S; Livinyuk, V Ya; Manukhov, I V; Zavilgelsky, G B

    2017-01-01

    Antirestriction proteins of the ArdB/KlcA family are specific inhibitors of restriction (endonuclease) activity of type-I restriction/modification enzymes. The effect of conserved amino acid residues on the antirestriction activity of the ArdB protein encoded by the transmissible R64 (IncI1) plasmid has been investigated. An analysis of the amino acid sequences of ArdB homologues demonstrated the presence of four groups of conserved residues ((1) R16, E32, and W51; (2) Y46 and G48; (3) S81, D83 and E132, and (4) N77, L(I)140, and D141) on the surface of the protein globule. Amino acid residues of the fourth group showed a unique localization pattern with the terminal residue protruding beyond the globule surface. The replacement of two conserved amino acids (D141 and N77) located in the close vicinity of each other on the globule surface showed that the C-terminal D141 is essential for the antirestriction activity of ArdB. The deletion of this residue, as well as replacement by a hydrophobic threonine residue (D141T), completely abolished the antirestriction activity of ArdB. The synonymous replacement of D141 by a glutamic acid residue (D141E) caused an approximately 30-fold decrease of the antirestriction activity of ArdB, and the point mutation N77A caused an approximately 20-fold decrease in activity. The residues D141 and N77 located on the surface of the protein globule are presumably essential for the formation of a contact between ArdB and a currently unknown factor that modulates the activity of type-I restriction/modification enzymes.

  2. Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin.

    PubMed

    Lang, Alexander E; Neumeyer, Tobias; Sun, Jianjun; Collier, R John; Benz, Roland; Aktories, Klaus

    2008-08-12

    The actin-ADP-ribosylating Clostridium botulinum C2 toxin consists of the enzymatic component C2I and the binding component C2II. C2II forms heptameric channels involved in translocation of the enzymatic component into the target cell. On the basis of the heptameric toxin channel, we studied functional consequences of mutagenesis of amino acid residues probably lining the lumen of the toxin channel. Substitution of glutamate-399 of C2II with alanine blocked channel formation and cytotoxicity of the holotoxin. Although cytotoxicity and rounding up of cells by C2I were completely blocked by exchange of phenylalanine-428 with alanine, the mutation increased potassium conductance caused by C2II in artificial membranes by about 2-3-fold over that of wild-type toxin. In contrast to its effects on single-channel potassium conductance in artificial membranes, the F428A mutation delayed the kinetics of pore formation in lipid vesicles and inhibited the activity of C2II in promoting (86)Rb (+) release from preloaded intact cells after pH shift of the medium. Moreover, F428A C2II exhibited delayed and diminished formation of C2II aggregates at low pH, indicating major changes of the biophysical properties of the toxin. The data indicate that phenylalanine-428 of C2II plays a major role in conformational changes occurring during pore formation of the binding component of C2II.

  3. Amino-Functionalized Ceramic Capillary Membranes for Controlled Virus Retention.

    PubMed

    Bartels, Julia; Souza, Marina N; Schaper, Amelie; Árki, Pál; Kroll, Stephen; Rezwan, Kurosch

    2016-02-16

    A straightforward chemical functionalization strategy using aminosilanes for high-flux yttria-stabilized zirconia capillary membranes is presented (macroporous, d50 = 144 nm, open porosity =49%, membrane flux ∼150 L/(m(2)hbar)). Three different aminosilanes with one, two or three amino groups per silane molecule, namely 3-aminopropyltriethoxysilane (APTES), N-(2-aminoethyl)-3-aminopropyltriethoxysilane (AE-APTES) and N-(3-trimethoxysilylpropyl)diethylenetriamine (TPDA), are used to generate the amino-functionalized membranes. With a higher number of amino groups per silane molecule increased loading capacities between 0.44 and 1.01 accessible amino groups/nm(2) membrane are achieved. Streaming potential measurements confirm that the zeta-potential of the membrane surface is converted from negative (non-functionalized) to positive (amino-functionalized). By operation in dead-end filtration mode using the model virus MS2 (diameter = 25 nm, IEP = 3.9) the virus retention capacity of the amino-functionalized membranes is significantly increased and log reduction values (LRVs) of up to 9.6 ± 0.3 (TPDA) are obtained whereas a LRV < 0.3 is provided by the non-functionalized membranes. Long-term dead-end filtration experiments for 1 week reveal a high stability of immobilized aminosilanes (TPDA), being robust against leaching. By iterative backflushing with desorption buffer MS2-loaded membranes are successfully regenerated being reusable for a new filtration cycle. The presented functionalization platform is highly promising for controlled virus retention.

  4. Effects of alkali or acid treatment on the isomerization of amino acids.

    PubMed

    Ohmori, Taketo; Mutaguchi, Yuta; Doi, Katsumi; Ohshima, Toshihisa

    2012-10-01

    The effect of alkali treatment on the isomerization of amino acids was investigated. The 100×D/(D+L) values of amino acids from peptide increased with increase in the number of constituent amino acid residues. Furthermore, the N-terminal amino acid of a dipeptide was isomerized to a greater extent than the C-terminal residue. Copyright © 2012. Published by Elsevier B.V.

  5. Permeability of membranes to amino acids and modified amino acids: mechanisms involved in translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W. (Principal Investigator); Miller, S. L. (Principal Investigator)

    1994-01-01

    The amino acid permeability of membranes is of interest because they are one of the key solutes involved in cell function. Membrane permeability coefficients (P) for amino acid classes, including neutral, polar, hydrophobic, and charged species, have been measured and compared using a variety of techniques. Decreasing lipid chain length increased permeability slightly (5-fold), while variations in pH had only minor effects on the permeability coefficients of the amino acids tested in liposomes. Increasing the membrane surface charge increased the permeability of amino acids of the opposite charge, while increasing the cholesterol content decreased membrane permeability. The permeability coefficients for most amino acids tested were surprisingly similar to those previously measured for monovalent cations such as sodium and potassium (approximately 10(-12)-10(-13) cm s-1). This observation suggests that the permeation rates for the neutral, polar and charged amino acids are controlled by bilayer fluctuations and transient defects, rather than partition coefficients and Born energy barriers. Hydrophobic amino acids were 10(2) more permeable than the hydrophilic forms, reflecting their increased partition coefficient values. External pH had dramatic effects on the permeation rates for the modified amino acid lysine methyl ester in response to transmembrane pH gradients. It was established that lysine methyl ester and other modified short peptides permeate rapidly (P = 10(-2) cm s-1) as neutral (deprotonated) molecules. It was also shown that charge distributions dramatically alter permeation rates for modified di-peptides. These results may relate to the movement of peptides through membranes during protein translocation and to the origin of cellular membrane transport on the early Earth.

  6. Regulation of amino acid transport in Escherichia coli by transcription termination factor rho.

    PubMed

    Quay, S C; Oxender, D L

    1977-06-01

    Amino acid transport rates and amino acid binding proteins were examined in a strain containing the rho-120 mutation (formerly SuA), which has been shown to lower the rho-dependent, ribonucleic acid-activated adenosine triphosphatase activity to 9% of the rho activity in the isogenic wild-type strain. Tryptophan and proline transport, which occur by membrane-bound systems, were not altered. On the other hand, arginine, histidine, leucine, isoleucine, and valine transport were variably increased by a factor of 1.4 to 5.0. Kinetics of leucine transport showed that the LIV (leucine, isoleucine, and valine)-I (binding protein-associated) transport system is increased 8.5-fold, whereas the LIV-II (membrane-bound) system is increased 1.5-fold in the rho mutant under leucine-limited growth conditions. The leucine binding protein is increased fourfold under the same growth conditions. The difference in leucine transport in these strains was greatest during leucine-limited growth; growth on complex media repressed both strains to the same transport activity. We propose that rho-dependent transcriptional termination is important for leucine-specific repression of branched-chain amino acid transport, although rho-independent regulation, presumably by a corepressor-aporepressor-type mechanism, must also occur.

  7. Neutralizing Epitopes in the Membrane-Proximal External Region of HIV-1 gp41 Are Influenced by the Transmembrane Domain and the Plasma Membrane

    PubMed Central

    Montero, Marinieve; Klaric, Kristina-Ana; Donald, Jason E.; Lepik, Christa; Wu, Sampson; Tsai, Sue; Julien, Jean-Philippe; Hessell, Ann J.; Wang, Shixia; Lu, Shan; Burton, Dennis R.; Pai, Emil F.; DeGrado, William F.

    2012-01-01

    Failure to elicit broadly neutralizing (bNt) antibodies (Abs) against the membrane-proximal external region of HIV-1 gp41 (MPER) reflects the difficulty of mimicking its neutralization-competent structure (NCS). Here, we analyzed MPER antigenicity in the context of the plasma membrane and identified a role for the gp41 transmembrane domain (TM) in exposing the epitopes of three bNt monoclonal Abs (MAbs) (2F5, 4E10, and Z13e1). We transiently expressed DNA constructs encoding gp41 ectodomain fragments fused to either the TM of the platelet-derived growth factor receptor (PDGFR) or the gp41 TM and cytoplasmic tail domain (CT). Constructs encoding the MPER tethered to the gp41 TM followed by a 27-residue CT fragment (MPER-TM1) produced optimal MAb binding. Critical binding residues for the three Nt MAbs were identified using a panel of 24 MPER-TM1 mutants bearing single amino acid substitutions in the MPER; many were previously shown to affect MAb-mediated viral neutralization. Moreover, non-Nt mutants of MAbs 2F5 and 4E10 exhibited a reduction in binding to MPER-TM1 and yet maintained binding to synthetic MPER peptides, indicating that MPER-TM1 better approximates the MPER NCS than peptides. Replacement of the gp41 TM and CT of MPER-TM1 with the PDGFR TM reduced binding by MAb 4E10, but not 2F5, indicating that the gp41 TM plays a pivotal role in orienting the 4E10 epitope, and more globally, in affecting MPER exposure. PMID:22238313

  8. The C-terminal domain of TRPV4 is essential for plasma membrane localization.

    PubMed

    Becker, Daniel; Müller, Margarethe; Leuner, Kristina; Jendrach, Marina

    2008-02-01

    Many members of the TRP superfamily oligomerize in the ER before trafficking to the plasma membrane. For membrane localization of the non-selective cation channel TRPV4 specific domains in the N-terminus are required, but the role of the C-terminus in the oligomerization and trafficking process has been not determined until now. Therefore, the localization of recombinant TRPV4 in two cell models was analyzed: HaCaT keratinocytes that express TRPV4 endogenously were compared to CHO cells that are devoid of endogenous TRPV4. When deletions were introduced in the C-terminal domain three states of TRPV4 localization were defined: a truncated TRPV4 protein of 855 amino acids was exported to the plasma membrane like the full-length channel (871 aa) and was also functional. Mutants with a length of 828 to 844 amino acids remained in the ER of CHO cells, but in HaCaT cells plasma membrane localization was partially rescued by oligomerization with endogenous TRPV4. This was confirmed by coexpression of recombinant full-length TRPV4 together with these deletion mutants, which resulted in an almost complete plasma membrane localization of both proteins and significant FRET in the plasma membrane and the ER. All deletions upstream of amino acid 828 resulted in total ER retention that could not rescued by coexpression with the full-length protein. However, these deletion mutants did not impair export of full-length TRPV4, implying that no oligomerization took place. These data indicate that the C-terminus of TRPV4 is required for oligomerization, which takes place in the ER and precedes plasma membrane trafficking.

  9. P-glycoprotein binds to ezrin at amino acid residues 149-242 in the FERM domain and plays a key role in the multidrug resistance of human osteosarcoma.

    PubMed

    Brambilla, Daria; Zamboni, Silvia; Federici, Cristina; Lugini, Luana; Lozupone, Francesco; De Milito, Angelo; Cecchetti, Serena; Cianfriglia, Maurizio; Fais, Stefano

    2012-06-15

    Overexpression of the mdr1 gene encoding P-glycoprotein (Pgp) exerts a major role in reducing the effectiveness of cytotoxic therapy in osteosarcoma. The interaction between actin and Pgp has been shown to be instrumental in the establishment of multidrug resistance (MDR) in human tumor cells. The cytoskeleton linker ezrin exerts a pivotal role in maintaining the functional connection between actin and Pgp. We investigated the role of ezrin in a human multidrug-resistant osteosarcoma cell line overexpressing Pgp and compared it to its counterpart that overexpresses an ezrin deletion mutant. The results showed that Pgp binds at amino acid residues 149-242 of the N-terminal domain of ezrin. The interaction between ezrin and Pgp occurs in the plasma membrane of MDR cells, where they also co-localize with the ganglioside G(M1) located in lipid rafts. The overexpression of the ezrin deletion mutant entirely restored drug susceptibility of osteosarcoma cells, consistent with Pgp dislocation to cytoplasmic compartments and abrogation of G(M1) /Pgp co-localization at the plasma membrane. Our study provides evidence that ezrin exerts a key role in MDR of human osteosarcoma cells through a Pgp-ezrin-actin connection that is instrumental for the permanence of Pgp into plasma membrane lipid rafts. We also show for the first time that Pgp-binding site is localized to amino acid residues 149-242 of the ezrin Band 4.1, Ezrin/Radixin/Moesin (FERM) domain, thus proposing a specific target for future molecular therapy aimed at counteracting MDR in osteosarcoma patients. Copyright © 2011 UICC.

  10. High-Resolution NMR Reveals Secondary Structure and Folding of Amino Acid Transporter from Outer Chloroplast Membrane

    PubMed Central

    Zook, James D.; Molugu, Trivikram R.; Jacobsen, Neil E.; Lin, Guangxin; Soll, Jürgen; Cherry, Brian R.; Brown, Michael F.; Fromme, Petra

    2013-01-01

    Solving high-resolution structures for membrane proteins continues to be a daunting challenge in the structural biology community. In this study we report our high-resolution NMR results for a transmembrane protein, outer envelope protein of molar mass 16 kDa (OEP16), an amino acid transporter from the outer membrane of chloroplasts. Three-dimensional, high-resolution NMR experiments on the 13C, 15N, 2H-triply-labeled protein were used to assign protein backbone resonances and to obtain secondary structure information. The results yield over 95% assignment of N, HN, CO, Cα, and Cβ chemical shifts, which is essential for obtaining a high resolution structure from NMR data. Chemical shift analysis from the assignment data reveals experimental evidence for the first time on the location of the secondary structure elements on a per residue basis. In addition T 1Z and T2 relaxation experiments were performed in order to better understand the protein dynamics. Arginine titration experiments yield an insight into the amino acid residues responsible for protein transporter function. The results provide the necessary basis for high-resolution structural determination of this important plant membrane protein. PMID:24205117

  11. Mutagenesis of Paramyxovirus Hemagglutinin-Neuraminidase Membrane-Proximal Stalk Region Influences Stability, Receptor Binding, and Neuraminidase Activity.

    PubMed

    Adu-Gyamfi, Emmanuel; Kim, Lori S; Jardetzky, Theodore S; Lamb, Robert A

    2016-09-01

    Paramyxoviridae consist of a large family of enveloped, negative-sense, nonsegmented single-stranded RNA viruses that account for a significant number of human and animal diseases. The fusion process for nearly all paramyxoviruses involves the mixing of the host cell plasma membrane and the virus envelope in a pH-independent fashion. Fusion is orchestrated via the concerted action of two surface glycoproteins: an attachment protein called hemagglutinin-neuraminidase (HN [also called H or G depending on virus type and substrate]), which acts as a receptor binding protein, and a fusion (F) protein, which undergoes a major irreversible refolding process to merge the two membranes. Recent biochemical evidence suggests that receptor binding by HN is dispensable for cell-cell fusion. However, factors that influence the stability and/or conformation of the HN 4-helix bundle (4HB) stalk have not been studied. Here, we used oxidative cross-linking as well as functional assays to investigate the role of the structurally unresolved membrane-proximal stalk region (MPSR) (residues 37 to 58) of HN in the context of headless and full-length HN membrane fusion promotion. Our data suggest that the receptor binding head serves to stabilize the stalk to regulate fusion. Moreover, we found that the MPSR of HN modulates receptor binding and neuraminidase activity without a corresponding regulation of F triggering. Paramyxoviruses require two viral membrane glycoproteins, the attachment protein variously called HN, H, or G and the fusion protein (F), to couple host receptor recognition to virus-cell fusion. The HN protein has a globular head that is attached to a membrane-anchored flexible stalk of ∼80 residues and has three activities: receptor binding, neuraminidase, and fusion activation. In this report, we have identified the functional significance of the membrane-proximal stalk region (MPSR) (HN, residues 37 to 56) of the paramyxovirus parainfluenza virus (PIV5), a region of the

  12. Chemical crosslinking and mass spectrometry studies of the structure and dynamics of membrane proteins and receptors.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haskins, William E.; Leavell, Michael D.; Lane, Pamela

    2005-03-01

    Membrane proteins make up a diverse and important subset of proteins for which structural information is limited. In this study, chemical cross-linking and mass spectrometry were used to explore the structure of the G-protein-coupled photoreceptor bovine rhodopsin in the dark-state conformation. All experiments were performed in rod outer segment membranes using amino acid 'handles' in the native protein sequence and thus minimizing perturbations to the native protein structure. Cysteine and lysine residues were covalently cross-linked using commercially available reagents with a range of linker arm lengths. Following chemical digestion of cross-linked protein, cross-linked peptides were identified by accurate mass measurementmore » using liquid chromatography-fourier transform mass spectrometry and an automated data analysis pipeline. Assignments were confirmed and, if necessary, resolved, by tandem MS. The relative reactivity of lysine residues participating in cross-links was evaluated by labeling with NHS-esters. A distinct pattern of cross-link formation within the C-terminal domain, and between loop I and the C-terminal domain, emerged. Theoretical distances based on cross-linking were compared to inter-atomic distances determined from the energy-minimized X-ray crystal structure and Monte Carlo conformational search procedures. In general, the observed cross-links can be explained by re-positioning participating side-chains without significantly altering backbone structure. One exception, between C3 16 and K325, requires backbone motion to bring the reactive atoms into sufficient proximity for cross-linking. Evidence from other studies suggests that residues around K325 for a region of high backbone mobility. These findings show that cross-linking studies can provide insight into the structural dynamics of membrane proteins in their native environment.« less

  13. Role of Aromatic Amino Acids in Lipopolysaccharide and Membrane Interactions of Antimicrobial Peptides for Use in Plant Disease Control*

    PubMed Central

    Datta, Aritreyee; Bhattacharyya, Dipita; Singh, Shalini; Ghosh, Anirban; Schmidtchen, Artur; Malmsten, Martin; Bhunia, Anirban

    2016-01-01

    KYE28 (KYEITTIHNLFRKLTHRLFRRNFGYT-LR), the representative sequence of helix D of heparin co-factor II, was demonstrated to be potent against agronomically important Gram-negative plant pathogens Xanthomonas vesicatoria and Xanthomonas oryzae, capable of inhibiting disease symptoms in detached tomato leaves. NMR studies in the presence of lipopolysaccharide provided structural insights into the mechanisms underlying this, notably in relationship to outer membrane permeabilization. The three-dimensional solution structure of KYE28 in LPS is characterized by an N-terminal helical segment, an intermediate loop followed by another short helical stretch, and an extended C terminus. The two termini are in close proximity to each other via aromatic packing interactions, whereas the positively charged residues form an exterior polar shell. To further demonstrate the importance of the aromatic residues for this, a mutant peptide KYE28A, with Ala substitutions at Phe11, Phe19, Phe23, and Tyr25 was designed, which showed attenuated antimicrobial activity at high salt concentrations, as well as lower membrane disruption and LPS binding abilities compared with KYE28. In contrast to KYE28, KYE28A adopted an extended helical structure in LPS with extended N and C termini. Aromatic packing interactions were completely lost, although hydrophobic interaction between the side chains of hydrophobic residues were still partly retained, imparting an amphipathic character and explaining its residual antimicrobial activity and LPS binding as observed from ellipsometry and isothermal titration calorimetry. We thus present key structural aspects of KYE28, constituting an aromatic zipper, of potential importance for the development of novel plant protection agents and therapeutic agents. PMID:27137928

  14. C-terminal, endoplasmic reticulum-lumenal domain of prosurfactant protein C - structural features and membrane interactions.

    PubMed

    Casals, Cristina; Johansson, Hanna; Saenz, Alejandra; Gustafsson, Magnus; Alfonso, Carlos; Nordling, Kerstin; Johansson, Jan

    2008-02-01

    Surfactant protein C (SP-C) constitutes the transmembrane part of prosurfactant protein C (proSP-C) and is alpha-helical in its native state. The C-terminal part of proSP-C (CTC) is localized in the endoplasmic reticulum lumen and binds to misfolded (beta-strand) SP-C, thereby preventing its aggregation and amyloid fibril formation. In this study, we investigated the structure of recombinant human CTC and the effects of CTC-membrane interaction on protein structure. CTC forms noncovalent trimers and supratrimeric oligomers. It contains two intrachain disulfide bridges, and its secondary structure is significantly affected by urea or heat only after disulfide reduction. The postulated Brichos domain of CTC, with homologs found in proteins associated with amyloid and proliferative disease, is up to 1000-fold more protected from limited proteolysis than the rest of CTC. The protein exposes hydrophobic surfaces, as determined by CTC binding to the environment-sensitive fluorescent probe 1,1'-bis(4-anilino-5,5'-naphthalenesulfonate). Fluorescence energy transfer experiments further reveal close proximity between bound 1,1'-bis(4-anilino-5,5'-naphthalenesulfonate) and tyrosine residues in CTC, some of which are conserved in all Brichos domains. CTC binds to unilamellar phospholipid vesicles with low micromolar dissociation constants, and differential scanning calorimetry and CD analyses indicate that membrane-bound CTC is less structurally ordered than the unbound protein. The exposed hydrophobic surfaces and the structural disordering that result from interactions with phospholipid membranes suggest a mechanism whereby CTC binds to misfolded SP-C in the endoplasmic reticulum membrane.

  15. Detection of diastereomer peptides as the intermediates generating D-amino acids during acid hydrolysis of peptides.

    PubMed

    Miyamoto, Tetsuya; Sekine, Masae; Ogawa, Tetsuhiro; Hidaka, Makoto; Watanabe, Hidenori; Homma, Hiroshi; Masaki, Haruhiko

    2016-11-01

    In this study, we investigated whether the amino acid residues within peptides were isomerized (and the peptides converted to diastereomers) during the early stages of acid hydrolysis. We demonstrate that the model dipeptides L-Ala-L-Phe and L-Phe-L-Ala are epimerized to produce the corresponding diastereomers at a very early stage, prior to their acid hydrolytic cleavage to amino acids. Furthermore, the sequence-inverted dipeptides were generated via formation of a diketopiperazine during hydrolytic incubation, and these dipeptides were also epimerized. The proportion of diastereomers increased rapidly during incubation for 0.5-2 h. During acid hydrolysis, C-terminal residues of the model dipeptides were isomerized faster than N-terminal residues, consistent with the observation that the D-amino acid values of the C-terminal residues determined by the 0 h-extrapolating method were larger than those of the N-terminal residues. Thus, the artificial D-amino acid contents determined by the 0 h-extrapolating method appear to be products of the isomerization of amino acid residues during acid hydrolysis.

  16. Bias-Exchange Metadynamics Simulation of Membrane Permeation of 20 Amino Acids.

    PubMed

    Cao, Zanxia; Bian, Yunqiang; Hu, Guodong; Zhao, Liling; Kong, Zhenzhen; Yang, Yuedong; Wang, Jihua; Zhou, Yaoqi

    2018-03-16

    Thermodynamics of the permeation of amino acids from water to lipid bilayers is an important first step for understanding the mechanism of cell-permeating peptides and the thermodynamics of membrane protein structure and stability. In this work, we employed bias-exchange metadynamics simulations to simulate the membrane permeation of all 20 amino acids from water to the center of a dipalmitoylphosphatidylcholine (DPPC) membrane (consists of 256 lipids) by using both directional and torsion angles for conformational sampling. The overall accuracy for the free energy profiles obtained is supported by significant correlation coefficients (correlation coefficient at 0.5-0.6) between our results and previous experimental or computational studies. The free energy profiles indicated that (1) polar amino acids have larger free energy barriers than nonpolar amino acids; (2) negatively charged amino acids are the most difficult to enter into the membrane; and (3) conformational transitions for many amino acids during membrane crossing is the key for reduced free energy barriers. These results represent the first set of simulated free energy profiles of membrane crossing for all 20 amino acids.

  17. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity.

    PubMed

    Hardin, Shane C; Winter, Heike; Huber, Steven C

    2004-04-01

    Sucrose synthase (SUS) is phosphorylated on a major, amino-terminal site located at Ser-15 (S15) in the maize (Zea mays) SUS1 protein. Site- and phospho-specific antibodies against a phosphorylated S15 (pS15) peptide allowed direct analysis of S15 phosphorylation in relation to membrane association. Immunoblots of the maize leaf elongation zone, divided into 4-cm segments, demonstrated that the abundance of soluble (s-SUS) and membrane (m-SUS) SUS protein showed distinct positional profiles. The content of m-SUS was maximal in the 4- to 8-cm segment where it represented 9% of total SUS and occurred as a peripheral membrane protein. In contrast, s-SUS was highest in the 12- to 16-cm segment. Relative to s-SUS, m-SUS was hypophosphorylated at S15 in the basal 4 cm but hyperphosphorylated in apical segments. Differing capabilities of the anti-pS15 and anti-S15 peptide antibodies to immunoprecipitate SUS suggested that phosphorylation of S15, or exposure of unphosphorylated SUS to slightly acidic pH, altered the structure of the amino terminus. These structural changes were generally coincident with the increased sucrose cleavage activity that occurs at pH values below 7.5. In vitro S15 phosphorylation of the S170A SUS protein by a maize calcium-dependent protein kinase (CDPK) significantly increased sucrose cleavage activity at low pH. Collectively, the results suggest that (1) SUS membrane binding is controlled in vivo; (2) relative pS15 content of m-SUS depends on the developmental state of the organ; and (3) phosphorylation of S15 affects amino-terminal conformation in a way that may stimulate the catalytic activity of SUS and influence membrane association.

  18. Surfactant protein B: lipid interactions of synthetic peptides representing the amino-terminal amphipathic domain.

    PubMed Central

    Bruni, R; Taeusch, H W; Waring, A J

    1991-01-01

    The mechanisms by which pulmonary surfactant protein B (SP-B) affects the surface activity of surfactant lipids are unclear. We have studied the peptide/lipid interactions of the amino-terminal amphipathic domain of SP-B by comparing the secondary conformations and surface activities of a family of synthetic peptides based on the native human SP-B sequence, modified by site-specific amino acid substitutions. Circular dichroism measurements show an alpha-helical structure correlating with the ability of the peptides to interact with lipids and with the surface activity of peptide/lipid dispersions. Amino acid substitutions altering either the charge or the hydrophobicity of the residues lowered the helical content and reduced the association of the aminoterminal segment with lipid dispersions. Surface activity of peptide/lipid mixtures was maximally altered by reversal of charge in synthetic peptides. These observations indicate that electrostatic interactions and hydrophobicity are important factors in determining optimal structure and function of surfactant peptides in lipid dispersions. Images PMID:1871144

  19. Effects of introducing a single charged residue into the phenylalanine clamp of multimeric anthrax protective antigen.

    PubMed

    Janowiak, Blythe E; Fischer, Audrey; Collier, R John

    2010-03-12

    Multimeric pores formed in the endosomal membrane by the Protective Antigen moiety of anthrax toxin translocate the enzymatic moieties of the toxin to the cytosolic compartment of mammalian cells. There is evidence that the side chains of the Phe(427) residues come into close proximity with one another in the lumen of the pore and form a structure, termed the Phe clamp, that catalyzes the translocation process. In this report we describe the effects of replacing Phe(427) in a single subunit of the predominantly heptameric pore with a basic or an acidic amino acid. Incorporating any charged residue at this position inhibited cytotoxicity >or=1,000-fold in our standard assay and caused strong inhibition of translocation in a planar phospholipid bilayer system. His and Glu were the most strongly inhibitory residues, ablating both cytotoxicity and translocation. Basic residues at position 427 prevented the Phe clamp from interacting with a translocation substrate to form a seal against the passage of ions and accelerated dissociation of the substrate from the pore. Acidic residues, in contrast, allowed the seal to form and the substrate to remain firmly bound, but blocked its passage, perhaps via electrostatic interactions with the positively charged N-terminal segment. Our findings are discussed in relation to the role of the Phe clamp in a Brownian ratchet model of translocation.

  20. Structure-Based Mutational Analysis of the C-Terminal DNA-Binding Domain of Human Immunodeficiency Virus Type 1 Integrase: Critical Residues for Protein Oligomerization and DNA Binding

    PubMed Central

    Lutzke, Ramon A. Puras; Plasterk, Ronald H. A.

    1998-01-01

    The C-terminal domain of human immunodeficiency virus type 1 (HIV-1) integrase (IN) is a dimer that binds to DNA in a nonspecific manner. The structure of the minimal region required for DNA binding (IN220–270) has been solved by nuclear magnetic resonance spectroscopy. The overall fold of the C-terminal domain of HIV-1 IN is similar to those of Src homology region 3 domains. Based on the structure of IN220–270, we studied the role of 15 amino acid residues potentially involved in DNA binding and oligomerization by mutational analysis. We found that two amino acid residues, arginine 262 and leucine 234, contribute to DNA binding in the context of IN220–270, as indicated by protein-DNA UV cross-link analysis. We also analyzed mutant proteins representing portions of the full-length IN protein. Amino acid substitution of residues located in the hydrophobic dimer interface, such as L241A and L242A, results in the loss of oligomerization of IN; consequently, the levels of 3′ processing, DNA strand transfer, and intramolecular disintegration are strongly reduced. These results suggest that dimerization of the C-terminal domain of IN is important for correct multimerization of IN. PMID:9573250

  1. Amino- and carboxyl-terminal amino acid sequences of proteins coded by gag gene of murine leukemia virus

    PubMed Central

    Oroszlan, Stephen; Henderson, Louis E.; Stephenson, John R.; Copeland, Terry D.; Long, Cedric W.; Ihle, James N.; Gilden, Raymond V.

    1978-01-01

    The amino- and carboxyl-terminal amino acid sequences of proteins (p10, p12, p15, and p30) coded by the gag gene of Rauscher and AKR murine leukemia viruses were determined. Among these proteins, p15 from both viruses appears to have a blocked amino end. Proline was found to be the common NH2 terminus of both p30s and both p12s, and alanine of both p10s. The amino-terminal sequences of p30s are identical, as are those of p10s, while the p12 sequences are clearly distinctive but also show substantial homology. The carboxyl-terminal amino acids of both viral p30s and p12s are leucine and phenylalanine, respectively. Rauscher leukemia virus p15 has tyrosine as the carboxyl terminus while AKR virus p15 has phenylalanine in this position. The compositional and sequence data provide definite chemical criteria for the identification of analogous gag gene products and for the comparison of viral proteins isolated in different laboratories. On the basis of amino acid sequences and the previously proposed H-p15-p12-p30-p10-COOH peptide sequence in the precursor polyprotein, a model for cleavage sites involved in the post-translational processing of the precursor coded for by the gag gene is proposed. PMID:206897

  2. Role of C-terminal heptapeptide in pore-forming activity of antimicrobial agent, gaegurin 4.

    PubMed

    Kim, H J; Kim, S S; Lee, M H; Lee, B J; Ryu, P D

    2004-10-01

    Gaegurin 4 (GGN4) is an antimicrobial peptide of 37 amino acids isolated from the skin of a frog, Rana rugosa. GGN4 has a disulfide bond between the residues 31 and 37, which is highly conserved among the antimicrobial peptides isolated from skin of the genus, Rana. However, the role of this C-terminal heptapeptide motif is not well understood. In this work, we compared the membrane effects of the full-length GGN4 (C37) and GGN4 1-30 (C30), which is devoid of the C-terminal seven amino acids to elucidate the function of the C-terminal motif. C37 induced significantly larger membrane conductance (>10x) in the model lipid bilayers formed with acidic and neutral phospholipids and larger K+ efflux from gram-positive (>30x) and gram-negative bacteria. However, the pores induced by C37 and C30 were not different in their permeability to K+ over Cl- (permeability ratio of K+ to Cl- = 4.8-7.1). In addition, the pore-forming effect of C37 or C30 in acidic membranes was not different from that in neutral membranes. Furthermore, C37-induced K+ efflux was not significantly decreased by the reducing agent, dithiothreitol. The results indicate that C-terminal heptapeptide sequence plays an important role in maintaining the high pore-forming activity of GGN4, but does not participate in forming GGN4-induced pore structure. The disulfide bond in this region does not appear critical for such high ionophoric activity of GGN4.

  3. Sialogogic activity in the rat of peptides analogous to [Tyr8]-substance P in which substitutions have been made in the N-terminal amino acids.

    PubMed

    Higa, K; Gao, C; Motokawa, W; Abe, K

    2001-04-01

    In order to elucidate the regulatory roles for salivation of amino acids in positions 1-4 of the N-terminal region of [Tyr8]-substance P (SP), the structure-sialogogic activity correlations of various synthetic octa- to undecapeptides replaced in positions 1-4 of [Tyr8]-SP with each of 19 common amino acids, one by one, and with the same sequence of the C-terminal hepatapeptide as that of [Tyr8]-SP, were studied in the submandibular glands of rats after intraperitoneal injection. Each of 19 octa-, nona-, deca- and undecapeptides with replaced amino acids and a penta- to decapeptide with the progressive elimination of the N-terminal portion were newly synthesized by the multipin peptide method. All octa- to undecapeptides replaced with each of 19 common amino acids in positions 1-4 had sialogogic activities. In 19 octa- and decapeptides in which P4 and P2 had been replaced, four and three replacements, respectively, had significantly increased secretory activities. In contrast, in 19 nonapeptides in which K3 had been replaced, none had significantly increased secretory activities. Furthermore, in 19 undecapeptides in which R1 had been replaced, most replacements had significantly increased or equipotent activities for fluid secretion. It is concluded that amino acids in the N-terminal region of various tachykinins may not need to be strictly conserved and that amino acid residues in the N-terminal portion, R1 in particular and P2, may strongly inhibit secretory activity.

  4. Identification of a Membrane Targeting and Degradation Signal in the p42 Protein of Influenza C Virus

    PubMed Central

    Pekosz, Andrew; Lamb, Robert A.

    2000-01-01

    Two mRNA species are derived from the influenza C virus RNA segment six, (i) a colinear transcript containing a 374-amino-acid residue open reading frame (referred to herein as the seg 6 ORF) which is translated to yield the p42 protein, and (ii) a spliced mRNA which encodes the influenza C virus matrix (CM1) protein consisting of the first 242 amino acids of p42. The p42 protein undergoes proteolytic cleavage at a consensus signal peptidase cleavage site after residue 259, yielding the p31 and CM2 proteins. Translocation of p42 into the endoplasmic reticulum membrane occurs cotranslationally and requires the hydrophobic internal signal peptide (residues 239 to 259), as well as the predicted transmembrane domain of CM2 (residues 285 to 308). The p31 protein was found to undergo rapid degradation after cleavage from p42. Addition of the 26S proteasome inhibitor lactacystin to influenza C virus-infected or seg 6 ORF cDNA-transfected cells drastically reduced p31 degradation. Transfer of the 17-residue C-terminal region of p31 to heterologous proteins resulted in their rapid turnover. The hydrophobic nature, but not the specific amino acid sequence of the 17-amino-acid C terminus of p31 appears to act as the signal for targeting the protein to membranes and for degradation. PMID:11044092

  5. Influence of specific amino acid side-chains on the antimicrobial activity and structure of bovine lactoferrampin.

    PubMed

    Haney, Evan F; Nazmi, Kamran; Bolscher, Jan G M; Vogel, Hans J

    2012-06-01

    Lactoferrin is an 80 kDa iron binding protein found in the secretory fluids of mammals and it plays a major role in host defence. An antimicrobial peptide, lactoferrampin, was identified through sequence analysis of bovine lactoferrin and its antimicrobial activity against a wide range of bacteria and yeast species is well documented. In the present work, the contribution of specific amino acid residues of lactoferrampin was examined to evaluate the role that they play in membrane binding and bilayer disruption. The structures of all the bovine lactoferrampin derivatives were examined with circular dichroism and nuclear magnetic resonance spectroscopy, and their interactions with phospholipids were evaluated with differential scanning calorimetry and isothermal titration calorimetry techniques. From our results it is apparent that the amphipathic N-terminal helix anchors the peptide to membranes with Trp 268 and Phe 278 playing important roles in determining the strength of the interaction and for inducing peptide folding. In addition, the N-terminal helix capping residues (DLI) increase the affinity for negatively charged vesicles and they mediate the depth of membrane insertion. Finally, the unique flexibility in the cationic C-terminal region of bovine lactoferrampin does not appear to be essential for the antimicrobial activity of the peptide.

  6. Identification of amino acid residues involved in the dRP-lyase activity of human Pol ι.

    PubMed

    Miropolskaya, Nataliya; Petushkov, Ivan; Kulbachinskiy, Andrey; Makarova, Alena V

    2017-08-31

    Besides X-family DNA polymerases (first of all, Pol β) several other human DNA polymerases from Y- and A- families were shown to possess the dRP-lyase activity and could serve as backup polymerases in base excision repair (Pol ι, Rev1, Pol γ and Pol θ). However the exact position of the active sites and the amino acid residues involved in the dRP-lyase activity in Y- and A- family DNA polymerases are not known. Here we carried out functional analysis of fifteen amino acid residues possibly involved in the dRP-lyase activity of human Pol ι. We show that substitutions of residues Q59, K60 and K207 impair the dRP-lyase activity of Pol ι while residues in the HhH motif of the thumb domain are dispensable for this activity. While both K60G and K207A substitutions decrease Schiff-base intermediate formation during dRP group cleavage, the latter substitution also strongly affects the DNA polymerase activity of Pol ι, suggesting that it may impair DNA binding. These data are consistent with an important role of the N-terminal region in the dRP-lyase activity of Pol ι, with possible involvement of residues from the finger domain in the dRP group cleavage.

  7. Membrane topology and identification of key residues of EaDAcT, a plant MBOAT with unusual substrate specificity.

    PubMed

    Tran, Tam N T; Shelton, Jennifer; Brown, Susan; Durrett, Timothy P

    2017-10-01

    Euonymus alatus diacylglycerol acetyltransferase (EaDAcT) catalyzes the transfer of an acetyl group from acetyl-CoA to the sn-3 position of diacylglycerol to form 3-acetyl-1,2-diacyl-sn-glycerol (acetyl-TAG). EaDAcT belongs to a small, plant-specific subfamily of the membrane bound O-acyltransferases (MBOAT) that acylate different lipid substrates. Sucrose gradient density centrifugation revealed that EaDAcT colocalizes to the same fractions as an endoplasmic reticulum (ER)-specific marker. By mapping the membrane topology of EaDAcT, we obtained an experimentally determined topology model for a plant MBOAT. The EaDAcT model contains four transmembrane domains (TMDs), with both the N- and C-termini orientated toward the lumen of the ER. In addition, there is a large cytoplasmic loop between the first and second TMDs, with the MBOAT signature region of the protein embedded in the third TMD close to the interface between the membrane and the cytoplasm. During topology mapping, we discovered two cysteine residues (C187 and C293) located on opposite sides of the membrane that are important for enzyme activity. In order to identify additional amino acid residues important for acetyltransferase activity, we isolated and characterized acetyltransferases from other acetyl-TAG-producing plants. Among them, the acetyltransferase from Euonymus fortunei possessed the highest activity in vivo and in vitro. Mutagenesis of conserved amino acids revealed that S253, H257, D258 and V263 are essential for EaDAcT activity. Alteration of residues unique to the acetyltransferases did not alter the unique acyl donor specificity of EaDAcT, suggesting that multiple amino acids are important for substrate recognition. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  8. Left-handed helical preference in an achiral peptide chain is induced by an L-amino acid in an N-terminal type II β-turn.

    PubMed

    De Poli, Matteo; De Zotti, Marta; Raftery, James; Aguilar, Juan A; Morris, Gareth A; Clayden, Jonathan

    2013-03-15

    Oligomers of the achiral amino acid Aib adopt helical conformations in which the screw-sense may be controlled by a single N-terminal residue. Using crystallographic and NMR techniques, we show that the left- or right-handed sense of helical induction arises from the nature of the β-turn at the N terminus: the tertiary amino acid L-Val induces a left-handed type II β-turn in both the solid state and in solution, while the corresponding quaternary amino acid L-α-methylvaline induces a right-handed type III β-turn.

  9. Effects of Hydrophilic Residues and Hydrophobic Length on Flip-Flop Promotion by Transmembrane Peptides.

    PubMed

    Nakao, Hiroyuki; Hayashi, Chihiro; Ikeda, Keisuke; Saito, Hiroaki; Nagao, Hidemi; Nakano, Minoru

    2018-04-19

    Peptide-induced phospholipid flip-flop (scrambling) was evaluated using transmembrane model peptides in which the central residue was substituted with various amino acid residues (sequence: Ac-GKK(LA) n XW(LA) n LKKA-CONH 2 ). Peptides with a strongly hydrophilic residue (X = Q, N, or H) had higher scramblase activity than that of other peptides, and the activity was also dependent on the length of the peptides. Peptides with a hydrophobic stretch of 17 residues showed high flip-promotion propensity, whereas those of 21 and 25 residues did not, suggesting that membrane thinning under negative mismatch conditions promotes the flipping. Interestingly, a hydrophobic stretch of 19 residues intensively promoted phospholipid scrambling and membrane leakage. The distinctive characteristics of the peptide were ascribed by long-term molecular dynamics simulation to the arrangement of central glutamine and terminal four lysine residues on the same side of the helix. The combination of simulated and experimental data enables understanding of the mechanisms by which transmembrane helices, and ultimately unidentified scramblases in biomembranes, cause lipid scrambling.

  10. Helix A Stabilization Precedes Amino-terminal Lobe Activation upon Calcium Binding to Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Baowei; Lowry, David; Mayer, M. Uljana

    2008-08-09

    The structural coupling between opposing domains of CaM was investigated using the conformationally sensitive biarsenical probe 4,5-bis(1,3,2-dithioarsolan-2-yl)-resorufin (ReAsH), which upon binding to an engineered tetracysteine binding motif near the end of helix A (Thr-5 to Phe-19) becomes highly fluorescent. Changes in conformation and dynamics are reflective of the native CaM structure, as there is no change in the 1H- 15N HSQC NMR spectrum in comparison to wild-type CaM. We find evidence of a conformational intermediate associated with CaM activation, where calcium occupancy of sites in the amino-terminal and carboxyl-terminal lobes of CaM differentially affect the fluorescence intensity of bound ReAsH.more » Insight into the structure of the conformational intermediate is possible from a consideration of calcium-dependent changes in rates of ReAsH binding and helix A mobility, which respectively distinguish secondary structural changes associated with helix A stabilization from the tertiary structural reorganization of the amino-terminal lobe of CaM necessary for high-affinity binding to target proteins. Helix A stabilization is associated with calcium occupancy of sites in the carboxyl-terminal lobe (Kd = 0.36 ± 0.04 μM), which results in a reduction in the rate of ReAsH binding from 4900 M -1 sec -1 to 370 M -1 sec -1. In comparison, tertiary structural changes involving helix A and other structural elements in the amino-terminal lobe requires calcium-occupancy of amino-terminal sites (Kd = 18 ± 3 μM). Observed secondary and tertiary structural changes involving helix A in response to the sequential calcium occupancy of carboxyl- and amino-terminal lobe calcium binding sites suggest an important involvement of helix A in mediating the structural coupling between the opposing domains of CaM. These results are discussed in terms of a model in which carboxyl-terminal lobe calcium activation induces secondary structural changes within the interdomain

  11. Involvement of tyrosine residues, N-terminal amino acids, and beta-alanine in insect cuticular sclerotization.

    PubMed

    Andersen, Svend Olav

    2007-09-01

    During sclerotization of insect cuticle the acyldopamines, N-acetyldopamine (NADA) and N-beta-alanyldopamine (NBAD), are oxidatively incorporated into the cuticular matrix, thereby hardening and stabilizing the material by forming crosslinks between the proteins in the cuticular matrix and by forming polymers filling the intermolecular spaces in the cuticle. Sclerotized cuticle from the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor, was hydrolyzed in dilute hydrochloric acid, and from the hydrolysates some components presumably degradation products of cuticular crosslinks were isolated. In two of the components, the sidechain of 3,4-dihydroxyacetophenone was linked to the amino groups of glycine and beta-alanine, respectively, and in the third component to the phenolic group of tyrosine. These three compounds, glycino-dihydroxyacetophenone, beta-alanino-dihydroxyacetophenone, and O-tyrosino-dihydroxyacetophenone, as well as the previously reported compound, lysino-dihydroxyacetophenone [Andersen, S.O., Roepstorff, P., 2007. Aspects of cuticular sclerotization in the locust, Schistocerca gregaria, and the beetle, Tenebrio molitor. Insect Biochem. Mol. Biol. 37, 223-234], are suggested to be degradation products of cuticular crosslinks, in which amino acid residues formed linkages to both the alpha- and beta-positions of the sidechain of acyldopamines.

  12. Partial amino acid sequence of the branched chain amino acid aminotransferase (TmB) of E. coli JA199 pDU11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feild, M.J.; Armstrong, F.B.

    1987-05-01

    E. coli JA199 pDU11 harbors a multicopy plasmid containing the ilv GEDAY gene cluster of S. typhimurium. TmB, gene product of ilv E, was purified, crystallized, and subjected to Edman degradation using a gas phase sequencer. The intact protein yielded an amino terminal 31 residue sequence. Both carboxymethylated apoenzyme and (/sup 3/H)-NaBH-reduced holoenzyme were then subjected to digestion by trypsin. The digests were fractionated using reversed phase HPLC, and the peptides isolated were sequenced. The borohydride-treated holoenzyme was used to isolate the cofactor-binding peptide. The peptide is 27 residues long and a comparison with known sequences of other aminotransferases revealedmore » limited homology. Peptides accounting for 211 of 288 predicted residues have been sequenced, including 9 residues of the carboxyl terminus. Comparison of peptides with the inferred amino acid sequence of the E. coli K-12 enzyme has helped determine the sequence of the amino terminal 59 residues; only two differences between the sequences are noted in this region.« less

  13. Chemical Cleavage of an Asp-Cys Sequence Allows Efficient Production of Recombinant Peptides with an N-Terminal Cysteine Residue.

    PubMed

    Pane, Katia; Verrillo, Mariavittoria; Avitabile, Angela; Pizzo, Elio; Varcamonti, Mario; Zanfardino, Anna; Di Maro, Antimo; Rega, Camilla; Amoresano, Angela; Izzo, Viviana; Di Donato, Alberto; Cafaro, Valeria; Notomista, Eugenio

    2018-04-18

    Peptides with an N-terminal cysteine residue allow site-specific modification of proteins and peptides and chemical synthesis of proteins. They have been widely used to develop new strategies for imaging, drug discovery, diagnostics, and chip technologies. Here we present a method to produce recombinant peptides with an N-terminal cysteine residue as a convenient alternative to chemical synthesis. The method is based on the release of the desired peptide from a recombinant fusion protein by mild acid hydrolysis of an Asp-Cys sequence. To test the general validity of the method we prepared four fusion proteins bearing three different peptides (20-37 amino acid long) at the C-terminus of a ketosteroid isomerase-derived and two Onconase-derived carriers for the production of toxic peptides in E. coli. The chosen peptides were (C)GKY20, an antimicrobial peptide from the C-terminus of human thrombin, (C)ApoB L , an antimicrobial peptide from an inner region of human Apolipoprotein B, and (C)p53pAnt, an anticancer peptide containing the C-terminal region of the p53 protein fused to the cell penetrating peptide Penetratin. Cleavage efficiency of Asp-Cys bonds in the four fusion proteins was studied as a function of pH, temperature, and incubation time. In spite of the differences in the amino acid sequence (GTGDCGKY, GTGDCHVA, GSGTDCGSR, SQGSDCGSR) we obtained for all the proteins a cleavage efficiency of about 70-80% after 24 h incubation at 60 °C and pH 2. All the peptides were produced with very good yield (5-16 mg/L of LB cultures), high purity (>96%), and the expected content of free thiol groups (1 mol per mole of peptide). Furthermore, (C)GKY20 was modified with PyMPO-maleimide, a commercially available fluorophore bearing a thiol reactive group, and with 6-hydroxy-2-cyanobenzothiazole, a reagent specific for N-terminal cysteines, with yields of 100% thus demonstrating that our method is very well suited for the production of fully reactive peptides with an N-terminal

  14. An N-terminal glycine-rich sequence contributes to retrovirus trimer of hairpins stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Kirilee A.; Maerz, Anne L.; Baer, Severine

    2007-08-10

    Retroviral transmembrane proteins (TMs) contain a glycine-rich segment linking the N-terminal fusion peptide and coiled coil core. Previously, we reported that the glycine-rich segment (Met-326-Ser-337) of the human T-cell leukemia virus type 1 (HTLV-1) TM, gp21, is a determinant of membrane fusion function [K.A. Wilson, S. Baer, A.L. Maerz, M. Alizon, P. Poumbourios, The conserved glycine-rich segment linking the N-terminal fusion peptide to the coiled coil of human T-cell leukemia virus type 1 transmembrane glycoprotein gp21 is a determinant of membrane fusion function, J. Virol. 79 (2005) 4533-4539]. Here we show that the reduced fusion activity of an I334A mutantmore » correlated with a decrease in stability of the gp21 trimer of hairpins conformation, in the context of a maltose-binding protein-gp21 chimera. The stabilizing influence of Ile-334 required the C-terminal membrane-proximal sequence Trp-431-Ser-436. Proline substitution of four of five Gly residues altered gp21 trimer of hairpins stability. Our data indicate that flexibility within and hydrophobic interactions mediated by this region are determinants of gp21 stability and membrane fusion function.« less

  15. Biochemistry of terminal deoxynucleotidyltransferase. Identification and unity of ribo- and deoxyribonucleoside triphosphate binding site in terminal deoxynucleotidyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, V.N.; Modak, M.J.

    Terminal deoxynucleotidyltransferase is the only DNA polymerase that is strongly inhibited in the presence of ATP. We have labeled calf terminal deoxynucleotidyltransferase with (/sup 32/P)ATP in order to identify its binding site in terminal deoxynucleotidyltransferase. The specificity of ATP cross-linking to terminal deoxynucleotidyltransferase is shown by the competitive inhibition of the overall cross-linking reaction by deoxynucleoside triphosphates, as well as the ATP analogs Ap4A and Ap5A. Tryptic peptide mapping of (/sup 32/P)ATP-labeled enzyme revealed a peptide fraction that contained the majority of cross-linked ATP. The properties, chromatographic characteristics, amino acid composition, and sequence analysis of this peptide fraction were identicalmore » with those found associated with dTTP cross-linked terminal deoxynucleotidyl-transferase peptide. The involvement of the same 2 cysteine residues in the crosslinking of both nucleotides further confirmed the unity of the ATP and dTTP binding domain that contains residues 224-237 in the primary amino acid sequence of calf terminal deoxynucleotidyltransferase.« less

  16. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs.

    PubMed

    Shamim, Mohammad Tabrez Anwar; Anwaruddin, Mohammad; Nagarajaram, H A

    2007-12-15

    Fold recognition is a key step in the protein structure discovery process, especially when traditional sequence comparison methods fail to yield convincing structural homologies. Although many methods have been developed for protein fold recognition, their accuracies remain low. This can be attributed to insufficient exploitation of fold discriminatory features. We have developed a new method for protein fold recognition using structural information of amino acid residues and amino acid residue pairs. Since protein fold recognition can be treated as a protein fold classification problem, we have developed a Support Vector Machine (SVM) based classifier approach that uses secondary structural state and solvent accessibility state frequencies of amino acids and amino acid pairs as feature vectors. Among the individual properties examined secondary structural state frequencies of amino acids gave an overall accuracy of 65.2% for fold discrimination, which is better than the accuracy by any method reported so far in the literature. Combination of secondary structural state frequencies with solvent accessibility state frequencies of amino acids and amino acid pairs further improved the fold discrimination accuracy to more than 70%, which is approximately 8% higher than the best available method. In this study we have also tested, for the first time, an all-together multi-class method known as Crammer and Singer method for protein fold classification. Our studies reveal that the three multi-class classification methods, namely one versus all, one versus one and Crammer and Singer method, yield similar predictions. Dataset and stand-alone program are available upon request.

  17. Energetics of side-chain partitioning of β-signal residues in unassisted folding of a transmembrane β-barrel protein

    PubMed Central

    Iyer, Bharat Ramasubramanian; Zadafiya, Punit; Vetal, Pallavi Vijay

    2017-01-01

    The free energy of water-to-interface amino acid partitioning is a major contributing factor in membrane protein folding and stability. The interface residues at the C terminus of transmembrane β-barrels form the β-signal motif required for assisted β-barrel assembly in vivo but are believed to be less important for β-barrel assembly in vitro. Here, we experimentally measured the thermodynamic contribution of all 20 amino acids at the β-signal motif to the unassisted folding of the model β-barrel protein PagP. We obtained the partitioning free energy for all 20 amino acids at the lipid-facing interface (ΔΔG0w,i(φ)) and the protein-facing interface (ΔΔG0w,i(π)) residues and found that hydrophobic amino acids are most favorably transferred to the lipid-facing interface, whereas charged and polar groups display the highest partitioning energy. Furthermore, the change in non-polar surface area correlated directly with the partitioning free energy for the lipid-facing residue and inversely with the protein-facing residue. We also demonstrate that the interface residues of the β-signal motif are vital for in vitro barrel assembly, because they exhibit a side chain–specific energetic contribution determined by the change in nonpolar accessible surface. We further establish that folding cooperativity and hydrophobic collapse are balanced at the membrane interface for optimal stability of the PagP β-barrel scaffold. We conclude that the PagP C-terminal β-signal motif influences the folding cooperativity and stability of the folded β-barrel and that the thermodynamic contributions of the lipid- and protein-facing residues in the transmembrane protein β-signal motif depend on the nature of the amino acid side chain. PMID:28592485

  18. The catalytic chain of human complement subcomponent C1r. Purification and N-terminal amino acid sequences of the major cyanogen bromide-cleavage fragments.

    PubMed

    Arlaud, G J; Gagnon, J; Porter, R R

    1982-01-01

    1. The a- and b-chains of reduced and alkylated human complement subcomponent C1r were separated by high-pressure gel-permeation chromatography and isolated in good yield and in pure form. 2. CNBr cleavage of C1r b-chain yielded eight major peptides, which were purified by gel filtration and high-pressure reversed-phase chromatography. As determined from the sum of their amino acid compositions, these peptides accounted for a minimum molecular weight of 28 000, close to the value 29 100 calculated from the whole b-chain. 3. N-Terminal sequence determinations of C1r b-chain and its CNBr-cleavage peptides allowed the identification of about two-thirds of the amino acids of C1r b-chain. From our results, and on the basis of homology with other serine proteinases, an alignment of the eight CNBr-cleavage peptides from C1r b-chain is proposed. 4. The residues forming the 'charge-relay' system of the active site of serine proteinases (His-57, Asp-102 and Ser-195 in the chymotrypsinogen numbering) are found in the corresponding regions of C1r b-chain, and the amino acid sequence around these residues has been determined. 5. The N-terminal sequence of C1r b-chain has been extended to residue 60 and reveals that C1r b-chain lacks the 'histidine loop', a disulphide bond that is present in all other known serine proteinases.

  19. The Tip of the Four N-Terminal α-Helices of Clostridium sordellii Lethal Toxin Contains the Interaction Site with Membrane Phosphatidylserine Facilitating Small GTPases Glucosylation

    PubMed Central

    Varela Chavez, Carolina; Haustant, Georges Michel; Baron, Bruno; England, Patrick; Chenal, Alexandre; Pauillac, Serge; Blondel, Arnaud; Popoff, Michel-Robert

    2016-01-01

    Clostridium sordellii lethal toxin (TcsL) is a powerful virulence factor responsible for severe toxic shock in man and animals. TcsL belongs to the large clostridial glucosylating toxin (LCGT) family which inactivates small GTPases by glucosylation with uridine-diphosphate (UDP)-glucose as a cofactor. Notably, TcsL modifies Rac and Ras GTPases, leading to drastic alteration of the actin cytoskeleton and cell viability. TcsL enters cells via receptor-mediated endocytosis and delivers the N-terminal glucosylating domain (TcsL-cat) into the cytosol. TcsL-cat was found to preferentially bind to phosphatidylserine (PS)-containing membranes and to increase the glucosylation of Rac anchored to the lipid membrane. We have previously reported that the N-terminal four helical bundle structure (1–93 domain) recognizes a broad range of lipids, but that TcsL-cat specifically binds to PS and phosphatidic acid. Here, we show using mutagenesis that the PS binding site is localized on the tip of the four-helix bundle which is rich in positively-charged amino acids. Residues Y14, V15, F17, and R18 on loop 1, between helices 1 and 2, in coordination with R68 from loop 3, between helices 3 and 4, form a pocket which accommodates L-serine. The functional PS-binding site is required for TcsL-cat binding to the plasma membrane and subsequent cytotoxicity. TcsL-cat binding to PS facilitates a high enzymatic activity towards membrane-anchored Ras by about three orders of magnitude as compared to Ras in solution. The PS-binding site is conserved in LCGTs, which likely retain a common mechanism of binding to the membrane for their full activity towards membrane-bound GTPases. PMID:27023605

  20. A basic residue in the proximal C-terminus is necessary for efficient activation of the M-channel subunit Kv7.2 by PI(4,5)P₂.

    PubMed

    Telezhkin, Vsevolod; Thomas, Alison M; Harmer, Stephen C; Tinker, Andrew; Brown, David A

    2013-07-01

    All Kv7 potassium channels require membrane phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) for their normal function and hence can be physiologically regulated by neurotransmitters and hormones that stimulate phosphoinositide hydrolysis. Recent mutational analysis indicates that a cluster of basic residues in the proximal C-terminus (K354/K358/R360/K362) is crucial for PI(4,5)P2 activation of cardiac Kv7.1 channels. Since this cluster is largely conserved in all Kv7 subunits, we tested whether homologous residues are also required for activation of Kv7.2 (a subunit of neuronal M-channels). We found that the mutation Kv7.2 (R325A) (corresponding to R360 in Kv7.1) reduced Kv7.2 current amplitude by ∼60 % (P < 0.02) without change in voltage sensitivity and reduced the sensitivity of Kv7.2 channels to dioctanoyl-phosphatidylinositol-4,5-bisphosphate by ∼eightfold (P < 0.001). Taking into account previous experiments (Zhang et al., Neuron 37:963-75, 2003) implicating Kv7.2 (H328), and since R325 and H328 are conserved in homologous positions in all other Kv7 channels, we suggest that this proximal C-terminal domain adjacent to the last transmembrane domain that contains R325 and H328 (in Kv7.2) might play a major role in the activation of all members of the Kv7 channel family by PI(4,5)P2.

  1. Chimeric protein identification of dystrophic, Pierson and other laminin polymerization residues

    PubMed Central

    McKee, Karen K.; Aleksandrova, Maya; Yurchenco, Peter D.

    2018-01-01

    Laminin polymerization is a key step of basement membrane self-assembly that depends on the binding of the three different N-terminal globular LN domains. Several mutations in the LN domains cause LAMA2-deficient muscular dystrophy and LAMB2-deficient Pierson syndrome. These mutations may affect polymerization. A novel approach to identify the amino acid residues required for polymerization has been applied to an analysis of these and other laminin LN mutations. The approach utilizes laminin-nidogen chimeric fusion proteins that bind to recombinant non-polymerizing laminins to provide a missing functional LN domain. Single amino acid substitutions introduced into these chimeras were tested to determine if polymerization activity and the ability to assemble on cell surfaces were lost. Several laminin-deficient muscular dystrophy mutations, renal Pierson syndrome mutations, and Drosophila mutations causing defects of heart development were identified as ones causing loss of laminin polymerization. In addition, two novel residues required for polymerization were identified in the laminin γ1 LN domain. PMID:29408412

  2. Heterogeneity of Arabinogalactan-Proteins on the Plasma Membrane of Rose Cells.

    PubMed Central

    Serpe, M. D.; Nothnagel, E. A.

    1996-01-01

    Arabinogalactan-proteins (AGPs) have been purified from the plasma membrane of suspension-cultured Paul's Scarlet rose (Rosa sp.) cells. The two most abundant and homogeneous plasma membrane AGP fractions were named plasma membrane AGP1 (PM-AGP1) and plasma membrane AGP2 (PM-AGP2) and had apparent molecular masses of 140 and 217 kD, respectively. Both PM-AGP1 and PM-AGP2 had [beta]-(1-3)-, [beta]-(1,6)-, and [beta]-(1,3,6)-galactopyranosyl residues, predominantly terminal [alpha]-arabinofuranosyl residues, and (1,4)- and terminal glucuronopyranosyl residues. The protein moieties of PM-AGP1 and PM-AGP2 were both rich in hydroxyproline, alanine, and serine, but differed in the abundance of hydroxyproline, which was 1.6 times higher in PM-AGP2 than in PM-AGP1. Another difference was the overall protein content, which was 3.7% (w/w) in PM-AGP1 and 15% in PM-AGP2. As judged by their behavior on reverse-phase chromatography, PM-AGP1 and PM-AGP2 were not more hydrophobic than AGPs from the cell wall or culture medium. In contrast, a minor plasma membrane AGP fraction eluted later on reverse-phase chromatography and was more negatively charged at pH 5 than either PM-AGP1 or PM-AGP2. The more negatively charged fraction contained molecules with a glycosyl composition characteristic of AGPs and included at least two different macromolecules. The results of this investigation indicate that Rosa plasma membrane contains at least four distinct AGPs or AGP-like molecules. These molecules differed from each other in size, charge, hydrophobicity, amino-acyl composition, and/or protein content. PMID:12226444

  3. Identification of key residues for the binding of glucagon to the N-terminal domain of its receptor: an alanine scan and modeling study.

    PubMed

    Prévost, M; Vertongen, P; Waelbroeck, M

    2012-10-01

    Glucagon plays an essential role in the glycemia maintenance during fasting, but also aggravates hyperglycemia in diabetic patients. A series of analogues of glucagon were synthesized replacing each amino acid of the C-terminal region (residues 15-29) with alanine. The residues affecting the binding to the glucagon receptor are found to be located on one face of the glucagon helix. Several 3-dimensional models of the N-terminal domain of the glucagon receptor in complex with its ligand peptide were built and used to analyze the peptide-receptor interface in terms of the nature of the peptide residues and the interactions they form with the receptor. The models suggest that glucagon keeps its native helical structure upon binding, and that a large part of the interface formed with the receptor is hydrophobic. We find that in the C-terminal region, F22, V23, M27, and D15 are the most important residues for peptide binding. They bury a large portion of their solvent accessible surface area and make numerous interactions with the receptor mainly of the hydrophobic type. © Georg Thieme Verlag KG Stuttgart · New York.

  4. The role of lipid composition for insertion and stabilization of amino acids in membranes

    NASA Astrophysics Data System (ADS)

    Johansson, Anna C. V.; Lindahl, Erik

    2009-05-01

    While most membrane protein helices are clearly hydrophobic, recent experiments have indicated that it is possible to insert marginally hydrophobic helices into bilayers and have suggested apparent in vivo free energies of insertion for charged residues that are low, e.g., a few kcals for arginine. In contrast, a number of biophysical simulation studies have predicted that the bilayer interior is close to a pure hydrophobic environment with large penalties for hydrophilic amino acids—and yet the experimental scales do significantly better at predicting actual membrane proteins from sequence. Here, we have systematically studied the dependence of the free energy profiles on lipid properties, including tail length, saturation, headgroup hydrogen bond strength, and charge, both to see to whether the in vivo insertion can be explained in whole or part from lipid composition of the endoplasmic reticulum (ER) membranes, and if the solvation properties can help interpret how protein function depends on the lipids. We find that lipid charge is important to stabilize charged amino acids inside the bilayer (with implications, e.g., for ion channels), that thicker bilayers have higher solvation costs for hydrophilic side chains, and that headgroup hydrogen bond strength determines how adaptive the lipids are as a hydrophobic/hydrophilic solvent. None of the different free energy profiles are even close to the low apparent in vivo insertion cost, which suggests that regardless of the specific ER membrane composition the current experimental results cannot be explained by normal lipid-type variation.

  5. Role of the C-terminal residue of the DNA polymerase of bacteriophage T7.

    PubMed

    Kumar, J K; Tabor, S; Richardson, C C

    2001-09-14

    The crystal structure of the DNA polymerase encoded by gene 5 of bacteriophage T7, in a complex with its processivity factor, Escherichia coli thioredoxin, a primer-template, and an incoming deoxynucleoside triphosphate reveals a putative hydrogen bond between the C-terminal residue, histidine 704 of gene 5 protein, and an oxygen atom on the penultimate phosphate diester of the primer strand. Elimination of this electrostatic interaction by replacing His(704) with alanine renders the phage nonviable, and no DNA synthesis is observed in vivo. Polymerase activity of the genetically altered enzyme on primed M13 DNA is only 12% of the wild-type enzyme, and its processivity is drastically reduced. Kinetic parameters for binding a primer-template (K(D)(app)), nucleotide binding (K(m)), and k(off) for dissociation of the altered polymerase from a primer-template are not significantly different from that of wild-type T7 DNA polymerase. However, the decrease in polymerase activity is concomitant with increased hydrolytic activity, judging from the turnover of nucleoside triphosphate into the corresponding nucleoside monophosphate (percentage of turnover, 65%) during DNA synthesis. Biochemical data along with structural observations imply that the terminal amino acid residue of T7 DNA polymerase plays a critical role in partitioning DNA between the polymerase and exonuclease sites.

  6. Amino acid residues 489-503 of dihydropyridine receptor (DHPR) β1a subunit are critical for structural communication between the skeletal muscle DHPR complex and type 1 ryanodine receptor.

    PubMed

    Eltit, Jose M; Franzini-Armstrong, Clara; Perez, Claudio F

    2014-12-26

    The β1a subunit is a cytoplasmic component of the dihydropyridine receptor (DHPR) complex that plays an essential role in skeletal muscle excitation-contraction (EC) coupling. Here we investigate the role of the C-terminal end of this auxiliary subunit in the functional and structural communication between the DHPR and the Ca(2+) release channel (RyR1). Progressive truncation of the β1a C terminus showed that deletion of amino acid residues Gln(489) to Trp(503) resulted in a loss of depolarization-induced Ca(2+) release, a severe reduction of L-type Ca(2+) currents, and a lack of tetrad formation as evaluated by freeze-fracture analysis. However, deletion of this domain did not affect expression/targeting or density (Qmax) of the DHPR-α1S subunit to the plasma membrane. Within this motif, triple alanine substitution of residues Leu(496), Leu(500), and Trp(503), which are thought to mediate direct β1a-RyR1 interactions, weakened EC coupling but did not replicate the truncated phenotype. Therefore, these data demonstrate that an amino acid segment encompassing sequence (489)QVQVLTSLRRNLSFW(503) of β1a contains critical determinant(s) for the physical link of DHPR and RyR1, further confirming a direct correspondence between DHPR positioning and DHPR/RyR functional interactions. In addition, our data strongly suggest that the motif Leu(496)-Leu(500)-Trp(503) within the β1a C-terminal tail plays a nonessential role in the bidirectional DHPR/RyR1 signaling that supports skeletal-type EC coupling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Specific Activation of the Plant P-type Plasma Membrane H+-ATPase by Lysophospholipids Depends on the Autoinhibitory N- and C-terminal Domains.

    PubMed

    Wielandt, Alex Green; Pedersen, Jesper Torbøl; Falhof, Janus; Kemmer, Gerdi Christine; Lund, Anette; Ekberg, Kira; Fuglsang, Anja Thoe; Pomorski, Thomas Günther; Buch-Pedersen, Morten Jeppe; Palmgren, Michael

    2015-06-26

    Eukaryotic P-type plasma membrane H(+)-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H(+)-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H(+)-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Amino acid residues in the GerAB protein important in the function and assembly of the alanine spore germination receptor of Bacillus subtilis 168.

    PubMed

    Cooper, Gareth R; Moir, Anne

    2011-05-01

    The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.

  9. Analysis of the Human Immunodeficiency Virus Type 1 gp41 Membrane Proximal External Region Arrayed on Hepatitis B Surface Antigen Particles

    PubMed Central

    Phogat, S; K, Svehla; M, Tang; A, Spadaccini; J, Muller; J, Mascola; Berkower; R, Wyatt

    2009-01-01

    Vaccine immunogens derived from the envelope glycoproteins of the human immunodeficiency virus type 1 (HIV-1) that elicit broad neutralizing antibodies remains an elusive goal. The highly conserved 30 amino acid membrane proximal external region (MPER) of HIV gp41 contains the hydrophobic epitopes for two rare HIV-1 broad cross-reactive neutralizing antibodies, 2F5 and 4E10. Both these antibodies possess relatively hydrophobic HCDR3 loops and demonstrate enhanced binding to their epitopes in the context of the native gp160 precursor envelope glycoprotein by the intimate juxtaposition of a lipid membrane. The Hepatitis B surface antigen (HBsAg) S1 protein forms nanoparticles that can be utilized both as an immunogenic array of the MPER and to provide the lipid environment needed for enhanced 2F5 and 4E10 binding. We show that recombinant HBsAg particles with MPER (HBsAg-MPER) appended at the C-terminus of the S1 protein are recognized by 2F5 and 4E10 with high affinity compared to positioning the MPER at the N-terminus or the extracellular loop (ECL) of S1. Addition of C-terminal hydrophobic residues derived from the HIV-1 Env transmembrane region further enhances recognition of the MPER by both 2F5 and 4E10. Delipidation of the HBsAg-MPER particles decreases 2F5 and 4E10 binding and subsequent reconstitution with synthetic lipids restores optimal binding. Inoculation of the particles into small animals raised cross-reactive antibodies that recognize both the MPER and HIV-1 gp160 envelope glycoproteins expressed on the cell surface; however, no neutralizing activity could be detected. Prime:boost immunization of the HBsAg-MPER particles in sequence with HIV envelope glycoprotein proteoliposomes (Env-PLs) did not raise neutralizing antibodies that could be mapped to the MPER region. However, the Env-PLs did raise anti-Env antibodies that had the ability to neutralize selected HIV-1 isolates. The first generation HBsAg-MPER particles represent a unique means to

  10. Proximate composition, amino acid and fatty acid composition of fish maws.

    PubMed

    Wen, Jing; Zeng, Ling; Xu, Youhou; Sun, Yulin; Chen, Ziming; Fan, Sigang

    2016-01-01

    Fish maws are commonly recommended and consumed in Asia over many centuries because it is believed to have some traditional medical properties. This study highlights and provides new information on the proximate composition, amino acid and fatty acid composition of fish maws of Cynoscion acoupa, Congresox talabonoides and Sciades proops. The results indicated that fish maws were excellent protein sources and low in fat content. The proteins in fish maws were rich in functional amino acids (FAAs) and the ratio of FAAs and total amino acids in fish maws ranged from 0.68 to 0.69. Among species, croaker C. acoupa contained the most polyunsaturated fatty acids, arachidonic acid, docosahexaenoic acid and eicosapntemacnioc acid, showing the lowest value of index of atherogenicity and index of thrombogenicity, showing the highest value of hypocholesterolemic/hypercholesterolemic ratio, which is the most desirable.

  11. Two Proline-Rich Nuclear Localization Signals in the Amino- and Carboxyl-Terminal Regions of the Borna Disease Virus Phosphoprotein

    PubMed Central

    Shoya, Yuko; Kobayashi, Takeshi; Koda, Toshiaki; Ikuta, Kazuyoshi; Kakinuma, Mitsuaki; Kishi, Masahiko

    1998-01-01

    Borna disease virus (BDV) uses a unique strategy of replication and transcription which takes place in the nucleus, unlike other known, nonsegmented, negative-stranded RNA viruses of animal origin. In this process, viral constituents necessary for replication must be transported to the nucleus from the cytoplasm. We report here the evidence that BDV P protein, which may play an important role in viral replication and transcription, is transported into the nucleus in the absence of other viral constituents. This transportation is accomplished by its own nuclear localization signals (NLSs), which are present in both N-terminal (29PRPRKIPR36) and C-terminal (181PPRIYPQLPSAPT193) regions of the protein. These two NLSs can function independently and both have several Pro residues as key amino acids. PMID:9811710

  12. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid.

    PubMed Central

    Kinsella, B T; Erdman, R A; Maltese, W A

    1991-01-01

    ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. We changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by [3H]geranylgeranyl instead of [3H]farnesyl in an in vitro assay. Gel-permeation chromatography of [3H]mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21(Leu-189) was also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21(Leu-189) with [3H]palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases. Images PMID:1924354

  13. Amino-functionalized surface modification of polyacrylonitrile hollow fiber-supported polydimethylsiloxane membranes

    NASA Astrophysics Data System (ADS)

    Hu, Leiqing; Cheng, Jun; Li, Yannan; Liu, Jianzhong; Zhou, Junhu; Cen, Kefa

    2017-08-01

    This study aimed to improve surface polarity of polydimethylsiloxane (PDMS) membranes and provide surface active sites which were easy to react with other chemicals. 3-Aminopropyltriethoxysilane (APTES) containing an amino group was introduced into a PDMS membrane by crosslinking to prepare polyacrylonitrile hollow fiber-supported PDMS membranes with an amino-functionalized surface. Fourier transform infrared and X-ray photoelectron spectroscopic analyses proved the existence of APTES and its amino group in the PDMS membrane. The concentration of N atoms on the PDMS membrane surface reached ∼6% when the mass ratio of APTES/PDMS oligomer in the PDMS coating solution was increased to 4/3. The water contact angle decreased from ∼114° to ∼87.5°, indicating the improved surface polarization of the PDMS membrane. The density and swelling degree of the PDMS membrane decreased and increased, respectively, with increasing APTES content in PDMS. This phenomenon increased CO2 permeability and decreased CO2/H2 selectivity, CO2/CH4 selectivity, and CO2/N2 selectivity. When the mass ratio of APTES/PDMS oligomer was increased from 0 to 4/3, the CO2 permeation rate of the hollow fiber-supported PDMS membranes initially decreased from ∼2370 GPU to ∼860 GPU and then increased to ∼2000 GPU due to the change in coating solution viscosity.

  14. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK.

    PubMed

    Berezuk, Alison M; Goodyear, Mara; Khursigara, Cezar M

    2014-08-22

    In Escherichia coli, FtsK is a large integral membrane protein that coordinates chromosome segregation and cell division. The N-terminal domain of FtsK (FtsKN) is essential for division, and the C terminus (FtsKC) is a well characterized DNA translocase. Although the function of FtsKN is unknown, it is suggested that FtsK acts as a checkpoint to ensure DNA is properly segregated before septation. This may occur through modulation of protein interactions between FtsKN and other division proteins in both the periplasm and cytoplasm; thus, a clear understanding of how FtsKN is positioned in the membrane is required to characterize these interactions. The membrane topology of FtsKN was initially determined using site-directed reporter fusions; however, questions regarding this topology persist. Here, we report a revised membrane topology generated by site-directed fluorescence labeling. The revised topology confirms the presence of four transmembrane segments and reveals a newly identified periplasmic loop between the third and fourth transmembrane domains. Within this loop, four residues were identified that, when mutated, resulted in the appearance of cellular voids. High resolution transmission electron microscopy of these voids showed asymmetric division of the cytoplasm in the absence of outer membrane invagination or visible cell wall ingrowth. This uncoupling reveals a novel role for FtsK in linking cell envelope septation events and yields further evidence for FtsK as a critical checkpoint of cell division. The revised topology of FtsKN also provides an important platform for future studies on essential interactions required for this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature.

    PubMed

    Zhu, J K; Bressan, R A; Hasegawa, P M

    1993-09-15

    We demonstrate that ANJ1, a higher plant homolog of the bacterial molecular chaperone DnaJ, is a substrate in vitro for protein farnesyl- and geranylgeranyl-transferase activities present in cell extracts of the plant Atriplex nummularia and yeast Saccharomyces cerevisiae. Isoprenylation did not occur when cysteine was replaced by serine in the CAQQ motif at the carboxyl terminus of ANJ1, indicating that this sequence functions as a CaaX consensus sequence for polyisoprenylation (where C is cysteine, a is an aliphatic residue, and X is any amino acid residue). Substitution of leucine for the terminal glutamine did not result in the expected geranylgeranylation as occurs with mammalian proteins containing a carboxyl-terminal leucine. Unlike the wild-type ANJ1, neither of the proteins containing these amino acid substitutions could functionally complement the yeast temperature-sensitive mutant mas5. Farnesylation enhanced the association of ANJ1 with A. nummularia microsomal membranes. Electrophoretic mobility of ANJ1 from the plant indicated that the protein is isoprenylated in vivo.

  16. Isoprenylation of the plant molecular chaperone ANJ1 facilitates membrane association and function at high temperature.

    PubMed Central

    Zhu, J K; Bressan, R A; Hasegawa, P M

    1993-01-01

    We demonstrate that ANJ1, a higher plant homolog of the bacterial molecular chaperone DnaJ, is a substrate in vitro for protein farnesyl- and geranylgeranyl-transferase activities present in cell extracts of the plant Atriplex nummularia and yeast Saccharomyces cerevisiae. Isoprenylation did not occur when cysteine was replaced by serine in the CAQQ motif at the carboxyl terminus of ANJ1, indicating that this sequence functions as a CaaX consensus sequence for polyisoprenylation (where C is cysteine, a is an aliphatic residue, and X is any amino acid residue). Substitution of leucine for the terminal glutamine did not result in the expected geranylgeranylation as occurs with mammalian proteins containing a carboxyl-terminal leucine. Unlike the wild-type ANJ1, neither of the proteins containing these amino acid substitutions could functionally complement the yeast temperature-sensitive mutant mas5. Farnesylation enhanced the association of ANJ1 with A. nummularia microsomal membranes. Electrophoretic mobility of ANJ1 from the plant indicated that the protein is isoprenylated in vivo. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 Fig. 6 Fig. 7 PMID:8378331

  17. Characterization, cell-surface expression and ligand-binding properties of different truncated N-terminal extracellular domains of the ionotropic glutamate receptor subunit GluR1.

    PubMed

    McIlhinney, R A; Molnár, E

    1996-04-01

    To identify the location of the first transmembrane segment of the GluR1 glutamate receptor subunit artificial stop codons have been introduced into the N-terminal domain at amino acid positions 442, 510, and 563, namely just before and spanning the proposed first two transmembrane regions. The resultant truncated N-terminal fragments of GluR1, termed NT1, NT2, and NT3 respectively were expressed in Cos-7 cells and their cellular distribution and cell-surface expression analysed using an N-terminal antibody to GluR1. All of the fragments were fully glycosylated and were found to be associated with cell membranes but none was secreted. Differential extraction of the cell membranes indicated that both NT1 and NT2 behave as peripheral membrane proteins. In contrast NT3, like the full subunit, has integral membrane protein properties. Furthermore only NT3 is expressed at the cell surface as determined by immunofluorescence and cell-surface biotinylation. Protease protection assays indicated that only NT3 had a cytoplasmic tail. Binding studies using the selective ligand [(3)H]alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate ([(3)H]AMPA) demonstrated that NT3 does not bind ligand. Together these results indicate that the first transmembrane domain of the GluR1 subunit lies between residues 509 and 562, that the N-terminal domain alone cannot form a functional ligand-binding site and that this domain can be targeted to the cell surface provided that it has a transmembrane-spanning region.

  18. Novel Biosensor of Membrane Protein Proximity Based on Fluorogen Activated Proteins.

    PubMed

    Vasilev, Kalin V; Gallo, Eugenio; Shank, Nathaniel; Jarvik, Jonathan W

    2016-01-01

    We describe a novel biosensor system for reporting proximity between cell surface proteins in live cultured cells. The biosensor takes advantage of recently developed fluorogen-activating proteins (FAPs) that display fluorescence only when bound to otherwise-nonfluorescent fluorogen molecules. To demonstrate feasibility for the approach, two recombinant rapamycin-binding proteins were expressed as single-pass plasma membrane proteins in HeLa cells; one of the proteins (scAvd- FRB) carried an extracellular avidin tag; the other (HL1-TO1-FKBP) carried an extracellular FAP. Cells were incubated with a membrane-impermeable bivalent ligand (biotin-PEG2000-DIR) consisting of biotin joined to a dimethyl-indole red (DIR) fluorogen by a polyethylene glycol linker, thus tethering the fluorogen to the scAvd-FRB fusion protein. Addition of rapamycin, which promotes FKBP-FRB dimerization and thereby brings the FAP in close proximity to the tethered fluorogen, led to a significant increase in DIR fluorescence. We call the new proximity assay TEFLA, for tethered fluorogen assay.

  19. Modulating immunogenic properties of HIV-1 gp41 membrane-proximal external region by destabilizing six-helix bundle structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Saikat; Shi, Heliang; Habte, Habtom H.

    The C-terminal alpha-helix of gp41 membrane-proximal external region (MPER; {sup 671}NWFDITNWLWYIK{sup 683}) encompassing 4E10/10E8 epitopes is an attractive target for HIV-1 vaccine development. We previously reported that gp41-HR1-54Q, a trimeric protein comprised of the MPER in the context of a stable six-helix bundle (6HB), induced strong immune responses against the helix, but antibodies were directed primarily against the non-neutralizing face of the helix. To better target 4E10/10E8 epitopes, we generated four putative fusion intermediates by introducing double point mutations or deletions in the heptad repeat region 1 (HR1) that destabilize 6HB in varying degrees. One variant, HR1-∆10-54K, elicited antibodies inmore » rabbits that targeted W672, I675 and L679, which are critical for 4E10/10E8 recognition. Overall, the results demonstrated that altering structural parameters of 6HB can influence immunogenic properties of the MPER and antibody targeting. Further exploration of this strategy could allow development of immunogens that could lead to induction of 4E10/10E8-like antibodies. - Highlights: • Four gp41 MPER-based immunogens that resemble fusion intermediates were generated. • C-terminal region of MPER that contains 4E10/10E8 epitopes was highly immunogenic. • Altering 6HB structure can influence immunogenic properties of the MPER. • Induced antibodies targeted multiple residues critical for 4E10/10E8 binding. • Development of immunogens based on fusion intermediates is a promising strategy.« less

  20. Posttranslational modification of Ha-ras p21 by farnesyl versus geranylgeranyl isoprenoids is determined by the COOH-terminal amino acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella, B.T.; Erdman, R.A.; Maltese, W.A.

    ras proteins undergo posttranslational modification by a 15-carbon farnesyl isoprenoid at a cysteine within a defined COOH-terminal amino acid motif; i.e., Cys-Ali-Ali-Ser/Met (where Ali represents an aliphatic residue). In other low molecular mass GTP-binding proteins, cysteines are modified by 20-carbon geranylgeranyl groups within a Cys-Ali-Ali-Leu motif. The authors changed the terminal Ser-189 of Ha-ras p21 to Leu-189 by site-directed mutagenesis and found that the protein was modified by ({sup 3}H)geranylgeranyl instead of ({sup 3}H)farnesyl in an in vitro assay. Gel-permeation chromatography of ({sup 3}H)mevalonate-labeled hydrocarbons released from immunoprecipitated ras proteins overexpressed in COS cells indicated that Ha-ras p21 (Leu-189) wasmore » also a substrate for 20-carbon isoprenyl modification in vivo. Additional steps in Ha-ras p21 processing, normally initiated by farnesylation, appear to be supported by geranylgeranylation, based on metabolic labeling of Ha-ras p21 (Leu-189) with ({sup 3}H) palmitate and its subcellular localization in a particulate fraction from COS cells. These observations indicate that the amino acid occupying the terminal position (Xaa) in the Cys-Ali-Ali-Xaa motif constitutes a key structural feature by which Ha-ras p21 and other proteins with ras-like COOH-terminal isoprenylation sites are distinguished as substrates for farnesyl- or geranylgeranyltransferases.« less

  1. Quantum-mechanical analysis of amino acid residues function in the proton transport during F0F1-ATP synthase catalytic cycle

    NASA Astrophysics Data System (ADS)

    Ivontsin, L. A.; Mashkovtseva, E. V.; Nartsissov, Ya R.

    2017-11-01

    Implications of quantum-mechanical approach to the description of proton transport in biological systems are a tempting subject for an overlapping of fundamental physics and biology. The model of proton transport through the integrated membrane enzyme FoF1-ATP synthase responsible for ATP synthesis was developed. The estimation of the mathematical expectation of the proton transfer time through the half-channel was performed. Observed set of proton pathways through the inlet half-channel showed the nanosecond timescale highly dependable of some amino acid residues. There were proposed two types of crucial amino acids: critically localized (His245) and being a part of energy conserving system (Asp119).

  2. Inferring topological features of proteins from amino acid residue networks

    NASA Astrophysics Data System (ADS)

    Alves, Nelson Augusto; Martinez, Alexandre Souto

    2007-02-01

    Topological properties of native folds are obtained from statistical analysis of 160 low homology proteins covering the four structural classes. This is done analyzing one, two and three-vertex joint distribution of quantities related to the corresponding network of amino acid residues. Emphasis on the amino acid residue hydrophobicity leads to the definition of their center of mass as vertices in this contact network model with interactions represented by edges. The network analysis helps us to interpret experimental results such as hydrophobic scales and fraction of buried accessible surface area in terms of the network connectivity. Moreover, those networks show assortative mixing by degree. To explore the vertex-type dependent correlations, we build a network of hydrophobic and polar vertices. This procedure presents the wiring diagram of the topological structure of globular proteins leading to the following attachment probabilities between hydrophobic-hydrophobic 0.424(5), hydrophobic-polar 0.419(2) and polar-polar 0.157(3) residues.

  3. Roles of N-terminal fatty acid acylations in membrane compartment partitioning: Arabidopsis h-type thioredoxins as a case study.

    PubMed

    Traverso, José A; Micalella, Chiara; Martinez, Aude; Brown, Spencer C; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-03-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX-green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane.

  4. Involvement of the N-terminal region in alpha-crystallin-lens membrane recognition

    NASA Technical Reports Server (NTRS)

    Ifeanyi, F.; Takemoto, L.; Spooner, B. S. (Principal Investigator)

    1991-01-01

    Previous studies have demonstrated that alpha-crystallin binds specifically, in a saturable manner, to lens membrane. To determine the region of the alpha-crystallin molecule that might be involved in this binding, native alpha-crystallin from the bovine lens has been treated by limited digestion with trypsin, to produce alpha-A molecules with an intact C-terminal region, and a nicked N-terminal region. Compared to intact alpha-crystallin, trypsin-treated alpha-crystallin binds less avidly to lens membrane, suggesting that the N-terminal region of the alpha-A molecule may play a key role in the recognition between lens membrane and crystallin.

  5. Identification of amino acids in the N-terminal SH2 domain of phospholipase C gamma 1 important in the interaction with epidermal growth factor receptor.

    PubMed

    Gergel, J R; McNamara, D J; Dobrusin, E M; Zhu, G; Saltiel, A R; Miller, W T

    1994-12-13

    Photoaffinity labeling and site-directed mutagenesis have been used to identify amino acid residues of the phospholipase C gamma 1 (PLC gamma 1) N-terminal SH2 domain involved in recognition of the activated epidermal growth factor receptor (EGFR). The photoactive amino acid p-benzoylphenylalanine (Bpa) was incorporated into phosphotyrosine-containing peptides derived from EGFR autophosphorylation sites Tyr992 and Tyr1068. Irradiation of these labels in the presence of SH2 domains showed cross-linking which was time-dependent and specific; labeling was inhibited with non-Bpa-containing peptides from EGFR in molar excess. The phosphotyrosine residue on the peptides was important for SH2 recognition, as dephosphorylated peptides did not cross-link. Radiolabeled peptides were used to identify sites of cross-linking to the N-terminal SH2 of PLC gamma 1. Bpa peptide-SH2 complexes were digested with trypsin, and radioactive fragments were purified by HPLC and analyzed by Edman sequencing. These experiments showed Arg562 and an additional site in the alpha A-beta B region of the SH2 domain, most likely Glu587, to be labeled by the Tyr992-derived peptide. Similar analysis of the reaction with the Tyr1068-derived photoaffinity label identified Leu653 as the cross-linked site. Mutation of the neighboring residues of Glu587 decreased photo-cross-linking, emphasizing the importance of this region of the molecule for recognition. These results are consistent with evidence from the v-Src crystal structure and implicate the loop spanning residues Gln640-Ser654 of PLC gamma 1 in specific recognition of phosphopeptides.

  6. Molecular Basis of the Membrane Interaction of the β2e Subunit of Voltage-Gated Ca2+ Channels

    PubMed Central

    Kim, Dong-Il; Kang, Mooseok; Kim, Sangyeol; Lee, Juhwan; Park, Yongsoo; Chang, Iksoo; Suh, Byung-Chang

    2015-01-01

    The auxiliary β subunit plays an important role in the regulation of voltage-gated calcium (CaV) channels. Recently, it was revealed that β2e associates with the plasma membrane through an electrostatic interaction between N-terminal basic residues and anionic phospholipids. However, a molecular-level understanding of β-subunit membrane recruitment in structural detail has remained elusive. In this study, using a combination of site-directed mutagenesis, liposome-binding assays, and multiscale molecular-dynamics (MD) simulation, we developed a physical model of how the β2e subunit is recruited electrostatically to the plasma membrane. In a fluorescence resonance energy transfer assay with liposomes, binding of the N-terminal peptide (23 residues) to liposome was significantly increased in the presence of phosphatidylserine (PS) and phosphatidylinositol 4,5-bisphosphate (PIP2). A mutagenesis analysis suggested that two basic residues proximal to Met-1, Lys-2 (K2) and Trp-5 (W5), are more important for membrane binding of the β2e subunit than distal residues from the N-terminus. Our MD simulations revealed that a stretched binding mode of the N-terminus to PS is required for stable membrane attachment through polar and nonpolar interactions. This mode obtained from MD simulations is consistent with experimental results showing that K2A, W5A, and K2A/W5A mutants failed to be targeted to the plasma membrane. We also investigated the effects of a mutated β2e subunit on inactivation kinetics and regulation of CaV channels by PIP2. In experiments with voltage-sensing phosphatase (VSP), a double mutation in the N-terminus of β2e (K2A/W5A) increased the PIP2 sensitivity of CaV2.2 and CaV1.3 channels by ∼3-fold compared with wild-type β2e subunit. Together, our results suggest that membrane targeting of the β2e subunit is initiated from the nonspecific electrostatic insertion of N-terminal K2 and W5 residues into the membrane. The PS-β2e interaction observed here

  7. Proximate Composition, Amino Acid, Mineral, and Heavy Metal Content of Dried Laver

    PubMed Central

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-01-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals. PMID:24471123

  8. Proximate composition, amino Acid, mineral, and heavy metal content of dried laver.

    PubMed

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-06-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.

  9. Amino acid and proximate composition of fish bone gelatin from different warm-water species: A comparative study

    NASA Astrophysics Data System (ADS)

    Atma, Y.

    2017-03-01

    Research on fish bone gelatin has been increased in the last decade. The quality of gelatin depends on its physicochemical properties. Fish bone gelatin from warm-water fishes has a superior amino acid composition than cold-water fishes. The composition of amino acid can determine the strength and stability of gelatin. Thus, it is important to analyze the composition of amino acid as well as proximate composition for potential gelatin material. The warm water fish species used in this study were Grass carp, Pangasius catfish, Catfish, Lizard fish, Tiger-toothed croaker, Pink perch, Red snapper, Brown spotted grouper, and King weakfish. There werre five dominant amino acid in fish bone gelatin including glycine (21.2-36.7%), proline (8.7-11.7%), hydroxyproline (5.3-9.6%), alanine (8.48-12.9%), and glutamic acid (7.23-10.15%). Different warm-water species has some differences in amino acid composition. The proximate composition showed that fishbone gelatin from Pangasius catfish has the highest protein content. The water composition of all fishbone gelatin was well suited to the standard. Meanwhile, based on ash content, only gelatin from gelatin Pangasius catfish met the standard for food industries.

  10. Sequence of the fhuE outer-membrane receptor gene of Escherichia coli K12 and properties of mutants.

    PubMed

    Sauer, M; Hantke, K; Braun, V

    1990-03-01

    The fhuE gene of Escherichia coli codes for an outer-membrane receptor protein required for the uptake of iron(III) via coprogen, ferrioxamine B and rhodotorulic acid. The amino acid sequence, deduced from the nucleotide sequence, consisted of 729 residues. The mature form, composed of 693 residues, has a calculated molecular weight of 77,453, which agrees with the molecular weight of 76,000 determined by polyacrylamide gel electrophoresis. The FhuE protein contains four regions of homology with other TonB-dependent receptors. A valine to proline exchange in the 'TonB box' abolished transport activity. Phenotypic revertants with substitutions of arginine, glutamine, or leucine at the valine position exhibited increasing iron-coprogen transport rates. Point mutations resulting in the replacement of glycine (127) in the second homology region with either alanine, aspartate, valine, asparagine or histidine exhibited decreased transport rates (listed in descending order). A truncated FhuE protein lacking 24 amino acids at the C-terminal end was exported to the periplasm but failed to be inserted into the outer membrane.

  11. Amino acid compositional shifts during streptophyte transitions to terrestrial habitats.

    PubMed

    Jobson, Richard W; Qiu, Yin-Long

    2011-02-01

    Across the streptophyte lineage, which includes charophycean algae and embryophytic plants, there have been at least four independent transitions to the terrestrial habitat. One of these involved the evolution of embryophytes (bryophytes and tracheophytes) from a charophycean ancestor, while others involved the earliest branching lineages, containing the monotypic genera Mesostigma and Chlorokybus, and within the Klebsormidiales and Zygnematales lineages. To overcome heat, water stress, and increased exposure to ultraviolet radiation, which must have accompanied these transitions, adaptive mechanisms would have been required. During periods of dehydration and/or desiccation, proteomes struggle to maintain adequate cytoplasmic solute concentrations. The increased usage of charged amino acids (DEHKR) may be one way of maintaining protein hydration, while increased use of aromatic residues (FHWY) protects proteins and nucleic acids by absorbing damaging UV, with both groups of residues thought to be important for the stabilization of protein structures. To test these hypotheses we examined amino acid sequences of orthologous proteins representing both mitochondrion- and plastid-encoded proteomes across streptophytic lineages. We compared relative differences within categories of amino acid residues and found consistent patterns of amino acid compositional fluxuation in extra-membranous regions that correspond with episodes of terrestrialization: positive change in usage frequency for residues with charged side-chains, and aromatic residues of the light-capturing chloroplast proteomes. We also found a general decrease in the usage frequency of hydrophobic, aliphatic, and small residues. These results suggest that amino acid compositional shifts in extra-membrane regions of plastid and mitochondrial proteins may represent biochemical adaptations that allowed green plants to colonize the land.

  12. Role of the Simian Virus 5 Fusion Protein N-Terminal Coiled-Coil Domain in Folding and Promotion of Membrane Fusion

    PubMed Central

    West, Dava S.; Sheehan, Michael S.; Segeleon, Patrick K.; Dutch, Rebecca Ellis

    2005-01-01

    Formation of a six-helix bundle comprised of three C-terminal heptad repeat regions in antiparallel orientation in the grooves of an N-terminal coiled-coil is critical for promotion of membrane fusion by paramyxovirus fusion (F) proteins. We have examined the effect of mutations in four residues of the N-terminal heptad repeat in the simian virus 5 (SV5) F protein on protein folding, transport, and fusogenic activity. The residues chosen have previously been shown from study of isolated peptides to have differing effects on stability of the N-terminal coiled-coil and six-helix bundle (R. E. Dutch, G. P. Leser, and R. A. Lamb, Virology 254:147-159, 1999). The mutant V154M showed reduced proteolytic cleavage and surface expression, indicating a defect in intracellular transport, though this mutation had no effect when studied in isolated peptides. The mutation I137M, previously shown to lower thermostability of the six-helix bundle, resulted in an F protein which was properly processed and transported to the cell surface but which had reduced fusogenic activity. Finally, mutations at L140M and L161M, previously shown to disrupt α-helix formation of isolated N-1 peptides but not to affect six-helix bundle formation, resulted in F proteins that were properly processed. Interestingly, the L161M mutant showed increased syncytium formation and promoted fusion at lower temperatures than the wild-type F protein. These results indicate that interactions separate from formation of an N-terminal coiled-coil or six-helix bundle are important in the initial folding and transport of the SV5 F protein and that mutations that destabilize the N-terminal coiled-coil can result in stimulation of membrane fusion. PMID:15650180

  13. A model for the topology of excitatory amino acid transporters determined by the extracellular accessibility of substituted cysteines.

    PubMed

    Seal, R P; Leighton, B H; Amara, S G

    2000-03-01

    Excitatory amino acid transporters (EAATs) function as both substrate transporters and ligand-gated anion channels. Characterization of the transporter's general topology is the first requisite step in defining the structural bases for these distinct activities. While the first six hydrophobic domains can be readily modeled as conventional transmembrane segments, the organization of the C-terminal hydrophobic domains, which have been implicated in both substrate and ion interactions, has been controversial. Here, we report the results of a comprehensive evaluation of the C-terminal topology of EAAT1 determined by the chemical modification of introduced cysteine residues. Our data support a model in which two membrane-spanning domains flank a central region that is highly accessible to the extracellular milieu and contains at least one reentrant loop domain.

  14. Effect of Insulin Levels on Phosphorylation of Specific Amino Acid Residues in IRS-1: Implications for Burn Induced Insulin Resistance

    PubMed Central

    Lu, Xiao-Ming; Hamrahi, Victoria F.; Tompkins, Ronald G.; Fischman, Alan J.

    2014-01-01

    Alterations in the phosphorylation and/or degradation of insulin receptor substrate 1 (IRS-1) produced by burn injury may be responsible, at least in part, for burn-induced insulin resistance. In particular, following burn injury, reductions in glucose uptake by skeletal muscle may be secondary to altered abundance and/or phosphorylation of IRS-1. In this report, we performed in vitro studies with 293 cells transfected with IRS-1. These studies demonstrated that there is a dramatic change in the phosphorylation pattern of Tyr, Ser, and Thr residues in IRS-1 as a function of insulin levels. Specifically, Ser and Thr residues in the C-terminal region were phosphorylated only at high insulin levels. SILAC (stable isotope labeling with amino acids in cell culture) followed by sequencing of C-terminal IRS-1 fragments by tandem mass spectrometry demonstrated that there is significant protein cleavage at these sites. These findings suggest that one of the biological roles of the C-terminal region of IRS-1 may be negative modulation of the finely coordinated insulin signaling system. Clearly, this could represent an important factor in insulin resistance and identification of inhibitors of the kinases that are responsible for the phosphorylation could foster new lines of research for the development of drugs for treating insulin resistance. PMID:19724894

  15. Analysis of Tryptophan Residues in the Staphylococcal Multidrug Transporter QacA Reveals Long-Distance Functional Associations of Residues on Opposite Sides of the Membrane▿

    PubMed Central

    Hassan, Karl A.; Souhani, Talal; Skurray, Ronald A.; Brown, Melissa H.

    2008-01-01

    Tryptophan residues can possess a multitude of functions within a multidrug transport protein, e.g., mediating interactions with substrates or distal parts of the protein, or fulfilling a structural requirement, such as guiding the depth of membrane insertion. In this study, the nine tryptophan residues of the staphylococcal QacA multidrug efflux protein were individually mutated to alanine and phenylalanine, and the functional consequences of these changes were determined. Phenylalanine substitutions for each tryptophan residue were functionally tolerated. However, alanine modifications revealed an important functional role for three tryptophan residues, W58, W149, and W173, each of which is well conserved among QacA-related transport proteins in the major facilitator superfamily. The most functionally compromising mutation, an alanine substitution for W58, likely to be located at the extracellular interface of transmembrane segment 2, abolished all detectable QacA-mediated resistance and transport function. Second-site suppressor analyses identified several mutations that rescued the function of the W58A QacA mutant. Remarkably, all of these suppressor mutations were shown to be located in cytoplasmic loops between transmembrane helices 2 and 3 or 12 and 13, demonstrating novel functional associations between amino acid positions on opposite sides of the membrane and in distal N- and C-terminal regions of the QacA protein. PMID:18223078

  16. Two non-redundant fragments in the N-terminal peptide of human cytosolic methionyl-tRNA synthetase were indispensable for the multi-synthetase complex incorporation and enzyme activity.

    PubMed

    He, Ran; Zu, Li-Dong; Yao, Peng; Chen, Xin; Wang, En-Duo

    2009-02-01

    In human cytoplasm, nine aminoacyl-tRNA synthetases (aaRSs) and three protein factors form a multi-synthetase complex (MSC). Human cytosolic methionyl-tRNA synthetase (hcMetRS) is a component of the MSC. Sequence alignment revealed that hcMetRS has an N-terminal extension of 267 amino acid residues. This extension can be divided into three sub-domains: GST-like, GN, and GC sub-domains. The effect of each sub-domain in the N-terminal extension of hcMetRS on enzymatic activity and incorporation into the MSC was studied. The results of cellular assay showed that the GST-like sub-domain was responsible for the incorporation of hcMetRS into the MSC. The entire N-terminal extension of hcMetRS is indispensable for the enzymatic activity. Deletion mutagenesis revealed that a seven-amino acid motif within the sub-domain GC was important for the activity of amino acid activation. A conserved proline residue within the seven-amino acid motif was crucial, while the other six residues were moderately important for the amino acid activation activity. Thus, the last 15 residues of previously defined N-terminal extension of hcMetRS was a part of the catalytic domain; whereas the first 252 residues of hcMetRS constitute the N-terminal extended domain of hcMetRS. The formerly defined N-terminal extension of hcMetRS possesses two functions of two different domains.

  17. Lipids and topological rules of membrane protein assembly: balance between long and short range lipid-protein interactions.

    PubMed

    Vitrac, Heidi; Bogdanov, Mikhail; Heacock, Phil; Dowhan, William

    2011-04-29

    The N-terminal six-transmembrane domain (TM) bundle of lactose permease of Escherichia coli is uniformly inverted when assembled in membranes lacking phosphatidylethanolamine (PE). Inversion is dependent on the net charge of cytoplasmically exposed protein domains containing positive and negative residues, net charge of the membrane surface, and low hydrophobicity of TM VII acting as a molecular hinge between the two halves of lactose permease (Bogdanov, M., Xie, J., Heacock, P., and Dowhan, W. (2008) J. Cell Biol. 182, 925-935). Net neutral lipids suppress the membrane translocation potential of negatively charged amino acids, thus increasing the cytoplasmic retention potential of positively charged amino acids. Herein, TM organization of sucrose permease (CscB) and phenylalanine permease (PheP) as a function of membrane lipid composition was investigated to extend these principles to other proteins. For CscB, topological dependence on PE only becomes evident after a significant increase in the net negative charge of the cytoplasmic surface of the N-terminal TM bundle. High negative charge is required to overcome the thermodynamic block to inversion due to the high hydrophobicity of TM VII. Increasing the positive charge of the cytoplasmic surface of the N-terminal TM hairpin of PheP, which is misoriented in PE-lacking cells, favors native orientation in the absence of PE. PheP and CscB also display co-existing dual topologies dependent on changes in the charge balance between protein domains and the membrane lipids. Therefore, the topology of both permeases is dependent on PE. However, CscB topology is governed by thermodynamic balance between opposing lipid-dependent electrostatic and hydrophobic interactions.

  18. HLA amino acid residue matching in 2575 kidney transplants.

    PubMed

    Tan, J; Qiu, J; Tang, X

    2007-06-01

    Donor-recipient HLA matching was retrospectively evaluated in 2575 renal transplants by comparing amino acid residue matches (Res M) with conventional six-antigen matches (Ag M). Only 6% of donor-recipient combinations had 0 to 1 mismatches using Ag M, whereas 42.8% of the recipients had no mismatch by Res M. Compared with the first year results of residue mismatched recipients, the 1102 patients with 0 residue mismatching displayed a low incidence of rejection (12.07% vs 5.37%) and less anti-HLA antibody production (class I 13.76 vs 38.12%; class II 7.66% vs 31.11%). The 1-to 10-year graft survival of the residue-matched group was similar to that of the Ag-matched group, and significantly better than the residue-mismatched recipients. In summary, Res M could be a good matching system for renal transplantation in the Han population.

  19. Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides

    PubMed Central

    Fujiwara, Yuichiro; Kubo, Yoshihiro

    2006-01-01

    Phosphoinositides (PIPns) are known to regulate the activity of some ion channels. Here we determined that ATP-gated P2X2 channels also are regulated by PIPns, and investigated the structural background and the unique features of this regulation. We initially used two-electrode voltage clamp to analyse the electrophysiological properties of P2X2 channels expressed in Xenopus oocytes, and observed that preincubation with wortmannin or LY294002, two PI3K inhibitors, accelerated channel desensitization. K365Q or K369Q mutation of the conserved, positively charged, amino acid residues in the proximal region of the cytoplasmic C-terminal domain also accelerated desensitization, whereas a K365R or K369R mutation did not. We observed that the permeability of the channel to N-methyl-d-glucamine (NMDG) transiently increased and then decreased after ATP application, and that the speed of the decrease was accelerated by K365Q or K369Q mutation or PI3K inhibition. Using GST-tagged recombinant proteins spanning the proximal C-terminal region, we then analysed their binding of the P2X2 cytoplasmic domain to anionic lipids using PIPns-coated nitrocellulose membranes. We found that the recombinant proteins that included the positively charged region bound to PIPs and PIP2s, and that this binding was eliminated by the K365Q and K369Q mutations. We also used a fluorescence assay to confirm that fusion proteins comprising the proximal C-terminal region of P2X2 with EGFP expressed in COS-7 cells closely associated with the membrane. Taken together, these results show that membrane-bound PIPns play a key role in maintaining channel activity and regulating pore dilation through electrostatic interaction with the proximal region of the P2X2 cytoplasmic C-terminal domain. PMID:16857707

  20. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of thismore » domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  1. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli

    NASA Technical Reports Server (NTRS)

    Blount, P.; Sukharev, S. I.; Schroeder, M. J.; Nagle, S. K.; Kung, C.

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating.

  2. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli.

    PubMed Central

    Blount, P; Sukharev, S I; Schroeder, M J; Nagle, S K; Kung, C

    1996-01-01

    MscL is a channel that opens a large pore in the Escherichia coli cytoplasmic membrane in response to mechanical stress. Previously, we highly enriched the MscL protein by using patch clamp as a functional assay and cloned the corresponding gene. The predicted protein contains a largely hydrophobic core spanning two-thirds of the molecule and a more hydrophilic carboxyl terminal tail. Because MscL had no homology to characterized proteins, it was impossible to predict functional regions of the protein by simple inspection. Here, by mutagenesis, we have searched for functionally important regions of this molecule. We show that a short deletion from the amino terminus (3 amino acids), and a larger deletion of 27 amino acids from the carboxyl terminus of this protein, had little if any effect in channel properties. We have thus narrowed the search of the core mechanosensitive mechanism to 106 residues of this 136-amino acid protein. In contrast, single residue substitutions of a lysine in the putative first transmembrane domain or a glutamine in the periplasmic loop caused pronounced shifts in the mechano-sensitivity curves and/or large changes in the kinetics of channel gating, suggesting that the conformational structure in these regions is critical for normal mechanosensitive channel gating. Images Fig. 3 PMID:8876191

  3. An amino acid composition criterion for membrane active antimicrobials

    NASA Astrophysics Data System (ADS)

    Schmidt, Nathan; Lai, Ghee Hwee; Mishra, Abhijit; Bong, Dennis; McCray, Paul, Jr.; Selsted, Michael; Ouellette, Andre; Wong, Gerard

    2011-03-01

    Membrane active antimicrobials (AMPs) are short amphipathic peptides with broad spectrum anti microbial activity. While it is believed that their hydrophobic and cationic moieties are responsible for membrane-based mechanisms of action, membrane disruption by AMPs is manifested in a diversity of outcomes, such as pore formation, blebbing, and budding. This complication, along with others, have made a detailed, molecular understanding of AMPs difficult. We use synchrotron small angle xray scattering to investigate the interaction of model bacterial and eukaryotic cell membranes with archetypes from beta-sheet AMPs (e.g. defensins) and alpha-helical AMPs (e.g. magainins). The relationship between membrane composition and peptide induced changes in membrane curvature and topology is examined. By comparing the membrane rearrangement and phase behavior induced by these different peptides we will discuss the importance of amino acid composition on AMP design.

  4. Conformational Dynamics inside Amino-Terminal Disease Hotspot of Ryanodine Receptor

    PubMed Central

    Zhong, Xiaowei; Liu, Ying; Zhu, Li; Meng, Xing; Wang, Ruiwu; Van Petegem, Filip; Wagenknecht, Terence; Wayne Chen, S. R.; Liu, Zheng

    2013-01-01

    Summary The N-terminal region of both skeletal and cardiac ryanodine receptor is a disease mutation hotspot. Recently, a crystal structure of the RyR1 fragment (residues 1-559) was solved. This N-terminal structure contains three separate domains, A, B, and C, and was docked into a central vestibule in a full-length RyR1 cryo-EM map. Here we reconstructed 3D cryo-EM structures of two GFP-tagged RyR2s with GFP inserted after residue Glu-310 and Ser-437, respectively. The structures of RyR2E310-GFP and RyR2S437-GFP displayed an extra mass on domain B and C, directly validating the predicted docking model. Next, we revealed domain movements in molecular dynamics flexible fitting models in both the closed and open state cryo-EM maps. To further probe the conformational changes, we generated FRET pairs by inserting CFP or YFP in two selected domains, FRET studies of three dual-insertion pairs and three co-expressed single-insertion pairs showed the dynamic structural changes within the N-terminal domains. PMID:24139989

  5. Mutations in the conserved carboxy-terminal hydrophobic region of glycoprotein gB affect infectivity of herpes simplex virus.

    PubMed

    Wanas, E; Efler, S; Ghosh, K; Ghosh, H P

    1999-12-01

    Glycoprotein gB is the most highly conserved glycoprotein in the herpesvirus family and plays a critical role in virus entry and fusion. Glycoprotein gB of herpes simplex virus type 1 contains a hydrophobic stretch of 69 aa near the carboxy terminus that is essential for its biological activity. To determine the role(s) of specific amino acids in the carboxy-terminal hydrophobic region, a number of amino acids were mutagenized that are highly conserved in this region within the gB homologues of the family HERPESVIRIDAE: Three conserved residues in the membrane anchor domain, namely A786, A790 and A791, as well as amino acids G743, G746, G766, G770 and P774, that are non-variant in Herpesviridae, were mutagenized. The ability of the mutant proteins to rescue the infectivity of the gB-null virus, K082, in trans was measured by a complementation assay. All of the mutant proteins formed dimers and were incorporated in virion particles produced in the complementation assay. Mutants G746N, G766N, F770S and P774L showed negligible complementation of K082, whereas mutant G743R showed a reduced activity. Virion particles containing these four mutant glycoproteins also showed a markedly reduced rate of entry compared to the wild-type. The results suggest that non-variant residues in the carboxy-terminal hydrophobic region of the gB protein may be important in virus infectivity.

  6. Roles of N-Terminal Fatty Acid Acylations in Membrane Compartment Partitioning: Arabidopsis h-Type Thioredoxins as a Case Study[C][W

    PubMed Central

    Traverso, José A.; Micalella, Chiara; Martinez, Aude; Brown, Spencer C.; Satiat-Jeunemaître, Béatrice; Meinnel, Thierry; Giglione, Carmela

    2013-01-01

    N-terminal fatty acylations (N-myristoylation [MYR] and S-palmitoylation [PAL]) are crucial modifications affecting 2 to 4% of eukaryotic proteins. The role of these modifications is to target proteins to membranes. Predictive tools have revealed unexpected targets of these acylations in Arabidopsis thaliana and other plants. However, little is known about how N-terminal lipidation governs membrane compartmentalization of proteins in plants. We show here that h-type thioredoxins (h-TRXs) cluster in four evolutionary subgroups displaying strictly conserved N-terminal modifications. It was predicted that one subgroup undergoes only MYR and another undergoes both MYR and PAL. We used plant TRXs as a model protein family to explore the effect of MYR alone or MYR and PAL in the same family of proteins. We used a high-throughput biochemical strategy to assess MYR of specific TRXs. Moreover, various TRX–green fluorescent protein fusions revealed that MYR localized protein to the endomembrane system and that partitioning between this membrane compartment and the cytosol correlated with the catalytic efficiency of the N-myristoyltransferase acting at the N terminus of the TRXs. Generalization of these results was obtained using several randomly selected Arabidopsis proteins displaying a MYR site only. Finally, we demonstrated that a palmitoylatable Cys residue flanking the MYR site is crucial to localize proteins to micropatching zones of the plasma membrane. PMID:23543785

  7. Structural and dynamic properties of the C-terminal region of the Escherichia coli RNA chaperone Hfq: integrative experimental and computational studies.

    PubMed

    Wen, Bin; Wang, Weiwei; Zhang, Jiahai; Gong, Qingguo; Shi, Yunyu; Wu, Jihui; Zhang, Zhiyong

    2017-08-09

    In Escherichia coli, hexameric Hfq is an important RNA chaperone that facilitates small RNA-mediated post-transcriptional regulation. The Hfq monomer consists of an evolutionarily conserved Sm domain (residues 1-65) and a flexible C-terminal region (residues 66-102). It has been recognized that the existence of the C-terminal region is important for the function of Hfq, but its detailed structural and dynamic properties remain elusive due to its disordered nature. In this work, using integrative experimental techniques, such as nuclear magnetic resonance spectroscopy and small-angle X-ray scattering, as well as multi-scale computational simulations, new insights into the structure and dynamics of the C-terminal region in the context of the Hfq hexamer are provided. Although the C-terminal region is intrinsically disordered, some residues (83-86) are motionally restricted. The hexameric core may affect the secondary structure propensity of the C-terminal region, due to transient interactions between them. The residues at the rim and the proximal side of the core have significantly more transient contacts with the C-terminal region than those residues at the distal side, which may facilitate the function of the C-terminal region in the release of double-stranded RNAs and the cycling of small non-coding RNAs. Structure ensembles constructed by fitting the experimental data also support that the C-terminal region prefers to locate at the proximal side. From multi-scale simulations, we propose that the C-terminal region may play a dual role of steric effect (especially at the proximal side) and recruitment (at the both sides) in the binding process of RNA substrates. Interestingly, we have found that these motionally restricted residues may serve as important binding sites for the incoming RNAs that is probably driven by favorable electrostatic interactions. These integrative studies may aid in our understanding of the functional role of the C-terminal region of Hfq.

  8. Crystal Structure of a Four-Layer Aggregate of Engineered TMV CP Implies the Importance of Terminal Residues for Oligomer Assembly

    PubMed Central

    Li, Xiangyang; Song, Baoan; Chen, Xi; Wang, Zhenchao; Zeng, Mengjiao; Yu, Dandan; Hu, Deyu; Chen, Zhuo; Jin, Linhong; Yang, Song; Yang, Caiguang; Chen, Baoen

    2013-01-01

    Background Crystal structures of the tobacco mosaic virus (TMV) coat protein (CP) in its helical and disk conformations have previously been determined at the atomic level. For the helical structure, interactions of proteins and nucleic acids in the main chains were clearly observed; however, the conformation of residues at the C-terminus was flexible and disordered. For the four-layer aggregate disk structure, interactions of the main chain residues could only be observed through water–mediated hydrogen bonding with protein residues. In this study, the effects of the C-terminal peptides on the interactions of TMV CP were investigated by crystal structure determination. Methodology/Principal Findings The crystal structure of a genetically engineered TMV CP was resolved at 3.06 Å. For the genetically engineered TMV CP, a six-histidine (His) tag was introduced at the N-terminus, and the C-terminal residues 155 to 158 were truncated (N-His-TMV CP19). Overall, N-His-TMV CP19 protein self-assembled into the four-layer aggregate form. The conformations of residues Gln36, Thr59, Asp115 and Arg134 were carefully analyzed in the high radius and low radius regions of N-His-TMV CP19, which were found to be significantly different from those observed previously for the helical and four-layer aggregate forms. In addition, the aggregation of the N-His-TMV CP19 layers was found to primarily be mediated through direct hydrogen-bonding. Notably, this engineered protein also can package RNA effectively and assemble into an infectious virus particle. Conclusion The terminal sequence of amino acids influences the conformation and interactions of the four-layer aggregate. Direct protein–protein interactions are observed in the major overlap region when residues Gly155 to Thr158 at the C-terminus are truncated. This engineered TMV CP is reassembled by direct protein–protein interaction and maintains the normal function of the four-layer aggregate of TMV CP in the presence of RNA

  9. Chromatin Condensing Functions of the Linker Histone C-terminal Domain are mediated by Specific Amino Acid Composition and Intrinsic Protein Disorder†

    PubMed Central

    Lu, Xu; Hamkalo, Barbara; Parseghian, Missag H.; Hansen, Jeffrey C.

    2009-01-01

    Linker histones bind to the nucleosomes and linker DNA of chromatin fibers, causing changes in linker DNA structure and stabilization of higher order folded and oligomeric chromatin structures. Linker histones affect chromatin structure acting primarily through their ~100 residue C-terminal domain (CTD). We have previously shown that the ability of the linker histone H1° to alter chromatin structure was localized to two discontinuous 24-/25-residue CTD regions (Lu, X., and Hansen, J. C. (2004) J Biol Chem 279, 8701–8707). To determine the biochemical basis for these results, we have characterized chromatin model systems assembled with endogenous mouse somatic H1 isoforms, or recombinant H1° CTD mutants in which the primary sequence has been scrambled, the amino acid composition mutated, or the location of various CTD regions swapped. Our results indicate that specific amino acid composition plays a fundamental role in molecular recognition and function by the H1 CTD. Additionally, these experiments support a new molecular model for CTD function, and provide a biochemical basis for the redundancy observed in H1 isoform knockout experiments in vivo. PMID:19072710

  10. Membrane permeability as a cause of transport defects in experimental Fanconi syndrome. A new hypothesis.

    PubMed Central

    Bergeron, M; Dubord, L; Hausser, C; Schwab, C

    1976-01-01

    The injection of sodium maleate (200-400 mg/kg) into rats produces aminoaciduria along with glycosuria and phosphaturia, resembling the Fanconi syndrome. This experimental model was studied by means of microinjections into proximal convoluted tubules of the kidney, stop-flow diuresis, and microperfusion of single nephrons. Our results show that, in maleate-treated rats, competition between amino acids or related structures (L-proline, L-OH-proline, and glycine) possesses the same characteristics, and net influx of amino acids appear normal at the proximal nephron. Data obtained by classical stop-flow techniques and single nephron microperfusions also indicate a normal entry of labeled amino acids (L-lysine, glycine, L-valine, L-proline, L-cystine), and 3-0-methyl-D-[3H]glucose and [32P]phosphate from the luminal side of the proximal tubule cell. However, the efflux of molecules from the cell appears enhanced throughout the proximal and distal tubule; molecules that exit at this site are excreted directly into the urine. Our results suggest that the phosphaturia, aminoaciduria, and glycosuria of the experimental Fanconi syndrome can be explained by a modification of the cell membrane permeability (increased efflux) at distal sites of the nephron rather than by a modification of the membrane transport (decreased influx) at the proximal sites, as is currently accepted. Our data also stress the importance of efflux phenomena in membrane transport. PMID:1262464

  11. Identification of critical amino acids in the proximal C-terminal of TREK-2 K+ channel for activation by acidic pHi and ATP-dependent inhibition.

    PubMed

    Woo, Joohan; Jun, Young Keul; Zhang, Yin-Hua; Nam, Joo Hyun; Shin, Dong Hoon; Kim, Sung Joon

    2018-02-01

    TWIK-related two-pore domain K + channels (TREKs) are regulated by intracellular pH (pH i ) and Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ). Previously, Glu 306 in proximal C-terminal (pCt) of mouse TREK-1 was identified as the pH i -sensing residue. The direction of PI(4,5)P 2 sensitivity is controversial, and we have recently shown that TREKs are inhibited by intracellular ATP via endogenous PI(4,5)P 2 formation. Here we investigate the anionic and cationic residues of pCt for the pH i and ATP-sensitivity in human TREK-2 (hTREK-2). In inside-out patch clamp recordings (I TREK-2,i-o ), acidic pH i -induced activation was absent in E332A and was partly attenuated in E335A. Neutralization of cationic Lys (K330A) also eliminated the acidic pH i sensitivity of I TREK-2,i-o . Unlike the inhibition of wild-type (WT) I TREK-2,i-o by intracellular ATP, neither E332A nor K330A was sensitive to ATP. Nevertheless, exogenous PI(4,5)P 2 (10 μM) abolished I TREK-2 i-o in all the above mutants as well as in WT, indicating unspecific inhibition by exogenous PI(4,5)P 2 . In whole-cell recordings of TREK-2 (I TREK-2,w-c ), K330A and E332A showed higher or fully active basal activity, showing attenuated or insignificant activation by 2-APB, arachidonic acid, or acidic pH e 6.9. I TREK-1,w-c of WT is largely suppressed by pH e 6.9, and the inhibition is slightly attenuated in K312A and E315A. The results show concerted roles of the oppositely charged Lys and Glu in pCt for the ATP-dependent low basal activity and pH i sensitivity.

  12. Purification, properties, and N-terminal amino acid sequence of homogeneous Escherichia coli 2-amino-3-ketobutyrate CoA ligase, a pyridoxal phosphate-dependent enzyme.

    PubMed

    Mukherjee, J J; Dekker, E E

    1987-10-25

    Starting with 100 g (wet weight) of a mutant of Escherichia coli K-12 forced to grow on L-threonine as sole carbon source, we developed a 6-step procedure that provides 30-40 mg of homogeneous 2-amino-3-ketobutyrate CoA ligase (also called aminoacetone synthetase or synthase). This ligase, which catalyzes the cleavage/condensation reaction between 2-amino-3-ketobutyrate (the presumed product of the L-threonine dehydrogenase-catalyzed reaction) and glycine + acetyl-CoA, has an apparent molecular weight approximately equal to 85,000 and consists of two identical (or nearly identical) subunits with Mr = 42,000. Computer analysis of amino acid composition data, which gives the best fit nearest integer ratio for each residue, indicates a total of 387 amino acids/subunit with a calculated Mr = 42,093. Stepwise Edman degradation provided the N-terminal sequence of the first 21 amino acids. It is a pyridoxal phosphate-dependent enzyme since (a) several carbonyl reagents caused greater than 90% loss of activity, (b) dialysis against buffer containing hydroxylamine resulted in 89% loss of activity coincident with an 86% decrease in absorptivity at 428 nm, (c) incubation of the apoenzyme with 20 microM pyridoxal phosphate showed a parallel recovery (greater than 90%) of activity and 428-nm absorptivity, and (d) reduction of the holoenzyme with NaBH4 resulted in complete inactivation, disappearance of a new absorption maximum at 333 nm. Strict specificity for glycine is shown but acetyl-CoA (100%), n-propionyl-CoA (127%), or n-butyryl-CoA (16%) is utilized in the condensation reaction. Apparent Km values for acetyl-CoA, n-propionyl-CoA, and glycine are 59 microM, 80 microM, and 12 mM, respectively; the pH optimum = 7.5. Added divalent metal ions or sulfhydryl compounds inhibited catalysis of the condensation reaction.

  13. Transcytosis-blocking abs elicited by an oligomeric immunogen based on the membrane proximal region of HIV-1 gp41 target non-neutralizing epitopes.

    PubMed

    Matoba, Nobuyuki; Griffin, Tagan A; Mittman, Michele; Doran, Jeffrey D; Alfsen, Annette; Montefiori, David C; Hanson, Carl V; Bomsel, Morgane; Mor, Tsafrir S

    2008-05-01

    CTB-MPR(649-684), a translational fusion protein consisting of cholera toxin B subunit (CTB) and residues 649 684 of gp41 membrane proximal region (MPR), is a candidate vaccine aimed at blocking early steps of HIV-1 mucosal transmission. Bacterially produced CTB MPR(649-684) was purified to homogeneity by two affinity chromatography steps. Similar to gp41 and derivatives thereof, the MPR domain can specifically and reversibly self-associate. The affinities of the broadly-neutralizing monoclonal Abs 4E10 and 2F5 to CTB MPR(649-684) were equivalent to their nanomolar affinities toward an MPR peptide. The fusion protein's affinity to GM1 ganglioside was comparable to that of native CTB. Rabbits immunized with CTB-MPR(649-684) raised only a modest level of anti-MPR(649-684) Abs. However, a prime-boost immunization with CTB-MPR(649-684) and a second MPR(649-684)-based immunogen elicited a more productive anti-MPR(649-684) antibody response. These Abs strongly blocked the epithelial transcytosis of a primary subtype B HIV-1 isolate in a human tight epithelial model, expanding our previously reported results using a clade D virus. The Abs recognized epitopes at the N-terminal portion of the MPR peptide, away from the 2F5 and 4E10 epitopes and were not effective in neutralizing infection of CD4+ cells. These results indicate distinct vulnerabilities of two separate interactions of HIV-1 with human cells - Abs against the C-terminal portion of the MPR can neutralize CD4+-dependent infection, while Abs targeting the MPR's N-terminal portion can effectively block galactosyl ceramide dependent transcytosis. We propose that Abs induced by MPR(649-684)-based immunogens may provide broad protective value independent of infection neutralization.

  14. The amino-terminal domain of ORF149 of koi herpesvirus is preferentially targeted by IgM from carp populations surviving infection.

    PubMed

    Torrent, F; Villena, A; Lee, P A; Fuchs, W; Bergmann, S M; Coll, J M

    2016-10-01

    Recombinantly expressed fragments of the protein encoded by ORF149 (pORF149), a structural protein from the common- and koi-carp-infecting cyprinid herpesvirus-3 (CyHV-3) that was previously shown to be antigenic, were used to obtain evidence that its amino-terminal part contains immunodominant epitopes in fish populations that survived the infection. To obtain such evidence, nonspecific binding of carp serum tetrameric IgM had to be overcome by a novel ELISA protocol (rec2-ELISA). Rec2-ELISA involved pre-adsorption of carp sera with a heterologous recombinant fragment before incubation with pORF149 fragments and detection with anti-carp IgM monoclonal antibodies. Only in this way was it possible to distinguish between sera from uninfected and survivor carp populations. Although IgM from survivors recognised pORF149 fragments to a lesser degree than whole virus, specificity was confirmed by correlation of rec2- and CyHV-3-ELISAs, inhibition of rec2-ELISA by an excess of frgIIORF149, ELISA using IgM-capture, Western blotting, and reduction of reactivity in CyHV-3-ELISA by pre-adsorption of sera with frgIIORF149. The similarity of IgM-binding profiles between frgIORF149 (amino acid residues 42-629) and frgIIORF149 (42-159) and their reactivities with previously described anti-CyHV-3 monoclonal antibodies confirmed that most pORF149 epitopes were localised in its amino-terminal part.

  15. Solid-state nuclear magnetic resonance (NMR) spectroscopy of human immunodeficiency virus gp41 protein that includes the fusion peptide: NMR detection of recombinant Fgp41 in inclusion bodies in whole bacterial cells and structural characterization of purified and membrane-associated Fgp41.

    PubMed

    Vogel, Erica P; Curtis-Fisk, Jaime; Young, Kaitlin M; Weliky, David P

    2011-11-22

    Human immunodeficiency virus (HIV) infection of a host cell begins with fusion of the HIV and host cell membranes and is mediated by the gp41 protein, a single-pass integral membrane protein of HIV. The 175 N-terminal residues make up the ectodomain that lies outside the virus. This work describes the production and characterization of an ectodomain construct containing the 154 N-terminal gp41 residues, including the fusion peptide (FP) that binds to target cell membranes. The Fgp41 sequence was derived from one of the African clade A strains of HIV-1 that have been less studied than European/North American clade B strains. Fgp41 expression at a level of ~100 mg/L of culture was evidenced by an approach that included amino acid type (13)CO and (15)N labeling of recombinant protein and solid-state NMR (SSNMR) spectroscopy of lyophilized whole cells. The approach did not require any protein solubilization or purification and may be a general approach for detection of recombinant protein. The purified Fgp41 yield was ~5 mg/L of culture. SSNMR spectra of membrane-associated Fgp41 showed high helicity for the residues C-terminal of the FP. This was consistent with a "six-helix bundle" (SHB) structure that is the final gp41 state during membrane fusion. This observation and negligible Fgp41-induced vesicle fusion supported a function for SHB gp41 of membrane stabilization and fusion arrest. SSNMR spectra of residues in the membrane-associated FP provided evidence of a mixture of molecular populations with either helical or β-sheet FP conformation. These and earlier SSNMR data strongly support the existence of these populations in the SHB state of membrane-associated gp41. © 2011 American Chemical Society

  16. A cluster of diagnostic Hsp68 amino acid sites that are identified in Drosophila from the melanogaster species group are concentrated around beta-sheet residues involved with substrate binding.

    PubMed

    Kellett, Mark; McKechnie, Stephen W

    2005-04-01

    The coding region of the hsp68 gene has been amplified, cloned, and sequenced from 10 Drosophila species, 5 from the melanogaster subgroup and 5 from the montium subgroup. When the predicted amino acid sequences are compared with available Hsp70 sequences, patterns of conservation suggest that the C-terminal region should be subdivided according to predominant secondary structure. Conservation levels between Hsp68 and Hsp70 proteins were high in the N-terminal ATPase and adjacent beta-sheet domains, medium in the alpha-helix domain, and low in the C-terminal mobile domain (78%, 72%, 41%, and 21% identity, respectively). A number of amino acid sites were found to be "diagnostic" for Hsp68 (28 of approximately 635 residues). A few of these occur in the ATPase domain (385 residues) but most (75%) are concentrated in the beta-sheet and alpha-helix domains (34% of the protein) with none in the short mobile domain. Five of the diagnostic sites in the beta-sheet domain are clustered around, but not coincident with, functional sites known to be involved in substrate binding. Nearly all of the Hsp70 family length variation occurs in the mobile domain. Within montium subgroup species, 2 nearly identical hsp68 PCR products that differed in length are either different alleles or products of an ancestral hsp68 duplication.

  17. A residue located at the junction of the head and stalk regions of measles virus fusion protein regulates membrane fusion by controlling conformational stability.

    PubMed

    Satoh, Yuto; Yonemori, Saeka; Hirose, Mitsuhiro; Shogaki, Hiroko; Wakimoto, Hiroshi; Kitagawa, Yoshinori; Gotoh, Bin; Shirai, Tsuyoshi; Takahashi, Ken-Ichi; Itoh, Masae

    2017-02-01

    The fusion (F) protein of measles virus performs refolding from the thermodynamically metastable prefusion form to the highly stable postfusion form via an activated unstable intermediate stage, to induce membrane fusion. Some amino acids involved in the fusion regulation cluster in the heptad repeat B (HR-B) domain of the stalk region, among which substitution of residue 465 by various amino acids revealed that fusion activity correlates well with its side chain length from the Cα (P<0.01) and van der Waals volume (P<0.001), except for Phe, Tyr, Trp, Pro and His carrying ring structures. Directed towards the head region, longer side chains of the non-ring-type 465 residues penetrate more deeply into the head region and may disturb the hydrophobic interaction between the stalk and head regions and cause destabilization of the molecule by lowering the energy barrier for refolding, which conferred the F protein enhanced fusion activity. Contrarily, the side chain of ring-type 465 residues turned away from the head region, resulting in not only no contact with the head region but also extensive coverage of the HR-B surface, which may prevent the dissociation of the HR-B bundle for initiation of membrane fusion and suppress fusion activity. Located in the HR-B domain just at the junction between the head and stalk regions, amino acid 465 is endowed with a possible ability to either destabilize or stabilize the F protein depending on its molecular volume and the direction of the side chain, regulating fusion activity of measles virus F protein.

  18. Diverse C-Terminal Sequences Involved in Flavobacterium johnsoniae Protein Secretion

    PubMed Central

    Kulkarni, Surashree S.; Zhu, Yongtao; Brendel, Colton J.

    2017-01-01

    ABSTRACT Flavobacterium johnsoniae and many related bacteria secrete proteins across the outer membrane using the type IX secretion system (T9SS). Proteins secreted by T9SSs have amino-terminal signal peptides for export across the cytoplasmic membrane by the Sec system and carboxy-terminal domains (CTDs) targeting them for secretion across the outer membrane by the T9SS. Most but not all T9SS CTDs belong to the family TIGR04183 (type A CTDs). We functionally characterized diverse CTDs for secretion by the F. johnsoniae T9SS. Attachment of the CTDs from F. johnsoniae RemA, AmyB, and ChiA to the foreign superfolder green fluorescent protein (sfGFP) that had a signal peptide at the amino terminus resulted in secretion across the outer membrane. In each case, approximately 80 to 100 amino acids from the extreme carboxy termini were needed for efficient secretion. Several type A CTDs from distantly related members of the phylum Bacteroidetes functioned in F. johnsoniae, supporting the secretion of sfGFP by the F. johnsoniae T9SS. F. johnsoniae SprB requires the T9SS for secretion but lacks a type A CTD. It has a conserved C-terminal domain belonging to the family TIGR04131, which we refer to as a type B CTD. The CTD of SprB was required for its secretion, but attachment of C-terminal regions of SprB of up to 1,182 amino acids to sfGFP failed to result in secretion. Additional features outside the C-terminal region of SprB may be required for its secretion. IMPORTANCE Type IX protein secretion systems (T9SSs) are common in but limited to members of the phylum Bacteroidetes. Most proteins that are secreted by T9SSs have conserved carboxy-terminal domains that belong to the protein domain family TIGR04183 (type A CTDs) or TIGR04131 (type B CTDs). Here, we identify features of T9SS CTDs of F. johnsoniae that are required for protein secretion and demonstrate that type A CTDs from distantly related members of the phylum function with the F. johnsoniae T9SS to secrete the

  19. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.

    PubMed Central

    Shimamura, A; Nakano, Y J; Mukasa, H; Kuramitsu, H K

    1994-01-01

    The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs. PMID:8050997

  20. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    PubMed

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  1. ATP-dependent export of neutral amino acids by vacuolar membrane vesicles of Saccharomyces cerevisiae.

    PubMed

    Ishimoto, Masaya; Sugimoto, Naoko; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2012-01-01

    Amino acid analysis of Saccharomyces cerevisiae cells indicated that neutral amino acids such as glycine and alanine were probably excluded from the vacuoles, and that vacuolar H(+)-ATPase (V-ATPase) was involved in the vacuolar compartmentalization of these amino acids. We found that vacuolar membrane vesicles export neutral amino acids in an ATP-dependent manner. This is important in identifying vacuolar transporters for neutral amino acids.

  2. Effects of Single Amino Acid Substitution on the Collision-Induced Dissociation of Intact Protein Ions: Turkey Ovomucoid Third Domain

    PubMed Central

    Newton, Kelly A.; Pitteri, Sharon J.; Laskowski, Michael; McLuckey, Scott A.

    2005-01-01

    Expanded understanding of the factors that direct polypeptide ion fragmentation can lead to improved specificity in the use of tandem mass spectrometry for the identification and characterization of proteins. Like the fragmentation of peptide cations, the dissociation of whole protein cations shows several preferred cleavages, the likelihood for which is parent ion charge dependent. While such cleavages are often observed, they are far from universally observed, despite the presence of the residues known to promote them. Furthermore, cleavages at residues not noted to be common in a variety of proteins can be dominant for a particular protein or protein ion charge state. Motivated by the ability to study a small protein, turkey ovomucoid third domain, for which a variety of single amino acid variants are available, the effects of changing the identity of one amino acid in the protein sequence on its dissociation behavior were examined. In particular, changes in amino acids associated with C-terminal aspartic acid cleavage and N-terminal proline cleavage were emphasized. Consistent with previous studies, the product ion spectra were found to be dependent upon the parent ion charge state. Furthermore, the fraction of possible C-terminal aspartic acid cleavages observed to occur for this protein was significantly larger than the fraction of possible N-terminal proline cleavages. In fact, very little N-terminal proline cleavage was noted for the wild-type protein despite the presence of three proline residues in the protein. The addition/removal of proline and aspartic acids was studied along with changes in selected residues adjacent to proline residues. Evidence for inhibition of proline cleavage by the presence of nearby basic residues was noted, particularly if the basic residue was likely to be protonated. PMID:15473693

  3. Substitution of a single amino acid residue in the aromatic/arginine selectivity filter alters the transport profiles of tonoplast aquaporin homologs.

    PubMed

    Azad, Abul Kalam; Yoshikawa, Naoki; Ishikawa, Takahiro; Sawa, Yoshihiro; Shibata, Hitoshi

    2012-01-01

    Aquaporins are integral membrane proteins that facilitate the transport of water and some small solutes across cellular membranes. X-ray crystallography of aquaporins indicates that four amino acids constitute an aromatic/arginine (ar/R) pore constriction known as the selectivity filter. On the basis of these four amino acids, tonoplast aquaporins called tonoplast intrinsic proteins (TIPs) are divided into three groups in Arabidopsis. Herein, we describe the characterization of two group I TIP1s (TgTIP1;1 and TgTIP1;2) from tulip (Tulipa gesneriana). TgTIP1;1 and TgTIP1;2 have a novel isoleucine in loop E (LE2 position) of the ar/R filter; the residue at LE2 is a valine in all group I TIPs from model plants. The homologs showed mercury-sensitive water channel activity in a fast kinetics swelling assay upon heterologous expression in Pichia pastoris. Heterologous expression of both homologs promoted the growth of P. pastoris on ammonium or urea as sole sources of nitrogen and decreased growth and survival in the presence of H(2)O(2). TgTIP1;1- and TgTIP1;2-mediated H(2)O(2) conductance was demonstrated further by a fluorescence assay. Substitutions in the ar/R selectivity filter of TgTIP1;1 showed that mutants that mimicked the ar/R constriction of group I TIPs could conduct the same substrates that were transported by wild-type TgTIP1;1. In contrast, mutants that mimicked group II TIPs showed no evidence of urea or H(2)O(2) conductance. These results suggest that the amino acid residue at LE2 position is critical for the transport selectivity of the TIP homologs and group I TIPs might have a broader spectrum of substrate selectivity than group II TIPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Development of a living membrane comprising a functional human renal proximal tubule cell monolayer on polyethersulfone polymeric membrane.

    PubMed

    Schophuizen, Carolien M S; De Napoli, Ilaria E; Jansen, Jitske; Teixeira, Sandra; Wilmer, Martijn J; Hoenderop, Joost G J; Van den Heuvel, Lambert P W; Masereeuw, Rosalinde; Stamatialis, Dimitrios

    2015-03-01

    The need for improved renal replacement therapies has stimulated innovative research for the development of a cell-based renal assist device. A key requirement for such a device is the formation of a "living membrane", consisting of a tight kidney cell monolayer with preserved functional organic ion transporters on a suitable artificial membrane surface. In this work, we applied a unique conditionally immortalized proximal tubule epithelial cell (ciPTEC) line with an optimized coating strategy on polyethersulfone (PES) membranes to develop a living membrane with a functional proximal tubule epithelial cell layer. PES membranes were coated with combinations of 3,4-dihydroxy-l-phenylalanine and human collagen IV (Coll IV). The optimal coating time and concentrations were determined to achieve retention of vital blood components while preserving high water transport and optimal ciPTEC adhesion. The ciPTEC monolayers obtained were examined through immunocytochemistry to detect zona occludens 1 tight junction proteins. Reproducible monolayers were formed when using a combination of 2 mg ml(-1) 3,4-dihydroxy-l-phenylalanine (4 min coating, 1h dissolution) and 25 μg ml(-1) Coll IV (4 min coating). The successful transport of (14)C-creatinine through the developed living membrane system was used as an indication for organic cation transporter functionality. The addition of metformin or cimetidine significantly reduced the creatinine transepithelial flux, indicating active creatinine uptake in ciPTECs, most likely mediated by the organic cation transporter, OCT2 (SLC22A2). In conclusion, this study shows the successful development of a living membrane consisting of a reproducible ciPTEC monolayer on PES membranes, an important step towards the development of a bioartificial kidney. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Complete amino acid sequence of the myoglobin from the Pacific sei whale, Balaenoptera borealis.

    PubMed

    Jones, B N; Rothgeb, T M; England, R D; Gurd, F R

    1979-04-25

    The complete amino acid sequence of the major component myoglobin from Pacific sei whale, Balaenoptera borealis, was determined by specific cleavage of the protein to obtain large peptides which are readily degraded by the automatic sequencer. The acetimidated apomyoglobin was selectively cleaved at its two methionyl residues with cyanogen bromide and at its three arginyl residues by trypsin. From the sequence analysis of four of these peptides and the apomyoglobin, over 75% of the covalent structure of the protein was obtained. The remainder of the primary structure was determined by the sequence analysis of peptides that resulted from further digestion of the amino-terminal and central cyanogen bromide fragments. The amino-terminal fragment was specifically cleaved at its two tryptophanyl residues with N-chlorosuccinimide and the central cyanogen bromide fragment was cleaved at its glutamyl residues with staphylococcal protease and at its single tyrosyl residue with N-bromosuccinimide. The primary structure of this myoglobin proved identical with that from the gray whale but differs from that of the finback whale at four positions, from that of the minke whale at three positions and from the myoglobin of the humpback whale at one position. The above sequence identities and differences reflect the close taxonomic relationship of these five species of Cetacea.

  6. The Metalloprotease Meprin β Generates Amino Terminal-truncated Amyloid β Peptide Species*

    PubMed Central

    Bien, Jessica; Jefferson, Tamara; Čaušević, Mirsada; Jumpertz, Thorsten; Munter, Lisa; Multhaup, Gerd; Weggen, Sascha; Becker-Pauly, Christoph; Pietrzik, Claus U.

    2012-01-01

    The amyloid β (Aβ) peptide, which is abundantly found in the brains of patients suffering from Alzheimer disease, is central in the pathogenesis of this disease. Therefore, to understand the processing of the amyloid precursor protein (APP) is of critical importance. Recently, we demonstrated that the metalloprotease meprin β cleaves APP and liberates soluble N-terminal APP (N-APP) fragments. In this work, we present evidence that meprin β can also process APP in a manner reminiscent of β-secretase. We identified cleavage sites of meprin β in the amyloid β sequence of the wild type and Swedish mutant of APP at positions p1 and p2, thereby generating Aβ variants starting at the first or second amino acid residue. We observed even higher kinetic values for meprin β than BACE1 for both the wild type and the Swedish mutant APP form. This enzymatic activity of meprin β on APP and Aβ generation was also observed in the absence of BACE1/2 activity using a β-secretase inhibitor and BACE knock-out cells, indicating that meprin β acts independently of β-secretase. PMID:22879596

  7. Spatial proximity between the VPAC1 receptor and the amino terminus of agonist and antagonist peptides reveals distinct sites of interaction.

    PubMed

    Ceraudo, Emilie; Hierso, Régine; Tan, Yossan-Var; Murail, Samuel; Rouyer-Fessard, Christiane; Nicole, Pascal; Robert, Jean-Claude; Jamin, Nadège; Neumann, Jean-Michel; Robberecht, Patrick; Laburthe, Marc; Couvineau, Alain

    2012-05-01

    Vasoactive intestinal peptide (VIP) plays a major role in pathophysiology. Our previous studies demonstrated that the VIP sequence 6-28 interacts with the N-terminal ectodomain (N-ted) of its receptor, VPAC1. Probes for VIP and receptor antagonist PG97-269 were synthesized with a photolabile residue/Bpa at various positions and used to explore spatial proximity with VPAC1. PG97-269 probes with Bpa at position 0, 6, and 24 behaved as high-affinity receptor antagonists (K(i)=12, 9, and 7 nM, respectively). Photolabeling experiments revealed that the [Bpa(0)]-VIP probe was in physical contact with VPAC1 Q(135), while [Bpa(0)]-PG97-269 was covalently bound to G(62) residue of N-ted, indicating different binding sites. In contrast, photolabeling with [Bpa(6)]- and [Bpa(24)]-PG97-269 showed that the distal domains of PG97-269 interacted with N-ted, as we previously showed for VIP. Substitution with alanine of the K(143), T(144), and T(147) residues located in the first transmembrane domain of VPAC1 induced a loss of receptor affinity (IC(50)=1035, 874, and 2070 nM, respectively), and pharmacological studies using VIP2-28 indicated that these three residues play an important role in VPAC1 interaction with the first histidine residue of VIP. These data demonstrate that VIP and PG97-269 bind to distinct domains of VPAC1.

  8. Proteolytic interconversion and N-terminal sequences of the Citrobacter diversus major beta-lactamases.

    PubMed Central

    Franceschini, N; Amicosante, G; Perilli, M; Maccarrone, M; Oratore, A; van Beeumen, J; Frère, J M

    1991-01-01

    The N-terminal sequences of the two major beta-lactamases produced by Citrobacter diversus differed only by the absence of the first residue in form II and the loss of five amino acid residues at the C-terminal end. Limited proteolysis of the homogeneous form I protein yielded a variety of enzymatically active products. In the major product obtained after the action of papain, the first three N-terminal residues of form I had been cleaved, whereas at the C-terminal end the treated enzyme lacked five residues. However, this cannot explain the different behaviours of form I, form II and papain digestion product upon chromatofocusing. Form I, which was sequenced up to position 56, exhibited a very high degree of similarity with a Klebsiella oxytoca beta-lactamase. The determined sequence, which contained the active serine residue, demonstrated that the chromosome-encoded beta-lactamase of Citrobacter diversus belong to class A. Images Fig. 2. PMID:2039443

  9. Cooperative folding of a polytopic α-helical membrane protein involves a compact N-terminal nucleus and nonnative loops

    PubMed Central

    Paslawski, Wojciech; Lillelund, Ove K.; Kristensen, Julie Veje; Schafer, Nicholas P.; Baker, Rosanna P.; Urban, Sinisa; Otzen, Daniel E.

    2015-01-01

    Despite the ubiquity of helical membrane proteins in nature and their pharmacological importance, the mechanisms guiding their folding remain unclear. We performed kinetic folding and unfolding experiments on 69 mutants (engineered every 2–3 residues throughout the 178-residue transmembrane domain) of GlpG, a membrane-embedded rhomboid protease from Escherichia coli. The only clustering of significantly positive ϕ-values occurs at the cytosolic termini of transmembrane helices 1 and 2, which we identify as a compact nucleus. The three loops flanking these helices show a preponderance of negative ϕ-values, which are sometimes taken to be indicative of nonnative interactions in the transition state. Mutations in transmembrane helices 3–6 yielded predominantly ϕ-values near zero, indicating that this part of the protein has denatured-state–level structure in the transition state. We propose that loops 1–3 undergo conformational rearrangements to position the folding nucleus correctly, which then drives folding of the rest of the domain. A compact N-terminal nucleus is consistent with the vectorial nature of cotranslational membrane insertion found in vivo. The origin of the interactions in the transition state that lead to a large number of negative ϕ-values remains to be elucidated. PMID:26056273

  10. NMR solution structure of the N-terminal domain of hERG and its interaction with the S4-S5 linker

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qingxin; Gayen, Shovanlal; Chen, Angela Shuyi

    Research highlights: {yields} The N-terminal domain (NTD, eag domain) containing 135 residues of hERG was expressed and purified from E. coli cells. {yields} Solution structure of NTD was determined with NMR spectroscopy. {yields} The alpha-helical region (residues 13-23) was demonstrated to possess the characteristics of an amphipathic helix. {yields} NMR titration confirmed the interaction between NTD and the peptide from the S4-S5 linker. -- Abstract: The human Ether-a-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation.more » To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.« less

  11. Alteration of the mode of antibacterial action of a defensin by the amino-terminal loop substitution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Bin; Zhu, Shunyi, E-mail: Zhusy@ioz.ac.cn

    Highlights: Black-Right-Pointing-Pointer Al-M is an engineered fungal defensin with the n-loop of an insect defensin. Black-Right-Pointing-Pointer Al-M adopts a native defensin-like structure with high antibacterial potency. Black-Right-Pointing-Pointer Al-M kills bacteria through a membrane disruptive mechanism. Black-Right-Pointing-Pointer This work sheds light on the functional evolution of CS{alpha}{beta}-type defensins. -- Abstract: Ancient invertebrate-type and classical insect-type defensins (AITDs and CITDs) are two groups of evolutionarily related antimicrobial peptides (AMPs) that adopt a conserved cysteine-stabilized {alpha}-helical and {beta}-sheet (CS{alpha}{beta}) fold with a different amino-terminal loop (n-loop) size and diverse modes of antibacterial action. Although they both are identified as inhibitors of cell wallmore » biosynthesis, only CITDs evolved membrane disruptive ability by peptide oligomerization to form pores. To understand how this occurred, we modified micasin, a fungus-derived AITDs with a non-membrane disruptive mechanism, by substituting its n-loop with that of an insect-derived CITDs. After air oxidization, the synthetic hybrid defensin (termed Al-M) was structurally identified by circular dichroism (CD) and functionally evaluated by antibacterial and membrane permeability assays and electronic microscopic observation. Results showed that Al-M folded into a native-like defensin structure, as determined by its CD spectrum that is similar to that of micasin. Al-M was highly efficacious against the Gram-positive bacterium Bacillus megaterium with a lethal concentration of 1.76 {mu}M. As expected, in contrast to micasin, Al-M killed the bacteria through a membrane disruptive mechanism of action. The alteration in modes of action supports a key role of the n-loop extension in assembling functional surface of CITDs for membrane disruption. Our work provides mechanical evidence for evolutionary relationship between AITDs and CITDs.« less

  12. Acidic Residues Control the Dimerization of the N-terminal Domain of Black Widow Spiders’ Major Ampullate Spidroin 1

    NASA Astrophysics Data System (ADS)

    Bauer, Joschka; Schaal, Daniel; Eisoldt, Lukas; Schweimer, Kristian; Schwarzinger, Stephan; Scheibel, Thomas

    2016-09-01

    Dragline silk is the most prominent amongst spider silks and comprises two types of major ampullate spidroins (MaSp) differing in their proline content. In the natural spinning process, the conversion of soluble MaSp into a tough fiber is, amongst other factors, triggered by dimerization and conformational switching of their helical amino-terminal domains (NRN). Both processes are induced by protonation of acidic residues upon acidification along the spinning duct. Here, the structure and monomer-dimer-equilibrium of the domain NRN1 of Latrodectus hesperus MaSp1 and variants thereof have been investigated, and the key residues for both could be identified. Changes in ionic composition and strength within the spinning duct enable electrostatic interactions between the acidic and basic pole of two monomers which prearrange into an antiparallel dimer. Upon naturally occurring acidification this dimer is stabilized by protonation of residue E114. A conformational change is independently triggered by protonation of clustered acidic residues (D39, E76, E81). Such step-by-step mechanism allows a controlled spidroin assembly in a pH- and salt sensitive manner, preventing premature aggregation of spider silk proteins in the gland and at the same time ensuring fast and efficient dimer formation and stabilization on demand in the spinning duct.

  13. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules

    PubMed Central

    Harton, Jonathan; Jin, Lei; Hahn, Amy; Drake, Jim

    2016-01-01

    Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these “non-traditional” class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease. PMID:27006762

  14. Functional Role of N- and C-Terminal Amino Acids in the Structural Subunits of Colonization Factor CS6 Expressed by Enterotoxigenic Escherichia coli

    PubMed Central

    Debnath, Anusuya; Sabui, Subrata; Wajima, Takeaki; Hamabata, Takashi; Banerjee, Rajat

    2016-01-01

    ABSTRACT CS6 is a common colonization factor expressed by enterotoxigenic Escherichia coli. It is a two-subunit protein consisting of CssA and CssB in an equal stoichiometry, assembled via the chaperone-usher pathway into an afimbrial, oligomeric assembly on the bacterial cell surface. A recent structural study has predicted the involvement of the N- and C-terminal regions of the CS6 subunits in its assembly. Here, we identified the functionally important residues in the N- and C-terminal regions of the CssA and CssB subunits during CS6 assembly by alanine scanning mutagenesis. Bacteria expressing mutant proteins were tested for binding with Caco-2 cells, and the results were analyzed with respect to the surface expression of mutant CS6. In this assay, many mutant proteins were not expressed on the surface while some showed reduced expression. It appeared that some, but not all, of the residues in both the N and C termini of CssA and CssB played an important role in the intermolecular interactions between these two structural subunits, as well as chaperone protein CssC. Our results demonstrated that T20, K25, F27, S36, Y143, and V147 were important for the stability of CssA, probably through interaction of CssC. We also found that I22, V29, and I33 of CssA and G154, Y156, L160, V162, F164, and Y165 of CssB were responsible for CssA-CssB intermolecular interactions. In addition, some of the hydrophobic residues in the C terminus of CssA and the N terminus of CssB were involved in the stabilization of higher-order complex formation. Overall, the results presented here might help in understanding the pathway used to assemble CS6 and predict its structure. IMPORTANCE Unlike most other colonization factors, CS6 is nonfimbrial, and in a sense, its subunit composition and assembly are also unique. Here we report that both the N- and C-terminal amino acid residues of CssA and CssB play a critical role in the intermolecular interactions between them and assembly proteins

  15. Computational Analysis of the Interaction Energies between Amino Acid Residues of the Measles Virus Hemagglutinin and Its Receptors.

    PubMed

    Xu, Fengqi; Tanaka, Shigenori; Watanabe, Hirofumi; Shimane, Yasuhiro; Iwasawa, Misako; Ohishi, Kazue; Maruyama, Tadashi

    2018-05-03

    Measles virus (MV) causes an acute and highly devastating contagious disease in humans. Employing the crystal structures of three human receptors, signaling lymphocyte-activation molecule (SLAM), CD46, and Nectin-4, in complex with the measles virus hemagglutinin (MVH), we elucidated computationally the details of binding energies between the amino acid residues of MVH and those of the receptors with an ab initio fragment molecular orbital (FMO) method. The calculated inter-fragment interaction energies (IFIEs) revealed a number of significantly interacting amino acid residues of MVH that played essential roles in binding to the receptors. As predicted from previously reported experiments, some important amino-acid residues of MVH were shown to be common but others were specific to interactions with the three receptors. Particularly, some of the (non-polar) hydrophobic residues of MVH were found to be attractively interacting with multiple receptors, thus indicating the importance of the hydrophobic pocket for intermolecular interactions (especially in the case of Nectin-4). In contrast, the electrostatic interactions tended to be used for specific molecular recognition. Furthermore, we carried out FMO calculations for in silico experiments of amino acid mutations, finding reasonable agreements with virological experiments concerning the substitution effect of residues. Thus, the present study demonstrates that the electron-correlated FMO method is a powerful tool to search exhaustively for amino acid residues that contribute to interactions with receptor molecules. It is also applicable for designing inhibitors of MVH and engineered MVs for cancer therapy.

  16. Active membrane masks for improved overlay performance in proximity lithography

    NASA Astrophysics Data System (ADS)

    Huston, Dryver R.; Plumpton, James; Esser, Brian; Sullivan, Gerald A.

    2004-07-01

    Membrane masks are thin (2 micron x 35 mm x 35 mm) structures that carry the master exposure patterns in proximity (X-ray) lithography. With the continuous drive to the printing of ever-finer features in microelectronics, the reduction of mask-wafer overlay positioning errors by passive rigid body positioning and passive stress control in the mask becomes impractical due to nano and sub-micron scale elastic deformations in the membrane mask. This paper describes the design, mechanics and performance of a system for actively stretching a membrane mask in-plane to control overlay distortion. The method uses thermoelectric heating/cooling elements placed on the mask perimeter. The thermoelectric elements cause controlled thermoelastic deformations in the supporting wafer, which in turn corrects distortions in the membrane mask. Silicon carbide masks are the focus of this study, but the method is believed to be applicable to other mask materials, such as diamond. Experimental and numerical results will be presented, as well as a discussion of the design issues and related design decisions.

  17. The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes.

    PubMed

    Shvets, Elena; Fass, Ephraim; Scherz-Shouval, Ruthie; Elazar, Zvulun

    2008-08-15

    LC3 belongs to a novel ubiquitin-like protein family that is involved in different intracellular trafficking processes, including autophagy. All members of this family share a unique three-dimensional structure composed of a C-terminal ubiquitin core and two N-terminal alpha-helices. Here, we focus on the specific contribution of these regions to autophagy induced by amino acid deprivation. We show that the ubiquitin core by itself is sufficient for LC3 processing through the conjugation machinery and for its consequent targeting to the autophagosomal membrane. The N-terminal region was found to be important for interaction between LC3 and p62/SQSTM1 (hereafter termed p62). This interaction is dependent on the first 10 amino acids of LC3 and on specific residues located within the ubiquitin core. Knockdown of LC3 isoforms and overexpression of LC3 mutants that fail to interact with p62 blocked the incorporation of p62 into autophagosomes. The accumulation of p62 was accompanied by elevated levels of polyubiquitylated detergent-insoluble structures. p62, however, is not required for LC3 lipidation, autophagosome formation and targeting to lysosomes. Our results support the proposal that LC3 is responsible for recruiting p62 into autophagosomes, a process mediated by phenylalanine 52, located within the ubiquitin core, and the N-terminal region of the protein.

  18. Proximity of SCG10 and prion protein in membrane rafts.

    PubMed

    Iwamaru, Yoshifumi; Kitani, Hiroshi; Okada, Hiroyuki; Takenouchi, Takato; Shimizu, Yoshihisa; Imamura, Morikazu; Miyazawa, Kohtaro; Murayama, Yuichi; Hoover, Edward A; Yokoyama, Takashi

    2015-12-10

    The conversion of normal cellular prion protein (PrPC) into its pathogenic isoform (PrPSc) is an essential event in prion pathogenesis. In culture models, membrane rafts are suggested to play a critical role in PrPSc formation. To identify the candidate molecules capable of interacting with PrPC and facilitating PrPSc formation in membrane rafts, we applied a novel biochemical labelling method termed 'enzyme-mediated activation of radical sources (EMARS)'. EMARS was applied to the Lubrol WX insoluble detergent-resistant membrane fractions from mouse neuroblastoma (N2a) cells in which the surface PrPC was labeled with HRP-conjugated anti-PrP antibody. Two-dimensional Western blots of these preparations revealed biotinylated spots of approximately 20 kDa with an isoelectric point of 8.0-9.0. Liquid chromatography-tandem mass spectrometry analysis resulted in the identification of peptides containing SCG10, the neuron-specific microtubule regulator. Proximity of SCG10 and PrPC was confirmed using proximity ligation assay and co-immunoprecipitation assay. Transfection of persistently 22L prion infected N2a cells with SCG10 small interfering RNA reduced SCG10 expression but did not prevent PrPSc accumulation, indicating that SCG10 appears to be unrelated to PrPSc formation of 22L prion. Immunofluorescence and Western blot analyses showed reduced levels of SCG10 in the hippocampus of prion-infected mice, suggesting a possible association between SCG10 levels and the prion neuropathogenesis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  19. Structure-activity relationship of HP (2-20) analog peptide: enhanced antimicrobial activity by N-terminal random coil region deletion.

    PubMed

    Park, Yoonkyung; Park, Seong-Cheol; Park, Hae-Kyun; Shin, Song Yub; Kim, Yangmee; Hahm, Kyung-Soo

    2007-01-01

    HP (2-20) (AKKVFKRLEKLFSKIQNDK) is a 19-aa antimicrobial peptide derived from N-terminus of Helicobacter pylori Ribosomal protein L1 (RpL1). In the previous study, several analogs with amino acid substitutions were designed to increase or decrease only the net hydrophobicity. In particular, substitutions of Gln(16) and Asp(18) with Trp (Anal 3) for hydrophobic amino acid caused a dramatic increase in antibiotic activity without a hemolytic effect. HP-A3 is a potent antimicrobial peptide that forms, in a hydrophobic medium, an amphipathic structure consisting of an N-terminal random coil region (residues 2-5) and extended C-terminal regular alpha-helical region (residues 6-20). To obtain the short and potent alpha-helical antimicrobial peptide, we synthesized a N-terminal random coil deleted HP-A3 (A3-NT) and examined their antimicrobial activity and mechanism of action. The resulting 15mer peptide showed increased antibacterial and antifungal activity to 2- and 4-fold, respectively, without hemolysis. Confocal fluorescence microscopy studies showed that A3-NT was accumulated in the plasma membrane. Flow cytometric analysis revealed that A3-NT acted in salt- and energy-independent manner. Furthermore, A3-NT causes significant morphological alterations of the bacterial surfaces as shown by scanning electron microscopy. Circular dichroism (CD) analysis revealed that A3-NT showed higher alpha-helical contents than the HP-A3 peptide in 50% TFE solution. Therefore, the cell-lytic efficiency of HP-A3, which depended on the alpha-helical content of peptide, correlated linearly with their antimicrobial potency.

  20. Identification of novel amino acid residues of influenza virus PA-X that are important for PA-X shutoff activity by using yeast.

    PubMed

    Oishi, Kohei; Yamayoshi, Seiya; Kawaoka, Yoshihiro

    2018-03-01

    The influenza A virus protein PA-X comprises an N-terminal PA region and a C-terminal PA-X-specific region. PA-X suppresses host gene expression, termed shutoff, via mRNA cleavage. Although the endonuclease active site in the N-terminal PA region of PA-X and basic amino acids in the C-terminal PA-X-specific region are known to be important for PA-X shutoff activity, other amino acids may also play a role. Here, we used yeast to identify novel amino acids of PA-X that are important for PA-X shutoff activity. Unlike wild-type PA-X, most PA-X mutants predominantly localized in the cytoplasm, indicating that these mutations decreased the shutoff activity of PA-X by affecting PA-X translocation to the nucleus. Mapping of the identified amino acids onto the N-terminal structure of PA revealed that some of them likely contribute to the formation of the endonuclease active site of PA. Copyright © 2018. Published by Elsevier Inc.

  1. Partial amino-acid sequence of the precursor of an immunoglobulin light chain containing NH2-terminal pyroglutamic acid.

    PubMed Central

    Burstein, Y; Kantour, F; Schechter, I

    1976-01-01

    Analyses of amino-acid sequences of the total cell-free products programmed by the mRNA of MOPC-104E gamma light (L)-chain show that over 95% of the products have sequences of a distinct protein that correspond to the L-chain precursor. In this precursor an extra piece is coupled to the NH2-terminus of the mature L-chain. Analyses of products labeled with [3H]alanine, [3H]leucine, and [3H]proline demonstrate that the extra piece is composed of at least 18 residues. Analyses of [35S]methione-labeled product indicate that the extra piece may contain an additional NH2-terminal methionine, which is detected in about 10% of the molecules. Partial recovery of the NJ2-terminal methionine (alanine, leucine, and proline are recovered in yields close to theoretical, greater than 95%) suggests that it is the initiator methionine, which is known to be short lived in eukaryotes due to rapid hydrolysis. Thus, the extra piece seems to be 19 residues in length, and it contains one methionine at the NH2-terminus, three alanines at positions 2, 12, and 17, and five leucines at positions 6, 8, 10, 11, and 13. The close gathering of leucine residues, as well as their abundance (26%), suggest that the extra piece would be quite hydrophobic. Hydrophobicity seems to be a general property of the extra piece, since similar clusters of leucine were found in the precursors of 3 KL-chains (Burstein, Y. & Schechter, I. (1976) Biochem. J. 157, 145-151). The NH2-terminus of the mature MOPC-104E gamma L-chain is blocked by pyroglutamic acid. The fact that in the precursor a peptide segment precedes this NH2-terminus establishes that pyroglutamic acid is not the initiator residue for synthesis of the L-chain. Apparently, the pyroglutamic acid is formed by cyclization of glutamic acid or glutamine during cleavage of the extra piece to yield the mature L-chain. Images PMID:822420

  2. Use of unnatural amino acids to probe structure-activity relationships and mode-of-action of antimicrobial peptides.

    PubMed

    Tossi, Alessandro; Scocchi, Marco; Zahariev, Sotir; Gennaro, Renato

    2012-01-01

    Endogenous antimicrobial peptides (AMPs) can have multimodal mechanisms of bacterial inactivation, such as membrane lysis, interference with cell wall biosynthesis or membrane-based protein machineries, or translocation through the membrane to intracellular targets. The controlled variation of side-chain characteristics in their amino acid residues can provide much useful information on structure-activity relationships and mode-of-action, and also lead to improved activities. The small size and relatively low complexity of AMPs make them amenable to solid-phase peptide synthesis, facilitating the use of nonproteinogenic amino acids and vastly increasing the accessible molecular diversity of side chains. Here, we describe how such residues can be used to modulate such key parameters as cationicity, hydrophobicity, steric factors conformational stability, and H-bonding.

  3. Modular Organization of Residue-Level Contacts Shapes the Selection Pressure on Individual Amino Acid Sites of Ribosomal Proteins.

    PubMed

    Mallik, Saurav; Kundu, Sudip

    2017-04-01

    Understanding the molecular evolution of macromolecular complexes in the light of their structure, assembly, and stability is of central importance. Here, we address how the modular organization of native molecular contacts shapes the selection pressure on individual residue sites of ribosomal complexes. The bacterial ribosomal complex is represented as a residue contact network where nodes represent amino acid/nucleotide residues and edges represent their van der Waals interactions. We find statistically overrepresented native amino acid-nucleotide contacts (OaantC, one amino acid contacts one or multiple nucleotides, internucleotide contacts are disregarded). Contact number is defined as the number of nucleotides contacted. Involvement of individual amino acids in OaantCs with smaller contact numbers is more random, whereas only a few amino acids significantly contribute to OaantCs with higher contact numbers. An investigation of structure, stability, and assembly of bacterial ribosome depicts the involvement of these OaantCs in diverse biophysical interactions stabilizing the complex, including high-affinity protein-RNA contacts, interprotein cooperativity, intersubunit bridge, packing of multiple ribosomal RNA domains, etc. Amino acid-nucleotide constituents of OaantCs with higher contact numbers are generally associated with significantly slower substitution rates compared with that of OaantCs with smaller contact numbers. This evolutionary rate heterogeneity emerges from the strong purifying selection pressure that conserves the respective amino acid physicochemical properties relevant to the stabilizing interaction with OaantC nucleotides. An analysis of relative molecular orientations of OaantC residues and their interaction energetics provides the biophysical ground of purifying selection conserving OaantC amino acid physicochemical properties. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and

  4. Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin.

    PubMed Central

    Lobreaux, S; Yewdall, S J; Briat, J F; Harrison, P M

    1992-01-01

    The iron storage protein, ferritin, is widely distributed in the living kingdom. Here the complete cDNA and derived amino-acid sequence of pea seed ferritin are described, together with its predicted secondary structure, namely a four-helix-bundle fold similar to those of mammalian ferritins, with a fifth short helix at the C-terminus. An N-terminal extension of 71 residues contains a transit peptide (first 47 residues) responsible for plastid targetting as in other plant ferritins, and this is cleaved before assembly. The second part of the extension (24 residues) belongs to the mature subunit; it is cleaved during germination. The amino-acid sequence of pea seed ferritin is aligned with those of other ferritins (49% amino-acid identity with H-chains and 40% with L-chains of human liver ferritin in the aligned region). A three-dimensional model has been constructed by fitting the aligned sequence to the coordinates of human H-chains, with appropriate modifications. A folded conformation with an 11-residue helix is predicted for the N-terminal extension. As in mammalian ferritins, 24 subunits assemble into a hollow shell. In pea seed ferritin, its N-terminal extension is exposed on the outside surface of the shell. Within each pea subunit is a ferroxidase centre resembling those of human ferritin H-chains except for a replacement of Glu-62 by His. The channel at the 4-fold-symmetry axes defined by E-helices, is predicted to be hydrophilic in plant ferritins, whereas it is hydrophobic in mammalian ferritins. Images Fig. 3. Fig. 5. Fig. 6. PMID:1472006

  5. In vivo evidence of TonB shuttling between the cytoplasmic and outer membrane in Escherichia coli.

    PubMed

    Larsen, Ray A; Letain, Tracy E; Postle, Kathleen

    2003-07-01

    Gram-negative bacteria are able to convert potential energy inherent in the proton gradient of the cytoplasmic membrane into active nutrient transport across the outer membrane. The transduction of energy is mediated by TonB protein. Previous studies suggest a model in which TonB makes sequential and cyclic contact with proteins in each membrane, a process called shuttling. A key feature of shuttling is that the amino-terminal signal anchor must quit its association with the cytoplasmic membrane, and TonB becomes associated solely with the outer membrane. However, the initial studies did not exclude the possibility that TonB was artifactually pulled from the cytoplasmic membrane by the fractionation process. To resolve this ambiguity, we devised a method to test whether the extreme TonB amino-terminus, located in the cytoplasm, ever became accessible to the cys-specific, cytoplasmic membrane-impermeant molecule, Oregon Green(R) 488 maleimide (OGM) in vivo. A full-length TonB and a truncated TonB were modified to carry a sole cysteine at position 3. Both full-length TonB and truncated TonB (consisting of the amino-terminal two-thirds) achieved identical conformations in the cytoplasmic membrane, as determined by their abilities to cross-link to the cytoplasmic membrane protein ExbB and their abilities to respond conformationally to the presence or absence of proton motive force. Full-length TonB could be amino-terminally labelled in vivo, suggesting that it was periplasmically exposed. In contrast, truncated TonB, which did not associate with the outer membrane, was not specifically labelled in vivo. The truncated TonB also acted as a control for leakage of OGM across the cytoplasmic membrane. Further, the extent of labelling for full-length TonB correlated roughly with the proportion of TonB found at the outer membrane. These findings suggest that TonB does indeed disengage from the cytoplasmic membrane during energy transduction and shuttle to the outer membrane.

  6. Modification of SR-PSOX functions by multi-point mutations of basic amino acid residues.

    PubMed

    Liu, Weiwei; Yin, Lan; Dai, Yalei

    2013-02-01

    SR-PSOX can function as a scavenger receptor, a chemokine and an adhesion molecule, and it could be an interesting player in the formation of atherosclerotic lesions. Our previous studies demonstrated that basic amino acid residues in the chemokine domain of SR-PSOX are critical for its functions. In this study the combinations of the key basic amino acids in the chemokine domain of SR-PSOX have been identified. Five combinations of basic amino acid residues that may form conformational motif for SR-PSOX functions were selected for multi-point mutants. The double mutants of K61AR62A, R76AK79A, R82AH85A, and treble mutants of R76AR78AK79A, R78AR82AH85A were successfully constructed by replacing the combinations of two or three basic amino acid residues with alanine. After successful expression of these mutants on the cells, the functional studies showed that the cells expressing R76AK79A and R82AH85A mutants significantly increased the activity of oxLDL uptake compared with that of wild-type SR-PSOX. Meanwhile, the cells expressing R76AK79A mutant also dramatically enhanced the phagocytotic activity of SR-PSOX. However, the cells expressing the construct of combination of R78A mutation in R76AK79A or R82AH85A could abolish these effects. More interestingly, the adhesive activities were remarkably down regulated in the cells expressing the multi-point mutants respectively. This study revealed that some conformational motifs of basic amino acid residues, especially R76 with K79 in SR-PSOX, may form a common functional motif for its critical functions. R78 in SR-PSOX has the potential action to stabilize the function of oxLDL uptake and bacterial phagocytosis. The results obtained may provide new insight for the development of drug target of atherosclerosis. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  7. Cholecystokinin octa- and tetrapeptide degradation by synaptic membranes. II. Solubilization and separation of membrane-bound CCK-8 cleaving enzymes.

    PubMed

    Deschodt-Lanckman, M; Bui, N D; Koulischer, D; Paroutaud, P; Strosberg, A D

    1983-01-01

    Solubilization of rat synaptic membranes by Triton X-100, followed by DEAE-cellulose chromatography allowed the identification of different CCK-8 cleaving enzymes. The first one (in the order of elution) removed the N-terminal aspartic acid residue of CCK-8 and was active on L-aspartic acid beta naphtylamide, suggesting that a corresponded to an aminopeptidase A. Two aminopeptidases of broad specificity hydrolyzed sequentially all the peptide bonds of CCK-8 as far as the release of free tryptophan. The removal of the sulfated tyrosine residue of CCK-8 occurred at a slower rate than that of the unsulfated residue. Another peptidase converted CCK-8 into its C-terminal heptapeptide. This enzyme had a lower affinity for the sulfated octapeptide in comparison with the unsulfated form (app Km of respectively 180 and 40 muM). The CCK-7 generating proteases displayed a moderate regional variation in five rat brain areas, with the highest activity in olfactory bulbs membranes and the lowest in cerebellar membranes. This distribution followed (with a lower amplitude) that of the CCK receptors.

  8. Outer Membrane Protein Folding and Topology from a Computational Transfer Free Energy Scale.

    PubMed

    Lin, Meishan; Gessmann, Dennis; Naveed, Hammad; Liang, Jie

    2016-03-02

    Knowledge of the transfer free energy of amino acids from aqueous solution to a lipid bilayer is essential for understanding membrane protein folding and for predicting membrane protein structure. Here we report a computational approach that can calculate the folding free energy of the transmembrane region of outer membrane β-barrel proteins (OMPs) by combining an empirical energy function with a reduced discrete state space model. We quantitatively analyzed the transfer free energies of 20 amino acid residues at the center of the lipid bilayer of OmpLA. Our results are in excellent agreement with the experimentally derived hydrophobicity scales. We further exhaustively calculated the transfer free energies of 20 amino acids at all positions in the TM region of OmpLA. We found that the asymmetry of the Gram-negative bacterial outer membrane as well as the TM residues of an OMP determine its functional fold in vivo. Our results suggest that the folding process of an OMP is driven by the lipid-facing residues in its hydrophobic core, and its NC-IN topology is determined by the differential stabilities of OMPs in the asymmetrical outer membrane. The folding free energy is further reduced by lipid A and assisted by general depth-dependent cooperativities that exist between polar and ionizable residues. Moreover, context-dependency of transfer free energies at specific positions in OmpLA predict regions important for protein function as well as structural anomalies. Our computational approach is fast, efficient and applicable to any OMP.

  9. The amino-terminal matrix assembly domain of fibronectin stabilizes cell shape and prevents cell cycle progression.

    PubMed

    Christopher, R A; Judge, S R; Vincent, P A; Higgins, P J; McKeown-Longo, P J

    1999-10-01

    Adhesion to the extracellular matrix modulates the cellular response to growth factors and is critical for cell cycle progression. The present study was designed to address the relationship between fibronectin matrix assembly and cell shape or shape dependent cellular processes. The binding of fibronectin's amino-terminal matrix assembly domain to adherent cells represents the initial step in the assembly of exogenous fibronectin into the extracellular matrix. When added to monolayers of pulmonary artery endothelial cells, the 70 kDa fragment of fibronectin (which contains the matrix assembly domain) stabilized both the extracellular fibronectin matrix as well as the actin cytoskeleton against cytochalasin D-mediated structural reorganization. This activity appeared to require specific fibronectin sequences as fibronectin fragments containing the cell adhesion domain as well as purified vitronectin were ineffective inhibitors of cytochalasin D-induced cytoarchitectural restructuring. Such pronounced morphologic consequences associated with exposure to the 70 kDa fragment suggested that this region of the fibronectin molecule may affect specific growth traits known to be influenced by cell shape. To assess this possibility, the 70 kDa fragment was added to scrape-wounded monolayers of bovine microvessel endothelium and the effects on two shape-dependent processes (i.e. migration and proliferation) were measured as a function of time after injury and location from the wound. The addition of amino-terminal fragments of fibronectin to the monolayer significantly inhibited (by >50%) wound closure. Staining of wounded monolayers with BrdU, moreover, indicated that either the 70 kDa or 25 kDa amino-terminal fragments of fibronectin, but not the 40 kDa collagen binding fragment, also inhibited cell cycle progression. These results suggest that the binding of fibronectin's amino-terminal region to endothelial cell layers inhibits cell cycle progression by stabilizing cell

  10. D-Amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties

    PubMed Central

    2005-01-01

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution. PMID:16033333

  11. D-amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties.

    PubMed

    Torres, Allan M; Tsampazi, Chryssanthi; Geraghty, Dominic P; Bansal, Paramjit S; Alewood, Paul F; Kuchel, Philip W

    2005-10-15

    The recent discovery that the natriuretic peptide OvCNPb (Ornithorhynchus venom C-type natriuretic peptide B) from platypus (Ornithorynchus anatinus) venom contains a D-amino acid residue suggested that other D-amino-acid-containing peptides might be present in the venom. In the present study, we show that DLP-2 (defensin-like peptide-2), a 42-amino-acid residue polypeptide in the platypus venom, also contains a D-amino acid residue, D-methionine, at position 2, while DLP-4, which has an identical amino acid sequence, has all amino acids in the L-form. These findings were supported further by the detection of isomerase activity in the platypus gland venom extract that converts DLP-4 into DLP-2. In the light of this new information, the tertiary structure of DLP-2 was recalculated using a new structural template with D-Met2. The structure of DLP-4 was also determined in order to evaluate the effect of a D-amino acid at position 2 on the structure and possibly to explain the large retention time difference observed for the two molecules in reverse-phase HPLC. The solution structures of the DLP-2 and DLP-4 are very similar to each other and to the earlier reported structure of DLP-2, which assumed that all amino acids were in the L-form. Our results suggest that the incorporation of the D-amino acid at position 2 has minimal effect on the overall fold in solution.

  12. Removal of a C-terminal serine residue proximal to the inter-chain disulfide bond of a human IgG1 lambda light chain mediates enhanced antibody stability and antibody dependent cell-mediated cytotoxicity

    PubMed Central

    Shen, Yang; Zeng, Lin; Zhu, Aiping; Blanc, Tim; Patel, Dipa; Pennello, Anthony; Bari, Amtul; Ng, Stanley; Persaud, Kris; Kang, Yun (Kenneth); Balderes, Paul; Surguladze, David; Hindi, Sagit; Zhou, Qinwei; Ludwig, Dale L.; Snavely, Marshall

    2013-01-01

    Optimization of biophysical properties is a critical success factor for the developability of monoclonal antibodies with potential therapeutic applications. The inter-domain disulfide bond between light chain (Lc) and heavy chain (Hc) in human IgG1 lends structural support for antibody scaffold stability, optimal antigen binding, and normal Fc function. Recently, human IgG1λ has been suggested to exhibit significantly greater susceptibility to reduction of the inter Lc-Hc disulfide bond relative to the same disulfide bond in human IgG1κ. To understand the molecular basis for this observed difference in stability, the sequence and structure of human IgG1λ and human IgG1κ were compared. Based on this Lc comparison, three single mutations were made in the λ Lc proximal to the cysteine residue, which forms a disulfide bond with the Hc. We determined that deletion of S214 (dS) improved resistance of the association between Lc and Hc to thermal stress. In addition, deletion of this terminal serine from the Lc of IgG1λ provided further benefit, including an increase in stability at elevated pH, increased yield from transient transfection, and improved in vitro antibody dependent cell-mediated cytotoxicity (ADCC). These observations support the conclusion that the presence of the terminal serine of the λ Lc creates a weaker inter-chain disulfide bond between the Lc and Hc, leading to slightly reduced stability and a potential compromise in IgG1λ function. Our data from a human IgG1λ provide a basis for further investigation of the effects of deleting terminal serine from λLc on the stability and function of other human IgG1λ antibodies. PMID:23567210

  13. Two monoclonal antibodies specific for different epitopes within the amino-terminal region of F pilin.

    PubMed Central

    Frost, L S; Lee, J S; Scraba, D G; Paranchych, W

    1986-01-01

    Two murine monoclonal antibodies (JEL 92 and 93) specific for adjacent epitopes on F pilin were purified and characterized. JEL 93 immunoglobulin G (IgG) and its Fab fragments were specific for the amino-terminal region and were completely reactive with a synthetic peptide representing the first eight amino acids of F pilin. The acetyl group was demonstrated to be an important part of the epitope, since an unacetylated version of the amino-terminal peptide was 100-fold less reactive with JEL 93 IgG. JEL 92 IgG reacted with the region of F pilin surrounding Met-9, represented by a tryptic peptide derived from the first 17 amino acids. This reactivity was completely abolished by cleavage of the peptide with cyanogen bromide. As shown by electron microscopy, both monoclonal antibodies bound to a vesiclelike structure at one end of purified free pili and did not bind to the sides of the pili, nor did they appear to bind to the tip. When sonication was used to break pili into shorter fragments, the number of binding sites for JEL 92 but not JEL 93 IgG increased as measured by a competitive enzyme-linked immunosorbent assay. Images PMID:2428808

  14. Regulation of renal amino acid transporters during metabolic acidosis.

    PubMed

    Moret, Caroline; Dave, Mital H; Schulz, Nicole; Jiang, Jean X; Verrey, Francois; Wagner, Carsten A

    2007-02-01

    The kidney plays a major role in acid-base homeostasis by adapting the excretion of acid equivalents to dietary intake and metabolism. Urinary acid excretion is mediated by the secretion of protons and titratable acids, particularly ammonia. NH(3) is synthesized in proximal tubule cells from glutamine taken up via specific amino acid transporters. We tested whether kidney amino acid transporters are regulated in mice in which metabolic acidosis was induced with NH(4)Cl. Blood gas and urine analysis confirmed metabolic acidosis. Real-time RT-PCR was performed to quantify the mRNAs of 16 amino acid transporters. The mRNA of phosphoenolpyruvate carboxykinase (PEPCK) was quantified as positive control for the regulation and that of GAPDH, as internal standard. In acidosis, the mRNA of kidney system N amino acid transporter SNAT3 (SLC38A3/SN1) showed a strong induction similar to that of PEPCK, whereas all other tested mRNAs encoding glutamine or glutamate transporters were unchanged or reduced in abundance. At the protein level, Western blotting and immunohistochemistry demonstrated an increased abundance of SNAT3 and reduced expression of the basolateral cationic amino acid/neutral amino acid exchanger subunit y(+)-LAT1 (SLC7A7). SNAT3 was localized to the basolateral membrane of the late proximal tubule S3 segment in control animals, whereas its expression was extended to the earlier S2 segment of the proximal tubule during acidosis. Our results suggest that the selective regulation of SNAT3 and y(+)LAT1 expression may serve a major role in the renal adaptation to acid secretion and thus for systemic acid-base balance.

  15. Study on impact of habitat degradation on proximate composition and amino acid profile of Indian major carps from different habitats.

    PubMed

    Hussain, Bilal; Sultana, Tayyaba; Sultana, Salma; Ahmed, Z; Mahboob, Shahid

    2018-05-01

    This investigation is aimed to study an impact of habitat degradation on proximate composition and amino acid (AAs) profile of Catla catla, Labeo rohita and Cirrhinus mrigala collected from polluted, non-polluted area (upstream) and a commercial fish farm. The amino acid profile was estimated by the amino acid analyzer. C. catla collected from the polluted environment had highest lipid, protein and ash contents (12.04 ± 0.01, 13.45 ± 0.01 and 0.93 ± 0.03%, respectively). The high protein content (14.73 ± 0.01 and 14.12 ± 0. 01%) was recorded in C. catla procured from non-polluted (upstream) wild habitat of River Chenab and controlled commercial fish farm. Farmed fish species showed comparatively higher moisture contents followed by upstream and polluted area fishes. C. mrigala showed significant differences in amino acid and proximate composition collected from a polluted site of the river Chenab. C. catla collected from non-polluted site of the river showed an excellent nutrient profile, followed by L. rohita (wild and farmed) and C. mrigala (polluted area), respectively. All fishes from the polluted areas of the River Chenab indicated a significant decrease in the concentration of some AAs when compared to farmed and wild (upstream) major carps. Omitting of some important AAs was also observed in the meat of fish harvested from polluted habitat of this river. C. mrigala and L. rohita exhibited a significant increase in the concentration of some of non-essential amino acids such as cysteine in their meat. The results indicated that wild fish (upstream) and farmed fish species had highest protein contents and amino acid profile and hence appeared to be the best for human consumption. The proximate composition and AAs profiles of fish harvested from the polluted area of the river clearly indicated that efforts shall be made for the restoration of habitat to continue the requirement of high quality fish meat at a low cost to the human

  16. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla.

    PubMed

    Chen, Jiana; Huang, Min; Cao, Fangbo; Pardha-Saradhi, P; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata.

  17. Impact of amino acid substitutions near the catalytic site on the spectral properties of an O2-tolerant membrane-bound [NiFe] hydrogenase.

    PubMed

    Saggu, Miguel; Ludwig, Marcus; Friedrich, Bärbel; Hildebrandt, Peter; Bittl, Robert; Lendzian, Friedhelm; Lenz, Oliver; Zebger, Ingo

    2010-04-26

    [NiFe] hydrogenases are widespread among microorganisms and catalyze the reversible cleavage of molecular hydrogen. However, only a few bacteria, such as Ralstonia eutropha H16 (Re), synthesize [NiFe] hydrogenases that perform H(2) cycling in the presence of O(2). These enzymes are of special interest for biotechnological applications. To gain further insight into the mechanism(s) responsible for the remarkable O(2) tolerance, we employ FTIR and EPR spectroscopy to study mutant variants of the membrane-bound hydrogenase (MBH) of Re-carrying substitutions of a particular cysteine residue in the vicinity of the [NiFe] active site that is characteristic of O(2)-tolerant membrane-bound [NiFe] hydrogenases. We demonstrate that these MBH variants, despite minor changes in the electronic structure and in the interaction behavior with the embedding protein matrix, display all relevant catalytic and noncatalytic states of the wild-type enzyme, as long as they are still located in the cytoplasmic membrane. Notably, in the oxidized Ni(r)-B state and the fully reduced forms, the CO stretching frequency increases with increasing polarity of the respective amino acid residue at the specific position of the cysteine residue. We purified the MBH mutant protein with a cysteine-to-alanine exchange to apparent homogeneity as dimeric enzyme after detergent solubilization from the membrane. This purified version displays increased oxygen sensitivity, which is reflected by detection of the oxygen-inhibited Ni(u)-A state, an irreversible inactive redox state, and the light-induced Ni(a)-L state even at room temperature.

  18. PPII propensity of multiple-guest amino acids in a proline-rich environment.

    PubMed

    Moradi, Mahmoud; Babin, Volodymyr; Sagui, Celeste; Roland, Christopher

    2011-07-07

    There has been considerable debate about the intrinsic PPII propensity of amino acid residues in denatured polypeptides. Experimentally, this scale is based on the behavior of guest amino acid residues placed in the middle of proline-based hosts. We have used classical molecular dynamics simulations combined with replica-exchange methods to carry out a comprehensive analysis of the conformational equilibria of proline-based host oligopeptides with multiple guest amino acids including alanine, glutamine, valine, and asparagine. The tracked structural characteristics include the secondary structural motifs based on the Ramachandran angles and the cis/trans isomerization of the prolyl bonds. In agreement with our recent study of single amino acid guests, we did not observe an intrinsic PPII propensity in any of the guest amino acids in a multiple-guest setting. Instead, the experimental results can be explained in terms of (i) the steric restrictions imposed on the C-terminal guest amino acid that is immediately followed by a proline residue and (ii) an increase in the trans content of the prolyl bonds due to the presence of guest residues. In terms of the latter, we found that the more guests added to the system, the larger the increase in the trans content of the prolyl bonds, which results in an effective increase in the PPII content of the peptide.

  19. Role of C-Terminal Cysteine Residues of Aspergillus fumigatus Allergen Asp f 4 in Immunoglobulin E Binding

    PubMed Central

    Ramachandran, Harikrishnan; Banerjee, Banani; Greenberger, Paul A.; Kelly, Kevin J.; Fink, Jordan N.; Kurup, Viswanath P.

    2004-01-01

    Among the several allergens cloned and expressed from Aspergillus fumigatus, Asp f 4 is a major one associated with allergic bronchopulmonary aspergillosis (ABPA). The structure-function relationship of allergens is important in understanding the immunopathogenesis, diagnosis, and treatment of allergic diseases. These include the epitopes, conformational or linear, deletion of the N or C terminus or both N and C termini, and glycosylation or nonglycosylation, all of which affect immune responses. Similarly, the role of cysteine residues present in allergens may yield useful information regarding the conformational structure of allergens and the immunoglobulin E (IgE) epitope interaction. Such information may help in developing new strategies towards immunotherapy. In order to define the role of cysteine in the interaction of the antibody with Asp f 4, we have constructed mutants by selectively deleting cysteine residues from the C-terminal region of the Asp f 4. Immunological evaluation of these engineered recombinant constructs was conducted by using sera from patients with ABPA, Aspergillus skin test-positive asthmatics, and healthy controls. The results demonstrate strong IgE binding with Asp f 4 and two truncated mutants, Asp f 41-234 (amino acids [aa] 1 to 234) and Asp f 41-241 (aa 1 to 241), while another mutant, Asp f 41-196 (aa 1 to 196), showed reactivity with fewer patients. The result suggests that deletion of cysteines and the alteration of IgE epitopes at the C-terminal end resulted in conformational changes, which may have a potential role in the immunomodulation of the disease. PMID:15013973

  20. Active-Site Residues of Escherichia coli DNA Gyrase Required in Coupling ATP Hydrolysis to DNA Supercoiling and Amino Acid Substitutions Leading to Novobiocin Resistance

    PubMed Central

    Gross, Christian H.; Parsons, Jonathan D.; Grossman, Trudy H.; Charifson, Paul S.; Bellon, Steven; Jernee, James; Dwyer, Maureen; Chambers, Stephen P.; Markland, William; Botfield, Martyn; Raybuck, Scott A.

    2003-01-01

    DNA gyrase is a bacterial type II topoisomerase which couples the free energy of ATP hydrolysis to the introduction of negative supercoils into DNA. Amino acids in proximity to bound nonhydrolyzable ATP analog (AMP · PNP) or novobiocin in the gyrase B (GyrB) subunit crystal structures were examined for their roles in enzyme function and novobiocin resistance by site-directed mutagenesis. Purified Escherichia coli GyrB mutant proteins were complexed with the gyrase A subunit to form the functional A2B2 gyrase enzyme. Mutant proteins with alanine substitutions at residues E42, N46, E50, D73, R76, G77, and I78 had reduced or no detectable ATPase activity, indicating a role for these residues in ATP hydrolysis. Interestingly, GyrB proteins with P79A and K103A substitutions retained significant levels of ATPase activity yet demonstrated no DNA supercoiling activity, even with 40-fold more enzyme than the wild-type enzyme, suggesting that these amino acid side chains have a role in the coupling of the two activities. All enzymes relaxed supercoiled DNA to the same extent as the wild-type enzyme did, implying that only ATP-dependent reactions were affected. Mutant genes were examined in vivo for their abilities to complement a temperature-sensitive E. coli gyrB mutant, and the activities correlated well with the in vitro activities. We show that the known R136 novobiocin resistance mutations bestow a significant loss of inhibitor potency in the ATPase assay. Four new residues (D73, G77, I78, and T165) that, when changed to the appropriate amino acid, result in both significant levels of novobiocin resistance and maintain in vivo function were identified in E. coli. PMID:12604539

  1. A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes.

    PubMed

    Forster, Brian M; Bitar, Alan Pavinski; Marquis, Hélène

    2014-01-01

    Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide.

  2. Amino terminal sequence of heavy and light chains from ratfish immunoglobulin.

    PubMed

    De Ioannes, A E; Aguila, H L

    1989-01-01

    The ratfish, Callorhinchus callorhinchus, a representative of the Holocephali, has a natural serum hemagglutinin (Mr 960,000), composed of heavy (Mr 71,000), light (Mr 22,500), and J (Mr 16,000) chains. To approach the mechanisms that generate diversity at this level of evolution, the amino terminal sequence of the heavy and light chains was determined by automated microsequencing. The chains are unblocked and have modest internal sequence heterogeneity. The heavy chains show sequence similarity with the terminal region of the heavy chain from the horned shark, Heterodontus francisci, and other species. In contrast to the heavy chain, the ratfish light chains display low sequence similarity with their shark kappa counterparts. However, their similarity with the variable region of the chicken lambda light chains is about 75%.

  3. FTIR spectroscopic study on individual amino acid residues in the proton pumping process of bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Liu, Xiaomei

    1998-05-01

    My thesis project has concentrated on clarifying the role of individual amino acids such as tyrosine, arginine and threonine in the active proton transferring process of Bacteriorhodopsin(bR). BR is a protein found in the purple membrane of Halobacteria salinarium. The main function of bR is to transfer a proton from the interior side of the cell to the external medium upon illumination by visible light. BR belongs to a family of retinal- containing membrane proteins which includes rhodopsin, a visual receptor found in the eye, and sensory rhodopsin I, a light receptor for phototaxis found in H. salinarium. Complete understanding of the proton transferring mechanism of bR can help explain the energy transduction and active ion transport in biological systems. This information also provides insight into other members of the retinal-containing protein family. To study the behavior of a single amino acid in a protein which consists of 248 amino acids, I employed the Fourier transform infrared (FTIR) difference spectroscopy technique. This was combined with the recently developed genetic engineering method of site directed isotope labeling (SDIL). As complementary work, I also characterized the vibrational properties of individual amino acids in various environments. Because of the high resolution and sensitivity of FTIR difference spectroscopy, along with the ability of SDIL to detect structural changes at the single amino acid level, we are able to determine changes in the structure of specific amino acids at different steps in bR photocycle. My research results provide strong evidence for a proton pump model. This model predicts the participation of tyrosine 185 and one or more threonines in a hydrogen bonded chain which can transfer proton across the membrane. My data also suggest a more accurate model for the proton release step which involves arginine 82.

  4. Evolutionary Diversifaction of Aminopeptidase N in Lepidoptera by Conserved Clade-specific Amino Acid Residues

    PubMed Central

    Hughes, Austin L.

    2015-01-01

    Members of the aminopepidase N (APN) gene family of the insect order Lepidoptera (moths and butterflies) bind the naturally insecticidal Cry toxins produced by the bacterium Bacillus thuringiensis. Phylogenetic analysis of amino acid sequences of seven lepidopteran APN classes provided strong support for the hypothesis that lepidopteran APN2 class arose by gene duplication prior to the most recent common ancestor of Lepidoptera and Diptera. The Cry toxin-binding region (BR) of lepidopteran and dipteran APNs was subject to stronger purifying selection within APN classes than was the remainder of the molecule, reflecting conservation of catalytic site and adjoining residues within the BR. Of lepidopteran APN classes, APN2, APN6, and APN8 showed the strongest evidence of functional specialization, both in expression patterns and in the occurrence of conserved derived amino acid residues. The latter three APN classes also shared a convergently evolved conserved residue close to the catalytic site. APN8 showed a particularly strong tendency towards class-specific conserved residues, including one of the catalytic site residues in the BR and ten others in close vicinity to the catalytic site residues. The occurrence of class-specific sequences along with the conservation of enzymatic function is consistent with the hypothesis that the presence of Cry toxins in the environment has been a factor shaping the evolution of this multi-gene family. PMID:24675701

  5. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  6. Electrodialytic remediation of municipal solid waste incineration residues using different membranes.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M

    2017-02-01

    In the present work, three different commercial membrane brands were used in an identical electrodialytic cell setup and operating conditions, in order to reduce the leaching of metals and salt anions of two types of municipal solid waste incineration residues: air pollution control residues of a semi-dry flue-gas cleaning system and fly ashes from a plant with wet flue-gas cleaning system. The results showed a general reduction of the leaching in both residues after ED remediation. For the following elements, the leaching was found to be different after ED treatment depending on the membrane used, with statistical significance: • Air pollution control residues of the semi-dry flue-gas cleaning system: Cr, Cu, Ni, Pb, Zn; • Fly ashes from a plant with wet flue-gas cleaning system: Al, Ba, Cu, Ni, Zn, Cl, SO 4 . Final leaching values for some elements and membranes, but not the majority, were below than those of certified coal fly ash (e.g. Al or Cr), a material which is commonly used in construction materials; at the same time, some of these values were reduced to below the Danish law thresholds on the use of contaminated soil in constructions. These results show the potential of ED as a technology to upgrade municipal solid waste incineration residues. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Amino Acid Proximities in Two Sup35 Prion Strains Revealed by Chemical Cross-linking*

    PubMed Central

    Wong, Shenq-Huey; King, Chih-Yen

    2015-01-01

    Strains of the yeast prion [PSI] are different folding patterns of the same Sup35 protein, which stacks up periodically to form a prion fiber. Chemical cross-linking is employed here to probe different fiber structures assembled with a mutant Sup35 fragment. The photo-reactive cross-linker, p-benzoyl-l-phenylalanine (pBpa), was biosynthetically incorporated into bacterially prepared recombinant Sup(1–61)-GFP, containing the first 61 residues of Sup35, followed by the green fluorescent protein. Four methionine substitutions and two alanine substitutions were introduced at fixed positions in Sup(1–61) to allow cyanogen bromide cleavage to facilitate subsequent mass spectrometry analysis. Amyloid fibers of pBpa and Met/Ala-substituted Sup(1–61)-GFP were nucleated from purified yeast prion particles of two different strains, namely VK and VL, and shown to faithfully transmit specific strain characteristics to yeast expressing the wild type Sup35 protein. Intra- and intermolecular cross-linking were distinguished by tandem mass spectrometry analysis on fibers seeded from solutions containing equal amounts of 14N- and 15N-labeled protein. Fibers propagating the VL strain type exhibited intra- and intermolecular cross-linking between amino acid residues 3 and 28, as well as intra- and intermolecular linking between 32 and 55. Inter- and intramolecular cross-linking between residues 32 and 55 were detected in fibers propagating the VK strain type. Adjacencies of amino acid residues in space revealed by cross-linking were used to constrain possible chain folds of different [PSI] strains. PMID:26265470

  8. The long terminal repeat-containing retrotransposon Tf1 possesses amino acids in gag that regulate nuclear localization and particle formation.

    PubMed

    Kim, Min-Kyung; Claiborn, Kathryn C; Levin, Henry L

    2005-08-01

    Tf1 is a long terminal repeat-containing retrotransposon of Schizosaccharomyces pombe that is studied to further our understanding of retrovirus propagation. One important application is to examine Tf1 as a model for how human immunodeficiency virus type 1 proteins enter the nucleus. The accumulation of Tf1 Gag in the nucleus requires an N-terminal nuclear localization signal (NLS) and the nuclear pore factor Nup124p. Here, we report that NLS activity is regulated by adjacent residues. Five mutant transposons were made, each with sequential tracts of four amino acids in Gag replaced by alanines. All five versions of Tf1 transposed with frequencies that were significantly lower than that of the wild type. Although all five made normal amounts of Gag, two of the mutations did not make cDNA, indicating that Gag contributed to reverse transcription. The localization of the Gag in the nucleus was significantly reduced by mutations A1, A2, and A3. These results identified residues in Gag that contribute to the function of the NLS. The Gags of A4 and A5 localized within the nucleus but exhibited severe defects in the formation of virus-like particles. Of particular interest was that the mutations in Gag-A4 and Gag-A5 caused their nuclear localization to become independent of Nup124p. These results suggested that Nup124p was only required for import of Tf1 Gag because of its extensive multimerization.

  9. Sodium ion-dependent amino acid transport in membrane vesicles of Bacillus stearothermophilus.

    PubMed Central

    Heyne, R I; de Vrij, W; Crielaard, W; Konings, W N

    1991-01-01

    Amino acid transport in membrane vesicles of Bacillus stearothermophilus was studied. A relatively high concentration of sodium ions is needed for uptake of L-alanine (Kt = 1.0 mM) and L-leucine (Kt = 0.4 mM). In contrast, the Na(+)-H(+)-L-glutamate transport system has a high affinity for sodium ions (Kt less than 5.5 microM). Lithium ions, but no other cations tested, can replace sodium ions in neutral amino acid transport. The stimulatory effect of monensin on the steady-state accumulation level of these amino acids and the absence of transport in the presence of nonactin indicate that these amino acids are translocated by a Na+ symport mechanism. This is confirmed by the observation that an artificial delta psi and delta mu Na+/F but not a delta pH can act as a driving force for uptake. The transport system for L-alanine is rather specific. L-Serine, but not L-glycine or other amino acids tested, was found to be a competitive inhibitor of L-alanine uptake. On the other hand, the transport carrier for L-leucine also translocates the amino acids L-isoleucine and L-valine. The initial rates of L-glutamate and L-alanine uptake are strongly dependent on the medium pH. The uptake rates of both amino acids are highest at low external pH (5.5 to 6.0) and decline with increasing pH. The pH allosterically affects the L-glutamate and L-alanine transport systems. The maximal rate of L-glutamate uptake (Vmax) is independent of the external pH between pH 5.5 and 8.5, whereas the affinity constant (Kt) increases with increasing pH. A specific transport system for the basic amino acids L-lysine and L-arginine in the membrane vesicles has also been observed. Transport of these amino acids occurs most likely by a uniport mechanism. PMID:1670936

  10. Central cardiovascular and behavioral effects of carboxy- and amino-terminal fragments of substance P in conscious rats.

    PubMed

    Tschöpe, C; Jost, N; Unger, T; Culman, J

    1995-08-28

    The central cardiovascular and behavioral effects of carboxy- (SP 5-11, SP 6-11, SP 7-11, SP 8-11) and amino- (SP 1-7, SP 1-9) terminal substance P (SP) fragments were compared with those of SP 1-11 in conscious rats. In addition, the ability of these SP-fragments to induce desensitization of the central NK1 receptor was investigated. SP 1-11 (50 pmol) injected i.c.v. induced an increase in mean arterial blood pressure (MAP), heart rate (HR) and a typical behavioral response consisting of face washing (FW), hindquarter grooming (HQG) and wet-dog shakes (WDS). The cardiovascular and behavioral responses to equimolar doses of SP 5-11 and SP 6-11 were similar to those of SP 1-11, however, only SP 5-11 induced exactly the same behavioral pattern as SP 1-11. SP 6-11 was more potent in inducing FW and WDS than SP 1-11 or SP 5-11. The carboxy-terminal SP-fragments, SP 7-11 and SP 8-11, and the amino-terminal SP-fragments, SP 1-7, SP 1-9, did not elicit any significant cardiovascular or behavioral responses. Pretreatment with SP 1-11 reduced the cardiovascular and behavioral responses to subsequent injections of SP 1-11. Of all SP-fragments tested, only SP 5-11 was able to attenuate the cardiovascular and behavioral responses to SP 1-11. Our results demonstrate that SP 6-11 represents the shortest carboxy-terminal amino acid sequence, that after i.c.v. injection, elicits the same cardiovascular response as SP 1-11, but fails to desensitize the NK1 receptor. The carboxy-terminal fragment, SP 5-11, is the shortest amino acid sequence which produces the same pattern of central cardiovascular and behavioral responses as SP 1-11 and also retains the ability to desensitize the NK1 receptor like SP 1-11.

  11. Urea application promotes amino acid metabolism and membrane lipid peroxidation in Azolla

    PubMed Central

    Chen, Jiana; Cao, Fangbo; Pardha-Saradhi, P.; Zou, Yingbin

    2017-01-01

    A pot experiment was conducted to evaluate the effect of urea on nitrogen metabolism and membrane lipid peroxidation in Azolla pinnata. Compared to controls, the application of urea to A. pinnata resulted in a 44% decrease in nitrogenase activity, no significant change in glutamine synthetase activity, 660% higher glutamic-pyruvic transaminase, 39% increase in free amino acid levels, 22% increase in malondialdehyde levels, 21% increase in Na+/K+- levels, 16% increase in Ca2+/Mg2+-ATPase levels, and 11% decrease in superoxide dismutase activity. In terms of H2O2 detoxifying enzymes, peroxidase activity did not change and catalase activity increased by 64% in urea-treated A. pinnata. These findings suggest that urea application promotes amino acid metabolism and membrane lipid peroxidation in A. pinnata. PMID:28945775

  12. Redesigning Channel-Forming Peptides: Amino Acid Substitutions that Enhance Rates of Supramolecular Self-Assembly and Raise Ion Transport Activity

    PubMed Central

    Shank, Lalida P.; Broughman, James R.; Takeguchi, Wade; Cook, Gabriel; Robbins, Ashley S.; Hahn, Lindsey; Radke, Gary; Iwamoto, Takeo; Schultz, Bruce D.; Tomich, John M.

    2006-01-01

    Three series of 22-residue peptides derived from the transmembrane M2 segment of the glycine receptor α1-subunit (M2GlyR) have been designed, synthesized, and tested to determine the plasticity of a channel-forming sequence and to define whether channel pores with enhanced conductive properties could be created. Sixteen sequences were examined for aqueous solubility, solution-association tendency, secondary structure, and half-maximal concentration for supramolecular assembly, channel activity, and ion transport properties across epithelial monolayers. All peptides interact strongly with membranes: associating with, inserting across, and assembling to form homooligomeric bundles when in micromolar concentrations. Single and double amino acid replacements involving arginine and/or aromatic amino acids within the final five C-terminal residues of the peptide cause dramatic effects on the concentration dependence, yielding a range of K1/2 values from 36 ± 5 to 390 ± 220 μM for transport activity. New water/lipid interfacial boundaries were established for the transmembrane segment using charged or aromatic amino acids, thus limiting the peptides' ability to move perpendicularly to the plane of the bilayer. Formation of discrete water/lipid interfacial boundaries appears to be necessary for efficient supramolecular assembly and high anion transport activity. A peptide sequence is identified that may show efficacy in channel replacement therapy for channelopathies such as cystic fibrosis. PMID:16387776

  13. Location of alkali metal binding sites in endothelin A selective receptor antagonists, cyclo(D-Trp-D-Asp-Pro-D-Val-Leu) and cyclo(D-Trp-D-Asp-Pro-D-Ile-Leu), from multistep collisionally activated decompositions.

    PubMed

    Ngoka, L C; Gross, M L

    2000-02-01

    We previously showed by using mass spectrometry that endothelin A selective receptor antagonists BQ123 and JKC301 form novel coordination compounds with sodium ions. This property may underlie the ability of an ET(A) antagonist to induce net tubular sodium reabsorption in the proximal tubule cells and reverse acute renal failure induced by severe ischemia. We have now defined the metal binding sites on BQ123 and JKC301 by subjecting the metal-containing peptides to multiple stages of collisionally activated decomposition (CAD) in an ion trap mass spectrometer. When submitted to low-energy CAD, the ring opens at the Asp-Pro amide bond. The metal ion, which bonds, inter alia, to the carbonyl oxygen of the proline residue, acts as a fixed charge site, and directs a charge-remote, sequence-specific fragmentation of the ring-opened peptide. Amino acid residues are sequentially cleaved from the C-terminal end, and the terminal aziridinone structure moves one step toward the N-terminus with each C-terminal amino acid residue removed. These observations are the basis of a new method to sequence cyclic peptides. Amino acid residues are observed as sets of three ions, a*(n)PD, b*(n)PD and c*(n)PD where n is the number of amino acid residues in the peptide. Copyright 2000 John Wiley & Sons, Ltd.

  14. Identification of amino acid residues important to the neuraminidase activity of the HN glycoprotein of Newcastle disease virus.

    PubMed

    Iorio, R M; Syddall, R J; Glickman, R L; Riel, A M; Sheehan, J P; Bratt, M A

    1989-11-01

    Monoclonal antibodies (MAbs) to three overlapping antigenic sites (designated 12, 2, and 23) on the hemagglutinin-neuraminidase glycoprotein (HN) of Newcastle disease virus (NDV) were previously shown to inhibit neuraminidase activity (NA) on neuraminlactose (R. M. Iorio and M. A. Bratt, 1984a, J. Immunol. 133, 2215-2219; R. M. Iorio et al., 1989, Virus Res. 13, 245-262). However, a competitive inhibitor of NA blocks the binding of only MAbs to site 23, suggesting that the domain they recognize may be closely related to the NA site. Antigenic variants selected with site 23 MAbs have single amino acid substitutions at HN residues 192, 193, or 200. Virions of variants, which have a substitution at residue 193 or 200, have alterations in NA which are not attributable to a commensurate change in HN content. A revertant of a temperature-sensitive mutant, which has markedly diminished NA relative to the wild type, has an amino acid substitution at residue 175. A second step revertant having partially restored NA has an additional substitution at residue 192 identical to that in one of the site 23 variants, which, in turn, also makes the revertant resistant to neutralization by site 23 MAbs. Thus, an amino acid substitution at residue 175, 193, or 200 of the HN of NDV can have marked effects on the NA of the protein. The amino acids in the region around residue 175 are highly conserved between the HNs of NDV and other paramyxoviruses, suggesting that this domain is important to the integrity of the NA site in this group of viruses.

  15. The Application of a Homologous Recombination Assay Revealed Amino Acid Residues in an LTR-Retrotransposon That Were Critical for Integration

    PubMed Central

    Atwood, Angela; Choi, Jeannie; Levin, Henry L.

    1998-01-01

    Retroviruses and their relatives, the LTR-retrotransposons, possess an integrase protein (IN) that is required for the insertion of reverse transcripts into the genome of host cells. Schizosaccharomyces pombe is the host of Tf1, an LTR-retrotransposon with integration activity that can be studied by using techniques of yeast genetics. In this study, we sought to identify amino acid substitutions in Tf1 that specifically affected the integration step of transposition. In addition to seeking amino acid substitutions in IN, we also explored the possibility that other Tf1 proteins contributed to integration. By comparing the results of genetic assays that monitored both transposition and reverse transcription, we were able to seek point mutations throughout Tf1 that blocked transposition but not the synthesis of reverse transcripts. These mutant versions of Tf1 were candidates of elements that possessed defects in the integration step of transposition. Five mutations in Tf1 that resulted in low levels of integration were found to be located in the IN protein: two substitutions in the N-terminal Zn domain, two in the catalytic core, and one in the C-terminal domain. These results suggested that each of the three IN domains was required for Tf1 transposition. The potential role of these five amino acid residues in the function of IN is discussed. Two of the mutations that reduced integration mapped to the RNase H (RH) domain of Tf1 reverse transcriptase. The Tf1 elements with the RH mutations produced high levels of reverse transcripts, as determined by recombination and DNA blot analysis. These results indicated that the RH of Tf1 possesses a function critical for transposition that is independent of the accumulation of reverse transcripts. PMID:9445033

  16. The C- and N-Terminal Residues of Synthetic Heptapeptide Ion Channels Influence Transport Efficacy Through Phospholipid Bilayers

    PubMed Central

    Djedovič, Natasha; Ferdani, Riccardo; Harder, Egan; Pajewska, Jolanta; Pajewski, Robert; Weber, Michelle E.; Schlesinger, Paul H.; Gokel, George W.

    2008-01-01

    The synthetic peptide, R2N-COCH2OCH2CO-Gly-Gly-Gly-Pro-Gly-Gly-Gly-OR’, was shown to be selective for Cl- over K+ when R is n-octadecyl and R’ is benzyl. Nineteen heptapeptides have now been prepared in which the N-terminal and C-terminal residues have been varied. All of the N-terminal residues are dialkyl but the C-terminal chains are esters, 2° amides, or 3° amides. The compounds having varied N-terminal anchors and C-terminal benzyl groups are as follows: 1, R = n-propyl; 2, R = n-hexyl; 3, R = n-octyl; 4, R = n-decyl; 5, R = n-dodecyl; 6, R = n-tetradecyl; 7, R = n-hexadecyl; 8, R = n-octadecyl. Compounds 9-19 have R = n-octadecyl and C-terminal residues as follows: 9, OR’ = OCH2CH3; 10, OR’ = OCH(CH3)2; 11, OR’ = O(CH2)6CH3; 12, OR’ = OCH2-c-C6H11; 13, OR’ = O(CH2)9CH3; 14, OR’ = O (CH2)17CH3; 15, NR’2 = N[(CH2)6CH3]2; 16, NHR’ = NH(CH2)9CH3; 17, NR’2 = N[(CH2)9CH3]2; 18, NHR’ = NH(CH2)17CH3; 19, NR’2 = N[(CH2)17CH3]2. The highest anion transport activities were observed as follows. For the benzyl esters whose N-terminal residues were varied, i.e. 1-8, compound 3 was most active. For the C18 anchored esters 10-14, n-heptyl ester 11 was most active. For the C18 anchored, C-terminal amides 15-19, di-n-decylamide 17 was most active. It was concluded that both the C- and N-terminal anchors were important for channel function in the bilayer but that activity was lost unless only one of the two anchoring groups was dominant. PMID:19633728

  17. A vacuolar membrane protein Avt7p is involved in transport of amino acid and spore formation in Saccharomyces cerevisiae.

    PubMed

    Tone, Junichi; Yamanaka, Atsushi; Manabe, Kunio; Murao, Nami; Kawano-Kawada, Miyuki; Sekito, Takayuki; Kakinuma, Yoshimi

    2015-01-01

    Active transport systems for various amino acids operate in the vacuolar membrane of Saccharomyces cerevisiae. The gene families for vacuolar amino acid transporters were identified by reverse genetics experiments. In the AVT transporter family, Avt1p works for active uptake of amino acid into vacuole, and Avt3p, Avt4p, and Avt6p for active extrusion of amino acid from vacuole to cytosol. Here, we found green fluorescent protein-tagged Avt7p, an unidentified member of the AVT family, localized to the vacuolar membrane of S. cerevisiae. Disruption of the AVT7 gene enhanced both vacuolar contents of several amino acids and uptake activities of glutamine and proline by vacuolar membrane vesicles. Efficiency of spore formation was impaired by the disruption of the AVT7 gene, suggesting the physiological importance of Avt7p-dependent efflux of amino acid from vacuoles under nutrient-poor condition.

  18. Fluorescence in-situ hybridization method reveals that carboxyl-terminal fragments of transactive response DNA-binding protein-43 truncated at the amino acid residue 218 reduce poly(A)+ RNA expression.

    PubMed

    Higashi, Shinji; Watanabe, Ryohei; Arai, Tetsuaki

    2018-07-04

    Transactive response (TAR) DNA-binding protein 43 (TDP-43) has emerged as an important contributor to amyotrophic lateral sclerosis and frontotemporal lobar degeneration. To understand the association of TDP-43 with complex RNA processing in disease pathogenesis, we performed fluorescence in-situ hybridization using HeLa cells transfected with a series of deleted TDP-43 constructs and investigated the effect of truncation of TDP-43 on the expression of poly(A) RNA. Endogenous and overexpressed full-length TDP-43 localized to the perichromatin region and interchromatin space adjacent to poly(A) RNA. Deleted variants of TDP-43 containing RNA recognition motif 1 and truncating N-terminal region induced cytoplasmic inclusions in which poly(A) RNA was recruited. Carboxyl-terminal TDP-43 truncated at residue 202 or 218 was distributed in the cytoplasm as punctate structures. Carboxyl-terminal TDP-43 truncated at residue 218, but not at 202, significantly decreased poly(A) RNA expression by ∼24% compared with the level in control cells. Our results suggest that the disturbance of RNA metabolism induced by pathogenic fragments plays central roles in the pathogenesis of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

  19. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, K.D.; Chu, T.J.; Pitt, W.G.

    1992-05-12

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through amino groups contained on the surface. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to the target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membranes may be reprobed numerous times. No Drawings

  20. Membrane-bound human orphan cytochrome P450 2U1: Sequence singularities, construction of a full 3D model, and substrate docking.

    PubMed

    Ducassou, Lionel; Dhers, Laura; Jonasson, Gabriella; Pietrancosta, Nicolas; Boucher, Jean-Luc; Mansuy, Daniel; André, François

    2017-09-01

    Human cytochrome P450 2U1 (CYP2U1) is an orphan CYP that exhibits several distinctive characteristics among the 57 human CYPs with a highly conserved sequence in almost all living organisms. We compared its protein sequence with those of the 57 human CYPs and constructed a 3D structure of a full-length CYP2U1 model bound to a POPC membrane. We also performed docking experiments of arachidonic acid (AA) and N-arachidonoylserotonin (AS) in this model. The protein sequence of CYP2U1 displayed two unique characteristics when compared to those of the human CYPs, the presence of a longer N-terminal region upstream of the putative trans-membrane helix (TMH) containing 8 proline residues, and of an insert of about 20 amino acids containing 5 arginine residues between helices A' and A. Its N-terminal part upstream of TMH involved an additional short terminal helix, in a manner similar to what was reported in the crystal structure of Saccharomyces cerevisiae CYP51. Our model also showed a specific interaction between the charged residues of insert AA' and phosphate groups of lipid polar heads, suggesting a possible role of this insert in substrate recruitment. Docking of AA and AS in this model showed these substrates in channel 2ac, with the terminal alkyl chain of AA or the indole ring of AS close to the heme, in agreement with the reported CYP2U1-catalyzed AA and AS hydroxylation regioselectivities. This model should be useful to find new endogenous or exogenous CYP2U1 substrates and to interpret the regioselectivity of their hydroxylation. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  1. Annexin A2 Mediates the Localization of Measles Virus Matrix Protein at the Plasma Membrane.

    PubMed

    Koga, Ritsuko; Kubota, Marie; Hashiguchi, Takao; Yanagi, Yusuke; Ohno, Shinji

    2018-02-28

    Annexins are a family of structurally related proteins that bind negatively charged membrane phospholipids in a Ca 2+ -dependent manner. Annexin A2 (AnxA2), a member of the family, has been implicated in a variety of cellular functions including the organization of membrane domains, vesicular trafficking and cell-cell adhesion. AnxA2 generally forms the heterotetrameric complex with a small Ca 2+ -binding protein S100A10. Measles virus (MV), a member of the family Paramyxoviridae , is an enveloped virus with a nonsegmented negative strand RNA genome. Knockdown of AnxA2 greatly reduced MV growth in cells, without affecting its entry and viral RNA production. In MV-infected, AnxA2-knockdown cells, the expression level of the matrix (M) protein, but not other viral proteins, was reduced compared with that in control cells, and the distribution of the M protein at the plasma membrane was decreased. The M protein lines the inner surface of the envelope and plays an important role in virus assembly by connecting the nucleocapsid to the envelope proteins. The M protein bound to AnxA2 independently of AnxA2's phosphorylation or its association with S100A10, and was co-localized with AnxA2 within cells. Truncation of the N-terminal 10 amino acid residues, but not the N-terminal 5 residues, compromised the ability of the M protein to interact with AnxA2 and localize at the plasma membrane. These results indicate that AnxA2 mediates the localization of the MV M protein at the plasma membrane by interacting with its N-terminal region (especially residues at positions 6-10), thereby aiding in MV assembly. IMPORTANCE Measles virus (MV) is an important human pathogen, still claiming ∼ 100,000 lives per year despite the presence of effective vaccines, and causes occasional outbreaks even in developed countries. Replication of viruses largely relies on the functions of host cells. Our study revealed that the reduction of the host protein annexin A2 compromises the replication of

  2. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex

    PubMed Central

    Brass, Volker; Berke, Jan Martin; Montserret, Roland; Blum, Hubert E.; Penin, François; Moradpour, Darius

    2008-01-01

    Hepatitis C virus (HCV) NS3-4A is a membrane-associated multifunctional protein harboring serine protease and RNA helicase activities. It is an essential component of the HCV replication complex and a prime target for antiviral intervention. Here, we show that membrane association and structural organization of HCV NS3-4A are ensured in a cooperative manner by two membrane-binding determinants. We demonstrate that the N-terminal 21 amino acids of NS4A form a transmembrane α-helix that may be involved in intramembrane protein–protein interactions important for the assembly of a functional replication complex. In addition, we demonstrate that amphipathic helix α0, formed by NS3 residues 12–23, serves as a second essential determinant for membrane association of NS3-4A, allowing proper positioning of the serine protease active site on the membrane. These results allowed us to propose a dynamic model for the membrane association, processing, and structural organization of NS3-4A on the membrane. This model has implications for the functional architecture of the HCV replication complex, proteolytic targeting of host factors, and drug design. PMID:18799730

  3. Human-In-The-Loop Investigation of Interoperability Between Terminal Sequencing and Spacing, Automated Terminal Proximity Alert, and Wake-Separation Recategorization

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Bienert, Nancy; Borade, Abhay; Gabriel, Conrad; Gujral, Vimmy; Jobe, Kim; Martin, Lynne; Omar, Faisal; Prevot, Thomas; Mercer, Joey

    2016-01-01

    A human-in-the-loop simulation study addressed terminal-area controller-workstation interface variations for interoperability between three new capabilities being introduced by the FAA. The capabilities are Terminal Sequencing and Spacing (TSAS), Automated Terminal Proximity Alert (ATPA), and wake-separation recategorization, or 'RECAT.' TSAS provides controllers with Controller-Managed Spacing (CMS) tools, including slot markers, speed advisories, and early/late indications, together with runway assignments and sequence numbers. ATPA provides automatic monitor, warning, and alert cones to inform controllers about spacing between aircraft on approach. ATPA cones are sized according to RECAT, an improved method of specifying wake-separation standards. The objective of the study was to identify potential issues and provide recommendations for integrating TSAS with ATPA and RECAT. Participants controlled arrival traffic under seven different display configurations, then tested an 'exploratory' configuration developed with participant input. All the display conditions were workable and acceptable, but controllers strongly preferred having the CMS tools available on Feeder positions, and both CMS tools and ATPA available on Final positions. Controllers found the integrated systems favorable and liked being able to tailor configurations to individual preferences.

  4. Biochemistry and Biophysics of HIV-1 gp41 – membrane interactions

    PubMed Central

    Cai, Lifeng; Gochin, Miriam; Liu, Keliang

    2011-01-01

    Human immunodeficiency virus type 1 (HIV-1), the pathogen of acquired immunodeficiency syndrome (AIDS), causes ~2 millions death every year and still defies an effective vaccine. HIV-1 infects host cells through envelope protein – mediated virus-cell fusion. The transmembrane subunit of envelope protein, gp41, is the molecular machinery which facilitates fusion. Its ectodomain contains several distinguishing functional domains, fusion peptide (FP), N-terminal heptad repeat (NHR), C-terminal heptad repeat (CHR) and membrane proximal extracellular region (MPER). During the fusion process, FP inserts into the host cell membrane, and an extended gp41 prehairpin conformation bridges the viral and cell membranes through MPER and FP respectively. Subsequent conformational change of the unstable prehairpin results in a coiled-coil 6-helix bundle (6HB) structure formed between NHR and CHR. The energetics of 6HB formation drives membrane apposition and fusion. Drugs targeting gp41 functional domains to prevent 6HB formation inhibit HIV-1 infection. T20 (enfuvirtide, Fuzeon) was approved by the US FDA in 2003 as the first fusion inhibitor. It is a 36-residue peptide from the gp41 CHR, and it inhibits 6HB formation by targeting NHR and lipids. Development of new fusion inhibitors, especially small molecule drugs, is encouraged to overcome the shortcomings of T20 as a peptide drug. Hydrophobic characteristics and membrane association are critical for gp41 function and mechanism of action. Research in gp41-membrane interactions, using peptides corresponding to specific functional domains, or constructs including several interactive domains, are reviewed here to get a better understanding of gp41 mediated virus-cell fusion that can inform or guide the design of new HIV-1 fusion inhibitors. PMID:22044229

  5. Anion exchange membranes based on terminally crosslinked methyl morpholinium-functionalized poly(arylene ether sulfone)s

    NASA Astrophysics Data System (ADS)

    Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun

    2018-01-01

    Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.

  6. Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation*

    PubMed Central

    Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.; Hayward, Dawn; Bolduc, David M.; Cole, Philip A.

    2016-01-01

    PTEN is a tumor suppressor that functions to negatively regulate the PI3K/AKT pathway as the lipid phosphatase for phosphatidylinositol 3,4,5-triphosphate. Phosphorylation of a cluster of Ser/Thr residues (amino acids 380–385) on the C-terminal tail serves to alter the conformational state of PTEN from an open active state to a closed inhibited state, resulting in a reduction of plasma membrane localization and inhibition of enzyme activity. The relative contribution of each phosphorylation site to PTEN autoinhibition and the structural basis for the conformational closure is still unclear. To further the structural understanding of PTEN regulation by C-terminal tail phosphorylation, we used protein semisynthesis to insert stoichiometric and site-specific phospho-Ser/Thr(s) in the C-terminal tail of PTEN. Additionally, we employed photo-cross-linking to map the intramolecular PTEN interactions of the phospho-tail. Systematic evaluation of the PTEN C-tail phospho-cluster showed autoinhibition, and conformational closure was influenced by the aggregate effect of multiple phospho-sites rather than dominated by a single phosphorylation site. Moreover, photo-cross-linking suggested a direct interaction between the PTEN C-tail and a segment in the N-terminal region of the catalytic domain. Mutagenesis experiments provided additional insights into how the PTEN phospho-tail interacts with both the C2 and catalytic domains. PMID:27226612

  7. A General Method for Predicting Amino Acid Residues Experiencing Hydrogen Exchange

    PubMed Central

    Wang, Boshen; Perez-Rathke, Alan; Li, Renhao; Liang, Jie

    2018-01-01

    Information on protein hydrogen exchange can help delineate key regions involved in protein-protein interactions and provides important insight towards determining functional roles of genetic variants and their possible mechanisms in disease processes. Previous studies have shown that the degree of hydrogen exchange is affected by hydrogen bond formations, solvent accessibility, proximity to other residues, and experimental conditions. However, a general predictive method for identifying residues capable of hydrogen exchange transferable to a broad set of proteins is lacking. We have developed a machine learning method based on random forest that can predict whether a residue experiences hydrogen exchange. Using data from the Start2Fold database, which contains information on 13,306 residues (3,790 of which experience hydrogen exchange and 9,516 which do not exchange), our method achieves good performance. Specifically, we achieve an overall out-of-bag (OOB) error, an unbiased estimate of the test set error, of 20.3 percent. Using a randomly selected test data set consisting of 500 residues experiencing hydrogen exchange and 500 which do not, our method achieves an accuracy of 0.79, a recall of 0.74, a precision of 0.82, and an F1 score of 0.78.

  8. The N-terminal amphipathic helix of Pex11p self-interacts to induce membrane remodelling during peroxisome fission.

    PubMed

    Su, Juanjuan; Thomas, Ann S; Grabietz, Tanja; Landgraf, Christiane; Volkmer, Rudolf; Marrink, Siewert J; Williams, Chris; Melo, Manuel N

    2018-06-01

    Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Piracetam inhibits the lipid-destabilising effect of the amyloid peptide Abeta C-terminal fragment.

    PubMed

    Mingeot-Leclercq, Marie-Paule; Lins, Laurence; Bensliman, Mariam; Thomas, Annick; Van Bambeke, Françoise; Peuvot, Jacques; Schanck, André; Brasseur, Robert

    2003-01-10

    Amyloid peptide (Abeta) is a 40/42-residue proteolytic fragment of a precursor protein (APP), implicated in the pathogenesis of Alzheimer's disease. The hypothesis that interactions between Abeta aggregates and neuronal membranes play an important role in toxicity has gained some acceptance. Previously, we showed that the C-terminal domain (e.g. amino acids 29-42) of Abeta induces membrane permeabilisation and fusion, an effect which is related to the appearance of non-bilayer structures. Conformational studies showed that this peptide has properties similar to those of the fusion peptide of viral proteins i.e. a tilted penetration into membranes. Since piracetam interacts with lipids and has beneficial effects on several symptoms of Alzheimer's disease, we investigated in model membranes the ability of piracetam to hinder the destabilising effect of the Abeta 29-42 peptide. Using fluorescence studies and 31P and 2H NMR spectroscopy, we have shown that piracetam was able to significantly decrease the fusogenic and destabilising effect of Abeta 29-42, in a concentration-dependent manner. While the peptide induced lipid disorganisation and subsequent negative curvature at the membrane-water interface, the conformational analysis showed that piracetam, when preincubated with lipids, coats the phospholipid headgroups. Calculations suggest that this prevents appearance of the peptide-induced curvature. In addition, insertion of molecules with an inverted cone shape, like piracetam, into the outer membrane leaflet should make the formation of such structures energetically less favourable and therefore decrease the likelihood of membrane fusion.

  10. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon /sup 13/C NMR resonances in detergent-solubilized M13 coat protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henry, G.D.; Weiner, J.H.; Sykes, B.D.

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. /sup 13/C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by /sup 13/C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both /sup 13/C and /supmore » 15/N. The carbonyl region of the natural-abundance /sup 13/C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion.« less

  11. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation

    PubMed Central

    Hung, Victoria; Lam, Stephanie S; Udeshi, Namrata D; Svinkina, Tanya; Guzman, Gaelen; Mootha, Vamsi K; Carr, Steven A; Ting, Alice Y

    2017-01-01

    The cytosol-facing membranes of cellular organelles contain proteins that enable signal transduction, regulation of morphology and trafficking, protein import and export, and other specialized processes. Discovery of these proteins by traditional biochemical fractionation can be plagued with contaminants and loss of key components. Using peroxidase-mediated proximity biotinylation, we captured and identified endogenous proteins on the outer mitochondrial membrane (OMM) and endoplasmic reticulum membrane (ERM) of living human fibroblasts. The proteomes of 137 and 634 proteins, respectively, are highly specific and highlight 94 potentially novel mitochondrial or ER proteins. Dataset intersection identified protein candidates potentially localized to mitochondria-ER contact sites. We found that one candidate, the tail-anchored, PDZ-domain-containing OMM protein SYNJ2BP, dramatically increases mitochondrial contacts with rough ER when overexpressed. Immunoprecipitation-mass spectrometry identified ribosome-binding protein 1 (RRBP1) as SYNJ2BP’s ERM binding partner. Our results highlight the power of proximity biotinylation to yield insights into the molecular composition and function of intracellular membranes. DOI: http://dx.doi.org/10.7554/eLife.24463.001 PMID:28441135

  12. Studying the spatial organization of membrane proteins by means of tritium stratigraphy: bacteriorhodopsin in purple membrane.

    PubMed

    Shishkov, A V; Ksenofontov, A L; Bogacheva, E N; Kordyukova, L V; Badun, G A; Alekseevsky, A V; Tsetlin, V I; Baratova, L A

    2002-05-15

    The topography of bacteriorhodopsin (bR) in situ was earlier studied by using the tritium bombardment approach [Eur. J. Biochem. 178 (1988) 123]. Now, having the X-ray crystallography data of bR at atom resolution [Proc. Natl. Acad. Sci. 95 (1998) 11673], we estimated the influence of membrane environment (lipid and protein) on tritium incorporation into amino acid residues forming transmembrane helices. We have determined the tritium flux attenuation coefficients for residues 10-29 of helix A. They turned out to be low (0.04+/-0.02 A(-1)) for residues adjacent to the lipid matrix, and almost fourfold higher (0.15+/-0.05 A(-1)) for those oriented to the neighboring transmembrane helices. We believe that tritium incorporation data could help modeling transmembrane segment arrangement in the membrane.

  13. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.

    PubMed

    Shelar, Ashish; Bansal, Manju

    2014-12-01

    α-Helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α-helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C-termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α-helices in a high-resolution dataset of integral α-helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C-termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near-helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. © 2014 Wiley Periodicals, Inc.

  14. Analysis of the signal for attachment of a glycophospholipid membrane anchor

    PubMed Central

    1989-01-01

    The COOH terminus of decay accelerating factor (DAF) contains a signal that directs attachment of a glycophospholipid (GPI) membrane anchor. To define this signal we deleted portions of the DAF COOH terminus and expressed the mutant cDNAs it CV1 origin-deficient SV-40 cells. Our results show that the COOH-terminal hydrophobic domain (17 residues) is absolutely required for GPI anchor attachment. However, when fused to the COOH terminus of a secreted protein this hydrophobic domain is insufficient to direct attachment of a GPI anchor. Additional specific information located within the adjacent 20 residues appears to be necessary. We speculate that by analogy with signal sequences for membrane translocation, GPI anchor attachment requires both a COOH- terminal hydrophobic domain (the GPI signal) as well as a suitable cleavage/attachment site located NH2 terminal to the signal. PMID:2466848

  15. Studies on Aculeines: Synthetic Strategy to the Fully Protected Protoaculeine B, the N-Terminal Amino Acid of Aculeine B.

    PubMed

    Shiozaki, Hiroki; Miyahara, Masayoshi; Otsuka, Kazunori; Miyako, Kei; Honda, Akito; Takasaki, Yuichi; Takamizawa, Satoshi; Tukada, Hideyuki; Ishikawa, Yuichi; Sakai, Ryuichi; Oikawa, Masato

    2018-05-23

    A synthetic strategy for accessing protoaculeine B (1), the N-terminal amino acid of the highly modified peptide toxin aculeine, was developed via the synthesis of the fully protected natural homologue of 1 with a 12-mer poly(propanediamine). The synthesis of mono(propanediamine) analog 2, as well as core amino acid 3, was demonstrated by this strategy. New amino acid 3 induced convulsions in mice; however, compound 2 showed no such activity.

  16. The Charcot Marie Tooth disease protein LITAF is a zinc-binding monotopic membrane protein

    PubMed Central

    Qin, Wenxia; Wunderley, Lydia; Barrett, Anne L.; High, Stephen; Woodman, Philip G.

    2016-01-01

    LITAF (LPS-induced TNF-activating factor) is an endosome-associated integral membrane protein important for multivesicular body sorting. Several mutations in LITAF cause autosomal-dominant Charcot Marie Tooth disease type 1C. These mutations map to a highly conserved C-terminal region, termed the LITAF domain, which includes a 22 residue hydrophobic sequence and flanking cysteine-rich regions that contain peptide motifs found in zinc fingers. Although the LITAF domain is thought to be responsible for membrane integration, the membrane topology of LITAF has not been established. Here, we have investigated whether LITAF is a tail-anchored (TA) membrane-spanning protein or monotopic membrane protein. When translated in vitro, LITAF integrates poorly into ER-derived microsomes compared with Sec61β, a bona fide TA protein. Furthermore, introduction of N-linked glycosylation reporters shows that neither the N-terminal nor C-terminal domains of LITAF translocate into the ER lumen. Expression in cells of an LITAF construct containing C-terminal glycosylation sites confirms that LITAF is not a TA protein in cells. Finally, an immunofluorescence-based latency assay showed that both the N- and C-termini of LITAF are exposed to the cytoplasm. Recombinant LITAF contains 1 mol/mol zinc, while mutation of predicted zinc-binding residues disrupts LITAF membrane association. Hence, we conclude that LITAF is a monotopic membrane protein whose membrane integration is stabilised by a zinc finger. The related human protein, CDIP1 (cell death involved p53 target 1), displays identical membrane topology, suggesting that this mode of membrane integration is conserved in LITAF family proteins. PMID:27582497

  17. Blocking of proteolytic processing and deletion of glycosaminoglycan side chain of mouse DMP1 by substituting critical amino acid residues.

    PubMed

    Peng, Tao; Huang, Bingzhen; Sun, Yao; Lu, Yongbo; Bonewald, Lynda; Chen, Shuo; Butler, William T; Feng, Jerry Q; D'Souza, Rena N; Qin, Chunlin

    2009-01-01

    Dentin matrix protein 1 (DMP1) is present in the extracellular matrix (ECM) of dentin and bone as processed NH(2)- and COOH-terminal fragments, resulting from proteolytic cleavage at the NH(2) termini of 4 aspartic acid residues during rat DMP1 processing. One cleavage site residue, Asp(181) (corresponding to Asp(197) of mouse DMP1), and its flanking region are highly conserved across species. We speculate that cleavage at the NH(2) terminus of Asp(197) of mouse DMP1 represents an initial, first-step scission in the whole cascade of proteolytic processing. To test if Asp(197) is critical for initiating the proteolytic processing of mouse DMP1, we substituted Asp(197) with Ala(197) by mutating the corresponding nucleotides of mouse cDNA that encode this amino acid residue. This mutant DMP1 cDNA was cloned into a pcDNA3.1 vector. Data from transfection experiments indicated that this single substitution blocked the proteolytic processing of mouse DMP1 in HEK-293 cells, indicating that cleavage at the NH(2) terminus of Asp(197) is essential for exposing other cleavage sites for the conversion of DMP1 to its fragments. The NH(2)-terminal fragment of DMP1 occurs as a proteoglycan form (DMP1-PG) that contains a glycosaminoglycan (GAG) chain. Previously, we showed that a GAG chain is linked to Ser(74) in rat DMP1 (Ser(89) in mouse DMP1). To confirm that mouse DMP1-PG possesses a single GAG chain attached to Ser(89), we substituted Ser(89) by Gly(89). Data from transfection analysis indicated that this substitution completely prevented formation of the GAG-containing form, confirming that DMP1-PG contains a single GAG chain attached to Ser(89) in mouse DMP1. Copyright 2008 S. Karger AG, Basel.

  18. Processing of the precursor of protamine P2 in mouse. Peptide mapping and N-terminal sequence analysis of intermediates.

    PubMed Central

    Carré-Eusèbe, D; Lederer, F; Lê, K H; Elsevier, S M

    1991-01-01

    Protamine P2, the major basic chromosomal protein of mouse spermatozoa, is synthesized as a precursor almost twice as long as the mature protein, its extra length arising from an N-terminal extension of 44 amino acid residues. This precursor is integrated into chromatin of spermatids, and the extension is processed during chromatin condensation in the haploid cells. We have studied processing in the mouse and have identified two intermediates generated by proteolytic cleavage of the precursor. H.p.l.c. separated protamine P2 from four other spermatid proteins, including the precursor and three proteins known to possess physiological characteristics expected of processing intermediates. Peptide mapping indicated that all of these proteins were structurally similar. Two major proteins were further purified by PAGE, transferred to poly(vinylidene difluoride) membranes and submitted to automated N-terminal sequence analysis. Both sequences were found within the deduced sequence of the precursor extension. The N-terminus of the larger intermediate, PP2C, was Gly-12, whereas the N-terminus of the smaller, PP2D, was His-21. Both processing sites involved a peptide bond in which the carbonyl function was contributed by an acidic amino acid. Images Fig. 1. Fig. 3. Fig. 4. PMID:1854346

  19. Refining the treatment of membrane proteins by coarse-grained models.

    PubMed

    Vorobyov, Igor; Kim, Ilsoo; Chu, Zhen T; Warshel, Arieh

    2016-01-01

    Obtaining a quantitative description of the membrane proteins stability is crucial for understanding many biological processes. However the advance in this direction has remained a major challenge for both experimental studies and molecular modeling. One of the possible directions is the use of coarse-grained models but such models must be carefully calibrated and validated. Here we use a recent progress in benchmark studies on the energetics of amino acid residue and peptide membrane insertion and membrane protein stability in refining our previously developed coarse-grained model (Vicatos et al., Proteins 2014;82:1168). Our refined model parameters were fitted and/or tested to reproduce water/membrane partitioning energetics of amino acid side chains and a couple of model peptides. This new model provides a reasonable agreement with experiment for absolute folding free energies of several β-barrel membrane proteins as well as effects of point mutations on a relative stability for one of those proteins, OmpLA. The consideration and ranking of different rotameric states for a mutated residue was found to be essential to achieve satisfactory agreement with the reference data. © 2015 Wiley Periodicals, Inc.

  20. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    PubMed Central

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  1. The amino terminal end determines the stability and assembling capacity of eukaryotic ribosomal stalk proteins P1 and P2.

    PubMed

    Camargo, Hendricka; Nusspaumer, Gretel; Abia, David; Briceño, Verónica; Remacha, Miguel; Ballesta, Juan P G

    2011-05-01

    The eukaryotic ribosomal proteins P1 and P2 bind to protein P0 through their N-terminal domain to form the essential ribosomal stalk. A mutational analysis points to amino acids at positions 2 and 3 as determinants for the drastic difference of Saccharomyces cerevisiae P1 and P2 half-life, and suggest different degradation mechanisms for each protein type. Moreover, the capacity to form P1/P2 heterodimers is drastically affected by mutations in the P2β four initial amino acids, while these mutations have no effect on P1β. Binding of P2β and, to a lesser extent, P1β to the ribosome is also seriously affected showing the high relevance of the amino acids in the first turn of the NTD α-helix 1 for the stalk assembly. The negative effect of some mutations on ribosome binding can be reversed by the presence of the second P1/P2 couple in the ribosome, indicating a stabilizing structural influence between the two heterodimers. Unexpectedly, some mutations totally abolish heterodimer formation but allow significant ribosome binding and, therefore, a previous P1 and P2 association seems not to be an absolute requirement for stalk assembly. Homology modeling of the protein complexes suggests that the mutated residues can affect the overall protein conformation. © The Author(s) 2011. Published by Oxford University Press.

  2. Residues 28 to 39 of the Extracellular Loop 1 of Chicken Na+/H+ Exchanger Type I Mediate Cell Binding and Entry of Subgroup J Avian Leukosis Virus.

    PubMed

    Guan, Xiaolu; Zhang, Yao; Yu, Mengmeng; Ren, Chaoqi; Gao, Yanni; Yun, Bingling; Liu, Yongzhen; Wang, Yongqiang; Qi, Xiaole; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Gao, Li; Li, Kai; Pan, Qing; Zhang, Baoshan; Wang, Xiaomei; Gao, Yulong

    2018-01-01

    Chicken Na + /H + exchanger type I (chNHE1), a multispan transmembrane protein, is a cellular receptor of the subgroup J avian leukosis virus (ALV-J). To identify the functional determinants of chNHE1 responsible for the ALV-J receptor activity, a series of chimeric receptors was created by exchanging the extracellular loops (ECL) of human NHE1 (huNHE1) and chNHE1 and by ECL replacement with a hemagglutinin (HA) tag. These chimeric receptors then were used in binding and entry assays to map the minimal ALV-J gp85-binding domain of chNHE1. We show that ECL1 of chNHE1 (chECL1) is the critical functional ECL that interacts directly with ALV-J gp85; ECL3 is also involved in ALV-J gp85 binding. Amino acid residues 28 to 39 of the N-terminal membrane-proximal region of chECL1 constitute the minimal domain required for chNHE1 binding of ALV-J gp85. These residues are sufficient to mediate viral entry into ALV-J nonpermissive cells. Point mutation analysis revealed that A30, V33, W38, and E39 of chECL1 are the key residues mediating the binding between chNHE1 and ALV-J gp85. Further, the replacement of residues 28 to 39 of huNHE1 with the corresponding chNHE1 residues converted the nonfunctional ALV-J receptor huNHE1 to a functional one. Importantly, soluble chECL1 and huECL1 harboring chNHE1 residues 28 to 39 both could effectively block ALV-J infection. Collectively, our findings indicate that residues 28 to 39 of chNHE1 constitute a domain that is critical for receptor function and mediate ALV-J entry. IMPORTANCE chNHE1 is a cellular receptor of ALV-J, a retrovirus that causes infections in chickens and serious economic losses in the poultry industry. Until now, the domains determining the chNHE1 receptor function remained unknown. We demonstrate that chECL1 is critical for receptor function, with residues 28 to 39 constituting the minimal functional domain responsible for chNHE1 binding of ALV-J gp85 and efficiently mediating ALV-J cell entry. These residues are

  3. Retromer associates with the cytoplasmic amino-terminus of polycystin-2.

    PubMed

    Tilley, Frances C; Gallon, Matthew; Luo, Chong; Danson, Chris M; Zhou, Jing; Cullen, Peter J

    2018-05-03

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic human disease, with around 12.5 million people affected worldwide. ADPKD results from mutations in either PKD1 or PKD2 , which encode the atypical G-protein coupled receptor polycystin-1 (PC1) and the transient receptor potential channel polycystin-2 (PC2) respectively. Although altered intracellular trafficking of PC1 and PC2 appear as an underlying feature of ADPKD, the mechanisms which govern vesicular transport of the polycystins through the biosynthetic and endosomal membrane networks remain to be fully elucidated. Here, we describe an interaction between PC2 and retromer, a master controller for the sorting of integral membrane proteins through the endo-lysosomal network. We show that association of PC2 with retromer occurs via a region in the PC2 cytoplasmic amino-terminal domain, independently of the retromer-binding Wiskott-Aldrich syndrome and scar homologue (WASH) complex. Based on observations that retromer preferentially interacts with a trafficking population of PC2, and that ciliary levels of PC1 are reduced upon mutation of key residues required for retromer-association in PC2, our data is consistent with the identification of PC2 as a retromer cargo protein. © 2018. Published by The Company of Biologists Ltd.

  4. Quantitative structure-activity relationship study of antioxidative peptide by using different sets of amino acids descriptors

    NASA Astrophysics Data System (ADS)

    Li, Yao-Wang; Li, Bo; He, Jiguo; Qian, Ping

    2011-07-01

    A database consisting of 214 tripeptides which contain either His or Tyr residue was applied to study quantitative structure-activity relationships (QSAR) of antioxidative tripeptides. Partial Least-Squares Regression analysis (PLSR) was conducted using parameters individually of each amino acid descriptor, including Divided Physico-chemical Property Scores (DPPS), Hydrophobic, Electronic, Steric, and Hydrogen (HESH), Vectors of Hydrophobic, Steric, and Electronic properties (VHSE), Molecular Surface-Weighted Holistic Invariant Molecular (MS-WHIM), isotropic surface area-electronic charge index (ISA-ECI) and Z-scale, to describe antioxidative tripeptides as X-variables and antioxidant activities measured with ferric thiocyanate methods were as Y-variable. After elimination of outliers by Hotelling's T 2 method and residual analysis, six significant models were obtained describing the entire data set. According to cumulative squared multiple correlation coefficients ( R2), cumulative cross-validation coefficients ( Q2) and relative standard deviation for calibration set (RSD c), the qualities of models using DPPS, HESH, ISA-ECI, and VHSE descriptors are better ( R2 > 0.6, Q2 > 0.5, RSD c < 0.39) than that of models using MS-WHIM and Z-scale descriptors ( R2 < 0.6, Q2 < 0.5, RSD c > 0.44). Furthermore, the predictive ability of models using DPPS descriptor is best among the six descriptors systems (cumulative multiple correlation coefficient for predict set ( Rext2) > 0.7). It was concluded that the DPPS is better to describe the amino acid of antioxidative tripeptides. The results of DPPS descriptor reveal that the importance of the center amino acid and the N-terminal amino acid are far more than the importance of the C-terminal amino acid for antioxidative tripeptides. The hydrophobic (positively to activity) and electronic (negatively to activity) properties of the N-terminal amino acid are suggested to play the most important significance to activity, followed

  5. Expression and regulation of the neutral amino acid transporter B0AT1 in rat small intestine

    PubMed Central

    Jando, Julia; Camargo, Simone M. R.; Herzog, Brigitte

    2017-01-01

    Absorption of neutral amino acids across the luminal membrane of intestinal enterocytes is mediated by the broad neutral amino acid transporter B0AT1 (SLC6A19). Its intestinal expression depends on co-expression of the membrane-anchored peptidase angiotensin converting enzyme 2 (ACE2) and is additionally enhanced by aminopeptidase N (CD13). We investigated in this study the expression of B0AT1 and its auxiliary peptidases as well as its transport function along the rat small intestine. Additionally, we tested its possible short- and long-term regulation by dietary proteins and amino acids. We showed by immunofluorescence that B0AT1, ACE2 and CD13 co-localize on the luminal membrane of small intestinal villi and by Western blotting that their protein expression increases in distal direction. Furthermore, we observed an elevated transport activity of the neutral amino acid L-isoleucine during the nocturnal active phase compared to the inactive one. Gastric emptying was delayed by intragastric application of an amino acid cocktail but we observed no acute dietary regulation of B0AT1 protein expression and L-isoleucine transport. Investigation of the chronic dietary regulation of B0AT1, ACE2 and CD13 by different diets revealed an increased B0AT1 protein expression under amino acid-supplemented diet in the proximal section but not in the distal one and for ACE2 protein expression a reverse localization of the effect. Dietary regulation for CD13 protein expression was not as distinct as for the two other proteins. Ring uptake experiments showed a tendency for increased L-isoleucine uptake under amino acid-supplemented diet and in vivo L-isoleucine absorption was more efficient under high protein and amino acid-supplemented diet. Additionally, plasma levels of branched-chain amino acids were elevated under high protein and amino acid diet. Taken together, our experiments did not reveal an acute amino acid-induced regulation of B0AT1 but revealed a chronic dietary

  6. Structure of the C-terminal domain of nsp4 from feline coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes.more » In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.« less

  7. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942.

    PubMed

    Webb, R; Troyan, T; Sherman, D; Sherman, L A

    1994-08-01

    Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes.

  8. Sodium selective ion channel formation in living cell membranes by polyamidoamine dendrimer.

    PubMed

    Nyitrai, Gabriella; Keszthelyi, Tamás; Bóta, Attila; Simon, Agnes; Tőke, Orsolya; Horváth, Gergő; Pál, Ildikó; Kardos, Julianna; Héja, László

    2013-08-01

    Polyamidoamine (PAMAM) dendrimers are highly charged hyperbranched protein-like polymers that are known to interact with cell membranes. In order to disclose the mechanisms of dendrimer-membrane interaction, we monitored the effect of PAMAM generation five (G5) dendrimer on the membrane permeability of living neuronal cells followed by exploring the underlying structural changes with infrared-visible sum frequency vibrational spectroscopy (SVFS), small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). G5 dendrimers were demonstrated to irreversibly increase the membrane permeability of neurons that could be blocked in low-[Na(+)], but not in low-[Ca(2+)] media suggesting the formation of specific Na(+) permeable channels. SFVS measurements on silica supported DPPG-DPPC bilayers suggested G5-specific trans-polarization of the membrane. SAXS data and freeze-fracture TEM imaging of self-organized DPPC vesicle systems demonstrated disruption of DPPC vesicle layers by G5 through polar interactions between G5 terminal amino groups and the anionic head groups of DPPC. We propose a nanoscale mechanism by which G5 incorporates into the membrane through multiple polar interactions that disrupt proximate membrane bilayer and shape a unique hydrophilic Na(+) ion permeable channel around the dendrimer. In addition, we tested whether these artificial Na(+) channels can be exploited as antibiotic tools. We showed that G5 quickly arrest the growth of resistant bacterial strains below 10μg/ml concentration, while they show no detrimental effect on red blood cell viability, offering the chance for the development of new generation anti-resistant antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The nature of information, required for export and sorting, present within the outer membrane protein OmpA of Escherichia coli K-12.

    PubMed

    Freudl, R; Schwarz, H; Klose, M; Movva, N R; Henning, U

    1985-12-16

    Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.

  10. T Cell Determinants Incorporating [beta]-Amino Acid Residues Are Protease Resistant and Remain Immunogenic In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Andrew I.; Dunstone, Michelle A.; Williamson, Nicholas A.

    2010-07-20

    A major hurdle in designing successful epitope-based vaccines resides in the delivery, stability, and immunogenicity of the peptide immunogen. The short-lived nature of unmodified peptide-based vaccines in vivo limits their therapeutic application in the immunotherapy of cancers and chronic viral infections as well as their use in generating prophylactic immunity. The incorporation of {beta}-amino acids into peptides decreases proteolysis, yet its potential application in the rational design of T cell mimotopes is poorly understood. To address this, we have replaced each residue of the SIINFEKL epitope individually with the corresponding {beta}-amino acid and examined the resultant efficacy of these mimotopes.more » Some analogs displayed similar MHC binding and superior protease stability compared with the native epitope. Importantly, these analogs were able to generate cross-reactive CTLs in vivo that were capable of lysing tumor cells that expressed the unmodified epitope as a surrogate tumor Ag. Structural analysis of peptides in which anchor residues were substituted with {beta}-amino acids revealed the basis for enhanced MHC binding and retention of immunogenicity observed for these analogs and paves the way for future vaccine design using {beta}-amino acids. We conclude that the rational incorporation of {beta}-amino acids into T cell determinants is a powerful alternative to the traditional homologous substitution of randomly chosen naturally occurring {alpha}-amino acids, and these mimotopes may prove particularly useful for inclusion in epitope-based vaccines.« less

  11. [Optimization theory and practical application of membrane science technology based on resource of traditional Chinese medicine residue].

    PubMed

    Zhu, Hua-Xu; Duan, Jin-Ao; Guo, Li-Wei; Li, Bo; Lu, Jin; Tang, Yu-Ping; Pan, Lin-Mei

    2014-05-01

    Resource of traditional Chinese medicine residue is an inevitable choice to form new industries characterized of modem, environmental protection and intensive in the Chinese medicine industry. Based on the analysis of source and the main chemical composition of the herb residue, and for the advantages of membrane science and technology used in the pharmaceutical industry, especially membrane separation technology used in improvement technical reserves of traditional extraction and separation process in the pharmaceutical industry, it is proposed that membrane science and technology is one of the most important choices in technological design of traditional Chinese medicine resource industrialization. Traditional Chinese medicine residue is a very complex material system in composition and character, and scientific and effective "separation" process is the key areas of technology to re-use it. Integrated process can improve the productivity of the target product, enhance the purity of the product in the separation process, and solve many tasks which conventional separation is difficult to achieve. As integrated separation technology has the advantages of simplified process and reduced consumption, which are in line with the trend of the modern pharmaceutical industry, the membrane separation technology can provide a broad platform for integrated process, and membrane separation technology with its integrated technology have broad application prospects in achieving resource and industrialization process of traditional Chinese medicine residue. We discuss the principles, methods and applications practice of effective component resources in herb residue using membrane separation and integrated technology, describe the extraction, separation, concentration and purification application of membrane technology in traditional Chinese medicine residue, and systematically discourse suitability and feasibility of membrane technology in the process of traditional Chinese

  12. SUMO chain formation relies on the amino-terminal region of SUMO-conjugating enzyme and has dedicated substrates in plants

    PubMed Central

    Tomanov, Konstantin; Nehlin, Lilian; Ziba, Ionida

    2018-01-01

    The small ubiquitin-related modifier (SUMO) conjugation apparatus usually attaches single SUMO moieties to its substrates, but SUMO chains have also been identified. To better define the biochemical requirements and characteristics of SUMO chain formation, mutations in surface-exposed Lys residues of Arabidopsis SUMO-conjugating enzyme (SCE) were tested for in vitro activity. Lys-to-Arg changes in the amino-terminal region of SCE allowed SUMO acceptance from SUMO-activating enzyme and supported substrate mono-sumoylation, but these mutations had significant effects on SUMO chain assembly. We found no indication that SUMO modification of SCE promotes chain formation. A substrate was identified that is modified by SUMO chain addition, showing that SCE can distinguish substrates for either mono-sumoylation or SUMO chain attachment. It is also shown that SCE with active site Cys mutated to Ser can accept SUMO to form an oxyester, but cannot transfer this SUMO moiety onto substrates, explaining a previously known dominant negative effect of this mutation. PMID:29133528

  13. Involvement of the N-terminal part of cyclophilin B in the interaction with specific Jurkat T-cell binding sites.

    PubMed

    Mariller, C; Haendler, B; Allain, F; Denys, A; Spik, G

    1996-07-15

    Cyclophilin B (CyPB) is secreted in biological fluids such as blood or milk and binds to a specific receptor present on the human lymphoblastic cell line Jurkat and on human peripheral blood lymphocytes. This study was intended to specify the areas of CyPB that are involved in the interaction with the receptor. A synthetic peptide corresponding to the first 24 N-terminal amino acid residues of CyPB was shown to specifically recognize the receptor. Moreover, modification of Arg18 of CyPB by p-hydroxyphenlglyoxal led to a dramatic loss of affinity for the receptor. However, when this residue was replaced by an alanine residue using site-directed mutagenesis, no modification of the binding properties was found, suggesting that Arg18 is not directly involved but is sufficiently close to the interaction site to interfere with the binding when modified. Competitive binding experiments using a chimaeric protein made up of the 24 N-terminal amino acid residues of CyPB fused to the cyclophilin A core sequence confirmed the involvement of this region of CyPB in receptor binding.

  14. MacA, a periplasmic membrane fusion protein of the macrolide transporter MacAB-TolC, binds lipopolysaccharide core specifically and with high affinity.

    PubMed

    Lu, Shuo; Zgurskaya, Helen I

    2013-11-01

    The Escherichia coli MacAB-TolC transporter has been implicated in efflux of macrolide antibiotics and secretion of enterotoxin STII. In this study, we found that purified MacA, a periplasmic membrane fusion protein, contains one tightly bound rough core lipopolysaccharide (R-LPS) molecule per MacA molecule. R-LPS was bound specifically to MacA protein with affinity exceeding that of polymyxin B. Sequence analyses showed that MacA contains two high-density clusters of positively charged amino acid residues located in the cytoplasmic N-terminal domain and the periplasmic C-terminal domain. Substitutions in the C-terminal cluster reducing the positive-charge density completely abolished binding of R-LPS. At the same time, these substitutions significantly reduced the functionality of MacA in the protection of E. coli against macrolides in vivo and in the in vitro MacB ATPase stimulation assays. Taken together, our results suggest that R-LPS or a similar glycolipid is a physiological substrate of MacAB-TolC.

  15. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations

    USGS Publications Warehouse

    Campagnolo, E.R.; Johnson, K.R.; Karpati, A.; Rubin, C.S.; Kolpin, D.W.; Meyer, M.T.; Esteban, J. Emilio; Currier, R.W.; Smith, K.; Thu, K.M.; McGeehin, M.

    2002-01-01

    Expansion and intensification of large-scale animal feeding operations (AFOs) in the United States has resulted in concern about environmental contamination and its potential public health impacts. The objective of this investigation was to obtain background data on a broad profile of antimicrobial residues in animal wastes and surface water and groundwater proximal to large-scale swine and poultry operations. The samples were measured for antimicrobial compounds using both radioimmunoassay and liquid chromatography/electrospray ionization-mass spectrometry (LC/ESI-MS) techniques. Multiple classes of antimicrobial compounds (commonly at concentrations of >100 μg/l) were detected in swine waste storage lagoons. In addition, multiple classes of antimicrobial compounds were detected in surface and groundwater samples collected proximal to the swine and poultry farms. This information indicates that animal waste used as fertilizer for crops may serve as a source of antimicrobial residues for the environment. Further research is required to determine if the levels of antimicrobials detected in this study are of consequence to human and/or environmental ecosystems. A comparison of the radioimmunoassay and LC/ESI-MS analytical methods documented that radioimmunoassay techniques were only appropriate for measuring residues in animal waste samples likely to contain high levels of antimicrobials. More sensitive LC/ESI-MS techniques are required in environmental samples, where low levels of antimicrobial residues are more likely.

  16. A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain

    NASA Technical Reports Server (NTRS)

    Harper, J. F.; Hong, B.; Hwang, I.; Guo, H. Q.; Stoddard, R.; Huang, J. F.; Palmgren, M. G.; Sze, H.; Evans, M. L. (Principal Investigator)

    1998-01-01

    To study transporters involved in regulating intracellular Ca2+, we isolated a full-length cDNA encoding a Ca2+-ATPase from a model plant, Arabidopsis, and named it ACA2 (Arabidopsis Ca2+-ATPase, isoform 2). ACA2p is most similar to a "plasma membrane-type" Ca2+-ATPase, but is smaller (110 kDa), contains a unique N-terminal domain, and is missing a long C-terminal calmodulin-binding regulatory domain. In addition, ACA2p is localized to an endomembrane system and not the plasma membrane, as shown by aqueous-two phase fractionation of microsomal membranes. ACA2p was expressed in yeast as both a full-length protein (ACA2-1p) and an N-terminal truncation mutant (ACA2-2p; Delta residues 2-80). Only the truncation mutant restored the growth on Ca2+-depleted medium of a yeast mutant defective in both endogenous Ca2+ pumps, PMR1 and PMC1. Although basal Ca2+-ATPase activity of the full-length protein was low, it was stimulated 5-fold by calmodulin (50% activation around 30 nM). In contrast, the truncated pump was fully active and insensitive to calmodulin. A calmodulin-binding sequence was identified within the first 36 residues of the N-terminal domain, as shown by calmodulin gel overlays on fusion proteins. Thus, ACA2 encodes a novel calmodulin-regulated Ca2+-ATPase distinguished by a unique N-terminal regulatory domain and a non-plasma membrane localization.

  17. Stabilization of glucose-C in microbial cell membranes (PLFA) and cell walls (amino sugars) evaluated by 13C-labelling in a field experiment

    NASA Astrophysics Data System (ADS)

    Gunina, Anna; Kuzyakov, Yakov; Glaser, Bruno

    2015-04-01

    Microorganisms control carbon (C) cycle and strongly contribute to formation of soil organic matter. Strong differences in the turnover of microbial groups and cellular compounds complicate the assessment of their contribution to microbial food webs and C sequestration in soil in situ. The uptake and incorporation of 13C labeled glucose by microbial groups were traced during 50 days after the labeling under field conditions. 13C was analysed: i) in the cytosolic pool by chloroform fumigation extraction, ii) in cell membranes by phospholipid fatty acids (PLFA), iii) in cell walls by amino sugars, and iv) remaining in bulk soil. This allowed tracing C in microbial groups as well as cellular compounds. Mean residence times (MRT) of C in PLFA and the cytosol were 47 and 150 days, respectively. Such long cytosol MRT depends on its heterogeneous composition, which includes high and low molecular weight organics. Amino sugars were mainly originated from microbial residues and thus, observation periods higher than 1 year are required for estimation of their MRT. Relative 13C incorporation (13C portion in total pool C) was the highest for PLFAs (~1.5% at day 3), whereas 13C content of the cytosol and amino sugars was one and two orders of magnitude less, respectively. Relative 13C incorporation into amino sugars of living microorganisms showed only 0.57% on day 3. Therefore, the turnover of cell membrane components is two times faster than that of cell walls, even in living microorganisms. Both PLFAs and amino sugars showed that glucose C was preferentially used by bacteria. 13C incorporation into bacterial cell walls and membranes decreased with time, but increased or remained constant for fungi, reflecting faster turnover of bacteria than fungi. Consequently, bacteria contribute more to the decomposition of low molecular weight organics, whereas fungi consume bacterial products or necromass and contribute more to long-term C stabilisation. Thus, tracing of 13C in cellular

  18. Identification of the WW domain-interaction sites in the unstructured N-terminal domain of EBV LMP 2A.

    PubMed

    Seo, Min-Duk; Park, Sung Jean; Kim, Hyun-Jung; Lee, Bong Jin

    2007-01-09

    Epstein-Barr virus latency is maintained by the latent membrane protein (LMP) 2A, which mimics the B-cell receptor (BCR) and perturbs BCR signaling. The cytoplasmic N-terminal domain of LMP2A is composed of 119 amino acids. The N-terminal domain of LMP2A (LMP2A NTD) contains two PY motifs (PPPPY) that interact with the WW domains of Nedd4 family ubiquitin-protein ligases. Based on our analysis of NMR data, we found that the LMP2A NTD adopts an overall random-coil structure in its native state. However, the region between residues 60 and 90 was relatively ordered, and seemed to form the hydrophobic core of the LMP2A NTD. This region resides between two PY motifs and is important for WW domain binding. Mapping of the residues involved in the interaction between the LMP2A NTD and WW domains was achieved by chemical shift perturbation, by the addition of WW2 and WW3 peptides. Interestingly, the binding of the WW domains mainly occurred in the hydrophobic core of the LMP2A NTD. In addition, we detected a difference in the binding modes of the two PY motifs against the two WW peptides. The binding of the WW3 peptide caused the resonances of five residues (Tyr(60), Glu(61), Asp(62), Trp(65), and Gly(66)) just behind the N-terminal PY motif of the LMP2A NTD to disappear. A similar result was obtained with WW2 binding. However, near the C-terminal PY motif, the chemical shift perturbation caused by WW2 binding was different from that due to WW3 binding, indicating that the residues near the PY motifs are involved in selective binding of WW domains. The present work represents the first structural study of the LMP2A NTD and provides fundamental structural information about its interaction with ubiquitin-protein ligase.

  19. The amino acid sequence around the active-site cysteine and histidine residues of stem bromelain

    PubMed Central

    Husain, S. S.; Lowe, G.

    1970-01-01

    Stem bromelain that had been irreversibly inhibited with 1,3-dibromo[2-14C]-acetone was reduced with sodium borohydride and carboxymethylated with iodoacetic acid. After digestion with trypsin and α-chymotrypsin three radioactive peptides were isolated chromatographically. The amino acid sequences around the cross-linked cysteine and histidine residues were determined and showed a high degree of homology with those around the active-site cysteine and histidine residues of papain and ficin. PMID:5420046

  20. Amino acid substitutions in subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Sequence analysis of a series of revertants of an oli1 mit- mutant carrying an amino acid substitution in the hydrophilic loop of subunit 9.

    PubMed

    Willson, T A; Nagley, P

    1987-09-01

    This work concerns a biochemical genetic study of subunit 9 of the mitochondrial ATPase complex of Saccharomyces cerevisiae. Subunit 9, encoded by the mitochondrial oli1 gene, contains a hydrophilic loop connecting two transmembrane stems. In one particular oli1 mit- mutant 2422, the substitution of a positively charged amino acid in this loop (Arg39----Met) renders the ATPase complex non-functional. A series of 20 revertants, selected for their ability to grow on nonfermentable substrates, has been isolated from mutant 2422. The results of DNA sequence analysis of the oli1 gene in each revertant have led to the recognition of three groups of revertants. Class I revertants have undergone a same-site reversion event: the mutant Met39 is replaced either by arginine (as in wild-type) or lysine. Class II revertants maintain the mutant Met39 residue, but have undergone a second-site reversion event (Asn35----Lys). Two revertants showing an oligomycin-resistant phenotype carry this same second-site reversion in the loop region together with a further amino acid substitution in either of the two membrane-spanning segments of subunit 9 (either Gly23----Ser or Leu53----Phe). Class III revertants contain subunit 9 with the original mutant 2422 sequence, and additionally carry a recessive nuclear suppressor, demonstrated to represent a single gene. The results on the revertants in classes I and II indicate that there is a strict requirement for a positively charged residue in the hydrophilic loop close to the boundary of the lipid bilayer. The precise location of this positive charge is less stringent; in functional ATPase complexes it can be found at either residue 39 or 35. This charged residue is possibly required to interact with some other component of the mitochondrial ATPase complex. These findings, together with hydropathy plots of subunit 9 polypeptides from normal, mutant and revertant strains, led to the conclusion that the hydrophilic loop in normal subunit 9

  1. Identification of amino acids in the nicotinic acetylcholine receptor agonist binding site and ion channel photolabeled by 4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine, a novel photoaffinity antagonist.

    PubMed

    Chiara, David C; Trinidad, Jonathan C; Wang, Dong; Ziebell, Michael R; Sullivan, Deirdre; Cohen, Jonathan B

    2003-01-21

    [(3)H]4-[(3-trifluoromethyl)-3H-diazirin-3-yl]benzoylcholine (TDBzcholine) was synthesized and used as a photoaffinity probe to map the orientation of an aromatic choline ester within the agonist binding sites of the Torpedo nicotinic acetylcholine receptor (nAChR). TDBzcholine acts as a nAChR competitive antagonist that binds at equilibrium with equal affinity to both agonist sites (K(D) approximately 10 microM). Upon UV irradiation (350 nm), nAChR-rich membranes equilibrated with [(3)H]TDBzcholine incorporate (3)H into the alpha, gamma, and delta subunits in an agonist-inhibitable manner. The specific residues labeled by [(3)H]TDBzcholine were determined by N-terminal sequence analysis of subunit fragments produced by enzymatic cleavage and purified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and/or reversed-phase high-performance liquid chromatography. For the alpha subunit, [(3)H]TDBzcholine photoincorporated into alphaCys-192, alphaCys-193, and alphaPro-194. For the gamma and delta subunits, [(3)H]TDBzcholine incorporated into homologous leucine residues, gammaLeu-109 and deltaLeu-111. The photolabeling of these amino acids suggests that when the antagonist TDBzcholine occupies the agonist binding sites, the Cys-192-193 disulfide and Pro-194 from the alpha subunit Segment C are oriented toward the agonist site and are in proximity to gammaLeu-109/deltaLeu-111 in Segment E, a conclusion consistent with the structure of the binding site in the molluscan acetylcholine binding protein, a soluble protein that is homologous to the nAChR extracellular domain.

  2. Solution Structure and Membrane Interaction of the Cytoplasmic Tail of HIV-1 gp41 Protein.

    PubMed

    Murphy, R Elliot; Samal, Alexandra B; Vlach, Jiri; Saad, Jamil S

    2017-11-07

    The cytoplasmic tail of gp41 (gp41CT) remains the last HIV-1 domain with an unknown structure. It plays important roles in HIV-1 replication such as mediating envelope (Env) intracellular trafficking and incorporation into assembling virions, mechanisms of which are poorly understood. Here, we present the solution structure of gp41CT in a micellar environment and characterize its interaction with the membrane. We show that the N-terminal 45 residues are unstructured and not associated with the membrane. However, the C-terminal 105 residues form three membrane-bound amphipathic α helices with distinctive structural features such as variable degree of membrane penetration, hydrophobic and basic surfaces, clusters of aromatic residues, and a network of cation-π interactions. This work fills a major gap by providing the structure of the last segment of HIV-1 Env, which will provide insights into the mechanisms of Gag-mediated Env incorporation as well as the overall Env mobility and conformation on the virion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cyclic mu-opioid receptor ligands containing multiple N-methylated amino acid residues.

    PubMed

    Adamska-Bartłomiejczyk, Anna; Janecka, Anna; Szabó, Márton Richárd; Cerlesi, Maria Camilla; Calo, Girolamo; Kluczyk, Alicja; Tömböly, Csaba; Borics, Attila

    2017-04-15

    In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Dual role of K ATP channel C-terminal motif in membrane targeting and metabolic regulation.

    PubMed

    Kline, Crystal F; Kurata, Harley T; Hund, Thomas J; Cunha, Shane R; Koval, Olha M; Wright, Patrick J; Christensen, Matthew; Anderson, Mark E; Nichols, Colin G; Mohler, Peter J

    2009-09-29

    The coordinated sorting of ion channels to specific plasma membrane domains is necessary for excitable cell physiology. K(ATP) channels, assembled from pore-forming (Kir6.x) and regulatory sulfonylurea receptor subunits, are critical electrical transducers of the metabolic state of excitable tissues, including skeletal and smooth muscle, heart, brain, kidney, and pancreas. Here we show that the C-terminal domain of Kir6.2 contains a motif conferring membrane targeting in primary excitable cells. Kir6.2 lacking this motif displays aberrant channel targeting due to loss of association with the membrane adapter ankyrin-B (AnkB). Moreover, we demonstrate that this Kir6.2 C-terminal AnkB-binding motif (ABM) serves a dual role in K(ATP) channel trafficking and membrane metabolic regulation and dysfunction in these pathways results in human excitable cell disease. Thus, the K(ATP) channel ABM serves as a previously unrecognized bifunctional touch-point for grading K(ATP) channel gating and membrane targeting and may play a fundamental role in controlling excitable cell metabolic regulation.

  5. A PDZ-interacting domain in CFTR is an apical membrane polarization signal

    PubMed Central

    Moyer, Bryan D.; Denton, Jerod; Karlson, Katherine H.; Reynolds, Donna; Wang, Shusheng; Mickle, John E.; Milewski, Michal; Cutting, Garry R.; Guggino, William B.; Li, Min; Stanton, Bruce A.

    1999-01-01

    Polarization of the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel, to the apical plasma membrane of epithelial cells is critical for vectorial transport of chloride in a variety of epithelia, including the airway, pancreas, intestine, and kidney. However, the motifs that localize CFTR to the apical membrane are unknown. We report that the last 3 amino acids in the COOH-terminus of CFTR (T-R-L) comprise a PDZ-interacting domain that is required for the polarization of CFTR to the apical plasma membrane in human airway and kidney epithelial cells. In addition, the CFTR mutant, S1455X, which lacks the 26 COOH-terminal amino acids, including the PDZ-interacting domain, is mispolarized to the lateral membrane. We also demonstrate that CFTR binds to ezrin-radixin-moesin–binding phosphoprotein 50 (EBP50), an apical membrane PDZ domain–containing protein. We propose that COOH-terminal deletions of CFTR, which represent about 10% of CFTR mutations, result in defective vectorial chloride transport, partly by altering the polarized distribution of CFTR in epithelial cells. Moreover, our data demonstrate that PDZ-interacting domains and PDZ domain–containing proteins play a key role in the apical polarization of ion channels in epithelial cells. J. Clin. Invest. 104:1353–1361 (1999). PMID:10562297

  6. Analysis of the vhoGAC and vhtGAC operons from Methanosarcina mazei strain Gö1, both encoding a membrane-bound hydrogenase and a cytochrome b.

    PubMed

    Deppenmeier, U; Blaut, M; Lentes, S; Herzberg, C; Gottschalk, G

    1995-01-15

    DNA encompassing the structural genes of two membrane-bound hydrogenases from Methanosarcina mazei Gö1 was cloned and sequenced. The genes, arranged in the order vhoG and vhoA as well as vhtG and vhtA, were identified as those encoding the small and the large subunits of the NiFe hydrogenases [Deppenmeier, U., Blaut, M., Schmidt, B. & Gottschalk, G. (1992) Arch. Microbiol. 157, 505-511]. Northern-blot analysis revealed that the structural genes formed part of two operons, both containing one additional open reading frame (vhoC and vhtC) which codes for a cytochrome b. This conclusion was drawn from the homology of the deduced N-terminal amino acid sequences of vhoC and vhtC and the N-terminus of a 27-kDa cytochrome isolated from Ms. mazei C16. VhoC and VhtC contain four tentative hydrophobic segments which might span the cytoplasmic membrane. Hydropathy plots suggest that His23 and His50 are involved in heme coordination. The comparison of the sequencing data of vhoG and vhtG with the experimentally determined N-terminus of the small subunit indicate the presence of a 48-amino-acid leader peptide in front of the polypeptides. VhoA and VhtA contained the conserved sequence DPCXXC in the C-terminal region, which excludes the presence of a selenocysteine residue in these hydrogenases. Promoter sequences were found upstream of vhoG and vhtG, respectively. Downstream of vhoC, a putative terminator sequence was identified. Alignments of the deduced amino acid sequences of the gene clusters vhoGAC and vhtGAC showed 92-97% identity. Only the C-termini of VhoC and VhtC were not similar.

  7. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegami, T.; Semler, B.L.; Anderson, C.W.

    1983-01-01

    The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have alsomore » revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.« less

  8. Synthesis of Novel Cellulose Carbamates Possessing Terminal Amino Groups and Their Bioactivity.

    PubMed

    Ganske, Kristin; Wiegand, Cornelia; Hipler, Uta-Christina; Heinze, Thomas

    2016-03-01

    Cellulose phenyl carbonates are an excellent platform to synthesize a broad variety of soluble and functional cellulose carbamates. In this study, the synthesis of cellulose carbamates with terminal amino groups, namely ω-aminoethylcellulose- and ω-aminoethyl-p-aminobenzyl-cellulose carbamate, is discussed. The products are well soluble and their structures can be clearly described by NMR spectroscopy. The cellulose carbamates exhibit a bactericide and fungicide activity in vitro. The ω-aminoethylcellulose carbamate possesses a strong activity against Candida albicans and Staphylococcus aureus (IC50 of 0.02 mg mL(-1) and 0.05 mg mL(-1)). The antimicrobial activity and cytotoxicity can be improved by p-amino-benzylamine (ABA) as an additional substituent. The mixed cellulose carbamate exhibits a high biocompatibility (LC50 of 3.18 mg mL(-1)) and forms films on cotton and PES, which exhibit a strong activity against S. aureus and Klebsiella pneumoniae. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    DOE PAGES

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.; ...

    2016-09-22

    Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less

  10. N-terminal lipid modification is required for the stable accumulation of CyanoQ in Synechocystis sp. PCC 6803

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneau, Andrea D.; Frankel, Laurie K.; Bricker, Terry M.

    Here, the CyanoQ protein has been demonstrated to be a component of cyanobacterial Photosystem II (PS II), but there exist a number of outstanding questions concerning its physical association with the complex. CyanoQ is a lipoprotein; upon cleavage of its transit peptide by Signal Peptidase II, which targets delivery of the mature protein to the thylakoid lumenal space, the N-terminal cysteinyl residue is lipid-modified. This modification appears to tether this otherwise soluble component to the thylakoid membrane. To probe the functional significance of the lipid anchor, mutants of the CyanoQ protein have been generated in Synechocystis sp. PCC 6803 tomore » eliminate the N-terminal cysteinyl residue, preventing lipid modification. Substitution of the N-terminal cysteinyl residue with serine (Q-C22S) resulted in a decrease in the amount of detectable CyanoQ protein to 17% that of the wild-type protein. Moreover, the physical properties of the accumulated Q-C22S protein were consistent with altered processing of the CyanoQ precursor. The Q-C22S protein was shifted to a higher apparent molecular mass and partitioned in the hydrophobic phase in TX-114 phase-partitioning experiments. These results suggest that the hydrophobic N-terminal 22 amino acids were not properly cleaved by a signal peptidase. Substitution of the entire CyanoQ transit peptide with the transit peptide of the soluble lumenal protein PsbO yielded the Q-SS mutant and resulted in no detectable accumulation of the modified CyanoQ protein. Finally, the CyanoQ protein was present at normal amounts in the PS II mutant strains ΔpsbB and ΔpsbO, indicating that an association with PS II was not a prerequisite for stable CyanoQ accumulation. Together these results indicate that CyanoQ accumulation in Synechocystis sp. PCC 6803 depends on the presence of the N-terminal lipid anchor, but not on the association of CyanoQ with the PS II complex.« less

  11. Antimicrobial activity and stability of protonectin with D-amino acid substitutions.

    PubMed

    Qiu, Shuai; Zhu, Ranran; Zhao, Yanyan; An, Xiaoping; Jia, Fengjing; Peng, Jinxiu; Ma, Zelin; Zhu, Yuanyuan; Wang, Jiayi; Su, Jinhuan; Wang, Qingjun; Wang, Hailin; Li, Yuan; Wang, Kairong; Yan, Wenjin; Wang, Rui

    2017-05-01

    The misuse and overuse of antibiotics result in the emergence of resistant bacteria and fungi, which make an urgent need of the new antimicrobial agents. Nowadays, antimicrobial peptides have attracted great attention of researchers. However, the low physiological stability in biological system limits the application of naturally occurring antimicrobial peptides as novel therapeutics. In the present study, we synthesized derivatives of protonectin by substituting all the amino acid residues or the cationic lysine residue with the corresponding D-amino acids. Both the D-enantiomer of protonectin (D-prt) and D-Lys-protonectin (D-Lys-prt) exhibited strong antimicrobial activity against bacteria and fungi. Moreover, D-prt showed strong stability against trypsin, chymotrypsin and the human serum, while D-Lys-prt only showed strong stability against trypsin. Circular dichroism analysis revealed that D-Lys-prt still kept typical α-helical structure in the membrane mimicking environment, while D-prt showed left hand α-helical structure. In addition, propidium iodide uptake assay and bacteria and fungi killing experiments indicated that all D-amino acid substitution or partially D-amino acid substitution analogs could disrupt the integrity of membrane and lead the cell death. In summary, these findings suggested that D-prt and D-Lys-prt might be promising candidate antibiotic agents for therapeutic application against resistant bacteria and fungi infection. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  12. Structural Basis for Translocation of a Biofilm-supporting Exopolysaccharide across the Bacterial Outer Membrane.

    PubMed

    Wang, Yan; Andole Pannuri, Archana; Ni, Dongchun; Zhou, Haizhen; Cao, Xiou; Lu, Xiaomei; Romeo, Tony; Huang, Yihua

    2016-05-06

    The partially de-N-acetylated poly-β-1,6-N-acetyl-d-glucosamine (dPNAG) polymer serves as an intercellular biofilm adhesin that plays an essential role for the development and maintenance of integrity of biofilms of diverse bacterial species. Translocation of dPNAG across the bacterial outer membrane is mediated by a tetratricopeptide repeat-containing outer membrane protein, PgaA. To understand the molecular basis of dPNAG translocation, we determined the crystal structure of the C-terminal transmembrane domain of PgaA (residues 513-807). The structure reveals that PgaA forms a 16-strand transmembrane β-barrel, closed by four loops on the extracellular surface. Half of the interior surface of the barrel that lies parallel to the translocation pathway is electronegative, suggesting that the corresponding negatively charged residues may assist the secretion of the positively charged dPNAG polymer. In vivo complementation assays in a pgaA deletion bacterial strain showed that a cluster of negatively charged residues proximal to the periplasm is necessary for biofilm formation. Biochemical analyses further revealed that the tetratricopeptide repeat domain of PgaA binds directly to the N-deacetylase PgaB and is critical for biofilm formation. Our studies support a model in which the positively charged PgaB-bound dPNAG polymer is delivered to PgaA through the PgaA-PgaB interaction and is further targeted to the β-barrel lumen of PgaA potentially via a charge complementarity mechanism, thus priming the translocation of dPNAG across the bacterial outer membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Altering the N-terminal arms of the polymerase manager protein UmuD modulates protein interactions.

    PubMed

    Murison, David A; Ollivierre, Jaylene N; Huang, Qiuying; Budil, David E; Beuning, Penny J

    2017-01-01

    Escherichia coli cells that are exposed to DNA damaging agents invoke the SOS response that involves expression of the umuD gene products, along with more than 50 other genes. Full-length UmuD is expressed as a 139-amino-acid protein, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The N-terminal arms of UmuD are dynamic and contain recognition sites for multiple partner proteins. Cleavage of UmuD to UmuD' dramatically affects the function of the protein and activates UmuC for translesion synthesis (TLS) by forming DNA Polymerase V. To probe the roles of the N-terminal arms in the cellular functions of the umuD gene products, we constructed additional N-terminal truncated versions of UmuD: UmuD 8 (UmuD Δ1-7) and UmuD 18 (UmuD Δ1-17). We found that the loss of just the N-terminal seven (7) amino acids of UmuD results in changes in conformation of the N-terminal arms, as determined by electron paramagnetic resonance spectroscopy with site-directed spin labeling. UmuD 8 is cleaved as efficiently as full-length UmuD in vitro and in vivo, but expression of a plasmid-borne non-cleavable variant of UmuD 8 causes hypersensitivity to UV irradiation, which we determined is the result of a copy-number effect. UmuD 18 does not cleave to form UmuD', but confers resistance to UV radiation. Moreover, removal of the N-terminal seven residues of UmuD maintained its interactions with the alpha polymerase subunit of DNA polymerase III as well as its ability to disrupt interactions between alpha and the beta processivity clamp, whereas deletion of the N-terminal 17 residues resulted in decreases in binding to alpha and in the ability to disrupt the alpha-beta interaction. We find that UmuD 8 mimics full-length UmuD in many respects, whereas UmuD 18 lacks a number of functions characteristic of UmuD.

  14. On the interaction of the highly charged peptides casocidins with biomimetic membranes.

    PubMed

    Becucci, Lucia; Aloisi, Giovanni; Scaloni, Andrea; Caira, Simonetta; Guidelli, Rolando

    2018-04-19

    Casocidin I and II (CI and CII) are structurally related antimicrobial peptides made of 39 and 31 amino acids, respectively, which derive from natural proteolytic processing of α s2 -casein and adopt an ordered α-helical structure in biomimetic membranes. Their putative membrane-permeabilizing activity was investigated at Hg-supported self-assembled monolayers (SAMs) and at tethered bilayer lipid membranes (tBLMs); the latter consisted of a monolayer of 2,3,di-O-phytanyl-sn-glycerol-1-tetraethylene-glycol-d,l-α lipoic acid ester thiolipid (DPTL), with a dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylserine (DOPS) monolayer on top of it. Interaction of CI and CII with these biomimetic membranes was studied by four electrochemical techniques at pH 3, 5.4 and 6.8. Peptide incorporation in tBLMs was attempted via scans of electrochemical impedance spectra. Experiments demonstrated that CI and CII penetrate SAMs as well as the distal DOPC monolayer of DPTL/DOPC tBLMs, but not the proximal phytanyl monolayer, with the only exception of CII at pH 5.4. Conversely, CII permeabilized DPTL/DOPS tBLMs to a moderate extent at all investigated pH values by forming holes across the membrane, but not ion channels. Structural distribution of charged residues seemed to prevent CII from having a hydrophobic side of the α-helix capable of stabilizing a regular ion channel in the lipid matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Interaction of tachykinins with phospholipid membranes: A neutron diffraction study

    NASA Astrophysics Data System (ADS)

    Darkes, Malcolm J. M.; Davies, Sarah M. A.; Bradshaw, Jeremy P.

    Tachykinins are a group of peptides which bind to G-protein-coupled receptors. Receptor affinity appears to depend on different secondary structures of tachykinin which share the same hydrophobic carboxy-terminal sequence, FXGLM. Receptor activation is thought to be due to the carboxy-terminal submerging into the bilayer and the amino-terminal binding on the surface. Binding of tachykinins to phospholipid bilayers may take place both on the aqueous membrane surface and in the hydrophobic region. The two-state equilibrium appears to depend on the surface charge of the membrane. Deuterating substance P and neurokinin A at their carboxy-terminals, our results show two populations of label for each peptide. One is very close to the water-hydrocarbon interface, the other some 13 Å deeper. We report that the bilayer location of the two tachykinins is remarkably similar, thereby inferring that receptor specifity must be controlled by finer levels of structure.

  16. Substitutions of PrP N-terminal histidine residues modulate scrapie disease pathogenesis and incubation time in transgenic mice

    PubMed Central

    Eigenbrod, Sabina; Frick, Petra; Bertsch, Uwe; Mitteregger-Kretzschmar, Gerda; Mielke, Janina; Maringer, Marko; Piening, Niklas; Hepp, Alexander; Daude, Nathalie; Windl, Otto; Levin, Johannes; Giese, Armin; Sakthivelu, Vignesh; Tatzelt, Jörg

    2017-01-01

    Prion diseases have been linked to impaired copper homeostasis and copper induced-oxidative damage to the brain. Divalent metal ions, such as Cu2+ and Zn2+, bind to cellular prion protein (PrPC) at octapeptide repeat (OR) and non-OR sites within the N-terminal half of the protein but information on the impact of such binding on conversion to the misfolded isoform often derives from studies using either OR and non-OR peptides or bacterially-expressed recombinant PrP. Here we created new transgenic mouse lines expressing PrP with disrupted copper binding sites within all four histidine-containing OR's (sites 1–4, H60G, H68G, H76G, H84G, "TetraH>G" allele) or at site 5 (composed of residues His-95 and His-110; "H95G" allele) and monitored the formation of misfolded PrP in vivo. Novel transgenic mice expressing PrP(TetraH>G) at levels comparable to wild-type (wt) controls were susceptible to mouse-adapted scrapie strain RML but showed significantly prolonged incubation times. In contrast, amino acid replacement at residue 95 accelerated disease progression in corresponding PrP(H95G) mice. Neuropathological lesions in terminally ill transgenic mice were similar to scrapie-infected wt controls, but less severe. The pattern of PrPSc deposition, however, was not synaptic as seen in wt animals, but instead dense globular plaque-like accumulations of PrPSc in TgPrP(TetraH>G) mice and diffuse PrPSc deposition in (TgPrP(H95G) mice), were observed throughout all brain sections. We conclude that OR and site 5 histidine substitutions have divergent phenotypic impacts and that cis interactions between the OR region and the site 5 region modulate pathogenic outcomes by affecting the PrP globular domain. PMID:29220360

  17. Crystal Structure of the Receptor Binding Domain of the botulinum C-D Mosiac Neurotoxin Reveals Potential Roles of Lysines 1118 and 1136 in Membrane Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Zhang; G Buchko; L Qin

    2011-12-31

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C ({approx}two-third) and BoNT/D ({approx}one-third) serotypes. While the amino acid sequence of themore » heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 {angstrom} resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal {beta}-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR.« less

  18. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Buchko, Garry W.; Qin, Ling

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (~two-thirds) and BoNT/D (~one-third) serotypes. While the amino acid sequence of themore » heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR« less

  19. Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions.

    PubMed

    Zhang, Yanfeng; Buchko, Garry W; Qin, Ling; Robinson, Howard; Varnum, Susan M

    2011-01-07

    The botulinum neurotoxins (BoNTs) produced by different strains of the bacterium Clostridium botulinum are responsible for the disease botulism and include a group of immunologically distinct serotypes (A, B, E, and F) that are considered to be the most lethal natural proteins known for humans. Two BoNT serotypes, C and D, while rarely associated with human infection, are responsible for deadly botulism outbreaks afflicting animals. Also associated with animal infections is the BoNT C-D mosaic protein (BoNT/CD), a BoNT subtype that is essentially a hybrid of the BoNT/C (∼two-third) and BoNT/D (∼one-third) serotypes. While the amino acid sequence of the heavy chain receptor binding (HCR) domain of BoNT/CD (BoNT/CD-HCR) is very similar to the corresponding amino acid sequence of BoNT/D, BoNT/CD-HCR binds synaptosome membranes better than BoNT/D-HCR. To obtain structural insights for the different membrane binding properties, the crystal structure of BoNT/CD-HCR (S867-E1280) was determined at 1.56 Å resolution and compared to previously reported structures for BoNT/D-HCR. Overall, the BoNT/CD-HCR structure is similar to the two sub-domain organization observed for other BoNT HCRs: an N-terminal jellyroll barrel motif and a C-terminal β-trefoil fold. Comparison of the structure of BoNT/CD-HCR with BoNT/D-HCR indicates that K1118 has a similar structural role as the equivalent residue, E1114, in BoNT/D-HCR, while K1136 has a structurally different role than the equivalent residue, G1132, in BoNT/D-HCR. Lysine-1118 forms a salt bridge with E1247 and may enhance membrane interactions by stabilizing the putative membrane binding loop (K1240-N1248). Lysine-1136 is observed on the surface of the protein. A sulfate ion bound to K1136 may mimic a natural interaction with the negatively changed phospholipid membrane surface. Liposome-binding experiments demonstrate that BoNT/CD-HCR binds phosphatidylethanolamine liposomes more tightly than BoNT/D-HCR. Copyright © 2010

  20. Critical Amino Acids in the Active Site of Meprin Metalloproteinases for Substrate and Peptide Bond Specificity*

    PubMed Central

    Villa, James P.; Bertenshaw, Greg P.; Bond, Judith S.

    2008-01-01

    SUMMARY The protease domains of the evolutionarily-related α and ß subunits of meprin metalloproteases are approximately 55% identical at the amino acid level, however, their substrate and peptide bond specificities differ markedly. The meprin ß subunit favors acidic residues proximal to the scissile bond, while the α subunit prefers small or aromatic amino acids flanking the scissile bond. Thus gastrin, a peptide that contains a string of five Glu residues, is an excellent substrate for meprin ß while it is not hydrolyzed by meprin α. Work herein aimed to identify critical amino acids in the meprin active sites that determine the substrate specificity differences. Sequence alignments and homology models, based on the crystal structure of the crayfish astacin, showed electrostatic differences within the meprin active sites. Site-directed mutagenesis of active site residues demonstrated that replacement of a hydrophobic residue by a basic amino acid enabled the meprin α protease to cleave gastrin. The meprin αY199K mutant was most effective; the corresponding mutation of meprin ßK185Y resulted in decreased activity toward gastrin. Peptide cleavage site determinations and kinetic analyses using a variety of peptides extended evidence that meprin αTyr199/ßLys185 are substrate specificity determinants in meprin active sites. These studies shed light on the molecular basis for the substrate specificity differences of astacin metalloproteinases. PMID:12888571

  1. Overexpression of violaxanthin de-epoxidase: properties of C-terminal deletions on activity and pH-dependent lipid binding.

    PubMed

    Hieber, A David; Bugos, Robert C; Verhoeven, Amy S; Yamamoto, Harry Y

    2002-01-01

    Violaxanthin de-epoxidase (VDE) is localized in the thylakoid lumen and catalyzes the de-epoxidation of violaxanthin to form antheraxanthin and zeaxanthin. VDE is predicted to be a lipocalin protein with a central barrel structure flanked by a cysteine-rich N-terminal domain and a glutamate-rich C-terminal domain. A full-length Arabidopsis thaliana (L.) Heynh. VDE and deletion mutants of the N- and C-terminal regions were expressed in Escherichia coli and tobacco (Nicotiana tabacum L. cv. Xanthi) plants. High expression of VDE in E. coli was achieved after adding the argU gene that encodes the E. coli arginine AGA tRNA. However, the specific activity of VDE expressed in E. coli was low, possibly due to incorrect folding. Removal of just 4 amino acids from the N-terminal region abolished all VDE activity whereas 71 C-terminal amino acids could be removed without affecting activity. The difficulties with expression in E. coli were overcome by expressing the Arabidopsis VDE in tobacco. The transformed tobacco exhibited a 13- to 19-fold increase in VDE specific activity, indicating correct protein folding. These plants also demonstrated an increase in the initial rate of nonphotochemical quenching consistent with an increased initial rate of de-epoxidation. Deletion mutations of the C-terminal region suggest that this region is important for binding of VDE to the thylakoid membrane. Accordingly, in vitro lipid-micelle binding experiments identified a region of 12 amino acids that is potentially part of a membrane-binding domain. The transformed tobacco plants are the first reported example of plants with an increased level of VDE activity.

  2. Herpes Simplex Virus Glycoprotein B Associates with Target Membranes via Its Fusion Loops▿

    PubMed Central

    Hannah, Brian P.; Cairns, Tina M.; Bender, Florent C.; Whitbeck, J. Charles; Lou, Huan; Eisenberg, Roselyn J.; Cohen, Gary H.

    2009-01-01

    Herpes simplex virus (HSV) glycoproteins gB, gD, and gH/gL are necessary and sufficient for virus entry into cells. Structural features of gB are similar to those of vesicular stomatitis virus G and baculovirus gp64, and together they define the new class III group of fusion proteins. Previously, we used mutagenesis to show that three hydrophobic residues (W174, Y179, and A261) within the putative gB fusion loops are integral to gB function. Here we expanded our analysis, using site-directed mutagenesis of each residue in both gB fusion loops. Mutation of most of the nonpolar or hydrophobic amino acids (W174, F175, G176, Y179, and A261) had severe effects on gB function in cell-cell fusion and null virus complementation assays. Of the six charged amino acids, mutation of H263 or R264 also negatively affected gB function. To further analyze the mutants, we cloned the ectodomains of the W174R, Y179S, H263A, and R264A mutants into a baculovirus expression system and compared them with the wild-type (WT) form, gB730t. As shown previously, gB730t blocks virus entry into cells, suggesting that gB730t competes with virion gB for a cell receptor. All four mutant proteins retained this function, implying that fusion loop activity is separate from gB-receptor binding. However, unlike WT gB730t, the mutant proteins displayed reduced binding to cells and were either impaired or unable to bind naked, cholesterol-enriched liposomes, suggesting that it may be gB-lipid binding that is disrupted by the mutations. Furthermore, monoclonal antibodies with epitopes proximal to the fusion loops abrogated gB-liposome binding. Taken together, our data suggest that gB associates with lipid membranes via a fusion domain of key hydrophobic and hydrophilic residues and that this domain associates with lipid membranes during fusion. PMID:19369321

  3. Conformational analysis of the N-terminal sequence Met1 Val60 of the tyrosine hydroxylase

    NASA Astrophysics Data System (ADS)

    Alieva, Irada N.; Mustafayeva, Narmina N.; Gojayev, Niftali M.

    2006-03-01

    Molecular mechanics method and molecular dynamics (MD) simulation techniques are used to study the behavior and the effect of the amino acids substitution on structure and molecular dynamics of the specific portion of Met1-Val60 amino acid residues from N-terminal regulatory domain of the tyrosine hydroxylase (TH) and its mutants in which the positively charged arginine residues at positions 37 and 38 were replaced by electrically neutral Gly and negatively charged Glu, and serine residue at position 40 was replaced by Ala or Asp residue. Our study allowed us to make the following conclusions: (i) the higher conformational flexibility of the Met1-Arg16 sequence is revealed in comparision to other part of the N-terminus; (ii) the stretch of amino acid residues Met30-Ser40 within the N-terminus forms β-turn so that two α-helices (residues 16-29 and residues 41-60) are paralel one another; (ii) the significant differences that are observed for the Arg37→Gly37, Arg37-Arg38→Glu37-Glu38 mutant segments indicates that the positive charge of the Arg37 and Arg38 residues is one of the main factor that maintains the characteristic of the turn; (ii) no major conformational changes are observed between Ser40→Ala40, and Ser40→Asp40 mutant segments.

  4. MapA, an iron-regulated, cytoplasmic membrane protein in the cyanobacterium Synechococcus sp. strain PCC7942.

    PubMed Central

    Webb, R; Troyan, T; Sherman, D; Sherman, L A

    1994-01-01

    Growth of Synechococcus sp. strain PCC 7942 in iron-deficient media leads to the accumulation of an approximately 34-kDa protein. The gene encoding this protein, mapA (membrane-associated protein A), has been cloned and sequenced (GenBank accession number, L01621). The mapA transcript is not detectable in normally grown cultures but is stably accumulated by cells grown in iron-deficient media. However, the promoter sequence for this gene does not resemble other bacterial iron-regulated promoters described to date. The carboxyl-terminal region of the derived amino acid sequence of MapA resembles bacterial proteins involved in iron acquisition, whereas the amino-terminal end of MapA has a high degree of amino acid identity with the abundant, chloroplast envelope protein E37. An approach employing improved cellular fractionation techniques as well as electron microscopy and immunocytochemistry was essential in localizing MapA protein to the cytoplasmic membrane of Synechococcus sp. strain PCC 7942. When these cells were grown under iron-deficient conditions, a significant fraction of MapA could also be localized to the thylakoid membranes. Images PMID:8051004

  5. Temperature-dependent dynamical transitions of different classes of amino acid residue in a globular protein.

    PubMed

    Miao, Yinglong; Yi, Zheng; Glass, Dennis C; Hong, Liang; Tyagi, Madhusudan; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C

    2012-12-05

    The temperature dependences of the nanosecond dynamics of different chemical classes of amino acid residue have been analyzed by combining elastic incoherent neutron scattering experiments with molecular dynamics simulations on cytochrome P450cam. At T = 100-160 K, anharmonic motion in hydrophobic and aromatic residues is activated, whereas hydrophilic residue motions are suppressed because of hydrogen-bonding interactions. In contrast, at T = 180-220 K, water-activated jumps of hydrophilic side chains, which are strongly coupled to the relaxation rates of the hydrogen bonds they form with hydration water, become apparent. Thus, with increasing temperature, first the hydrophobic core awakens, followed by the hydrophilic surface.

  6. A Novel Di-Leucine Motif at the N-Terminus of Human Organic Solute Transporter Beta Is Essential for Protein Association and Membrane Localization.

    PubMed

    Xu, Shuhua; Soroka, Carol J; Sun, An-Qiang; Backos, Donald S; Mennone, Albert; Suchy, Frederick J; Boyer, James L

    2016-01-01

    The heteromeric membrane protein Organic Solute Transporter alpha/beta is the major bile acid efflux transporter in the intestine. Physical association of its alpha and beta subunits is essential for their polarized basolateral membrane localization and function in the transport of bile acids and other organic solutes. We identified a highly conserved acidic dileucine motif (-EL20L21EE) at the extracellular amino-tail of organic solute transporter beta from multiple species. To characterize the role of this protein interacting domain in the association of the human beta and alpha subunits and in membrane localization of the transporter, Leu20 and Leu21 on the amino-tail of human organic solute transporter beta were replaced with alanines by site-directed mutagenesis. Co-immunoprecipitation study in HEK293 cells demonstrated that substitution of the leucine residues with alanines prevented the interaction of the human beta mutant with the alpha subunit. Membrane biotinylation demonstrated that the LL/AA mutant eliminated membrane expression of both subunits. Computational-based modelling of human organic solute transporter beta suggested that the LL/AA mutation substantially alters both the structure and lipophilicity of the surface, thereby not only affecting the interaction with the alpha subunit but also possibly impacting the capacity of the beta subunit to traffick through the cell and interact with the membrane. In summary, our findings indicate that the dileucine motif in the extracellular N-terminal region of human organic solute transporter beta subunit plays a critical role in the association with the alpha subunit and in its polarized plasma membrane localization.

  7. Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter

    PubMed Central

    2014-01-01

    Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911

  8. Propensities of Aromatic Amino Acids versus Leucine and Proline to Induce Residual Structure in the Denatured State Ensemble of Iso-1-cytochrome c

    PubMed Central

    Finnegan, Michaela L.; Bowler, Bruce E.

    2010-01-01

    Histidine-heme loop formation in the denatured state of a protein is a sensitive means to probe for residual structure under unfolding conditions. In this study, we use a host-guest approach to investigate the relative tendencies of different amino acids to promote residual structure under denaturing conditions. The host for this work is a 6 amino acid insert of five alanines followed by a lysine engineered immediately following a unique histidine near the N-terminus of yeast iso-1-cytochrome c. We substitute the 4th alanine in this sequence, HAAAXAK, with X = Trp, Phe, Tyr and Leu. The effects of proline are tested with substitutions at positions 1 and 5 in the insert, HPAAAAK and HAAAAPK, respectively. Thermodynamic studies on His-heme loop formation in 3 M guanidine hydrochloride reveal significant stabilization of residual structure by aromatic amino acids, particularly, Trp and Phe, and minimal stabilization of residual structure by Leu. Prolines disfavor His-heme loop formation slightly, presumably due to enhanced chain stiffness. Kinetic studies reveal that much of the change in His-heme loop stability for the aromatic amino acids is caused by a slowing of the rate of His-heme loop breakage, indicating that residual structure is preferentially stabilized in the closed-loop form of the denatured state. PMID:20850458

  9. Biochemical Changes in Terminal Root Galls Caused by an Ectoparasitic Nematode, Longidorus africanus: Amino Acids.

    PubMed

    Epstein, E; Cohn, E

    1971-10-01

    The amino acids of terminal root galls caused by Longidorus africanus on bur marigold (Bidens tripartita L.) and grapevine (Vitis vinifera L.) were studied. The galled roots of bur marigold contained 73% more cell-wall protein and 184% more free amino acids. The main changes among the free amino acids of the galled tissue were a large increase (1900%) in proline and a decrease in aspartic acid (56%) compared with the respective check tissue. Hydroxyproline decreased in the wall protein fraction from 5.6% in the healthy tissue to 3.6% in the infected tissue.Percent of hydroxyproline in total amino acids of the wall protein fraction of grapevine roots decreased from 0.7% in the healthy tissue to 0.3% in the galled tissue, and total proteins of this fraction decreased from 9.5 mg to 4.5 rag, respectively. Total protein in the protoplasmic fraction also decreased from 3.0 mg in healthy to 1.0 mg in infected roots. No change was noticed in total proteins in the free amino acids fraction but free proline decreased 40% in the infected roots.The relationship of these differences to the specific reactions of the hosts to nematode feeding is discussed.

  10. DNA-fiber EPR investigation of the influence of amino-terminal residue stereochemistry on the DNA binding orientation of Cu(II)•Gly-Gly-His-derived metallopeptides

    PubMed Central

    Hamada, Hirokazu; Abe, Yuko; Nagane, Ryoichi; Fang, Ya-Yin; Lewis, Mark A.; Long, Eric C.; Chikira, Makoto

    2007-01-01

    DNA fiber EPR was used to investigate the DNA binding stabilities and orientations of Cu(II)•Gly-Gly-His-derived metallopeptides containing d- vs. l-amino acid substitutions in the first peptide position. This examination included studies of Cu(II)•d-Arg-Gly-His and Cu(II)•d-Lys-Gly-His for comparison to metallopeptides containing l-Arg/Lys substitutions, and also the diastereoisomeric pairs Cu(II)•d/l-Pro-Gly-His and Cu(II)•d/l-Pro-Lys-His. Results indicated that l-Arg/Lys to d-Arg/Lys substitutions considerably randomized the orientation of the metallopeptides on DNA whereas the replacement of l-Pro by d-Pro in Cu(II)•l-Pro-Gly-His caused a decrease in randomness. The difference in the extent of randomness of d- vs. l-Pro-Gly-His complexes was diminished through the substitution of Gly for Lys in the middle peptide position, supporting the notion that the ε-amino group of Lys triggered further randomization, likely through hydrogen bonding or electrostatic interactions that disrupt binding of the metallopeptide equatorial plane and the DNA. The relationship between the stereochemistry of amino acid residues and the binding and reaction of M(II)•Xaa-Xaa’-His metallopeptides with DNA are also discussed. PMID:17706784

  11. Amino acid screening based on structural modeling identifies critical residues for the function, ion selectivity and structure of Arabidopsis MTP1.

    PubMed

    Kawachi, Miki; Kobae, Yoshihiro; Kogawa, Sayaka; Mimura, Tetsuro; Krämer, Ute; Maeshima, Masayoshi

    2012-07-01

    Arabidopsis thaliana MTP1 is a vacuolar membrane Zn(2+)/H(+) antiporter of the cation diffusion facilitator family. Here we present a structure-function analysis of AtMTP1-mediated transport and its remarkable Zn(2+) selectivity by functional complementation tests of more than 50 mutant variants in metal-sensitive yeast strains. This was combined with homology modeling of AtMTP1 based on the crystal structure of the Escherichia coli broad-specificity divalent cation transporter YiiP. The Zn(2+)-binding sites of EcYiiP in the cytoplasmic C-terminus, and the pore formed by transmembrane helices TM2 and TM5, are conserved in AtMTP1. Although absent in EcYiiP, Cys31 and Cys36 in the extended N-terminal cytosolic domain of AtMTP1 are necessary for complementation of a Zn-sensitive yeast strain. On the cytosolic side of the active Zn(2+)-binding site inside the transmembrane pore, Ala substitution of either Asn258 in TM5 or Ser101 in TM2 non-selectively enhanced the metal tolerance conferred by AtMTP1. Modeling predicts that these residues obstruct the movement of cytosolic Zn(2+) into the intra-membrane Zn(2+)-binding site of AtMTP1. A conformational change in the immediately preceding His-rich cytosolic loop may displace Asn258 and permit Zn(2+) entry into the pore. This would allow dynamic coupling of Zn(2+) transport to the His-rich loop, thus acting as selectivity filter or sensor of cytoplasmic Zn(2+) levels. Individual mutations at diverse sites within AtMTP1 conferred Co and Cd tolerance in yeast, and included deletions in N-terminal and His-rich intra-molecular cytosolic domains, and mutations of single residues flanking the transmembrane pore or participating in intra- or inter-molecular domain interactions, all of which are not conserved in the non-selective EcYiiP. © 2012 The Authors Journal compilation © 2012 FEBS.

  12. Syntheses, receptor bindings, in vitro and in vivo stabilities and biodistributions of DOTA-neurotensin(8-13) derivatives containing β-amino acid residues - a lesson about the importance of animal experiments.

    PubMed

    Sparr, Christof; Purkayastha, Nirupam; Yoshinari, Tomohiro; Seebach, Dieter; Maschauer, Simone; Prante, Olaf; Hübner, Harald; Gmeiner, Peter; Kolesinska, Beata; Cescato, Renzo; Waser, Beatrice; Reubi, Jean Claude

    2013-12-01

    Neurotensin(8-13) (NTS(8-13)) analogs with C- and/or N-terminal β-amino acid residues and three DOTA derivatives thereof have been synthesized (i.e., 1-6). A virtual docking experiment showed almost perfect fit of one of the 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) derivatives, 6a, into a crystallographically identified receptor NTSR1 (Fig.1). The affinities for the receptors of the NTS analogs and derivatives are low, when determined with cell-membrane homogenates, while, with NTSR1-exhibiting cancer tissues, affinities in the single-digit nanomolar range can be observed (Table 2). Most of the β-amino acid-containing NTS(8-13) analogs (Table 1 and Fig.2), including the (68) Ga complexes of the DOTA-substituted ones (6; Figs.2 and 5), are stable for ca. 1 h in human serum and plasma, and in murine plasma. The biodistributions of two (68) Ga complexes (of 6a and 6b) in HT29 tumor-bearing nude mice, in the absence and in the presence of a blocking compound, after 10, 30, and 60 min (Figs. 3 and 4) lead to the conclusion that the amount of specifically bound radioligand is rather low. This was confirmed by PET-imaging experiments with the tumor-bearing mice (Fig.6). Comparison of the in vitro plasma stability (after 1 h) with the ex vivo blood content (after 10-15 min) of the two (68) Ga complexes shows that they are rapidly cleaved in the animals (Fig.5). Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  13. On the terminal homologation of physiologically active peptides as a means of increasing stability in human serum--neurotensin, opiorphin, B27-KK10 epitope, NPY.

    PubMed

    Seebach, Dieter; Lukaszuk, Aneta; Patora-Komisarska, Krystyna; Podwysocka, Dominika; Gardiner, James; Ebert, Marc-Olivier; Reubi, Jean Claude; Cescato, Renzo; Waser, Beatrice; Gmeiner, Peter; Hübner, Harald; Rougeot, Catherine

    2011-05-01

    The terminal homologation by CH(2) insertion into the peptides mentioned in the title is described. This involves replacement of the N-terminal amino acid residue by a β(2) - and of the C-terminal amino acid residue by a β(3) -homo-amino acid moiety (β(2) hXaa and β(3) hXaa, resp.; Fig. 1). In this way, the structure of the peptide chain from the N-terminal to the C-terminal stereogenic center is identical, and the modified peptide is protected against cleavage by exopeptidases (Figs. 2 and 3). Neurotensin (NT; 1) and its C-terminal fragment NT(8-13) are ligands of the G-protein-coupled receptors (GPCR) NT1, NT2, NT3, and NT analogs are promising tools to be used in cancer diagnostics and therapy. The affinities of homologated NT analogs, 2b-2e, for NT1 and NT2 receptors were determined by using cell homogenates and tumor tissues (Table 1); in the latter experiments, the affinities for the NT1 receptor are more or less the same as those of NT (0.5-1.3 vs. 0.6 nM). At the same time, one of the homologated NT analogs, 2c, survives in human plasma for 7 days at 37° (Fig. 6). An NMR analysis of NT(8-13) (Tables 2 and 4, and Fig. 8) reveals that this N-terminal NT fragment folds to a turn in CD(3) OH. - In the case of the human analgesic opiorphin (3a), a pentapeptide, and of the HIV-derived B27-KK10 (4a), a decapeptide, terminal homologation (→3b and 4b, resp.) led to a 7- and 70-fold half-life increase in plasma (Fig. 9). With N-terminally homologated NPY, 5c, we were not able to determine serum stability; the peptide consisting of 36 amino acid residues is subject to cleavage by endopetidases. Three of the homologated compounds, 2b, 2c, and 5c, were shown to be agonists (Fig. 7 and 11). A comparison of terminal homologation with other stability-increasing terminal modifications of peptides is performed (Fig. 5), and possible applications of the neurotensin analogs, described herein, are discussed. Copyright © 2011 Verlag Helvetica Chimica

  14. Functional analysis of (4 S)-limonene synthase mutants reveals determinants of catalytic outcome in a model monoterpene synthase

    DOE PAGES

    Srividya, Narayanan; Davis, Edward M.; Croteau, Rodney B.; ...

    2015-03-02

    We used crystal structural data for (4S)-limonene synthase [(4S)-LS] of spearmint (Mentha spicata L.) to infer which amino acid residues are in close proximity to the substrate and carbocation intermediates of the enzymatic reaction. Alanine-scanning mutagenesis of 48 amino acids combined with enzyme fidelity analysis [percentage of (-)-limonene produced] indicated which residues are most likely to constitute the active site. Furthermore, the mutation of residues W324 and H579 caused a significant drop in enzyme activity and formation of products (myrcene, linalool, and terpineol) characteristic of a premature termination of the reaction. A double mutant (W324A/H579A) had no detectable enzyme activity,more » indicating that either substrate binding or the terminating reaction was impaired. Exchanges to other aromatic residues (W324H, W324F, W324Y, H579F, H579Y, and H579W) resulted in enzyme catalysts with significantly reduced activity. Sequence comparisons across the angiosperm lineage provided evidence that W324 is a conserved residue, whereas the position equivalent to H579 is occupied by aromatic residues (H, F, or Y). Our results are consistent with a critical role of W324 and H579 in the stabilization of carbocation intermediates. Finally, the potential of these residues to serve as the catalytic base facilitating the terminal deprotonation reaction is discussed.« less

  15. Functional characterization of LePGT1, a membrane-bound prenyltransferase involved in the geranylation of p-hydroxybenzoic acid.

    PubMed

    Ohara, Kazuaki; Muroya, Ayumu; Fukushima, Nobuhiro; Yazaki, Kazufumi

    2009-06-26

    The AS-PT (aromatic substrate prenyltransferase) family plays a critical role in the biosynthesis of important quinone compounds such as ubiquinone and plastoquinone, although biochemical characterizations of AS-PTs have rarely been carried out because most members are membrane-bound enzymes with multiple transmembrane alpha-helices. PPTs [PHB (p-hydroxybenzoic acid) prenyltransferases] are a large subfamily of AS-PTs involved in ubiquinone and naphthoquinone biosynthesis. LePGT1 [Lithospermum erythrorhizon PHB geranyltransferase] is the regulatory enzyme for the biosynthesis of shikonin, a naphthoquinone pigment, and was utilized in the present study as a representative of membrane-type AS-PTs to clarify the function of this enzyme family at the molecular level. Site-directed mutagenesis of LePGT1 with a yeast expression system indicated three out of six conserved aspartate residues to be critical to the enzymatic activity. A detailed kinetic analysis of mutant enzymes revealed the amino acid residues responsible for substrate binding were also identified. Contrary to ubiquinone biosynthetic PPTs, such as UBIA in Escherichia coli which accepts many prenyl substrates of different chain lengths, LePGT1 can utilize only geranyl diphosphate as its prenyl substrate. Thus the substrate specificity was analysed using chimeric enzymes derived from LePGT1 and UBIA. In vitro and in vivo analyses of the chimeras suggested that the determinant region for this specificity was within 130 amino acids of the N-terminal. A 3D (three-dimensional) molecular model of the substrate-binding site consistent with these biochemical findings was generated.

  16. Roles of the C-terminal domains of human dihydrodiol dehydrogenase isoforms in the binding of substrates and modulators: probing with chimaeric enzymes.

    PubMed Central

    Matsuura, K; Hara, A; Deyashiki, Y; Iwasa, H; Kume, T; Ishikura, S; Shiraishi, H; Katagiri, Y

    1998-01-01

    Human liver dihydrodiol dehydrogenase (DD; EC 1.3.1.20) exists in isoforms (DD1, DD2 and DD4) composed of 323 amino acids. DD1 and DD2 share 98% amino acid sequence identity, but show lower identities (approx. 83%) with DD4, in which a marked difference is seen in the C-terminal ten amino acids. DD4 exhibits unique catalytic properties, such as the ability to oxidize both (R)- and (S)-alicyclic alcohols equally, high dehydrogenase activity for bile acids, potent inhibition by steroidal anti-inflammatory drugs and activation by sulphobromophthalein and clofibric acid derivatives. In this study, we have prepared chimaeric enzymes, in which we exchanged the C-terminal 39 residues between the two enzymes. Compared with DD1, CDD1-4 (DD1 with the C-terminal sequence of DD4) had increased kcat/Km values for 3alpha-hydroxy-5beta-androstanes and bile acids of 3-9-fold and decreased values for the other substrates by 5-100-fold. It also became highly sensitive to DD4 inhibitors such as phenolphthalein and hexoestrol. Another chimaeric enzyme, CDD4-1 (DD4 with the C-terminal sequence of DD1), showed the same (S)-stereospecificity for the alicyclic alcohols as DD1, had decreased kcat/Km values for bile acids with 7beta- or 12alpha-hydroxy groups by more than 120-fold and was resistant to inhibition by betamethasone. In addition, the activation effects of sulphobromophthalein and bezafibrate decreased or disappeared for CDD4-1. The recombinant DD4 with the His314-->Pro (the corresponding residue of DD1) mutation showed intermediate changes in the properties between those of wild-type DD4 and CDD4-1. The results indicate that the binding of substrates, inhibitors and activators to the enzymes is controlled by residues in their C-terminal domains; multiple residues co-ordinately act as determinants for substrate specificity and inhibitor sensitivity. PMID:9820821

  17. Sensing pH via p-cyanophenylalanine fluorescence: Application to determine peptide pKa and membrane penetration kinetics.

    PubMed

    Pazos, Ileana M; Ahmed, Ismail A; Berríos, Mariana I León; Gai, Feng

    2015-08-15

    We expand the spectroscopic utility of a well-known infrared and fluorescence probe, p-cyanophenylalanine, by showing that it can also serve as a pH sensor. This new application is based on the notion that the fluorescence quantum yield of this unnatural amino acid, when placed at or near the N-terminal end of a polypeptide, depends on the protonation status of the N-terminal amino group of the peptide. Using this pH sensor, we are able to determine the N-terminal pKa values of nine tripeptides and also the membrane penetration kinetics of a cell-penetrating peptide. Taken together, these examples demonstrate the applicability of using this unnatural amino acid fluorophore to study pH-dependent biological processes or events that accompany a pH change. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. HLA-DRB1 rheumatoid arthritis risk in African Americans at multiple levels: Hierarchical classification systems, amino acid positions and residues

    PubMed Central

    Reynolds, Richard J.; Ahmed, Altan F.; Danila, Maria I.; Hughes, Laura B.; Gregersen, Peter K.; Raychaudhuri, Soumya; Plenge, Robert M.; Bridges, S. Louis

    2014-01-01

    Objective To evaluate African American rheumatoid arthritis HLA-DRB1 genetic risk by three validated allele classification systems, and by amino acid position and residue. To compare the genetic risk between African American and European ancestries. Methods Four-digit HLA-DRB1 genotyping was performed on 561 autoantibody-positive African American cases and 776 African American controls. Association analysis was performed on Tezenas du Montcel (TdM); de Vries (DV); and Mattey classification system alleles and separately by amino acid position and individual residues. Results TdM S2 and S3P alleles were associated with RA (odds ratios (95% CI) 2.8 (2.0, 3.9) and 2.1 (1.7, 2.7), respectively). The DV (P-value=3.2 x 10−12) and Mattey (P-value=6.5 x 10−13) system alleles were both protective in African Americans. Amino acid position 11 (permutation P-value < 0.00001) accounted for nearly all variability explained by HLA-DRB1, although conditional analysis demonstrated that position 57 was also significant (0.01<= permutation P-val <=0.05). The valine and aspartic acid residues at position 11 conferred the highest risk for RA in African Americans. Conclusion With some exceptions, the genetic risk conferred by HLA-DRB1 in African Americans is similar to European ancestry at multiple levels: classification system (e.g., TdM), amino acid position (e.g. 11) and residue (Val 11). Unlike that reported from European ancestry, amino acid position 57 was associated with RA in African Americans, but positions 71 and 74 were not. Asp11 (OR = 1 in European ancestry) corresponds to the four digit classical allele, *09:01, also a risk allele for RA in Koreans. PMID:25524867

  19. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  20. Amino Acids Regulate Transgene Expression in MDCK Cells

    PubMed Central

    Torrente, Marta; Guetg, Adriano; Sass, Jörn Oliver; Arps, Lisa; Ruckstuhl, Lisa; Camargo, Simone M. R.; Verrey, François

    2014-01-01

    Gene expression and cell growth rely on the intracellular concentration of amino acids, which in metazoans depends on extracellular amino acid availability and transmembrane transport. To investigate the impact of extracellular amino acid concentrations on the expression of a concentrative amino acid transporter, we overexpressed the main kidney proximal tubule luminal neutral amino acid transporter B0AT1-collectrin (SLC6A19-TMEM27) in MDCK cell epithelia. Exogenously expressed proteins co-localized at the luminal membrane and mediated neutral amino acid uptake. However, the transgenes were lost over few cell culture passages. In contrast, the expression of a control transgene remained stable. To test whether this loss was due to inappropriately high amino acid uptake, freshly transduced MDCK cell lines were cultivated either with physiological amounts of amino acids or with the high concentration found in standard cell culture media. Expression of exogenous transporters was unaffected by physiological amino acid concentration in the media. Interestingly, mycoplasma infection resulted in a significant increase in transgene expression and correlated with the rapid metabolism of L-arginine. However, L-arginine metabolites were shown to play no role in transgene expression. In contrast, activation of the GCN2 pathway revealed by an increase in eIF2α phosphorylation may trigger transgene derepression. Taken together, high extracellular amino acid concentration provided by cell culture media appears to inhibit the constitutive expression of concentrative amino acid transporters whereas L-arginine depletion by mycoplasma induces the expression of transgenes possibly via stimulation of the GCN2 pathway. PMID:24797296

  1. Protein targeting and integration signal for the chloroplastic outer envelope membrane.

    PubMed Central

    Li, H M; Chen, L J

    1996-01-01

    Most proteins in chloroplasts are encoded by the nuclear genome and synthesized in the cytosol. With the exception of most quter envelope membrane proteins, nuclear-encoded chloroplastic proteins are synthesized with N-terminal extensions that contain the chloroplast targeting information of these proteins. Most outer membrane proteins, however, are synthesized without extensions in the cytosol. Therefore, it is not clear where the chloroplastic outer membrane targeting information resides within these polypeptides. We have analyzed a chloroplastic outer membrane protein, OEP14 (outer envelope membrane protein of 14 kD, previously named OM14), and localized its outer membrane targeting and integration signal to the first 30 amino acids of the protein. This signal consists of a positively charged N-terminal portion followed by a hydrophobic core, bearing resemblance to the signal peptides of proteins targeted to the endoplasmic reticulum. However, a chimeric protein containing this signal fused to a passenger protein did not integrate into the endoplasmic reticulum membrane. Furthermore, membrane topology analysis indicated that the signal inserts into the chloroplastic outer membrane in an orientation opposite to that predicted by the "positive inside" rule. PMID:8953775

  2. C-terminal oligomerization of podocin mediates interallelic interactions.

    PubMed

    Stráner, Pál; Balogh, Eszter; Schay, Gusztáv; Arrondel, Christelle; Mikó, Ágnes; L'Auné, Gerda; Benmerah, Alexandre; Perczel, András; K Menyhárd, Dóra; Antignac, Corinne; Mollet, Géraldine; Tory, Kálmán

    2018-07-01

    Interallelic interactions of membrane proteins are not taken into account while evaluating the pathogenicity of sequence variants in autosomal recessive disorders. Podocin, a membrane-anchored component of the slit diaphragm, is encoded by NPHS2, the major gene mutated in hereditary podocytopathies. We formerly showed that its R229Q variant is only pathogenic when trans-associated to specific 3' mutations and suggested the causal role of an abnormal C-terminal dimerization. Here we show by FRET analysis and size exclusion chromatography that podocin oligomerization occurs exclusively through the C-terminal tail (residues 283-382): principally through the first C-terminal helical region (H1, 283-313), which forms a coiled coil as shown by circular dichroism spectroscopy, and through the 332-348 region. We show the principal role of the oligomerization sites in mediating interallelic interactions: while the monomer-forming R286Tfs*17 podocin remains membranous irrespective of the coexpressed podocin variant identity, podocin variants with an intact H1 significantly influence each other's localization (r 2  = 0.68, P = 9.2 × 10 -32 ). The dominant negative effect resulting in intracellular retention of the pathogenic F344Lfs*4-R229Q heterooligomer occurs in parallel with a reduction in the FRET efficiency, suggesting the causal role of a conformational rearrangement. On the other hand, oligomerization can also promote the membrane localization: it can prevent the endocytosis of F344Lfs*4 or F344* podocin mutants induced by C-terminal truncation. In conclusion, C-terminal oligomerization of podocin can mediate both a dominant negative effect and interallelic complementation. Interallelic interactions of NPHS2 are not restricted to the R229Q variant and have to be considered in compound heterozygous individuals. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. A coarse-grained model of the effective interaction for charged amino acid residues and its application to formation of GCN4-pLI tetramer

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Kazutomo; Nakagawa, Satoshi; Kurniawan, Isman; Kodama, Koichi; Arwansyah, Muhammad Saleh; Nagao, Hidemi

    2018-03-01

    We present a simple coarse-grained model of the effective interaction for charged amino acid residues, such as Glu and Lys, in a water solvent. The free-energy profile as a function of the distance between two charged amino acid side-chain analogues in an explicit water solvent is calculated with all-atom molecular dynamics simulation and thermodynamic integration method. The calculated free-energy profile is applied to the coarse-grained potential of the effective interaction between two amino acid residues. The Langevin dynamics simulations with our coarse-grained potential are performed for association of a small protein complex, GCN4-pLI tetramer. The tetramer conformation reproduced by our coarse-grained model is similar to the X-ray crystallographic structure. We show that the effective interaction between charged amino acid residues stabilises association and orientation of protein complex. We also investigate the association pathways of GCN4-pLI tetramer.

  4. Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen.

    PubMed

    Smith, L T; Wertelecki, W; Milstone, L M; Petty, E M; Seashore, M R; Braverman, I M; Jenkins, T G; Byers, P H

    1992-08-01

    Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules.

  5. Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii.

    PubMed

    Gayen, Shovanlal; Balakrishna, Asha M; Biuković, Goran; Yulei, Wu; Hunke, Cornelia; Grüber, Gerhard

    2008-04-01

    The boomerang-like H subunit of A(1)A(0) ATP synthase forms one of the peripheral stalks connecting the A(1) and A(0) sections. Structural analyses of the N-terminal part (H1-47) of subunit H of the A(1)A(0) ATP synthase from Methanocaldococcus jannaschii have been performed by NMR spectroscopy. Our initial NMR structural calculations for H1-47 indicate that amino acid residues 7-44 fold into a single alpha-helical structure. Using the purified N- (E1-100) and C-terminal domains (E101-206) of subunit E, NMR titration experiments revealed that the N-terminal residues Met1-6, Lys10, Glu11, Ala15, Val20 and Glu24 of H1-47 interact specifically with the N-terminal domain E1-100 of subunit E. A more detailed picture regarding the residues of E1-100 involved in this association was obtained by titration studies using the N-terminal peptides E1-20, E21-40 and E41-60. These data indicate that the N-terminal tail E41-60 interacts with the N-terminal amino acids of H1-47, and this has been confirmed by fluorescence correlation spectroscopy results. Analysis of (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra of the central stalk subunit F in the presence and absence of E101-206 show no obvious interaction between the C-terminal domain of E and subunit F. The data presented provide, for the first time, structural insights into the interaction of subunits E and H, and their arrangement within A(1)A(0) ATP synthase.

  6. MacA, a Periplasmic Membrane Fusion Protein of the Macrolide Transporter MacAB-TolC, Binds Lipopolysaccharide Core Specifically and with High Affinity

    PubMed Central

    Lu, Shuo

    2013-01-01

    The Escherichia coli MacAB-TolC transporter has been implicated in efflux of macrolide antibiotics and secretion of enterotoxin STII. In this study, we found that purified MacA, a periplasmic membrane fusion protein, contains one tightly bound rough core lipopolysaccharide (R-LPS) molecule per MacA molecule. R-LPS was bound specifically to MacA protein with affinity exceeding that of polymyxin B. Sequence analyses showed that MacA contains two high-density clusters of positively charged amino acid residues located in the cytoplasmic N-terminal domain and the periplasmic C-terminal domain. Substitutions in the C-terminal cluster reducing the positive-charge density completely abolished binding of R-LPS. At the same time, these substitutions significantly reduced the functionality of MacA in the protection of E. coli against macrolides in vivo and in the in vitro MacB ATPase stimulation assays. Taken together, our results suggest that R-LPS or a similar glycolipid is a physiological substrate of MacAB-TolC. PMID:23974027

  7. DNA sequencing using fluorescence background electroblotting membrane

    DOEpatents

    Caldwell, Karin D.; Chu, Tun-Jen; Pitt, William G.

    1992-01-01

    A method for the multiplex sequencing on DNA is disclosed which comprises the electroblotting or specific base terminated DNA fragments, which have been resolved by gel electrophoresis, onto the surface of a neutral non-aromatic polymeric microporous membrane exhibiting low background fluorescence which has been surface modified to contain amino groups. Polypropylene membranes are preferably and the introduction of amino groups is accomplished by subjecting the membrane to radio or microwave frequency plasma discharge in the presence of an aminating agent, preferably ammonia. The membrane, containing physically adsorbed DNA fragments on its surface after the electroblotting, is then treated with crosslinking means such as UV radiation or a glutaraldehyde spray to chemically bind the DNA fragments to the membrane through said smino groups contained on the surface thereof. The DNA fragments chemically bound to the membrane are subjected to hybridization probing with a tagged probe specific to the sequence of the DNA fragments. The tagging may be by either fluorophores or radioisotopes. The tagged probes hybridized to said target DNA fragments are detected and read by laser induced fluorescence detection or autoradiograms. The use of aminated low fluorescent background membranes allows the use of fluorescent detection and reading even when the available amount of DNA to be sequenced is small. The DNA bound to the membrances may be reprobed numerous times.

  8. The C-terminal HRET sequence of Kv1.3 regulates gating rather than targeting of Kv1.3 to the plasma membrane.

    PubMed

    Voros, Orsolya; Szilagyi, Orsolya; Balajthy, András; Somodi, Sándor; Panyi, Gyorgy; Hajdu, Péter

    2018-04-12

    Kv1.3 channels are expressed in several cell types including immune cells, such as T lymphocytes. The targeting of Kv1.3 to the plasma membrane is essential for T cell clonal expansion and assumed to be guided by the C-terminus of the channel. Using two point mutants of Kv1.3 with remarkably different features compared to the wild-type Kv1.3 (A413V and H399K having fast inactivation kinetics and tetraethylammonium-insensitivity, respectively) we showed that both Kv1.3 channel variants target to the membrane when the C-terminus was truncated right after the conserved HRET sequence and produce currents identical to those with a full-length C-terminus. The truncation before the HRET sequence (NOHRET channels) resulted in reduced membrane-targeting but non-functional phenotypes. NOHRET channels did not display gating currents, and coexpression with wild-type Kv1.3 did not rescue the NOHRET-A413V phenotype, no heteromeric current was observed. Interestingly, mutants of wild-type Kv1.3 lacking HRET(E) (deletion) or substituted with five alanines for the HRET(E) motif expressed current indistinguishable from the wild-type. These results demonstrate that the C-terminal region of Kv1.3 immediately proximal to the S6 helix is required for the activation gating and conduction, whereas the presence of the distal region of the C-terminus is not exclusively required for trafficking of Kv1.3 to the plasma membrane.

  9. Atg22p, a vacuolar membrane protein involved in the amino acid compartmentalization of Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Kawano, Miyuki; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2011-01-01

    The fission yeast Schizosaccharomyces pombe has a homolog of the budding yeast Atg22p, which is involved in spore formation (Mukaiyama H. et al., Microbiology, 155, 3816-3826 (2009)). GFP-tagged Atg22p in the fission yeast was localized to the vacuolar membrane. Upon disruption of atg22, the amino acid levels of the cellular fraction as well as the vacuolar fraction decreased. The uptake of several amino acids, such as lysine, histidine, and arginine, was impaired in atg22Δ cells. S. pombe Atg22p plays an important role in the compartmentalization of amino acids.

  10. Vba2p, a vacuolar membrane protein involved in basic amino acid transport in Schizosaccharomyces pombe.

    PubMed

    Sugimoto, Naoko; Iwaki, Tomoko; Chardwiriyapreecha, Soracom; Shimazu, Masamitsu; Sekito, Takayuki; Takegawa, Kaoru; Kakinuma, Yoshimi

    2010-01-01

    A recent study filling the gap in the genome sequence in the left arm of chromosome 2 of Schizosaccharomyces pombe revealed a homolog of budding yeast Vba2p, a vacuolar transporter of basic amino acids. GFP-tagged Vba2p in fission yeast was localized to the vacuolar membrane. Upon disruption of vba2, the uptake of several amino acids, including lysine, histidine, and arginine, was impaired. A transient increase in lysine uptake under nitrogen starvation was lowered by this mutation. These findings suggest that Vba2p is involved in basic amino acid transport in S. pombe under diverse conditions.

  11. Structure Predictions of Two Bauhinia variegata Lectins Reveal Patterns of C-Terminal Properties in Single Chain Legume Lectins

    PubMed Central

    Moreira, Gustavo M. S. G.; Conceição, Fabricio R.; McBride, Alan J. A.; Pinto, Luciano da S.

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and –II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins. PMID:24260572

  12. Structure predictions of two Bauhinia variegata lectins reveal patterns of C-terminal properties in single chain legume lectins.

    PubMed

    Moreira, Gustavo M S G; Conceição, Fabricio R; McBride, Alan J A; Pinto, Luciano da S

    2013-01-01

    Bauhinia variegata lectins (BVL-I and BVL-II) are single chain lectins isolated from the plant Bauhinia variegata. Single chain lectins undergo post-translational processing on its N-terminal and C-terminal regions, which determines their physiological targeting, carbohydrate binding activity and pattern of quaternary association. These two lectins are isoforms, BVL-I being highly glycosylated, and thus far, it has not been possible to determine their structures. The present study used prediction and validation algorithms to elucidate the likely structures of BVL-I and -II. The program Bhageerath-H was chosen from among three different structure prediction programs due to its better overall reliability. In order to predict the C-terminal region cleavage sites, other lectins known to have this modification were analysed and three rules were created: (1) the first amino acid of the excised peptide is small or hydrophobic; (2) the cleavage occurs after an acid, polar, or hydrophobic residue, but not after a basic one; and (3) the cleavage spot is located 5-8 residues after a conserved Leu amino acid. These rules predicted that BVL-I and -II would have fifteen C-terminal residues cleaved, and this was confirmed experimentally by Edman degradation sequencing of BVL-I. Furthermore, the C-terminal analyses predicted that only BVL-II underwent α-helical folding in this region, similar to that seen in SBA and DBL. Conversely, BVL-I and -II contained four conserved regions of a GS-I association, providing evidence of a previously undescribed X4+unusual oligomerisation between the truncated BVL-I and the intact BVL-II. This is the first report on the structural analysis of lectins from Bauhinia spp. and therefore is important for the characterisation C-terminal cleavage and patterns of quaternary association of single chain lectins.

  13. Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane.

    PubMed

    Elazar, Assaf; Weinstein, Jonathan; Biran, Ido; Fridman, Yearit; Bibi, Eitan; Fleishman, Sarel Jacob

    2016-01-29

    Insertion of helix-forming segments into the membrane and their association determines the structure, function, and expression levels of all plasma membrane proteins. However, systematic and reliable quantification of membrane-protein energetics has been challenging. We developed a deep mutational scanning method to monitor the effects of hundreds of point mutations on helix insertion and self-association within the bacterial inner membrane. The assay quantifies insertion energetics for all natural amino acids at 27 positions across the membrane, revealing that the hydrophobicity of biological membranes is significantly higher than appreciated. We further quantitate the contributions to membrane-protein insertion from positively charged residues at the cytoplasm-membrane interface and reveal large and unanticipated differences among these residues. Finally, we derive comprehensive mutational landscapes in the membrane domains of Glycophorin A and the ErbB2 oncogene, and find that insertion and self-association are strongly coupled in receptor homodimers.

  14. Akt recruits Dab2 to albumin endocytosis in the proximal tubule.

    PubMed

    Koral, Kelly; Li, Hui; Ganesh, Nandita; Birnbaum, Morris J; Hallows, Kenneth R; Erkan, Elif

    2014-12-15

    Proximal tubule epithelial cells have a highly sophisticated endocytic machinery to retrieve the albumin in the glomerular filtrate. The megalin-cubilin complex and the endocytic adaptor disabled-2 (Dab2) play a pivotal role in albumin endocytosis. We previously demonstrated that protein kinase B (Akt) regulates albumin endocytosis in the proximal tubule through an interaction with Dab2. Here, we examined the nature of Akt-Dab2 interaction. The pleckstrin homology (PH) and catalytic domains (CD) of Akt interacted with the proline-rich domain (PRD) of Dab2 based on yeast-two hybrid (Y2H) experiments. Pull-down experiments utilizing the truncated constructs of Dab2 demonstrated that the initial 11 amino acids of Dab2-PRD were sufficient to mediate the interaction between Akt and Dab2. Endocytosis experiments utilizing Akt1- and Akt2-silencing RNA revealed that both Akt1 and Akt2 mediate albumin endocytosis in proximal tubule epithelial cells; therefore, Akt1 and Akt2 may play a compensatory role in albumin endocytosis. Furthermore, both Akt isoforms phosphorylated Dab2 at Ser residues 448 and 449. Ser-to-Ala mutations of these Dab2 residues inhibited albumin endocytosis and resulted in a shift in location of Dab2 from the peripheral to the perinuclear area, suggesting the physiological relevance of these phosphorylation sites in albumin endocytosis. We conclude that both Akt1 and Akt2 are involved in albumin endocytosis, and phosphorylation of Dab2 by Akt induces albumin endocytosis in proximal tubule epithelial cells. Further delineation of how Akt affects expression/phosphorylation of endocytic adaptors and receptors will enhance our understanding of the molecular network triggered by albumin overload in the proximal tubule. Copyright © 2014 the American Physiological Society.

  15. N-terminal-mediated oligomerization of DnaA drives the occupancy-dependent rejuvenation of the protein on the membrane.

    PubMed

    Aranovich, Alexander; Braier-Marcovitz, Shani; Ansbacher, Esti; Granek, Rony; Parola, Abraham H; Fishov, Itzhak

    2015-08-13

    DnaA, the initiator of chromosome replication in most known eubacteria species, is activated once per cell division cycle. Its overall activity cycle is driven by ATP hydrolysis and ADP-ATP exchange. The latter can be promoted by binding to specific sequences on the chromosome and/or to acidic phospholipids in the membrane. We have previously shown that the transition into an active form (rejuvenation) is strongly co-operative with respect to DnaA membrane occupancy. Only at low membrane occupancy is DnaA reactivation efficiently catalysed by the acidic phospholipids. The present study was aimed at unravelling the molecular mechanism underlying the occupancy-dependent DnaA rejuvenation. We found that truncation of the DnaA N-terminal completely abolishes the co-operative transformation between the high and low occupancy states (I and II respectively) without affecting the membrane binding. The environmentally sensitive fluorophore specifically attached to the N-terminal cysteines of DnaA reported on occupancy-correlated changes in its vicinity. Cross-linking of DnaA with a short homobifunctional reagent revealed that state II of the protein on the membrane corresponds to a distinct oligomeric form of DnaA. The kinetic transition of DnaA on the membrane surface is described in the present study by a generalized 2D condensation phase transition model, confirming the existence of two states of DnaA on the membrane and pointing to the possibility that membrane protein density serves as an on-off switch in vivo. We conclude that the DnaA conformation attained at low surface density drives its N-terminal-mediated oligomerization, which is presumably a pre-requisite for facilitated nt exchange. © 2015 Authors.

  16. Ontogeny of NHE8 in the rat proximal tubule

    PubMed Central

    Becker, Amy M.; Zhang, Jianning; Goyal, Sunita; Dwarakanath, Vangipuram; Aronson, Peter S.; Moe, Orson W.; Baum, Michel

    2014-01-01

    Proximal tubule bicarbonate reabsorption is primarily mediated via the Na+/H+ exchanger, identified as NHE3 in adults. Previous studies have demonstrated a maturational increase in rat proximal tubule NHE3 expression, with a paucity of NHE3 expression in neonates, despite significant Na+-dependent proton secretion. Recently, a novel Na+/H+ antiporter (NHE8) was identified and found to be expressed on the apical membrane of the proximal tubule. To determine whether NHE8 may be the antiporter responsible for proton secretion in neonates, the present study characterized the developmental expression of NHE8 in rat proximal tubules. RNA blots and real-time RT-PCR demonstrated no developmental difference in the mRNA of renal NHE8. Immunoblots, however, demonstrated peak protein abundance of NHE8 in brush border membrane vesicles of 7- and 14-day-old compared with adult rats. In contrast, the level of NHE8 expression in total cortical membrane protein was higher in adults than in neonates. Immunohistochemistry confirmed the presence of NHE8 on the apical membrane of the proximal tubules of neonatal and adult rats. These data demonstrate that NHE8 does undergo maturational changes on the apical membrane of the rat proximal tubule and may account for the Na+-dependent proton flux in neonatal proximal tubules. PMID:17429030

  17. Functional similarities between pleura and the renal proximal tubule--membrane and cellular considerations.

    PubMed

    Gourgoulianis, Konstantinos I; Hatzoglou, Chryssi; Molyvdas, Paschalis-Adam

    2005-01-01

    The small amount of liquid that, under physiological conditions, is presented in the pleural cavity has been the focus of extensive research for more than a century. However, there are still unanswered questions and considerable controversies about the nature of the forces governing its movement into and out of the pleural cavity. Early in the 20th century has been proposed that pleural fluid turnover is simple based on the balance between hydraulic and colloid osmotic pressures existing across the pleural membranes. This original hypothesis has not been validated by data accumulating over the last 20 years. Pleural tissues and renal proximal tubules present high water permeability, small transepithelial electrical resistance (22.02 Omega cm2) and the same cation transportation such as Na+ channels, Na+-K+ ATPase channels, and Na+-H+ exchanger. In contrast to previous conflicting theories concerning pleura fluid movement, the same functional characteristics suggest the hypothesis that physiology of pleura is similar to proximal tubules.

  18. Analysis of Bovine Leukemia Virus Gag Membrane Targeting and Late Domain Function

    PubMed Central

    Wang, Huating; Norris, Kendra M.; Mansky, Louis M.

    2002-01-01

    Assembly of retrovirus-like particles only requires the expression of the Gag polyprotein precursor. We have exploited this in the development of a model system for studying the virus particle assembly pathway for bovine leukemia virus (BLV). BLV is closely related to the human T-cell leukemia viruses (HTLVs), and all are members of the Deltaretrovirus genus of the Retroviridae family. Overexpression of a BLV Gag polyprotein containing a carboxy-terminal influenza virus hemagglutinin (HA) epitope tag in mammalian cells led to the robust production of virus-like particles (VLPs). Site-directed mutations were introduced into HA-tagged Gag to test the usefulness of this model system for studying certain aspects of the virus assembly pathway. First, mutations that disrupted the amino-terminal glycine residue that is important for Gag myristylation led to a drastic reduction in VLP production. Predictably, the nature of the VLP production defect was correlated to Gag membrane localization. Second, mutation of the PPPY motif (located in the MA domain) greatly reduced VLP production in the absence of the viral protease. This reduction in VLP production was more severe in the presence of an active viral protease. Examination of particles by electron microscopy revealed an abundance of particles that began to pinch off from the plasma membrane but were not completely released from the cell surface, indicating that the PPPY motif functions as a late domain (L domain). PMID:12134053

  19. Newly identified essential amino acid residues affecting ^8-sphingolipid desaturase activity revealed by site-directed mutagenesis

    USDA-ARS?s Scientific Manuscript database

    In order to identify amino acid residues crucial for the enzymatic activity of ^8-sphingolipid desaturases, a sequence comparison was performed among ^8-sphingolipid desaturases and ^6-fatty acid desaturase from various plants. In addition to the known conserved cytb5 (cytochrome b5) HPGG motif and...

  20. Tyrosine oxidation and nitration in transmembrane peptides is connected to lipid peroxidation.

    PubMed

    Bartesaghi, Silvina; Herrera, Daniel; Martinez, Débora M; Petruk, Ariel; Demicheli, Verónica; Trujillo, Madia; Martí, Marcelo A; Estrín, Darío A; Radi, Rafael

    2017-05-15

    Tyrosine nitration is an oxidative post-translational modification that can occur in proteins associated to hydrophobic bio-structures such as membranes and lipoproteins. In this work, we have studied tyrosine nitration in membranes using a model system consisting of phosphatidylcholine liposomes with pre-incorporated tyrosine-containing 23 amino acid transmembrane peptides. Tyrosine residues were located at positions 4, 8 or 12 of the amino terminal, resulting in different depths in the bilayer. Tyrosine nitration was accomplished by exposure to peroxynitrite and a peroxyl radical donor or hemin in the presence of nitrite. In egg yolk phosphatidylcholine liposomes, nitration was highest for the peptide with tyrosine at position 8 and dramatically increased as a function of oxygen levels. Molecular dynamics studies support that the proximity of the tyrosine phenolic ring to the linoleic acid peroxyl radicals contributes to the efficiency of tyrosine oxidation. In turn, α-tocopherol inhibited both lipid peroxidation and tyrosine nitration. The mechanism of tyrosine nitration involves a "connecting reaction" by which lipid peroxyl radicals oxidize tyrosine to tyrosyl radical and was fully recapitulated by computer-assisted kinetic simulations. Altogether, this work underscores unique characteristics of the tyrosine oxidation and nitration process in lipid-rich milieu that is fueled via the lipid peroxidation process. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Genetic and biochemical analysis of the interaction of Bacillus subtilis CodY with branched-chain amino acids.

    PubMed

    Villapakkam, Anuradha C; Handke, Luke D; Belitsky, Boris R; Levdikov, Vladimir M; Wilkinson, Anthony J; Sonenshein, Abraham L

    2009-11-01

    Bacillus subtilis CodY protein is a DNA-binding global transcriptional regulator that responds to branched-chain amino acids (isoleucine, leucine, and valine) and GTP. Crystal structure studies have shown that the N-terminal region of the protein includes a GAF domain that contains a hydrophobic pocket within which isoleucine and valine bind. This region is well conserved in CodY homologs. Site-directed mutagenesis was employed to understand the roles of some of the residues in the GAF domain and hydrophobic pocket in interaction with isoleucine and GTP. The F40A, F71E, and F98A forms of CodY were inactive in vivo. They were activatable by GTP but to a much lesser extent by branched-chain amino acids in vitro. The CodY mutant R61A retained partial repression of target promoters in vivo and was able to respond to GTP in vitro but also responded poorly to branched-chain amino acids in vitro unless GTP was simultaneously present. Thus, the GAF domain includes residues essential for full activation of CodY by branched-chain amino acids, but these residues are not critical for activation by GTP. Binding studies with branched-chain amino acids and their analogs revealed that an amino group at position 2 and a methyl group at position 3 of valine are critical components of the recognition of the amino acids by CodY.

  2. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency.

    PubMed

    Rudhe, Charlotta; Clifton, Rachel; Whelan, James; Glaser, Elzbieta

    2002-12-06

    Import of nuclear-encoded proteins into mitochondria and chloroplasts is generally organelle specific and its specificity depends on the N-terminal signal peptide. Yet, a group of proteins known as dual-targeted proteins have a targeting peptide capable of leading the mature protein to both organelles. We have investigated the domain structure of the dual-targeted pea glutathione reductase (GR) signal peptide by using N-terminal truncations. A mutant of the GR precursor (pGR) starting with the second methionine residue of the targeting peptide, pGRdelta2-4, directed import into both organelles, negating the possibility that dual import was controlled by the nature of the N terminus. The deletion of the 30 N-terminal residues (pGRdelta2-30) inhibited import efficiency into chloroplasts substantially and almost completely into mitochondria, whereas the removal of only 16 N-terminal amino acid residues (pGRdelta2-16) resulted in the strongly stimulated mitochondrial import without significantly affecting chloroplast import. Furthermore, N-terminal truncations of the signal peptide (pGRdelta2-16 and pGRdelta2-30) greatly stimulated the mitochondrial processing activity measured with the isolated processing peptidase. These results suggest a domain structure for the dual-targeting peptide of pGR and the existence of domains controlling organellar import efficiency therein.

  3. Influence of membrane composition on osmosensing by the betaine carrier BetP from Corynebacterium glutamicum.

    PubMed

    Schiller, Dirk; Ott, Vera; Krämer, Reinhard; Morbach, Susanne

    2006-03-24

    The glycine betaine carrier BetP from Corynebacterium glutamicum was recently shown to function as both an osmosensor and osmoregulator in proteoliposomes made from Escherichia coli phospholipids by sensing changes in the internal K+ concentration as a measure of hyperosmotic stress (Rübenhagen, R., Morbach, S., and Krämer, R. (2001) EMBO J. 20, 5412-5420). Furthermore, evidence was provided that a stretch of 25 amino acids of the C-terminal domain of BetP is critically involved in K+ sensing. This K+-sensitive region has been further characterized. Glu572 turned out to be important for osmosensing in E. coli cells and in proteoliposomes made from E. coli phospholipids. BetP mutants E572K, E572P, and E572A/H573A/R574A were unable to detect an increase in the internal K+ concentration in this membrane environment. However, these BetP variants regained their ability to detect osmotic stress in membranes with increased phosphatidylglycerol content, i.e. in intact C. glutamicum cells or in proteoliposomes mimicking the composition of the C. glutamicum membrane. Mutants E572P and Y550P were still insensitive to osmotic stress also in this membrane background. These results led to the following conclusions. (i) The K+ sensor in mutants E572Q, E572D, and E572K is only partially impaired. (ii) Restoration of activity regulation is not possible if the correct conformation or orientation of the C-terminal domain is compromised by a proline residue at position 572 or 550. (iii) Phosphatidylglycerol in the membrane of C. glutamicum seems to stabilize the inactive conformation of BetP C252T and other mutants.

  4. Correction of Residual Ventral Penile Curvature After Division of the Urethral Plate in the First Stage of a 2-Stage Proximal Hypospadias Repair.

    PubMed

    Schlomer, Bruce J

    2017-02-01

    The first stage of a 2-stage proximal hypospadias repair involves division of the urethral plate and correction of any residual ventral penile curvature (VPC). Options to correct residual VPC include dorsal corporal shortening or ventral corporal lengthening techniques. This review discusses these options and suggests an approach to management. Recent reports of 2-stage proximal hypospadias repairs indicate low rates of recurrent VPC with either dorsal corporal shortening or ventral corporal lengthening. Dorsal corporal shortening with dorsal plication may be preferentially used for mild to moderate residual VPC after division of urethral plate and ventral corporal lengthening reserved for severe residual VPC. Ventral corporal lengthening with grafts has been associated with urethroplasty complications after the second stage hypospadias surgery. Ventral corporal lengthening with relaxing incisions of corpora has been reported, but concerns about adverse effects require longer term studies. Little guidance exists to choose the best technique for VPC correction during first stage hypospadias repair after division of urethral plate. Reported literature suggests good results with dorsal plication techniques and ventral corporal lengthening. A practical approach is to use dorsal plication techniques for mild to moderate residual VPC after division of urethral plate (<45°) and reserve ventral corporal lengthening for severe residual VPC (>45°).

  5. Localization of key amino acid residues in the dominant conformational epitopes on thyroid peroxidase recognized by mouse monoclonal antibodies.

    PubMed

    Godlewska, Marlena; Czarnocka, Barbara; Gora, Monika

    2012-09-01

    Autoantibodies to thyroid peroxidase (TPO), the major target autoantigen in autoimmune thyroid diseases, recognize conformational epitopes limited to two immunodominant regions (IDRs) termed IDR-A and -B. The apparent restricted heterogeneity of TPO autoantibodies was discovered using TPO-specific mouse monoclonal antibodies (mAbs) and later confirmed by human recombinant Fabs. In earlier studies we identified key amino acids crucial for the interaction of human autoantibodies with TPO. Here we show the critical residues that participate in binding of five mAbs to the conformational epitopes on the TPO surface. Using ELISA we tested the reactivity of single and multiple TPO mutants expressed in CHO cells with a panel of mAbs specifically recognizing IDR-A (mAb 2 and 9) and IDR-B (mAb 15, 18, 64). We show that antibodies recognizing very similar regions on the TPO surface may interact with different sets of residues. We found that residues K713 and E716 contribute to the interaction between mAb 2 and TPO. The epitope for mAb 9 is critically dependent on residues R646 and E716. Moreover, we demonstrate that amino acids E604 and D630 are part of the functional epitope for mAb 15, and amino acids D624 and K627 for mAb 18. Finally, residues E604, D620, D624, K627, and D630 constitute the epitope for mAb 64. This is the first detailed study identifying the key resides for binding of mAbs 2, 9, 15, 18, and 64. Better understanding of those antibodies' specificity will be helpful in elucidating the properties of TPO as an antigen in autoimmune disorders.

  6. Oxidation of the N-terminal methionine of lens alpha-A crystallin

    NASA Technical Reports Server (NTRS)

    Takemoto, L.; Horwitz, J.; Emmons, T.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Antiserum against the N-terminal peptide of bovine alpha-A crystallin has been used to monitor purification of two different seropositive peptides (i.e. T1a and T1b) from a tryptic digest of bovine lens proteins. Both these peptides have similar amino acid compositions, but peptide T1b has a molecular weight 16 atomic mass units larger than T1a, suggesting posttranslational modification. Analysis of ionization fragments of the T1b peptide by mass spectrometry demonstrates that this difference in molecular weight is due to the in vivo oxidation of the N-terminal met residue of the alpha-A crystallin molecule.

  7. Cholesterol-dependent energy transfer between fluorescent proteins-insights into protein proximity of APP and BACE1 in different membranes in Niemann-Pick type C disease cells.

    PubMed

    von Einem, Bjoern; Weber, Petra; Wagner, Michael; Malnar, Martina; Kosicek, Marko; Hecimovic, Silva; Arnim, Christine A F von; Schneckenburger, Herbert

    2012-11-26

    Förster resonance energy transfer (FRET) -based techniques have recently been applied to study the interactions between β-site APP-cleaving enzyme-GFP (BACE1-GFP) and amyloid precursor protein-mRFP (APP-mRFP) in U373 glioblastoma cells. In this context, the role of APP-BACE1 proximity in Alzheimer's disease (AD) pathogenesis has been discussed. FRET was found to depend on intracellular cholesterol levels and associated alterations in membrane stiffness. Here, NPC1 null cells (CHO-NPC1-/-), exhibiting increased cholesterol levels and disturbed cholesterol transport similar to that observed in Niemann-Pick type C disease (NPC), were used to analyze the influence of altered cholesterol levels on APP-BACE1 proximity. Fluorescence lifetime measurements of whole CHO-wild type (WT) and CHO-NPC1-/- cells (EPI-illumination microscopy), as well as their plasma membranes (total internal reflection fluorescence microscopy, TIRFM), were performed. Additionally, generalized polarization (GP) measurements of CHO-WT and CHO-NPC1-/- cells incubated with the fluorescence marker laurdan were performed to determine membrane stiffness of plasma- and intracellular-membranes. CHO-NPC1-/- cells showed higher membrane stiffness at intracellular- but not plasma-membranes, equivalent to cholesterol accumulation in late endosomes/lysosomes. Along with higher membrane stiffness, the FRET efficiency between BACE1-GFP and APP-mRFP was reduced at intracellular membranes, but not within the plasma membrane of CHO-NPC1-/-. Our data show that FRET combined with TIRF is a powerful technique to determine protein proximity and membrane fluidity in cellular models of neurodegenerative diseases.

  8. Urate oxidase is imported into peroxisomes recognizing the C-terminal SKL motif of proteins.

    PubMed

    Miura, S; Oda, T; Funai, T; Ito, M; Okada, Y; Ichiyama, A

    1994-07-01

    Rat liver urate oxidase synthesized from cDNA through coupled transcription and translation was incubated at 26 degrees C for 60 min with purified peroxisomes from rat liver. Urate oxidase was efficiently imported into the peroxisomes, as determined by resistance to externally added proteinase K. The amount of imported urate oxidase increased with time and the import was temperature dependent. A synthetic peptide composed of the C-terminal 10 amino acid residues of acyl-CoA oxidase (the C-terminal tripeptide is Ser-Lys-Leu) inhibited the import of urate oxidase, whereas other peptides, in which the C-terminal Ser-Lys-Leu (SKL) sequence was deleted or mutated, were not effective. Two mutant urate oxidase proteins in which the C-terminal Ser-Arg-Leu (SRL) sequence was deleted or mutated to Ser-Glu-Leu (SEL) were not imported into peroxisomes. With substitution of a lysine residue for arginine in the SRL tripeptide at the C-terminus the import activity was retained. These results show that urate oxidase is important into peroxisomes via a common pathway with acyl-CoA oxidase, and that the C-terminal SRL sequence functions as a peroxisomal-targeting signal.

  9. Human dermatosparaxis: a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen.

    PubMed Central

    Smith, L T; Wertelecki, W; Milstone, L M; Petty, E M; Seashore, M R; Braverman, I M; Jenkins, T G; Byers, P H

    1992-01-01

    Dermatosparaxis is a recessively inherited connective-tissue disorder that results from lack of the activity of type I procollagen N-proteinase, the enzyme that removes the amino-terminal propeptides from type I procollagen. Initially identified in cattle more than 20 years ago, the disorder was subsequently characterized in sheep, cats, and dogs. Affected animals have fragile skin, lax joints, and often die prematurely because of sepsis following avulsion of portions of skin. We recently identified two children with soft, lax, and fragile skin, which, when examined by transmission electron microscopy, contained the twisted, ribbon-like collagen fibrils characteristic of dermatosparaxis. Skin extracts from one child contained collagen precursors with amino-terminal extensions. Cultured fibroblasts from both children failed to cleave the amino-terminal propeptides from the pro alpha 1(I) and pro alpha 2(I) chains in type I procollagen molecules. Extracts of normal cells cleaved to collagen, the type I procollagen synthesized by cells from both children, demonstrating that the enzyme, not the substrate, was defective. These findings distinguish dermatosparaxis from Ehlers-Danlos syndrome type VII, which results from substrate mutations that prevent proteolytic processing of type I procollagen molecules. Images Figure 5 Figure 2 Figure 3 Figure 1 Figure 4 Figure 6 PMID:1642226

  10. Rsp5 WW domains interact directly with the carboxyl-terminal domain of RNA polymerase II.

    PubMed

    Chang, A; Cheang, S; Espanel, X; Sudol, M

    2000-07-07

    RSP5 is an essential gene in Saccharomyces cerevisiae and was recently shown to form a physical and functional complex with RNA polymerase II (RNA pol II). The amino-terminal half of Rsp5 consists of four domains: a C2 domain, which binds membrane phospholipids; and three WW domains, which are protein interaction modules that bind proline-rich ligands. The carboxyl-terminal half of Rsp5 contains a HECT (homologous to E6-AP carboxyl terminus) domain that catalytically ligates ubiquitin to proteins and functionally classifies Rsp5 as an E3 ubiquitin-protein ligase. The C2 and WW domains are presumed to act as membrane localization and substrate recognition modules, respectively. We report that the second (and possibly third) Rsp5 WW domain mediates binding to the carboxyl-terminal domain (CTD) of the RNA pol II large subunit. The CTD comprises a heptamer (YSPTSPS) repeated 26 times and a PXY core that is critical for interaction with a specific group of WW domains. An analysis of synthetic peptides revealed a minimal CTD sequence that is sufficient to bind to the second Rsp5 WW domain (Rsp5 WW2) in vitro and in yeast two-hybrid assays. Furthermore, we found that specific "imperfect" CTD repeats can form a complex with Rsp5 WW2. In addition, we have shown that phosphorylation of this minimal CTD sequence on serine, threonine and tyrosine residues acts as a negative regulator of the Rsp5 WW2-CTD interaction. In view of the recent data pertaining to phosphorylation-driven interactions between the RNA pol II CTD and the WW domain of Ess1/Pin1, we suggest that CTD dephosphorylation may be a prerequisite for targeted RNA pol II degradation.

  11. The amino-terminal region of the retinoblastoma gene product binds a novel nuclear matrix protein that co-localizes to centers for RNA processing

    PubMed Central

    1994-01-01

    The tumor suppressing capacity of the retinoblastoma protein (p110RB) is dependent on interactions made with cellular proteins through its carboxy-terminal domains. How the p110RB amino-terminal region contributes to this activity is unclear, though evidence now indicates it is important for both growth suppression and regulation of the full- length protein. We have used the yeast two-hybrid system to screen for cellular proteins which bind to the first 300 amino acids of p110RB. The only gene isolated from this screen encodes a novel 84-kD nuclear matrix protein that localizes to subnuclear regions associated with RNA processing. This protein, p84, requires a structurally defined domain in the amino terminus of p110RB for binding. Furthermore, both in vivo and in vitro experiments demonstrate that p84 binds preferentially to the functionally active, hypophosphorylated form of p110RB. Thus, the amino terminus of p110RB may function in part to facilitate the binding of growth promoting factors at subnuclear regions actively involved in RNA metabolism. PMID:7525595

  12. Induction of filopodia-like protrusions in N1E-115 neuroblastoma cells by diacylglycerol kinase γ independent of its enzymatic activity: potential novel function of the C-terminal region containing the catalytic domain of diacylglycerol kinase γ.

    PubMed

    Tanino, Fumihiko; Maeda, Yuki; Sakai, Hiromichi; Sakane, Fumio

    2013-01-01

    Type I diacylglycerol kinase (DGK) isozymes (α, β, and γ) contain recoverin homology domains and calcium-binding EF-hand motifs at their N-termini. The γ-isoform of DGK is abundantly expressed in retinal and Purkinje cells; however, its function in neuronal cells remains unknown. Here, we report that the mRNA and protein levels of DGKγ, but not DGKα or β, were markedly increased in N1E-115 neuroblastoma cells upon cellular differentiation by serum starvation. Interestingly, overexpression of wild-type DGKγ, which was partially located at the plasma membrane, considerably induced the formation of slender, filopodia-like cytoplasmic projections from N1E-115 cell bodies. Deletion of the recoverin homology domain and the EF-hand motifs, which potentiated the plasma membrane localization of the isozyme, significantly enhanced the formation of the filopodia-like protrusions. Intriguingly, the catalytic activity of the isozyme is not essential for the protrusion formation. The N-terminal half of the catalytic domain and a short stretch of amino acid residues at the C-terminus are responsible for plasma membrane localization and filopodia-like process formation. Taken together, we have described a potentially novel morphological function of the C-terminal DGKγ catalytic region that is independent of its enzymatic activity.

  13. Transport of amino acids in the kidney.

    PubMed

    Makrides, Victoria; Camargo, Simone M R; Verrey, François

    2014-01-01

    Amino acids are the building blocks of proteins and key intermediates in the synthesis of biologically important molecules, as well as energy sources, neurotransmitters, regulators of cellular metabolism, etc. The efficient recovery of amino acids from the primary filtrate is a well-conserved key role of the kidney proximal tubule. Additionally, renal metabolism participates in the whole body disposition of amino acids. Therefore, a wide array of axially heterogeneously expressed transporters is localized on both epithelial membranes. For transepithelial transport, luminal uptake, which is carried out mainly by active symporters, is coupled with a mostly passive basolateral efflux. Many transporters require partner proteins for appropriate localization, or to modulate transporter activity, and/or increase substrate supply. Interacting proteins include cell surface antigens (CD98), endoplasmic reticulum proteins (GTRAP3-18 or 41), or enzymes (ACE2 and aminopeptidase N). In the past two decades, the molecular identification of transporters has led to significant advances in our understanding of amino acid transport and aminoacidurias arising from defects in renal transport. Furthermore, the three-dimensional crystal structures of bacterial homologues have been used to yield new insights on the structure and function of mammalian transporters. Additionally, transgenic animal models have contributed to our understanding of the role of amino acid transporters in the kidney and other organs and/or at critical developmental stages. Progress in elucidation of the renal contribution to systemic amino acid homeostasis requires further integration of kinetic, regulatory, and expression data of amino acid transporters into our understanding of physiological regulatory networks controlling metabolism. © 2014 American Physiological Society.

  14. Toward Understanding the Outer Membrane Uptake of Small Molecules by Pseudomonas aeruginosa*

    PubMed Central

    Eren, Elif; Parkin, Jamie; Adelanwa, Ayodele; Cheneke, Belete; Movileanu, Liviu; Khalid, Syma; van den Berg, Bert

    2013-01-01

    Because small molecules enter Gram-negative bacteria via outer membrane (OM) channels, understanding OM transport is essential for the rational design of improved and new antibiotics. In the human pathogen Pseudomonas aeruginosa, most small molecules are taken up by outer membrane carboxylate channel (Occ) proteins, which can be divided into two distinct subfamilies, OccD and OccK. Here we characterize substrate transport mediated by Occ proteins belonging to both subfamilies. Based on the determination of the OccK2-glucuronate co-crystal structure, we identify the channel residues that are essential for substrate transport. We further show that the pore regions of the channels are rigid in the OccK subfamily and highly dynamic in the OccD subfamily. We also demonstrate that the substrate carboxylate group interacts with central residues of the basic ladder, a row of arginine and lysine residues that leads to and away from the binding site at the channel constriction. Moreover, the importance of the basic ladder residues corresponds to their degree of conservation. Finally, we apply the generated insights by converting the archetype of the entire family, OccD1, from a basic amino acid-specific channel into a channel with a preference for negatively charged amino acids. PMID:23467408

  15. Accurate prediction of hot spot residues through physicochemical characteristics of amino acid sequences.

    PubMed

    Chen, Peng; Li, Jinyan; Wong, Limsoon; Kuwahara, Hiroyuki; Huang, Jianhua Z; Gao, Xin

    2013-08-01

    Hot spot residues of proteins are fundamental interface residues that help proteins perform their functions. Detecting hot spots by experimental methods is costly and time-consuming. Sequential and structural information has been widely used in the computational prediction of hot spots. However, structural information is not always available. In this article, we investigated the problem of identifying hot spots using only physicochemical characteristics extracted from amino acid sequences. We first extracted 132 relatively independent physicochemical features from a set of the 544 properties in AAindex1, an amino acid index database. Each feature was utilized to train a classification model with a novel encoding schema for hot spot prediction by the IBk algorithm, an extension of the K-nearest neighbor algorithm. The combinations of the individual classifiers were explored and the classifiers that appeared frequently in the top performing combinations were selected. The hot spot predictor was built based on an ensemble of these classifiers and to work in a voting manner. Experimental results demonstrated that our method effectively exploited the feature space and allowed flexible weights of features for different queries. On the commonly used hot spot benchmark sets, our method significantly outperformed other machine learning algorithms and state-of-the-art hot spot predictors. The program is available at http://sfb.kaust.edu.sa/pages/software.aspx. Copyright © 2013 Wiley Periodicals, Inc.

  16. cDNA cloning, functional expression and cellular localization of rat liver mitochondrial electron-transfer flavoprotein-ubiquinone oxidoreductase protein.

    PubMed

    Huang, Shengbing; Song, Wei; Lin, Qishui

    2005-08-01

    A membrane-bound protein was purified from rat liver mitochondria. After being digested with V8 protease, two peptides containing identical 14 amino acid residue sequences were obtained. Using the 14 amino acid peptide derived DNA sequence as gene specific primer, the cDNA of correspondent gene 5'-terminal and 3'-terminal were obtained by RACE technique. The full-length cDNA that encoded a protein of 616 amino acids was thus cloned, which included the above mentioned peptide sequence. The full length cDNA was highly homologous to that of human ETF-QO, indicating that it may be the cDNA of rat ETF-QO. ETF-QO is an iron sulfur protein located in mitochondria inner membrane containing two kinds of redox center: FAD and [4Fe-4S] center. After comparing the sequence from the cDNA of the 616 amino acids protein with that of the mature protein of rat liver mitochondria, it was found that the N terminal 32 amino acid residues did not exist in the mature protein, indicating that the cDNA was that of ETF-QOp. When the cDNA was expressed in Saccharomyces cerevisiae with inducible vectors, the protein product was enriched in mitochondrial fraction and exhibited electron transfer activity (NBT reductase activity) of ETF-QO. Results demonstrated that the 32 amino acid peptide was a mitochondrial targeting peptide, and both FAD and iron-sulfur cluster were inserted properly into the expressed ETF-QO. ETF-QO had a high level expression in rat heart, liver and kidney. The fusion protein of GFP-ETF-QO co-localized with mitochondria in COS-7 cells.

  17. Nuclear uptake of an amino-terminal fragment of apolipoprotein E4 promotes cell death and localizes within microglia of the Alzheimer's disease brain.

    PubMed

    Love, Julia E; Day, Ryan J; Gause, Justin W; Brown, Raquel J; Pu, Xinzhu; Theis, Dustin I; Caraway, Chad A; Poon, Wayne W; Rahman, Abir A; Morrison, Brad E; Rohn, Troy T

    2017-01-01

    Although harboring the apolipoprotein E4 ( APOE4 ) allele is a well known risk factor in Alzheimer's disease (AD), the mechanism by which it contributes to disease risk remains elusive. To investigate the role of proteolysis of apoE4 as a potential mechanism, we designed and characterized a site-directed cleavage antibody directed at position D151 of the mature form of apoE4 and E3. Characterization of this antibody indicated a high specificity for detecting synthesized recombinant proteins corresponding to the amino acid sequences 1-151 of apoE3 and E4 that would generate the 17 kDa (p17) fragment. In addition, this antibody also detected a ~17 kDa amino-terminal fragment of apoE4 following incubation with collagenase and matrix metalloproteinase-9 (MMP-9), but did not react with full-length apoE4. Application of this amino-terminal apoE cleavage-fragment (nApoECFp17) antibody, revealed nuclear labeling within glial cells and labeling of a subset of neurofibrillary tangles in the human AD brain. A quantitative analysis indicated that roughly 80% of labeled nuclei were microglia. To confirm these findings, cultured BV2 microglia cells were incubated with the amino-terminal fragment of apoE4 corresponding to the cleavage site at D151. The results indicated efficient uptake of this fragment and trafficking to the nucleus that also resulted in significant cell death. In contrast, a similarly designed apoE3 fragment showed no toxicity and primarily localized within the cytoplasm. These data suggest a novel cleavage event by which apoE4 is cleaved by the extracellular proteases, collagenase and MMP-9, generating an amino-terminal fragment that is then taken up by microglia, traffics to the nucleus and promotes cell death. Collectively, these findings provide important mechanistic insights into the mechanism by which harboring the APOE4 allele may elevate dementia risk observed in AD.

  18. Flexible Xxx–Asp/Asn and Gly–Xxx Residues of Equine Cytochrome c in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry

    PubMed Central

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx–Asp/Asn and Gly–Xxx, were identified from the discontinuous intense peak of c′-ions originating from specific cleavage at N–Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c′-ions originating from N–Cα bond cleavage at Xxx–Asp/Asn and Gly–Xxx residues, but also C-terminal side complement z′-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX. PMID:24349908

  19. Flexible xxx-asp/asn and gly-xxx residues of equine cytochrome C in matrix-assisted laser desorption/ionization in-source decay mass spectrometry.

    PubMed

    Takayama, Mitsuo

    2012-01-01

    The backbone flexibility of a protein has been studied from the standpoint of the susceptibility of amino acid residues to in-source decay (ISD) in matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Residues more susceptible to MALDI-ISD, namely Xxx-Asp/Asn and Gly-Xxx, were identified from the discontinuous intense peak of c'-ions originating from specific cleavage at N-Cα bonds of the backbone of equine cytochrome c. The identity of the residues susceptible to ISD was consistent with the known flexible backbone amides as estimated by hydrogen/deuterium exchange (HDX) experiments. The identity of these flexible amino acid residues (Asp, Asn, and Gly) is consistent with the fact that these residues are preferred in flexible secondary structure free from intramolecular hydrogen-bonded structures such as α-helix and β-sheet. The MALDI-ISD spectrum of equine cytochrome c gave not only intense N-terminal side c'-ions originating from N-Cα bond cleavage at Xxx-Asp/Asn and Gly-Xxx residues, but also C-terminal side complement z'-ions originating from the same cleavage sites. The present study implies that MALDI-ISD can give information about backbone flexibility of proteins, comparable with the protection factors estimated by HDX.

  20. Antibacterial and leishmanicidal activities of temporin-SHd, a 17-residue long membrane-damaging peptide.

    PubMed

    Abbassi, Feten; Raja, Zahid; Oury, Bruno; Gazanion, Elodie; Piesse, Christophe; Sereno, Denis; Nicolas, Pierre; Foulon, Thierry; Ladram, Ali

    2013-02-01

    Temporins are a family of short antimicrobial peptides (8-17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLF(amide)), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  1. Amino Acids of Epstein-Barr Virus Nuclear Antigen 3A Essential for Repression of Jκ-Mediated Transcription and Their Evolutionary Conservation

    PubMed Central

    Dalbiès-Tran, Rozenn; Stigger-Rosser, Evelyn; Dotson, Travis; Sample, Clare E.

    2001-01-01

    Epstein-Barr virus (EBV) nuclear antigen 3A (EBNA-3A) is essential for virus-mediated immortalization of B lymphocytes in vitro and is believed to regulate transcription of cellular and/or viral genes. One known mechanism of regulation is through its interaction with the cellular transcription factor Jκ. This interaction downregulates transcription mediated by EBNA-2 and Jκ. To identify the amino acids that play a role in this interaction, we have generated mutant EBNA-3A proteins. A mutant EBNA-3A protein in which alanine residues were substituted for amino acids 199, 200, and 202 no longer downregulated transcription. Surprisingly, this mutant protein remained able to coimmunoprecipitate with Jκ. Using a reporter gene assay based on the recruitment of Jκ by various regions spanning EBNA-3A, we have shown that this mutation abolished binding of Jκ to the N-proximal region (amino acids 125 to 222) and that no other region of EBNA-3A alone was sufficient to mediate an association with Jκ. To determine the biological significance of the interaction of EBNA-3A with Jκ, we have studied its conservation in the simian lymphocryptovirus herpesvirus papio (HVP) by cloning HVP-3A, the homolog of EBNA-3A encoded by this virus. This 903-amino-acid protein exhibited 37% identity with its EBV counterpart, mainly within the amino-terminal half. HVP-3A also interacted with Jκ through a region located between amino acids 127 and 223 and also repressed transcription mediated through EBNA-2 and Jκ. The evolutionary conservation of this function, in proteins that have otherwise significantly diverged, argues strongly for an important biological role in virus-mediated immortalization of B lymphocytes. PMID:11119577

  2. Ratiometric fluorescence-imaging assays of plant membrane traffic using polyproteins.

    PubMed

    Samalova, Marketa; Fricker, Mark; Moore, Ian

    2006-12-01

    Fluorescent protein markers are widely used to report plant membrane traffic; however, effective protocols to quantify fluorescence or marker expression are lacking. Here the 20 residue self-cleaving 2A peptide from Foot and Mouth Disease Virus was used to construct polyproteins that expressed a trafficked marker in fixed stoichiometry with a reference protein in a different cellular compartment. Various pairs of compartments were simultaneously targeted. Together with a bespoke image analysis tool, these constructs allowed biosynthetic membrane traffic to be assayed with markedly improved sensitivity, dynamic range and statistical significance using protocols compatible with the common plant transfection and transgenic systems. As marker and effector expression could be monitored in populations or individual cells, saturation phenomena could be avoided and stochastic or epigenetic influences could be controlled. Surprisingly, mutational analysis of the ratiometric assay constructs revealed that the 2A peptide was dispensable for efficient cleavage of polyproteins carrying a single internal signal peptide, whereas the signal peptide was essential. In contrast, a construct bearing two signal peptide/anchors required 2A for efficient separation and stability, but 2A caused the amino-terminal moiety of such fusions to be mis-sorted to the vacuole. A model to account for the behaviour of 2A in these and other studies in plants is proposed.

  3. The crystal structure of human soluble CD14 reveals a bent solenoid with a hydrophobic amino-terminal pocket1

    PubMed Central

    Kelley, Stacy L.; Lukk, Tiit; Nair, Satish K.; Tapping, Richard I.

    2012-01-01

    Human monocyte differentiation antigen CD14 is a pattern recognition receptor that enhances innate immune responses to infection by sensitizing host cells to bacterial lipopolysaccharide (LPS; endotoxin), lipoproteins, lipoteichoic acid and other acylated microbial products. CD14 physically delivers these lipidated microbial products to various Toll-like receptor signaling complexes that subsequently induce intracellular proinflammatory signaling cascades upon ligand binding. The ensuing cellular responses are usually protective to the host, but can also result in host fatality through sepsis. In this work, we have determined the X-ray crystal structure of human CD14. The structure reveals a bent solenoid typical of leucine rich repeat proteins with an amino terminal pocket that presumably binds acylated ligands including LPS. Comparison of human and mouse CD14 structures show great similarity in overall protein fold. However, compared to mouse CD14, human CD14 contains an expanded pocket and alternative rim residues that are likely to be important for LPS binding and cell activation. The X-ray crystal structure of human CD14 presented herein may foster additional ligand bound structural studies, virtual docking studies, and drug design efforts to mitigate LPS induced sepsis and other inflammatory diseases. PMID:23264655

  4. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  5. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    PubMed

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Long-range sclerotome induction by sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway.

    PubMed

    Fan, C M; Porter, J A; Chiang, C; Chang, D T; Beachy, P A; Tessier-Lavigne, M

    1995-05-05

    A long-range signal encoded by the Sonic hedgehog (Shh) gene has been implicated as the ventral patterning influence from the notochord that induces sclerotome and represses dermomyotome in somite differentiation. Long-range effects of hedgehog (hh) signaling have been suggested to result either from local induction of a secondary diffusible signal or from the direct action of the highly diffusible carboxy-terminal product of HH autoproteolytic cleavage. Here we provide evidence that the long-range somite patterning effects of SHH are instead mediated by a direct action of the amino-terminal cleavage product. We also show that pharmacological manipulations to increase the activity of cyclic AMP-dependent protein kinase A can selectively antagonize the effects of the amino-terminal cleavage product. Our results support the operation of a single evolutionarily conserved signaling pathway for both local and direct long-range inductive actions of HH family members.

  7. Mechanism of bicarbonate exit across basolateral membrane of rabbit proximal straight tubule.

    PubMed

    Sasaki, S; Shiigai, T; Yoshiyama, N; Takeuchi, J

    1987-01-01

    To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.

  8. Binding of transcription termination protein nun to nascent RNA and template DNA.

    PubMed

    Watnick, R S; Gottesman, M E

    1999-12-17

    The amino-terminal arginine-rich motif of coliphage HK022 Nun binds phage lambda nascent transcript, whereas the carboxyl-terminal domain interacts with RNA polymerase (RNAP) and blocks transcription elongation. RNA binding is inhibited by zinc (Zn2+) and stimulated by Escherichia coli NusA. To study these interactions, the Nun carboxyl terminus was extended by a cysteine residue conjugated to a photochemical cross-linker. The carboxyl terminus contacted NusA and made Zn2+-dependent intramolecular contacts. When Nun was added to a paused transcription elongation complex, it cross-linked to the DNA template. Nun may arrest transcription by anchoring RNAP to DNA.

  9. Metals in proteins: correlation between the metal-ion type, coordination number and the amino-acid residues involved in the coordination.

    PubMed

    Dokmanić, Ivan; Sikić, Mile; Tomić, Sanja

    2008-03-01

    Metal ions are constituents of many metalloproteins, in which they have either catalytic (metalloenzymes) or structural functions. In this work, the characteristics of various metals were studied (Cu, Zn, Mg, Mn, Fe, Co, Ni, Cd and Ca in proteins with known crystal structure) as well as the specificity of their environments. The analysis was performed on two data sets: the set of protein structures in the Protein Data Bank (PDB) determined with resolution <1.5 A and the set of nonredundant protein structures from the PDB. The former was used to determine the distances between each metal ion and its electron donors and the latter was used to assess the preferred coordination numbers and common combinations of amino-acid residues in the neighbourhood of each metal. Although the metal ions considered predominantly had a valence of two, their preferred coordination number and the type of amino-acid residues that participate in the coordination differed significantly from one metal ion to the next. This study concentrates on finding the specificities of a metal-ion environment, namely the distribution of coordination numbers and the amino-acid residue types that frequently take part in coordination. Furthermore, the correlation between the coordination number and the occurrence of certain amino-acid residues (quartets and triplets) in a metal-ion coordination sphere was analysed. The results obtained are of particular value for the identification and modelling of metal-binding sites in protein structures derived by homology modelling. Knowledge of the geometry and characteristics of the metal-binding sites in metalloproteins of known function can help to more closely determine the biological activity of proteins of unknown function and to aid in design of proteins with specific affinity for certain metals.

  10. The N-terminal region of the dopamine D2 receptor, a rhodopsin-like GPCR, regulates correct integration into the plasma membrane and endocytic routes

    PubMed Central

    Cho, DI; Min, C; Jung, KS; Cheong, SY; Zheng, M; Cheong, SJ; Oak, MH; Cheong, JH; Lee, BK; Kim, KM

    2012-01-01

    BACKGROUND AND PURPOSE Functional roles of the N-terminal region of rhodopsin-like GPCR family remain unclear. Using dopamine D2 and D3 receptors as a model system, we probed the roles of the N-terminal region in the signalling, intracellular trafficking of receptor proteins, and explored the critical factors that determine the functionality of the N-terminal region. EXPERIMENTAL APPROACH The N-terminal region of the D2 receptor was gradually shortened or switched with that of the D3 receptor or a non-specific sequence (FLAG), or potential N-terminal glycosylation sites were mutated. Effects of these manipulations on surface expression, internalization, post-endocytic behaviours and signalling were determined. KEY RESULTS Shortening the N-terminal region of the D2 receptor enhanced receptor internalization and impaired surface expression and signalling; ligand binding, desensitization and down-regulation were not affected but their association with a particular microdomain, caveolae, was disrupted. Replacement of critical residues within the N-terminal region with the FLAG epitope failed to restore surface expression but partially restored the altered internalization and signalling. When the N-terminal regions were switched between D2 and D3 receptors, cell surface expression pattern of each receptor was switched. Mutations of potential N-terminal glycosylation sites inhibited surface expression but enhanced internalization of D2 receptors. CONCLUSIONS AND IMPLICATIONS Shortening of N-terminus or mutation of glycosylation sites located within the N-terminus enhanced receptor internalization but impaired the surface expression of D2 receptors. The N-terminal region of the D2 receptor, in a sequence-specific manner, controls the receptor's conformation and integration into the plasma membrane, which determine its subcellular localization, intracellular trafficking and signalling properties. PMID:22117524

  11. Differentiating Amino Acid Residues and Side Chain Orientations in Peptides Using Scanning Tunneling Microscopy

    PubMed Central

    Claridge, Shelley A.; Thomas, John C.; Silverman, Miles A.; Schwartz, Jeffrey J.; Yang, Yanlian; Wang, Chen; Weiss, Paul S.

    2014-01-01

    Single-molecule measurements of complex biological structures such as proteins are an attractive route for determining structures of the large number of important biomolecules that have proved refractory to analysis through standard techniques such as X-ray crystallography and nuclear magnetic resonance. We use a custom-built low-current scanning tunneling microscope to image peptide structure at the single-molecule scale in a model peptide that forms β sheets, a structural motif common in protein misfolding diseases. We successfully differentiate between histidine and alanine amino acid residues, and further differentiate side chain orientations in individual histidine residues, by correlating features in scanning tunneling microscope images with those in energy-optimized models. Beta sheets containing histidine residues are used as a model system due to the role histidine plays in transition metal binding associated with amyloid oligomerization in Alzheimer’s and other diseases. Such measurements are a first step toward analyzing peptide and protein structures at the single-molecule level. PMID:24219245

  12. An early nodulin-like protein accumulates in the sieve element plasma membrane of Arabidopsis.

    PubMed

    Khan, Junaid A; Wang, Qi; Sjölund, Richard D; Schulz, Alexander; Thompson, Gary A

    2007-04-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential.

  13. Folding units in calcium vector protein of amphioxus: Structural and functional properties of its amino- and carboxy-terminal halves.

    PubMed

    Baladi, S; Tsvetkov, P O; Petrova, T V; Takagi, T; Sakamoto, H; Lobachov, V M; Makarov, A A; Cox, J A

    2001-04-01

    Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44 degrees C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 microM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+) forms melt in the 111 degrees -123 degrees C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction.

  14. Folding units in calcium vector protein of amphioxus: Structural and functional properties of its amino- and carboxy-terminal halves

    PubMed Central

    Baladi, Sibyl; Tsvetkov, Philipp O.; Petrova, Tatiana V.; Takagi, Takashi; Sakamoto, Hiroshi; Lobachov, Vladimir M.; Makarov, Alexander A.; Cox, Jos A.

    2001-01-01

    Muscle of amphioxus contains large amounts of a four EF-hand Ca2+-binding protein, CaVP, and its target, CaVPT. To study the domain structure of CaVP and assess the structurally important determinants for its interaction with CaVPT, we expressed CaVP and its amino (N-CaVP) and carboxy-terminal halves (C-CaVP). The interactive properties of recombinant and wild-type CaVP are very similar, despite three post-translational modifications in the wild-type protein. N-CaVP does not bind Ca2+, shows a well-formed hydrophobic core, and melts at 44°C. C-CaVP binds two Ca2+ with intrinsic dissociation constants of 0.22 and 140 μM (i.e., very similar to the entire CaVP). The metal-free domain in CaVP and C-CaVP shows no distinct melting transition, whereas its 1Ca2+ and 2Ca2+ forms melt in the 111°–123°C range, suggesting that C-CaVP and the carboxy- domain of CaVP are natively unfolded in the metal-free state and progressively gain structure upon binding of 1Ca2+ and 2Ca2+. Thermal denaturation studies provide evidence for interdomain interaction: the apo, 1Ca2+ and 2Ca2+ states of the carboxy-domain destabilize to different degrees the amino-domain. Only C-CaVP forms a Ca2+-dependent 1:1 complex with CaVPT. Our results suggest that the carboxy-terminal domain of CaVP interacts with CaVPT and that the amino-terminal lobe modulates this interaction. PMID:11274468

  15. Isolation and characterization of spinach photosystem II membrane-associated catalase and polyphenol oxidase.

    PubMed

    Sheptovitsky, Y G; Brudvig, G W

    1996-12-17

    Photosystem II (PSII) membranes exhibit catalase and polyphenol oxidase (PPO) activities. Mild heat treatment of PSII membranes for 90 min at 30 degrees C releases most of these enzyme activities into the supernatant, accompanied by a 7-fold activation of PPO. In contrast, mild heat treatment of thylakoid membranes does not release significant amounts of either activity, indicating that both enzymes are bound to the luminal surface of the thylakoid membrane. The heat-released PSII membrane-associated catalase and PPO have been purified and characterized. Catalase activity was correlated with a 63 kDa polypeptide which was purified by batch adsorption to anion-exchange beads followed by gel filtration. The PSII membrane-associated catalase is unstable in solution, probably due to irreversible aggregation. The enzyme was characterized in terms of molecular and subunit size, amino-acid composition, UV-visible absorption, heme content, pH optimum, inhibitor sensitivity, and K(m) value for H2O2. Its properties indicate that the PSII membrane-associated catalase is a luminal thylakoid membrane-bound heme enzyme that has not been identified previously. The residual catalase activity of PSII membranes after mild heat treatment is irreversibly inhibited with 3-amino-1,2,4-triazole, a specific inhibitor of heme catalases, without inhibition of O2-evolution activity. This result indicates that little, if any, of the catalase activity from PSII membranes in the dark is catalyzed by the O2-evolving center of PSII. PPO activity was correlated with a 48 kDa polypeptide. However, the 48 kDa polypeptide and another heat-released polypeptide of 72 kDa have the same N-terminal sequence, which is also identical to that of a known 64 kDa protein [Hind, G., Marshak, D. R., & Coughlan, S. J. (1995) Biochemistry 34, 8157-8164]. During heat treatment of PSII membranes and further manipulations it was found that the 72 kDa polypeptide was largely converted into the 48 kDa polypeptide. Thus

  16. Bovine pancreatic polypeptide (bPP) undergoes significant changes in conformation and dynamics upon binding to DPC micelles.

    PubMed

    Lerch, Mirjam; Gafner, Verena; Bader, Reto; Christen, Barbara; Folkers, Gerd; Zerbe, Oliver

    2002-10-04

    The pancreatic polypeptide (PP), a 36-residue, C-terminally amidated polypeptide hormone is a member of the neuropeptide Y (NPY) family. Here, we have studied the structure and dynamics of bovine pancreatic polypeptide (bPP) when bound to DPC-micelles as a membrane-mimicking model as well as the dynamics of bPP in solution. The comparison of structure and dynamics of bPP in both states reveals remarkable differences. The overall correlation time of 5.08ns derived from the 15N relaxation data proves unambiguously that bPP in solution exists as a dimer. Therein, intermolecular as well as intramolecular hydrophobic interactions from residues of both the amphiphilic helix and of the back-folded N terminus contribute to the stability of the PP fold. The overall rigidity is well-reflected in positive values for the heteronuclear NOE for residues 4-34. The membrane-bound species displays a partitioning into a more flexible N-terminal region and a well-defined alpha-helical region comprising residues 17-31. The average RMSD value for residues 17-31 is 0.22(+/-0.09)A. The flexibility of the N terminus is compatible with negative values of the heteronuclear NOE observed for the N-terminal residues 4-12 and low values of the generalized order parameter S(2). The membrane-peptide interface was investigated by micelle-integrating spin-labels and H,2H exchange measurements. It is formed by those residues which make contacts between the C-terminal alpha-helix and the polyproline helix. In contrast to pNPY, also residues from the N terminus display spatial proximity to the membrane interface. Furthermore, the orientation of the C terminus, that presumably contains residues involved in receptor binding, is different in the two environments. We speculate that this pre-positioning of residues could be an important requirement for receptor activation. Moreover, we doubt that the PP fold is of functional relevance for binding at the Y(4) receptor.

  17. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter.

    PubMed

    Modali, Sita D; Zgurskaya, Helen I

    2011-08-01

    Escherichia coli MacAB-TolC is a tripartite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation of MacB ATPase activity. Binding of MacA to MacB stabilizes the ATP-bound conformation of MacB, whereas interactions with both MacB and TolC affect the conformation of MacA. A single G353A substitution in the C-terminus of MacA inactivates MacAB-TolC function by changing the conformation of the membrane proximal domain of MacA and disrupting the proper assembly of the MacA-MacB complex. We propose that MacA acts in transport by promoting MacB transition into the closed ATP-bound conformation and in this respect, is similar to the periplasmic solute-binding proteins. © 2011 Blackwell Publishing Ltd.

  18. The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter

    PubMed Central

    Modali, Sita D.; Zgurskaya, Helen I.

    2011-01-01

    Escherichia coli MacAB-TolC is a tri-partite macrolide efflux transporter driven by hydrolysis of ATP. In this complex, MacA is the periplasmic membrane fusion protein that stimulates the activity of MacB transporter and establishes the link with the outer membrane channel TolC. The molecular mechanism by which MacA stimulates MacB remains unknown. Here, we report that the periplasmic membrane proximal domain of MacA plays a critical role in functional MacA-MacB interactions and stimulation of MacB ATPase activity. Binding of MacA to MacB stabilizes the ATP-bound conformation of MacB, whereas interactions with both MacB and TolC affect the conformation of MacA. A single G353A substitution in the C-terminus of MacA inactivates MacAB-TolC function by changing the conformation of the membrane proximal domain of MacA and disrupting the proper assembly of the MacA-MacB complex. We propose that MacA acts in transport by promoting MacB transition into the closed ATP-bound conformation and in this respect, is similar to the periplasmic solute-binding proteins. PMID:21696464

  19. Atox1 Contains Positive Residues That Mediate Membrane Association and Aid Subsequent Copper Loading

    PubMed Central

    Flores, Adrian G.; Unger, Vinzenz M.

    2013-01-01

    Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution. PMID:24036897

  20. Atox1 contains positive residues that mediate membrane association and aid subsequent copper loading.

    PubMed

    Flores, Adrian G; Unger, Vinzenz M

    2013-12-01

    Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein-protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.

  1. Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains

    PubMed Central

    Lomash, Suvendu; Chittori, Sagar; Glasser, Carla

    2017-01-01

    Ion conductivity and the gating characteristics of tetrameric glutamate receptor ion channels are determined by their subunit composition. Competitive homo- and hetero-dimerization of their amino-terminal domains (ATDs) is a key step controlling assembly. Here we measured systematically the thermodynamic stabilities of homodimers and heterodimers of kainate and AMPA receptors using fluorescence-detected sedimentation velocity analytical ultracentrifugation. Measured affinities span many orders of magnitude, and complexes show large differences in kinetic stabilities. The association of kainate receptor ATD dimers is generally weaker than the association of AMPA receptor ATD dimers, but both show a general pattern of increased heterodimer stability as compared to the homodimers of their constituents, matching well physiologically observed receptor combinations. The free energy maps of AMPA and kainate receptor ATD dimers provide a framework for the interpretation of observed receptor subtype combinations and possible assembly pathways. PMID:29058671

  2. Preferential assembly of heteromeric kainate and AMPA receptor amino terminal domains.

    PubMed

    Zhao, Huaying; Lomash, Suvendu; Chittori, Sagar; Glasser, Carla; Mayer, Mark L; Schuck, Peter

    2017-10-23

    Ion conductivity and the gating characteristics of tetrameric glutamate receptor ion channels are determined by their subunit composition. Competitive homo- and hetero-dimerization of their amino-terminal domains (ATDs) is a key step controlling assembly. Here we measured systematically the thermodynamic stabilities of homodimers and heterodimers of kainate and AMPA receptors using fluorescence-detected sedimentation velocity analytical ultracentrifugation. Measured affinities span many orders of magnitude, and complexes show large differences in kinetic stabilities. The association of kainate receptor ATD dimers is generally weaker than the association of AMPA receptor ATD dimers, but both show a general pattern of increased heterodimer stability as compared to the homodimers of their constituents, matching well physiologically observed receptor combinations. The free energy maps of AMPA and kainate receptor ATD dimers provide a framework for the interpretation of observed receptor subtype combinations and possible assembly pathways.

  3. Predicting helix–helix interactions from residue contacts in membrane proteins

    PubMed Central

    Lo, Allan; Chiu, Yi-Yuan; Rødland, Einar Andreas; Lyu, Ping-Chiang; Sung, Ting-Yi; Hsu, Wen-Lian

    2009-01-01

    Motivation: Helix–helix interactions play a critical role in the structure assembly, stability and function of membrane proteins. On the molecular level, the interactions are mediated by one or more residue contacts. Although previous studies focused on helix-packing patterns and sequence motifs, few of them developed methods specifically for contact prediction. Results: We present a new hierarchical framework for contact prediction, with an application in membrane proteins. The hierarchical scheme consists of two levels: in the first level, contact residues are predicted from the sequence and their pairing relationships are further predicted in the second level. Statistical analyses on contact propensities are combined with other sequence and structural information for training the support vector machine classifiers. Evaluated on 52 protein chains using leave-one-out cross validation (LOOCV) and an independent test set of 14 protein chains, the two-level approach consistently improves the conventional direct approach in prediction accuracy, with 80% reduction of input for prediction. Furthermore, the predicted contacts are then used to infer interactions between pairs of helices. When at least three predicted contacts are required for an inferred interaction, the accuracy, sensitivity and specificity are 56%, 40% and 89%, respectively. Our results demonstrate that a hierarchical framework can be applied to eliminate false positives (FP) while reducing computational complexity in predicting contacts. Together with the estimated contact propensities, this method can be used to gain insights into helix-packing in membrane proteins. Availability: http://bio-cluster.iis.sinica.edu.tw/TMhit/ Contact: tsung@iis.sinica.edu.tw Supplementary information:Supplementary data are available at Bioinformatics online. PMID:19244388

  4. Classifying Membrane Proteins in the Proteome by Using Artificial Neural Networks Based on the Preferential Parameters of Amino Acids

    NASA Astrophysics Data System (ADS)

    Bose, Subrata K.; Browne, Antony; Kazemian, Hassan; White, Kenneth

    Membrane proteins (MPs) are large set of biological macromolecules that play a fundamental role in physiology and pathophysiology for survival. From a pharma-economical perspective, though it is the fact that MPs constitute ˜75% of possible targets for novel drugs but MPs are one of the most understudied groups of proteins in biochemical research. This is mainly because of the technical difficulties of obtaining structural information about trans-membrane regions (these are small sequences that crossways the bilayer lipid membrane). It is quite useful to predict the location of transmembrane segments down the sequence, since these are the elementary structural building blocks defining their topology. There have been several attempts over the last 20 years to develop tools for predicting membrane-spanning regions but current tools are far away from achieving a considerable reliability in prediction. This study aims to exploit the knowledge and current understanding in the field of artificial neural networks (ANNs) in particular data representation through the development of a system to identify and predict membrane-spanning regions by analysing primary amino acids sequence. In this paper we present a novel neural network (NNs) architecture and algorithms for predicting membrane spanning regions from primary amino acids sequences by using their preference parameters.

  5. Molecular cloning of the plasma membrane H(+)-ATPase from Kluyveromyces lactis: a single nucleotide substitution in the gene confers ethidium bromide resistance and deficiency in K+ uptake.

    PubMed Central

    Miranda, M; Ramírez, J; Peña, A; Coria, R

    1995-01-01

    A Kluyveromyces lactis strain resistant to ethidium bromide and deficient in potassium uptake was isolated. Studies on the proton-pumping activity of the mutant strain showed that a decreased H(+)-ATPase specific activity was responsible for the observed phenotypes. The putative K. lactis PMA1 gene encoding the plasma membrane H(+)-ATPase was cloned by its ability to relieve the potassium transport defect of this mutant and by reversing its resistance to ethidium bromide. Its deduced amino acid sequence predicts a protein 899 residues long that is structurally colinear in its full length to H(+)-ATPases cloned from different yeasts, except for the presence of a variable N-terminal domain. By PCR-mediated amplification, we identified a transition from G to A that rendered the substitution of the fully conserved methionine at position 699 by isoleucine. We attribute to this amino acid change the low capacity of the mutant H(+)-ATPase to pump out protons. PMID:7730265

  6. Alteration of high and low spin equilibrium by a single mutation of amino acid 209 in mouse cytochromes P450.

    PubMed

    Iwasaki, M; Juvonen, R; Lindberg, R; Negishi, M

    1991-02-25

    The identities of the amino acid at position 209 are most critical in determining specific coumarin 7- and steroid 15 alpha-hydroxylase activity in P450coh and P450(15)alpha, respectively. This system, therefore, provides us with an excellent model to study the structural basis for P450 specificity as a monooxygenase. We expressed in Saccharomyces cerevisiae a series of the mutated P450s in which residue 209 was substituted with the various amino acids and characterized the spectral property and hydroxylase activity of these mutated P450s. The positioning of a hydrophobic residue including Phe, Leu, and Val at position 209 resulted in shifting the P450 to the high-spin state, while a charged amino acid such as Lys or Asp produced the low-spin form. Moreover, a P450 with Asn or Gly in this position exhibited spectra indicating a mixture of the high- and low-spin forms. This spin alteration, depending upon the hydrophobicity and size of residue at position 209, indicates that this position is likely to reside close to the sixth axial ligand on the distal surface of the heme in these P450s. This proximity of residue 209 to the ligand may explain the critical role of this residue in determining the hydroxylase specificity and activity of these P450s.

  7. Wide Tolerance to Amino Acids Substitutions In The OCTN1 Ergothioneine Transporter

    PubMed Central

    Frigeni, Marta; Iacobazzi, Francesco; Yin, Xue; Longo, Nicola

    2016-01-01

    Background Organic cation transporters transfer solutes with a positive charge across the plasma membrane. The novel organic cation transporter 1 (OCTN1) and 2 (OCTN2) transport ergothioneine and carnitine, respectively. Mutations in the SLC22A5 gene encoding OCTN2 cause primary carnitine deficiency, a recessive disorders resulting in low carnitine levels and defective fatty acid oxidation. Variations in the SLC22A4 gene encoding OCTN1 are associated with rheumatoid arthritis and Crohn disease. Methods Here we evaluate the functional properties of the OCTN1 transporter using chimeric transporters constructed by fusing different portion of the OCTN1 and OCTN2 cDNAs. Their relative abundance and subcellular distribution was evaluated through western blot analysis and confocal microscopy. Results Substitutions of the C-terminal portion of OCTN1 with the correspondent residues of OCTN2 generated chimeric OCTN transporters more active than wild-type OCTN1 in transporting ergothioneine. Additional single amino acid substitutions introduced in chimeric OCTN transporters further increased ergothioneine transport activity. Kinetic analysis indicated that increased transport activity was due to an increased Vmax, with modest changes in Km toward ergothioneine. Conclusions Our results indicate that the OCTN1 transporter is tolerant to extensive amino acid substitutions. This is in sharp contrast to the OCTN2 carnitine transporter that has been selected for high functional activity through evolution, with almost all substitutions reducing carnitine transport activity. General significance The widespread tolerance of OCTN1 to amino acid substitutions suggests that the corresponding SLC22A4 gene may have derived from a recent duplication of the SLC22A5 gene and might not yet have a defined physiological role. PMID:26994919

  8. Nucleotide sequence analysis of the gene encoding the Deinococcus radiodurans surface protein, derived amino acid sequence, and complementary protein chemical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peters, J.; Peters, M.; Lottspeich, F.

    1987-11-01

    The complete nucleotide sequence of the gene encoding the surface (hexagonally packed intermediate (HPI))-layer polypeptide of Deinococcus radiodurans Sark was determined and found to encode a polypeptide of 1036 amino acids. Amino acid sequence analysis of about 30% of the residues revealed that the mature polypeptide consists of at least 978 amino acids. The N terminus was blocked to Edman degradation. The results of proteolytic modification of the HPI layer in situ and M/sub r/ estimations of the HPI polypeptide expressed in Escherichia coli indicated that there is a leader sequence. The N-terminal region contained a very high percentage (29%)more » of threonine and serine, including a cluster of nine consecutive serine or threonine residues, whereas a stretch near the C terminus was extremely rich in aromatic amino acids (29%). The protein contained at least two disulfide bridges, as well as tightly bound reducing sugars and fatty acids.« less

  9. Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine.

    PubMed

    Qiu, Huawei; Edmunds, Tim; Baker-Malcolm, Jennifer; Karey, Kenneth P; Estes, Scott; Schwarz, Cordula; Hughes, Heather; Van Patten, Scott M

    2003-08-29

    One form of Niemann-Pick disease is caused by a deficiency in the enzymatic activity of acid sphingomyelinase. During efforts to develop an enzyme replacement therapy based on a recombinant form of human acid sphingomyelinase (rhASM), purified preparations of the recombinant enzyme were found to have substantially increased specific activity if cell harvest media were stored for several weeks at -20 degrees C prior to purification. This increase in activity was found to correlate with the loss of the single free thiol on rhASM, suggesting the involvement of a cysteine residue. It was demonstrated that a variety of chemical modifications of the free cysteine on rhASM all result in substantial activation of the enzyme, and the modified cysteine responsible for this activation was shown to be the C-terminal residue (Cys629). Activation was also achieved by copper-promoted dimerization of rhASM (via cysteine) and by C-terminal truncation using carboxypeptidase Y. The role of the C-terminal cysteine in activation was confirmed by creating mutant forms of rhASM in which this residue was either deleted or replaced by a serine, with both forms having substantially higher specific activity than wild-type rhASM. These results indicate that purified rhASM can be activated in vitro by loss of the free thiol on the C-terminal cysteine via chemical modification, dimerization, or deletion of this amino acid residue. This method of activation is similar to the cysteine switch mechanism described previously for matrix metalloproteinases and could represent a means of posttranslational regulation of ASM activity in vivo.

  10. Combined Measurement of Soluble ST2 and Amino-Terminal Pro-B-Type Natriuretic Peptide Provides Early Assessment of Severity in Cardiogenic Shock Complicating Acute Coronary Syndrome.

    PubMed

    Tolppanen, Heli; Rivas-Lasarte, Mercedes; Lassus, Johan; Sadoune, Malha; Gayat, Etienne; Pulkki, Kari; Arrigo, Mattia; Krastinova, Evguenia; Sionis, Alessandro; Parissis, John; Spinar, Jindrich; Januzzi, James; Harjola, Veli-Pekka; Mebazaa, Alexandre

    2017-07-01

    Mortality in cardiogenic shock complicating acute coronary syndrome is high, and objective risk stratification is needed for rational use of advanced therapies such as mechanical circulatory support. Traditionally, clinical variables have been used to judge risk in cardiogenic shock. The aim of this study was to assess the added value of serial measurement of soluble ST2 and amino-terminal pro-B-type natriuretic peptide to clinical parameters for risk stratification in cardiogenic shock. CardShock (www.clinicaltrials.gov NCT01374867) is a prospective European multinational study of cardiogenic shock. The main study introduced CardShock risk score, which is calculated from seven clinical variables at baseline, and was associated with short-term mortality. Nine tertiary care university hospitals. Patients with cardiogenic shock caused by acute coronary syndrome (n=145). In this substudy, plasma samples from the study patients were analyzed at eight time points during the ICU or cardiac care unit stay. Additional prognostic value of the biomarkers was assessed with incremental discrimination improvement. The combination of soluble ST2 and amino-terminal pro-B-type natriuretic peptide showed excellent discrimination for 30-day mortality (area under the curve, 0.77 at 12 hr up to 0.93 at 5-10 d after cardiogenic shock onset). At 12 hours, patients with both biomarkers elevated (soluble ST2, ≥ 500 ng/mL and amino-terminal pro-B-type natriuretic peptide, ≥ 4,500 ng/L) had higher 30-day mortality (79%) compared to those with one or neither biomarkers elevated (31% or 10%, respectively; p < 0.001). Combined measurement of soluble ST2 and amino-terminal pro-B-type natriuretic peptide at 12 hours added value to CardShock risk score, correctly reclassifying 11% of patients. The combination of results for soluble ST2 and amino-terminal pro-B-type natriuretic peptide provides early risk assessment beyond clinical variables in patients with acute coronary syndrome

  11. Charged residues distribution modulates selectivity of the open state of human isoforms of the voltage dependent anion-selective channel.

    PubMed

    Amodeo, Giuseppe Federico; Scorciapino, Mariano Andrea; Messina, Angela; De Pinto, Vito; Ceccarelli, Matteo

    2014-01-01

    Voltage Dependent Anion-selective Channels (VDACs) are pore-forming proteins located in the outer mitochondrial membrane. They are responsible for the access of ions and energetic metabolites into the inner membrane transport systems. Three VDAC isoforms exist in mammalian, but their specific role is unknown. In this work we have performed extensive (overall ∼5 µs) Molecular Dynamics (MD) simulations of the human VDAC isoforms to detect structural and conformational variations among them, possibly related to specific functional roles of these proteins. Secondary structure analysis of the N-terminal domain shows a high similarity among the three human isoforms of VDAC but with a different plasticity. In particular, the N-terminal domain of the hVDAC1 is characterized by a higher plasticity, with a ∼20% occurrence for the 'unstructured' conformation throughout the folded segment, while hVDAC2, containing a peculiar extension of 11 amino acids at the N-terminal end, presents an additional 310-helical folded portion comprising residues 10' to 3, adhering to the barrel wall. The N-terminal sequences of hVDAC isoforms are predicted to have a low flexibility, with possible consequences in the dynamics of the human VDACs. Clear differences were found between hVDAC1 and hVDAC3 against hVDAC2: a significantly modified dynamics with possible important consequence on the voltage-gating mechanism. Charge distribution inside and at the mouth of the pore is responsible for a different preferential localization of ions with opposite charge and provide a valuable rationale for hVDAC1 and hVDAC3 having a Cl-/K+ selectivity ratio of 1.8, whereas hVDAC2 of 1.4. Our conclusion is that hVDAC isoforms, despite sharing a similar scaffold, have modified working features and a biological work is now requested to give evidence to the described dissimilarities.

  12. The 3'-5' exonuclease of DNA polymerase I of Escherichia coli: contribution of each amino acid at the active site to the reaction.

    PubMed Central

    Derbyshire, V; Grindley, N D; Joyce, C M

    1991-01-01

    We have used site-directed mutagenesis to change amino acid side chains that have been shown crystallographically to be in close proximity to a DNA 3' terminus bound at the 3'-5' exonuclease active site of Klenow fragment. Exonuclease assays of the resulting mutant proteins indicate that the largest effects on exonuclease activity result from mutations in a group of carboxylate side chains (Asp355, Asp424 and Asp501) anchoring two divalent metal ions that are essential for exonuclease activity. Another carboxylate (Glu357) within this cluster seems to be less important as a metal ligand, but may play a separate role in catalysis of the exonuclease reaction. A second group of residues (Leu361, Phe473 and Tyr497), located around the terminal base and ribose positions, plays a secondary role, ensuring correct positioning of the substrate in the active site and perhaps also facilitating melting of a duplex DNA substrate by interacting with the frayed 3' terminus. The pH-dependence of the 3'-5' exonuclease reaction is consistent with a mechanism in which nucleophilic attack on the terminal phosphodiester bond is initiated by a hydroxide ion coordinated to one of the enzyme-bound metal ions. PMID:1989882

  13. Identification and Functional Characterization of N-Terminally Acetylated Proteins in Drosophila melanogaster

    PubMed Central

    Gerrits, Bertran; Roschitzki, Bernd; Mohanty, Sonali; Niederer, Eva M.; Laczko, Endre; Timmerman, Evy; Lange, Vinzenz; Hafen, Ernst; Aebersold, Ruedi; Vandekerckhove, Joël; Basler, Konrad; Ahrens, Christian H.; Gevaert, Kris; Brunner, Erich

    2009-01-01

    Protein modifications play a major role for most biological processes in living organisms. Amino-terminal acetylation of proteins is a common modification found throughout the tree of life: the N-terminus of a nascent polypeptide chain becomes co-translationally acetylated, often after the removal of the initiating methionine residue. While the enzymes and protein complexes involved in these processes have been extensively studied, only little is known about the biological function of such N-terminal modification events. To identify common principles of N-terminal acetylation, we analyzed the amino-terminal peptides from proteins extracted from Drosophila Kc167 cells. We detected more than 1,200 mature protein N-termini and could show that N-terminal acetylation occurs in insects with a similar frequency as in humans. As the sole true determinant for N-terminal acetylation we could extract the (X)PX rule that indicates the prevention of acetylation under all circumstances. We could show that this rule can be used to genetically engineer a protein to study the biological relevance of the presence or absence of an acetyl group, thereby generating a generic assay to probe the functional importance of N-terminal acetylation. We applied the assay by expressing mutated proteins as transgenes in cell lines and in flies. Here, we present a straightforward strategy to systematically study the functional relevance of N-terminal acetylations in cells and whole organisms. Since the (X)PX rule seems to be of general validity in lower as well as higher eukaryotes, we propose that it can be used to study the function of N-terminal acetylation in all species. PMID:19885390

  14. Promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, S.L.; Ryan, K.; Sollner-Webb, B.

    1989-02-01

    We have examined the mechanism by which transcriptional initiation at the mouse rDNA promoter is augmented by the RNA polymerase I terminator element that resides just upstream of it. Using templates in which terminator elements are instead positioned at the opposite side of the plasmid rather than proximal to the promoter, or conditions where transcription is terminated elsewhere in the plasmid by UV-induced lesions, we show that the terminator's stimulatory effect is not position dependent. Mouse terminator elements therefore do not stimulate via the previously postulated 'read-through enhancement' model in which terminated polymerases are handed off to an adjacent promotermore » in a concerted reaction. The position independence and orientation dependence of the terminator also makes it unlikely that the terminator functions as a promoter element or as an enhancer. Instead, terminators serve to augment initiation by preventing polymerases from reading completely around the plasmid and through the promoter from upstream, an event which we show interferes with subsequent rounds of initiation. Notably, this transcriptional interference arises because polymerase passage across a promoter disrupts the otherwise stable transcription complex, specifically releasing the bound transcription factor D. These liberated D molecules can then bind to other templates and activate their expression. The rDNA transcriptional interference is not due to a steric impediment to the binding of new polymerase molecules, and it does not similarly liberate the initiation-competent polymerase (factor C). These studies have also convincingly demonstrated that multiple rounds of transcription are obtained from rDNA template molecules in vitro.« less

  15. Neutron Reflectometry Study of the Conformation of HIV Nef Bound to Lipid Membranes

    PubMed Central

    Kent, Michael S.; Murton, Jaclyn K.; Sasaki, Darryl Y.; Satija, Sushil; Akgun, Bulent; Nanda, Hirsh; Curtis, Joseph E.; Majewski, Jaroslaw; Morgan, Christopher R.; Engen, John R.

    2010-01-01

    Nef is an HIV-1 accessory protein that directly contributes to AIDS progression. Nef is myristoylated on the N-terminus, associates with membranes, and may undergo a transition from a solution conformation to a membrane-associated conformation. It has been hypothesized that conformational rearrangement enables membrane-associated Nef to interact with cellular proteins. Despite its medical relevance, to our knowledge there is no direct information about the conformation of membrane-bound Nef. In this work, we used neutron reflection to reveal what we believe are the first details of the conformation of membrane-bound Nef. The conformation of Nef was probed upon binding to Langmuir monolayers through the interaction of an N-terminal His tag with a synthetic metal-chelating lipid, which models one of the possible limiting cases for myr-Nef. The data indicate that residues are inserted into the lipid headgroups during interaction, and that the core domain lies directly against the lipid headgroups, with a thickness of ∼40 Å. Binding of Nef through the N-terminal His tag apparently facilitates insertion of residues, as no insertion occurred upon binding of Nef through weak electrostatic interactions in the absence of the specific interaction through the His tag. PMID:20858440

  16. Interaction of murine macrophage-membrane proteins with components of the pathogenic fungus Histoplasma capsulatum

    PubMed Central

    Taylor, M L; Duarte-Escalante, E; Reyes-Montes, M R; Elizondo, N; Maldonado, G; Zenteno, E

    1998-01-01

    The interaction of macrophage-membrane proteins and histoplasmin, a crude antigen of the pathogenic fungus Histoplasma capsulatum, was studied using murine peritoneal macrophages. Membrane proteins were purified via membrane attachment to polycationic beads and solubilized in Tris–HCl/SDS/DTT/glycerol for protein extraction; afterwards they were adsorbed or not with H. capsulatum yeast or lectin binding-enriched by affinity chromatography. Membrane proteins and histoplasmin interactions were detected by ELISA and immunoblotting assays using anti-H. capsulatum human or mouse serum and biotinylated goat anti-human or anti-mouse IgG/streptavidin-peroxidase system to reveal the interaction. Results indicate that macrophage-membrane proteins and histoplasmin components interact in a dose-dependent reaction, and adsorption of macrophage-membrane proteins by yeast cells induces a critical decrease in the interaction. Macrophage-membrane glycoproteins with terminal d-galactosyl residues, purified by chromatography with Abrus precatorius lectin, bound to histoplasmin; and two bands of 68 kD and 180 kD of transferred membrane protein samples interacted with histoplasmin components, as revealed by immunoblot assays. Specificity for β-galactoside residues on the macrophage-membrane was confirmed by galactose inhibition of the interaction between macrophage-membrane proteins and histoplasmin components, in competitive ELISA using sugars, as well as by enzymatic cleavage of the galactoside residues. PMID:9737672

  17. Interaction of MreB-derived antimicrobial peptides with membranes.

    PubMed

    Saikia, Karabi; Chaudhary, Nitin

    2018-03-25

    Antimicrobial peptides are critical components of defense systems in living forms. The activity is conferred largely by the selective membrane-permeabilizing ability. In our earlier work, we derived potent antimicrobial peptides from the 9-residue long, N-terminal amphipathic helix of E. coli MreB protein. The peptides display broad-spectrum activity, killing not only Gram-positive and Gram-negative bacteria but opportunistic fungus, Candida albicans as well. These results proved that membrane-binding stretches of bacterial proteins could turn out to be self-harming when applied from outside. Here, we studied the membrane-binding and membrane-perturbing potential of these peptides. Steady-state tryptophan fluorescence studies with tryptophan extended peptides, WMreB 1-9 and its N-terminal acetylated analog, Ac-WMreB 1-9 show preferential binding to negatively-charged liposomes. Both the peptides cause permeabilization of E. coli inner and outer-membranes. Tryptophan-lacking peptides, though permeabilize the outer-membrane efficiently, little permeabilization of the inner-membrane is observed. These data attest membrane-destabilization as the mechanism of rapid bacterial killing. This study is expected to motivate the research in identifying microbes' self-sequences to combat them. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. A 20-residue peptide of the inner membrane protein OutC mediates interaction with two distinct sites of the outer membrane secretin OutD and is essential for the functional type II secretion system in Erwinia chrysanthemi.

    PubMed

    Login, Frédéric H; Fries, Markus; Wang, Xiaohui; Pickersgill, Richard W; Shevchik, Vladimir E

    2010-05-01

    The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20-residue peptide named OutCsip (secretin interacting peptide, residues 139-158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2-N3' subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine.

  19. The Aquaporin Splice Variant NbXIP1;1α Is Permeable to Boric Acid and Is Phosphorylated in the N-terminal Domain

    PubMed Central

    Ampah-Korsah, Henry; Anderberg, Hanna I.; Engfors, Angelica; Kirscht, Andreas; Norden, Kristina; Kjellstrom, Sven; Kjellbom, Per; Johanson, Urban

    2016-01-01

    Aquaporins (AQPs) are membrane channel proteins that transport water and uncharged solutes across different membranes in organisms in all kingdoms of life. In plants, the AQPs can be divided into seven different subfamilies and five of these are present in higher plants. The most recently characterized of these subfamilies is the XIP subfamily, which is found in most dicots but not in monocots. In this article, we present data on two different splice variants (α and β) of NbXIP1;1 from Nicotiana benthamiana. We describe the heterologous expression of NbXIP1;1α and β in the yeast Pichia pastoris, the subcellular localization of the protein in this system and the purification of the NbXIP1;1α protein. Furthermore, we investigated the functionality and the substrate specificity of the protein by stopped-flow spectrometry in P. pastoris spheroplasts and with the protein reconstituted in proteoliposomes. The phosphorylation status of the protein and localization of the phosphorylated amino acids were verified by mass spectrometry. Our results show that NbXIP1;1α is located in the plasma membrane when expressed in P. pastoris, that it is not permeable to water but to boric acid and that the protein is phosphorylated at several amino acids in the N-terminal cytoplasmic domain of the protein. A growth assay showed that the yeast cells expressing the N-terminally His-tagged NbXIP1;1α were more sensitive to boric acid as compared to the cells expressing the C-terminally His-tagged isoform. This might suggest that the N-terminal His-tag functionally mimics the phosphorylation of the N-terminal domain and that the N-terminal domain is involved in gating of the channel. PMID:27379142

  20. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    NASA Astrophysics Data System (ADS)

    Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-01

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.

  1. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin

    PubMed Central

    Verly, Rodrigo M.; Resende, Jarbas M.; Junior, Eduardo F. C.; de Magalhães, Mariana T. Q.; Guimarães, Carlos F. C. R.; Munhoz, Victor H. O.; Bemquerer, Marcelo Porto; Almeida, Fábio C. L.; Santoro, Marcelo M.; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-01

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays. PMID:28102305

  2. Structure and membrane interactions of the homodimeric antibiotic peptide homotarsinin.

    PubMed

    Verly, Rodrigo M; Resende, Jarbas M; Junior, Eduardo F C; de Magalhães, Mariana T Q; Guimarães, Carlos F C R; Munhoz, Victor H O; Bemquerer, Marcelo Porto; Almeida, Fábio C L; Santoro, Marcelo M; Piló-Veloso, Dorila; Bechinger, Burkhard

    2017-01-19

    Antimicrobial peptides (AMPs) from amphibian skin are valuable template structures to find new treatments against bacterial infections. This work describes for the first time the structure and membrane interactions of a homodimeric AMP. Homotarsinin, which was found in Phyllomedusa tarsius anurans, consists of two identical cystine-linked polypeptide chains each of 24 amino acid residues. The high-resolution structures of the monomeric and dimeric peptides were determined in aqueous buffers. The dimer exhibits a tightly packed coiled coil three-dimensional structure, keeping the hydrophobic residues screened from the aqueous environment. An overall cationic surface of the dimer assures enhanced interactions with negatively charged membranes. An extensive set of biophysical data allowed us to establish structure-function correlations with antimicrobial assays against Gram-positive and Gram-negative bacteria. Although both peptides present considerable antimicrobial activity, the dimer is significantly more effective in both antibacterial and membrane biophysical assays.

  3. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition.

    PubMed

    Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J

    2014-12-01

    Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the

  4. Membrane topology of rat sodium-coupled neutral amino acid transporter 2 (SNAT2).

    PubMed

    Ge, Yudan; Gu, Yanting; Wang, Jiahong; Zhang, Zhou

    2018-07-01

    Sodium-coupled neutral amino acid transporter 2 (SNAT2) is a subtype of the amino acid transport system A that is widely expressed in mammalian tissues. It plays critical roles in glutamic acid-glutamine circulation, liver gluconeogenesis and other biological pathway. However, the topology of the SNAT2 amino acid transporter is unknown. Here we identified the topological structure of SNAT2 using bioinformatics analysis, Methoxy-polyethylene glycol maleimide (mPEG-Mal) chemical modification, protease cleavage assays, immunofluorescence and examination of glycosylation. Our results show that SNAT2 contains 11 transmembrane domains (TMDs) with an intracellular N terminus and an extracellular C terminus. Three N-glycosylation sites were verified at the largest extracellular loop. This model is consistent with the previous model of SNAT2 with the exception of a difference in number of glycosylation sites. This is the first time to confirm the SNAT2 membrane topology using experimental methods. Our study on SNAT2 topology provides valuable structural information of one of the solute carrier family 38 (SLC38) members. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Identification of critical functional residues of receptor-like kinase ERECTA.

    PubMed

    Kosentka, Pawel Z; Zhang, Liang; Simon, Yonas A; Satpathy, Binita; Maradiaga, Richard; Mitoubsi, Omar; Shpak, Elena D

    2017-03-01

    In plants, extracellular signals are primarily sensed by plasma membrane-localized receptor-like kinases (RLKs). ERECTA is a leucine-rich repeat RLK that together with its paralogs ERECTA-like 1 (ERL1) and ERL2 regulates multiple aspects of plant development. ERECTA forms complexes with a range of co-receptors and senses secreted cysteine-rich small proteins from the EPF/EPFL family. Currently the mechanism of the cytoplasmic domain activation and transmission of the signal by ERECTA is unclear. To gain a better understanding we performed a structure-function analysis by introducing altered ERECTA genes into erecta and erecta erl1 erl2 mutants. These experiments indicated that ERECTA's ability to phosphorylate is functionally significant, and that while the cytoplasmic juxtamembrane domain is important for ERECTA function, the C-terminal tail is not. An analysis of multiple putative phosphorylation sites identified four amino acids in the activation segment of the kinase domain as functionally important. Homology of those residues to functionally significant amino acids in multiple other plant RLKs emphasizes similarities in RLK function. Specifically, our data predicts Thr812 as a primary site of phosphor-activation and potential inhibitory phosphorylation of Tyr815 and Tyr820. In addition, our experiments suggest that there are differences in the molecular mechanism of ERECTA function during regulation of stomata development and in elongation of above-ground organs. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  6. Vba5p, a novel plasma membrane protein involved in amino acid uptake and drug sensitivity in Saccharomyces cerevisiae.

    PubMed

    Shimazu, Masamitsu; Itaya, Teruhiro; Pongcharoen, Pongsanat; Sekito, Takayuki; Kawano-Kawada, Miyuki; Kakinuma, Yoshimi

    2012-01-01

    Vba5p is closest to Vba3p in the vacuolar transporter for basic amino acids (VBA) family of Saccharomyces cerevisiae. We found that green fluorescence protein (GFP)-tagged Vba5p localized exclusively to the plasma membrane. The uptake of lysine and arginine by whole cells was little affected by deletion of the VBA5 gene, but was stimulated by overexpression of the VBA5 gene. The inhibitory effect of 4-nitroquinoline N-oxide on cell growth was accelerated by expression of the VBA5 gene, and was lessened by the addition of arginine. These results suggest that Vba5p is a plasma membrane protein involved in amino acid uptake and drug sensitivity.

  7. Adhesive properties of the isolated amino-terminal domain of platelet glycoprotein Ibα in a flow field

    PubMed Central

    Marchese, Patrizia; Saldívar, Enrique; Ware, Jerry; Ruggeri, Zaverio M.

    1999-01-01

    We have examined the interaction between the amino-terminal domain of platelet glycoprotein (GP) Ibα and immobilized von Willebrand Factor (vWF) under flow conditions in the absence of other components of the GP Ib–IX–V complex. Latex beads were coated with a recombinant fragment containing GP Ibα residues 1–302, either with normal sequence or with the single G233V substitution that causes enhanced affinity for plasma vWF in platelet-type pseudo-von-Willebrand disease. Beads coated with native fragment adhered to vWF in a manner comparable to platelets, showing surface translocation that reflected the transient nature of the bonds formed. Thus, the GP Ibα extracellular domain is necessary and sufficient for interacting with vWF under high shear stress. Beads coated with the mutated fragment became tethered to vWF in greater number and had lower velocity of translocation than beads coated with the normal counterpart, suggesting that the G233V mutation lowers the rate of bond dissociation. Our findings define an approach for studying the biomechanical properties of the GP Ibα–vWF bond and suggest that this interaction is tightly regulated to allow rapid binding at sites of vascular injury, while permitting the concurrent presence of receptor and ligand in the circulation. PMID:10393908

  8. Three C-terminal residues from the sulphonylurea receptor contribute to the functional coupling between the KATP channel subunits SUR2A and Kir6.2

    PubMed Central

    Dupuis, Julien P; Revilloud, Jean; Moreau, Christophe J; Vivaudou, Michel

    2008-01-01

    Cardiac ATP-sensitive potassium (KATP) channels are metabolic sensors formed by the association of the inward rectifier potassium channel Kir6.2 and the sulphonylurea receptor SUR2A. SUR2A adjusts channel gating as a function of intracellular ATP and ADP and is the target of pharmaceutical openers and blockers which, respectively, up- and down-regulate Kir6.2. In an effort to understand how effector binding to SUR2A translates into Kir6.2 gating modulation, we examined the role of a 65-residue SUR2A fragment linking transmembrane domain TMD2 and nucleotide-binding domain NBD2 that has been shown to interact with Kir6.2. This fragment of SUR2A was replaced by the equivalent residues of its close homologue, the multidrug resistance protein MRP1. The chimeric construct was expressed in Xenopus oocytes and characterized using the patch-clamp technique. We found that activation by MgADP and synthetic openers was greatly attenuated although apparent affinities were unchanged. Further chimeragenetic and mutagenetic studies showed that mutation of three residues, E1305, I1310 and L1313 (rat numbering), was sufficient to confer this defective phenotype. The same mutations had no effects on channel block by the sulphonylurea glibenclamide or by ATP, suggesting a role for these residues in activatory – but not inhibitory – transduction processes. These results indicate that, within the KATP channel complex, the proximal C-terminal of SUR2A is a critical link between ligand binding to SUR2A and Kir6.2 up-regulation. PMID:18450778

  9. The Mössbauer Parameters of the Proximal Cluster of Membrane-Bound Hydrogenase Revisited: A Density Functional Theory Study.

    PubMed

    Tabrizi, Shadan Ghassemi; Pelmenschikov, Vladimir; Noodleman, Louis; Kaupp, Martin

    2016-01-12

    An unprecedented [4Fe-3S] cluster proximal to the regular [NiFe] active site has recently been found to be responsible for the ability of membrane-bound hydrogenases (MBHs) to oxidize dihydrogen in the presence of ambient levels of oxygen. Starting from proximal cluster models of a recent DFT study on the redox-dependent structural transformation of the [4Fe-3S] cluster, (57)Fe Mössbauer parameters (electric field gradients, isomer shifts, and nuclear hyperfine couplings) were calculated using DFT. Our results revise the previously reported correspondence of Mössbauer signals and iron centers in the [4Fe-3S](3+) reduced-state proximal cluster. Similar conflicting assignments are also resolved for the [4Fe-3S](5+) superoxidized state with particular regard to spin-coupling in the broken-symmetry DFT calculations. Calculated (57)Fe hyperfine coupling (HFC) tensors expose discrepancies in the experimental set of HFC tensors and substantiate the need for additional experimental work on the magnetic properties of the MBH proximal cluster in its reduced and superoxidized redox states.

  10. Residential proximity to electromagnetic field sources and birth weight: Minimizing residual confounding using multiple imputation and propensity score matching.

    PubMed

    de Vocht, Frank; Lee, Brian

    2014-08-01

    Studies have suggested that residential exposure to extremely low frequency (50 Hz) electromagnetic fields (ELF-EMF) from high voltage cables, overhead power lines, electricity substations or towers are associated with reduced birth weight and may be associated with adverse birth outcomes or even miscarriages. We previously conducted a study of 140,356 singleton live births between 2004 and 2008 in Northwest England, which suggested that close residential proximity (≤ 50 m) to ELF-EMF sources was associated with reduced average birth weight of 212 g (95%CI: -395 to -29 g) but not with statistically significant increased risks for other adverse perinatal outcomes. However, the cohort was limited by missing data for most potentially confounding variables including maternal smoking during pregnancy, which was only available for a small subgroup, while also residual confounding could not be excluded. This study, using the same cohort, was conducted to minimize the effects of these problems using multiple imputation to address missing data and propensity score matching to minimize residual confounding. Missing data were imputed using multiple imputation using chained equations to generate five datasets. For each dataset 115 exposed women (residing ≤ 50 m from a residential ELF-EMF source) were propensity score matched to 1150 unexposed women. After doubly robust confounder adjustment, close proximity to a residential ELF-EMF source remained associated with a reduction in birth weight of -116 g (95% confidence interval: -224:-7 g). No effect was found for proximity ≤ 100 m compared to women living further away. These results indicate that although the effect size was about half of the effect previously reported, close maternal residential proximity to sources of ELF-EMF remained associated with suboptimal fetal growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. A novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in rat vascular smooth muscle and renal proximal tubular cells.

    PubMed

    Guo, Deng-Fu; Tardif, Valerie; Ghelima, Karin; Chan, John S D; Ingelfinger, Julie R; Chen, XiangMei; Chenier, Isabelle

    2004-05-14

    Angiotensin II stimulates cellular hypertrophy in cultured vascular smooth muscle and renal proximal tubular cells. This effect is believed to be one of earliest morphological changes of heart and renal failure. However, the precise molecular mechanism involved in angiotensin II-induced hypertrophy is poorly understood. In the present study we report the isolation of a novel angiotensin II type 1 receptor-associated protein. It encodes a 531-amino acid protein. Its mRNA is detected in all human tissues examined but highly expressed in the human kidney, pancreas, heart, and human embryonic kidney cells as well as rat vascular smooth muscle and renal proximal tubular cells. Protein synthesis and relative cell size analyzed by flow cytometry studies indicate that overexpression of the novel angiotensin II type 1 receptor-associated protein induces cellular hypertrophy in cultured rat vascular smooth muscle and renal proximal tubular cells. In contrast, the hypertrophic effects was reversed in renal proximal tubular cell lines expressing the novel gene in the antisense orientation and its dominant negative mutant, which lacks the last 101 amino acids in its carboxyl-terminal tail. The hypertrophic effects are at least in part mediated via protein kinase B activation or cyclin-dependent kinase inhibitor, p27(kip1) protein expression level in vascular smooth muscle, and renal proximal tubular cells. Moreover, angiotensin II could not stimulate cellular hypertrophy in renal proximal tubular cells expressing the novel gene in the antisense orientation and its mutant. These findings may provide new molecular mechanisms to understand hypertrophic agents such as angiotensin II-induced cellular hypertrophy.

  12. Effects of Serine 129 Phosphorylation on α-Synuclein Aggregation, Membrane Association, and Internalization*

    PubMed Central

    Samuel, Filsy; Flavin, William P.; Iqbal, Sobia; Pacelli, Consiglia; Sri Renganathan, Sri Dushyaanthan; Trudeau, Louis-Eric; Campbell, Edward M.; Fraser, Paul E.; Tandon, Anurag

    2016-01-01

    Although trace levels of phosphorylated α-synuclein (α-syn) are detectable in normal brains, nearly all α-syn accumulated within Lewy bodies in Parkinson disease brains is phosphorylated on serine 129 (Ser-129). The role of the phosphoserine residue and its effects on α-syn structure, function, and intracellular accumulation are poorly understood. Here, co-expression of α-syn and polo-like kinase 2 (PLK2), a kinase that targets Ser-129, was used to generate phosphorylated α-syn for biophysical and biological characterization. Misfolding and fibril formation of phosphorylated α-syn isoforms were detected earlier, although the fibrils remained phosphatase- and protease-sensitive. Membrane binding of α-syn monomers was differentially affected by phosphorylation depending on the Parkinson disease-linked mutation. WT α-syn binding to presynaptic membranes was not affected by phosphorylation, whereas A30P α-syn binding was greatly increased, and A53T α-syn was slightly lower, implicating distal effects of the carboxyl- on amino-terminal membrane binding. Endocytic vesicle-mediated internalization of pre-formed fibrils into non-neuronal cells and dopaminergic neurons matched the efficacy of α-syn membrane binding. Finally, the disruption of internalized vesicle membranes was enhanced by the phosphorylated α-syn isoforms, a potential means for misfolded extracellular or lumenal α-syn to access cytosolic α-syn. Our results suggest that the threshold for vesicle permeabilization is evident even at low levels of α-syn internalization and are relevant to therapeutic strategies to reduce intercellular propagation of α-syn misfolding. PMID:26719332

  13. The amino-terminal tail of Hxt11 confers membrane stability to the Hxt2 sugar transporter and improves xylose fermentation in the presence of acetic acid.

    PubMed

    Shin, Hyun Yong; Nijland, Jeroen G; de Waal, Paul P; Driessen, Arnold J M

    2017-09-01

    Hxt2 is a glucose repressed, high affinity glucose transporter of the yeast Saccharomyces cerevisiae and is subjected to high glucose induced degradation. Hxt11 is a sugar transporter that is stably expressed at the membrane irrespective the sugar concentration. To transfer this property to Hxt2, the N-terminal tail of Hxt2 was replaced by the corresponding region of Hxt11 yielding a chimeric Hxt11/2 transporter. This resulted in the stable expression of Hxt2 at the membrane and improved the growth on 8% d-glucose and 4% d-xylose. Mutation of N361 of Hxt11/2 into threonine reversed the specificity for d-xylose over d-glucose with high d-xylose transport rates. This mutant supported efficient sugar fermentation of both d-glucose and d-xylose at industrially relevant sugar concentrations even in the presence of the inhibitor acetic acid which is normally present in lignocellulosic hydrolysates. Biotechnol. Bioeng. 2017;114: 1937-1945. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.

  14. Natural monomeric form of fetal bovine serum acetylcholinesterase lacks the C-terminal tetramerization domain.

    PubMed

    Saxena, Ashima; Hur, Regina S; Luo, Chunyuan; Doctor, Bhupendra P

    2003-12-30

    Acetylcholinesterase isolated from fetal bovine serum (FBS AChE) was previously characterized as a globular tetrameric form. Analysis of purified preparations of FBS AChE by gel permeation chromatography revealed the presence of a stable, catalytically active, monomeric form of this enzyme. The two forms could be distinguished from each other based on their molecular weight, hydrodynamic properties, kinetic properties, thermal stability, and the type of glycans they carry. No differences between the two forms were observed for the binding of classical inhibitors such as edrophonium and propidium or inhibitors that are current or potential drugs for the treatment of Alzheimer's disease such as (-) huperzine A and E2020; tacrine inhibited the monomeric form 2-3-fold more potently than the tetrameric form. Sequencing of peptides obtained from an in-gel tryptic digest of the monomer and tetramer by tandem mass spectrometry indicated that the tetramer consists of 583 amino acid residues corresponding to the mature form of the enzyme, whereas the monomer consists of 543-547 amino acid residues. The subunit molecular weight of the protein component of the monomer (major species) was determined to be 59 414 Da and that of the tetramer as 64 239 Da. The N-terminal of the monomer and the tetramer was Glu, suggesting that the monomer is not a result of truncation at the N-terminal. The only differences detected were at the C-terminus. The tetramer yielded the expected C-terminus, CSDL, whereas the C-terminus of the monomer yielded a mixture of peptides, of which LLSATDTLD was the most abundant. These results suggest that monomeric FBS AChE is trimmed at the C-terminus, and the results are consistent with the involvement of C-terminal amino acids in the assembly of monomers into tetramers.

  15. Engineering a thermostable fungal GH10 xylanase, importance of N-terminal amino acids.

    PubMed

    Song, Letian; Tsang, Adrian; Sylvestre, Michel

    2015-06-01

    Xylanases are used in many industrial processes including pulp bleaching, baking, detergent, and the hydrolysis of plant cell wall in biofuels production. In this work we have evolved a single domain GH10 xylanase, Xyn10A_ASPNG, from Aspergillus niger to improve its thermostability. We introduced a rational approach involving as the first step a computational analysis to guide the design of a mutagenesis library in targeted regions which identified thermal important residues that were subsequently randomly mutagenized through rounds of iterative saturation mutagenesis (ISM). Focusing on five residues, four rounds of ISM had generated a quintuple mutant 4S1 (R25W/V29A/I31L/L43F/T58I) which exhibited thermal inactivation half-life (t1/2 ) at 60°C that was prolonged by 30 folds in comparison with wild-type enzyme. Whereas the wild-type enzyme retained 0.2% of its initial activity after a heat treatment of 10 min at 60°C and was completely inactivated after 2 min at 65°C, 4S1 mutant retained 30% of its initial activity after 15 min heating at 65°C. Furthermore, the mutant melting temperature (Tm ) increased by 17.4°C compared to the wild type. Each of the five mutations in 4S1 was found to contribute to thermoresistance, but the dramatic improvement of enzyme thermoresistance of 4S1 was attributed to the synergistic effects of the five mutations. Comparison of biochemical data and model structure between 4S1 and the wild-type enzyme suggested that the N-terminal coil of the enzyme is important in stabilizing GH10 xylanase structure. Based on model structure analyses, we propose that enforced hydrophobic interactions within N-terminal elements and between N- and C-terminal ends are responsible for the improved thermostability of Xyn10A_ASPNG. © 2015 Wiley Periodicals, Inc.

  16. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR.

    PubMed

    Chen, Yi-Yung; Rosario, Fredrick J; Shehab, Majida Abu; Powell, Theresa L; Gupta, Madhulika B; Jansson, Thomas

    2015-12-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (-72%, P<0.0001) and SNAT-1 (-42%, P<0.05) and SNAT-2 (-31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR. © 2015 Authors; published by Portland Press Limited.

  17. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174.

    PubMed

    Arias, C A; Martín-Martinez, M; Blundell, T L; Arthur, M; Courvalin, P; Reynolds, P E

    1999-03-01

    Sequence determination of a region downstream from the vanXYc gene in Enterococcus gallinarum BM4174 revealed an open reading frame, designated vanT, that encodes a 698-amino-acid polypeptide with an amino-terminal domain containing 10 predicted transmembrane segments. The protein contained a highly conserved pyridoxal phosphate attachment site in the C-terminal domain, typical of alanine racemases. The protein was overexpressed in Escherichia coli, and serine racemase activity was detected in the membrane but not in the cytoplasmic fraction after centrifugation of sonicated cells, whereas alanine racemase activity was located almost exclusively in the cytoplasm. When the protein was overexpressed as a polypeptide lacking the predicted transmembrane domain, serine racemase activity was detected in the cytoplasm. The serine racemase activity was partially (64%) inhibited by D-cycloserine, whereas host alanine racemase activity was almost totally inhibited (97%). Serine racemase activity was also detected in membrane preparations of constitutively vancomycin-resistant E. gallinarum BM4174 but not in BM4175, in which insertional inactivation of the vanC-1 D-Ala:D-Ser ligase gene probably had a polar effect on expression of the vanXYc and vanT genes. Comparative modelling of the deduced C-terminal domain was based on the alignment of VanT with the Air alanine racemase from Bacillus stearothermophilus. The model revealed that almost all critical amino acids in the active site of Air were conserved in VanT, indicating that the C-terminal domain of VanT is likely to adopt a three-dimensional structure similar to that of Air and that the protein could exist as a dimer. These results indicate that the source of D-serine for peptidoglycan synthesis in vancomycin-resistant enterococci expressing the VanC phenotype involves racemization of L- to D-serine by a membrane-bound serine racemase.

  18. Flanking signal and mature peptide residues influence signal peptide cleavage

    PubMed Central

    Choo, Khar Heng; Ranganathan, Shoba

    2008-01-01

    Background Signal peptides (SPs) mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I), and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i) eukaryotes (Euk) (ii) Gram-positive (Gram+) bacteria, and (iii) Gram-negative (Gram-) bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs. PMID:19091014

  19. An improved procedure, involving mass spectrometry, for N-terminal amino acid sequence determination of proteins which are N alpha-blocked.

    PubMed Central

    Rose, K; Kocher, H P; Blumberg, B M; Kolakofsky, D

    1984-01-01

    A modification to a previously described procedure [Gray & del Valle (1970) Biochemistry 9, 2134-2137; Rose, Simona & Offord (1983) Biochem. J. 215, 261-272] for mass-spectral identification of the N-terminal regions of proteins is shown to be useful in cases where the N-terminus is blocked. Three proteins were studied: vesicular-stomatitis-virus N protein, Sendai-virus NP protein, and a rabbit immunoglobulin lambda-light chain. These proteins, found to be blocked at the N-terminus with either the acetyl group or a pyroglutamic acid residue, had all failed to yield to attempted Edman degradation, in one case even after attempted enzymic removal of the pyroglutamic acid residue. The N-terminal regions of all three proteins were sequenced by using the new procedure. PMID:6421284

  20. The Zinc-Finger Thylakoid-Membrane Protein FIP Is Involved With Abiotic Stress Response in Arabidopsis thaliana.

    PubMed

    Lopes, Karina L; Rodrigues, Ricardo A O; Silva, Marcos C; Braga, Wiliane G S; Silva-Filho, Marcio C

    2018-01-01

    Many plant genes have their expression modulated by stress conditions. Here, we used Arabidopsis FtsH5 protease, which expression is regulated by light stress, as bait in a yeast two-hybrid screen to search for new proteins involved in the stress response. As a result, we found FIP (FtsH5 Interacting Protein), which possesses an amino proximal cleavable transit peptide, a hydrophobic membrane-anchoring region, and a carboxyl proximal C 4 -type zinc-finger domain. In vivo experiments using FIP fused to green fluorescent protein (GFP) showed a plastid localization. This finding was corroborated by chloroplast import assays that showed FIP inserted in the thylakoid membrane. FIP expression was down-regulated in plants exposed to high light intensity, oxidative, salt, and osmotic stresses, whereas mutant plants expressing low levels of FIP were more tolerant to these abiotic stresses. Our data shows a new thylakoid-membrane protein involved with abiotic stress response in Arabidopsis thaliana .

  1. An Early Nodulin-Like Protein Accumulates in the Sieve Element Plasma Membrane of Arabidopsis1[OA

    PubMed Central

    Khan, Junaid A.; Wang, Qi; Sjölund, Richard D.; Schulz, Alexander; Thompson, Gary A.

    2007-01-01

    Membrane proteins within the sieve element-companion cell complex have essential roles in the physiological functioning of the phloem. The monoclonal antibody line RS6, selected from hybridomas raised against sieve elements isolated from California shield leaf (Streptanthus tortuosus; Brassicaceae) tissue cultures, recognizes an antigen in the Arabidopsis (Arabidopsis thaliana) ecotype Columbia that is associated specifically with the plasma membrane of sieve elements, but not companion cells, and accumulates at the earliest stages of sieve element differentiation. The identity of the RS6 antigen was revealed by reverse transcription-PCR of Arabidopsis leaf RNA using degenerate primers to be an early nodulin (ENOD)-like protein that is encoded by the expressed gene At3g20570. Arabidopsis ENOD-like proteins are encoded by a multigene family composed of several types of structurally related phytocyanins that have a similar overall domain structure of an amino-terminal signal peptide, plastocyanin-like copper-binding domain, proline/serine-rich domain, and carboxy-terminal hydrophobic domain. The amino- and carboxy-terminal domains of the 21.5-kD sieve element-specific ENOD are posttranslationally cleaved from the precursor protein, resulting in a mature peptide of approximately 15 kD that is attached to the sieve element plasma membrane via a carboxy-terminal glycosylphosphatidylinositol membrane anchor. Many of the Arabidopsis ENOD-like proteins accumulate in gametophytic tissues, whereas in both floral and vegetative tissues, the sieve element-specific ENOD is expressed only within the phloem. Members of the ENOD subfamily of the cupredoxin superfamily do not appear to bind copper and have unknown functions. Phenotypic analysis of homozygous T-DNA insertion mutants for the gene At3g20570 shows minimal alteration in vegetative growth but a significant reduction in the overall reproductive potential. PMID:17293437

  2. Key role of amino acid residues in the dimerization and catalytic activation of the autolysin LytA, an important virulence factor in Streptococcus pneumoniae.

    PubMed

    Romero, Patricia; López, Rubens; García, Ernesto

    2007-06-15

    LytA, the main autolysin of Streptococcus pneumoniae, was the first member of the bacterial N-acetylmuramoyl-l-alanine amidase (NAM-amidase) family of proteins to be well characterized. This autolysin degrades the peptidoglycan bonds of pneumococcal cell walls after anchoring to the choline residues of the cell wall teichoic acids via its choline-binding module (ChBM). The latter is composed of seven repeats (ChBRs) of approximately 20 amino acid residues. The translation product of the lytA gene is the low-activity E-form of LytA (a monomer), which can be "converted" (activated) in vitro by choline into the fully active C-form at low temperature. The C-form is a homodimer with a boomerang-like shape. To study the structural requirements for the monomer-to-dimer modification and to clarify whether "conversion" is synonymous with dimerization, the biochemical consequences of replacing four key amino acid residues of ChBR6 and ChBR7 (the repeats involved in dimer formation) were determined. The results obtained with a collection of 21 mutated NAM-amidases indicate that Ile-315 is a key amino acid residue in both LytA activity and folding. Amino acids with a marginal position in the solenoid structure of the ChBM were of minor influence in dimer stability; neither the size, polarity, nor aromatic nature of the replacement amino acids affected LytA activity. In contrast, truncated proteins were drastically impaired in their activity and conversion capacity. The results indicate that dimerization and conversion are different processes, but they do not answer the questions of whether conversion can only be achieved after a dimer formation step.

  3. Structure and Function of the Sterol Carrier Protein-2 N-Terminal Presequence†

    PubMed Central

    Martin, Gregory G.; Hostetler, Heather A.; McIntosh, Avery L.; Tichy, Shane E.; Williams, Brad J.; Russell, David H.; Berg, Jeremy M.; Spencer, Thomas A.; Ball, Judith; Kier, Ann B.; Schroeder, Friedhelm

    2008-01-01

    Although sterol carrier protein-2 (SCP-2) is encoded as a precursor protein (proSCP-2), little is known regarding the structure and function of the 20-amino acid N-terminal presequence. As shown herein, the presequence contains significant secondary structure and alters SCP-2: (i) secondary structure (CD), (ii) tertiary structure (aqueous exposure of Trp shown by UV absorbance, fluorescence, fluorescence quenching), (iii) ligand binding site [Trp response to ligands, peptide cross-linked by photoactivatable free cholesterol (FCBP)], (iv) selectivity for interaction with anionic phospholipid-rich membranes, (v) interaction with a peroxisomal import protein [FRET studies of Pex5p(C) binding], the N-terminal presequence increased SCP-2’s affinity for Pex5p(C) by 10-fold, and (vi) intracellular targeting in living and fixed cells (confocal microscopy). Nearly 5-fold more SCP-2 than proSCP-2 colocalized with plasma membrane lipid rafts/caveolae (AF488-CTB), 2.8-fold more SCP-2 than proSCP-2 colocalized with a mitochondrial marker (Mitotracker), but nearly 2-fold less SCP-2 than proSCP-2 colocalized with peroxisomes (AF488-antibody to PMP70). These data indicate the importance of the N-terminal presequence in regulating SCP-2 structure, cholesterol localization within the ligand binding site, membrane association, and, potentially, intracellular targeting. PMID:18465878

  4. Amino acid selective unlabeling for sequence specific resonance assignments in proteins

    PubMed Central

    Krishnarjuna, B.; Jaipuria, Garima; Thakur, Anushikha

    2010-01-01

    Sequence specific resonance assignment constitutes an important step towards high-resolution structure determination of proteins by NMR and is aided by selective identification and assignment of amino acid types. The traditional approach to selective labeling yields only the chemical shifts of the particular amino acid being selected and does not help in establishing a link between adjacent residues along the polypeptide chain, which is important for sequential assignments. An alternative approach is the method of amino acid selective ‘unlabeling’ or reverse labeling, which involves selective unlabeling of specific amino acid types against a uniformly 13C/15N labeled background. Based on this method, we present a novel approach for sequential assignments in proteins. The method involves a new NMR experiment named, {12COi–15Ni+1}-filtered HSQC, which aids in linking the 1HN/15N resonances of the selectively unlabeled residue, i, and its C-terminal neighbor, i + 1, in HN-detected double and triple resonance spectra. This leads to the assignment of a tri-peptide segment from the knowledge of the amino acid types of residues: i − 1, i and i + 1, thereby speeding up the sequential assignment process. The method has the advantage of being relatively inexpensive, applicable to 2H labeled protein and can be coupled with cell-free synthesis and/or automated assignment approaches. A detailed survey involving unlabeling of different amino acid types individually or in pairs reveals that the proposed approach is also robust to misincorporation of 14N at undesired sites. Taken together, this study represents the first application of selective unlabeling for sequence specific resonance assignments and opens up new avenues to using this methodology in protein structural studies. Electronic supplementary material The online version of this article (doi:10.1007/s10858-010-9459-z) contains supplementary material, which is available to authorized users. PMID:21153044

  5. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.

    PubMed

    Ryan, Renae M; Kortt, Nicholas C; Sirivanta, Tan; Vandenberg, Robert J

    2010-07-01

    Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system and extracellular glutamate levels are controlled by a family of transporters known as excitatory amino acid transporters (EAATs). The EAATs transport glutamate and aspartate with similar micromolar affinities and this transport is coupled to the movement of Na(+), K(+), and H(+). The crystal structure of a prokaryotic homologue of the EAATs, aspartate transporter from Pyrococcus horokoshii (Glt(Ph)), has yielded important insights into the architecture of this transporter family. Glt(Ph) is a Na(+)-dependent transporter that has significantly higher affinity for aspartate over glutamate and is not coupled to H(+) or K(+). The highly conserved carboxy-terminal domains of the EAATs and Glt(Ph) contain the substrate and ion binding sites, however, there are a couple of striking differences in this region that we have investigated to better understand the transport mechanism. An arginine residue is in close proximity to the substrate binding site of both Glt(Ph) and the EAATs, but is located in transmembrane domain (TM) 8 in the EAATs and hairpin loop 1 (HP1) of Glt(Ph). Here we report that the position of this arginine residue can explain some of the functional differences observed between the EAATs and Glt(Ph). Moving the arginine residue from TM8 to HP1 in EAAT1 results in a transporter that has significantly increased affinity for both glutamate and aspartate and is K(+) independent. Conversely, moving the arginine residue from HP1 to TM8 in Glt(Ph) results in a transporter that has reduced affinity for aspartate.

  6. Studies on the structures of the Tm, Sj, M1, Can, Sext and Hu blood group antigens.

    PubMed

    Dahr, W; Knuppertz, G; Beyreuther, K; Moulds, J J; Moulds, M; Wilkinson, S; Capon, C; Fournet, B; Issitt, P D

    1991-08-01

    The Glycophorins (GPs = sialoglycoproteins) in erythrocyte membranes from various Black individuals, some of which exhibit the M1, Can, Sj, Tm, Sext and/or Hu antigens, and several Caucasian donors, including pooled fetal red cells, were studied. Using agglutination inhibition assays with GP fractions, GP fragments and chemically modified GPs as well as trypsin treatment of intact red cells, the antigens defined by anti-M1, anti-M+M1, anti-Can and anti-Tm sera were found to be located on the N-terminal tryptic peptide (T2, residues 1-31) of the major GP (GP A = MN sialoglycoprotein). Evidence was obtained that the N-terminal amino-acid residue, NeuNAc and/or (a) different sugar residue(s) are involved in the antigens. Amino-acid sequence and composition analyses excluded an amino-acid exchange within the N-terminal region (residues 1-31) of GP A. Carbohydrate analyses revealed the attachment of GlcNAc residues (up to about five, dependent on the strength of the above-mentioned antigens) to O-glycosidically linked oligosaccharides within the N-terminal portion (residues 1-31) of GP A. As judged from the carbohydrate compositions of peptides, the alteration of the O-glycosidic oligosaccharides is associated with a slight increase of the Gal and Fuc contents and a slight decrease of the NeuNAc level. Analyses of small, secondary cyanogen bromide and V8 proteinase peptides from the N-terminal region of GP A from Blacks, Caucasians and Caucasian fetal cells suggest that the variable attachment of small quantities of GlcNAc (about 0.03 to about 0.2 residues per peptide molecule) accounts, at least in part, for the polymorphisms detected by anti-Can and the original anti-Tm (serum Sheerin). Remarkably, the GlcNAc-containing O-glycosidic oligosaccharides occur only in small quantities, or not all at, within the positions 32-61 of GP A and the glycosylated domains of GP B and GP C.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes.

    PubMed Central

    El Far, Oussama; Betz, Heinrich

    2002-01-01

    G-protein-coupled receptors (GPCRs) represent a superfamily of highly diverse integral membrane proteins that transduce external signals to different subcellular compartments, including nuclei, via trimeric G-proteins. By differential activation of diffusible G(alpha) and membrane-bound G(beta)gamma subunits, GPCRs might act on both cytoplasmic/intracellular and plasma-membrane-bound effector systems. The coupling efficiency and the plasma membrane localization of GPCRs are regulated by a variety of interacting proteins. In this review, we discuss recently disclosed protein interactions found with the cytoplasmic C-terminal tail regions of two types of presynaptic neurotransmitter receptors, the group III metabotropic glutamate receptors and the gamma-aminobutyric acid type-B receptors (GABA(B)Rs). Calmodulin binding to mGluR7 and other group III mGluRs may provide a Ca(2+)-dependent switch for unidirectional (G(alpha)) versus bidirectional (G(alpha) and G(beta)gamma) signalling to downstream effector proteins. In addition, clustering of mGluR7 by PICK1 (protein interacting with C-kinase 1), a polyspecific PDZ (PSD-95/Dlg1/ZO-1) domain containing synaptic organizer protein, sheds light on how higher-order receptor complexes with regulatory enzymes (or 'signalosomes') could be formed. The interaction of GABA(B)Rs with the adaptor protein 14-3-3 and the transcription factor ATF4 (activating transcription factor 4) suggests novel regulatory pathways for G-protein signalling, cytoskeletal reorganization and nuclear gene expression: processes that may all contribute to synaptic plasticity. PMID:12006104

  8. Reconstructing Solvent Density of Myoglobin Unit Cell from Proximal Radial Distribution Functions of Amino Acids

    NASA Astrophysics Data System (ADS)

    Galbraith, Madeline; Lynch, Gc; Pettitt, Bm

    Understanding the solvent density around a protein crystal structure is an important step for refining accurate crystal structures for use in dynamics simulations or in free energy calculations. The free energy of solvation has typically been approximated using an implicit continuum solvent model or an all atom MD simulation, with a trade-off between accuracy and computation time. For proteins, using precomputed proximal radial distribution functions (pRDFs) of the solvent to reconstruct solvent density on a grid is much faster than all atom MD simulations and more accurate than using implicit solvent models. MD simulations were run for the 20 common amino acids and pRDFs were calculated for several atom type data sets with and without hydrogens, using atom types representative of amino acid side chain atoms. Preliminary results from reconstructions suggest using a data set with 15 heavy atoms and 3 hydrogen yields results with the lowest error without a tradeoff on time. The results of using precomputed pRDFs to reconstruct the solvent density of water for the myoglobin (pdb ID 2mgk) unit cell quantifies the accuracy of the method in comparison with the crystallographic data. Funding Acknowledgement: This research was funded by the CPRIT Summer Undergraduate Program in Computational Cancer Biology, training Grant award RP 140113 from the Cancer Prevention & Research Institute of Texas (CPRIT).

  9. Rotation of Guanine Amino Groups in G-Quadruplexes: A Probe for Local Structure and Ligand Binding.

    PubMed

    Adrian, Michael; Winnerdy, Fernaldo Richtia; Heddi, Brahim; Phan, Anh Tuân

    2017-08-22

    Nucleic acids are dynamic molecules whose functions may depend on their conformational fluctuations and local motions. In particular, amino groups are dynamic components of nucleic acids that participate in the formation of various secondary structures such as G-quadruplexes. Here, we present a cost-efficient NMR method to quantify the rotational dynamics of guanine amino groups in G-quadruplex nucleic acids. An isolated spectrum of amino protons from a specific tetrad-bound guanine can be extracted from the nuclear Overhauser effect spectroscopy spectrum based on the close proximity between the intra-residue imino and amino protons. We apply the method in different structural contexts of G-quadruplexes and their complexes. Our results highlight the role of stacking and hydrogen-bond interactions in restraining amino-group rotation. The measurement of the rotation rate of individual amino groups could give insight into the dynamic processes occurring at specific locations within G-quadruplex nucleic acids, providing valuable probes for local structure, dynamics, and ligand binding. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. A histidine residue of the influenza virus hemagglutinin controls the pH dependence of the conformational change mediating membrane fusion.

    PubMed

    Mair, Caroline M; Meyer, Tim; Schneider, Katjana; Huang, Qiang; Veit, Michael; Herrmann, Andreas

    2014-11-01

    The conformational change of the influenza virus hemagglutinin (HA) protein mediating the fusion between the virus envelope and the endosomal membrane was hypothesized to be induced by protonation of specific histidine residues since their pKas match the pHs of late endosomes (pK(a) of ∼ 6.0). However, such critical key histidine residues remain to be identified. We investigated the highly conserved His184 at the HA1-HA1 interface and His110 at the HA1-HA2 interface of highly pathogenic H5N1 HA as potential pH sensors. By replacing both histidines with different amino acids and analyzing the effect of these mutations on conformational change and fusion, we found that His184, but not His110, plays an essential role in the pH dependence of the conformational change of HA. Computational modeling of the protonated His184 revealed that His184 is central in a conserved interaction network possibly regulating the pH dependence of conformational change via its pKa. As the propensity of histidine to get protonated largely depends on its local environment, mutation of residues in the vicinity of histidine may affect its pK(a). The HA of highly pathogenic H5N1 viruses carries a Glu-to-Arg mutation at position 216 close to His184. By mutation of residue 216 in the highly pathogenic as well as the low pathogenic H5 HA, we observed a significant influence on the pH dependence of conformational change and fusion. These results are in support of a pK(a)-modulating effect of neighboring residues. The main pathogenic determinant of influenza viruses, the hemagglutinin (HA) protein, triggers a key step of the infection process: the fusion of the virus envelope with the endosomal membrane releasing the viral genome. Whereas essential aspects of the fusion-inducing mechanism of HA at low pH are well understood, the molecular trigger of the pH-dependent conformational change inducing fusion has been unclear. We provide evidence that His184 regulates the pH dependence of the HA

  11. Proximal Nephron

    PubMed Central

    Zhuo, Jia L.; Li, Xiao C.

    2013-01-01

    The kidney plays a fundamental role in maintaining body salt and fluid balance and blood pressure homeostasis through the actions of its proximal and distal tubular segments of nephrons. However, proximal tubules are well recognized to exert a more prominent role than distal counterparts. Proximal tubules are responsible for reabsorbing approximately 65% of filtered load and most, if not all, of filtered amino acids, glucose, solutes, and low molecular weight proteins. Proximal tubules also play a key role in regulating acid-base balance by reabsorbing approximately 80% of filtered bicarbonate. The purpose of this review article is to provide a comprehensive overview of new insights and perspectives into current understanding of proximal tubules of nephrons, with an emphasis on the ultrastructure, molecular biology, cellular and integrative physiology, and the underlying signaling transduction mechanisms. The review is divided into three closely related sections. The first section focuses on the classification of nephrons and recent perspectives on the potential role of nephron numbers in human health and diseases. The second section reviews recent research on the structural and biochemical basis of proximal tubular function. The final section provides a comprehensive overview of new insights and perspectives in the physiological regulation of proximal tubular transport by vasoactive hormones. In the latter section, attention is particularly paid to new insights and perspectives learnt from recent cloning of transporters, development of transgenic animals with knockout or knockin of a particular gene of interest, and mapping of signaling pathways using microarrays and/or physiological proteomic approaches. PMID:23897681

  12. Development of a Proximity Labeling System to Map the Chlamydia trachomatis Inclusion Membrane

    PubMed Central

    Rucks, Elizabeth A.; Olson, Macy G.; Jorgenson, Lisa M.; Srinivasan, Rekha R.; Ouellette, Scot P.

    2017-01-01

    Chlamydia grows within a membrane-bound vacuole termed an inclusion. The cellular processes that support the biogenesis and integrity of this pathogen-specified parasitic organelle are not understood. Chlamydia secretes integral membrane proteins called Incs that insert into the chlamydial inclusion membrane (IM). Incs contain at least two hydrophobic transmembrane domains flanked by termini, which vary in size and are exposed to the host cytosol. In addition, Incs are temporally expressed during the chlamydial developmental cycle. Data examining Inc function are limited because of (i) the difficulty in working with hydrophobic proteins and (ii) the inherent fragility of the IM. We hypothesize that Incs function collaboratively to maintain the integrity of the chlamydial inclusion with small Incs organizing the IM and larger Incs interfacing with host cell machinery. To study this hypothesis, we have adapted a proximity-labeling strategy using APEX2, a mutant soybean ascorbate peroxidase that biotinylates interacting and proximal proteins within minutes in the presence of H2O2 and its exogenous substrate, biotin-phenol. We successfully expressed, from an inducible background, APEX2 alone, or fusion proteins of IncATM (TM = transmembrane domain only), IncA, and IncF with APEX2 in Chlamydia trachomatis serovar L2. IncF-APEX2, IncATM-APEX2, and IncA-APEX2 localized to the IM whereas APEX2, lacking a secretion signal, remained associated with the bacteria. We determined the impact of overexpression on inclusion diameter, plasmid stability, and Golgi-derived sphingomyelin acquisition. While there was an overall impact of inducing construct expression, IncF-APEX2 overexpression most negatively impacted these measurements. Importantly, Inc-APEX2 expression in the presence of biotin-phenol resulted in biotinylation of the IM. These data suggest that Inc expression is regulated to control optimal IM biogenesis. We subsequently defined lysis conditions that solubilized known

  13. Is the C-terminal flanking peptide of rat cholecystokinin double sulphated?

    PubMed

    Adrian, T E; Domin, J; Bacarese-Hamilton, A J; Bloom, S R

    1986-02-03

    A specific radioimmunoassay was developed to the predicted nine amino acid C-terminal flanking peptide of cholecystokinin (peptide serine serine, PSS). In aqueous extracts of rat brain, PSS was undetectable unless the extracts were first treated with arylsulphatase, which also resulted in desulphation of cholecystokinin. The reverse-phase HPLC analysis of partially desulphated extracts showed the presence of two peaks intermediate to the naturally occurring and the completely desulphated forms. It is therefore proposed that the CCK-flanking peptide PSS has both tyrosine residues sulphated.

  14. A tethering complex drives the terminal stage of SNARE-dependent membrane fusion

    NASA Astrophysics Data System (ADS)

    D'Agostino, Massimo; Risselada, Herre Jelger; Lürick, Anna; Ungermann, Christian; Mayer, Andreas

    2017-11-01

    Membrane fusion in eukaryotic cells mediates the biogenesis of organelles, vesicular traffic between them, and exo- and endocytosis of important signalling molecules, such as hormones and neurotransmitters. Distinct tasks in intracellular membrane fusion have been assigned to conserved protein systems. Tethering proteins mediate the initial recognition and attachment of membranes, whereas SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein complexes are considered as the core fusion engine. SNARE complexes provide mechanical energy to distort membranes and drive them through a hemifusion intermediate towards the formation of a fusion pore. This last step is highly energy-demanding. Here we combine the in vivo and in vitro fusion of yeast vacuoles with molecular simulations to show that tethering proteins are critical for overcoming the final energy barrier to fusion pore formation. SNAREs alone drive vacuoles only into the hemifused state. Tethering proteins greatly increase the volume of SNARE complexes and deform the site of hemifusion, which lowers the energy barrier for pore opening and provides the driving force. Thereby, tethering proteins assume a crucial mechanical role in the terminal stage of membrane fusion that is likely to be conserved at multiple steps of vesicular traffic. We therefore propose that SNAREs and tethering proteins should be considered as a single, non-dissociable device that drives fusion. The core fusion machinery may then be larger and more complex than previously thought.

  15. Proximate analyses and predicting HHV of chars obtained from cocracking of petroleum vacuum residue with coal, plastics and biomass.

    PubMed

    Ahmaruzzaman, M

    2008-07-01

    Higher heating value (HHV) and analysis of chars obtained from cocracking of petroleum vacuum residue (XVR) with coal (SC), biomass (BG, CL) and plastics (PP, PS, BL) are important which define the energy content and determine the clean and efficient use of these chars. The main aim of the present study is to analyze the char obtained from cocracking in terms of their proximate analysis data and determination of the HHV of the chars. The char obtained from XVR+PP cocracking showed a HHV of 32.84 MJ/kg, whereas that from CL cracking showed a HHV of 18.52 MJ/kg. The experimentally determined heating values of the char samples obtained from cocracking have been correlated with the theoretical equation based on proximate analysis data. There exists a variety of correlations for predicting HHV from proximate analysis of fuels. Based upon proximate analysis data, the models were tested. The best results show coefficient of determination (R2) of 0.965 and average absolute and bias error of 3.07% and 0.41%, respectively. The heating values obtained from the model were in good agreement with that obtained by experiment. Proximate analysis of the chars obtained from the cocracking of XVR with coal, biomass and plastics showed that there exists a definite interaction of the reactive species, when they were cocracked together.

  16. The sorting of a small potassium channel in mammalian cells can be shifted between mitochondria and plasma membrane.

    PubMed

    von Charpuis, Charlotte; Meckel, Tobias; Moroni, Anna; Thiel, Gerhard

    2015-07-01

    The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain. Copyright © 2014. Published by Elsevier Ltd.

  17. Proximate composition, amino acid and fatty acid profiles of marine snail Rapana venosa meat, visceral mass and operculum.

    PubMed

    Luo, Fenglei; Xing, Ronge; Wang, Xueqin; Peng, Quancai; Li, Pengcheng

    2017-12-01

    Rapana venosa (Rv), an important marine snail, demonstrates an increasing nutritional and economic importance. However, there is still limited information available on their nutritional composition. The present study highlights and provides new information on the proximate composition, amino acid and fatty acid profiles of different body parts of Rv, aiming for its better application and research. The operculum contained a high amount of protein and flavor amino acids. The edible tissues, including meat and visceral mass, were valuable sources of essential amino acids (EAA) apart from methionine and cysteine. In addition, the meat contained high amount of taurine. Fatty acid analysis indicated that the edible tissues contained high amounts of ω3 fatty acids, especially eicosapentaenoic acid (EPA) (C20:5ω3) and docosahexaenoic acid (DHA) (C22:6ω3), and had a low ω6/ω3 fatty acid ratio. Interestingly, significantly higher concentrations of most nutritional elements such as fat, EAA, EPA and DHA, were found in the visceral mass compared to those in the meat. The operculum of Rv may became a very interesting source for some protein and flavor peptide development, and the edible parts of Rv may be utilized for special dietary applications requiring high amounts of taurine, EPA, DHA and a lower ω6/ω3 fatty acid ratio. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Use of a Ceramic Membrane to Improve the Performance of Two-Separate-Phase Biocatalytic Membrane Reactor.

    PubMed

    Ranieri, Giuseppe; Mazzei, Rosalinda; Wu, Zhentao; Li, Kang; Giorno, Lidietta

    2016-03-14

    Biocatalytic membrane reactors (BMR) combining reaction and separation within the same unit have many advantages over conventional reactor designs. Ceramic membranes are an attractive alternative to polymeric membranes in membrane biotechnology due to their high chemical, thermal and mechanical resistance. Another important use is their potential application in a biphasic membrane system, where support solvent resistance is highly needed. In this work, the preparation of asymmetric ceramic hollow fibre membranes and their use in a two-separate-phase biocatalytic membrane reactor will be described. The asymmetric ceramic hollow fibre membranes were prepared using a combined phase inversion and sintering technique. The prepared fibres were then used as support for lipase covalent immobilization in order to develop a two-separate-phase biocatalytic membrane reactor. A functionalization method was proposed in order to increase the density of the reactive hydroxyl groups on the surface of ceramic membranes, which were then amino-activated and treated with a crosslinker. The performance and the stability of the immobilized lipase were investigated as a function of the amount of the immobilized biocatalytst. Results showed that it is possible to immobilize lipase on a ceramic membrane without altering its catalytic performance (initial residual specific activity 93%), which remains constant after 6 reaction cycles.

  19. Dual role of the carboxyl-terminal region of pig liver L-kynurenine 3-monooxygenase: mitochondrial-targeting signal and enzymatic activity.

    PubMed

    Hirai, Kumiko; Kuroyanagi, Hidehito; Tatebayashi, Yoshitaka; Hayashi, Yoshitaka; Hirabayashi-Takahashi, Kanako; Saito, Kuniaki; Haga, Seiich; Uemura, Tomihiko; Izumi, Susumu

    2010-12-01

    l-kynurenine 3-monooxygenase (KMO) is an NAD(P)H-dependent flavin monooxygenase that catalyses the hydroxylation of l-kynurenine to 3-hydroxykynurenine, and is localized as an oligomer in the mitochondrial outer membrane. In the human brain, KMO may play an important role in the formation of two neurotoxins, 3-hydroxykynurenine and quinolinic acid, both of which provoke severe neurodegenerative diseases. In mosquitos, it plays a role in the formation both of eye pigment and of an exflagellation-inducing factor (xanthurenic acid). Here, we present evidence that the C-terminal region of pig liver KMO plays a dual role. First, it is required for the enzymatic activity. Second, it functions as a mitochondrial targeting signal as seen in monoamine oxidase B (MAO B) or outer membrane cytochrome b(5). The first role was shown by the comparison of the enzymatic activity of two mutants (C-terminally FLAG-tagged KMO and carboxyl-terminal truncation form, KMOΔC50) with that of the wild-type enzyme expressed in COS-7 cells. The second role was demonstrated with fluorescence microscopy by the comparison of the intracellular localization of the wild-type, three carboxyl-terminal truncated forms (ΔC20, ΔC30 and ΔC50), C-terminally FLAG-tagged wild-type and a mutant KMO, where two arginine residues, Arg461-Arg462, were replaced with Ser residues.

  20. Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis

    PubMed Central

    Khattree, Nidhi; Ritter, Linda M.; Goldberg, Andrew F. X.

    2013-01-01

    Summary Vertebrate vision requires photon absorption by photoreceptor outer segments (OSs), structurally elaborate membranous organelles derived from non-motile sensory cilia. The structure and function of OSs depends on a precise stacking of hundreds of membranous disks. Each disk is fully (as in rods) or partially (as in cones) bounded by a rim, at which the membrane is distorted into an energetically unfavorable high-curvature bend; however, the mechanism(s) underlying disk rim structure is (are) not established. Here, we demonstrate that the intrinsically disordered cytoplasmic C-terminus of the photoreceptor tetraspanin peripherin-2/rds (P/rds) can directly generate membrane curvature. A P/rds C-terminal domain and a peptide mimetic of an amphipathic helix contained within it each generated curvature in liposomes with a composition similar to that of OS disks and in liposomes generated from native OS lipids. Association of the C-terminal domain with liposomes required conical phospholipids, and was promoted by membrane curvature and anionic surface charge, results suggesting that the P/rds C-terminal amphipathic helix can partition into the cytosolic membrane leaflet to generate curvature by a hydrophobic insertion (wedging) mechanism. This activity was evidenced in full-length P/rds by its induction of small-diameter tubulovesicular membrane foci in cultured cells. In sum, the findings suggest that curvature generation by the P/rds C-terminus contributes to the distinctive structure of OS disk rims, and provide insight into how inherited defects in P/rds can disrupt organelle structure to cause retinal disease. They also raise the possibility that tethered amphipathic helices can function for shaping cellular membranes more generally. PMID:23886945

  1. Fast iodide-SAD phasing for high-throughput membrane protein structure determination.

    PubMed

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A; Gordeliy, Valentin; Popov, Alexander

    2017-05-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide-single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins-the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein-coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques.

  2. Characterization of the N-terminal segment used by the barley yellow dwarf virus movement protein to promote interaction with the nuclear membrane of host plant cells.

    PubMed

    Dennison, Sarah Rachel; Harris, Frederick; Brandenburg, Klaus; Phoenix, David Andrew

    2007-11-01

    The barley yellow dwarf virus movement protein (BYDV-MP) requires its N-terminal sequence to promote the transport of viral RNA into the nuclear compartment of host plant cells. Here, graphical analysis predicts that this sequence would form a membrane interactive amphiphilic alpha-helix. Confirming this prediction, NT1, a peptide homologue of the BYDV-MP N-terminal sequence, was found to be alpha-helical (65%) in the presence of vesicles mimics of the nuclear membrane. The peptide increased the fluidity of these nuclear membrane mimics (rise in wavenumber of circa 0.5-1.0 cm(-1)) and induced surface pressure changes of 2 mN m(-1) in lipid monolayers with corresponding compositions. Taken with isotherm analysis these results suggest that BYDV-MP forms an N-terminal amphiphilic alpha-helix, which partitions into the nuclear membrane primarily through thermodynamically stable associations with the membrane lipid headgroup region. We speculate that these associations may play a role in targeting of the nuclear membrane by BYDM-MP.

  3. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: Insights into mechanisms of general viral fusion and inhibitor design

    PubMed Central

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-01-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation = 0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. PMID:24519901

  4. Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

    PubMed

    Aydin, Halil; Al-Khooly, Dina; Lee, Jeffrey E

    2014-05-01

    Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections. © 2014 The Protein Society.

  5. Structure of the Ulster Strain Newcastle Disease Virus Hemagglutinin-Neuraminidase Reveals Auto-Inhibitory Interactions Associated with Low Virulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ping; Paterson, Reay G.; Leser, George P.

    2012-09-06

    Paramyxovirus hemagglutinin-neuraminidase (HN) plays roles in viral entry and maturation, including binding to sialic acid receptors, activation of the F protein to drive membrane fusion, and enabling virion release during virus budding. HN can thereby directly influence virulence and in a subset of avirulent Newcastle disease virus (NDV) strains, such as NDV Ulster, HN must be proteolytically activated to remove a C-terminal extension not found in other NDV HN proteins. Ulster HN is 616 amino acids long and the 45 amino acid C-terminal extension present in its precursor (HN0) form has to be cleaved to render HN biologically active. Heremore » we show that Ulster HN contains an inter-subunit disulfide bond within the C-terminal extension at residue 596, which regulates HN activities and neuraminidase (NA) domain dimerization. We determined the crystal structure of the dimerized NA domain containing the C-terminal extension, which extends along the outside of the sialidase {beta}-propeller domain and inserts C-terminal residues into the NA domain active site. The C-terminal extension also engages a secondary sialic acid binding site present in NDV HN proteins, which is located at the NA domain dimer interface, that most likely blocks its attachment function. These results clarify how the Ulster HN C-terminal residues lead to an auto-inhibited state of HN, the requirement for proteolytic activation of HN{sub 0} and associated reduced virulence.« less

  6. Membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelr, B.L.; Anderson, C.W.; Hanecak, R.

    1982-02-01

    A synthetic heptapeptide corresponding to the C-terminal sequence of the poliovirus genome protein (VPg) has been linked to bovine serum albumin and used to raise antibodies in rabbits. These antibodies precipitate not only VPg but also at least two more virus-specific polypeptides. The smaller polypeptide, denoted P3-9 (12,000 daltons), has been mapped by Edman degradation and by fragmentation with cyanogen bromide and determined to be the N-terminal cleavage product of polypeptide P3-1b, a precursor to the RNA polymerase. P3-9 contains the sequence of the basic protein VPg (22 amino acids) at its C terminus. As predicted by the known RNAmore » sequence of poliovirus, P3-9 also contains a hydrophobic region of 22 amino acids preceding VPg, an observation suggesting that P3-9 may be membrane-associated. This was confirmed by fractionation of infected cells in the presence or absence of detergent. We speculate that P3-9 may be the donor of VPg to RNA chains in the membrane-bound RNA replication complex.« less

  7. Effects of lead intoxication on intercellular junctions and biochemical alterations of the renal proximal tubule cells.

    PubMed

    Navarro-Moreno, L G; Quintanar-Escorza, M A; González, S; Mondragón, R; Cerbón-Solorzáno, J; Valdés, J; Calderón-Salinas, J V

    2009-10-01

    Lead intoxication is a worldwide health problem which frequently affects the kidney. In this work, we studied the effects of chronic lead intoxication (500 ppm of Pb in drinking water during seven months) on the structure, function and biochemical properties of rat proximal tubule cells. Lead-exposed animals showed increased lead concentration in kidney, reduction of calcium and amino acids uptake, oxidative damage and glucosuria, proteinuria, hematuria and reduced urinary pH. These biochemical and physiological alterations were related to striking morphological modifications in the structure of tubule epithelial cells and in the morphology of their mitochondria, nuclei, lysosomes, basal and apical membranes. Interestingly, in addition to the nuclei, inclusion bodies were found in the cytoplasm and in mitochondria. The epithelial cell structure modifications included an early loss of the apical microvillae, followed by a decrement of the luminal space and the respective apposition and proximity of apical membranes, resulting in the formation of atypical intercellular contacts and adhesion structures. Similar but less marked alterations were observed in subacute lead intoxication as well. Our work contributes in the understanding of the physiopathology of lead intoxication on the structure of renal tubular epithelial cell-cell contacts in vivo.

  8. The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins.

    PubMed

    Dijk, J; van den Broek, R; Nasiulas, G; Beck, A; Reinhardt, R; Wittmann-Liebold, B

    1987-08-01

    The amino-terminal sequence of ribosomal protein L10 from Halobacterium marismortui has been determined up to residue 54, using both a liquid- and a gas-phase sequenator. The two sequences are in good agreement. The protein is clearly homologous to protein HcuL10 from the related strain Halobacterium cutirubrum. Furthermore, a weaker but distinct homology to ribosomal protein L6 from Escherichia coli and Bacillus stearothermophilus can be detected. In addition to 7 identical amino acids in the first 36 residues in all four sequences a number of conservative replacements occurs, of mainly hydrophobic amino acids. In this common region the pattern of conserved amino acids suggests the presence of a beta-alpha fold as it occurs in ribosomal proteins L12 and L30. Furthermore, several potential cases of homology to other ribosomal components of the three ur-kingdoms have been found.

  9. Increased ubiquitination and reduced plasma membrane trafficking of placental amino acid transporter SNAT-2 in human IUGR

    PubMed Central

    Rosario, Fredrick J.; Shehab, Majida Abu; Powell, Theresa L.; Gupta, Madhulika B.; Jansson, Thomas

    2015-01-01

    Placental amino acid transport is decreased in intrauterine growth restriction (IUGR); however, the underlying mechanisms remain largely unknown. We have shown that mechanistic target of rapamycin (mTOR) signalling regulates system A amino acid transport by modulating the ubiquitination and plasma membrane trafficking of sodium-coupled neutral amino acid transporter 2 (SNAT-2) in cultured primary human trophoblast cells. We hypothesize that IUGR is associated with (1) inhibition of placental mTORC1 and mTORC2 signalling pathways, (2) increased amino acid transporter ubiquitination in placental homogenates and (3) decreased protein expression of SNAT-2 in the syncytiotrophoblast microvillous plasma membrane (MVM). To test this hypothesis, we collected placental tissue and isolated MVM from women with pregnancies complicated by IUGR (n=25) and gestational age-matched women with appropriately grown control infants (n=19, birth weights between the twenty-fifth to seventy-fifth percentiles). The activity of mTORC1 and mTORC2 was decreased whereas the protein expression of the ubiquitin ligase NEDD4-2 (neural precursor cell expressed developmentally down-regulated protein 4-2; +72%, P<0.0001) and the ubiquitination of SNAT-2 (+180%, P<0.05) were increased in homogenates of IUGR placentas. Furthermore, IUGR was associated with decreased system A amino acid transport activity (–72%, P<0.0001) and SNAT-1 (–42%, P<0.05) and SNAT-2 (–31%, P<0.05) protein expression in MVM. In summary, these findings are consistent with the possibility that decreased placental mTOR activity causes down-regulation of placental system A activity by shifting SNAT-2 trafficking towards proteasomal degradation, thereby contributing to decreased fetal amino acid availability and restricted fetal growth in IUGR. PMID:26374858

  10. Tail-extension following the termination codon is critical for release of the nascent chain from membrane-bound ribosomes in a reticulocyte lysate cell-free system.

    PubMed

    Takahara, Michiyo; Sakaue, Haruka; Onishi, Yukiko; Yamagishi, Marifu; Kida, Yuichiro; Sakaguchi, Masao

    2013-01-11

    Nascent chain release from membrane-bound ribosomes by the termination codon was investigated using a cell-free translation system from rabbit supplemented with rough microsomal membrane vesicles. Chain release was extremely slow when mRNA ended with only the termination codon. Tail extension after the termination codon enhanced the release of the nascent chain. Release reached plateau levels with tail extension of 10 bases. This requirement was observed with all termination codons: TAA, TGA and TAG. Rapid release was also achieved by puromycin even in the absence of the extension. Efficient translation termination cannot be achieved in the presence of only a termination codon on the mRNA. Tail extension might be required for correct positioning of the termination codon in the ribosome and/or efficient recognition by release factors. Copyright © 2012. Published by Elsevier Inc.

  11. A conserved amino acid residue critical for product and substrate specificity in plant triterpene synthases

    PubMed Central

    Salmon, Melissa; Thimmappa, Ramesha B.; Minto, Robert E.; Melton, Rachel E.; O’Maille, Paul E.; Hemmings, Andrew M.; Osbourn, Anne

    2016-01-01

    Triterpenes are structurally complex plant natural products with numerous medicinal applications. They are synthesized through an origami-like process that involves cyclization of the linear 30 carbon precursor 2,3-oxidosqualene into different triterpene scaffolds. Here, through a forward genetic screen in planta, we identify a conserved amino acid residue that determines product specificity in triterpene synthases from diverse plant species. Mutation of this residue results in a major change in triterpene cyclization, with production of tetracyclic rather than pentacyclic products. The mutated enzymes also use the more highly oxygenated substrate dioxidosqualene in preference to 2,3-oxidosqualene when expressed in yeast. Our discoveries provide new insights into triterpene cyclization, revealing hidden functional diversity within triterpene synthases. They further open up opportunities to engineer novel oxygenated triterpene scaffolds by manipulating the precursor supply. PMID:27412861

  12. A carboxy-terminal fragment of protein mu 1/mu 1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration.

    PubMed Central

    Nibert, M L; Fields, B N

    1992-01-01

    Penetration of a cell membrane as an early event in infection of cells by mammalian reoviruses appears to require a particular type of viral particle, the infectious subvirion particle (ISVP), which is generated from an intact virion by proteolytic cleavage of the outer capsid proteins sigma 3 and mu 1/mu 1C. Characterizations of the structural components and properties of ISVPs are thus relevant to attempts to understand the mechanism of penetration by reoviruses. In this study, a novel, approximately 13-kDa carboxy-terminal fragment (given the name phi) was found to be generated from protein mu 1/mu 1C during in vitro treatments of virions with trypsin or chymotrypsin to yield ISVPs. With trypsin treatment, both the carboxy-terminal fragment phi and the amino-terminal fragment mu 1 delta/delta were shown to be generated and to remain attached to ISVPs in stoichiometric quantities. Sites of protease cleavage were identified in the deduced amino acid sequence of mu 1 by determining the amino-terminal sequences of phi proteins: trypsin cleaves between arginine 584 and isoleucine 585, and chymotrypsin cleaves between tyrosine 581 and glycine 582. Findings in this study indicate that sequences in the phi portion of mu 1/mu 1C may participate in the unique functions attributed to ISVPs. Notably, the delta-phi cleavage junction was predicted to be flanked by a pair of long amphipathic alpha-helices. These amphipathic alpha-helices, together with the myristoyl group at the extreme amino terminus of mu 1/mu 1N, are proposed to interact directly with the lipid bilayer of a cell membrane during penetration by mammalian reoviruses. Images PMID:1328674

  13. An amino acid depleted cell-free protein synthesis system for the incorporation of non-canonical amino acid analogs into proteins.

    PubMed

    Singh-Blom, Amrita; Hughes, Randall A; Ellington, Andrew D

    2014-05-20

    Residue-specific incorporation of non-canonical amino acids into proteins is usually performed in vivo using amino acid auxotrophic strains and replacing the natural amino acid with an unnatural amino acid analog. Herein, we present an efficient amino acid depleted cell-free protein synthesis system that can be used to study residue-specific replacement of a natural amino acid by an unnatural amino acid analog. This system combines a simple methodology and high protein expression titers with a high-efficiency analog substitution into a target protein. To demonstrate the productivity and efficacy of a cell-free synthesis system for residue-specific incorporation of unnatural amino acids in vitro, we use this system to show that 5-fluorotryptophan and 6-fluorotryptophan substituted streptavidin retain the ability to bind biotin despite protein-wide replacement of a natural amino acid for the amino acid analog. We envisage this amino acid depleted cell-free synthesis system being an economical and convenient format for the high-throughput screening of a myriad of amino acid analogs with a variety of protein targets for the study and functional characterization of proteins substituted with unnatural amino acids when compared to the currently employed in vivo methodologies. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Identification and Analysis of Novel Amino-Acid Sequence Repeats in Bacillus anthracis str. Ames Proteome Using Computational Tools

    PubMed Central

    Hemalatha, G. R.; Rao, D. Satyanarayana; Guruprasad, L.

    2007-01-01

    We have identified four repeats and ten domains that are novel in proteins encoded by the Bacillus anthracis str. Ames proteome using automated in silico methods. A “repeat” corresponds to a region comprising less than 55-amino-acid residues that occur more than once in the protein sequence and sometimes present in tandem. A “domain” corresponds to a conserved region with greater than 55-amino-acid residues and may be present as single or multiple copies in the protein sequence. These correspond to (1) 57-amino-acid-residue PxV domain, (2) 122-amino-acid-residue FxF domain, (3) 111-amino-acid-residue YEFF domain, (4) 109-amino-acid-residue IMxxH domain, (5) 103-amino-acid-residue VxxT domain, (6) 84-amino-acid-residue ExW domain, (7) 104-amino-acid-residue NTGFIG domain, (8) 36-amino-acid-residue NxGK repeat, (9) 95-amino-acid-residue VYV domain, (10) 75-amino-acid-residue KEWE domain, (11) 59-amino-acid-residue AFL domain, (12) 53-amino-acid-residue RIDVK repeat, (13) (a) 41-amino-acid-residue AGQF repeat and (b) 42-amino-acid-residue GSAL repeat. A repeat or domain type is characterized by specific conserved sequence motifs. We discuss the presence of these repeats and domains in proteins from other genomes and their probable secondary structure. PMID:17538688

  15. Multiple roles of genome-attached bacteriophage terminal proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid.more » Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.« less

  16. [Determination of residual solvents in 7-amino-3-chloro cephalosporanic acid by gas chromatography].

    PubMed

    Ma, Li; Yao, Tong-wei

    2011-01-01

    To develop a gas chromatography method for determination of residual solvents in 7-amino-3-chloro cephalosporanic acid (7-ACCA). The residual levels of acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine and toluene in 7-ACCA were measured by gas chromatography using Agilent INNOWAX capillary column (30 m × 0.32 mm,0.5 μm). The initial column temperature was 70° maintained for 6 min and then raised (10°C/min) to 160°C for 1 min. Nitrogen gas was used as carrier and FID as detector. The flow of carrier was 1.0 ml/min, the temperature of injection port and detector was 200°C and 250°C, respectively. The limits of detection for acetone, methanol, dichloromethane, ethyl acetate, isobutanol, pyridine, toluene in 7-ACCA were 2.5 μg/ml, 1.5 μg/ml, 15 μg/ml, 2.5 μg/ml, 2.5 μg/ml, 2.5 μg/ml and 11 μg/ml, respectively. Only acetone was detected in the sample, and was less than the limits of Ch.P. The method can effectively detect the residual solvents in 7-ACCA.

  17. Isolation of Plasma Membrane Vesicles from Mouse Placenta at Term and Measurement of System A and System β Amino Acid Transporter Activity

    PubMed Central

    Kusinski, L.C.; Jones, C.J.P.; Baker, P.N.; Sibley, C.P.; Glazier, J.D.

    2010-01-01

    Placental amino acid transport is essential for optimal fetal growth and development, with a reduced fetal provision of amino acids being implicated as a potential cause of fetal growth restriction (FGR). Understanding placental insufficiency related FGR has been aided by the development of mouse models that have features of the human disease. However, to take maximal advantage of these, methods are required to study placental function in the mouse. Here, we report a method to isolate plasma membrane vesicles from mouse placenta near-term and have used these to investigate two amino acid transporters, systems A and β, the activities of which are reduced in human placental microvillous plasma membrane (MVM) vesicles from FGR pregnancies. Plasma membrane vesicles were isolated at embryonic day 18 by a protocol involving homogenisation, MgCl2 precipitation and centrifugation. Vesicles were enriched 11.3 ± 0.5-fold in alkaline phosphatase activity as compared to initial homogenate, with minimal intracellular organelle contamination as judged by marker analyses. Cytochemistry revealed alkaline phosphatase was localised between trophoblast layers I and II, with intense reaction product deposited on the maternal-facing plasma membrane of layer II, suggesting that vesicles were derived from this trophoblast membrane. System A and system β activity in mouse placental vesicles, measured as Na+-dependent uptake of 14C-methylaminoisobutyric acid (MeAIB) and 3H-taurine respectively confirmed localisation of these transporters to the maternal-facing plasma membrane of layer II. Comparison to human placental MVM showed that system A activity was comparable at initial rate between species whilst system β activity was significantly lower in mouse. This mirrored the lower expression of TAUT observed in mouse placental vesicles. We conclude that syncytiotrophoblast layer II-derived plasma membrane vesicles can be isolated and used to examine transporter function. PMID:19954844

  18. Interaction of chloride and bicarbonate transport across the basolateral membrane of rabbit proximal straight tubule. Evidence for sodium coupled chloride/bicarbonate exchange.

    PubMed Central

    Sasaki, S; Yoshiyama, N

    1988-01-01

    The existence of chloride/bicarbonate exchange across the basolateral membrane and its physiologic significance were examined in rabbit proximal tubules. S2 segments of the proximal straight tubule were perfused in vitro and changes in intracellular pH (pHi) and chloride activity (aCli) were monitored by double-barreled microelectrodes. Total peritubular chloride replacement with gluconate increased pHi by 0.8, and this change was inhibited by a pretreatment with an anion transport inhibitor, SITS. Peritubular bicarbonate reduction increased aCli, and most of this increase was lost when ambient sodium was totally removed. The reduction rates of pHi induced by a peritubular bicarbonate reduction or sodium removal were attenuated by 20% by withdrawal of ambient chloride. SITS application to the bath in the control condition quickly increased pHi, but did not change aCli. However, the aCli slightly decreased in response to SITS when the basolateral bicarbonate efflux was increased by reducing peritubular bicarbonate concentration. It is concluded that sodium coupled chloride/bicarbonate exchange is present in parallel with sodium-bicarbonate cotransport in the basolateral membrane of the rabbit proximal tubule, and it contributes to the basolateral bicarbonate and chloride transport. PMID:2450891

  19. SGLT2 mediates glucose reabsorption in the early proximal tubule.

    PubMed

    Vallon, Volker; Platt, Kenneth A; Cunard, Robyn; Schroth, Jana; Whaley, Jean; Thomson, Scott C; Koepsell, Hermann; Rieg, Timo

    2011-01-01

    Mutations in the gene encoding for the Na(+)-glucose co-transporter SGLT2 (SLC5A2) associate with familial renal glucosuria, but the role of SGLT2 in the kidney is incompletely understood. Here, we determined the localization of SGLT2 in the mouse kidney and generated and characterized SGLT2-deficient mice. In wild-type (WT) mice, immunohistochemistry localized SGLT2 to the brush border membrane of the early proximal tubule. Sglt2(-/-) mice had glucosuria, polyuria, and increased food and fluid intake without differences in plasma glucose concentrations, GFR, or urinary excretion of other proximal tubular substrates (including amino acids) compared with WT mice. SGLT2 deficiency did not associate with volume depletion, suggested by similar body weight, BP, and hematocrit; however, plasma renin concentrations were modestly higher and plasma aldosterone levels were lower in Sglt2(-/-) mice. Whole-kidney clearance studies showed that fractional glucose reabsorption was significantly lower in Sglt2(-/-) mice compared with WT mice and varied in Sglt2(-/-) mice between 10 and 60%, inversely with the amount of filtered glucose. Free-flow micropuncture revealed that for early proximal collections, 78 ± 6% of the filtered glucose was reabsorbed in WT mice compared with no reabsorption in Sglt2(-/-) mice. For late proximal collections, fractional glucose reabsorption was 93 ± 1% in WT and 21 ± 6% in Sglt2(-/-) mice, respectively. These results demonstrate that SGLT2 mediates glucose reabsorption in the early proximal tubule and most of the glucose reabsorption by the kidney, overall. This mouse model mimics and explains the glucosuric phenotype of individuals carrying SLC5A2 mutations.

  20. Allostery in a disordered protein: Oxidative modifications to α-Synuclein act distally to regulate membrane binding

    PubMed Central

    Sevcsik, Eva; Trexler, Adam J.; Dunn, Joanna M.; Rhoades, Elizabeth

    2011-01-01

    Both oxidative stress and aggregation of the protein α-synuclein (aS) have been implicated as key factors in the etiology of Parkinson’s disease. Specifically, oxidative modifications to aS disrupt its binding to lipid membranes, an interaction considered critical to its native function. Here we seek to provide a mechanistic explanation for this phenomenon by investigating the effects of oxidative nitration of tyrosine residues on the structure of aS and its interaction with lipid membranes. Membrane binding is mediated by the first ~95 residues of aS. We find that nitration of the single tyrosine (Y39) in this domain disrupts binding due to electrostatic repulsion. Moreover, we observe that nitration of the three tyrosines (Y125/133/136) in the C-terminal domain is equally effective in perturbing binding, an intriguing result given that the C-terminus is not thought to interact directly with membranes. Our investigations show that tyrosine nitration results in a change of the conformational states populated by aS in solution, with the most prominent changes occurring in the C-terminal region. These results lead us to suggest that nitration of Y125/133/136 reduces the membrane binding affinity of aS through allosteric coupling by altering the ensemble of conformational states and depopulating those capable of membrane binding. While allostery is a well-established concept for structured proteins, it has only recently been discussed in the context of disordered proteins. We propose that allosteric regulation through modification of specific residues in, or ligand binding to, the C-terminus may even be a general mechanism for modulating aS function. PMID:21491910

  1. Amino-Terminal β-Amyloid Antibody Blocks β-Amyloid-Mediated Inhibition of the High-Affinity Choline Transporter CHT.

    PubMed

    Cuddy, Leah K; Seah, Claudia; Pasternak, Stephen H; Rylett, R Jane

    2017-01-01

    Alzheimer's disease (AD) is a common age-related neurodegenerative disorder that is characterized by progressive cognitive decline. The deficits in cognition and attentional processing that are observed clinically in AD are linked to impaired function of cholinergic neurons that release the neurotransmitter acetylcholine (ACh). The high-affinity choline transporter (CHT) is present at the presynaptic cholinergic nerve terminal and is responsible for the reuptake of choline produced by hydrolysis of ACh following its release. Disruption of CHT function leads to decreased choline uptake and ACh synthesis, leading to impaired cholinergic neurotransmission. We report here that cell-derived β-amyloid peptides (Aβ) decrease choline uptake activity and cell surface CHT protein levels in SH-SY5Y neural cells. Moreover, we make the novel observation that the amount of CHT protein localizing to early endosomes and lysosomes is decreased significantly in cells that have been treated with cell culture medium that contains Aβ peptides released from neural cells. The Aβ-mediated loss of CHT proteins from lysosomes is prevented by blocking lysosomal degradation of CHT with the lysosome inhibitor bafilomycin A1 (BafA 1 ). BafA 1 also attenuated the Aβ-mediated decrease in CHT cell surface expression. Interestingly, however, lysosome inhibition did not block the effect of Aβ on CHT activity. Importantly, neutralizing Aβ using an anti-Aβ antibody directed at the N-terminal amino acids 1-16 of Aβ, but not by an antibody directed at the mid-region amino acids 22-35 of Aβ, attenuates the effect of Aβ on CHT activity and trafficking. This indicates that a specific N-terminal Aβ epitope, or specific conformation of soluble Aβ, may impair CHT activity. Therefore, Aβ immunotherapy may be a more effective therapeutic strategy for slowing the progression of cognitive decline in AD than therapies designed to promote CHT cell surface levels.

  2. Muscular innervation of the proximal duodenum of the guinea pig.

    PubMed

    Iino, S

    2000-10-01

    We investigated the muscular structure and innervation of the gastroduodenal junction in the guinea pig. In the gastroduodenal junction, the innermost layer of the circular muscle contained numerous nerve fibers and terminals. Since this nerve network continued onto the deep muscular plexus (DMP) of the duodenum, we surmised that the numerous nerve fibers in the gastroduodenal junction were specialized DMP in the most proximal part of the duodenum. The innermost layer containing many nerve fibers was about 1,000 microm in length and 100 microm in thickness in the proximal duodenum. This layer contained numerous connective tissue fibers composed of collagen and elastic fibers. Five to 30 smooth muscle cells lay in contact with each other and were surrounded by fine connective tissue. The nerve fibers in the proximal duodenum contained nerve terminals immunoreactive for choline acetyltransferase, dynorphin, enkephalin, galanin, gastrin-releasing peptide, nitric oxide synthase, substance P, and vasoactive intestinal polypeptide. Adrenergic fibers which contained tyrosine hydroxylase immunoreactivity were rare in the proximal duodenum. In the innermost layer of the proximal duodenum, there were numerous c-Kit immunopositive cells that were in contact with nerve terminals. This study allowed us to clarify the specific architecture of the most proximal portion of the duodenum. The functional significance of the proximal duodenum in relation to the electrical connection and neural cooperation of the musculature between the antrum and the duodenum is also discussed.

  3. Permeation of membranes by the neutral form of amino acids and peptides: relevance to the origin of peptide translocation

    NASA Technical Reports Server (NTRS)

    Chakrabarti, A. C.; Deamer, D. W.; Miller, S. L. (Principal Investigator)

    1994-01-01

    The flux of amino acids and other nutrient solutes such as phosphate across lipid bilayers (liposomes) is 10(5) slower than facilitated inward transport across biological membranes. This suggest that primitive cells lacking highly evolved transport systems would have difficulty transporting sufficient nutrients for cell growth to occur. There are two possible ways by which early life may have overcome this difficulty: (1) The membranes of the earliest cellular life-forms may have been intrinsically more permeable to solutes; or (2) some transport mechanism may have been available to facilitate transbilayer movement of solutes essential for cell survival and growth prior to the evolution of membrane transport proteins. Translocation of neutral species represents one such mechanism. The neutral forms of amino acids modified by methylation (creating protonated weak bases) permeate membranes up to 10(10) times faster than charged forms. This increased permeability when coupled to a transmembrane pH gradient can result in significantly increased rates of net unidirectional transport. Such pH gradients can be generated in vesicles used to model protocells that preceded and were presumably ancestral to early forms of life. This transport mechanism may still play a role in some protein translocation processes (e.g. for certain signal sequences, toxins and thylakoid proteins) in vivo.

  4. Crystal structure and association behaviour of the GluR2 amino-terminal domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Rongsheng; Singh, Satinder K.; Gu, Shenyan

    2009-09-02

    Fast excitatory neurotransmission is mediated largely by ionotropic glutamate receptors (iGluRs), tetrameric, ligand-gated ion channel proteins comprised of three subfamilies, AMPA, kainate and NMDA receptors, with each subfamily sharing a common, modular-domain architecture. For all receptor subfamilies, active channels are exclusively formed by assemblages of subunits within the same subfamily, a molecular process principally encoded by the amino-terminal domain (ATD). However, the molecular basis by which the ATD guides subfamily-specific receptor assembly is not known. Here we show that AMPA receptor GluR1- and GluR2-ATDs form tightly associated dimers and, by the analysis of crystal structures of the GluR2-ATD, propose mechanismsmore » by which the ATD guides subfamily-specific receptor assembly.« less

  5. STARD4 Membrane Interactions and Sterol Binding

    PubMed Central

    2016-01-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix. PMID:26168008

  6. Cell Wall and Membrane-Associated Exo-β-d-Glucanases from Developing Maize Seedlings1

    PubMed Central

    Kim, Jong-Bum; Olek, Anna T.; Carpita, Nicholas C.

    2000-01-01

    A β-d-glucan exohydrolase was purified from the cell walls of developing maize (Zea mays L.) shoots. The cell wall enzyme preferentially hydrolyzes the non-reducing terminal glucosyl residue from (1→3)-β-d-glucans, but also hydrolyzes (1→2)-, (1→6)-, and (1→4)-β-d-glucosyl units in decreasing order of activity. Polyclonal antisera raised against the purified exo-β-d-glucanase (ExGase) were used to select partial-length cDNA clones, and the complete sequence of 622 amino acid residues was deduced from the nucleotide sequences of the cDNA and a full-length genomic clone. Northern gel-blot analysis revealed what appeared to be a single transcript, but three distinct polypeptides were detected in immunogel-blot analyses of the ExGases extracted from growing coleoptiles. Two polypeptides appear in the cell wall, where one polypeptide is constitutive, and the second appears at the time of the maximum rate of elongation and reaches peak activity after elongation has ceased. The appearance of the second polypeptide coincides with the disappearance of the mixed-linkage (1→3),(1→4)-β-d-glucan, whose accumulation is associated with cell elongation in grasses. The third polypeptide of the ExGase is an extrinsic protein associated with the exterior surface of the plasma membrane. Although the activity of the membrane-associated ExGase is highest against (1→3)-β-d-glucans, the activity against (1→4)-β-d-glucan linkages is severely attenuated and, therefore, the enzyme is unlikely to be involved with turnover of the (1→3),(1→4)-β-d-glucan. We propose three potential functions for this novel ExGase at the membrane-wall interface. PMID:10859178

  7. Differential effects of C- and N-terminal substance P metabolites on the release of amino acid neurotransmitters from the spinal cord: potential role in nociception.

    PubMed

    Skilling, S R; Smullin, D H; Larson, A A

    1990-04-01

    Extensive evidence implicates Substance P [SP(1-11)] as a primary afferent neurotransmitter or modulator of nociceptive information, and there is increasing evidence that the excitatory amino acids aspartate (Asp) and glutamate (Glu) may also act as nociceptive neurotransmitters. We have previously demonstrated that nociceptive stimulation (metatarsal injection of formalin) caused a tetrodotoxin (TTX)-sensitive release of Asp and a TTX-insensitive release of Glu from the dorsal spinal cord. We have also shown release of Asp and Glu following the direct infusion of SP(1-11), suggesting that formalin-induced Asp or Glu changes could be secondary to an initial release of SP(1-11). In contrast to nociception, pretreatment with TTX, reported here, had no effect on the SP(1-11)-induced release of Asp, suggesting a presynaptic mechanism. Behavioral experiments, in both our laboratory, and others, now suggest that the N-terminal products of SP metabolism play a distinct role in the modulation of SP(1-11) nociception, possibly through an interaction with an opiate receptor. To test the hypothesis that N- and C-terminal fragments of SP produce opposite effects on biochemical events potentially involved in nociception, we compared the effects of infusion of the N-terminal metabolite SP(1-7) and the C-terminal metabolite SP(5-11) on changes in the ECF concentration of amino acids in the spinal cord as a measure of their apparent release, using microdialysis. Intradiaylsate infusion of SP(5-11) increased the release of Asp, Glu, asparagine (Asn), glycine (Gly), and taurine (Tau). The changes in Asp, Glu, and Tau were similar in direction and magnitude to changes produced by SP(1-11) or formalin injection, further supporting the hypothesis that the C-terminal is responsible for the nociceptive effects of SP(1-11). In contrast, infusion of SP(1-7) significantly decreased the release of Asn, Tau, Glu, and Gly. This inhibition of amino acid release is consistent with the hypothesis

  8. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumborum: The effect of roasting.

    PubMed

    Yu, Tzer-Yang; Morton, James D; Clerens, Stefan; Dyer, Jolon M

    2016-09-01

    Protein modifications of meat cooked by typical dry-heat methods (e.g., roasting) are currently not well understood. The present study utilised a shotgun proteomic approach to examine the molecular-level effect of roasting on thin lamb longissimus thoracis et lumborum patties, in terms of changes to both the protein profile and amino acid residue side-chain modifications. Cooking caused aggregation of actin, myosin heavy chains and sarcoplasmic proteins. Longer roasting time resulted in significantly reduced protein extractability as well as protein truncation involving particularly a number of myofibrillar and sarcoplasmic proteins, e.g., 6-phosphofructokinase, beta-enolase, l-lactate dehydrogenase A chain, alpha-actinin-3, actin and possibly myosin heavy chains. Modifications that have potential influence on nutritional properties, including carboxyethyllysine and a potentially glucose-derived N-terminal Amadori compound, were observed in actin and myoglobin after roasting. This study provided new insights into molecular changes resulting from the dry-heat treatment of meat, such as commonly used in food preparation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A Plasmodium falciparum copper-binding membrane protein with copper transport motifs

    PubMed Central

    2012-01-01

    Background Copper is an essential catalytic co-factor for metabolically important cellular enzymes, such as cytochrome-c oxidase. Eukaryotic cells acquire copper through a copper transport protein and distribute intracellular copper using molecular chaperones. The copper chelator, neocuproine, inhibits Plasmodium falciparum ring-to-trophozoite transition in vitro, indicating a copper requirement for malaria parasite development. How the malaria parasite acquires or secretes copper still remains to be fully elucidated. Methods PlasmoDB was searched for sequences corresponding to candidate P. falciparum copper-requiring proteins. The amino terminal domain of a putative P. falciparum copper transport protein was cloned and expressed as a maltose binding fusion protein. The copper binding ability of this protein was examined. Copper transport protein-specific anti-peptide antibodies were generated in chickens and used to establish native protein localization in P. falciparum parasites by immunofluorescence microscopy. Results Six P. falciparum copper-requiring protein orthologs and a candidate P. falciparum copper transport protein (PF14_0369), containing characteristic copper transport protein features, were identified in PlasmoDB. The recombinant amino terminal domain of the transport protein bound reduced copper in vitro and within Escherichia coli cells during recombinant expression. Immunolocalization studies tracked the copper binding protein translocating from the erythrocyte plasma membrane in early ring stage to a parasite membrane as the parasites developed to schizonts. The protein appears to be a PEXEL-negative membrane protein. Conclusion Plasmodium falciparum parasites express a native protein with copper transporter characteristics that binds copper in vitro. Localization of the protein to the erythrocyte and parasite plasma membranes could provide a mechanism for the delivery of novel anti-malarial compounds. PMID:23190769

  10. Molecular dynamics simulations of the rotary motor F(0) under external electric fields across the membrane.

    PubMed

    Lin, Yang-Shan; Lin, Jung-Hsin; Chang, Chien-Cheng

    2010-03-17

    The membrane-bound component F(0), which is a major component of the F(0)F(1)-ATP synthase, works as a rotary motor and plays a central role in driving the F(1) component to transform chemiosmotic energy into ATP synthesis. We conducted molecular dynamics simulations of b(2)-free F(0) in a 1-palmitoyl-2-oleoyl-phosphatidylcholine lipid bilayer for tens of nanoseconds with two different protonation states of the cAsp-61 residue at the interface of the a-c complex in the absence of electric fields and under electric fields of +/-0.03 V/nm across the membrane. To our surprise, we observed that the upper half of the N-terminal helix of the c(1) subunit rotated about its axis clockwise by 30 degrees . An energetic analysis revealed that the electrostatic repulsion between this N-terminal helix and subunit c(12) was a major contributor to the observed rotation. A correlation map analysis indicated that the correlated motions of residues in the interface of the a-c complex were significantly reduced by external electric fields. The deuterium order parameter (S(CD)) profile calculated by averaging all the lipids in the F(0)-bound bilayer was not very different from that of the pure bilayer system, in agreement with recent (2)H solid-state NMR experiments. However, by delineating the lipid properties according to their vicinity to F(0), we found that the S(CD) profiles of different lipid shells were prominently different. Lipids close to F(0) formed a more ordered structure. Similarly, the lateral diffusion of lipids on the membrane surface also followed a shell-dependent behavior. The lipids in the proximity of F(0) exhibited very significantly reduced diffusional motion. The numerical value of S(CD) was anticorrelated with that of the diffusion coefficient, i.e., the more ordered lipid structures led to slower lipid diffusion. Our findings will help elucidate the dynamics of F(0) depending on the protonation state and electric field, and may also shed some light on the

  11. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): characterization, antimicrobial activities and membrane interactions.

    PubMed

    Gusmão, Karla A G; Dos Santos, Daniel M; Santos, Virgílio M; Cortés, María Esperanza; Reis, Pablo V M; Santos, Vera L; Piló-Veloso, Dorila; Verly, Rodrigo M; de Lima, Maria Elena; Resende, Jarbas M

    2017-01-01

    The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus , namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn

  12. Negatively Charged Lipid Membranes Promote a Disorder-Order Transition in the Yersinia YscU Protein

    PubMed Central

    Weise, Christoph F.; Login, Frédéric H.; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-01-01

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia. PMID:25418176

  13. Negatively charged lipid membranes promote a disorder-order transition in the Yersinia YscU protein.

    PubMed

    Weise, Christoph F; Login, Frédéric H; Ho, Oanh; Gröbner, Gerhard; Wolf-Watz, Hans; Wolf-Watz, Magnus

    2014-10-21

    The inner membrane of Gram-negative bacteria is negatively charged, rendering positively charged cytoplasmic proteins in close proximity likely candidates for protein-membrane interactions. YscU is a Yersinia pseudotuberculosis type III secretion system protein crucial for bacterial pathogenesis. The protein contains a highly conserved positively charged linker sequence that separates membrane-spanning and cytoplasmic (YscUC) domains. Although disordered in solution, inspection of the primary sequence of the linker reveals that positively charged residues are separated with a typical helical periodicity. Here, we demonstrate that the linker sequence of YscU undergoes a largely electrostatically driven coil-to-helix transition upon binding to negatively charged membrane interfaces. Using membrane-mimicking sodium dodecyl sulfate micelles, an NMR derived structural model reveals the induction of three helical segments in the linker. The overall linker placement in sodium dodecyl sulfate micelles was identified by NMR experiments including paramagnetic relaxation enhancements. Partitioning of individual residues agrees with their hydrophobicity and supports an interfacial positioning of the helices. Replacement of positively charged linker residues with alanine resulted in YscUC variants displaying attenuated membrane-binding affinities, suggesting that the membrane interaction depends on positive charges within the linker. In vivo experiments with bacteria expressing these YscU replacements resulted in phenotypes displaying significantly reduced effector protein secretion levels. Taken together, our data identify a previously unknown membrane-interacting surface of YscUC that, when perturbed by mutations, disrupts the function of the pathogenic machinery in Yersinia.

  14. Panel-reactive antibody levels and renal transplantation rates in sensitized patients after desensitization and human leucocyte antigen amino acid residue matching.

    PubMed

    Shang, Wenjun; Dong, Laidong; Feng, Guiwen; Wang, Yue; Pang, Xinlu; Li, Jinfeng; Liu, Lei; Zhang, Weihong

    2013-08-01

    To determine whether a new desensitization protocol (mycophenolate mofetil [MMF], plasmapheresis and antithymocyte globulin [ATG], complemented with human leucocyte antigen [HLA] amino acid residue matching) could reduce panel-reactive antibody (PRA) levels in sensitized patients, to facilitate successful renal transplantation. Patients awaiting transplantation with PRA levels >10% received treatment with MMF; those with PRA levels >30% were also treated with plasmapheresis. Patients whose PRA level was <20% after desensitization were eligible for transplantation. When a donor became available, traditional HLA matching and HLA amino acid residue matching were performed. All patients received ATG induction therapy postoperatively. Thirty-two sensitized patients were enrolled. Desensitization produced a significant decrease in PRA levels; 27 patients (84.4%) became eligible for transplantation and 26 (81.2%) subsequently underwent successful transplantation. Residue matching improved the proportion with a mismatch number of 0-1 from 7.7% to 65.4%, compared with traditional HLA matching. Postoperatively, all patients showed immediate graft function. Acute rejection occurred in three patients (11.5%) and infections in seven patients (25.9%); all were treated successfully. The combination of a desensitization protocol (MMF, plasmapheresis and ATG) and residue matching appears to be an effective strategy for sensitized patients awaiting renal transplantation.

  15. Peptide P5 (residues 628–683), comprising the entire membrane proximal region of HIV-1 gp41 and its calcium-binding site, is a potent inhibitor of HIV-1 infection

    PubMed Central

    Yu, Huifeng; Tudor, Daniela; Alfsen, Annette; Labrosse, Beatrice; Clavel, François; Bomsel, Morgane

    2008-01-01

    The membrane proximal region (MPR) of the transmembrane subunit, gp41, of the HIV envelope glycoprotein plays a critical role in HIV-1 infection of CD4+ target cells and CD4-independent mucosal entry. It contains continuous epitopes recognized by neutralizing IgG antibodies 2F5, 4E10 and Z13, and is therefore considered to be a promising target for vaccine design. Moreover, some MPR-derived peptides, such as T20 (enfuvirtide), are in clinical use as HIV-1 inhibitors. We have shown that an extended MPR peptide, P5, harbouring the lectin-like domain of gp41 and a calcium-binding site, is implicated in the interaction of HIV with its mucosal receptor. We now investigate the potential antiviral activities of P5 and other such long MPR-derived peptides. Structural studies of gp41 MPR-derived peptides using circular dichroism showed that the peptides P5 (a.a.628–683), P1 (a.a.648–683), P5L (a.a.613–683) and P7 (a.a.613–746) displayed a well-defined α-helical structure. Peptides P5 inhibited HIV-1 envelope mediated cell-cell fusion and infection of peripheral blood mononuclear cells by both X4- and R5-tropic HIV-1 strains, whereas peptides P5 mutated in the calcium binding site or P1 lacked antiviral activity, when P5L blocked cell fusion in contrast to P7. Strikingly, P5 inhibited CD4-dependent infection by T20-resistant R5-tropic HIV-1 variants. Cell-cell fusion studies indicated that the anti-HIV-1 activity of P5, unlike T20, could not be abrogated in the presence of the N-terminal leucine zipper domain (LZ). These results suggested that P5 could serve as a potent fusion inhibitor. PMID:18925934

  16. Mutagenesis of the Phosphatidylinositol 4,5-Bisphosphate (Pip2) Binding Site in the Nh2-Terminal Domain of Ezrin Correlates with Its Altered Cellular Distribution

    PubMed Central

    Barret, Cécile; Roy, Christian; Montcourrier, Philippe; Mangeat, Paul; Niggli, Verena

    2000-01-01

    The cytoskeleton-membrane linker protein ezrin has been shown to associate with phosphatidyl-inositol 4,5-bisphosphate (PIP2)-containing liposomes via its NH2-terminal domain. Using internal deletions and COOH-terminal truncations, determinants of PIP2 binding were located to amino acids 12–115 and 233–310. Both regions contain a KK(X)nK/RK motif conserved in the ezrin/radixin/moesin family. K/N mutations of residues 253 and 254 or 262 and 263 did not affect cosedimentation of ezrin 1-333 with PIP2-containing liposomes, but their combination almost completely abolished the capacity for interaction. Similarly, double mutation of Lys 63, 64 to Asn only partially reduced lipid interaction, but combined with the double mutation K253N, K254N, the interaction of PIP2 with ezrin 1-333 was strongly inhibited. Similar data were obtained with full-length ezrin. When residues 253, 254, 262, and 263 were mutated in full-length ezrin, the in vitro interaction with the cytoplasmic tail of CD44 was not impaired but was no longer PIP2 dependent. This construct was also expressed in COS1 and A431 cells. Unlike wild-type ezrin, it was not any more localized to dorsal actin-rich structures, but redistributed to the cytoplasm without strongly affecting the actin-rich structures. We have thus identified determinants of the PIP2 binding site in ezrin whose mutagenesis correlates with an altered cellular localization. PMID:11086008

  17. A Trigger Residue for Transmembrane Signaling in the Escherichia coli Serine Chemoreceptor

    PubMed Central

    Kitanovic, Smiljka; Ames, Peter

    2015-01-01

    ABSTRACT The transmembrane Tsr protein of Escherichia coli mediates chemotactic responses to environmental serine gradients. Serine binds to the periplasmic domain of the homodimeric Tsr molecule, promoting a small inward displacement of one transmembrane helix (TM2). TM2 piston displacements, in turn, modulate the structural stability of the Tsr-HAMP domain on the cytoplasmic side of the membrane to control the autophosphorylation activity of the signaling CheA kinase bound to the membrane-distal cytoplasmic tip of Tsr. A five-residue control cable segment connects TM2 to the AS1 helix of HAMP and transmits stimulus and sensory adaptation signals between them. To explore the possible role of control cable helicity in transmembrane signaling by Tsr, we characterized the signaling properties of mutant receptors with various control cable alterations. An all-alanine control cable shifted Tsr output toward the kinase-on state, whereas an all-glycine control cable prevented Tsr from reaching either a fully on or fully off output state. Restoration of the native isoleucine (I214) in these synthetic control cables largely alleviated their signaling defects. Single amino acid replacements at Tsr-I214 shifted output toward the kinase-off (L, N, H, and R) or kinase-on (A and G) states, whereas other control cable residues tolerated most amino acid replacements with little change in signaling behavior. These findings indicate that changes in control cable helicity might mediate transitions between the kinase-on and kinase-off states during transmembrane signaling by chemoreceptors. Moreover, the Tsr-I214 side chain plays a key role, possibly through interaction with the membrane interfacial environment, in triggering signaling changes in response to TM2 piston displacements. IMPORTANCE The Tsr protein of E. coli mediates chemotactic responses to environmental serine gradients. Stimulus signals from the Tsr periplasmic sensing domain reach its cytoplasmic kinase control

  18. Fast iodide-SAD phasing for high-throughput membrane protein structure determination

    PubMed Central

    Melnikov, Igor; Polovinkin, Vitaly; Kovalev, Kirill; Gushchin, Ivan; Shevtsov, Mikhail; Shevchenko, Vitaly; Mishin, Alexey; Alekseev, Alexey; Rodriguez-Valera, Francisco; Borshchevskiy, Valentin; Cherezov, Vadim; Leonard, Gordon A.; Gordeliy, Valentin; Popov, Alexander

    2017-01-01

    We describe a fast, easy, and potentially universal method for the de novo solution of the crystal structures of membrane proteins via iodide–single-wavelength anomalous diffraction (I-SAD). The potential universality of the method is based on a common feature of membrane proteins—the availability at the hydrophobic-hydrophilic interface of positively charged amino acid residues with which iodide strongly interacts. We demonstrate the solution using I-SAD of four crystal structures representing different classes of membrane proteins, including a human G protein–coupled receptor (GPCR), and we show that I-SAD can be applied using data collection strategies based on either standard or serial x-ray crystallography techniques. PMID:28508075

  19. Ionic interaction of myosin loop 2 with residues located beyond the N-terminal part of actin probed by chemical cross-linking.

    PubMed

    Pliszka, Barbara; Martin, Brian M; Karczewska, Emilia

    2008-02-01

    To probe ionic contacts of skeletal muscle myosin with negatively charged residues located beyond the N-terminal part of actin, myosin subfragment 1 (S1) and actin split by ECP32 protease (ECP-actin) were cross-linked with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). We have found that unmodified S1 can be cross-linked not only to the N-terminal part, but also to the C-terminal 36 kDa fragment of ECP-actin. Subsequent experiments performed on S1 cleaved by elastase or trypsin indicate that the cross-linking site in S1 is located within loop 2. This site is composed of Lys-636 and Lys-637 and can interact with negatively charged residues of the 36 kDa actin fragment, most probably with Glu-99 and Glu-100. Cross-links are formed both in the absence and presence of MgATP.P(i) analog, although the addition of nucleotide decreases the efficiency of the cross-linking reaction.

  20. PKC phosphorylates residues in the N-terminal of the DA transporter to regulate amphetamine-induced DA efflux.

    PubMed

    Wang, Qiang; Bubula, Nancy; Brown, Jason; Wang, Yunliang; Kondev, Veronika; Vezina, Paul

    2016-05-27

    The DA transporter (DAT), a phosphoprotein, controls extracellular dopamine (DA) levels in the central nervous system through transport or reverse transport (efflux). Multiple lines of evidence support the claim that PKC significantly contributes to amphetamine-induced DA efflux. Other signaling pathways, involving CaMKII and ERK, have also been shown to regulate DAT mediated efflux. Here we assessed the contribution of putative PKC residues (S4, S7, S13) in the N-terminal of the DAT to amphetamine-induced DA efflux by transfecting DATs containing different serine to alanine (S-A) point mutations into DA pre-loaded HEK-293 cells and incubating these cells in amphetamine (2μM). The effects of a S-A mutation at the non-PKC residue S12 and a threonine to alanine (T-A) mutation at the ERK T53 residue were also assessed for comparison. WT-DATs were used as controls. In an initial experiment, we confirmed that inhibiting PKC with Go6976 (130nM) significantly reduced amphetamine-induced DA efflux. In subsequent experiments, cells transfected with the S4A, S12A, S13A, T53A and S4,7,13A mutants showed a reduction in amphetamine-induced DA efflux similar to that observed with Go6976. Interestingly, cells transfected with the S7A mutant, identified by some as a PKC-PKA residue, showed unperturbed WT-DAT levels of amphetamine-induced DA efflux. These results indicate that phosphorylation by PKC of select residues in the DAT N-terminal can regulate amphetamine-induced efflux. PKC can act either independently or in concert with other kinases such as ERK to produce this effect. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Two amino acid residues confer different binding affinities of Abelson family kinase SRC homology 2 domains for phosphorylated cortactin.

    PubMed

    Gifford, Stacey M; Liu, Weizhi; Mader, Christopher C; Halo, Tiffany L; Machida, Kazuya; Boggon, Titus J; Koleske, Anthony J

    2014-07-11

    The closely related Abl family kinases, Arg and Abl, play important non-redundant roles in the regulation of cell morphogenesis and motility. Despite similar N-terminal sequences, Arg and Abl interact with different substrates and binding partners with varying affinities. This selectivity may be due to slight differences in amino acid sequence leading to differential interactions with target proteins. We report that the Arg Src homology (SH) 2 domain binds two specific phosphotyrosines on cortactin, a known Abl/Arg substrate, with over 10-fold higher affinity than the Abl SH2 domain. We show that this significant affinity difference is due to the substitution of arginine 161 and serine 187 in Abl to leucine 207 and threonine 233 in Arg, respectively. We constructed Abl SH2 domains with R161L and S187T mutations alone and in combination and find that these substitutions are sufficient to convert the low affinity Abl SH2 domain to a higher affinity "Arg-like" SH2 domain in binding to a phospho-cortactin peptide. We crystallized the Arg SH2 domain for structural comparison to existing crystal structures of the Abl SH2 domain. We show that these two residues are important determinants of Arg and Abl SH2 domain binding specificity. Finally, we expressed Arg containing an "Abl-like" low affinity mutant Arg SH2 domain (L207R/T233S) and find that this mutant, although properly localized to the cell periphery, does not support wild type levels of cell edge protrusion. Together, these observations indicate that these two amino acid positions confer different binding affinities and cellular functions on the distinct Abl family kinases. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Thermostabilisation of membrane proteins for structural studies

    PubMed Central

    Magnani, Francesca; Serrano-Vega, Maria J.; Shibata, Yoko; Abdul-Hussein, Saba; Lebon, Guillaume; Miller-Gallacher, Jennifer; Singhal, Ankita; Strege, Annette; Thomas, Jennifer A.; Tate, Christopher G.

    2017-01-01

    The thermostability of an integral membrane protein in detergent solution is a key parameter that dictates the likelihood of obtaining well-diffracting crystals suitable for structure determination. However, many mammalian membrane proteins are too unstable for crystallisation. We developed a thermostabilisation strategy based on systematic mutagenesis coupled to a radioligand-binding thermostability assay that can be applied to receptors, ion channels and transporters. It takes approximately 6-12 months to thermostabilise a G protein-coupled receptor (GPCR) containing 300 amino acid residues. The resulting thermostabilised membrane proteins are more easily crystallised and result in high-quality structures. This methodology has facilitated structure-based drug design applied to GPCRs, because it is possible to determine multiple structures of the thermostabilised receptors bound to low affinity ligands. Protocols and advice are given on how to develop thermostability assays for membrane proteins and how to combine mutations to make an optimally stable mutant suitable for structural studies. PMID:27466713

  3. Comparison of the amino acid compositions and antigenic properties of spiralins purified from the plasma membranes of different spiroplasmas.

    PubMed

    Wróblewski, H; Robic, D; Thomas, D; Blanchard, A

    1984-01-01

    Spiralins were purified by agarose-suspension electrophoresis after extraction with detergents from the membranes of the following spiroplasmas: Spiroplasma citri C189, S. citri Maroc (R8A2), S. citri Scaph and the honey-bee spiroplasma B88. The four proteins (molecular mass congruent to 26,000 daltons, as determined by sodium dodecyl sulphate-pore gradient electrophoresis) showed very similar amino acid compositions characterized by the absence of methionine and tryptophan and a high polarity index (greater than 49%). When compared with the amino acid composition of S. citri membrane, the four spiralins had little or no histidine, a low content of glycine, leucine, tyrosine, phenylalanine and arginine, and a high content of threonine, alanine and valine. Comparison of the amino acid compositions according to the criteria described by Cornish-Bowden (Anal. Biochem., 1980, 105, 233-238) strongly suggests that all four spiralins are related. A crossed immunoelectrophoretical comparison, however, shows that though the three proteins purified from S. citri strains (serogroup I-1) are antigenically similar, they do not seem to share common epitopes with spiralin from the honey-bee spiroplasma B88 (serogroup I-2).

  4. Platelet antiheparin activity. The isolation and characterisation of platelet factor 4 released from thrombin-aggregated washed human platelets and its dissociation into subunits and the isolation of membrane-bound antiheparin activity.

    PubMed

    Moore, S; Pepper, D S; Cash, J D

    1975-02-27

    Platelet factor 4 was isolated by gel filtration from the soluble release products of thrombin-aggregated washed human platelets as a proteoglycan-platelet factor 4 complex of molecular weight 358 000, Stokes radius (r-s) of 14.0 nm, sedimentation coefficient (s) of 7.1 S and frictional ratio (f/f-o) of 3.04. The complex was dissociated at high ionic strength (I equals 0.75) and the proteoglycan separated from platelet factor 4 by gel filtration. Platelet factor 4 had a molecular weight of 27 100, r-s of 2.52 nm, s of 2.4 S and f/f-o of 1.26, was insoluble under physiological conditions but readily soluble at pH 3. Under these conditions platelet factor 4 dissociated into four subunits with a molecular weight of 6900, r-s of 1.92 nm, s of 0.8 S, and f/f-o of 1.52. Qualitative N-terminal amino acid analysis showed the presence of glutamic acid or glutamine as the major end group. Platelet factor 4 was compared with protamine sulphate, which has similar biological properties, by electrophoresis at pH 2.2, in which both migrated as single bands but with differing mobility, and by amino acid analysis which showed a more normal distribution of residues than occurred in protamine sulphate. Of the basic amino acids platelet factor 4 (molecular weight 27 100) contained 5.97% arginine, 3.18% histidine, and 12.31% lysine compared to protamine sulphate with 64.2% arginine, 0.6% lysine and no histidine. A partial specific volume (v) of 0.747 was calculated for platelet factor 4 from its amino acid analysis. A membrane fraction with antiheparin activity, an isopycnic density of 1.090-1.110 and r-s of 15-35 nm, was also isolated by sucrose density gradient centrifugation from the ultrasonicated insoluble platelet residue remaining after thrombin-induced aggregation of washed human platelets. Trypsin treatment of the membrane fraction neither solubilised nor destroyed the activity.

  5. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation

    PubMed Central

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M.; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4′-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54–63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54–63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although

  6. Effect of processing on proximate composition, anti-nutrient status and amino acid content in three accessions of African locust bean (Parkia biglobosa (jacq.) benth.

    PubMed

    Urua, Ikootobong Sunday; Uyoh, Edak Aniedi; Ntui, Valentine Otang; Okpako, Elza Cletus

    2013-02-01

    Proximate composition, amino acid levels and anti-nutrient factors (polyphenols, phytic acid and oxalate) in the seeds of Parkia biglobosa were determined at three stages: raw, boiled and fermented. The highest anti-nutrient factor present in the raw state was oxalate, while phytic acid was the least. The amino acid of the raw seeds matched favourably to the World Health Organization reference standard. After processing, boiling increased fat, crude fibre and protein, while it reduced moisture, ash and the anti-nutrient content in 64% of the cases examined. Fermentation reduced ash, crude fibre and carbohydrate in all the accessions. It increased the moisture, fat and protein, while reducing the anti-nutrient factors in 78% of the cases. The high levels of protein, fat and amino acids coupled with the low levels of the anti-nutrients in the boiled and fermented seeds make Parkia a good source of nutrients for humans and livestock.

  7. Structural insights of a self-assembling 9-residue peptide from the C-terminal tail of the SARS corona virus E-protein in DPC and SDS micelles: A combined high and low resolution spectroscopic study.

    PubMed

    Ghosh, Anirban; Bhattacharyya, Dipita; Bhunia, Anirban

    2018-02-01

    In recent years, several studies based on the interaction of self-assembling short peptides derived from viroporins with model membranes, have improved our understanding of the molecular mechanism of corona virus (CoV) infection under physiological conditions. In this study, we have characterized the mechanism of membrane interaction of a short, 9-residue peptide TK9 (T 55 VYVYSRVK 63 ) that had been derived from the carboxyl terminal of the Severe Acute Respiratory Syndrome (SARS) corona virus (SARS CoV) envelope (E) protein. The peptide has been studied for its physical changes in the presence of both zwitterionic DPC and negatively charged SDS model membrane micelles, respectively, with the help of a battery of biophysical techniques including two-dimensional solution state NMR spectroscopy. Interestingly, in both micellar environments, TK9 adopted an alpha helical conformation; however, the helical propensities were much higher in the case of DPC compared to those of SDS micelle, suggesting that TK9 has more specificity towards eukaryotic cell membrane than the bacterial cell membrane. The orientation of the peptide TK9 also varies in the different micellar environments. The peptide's affinity was further manifested by its pronounced membrane disruption ability towards the mammalian compared to the bacterial membrane mimic. Collectively, the in-depth structural information on the interaction of TK9 with different membrane environments explains the host specificity and membrane orientation owing to subsequent membrane disruption implicated in the viral pathogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Membrane fusion and exocytosis.

    PubMed

    Jahn, R; Südhof, T C

    1999-01-01

    Membrane fusion involves the merger of two phospholipid bilayers in an aqueous environment. In artificial lipid bilayers, fusion proceeds by means of defined transition states, including hourglass-shaped intermediates in which the proximal leaflets of the fusing membranes are merged whereas the distal leaflets are separate (fusion stalk), followed by the reversible opening of small aqueous fusion pores. Fusion of biological membranes requires the action of specific fusion proteins. Best understood are the viral fusion proteins that are responsible for merging the viral with the host cell membrane during infection. These proteins undergo spontaneous and dramatic conformational changes upon activation. In the case of the paradigmatic fusion proteins of the influenza virus and of the human immunodeficiency virus, an amphiphilic fusion peptide is inserted into the target membrane. The protein then reorients itself, thus forcing the fusing membranes together and inducing lipid mixing. Fusion of intracellular membranes in eukaryotic cells involves several protein families including SNAREs, Rab proteins, and Sec1/Munc-18 related proteins (SM-proteins). SNAREs form a novel superfamily of small and mostly membrane-anchored proteins that share a common motif of about 60 amino acids (SNARE motif). SNAREs reversibly assemble into tightly packed helical bundles, the core complexes. Assembly is thought to pull the fusing membranes closely together, thus inducing fusion. SM-proteins comprise a family of soluble proteins that bind to certain types of SNAREs and prevent the formation of core complexes. Rab proteins are GTPases that undergo highly regulated GTP-GDP cycles. In their GTP form, they interact with specific proteins, the effector proteins. Recent evidence suggests that Rab proteins function in the initial membrane contact connecting the fusing membranes but are not involved in the fusion reaction itself.

  9. The electroneutral sodium/bicarbonate cotransporter containing an amino terminal 123-amino-acid cassette is expressed predominantly in the heart

    PubMed Central

    Cooper, Deborah S.; Lee, Hye Jeong; Yang, Han Soo; Kippen, Joseph; Yun, C. Chris; Choi, Inyeong

    2006-01-01

    Summary In this study, we examined the tissue-specific expression of two electroneutral Na/HCO3 cotransporter (NBCn1) variants that differ from each other by the presence of the N-terminal 123 amino acids (cassette II). A rat Northern blot with the probe to nucleotides encoding cassette II detected a 9 kb NBCn1 mRNA strongly in the heart and weakly in skeletal muscles, but absent from most of the tissues including kidney, brain, and pancreas. In the rat heart, PCR with primers flanking cassette II preferentially amplified a DNA fragment that lacked cassette II. However, in the human heart, PCR preferentially amplified a fragment that contained cassette II. This larger PCR product was found virtually in all regions of the human cardiovascular system with strong amplification in the apex, atrium, and atrioventricular nodes. These findings indicate that the variant containing cassette II is almost absent in tissues including brain, kidney, and pancreas, where NBCn1 has been extensively examined. PMID:16547769

  10. The C Terminus of the Large Tegument Protein pUL36 Contains Multiple Capsid Binding Sites That Function Differently during Assembly and Cell Entry of Herpes Simplex Virus

    PubMed Central

    Schipke, Julia; Pohlmann, Anja; Diestel, Randi; Binz, Anne; Rudolph, Kathrin; Nagel, Claus-Henning; Bauerfeind, Rudolf

    2012-01-01

    The largest tegument protein of herpes simplex virus type 1 (HSV1), pUL36, is a multivalent cross-linker between the viral capsids and the tegument and associated membrane proteins during assembly that upon subsequent cell entry releases the incoming capsids from the outer tegument and viral envelope. Here we show that pUL36 was recruited to cytosolic progeny capsids that later colocalized with membrane proteins of herpes simplex virus type 1 (HSV1) and the trans-Golgi network. During cell entry, pUL36 dissociated from viral membrane proteins but remained associated with cytosolic capsids until arrival at the nucleus. HSV1 UL36 mutants lacking C-terminal portions of increasing size expressed truncated pUL36 but could not form plaques. Cytosolic capsids of mutants lacking the C-terminal 735 of the 3,164 amino acid residues accumulated in the cytosol but did not recruit pUL36 or associate with membranes. In contrast, pUL36 lacking only the 167 C-terminal residues bound to cytosolic capsids and subsequently colocalized with viral and host membrane proteins. Progeny virions fused with neighboring cells, but incoming capsids did not retain pUL36, nor could they target the nucleus or initiate HSV1 gene expression. Our data suggest that residues 2430 to 2893 of HSV1 pUL36, containing one binding site for the capsid protein pUL25, are sufficient to recruit pUL36 onto cytosolic capsids during assembly for secondary envelopment, whereas the 167 residues of the very C terminus with the second pUL25 binding site are crucial to maintain pUL36 on incoming capsids during cell entry. Capsids lacking pUL36 are targeted neither to membranes for virus assembly nor to nuclear pores for genome uncoating. PMID:22258258

  11. Interaction of monomeric Ebola VP40 protein with a plasma membrane: A coarse-grained molecular dynamics (CGMD) simulation study.

    PubMed

    Mohamad Yusoff, Mohamad Ariff; Abdul Hamid, Azzmer Azzar; Mohammad Bunori, Noraslinda; Abd Halim, Khairul Bariyyah

    2018-06-01

    Ebola virus is a lipid-enveloped filamentous virus that affects human and non-human primates and consists of several types of protein: nucleoprotein, VP30, VP35, L protein, VP40, VP24, and transmembrane glycoprotein. Among the Ebola virus proteins, its matrix protein VP40 is abundantly expressed during infection and plays a number of critical roles in oligomerization, budding and egress from the host cell. VP40 exists predominantly as a monomer at the inner leaflet of the plasma membrane, and has been suggested to interact with negatively charged lipids such as phosphatidylinositol 4,5-bisphosphate (PIP 2 ) and phosphatidylserine (PS) via its cationic patch. The hydrophobic loop at the C-terminal domain has also been shown to be important in the interaction between the VP40 and the membrane. However, details of the molecular mechanisms underpinning their interactions are not fully understood. This study aimed at investigating the effects of mutation in the cationic patch and hydrophobic loop on the interaction between the VP40 monomer and the plasma membrane using coarse-grained molecular dynamics simulation (CGMD). Our simulations revealed that the interaction between VP40 and the plasma membrane is mediated by the cationic patch residues. This led to the clustering of PIP 2 around the protein in the inner leaflet as a result of interactions between some cationic residues including R52, K127, K221, K224, K225, K256, K270, K274, K275 and K279 and PIP 2 lipids via electrostatic interactions. Mutation of the cationic patch or hydrophobic loop amino acids caused the protein to bind at the inner leaflet of the plasma membrane in a different orientation, where no significant clustering of PIP 2 was observed around the mutated protein. This study provides basic understanding of the interaction of the VP40 monomer and its mutants with the plasma membrane. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins

    PubMed Central

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva

    2016-01-01

    ABSTRACT Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. IMPORTANCE Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal

  13. Inhibition of the Membrane Attack Complex by Dengue Virus NS1 through Interaction with Vitronectin and Terminal Complement Proteins.

    PubMed

    Conde, Jonas Nascimento; da Silva, Emiliana Mandarano; Allonso, Diego; Coelho, Diego Rodrigues; Andrade, Iamara da Silva; de Medeiros, Luciano Neves; Menezes, Joice Lima; Barbosa, Angela Silva; Mohana-Borges, Ronaldo

    2016-11-01

    Dengue virus (DENV) infects millions of people worldwide and is a major public health problem. DENV nonstructural protein 1 (NS1) is a conserved glycoprotein that associates with membranes and is also secreted into the plasma in DENV-infected patients. The present study describes a novel mechanism by which NS1 inhibits the terminal complement pathway. We first identified the terminal complement regulator vitronectin (VN) as a novel DENV2 NS1 binding partner by using a yeast two-hybrid system. This interaction was further assessed by enzyme-linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) assay. The NS1-VN complex was also detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the DENV2 NS1 protein, either by itself or by interacting with VN, hinders the formation of the membrane attack complex (MAC) and C9 polymerization. Finally, we showed that DENV2, West Nile virus (WNV), and Zika virus (ZIKV) NS1 proteins produced in mammalian cells inhibited C9 polymerization. Taken together, our results points to a role for NS1 as a terminal pathway inhibitor of the complement system. Dengue is the most important arthropod-borne viral disease nowadays and is caused by dengue virus (DENV). The flavivirus NS1 glycoprotein has been characterized functionally as a complement evasion protein that can attenuate the activation of the classical, lectin, and alternative pathways. The present study describes a novel mechanism by which DENV NS1 inhibits the terminal complement pathway. We identified the terminal complement regulator vitronectin (VN) as a novel DENV NS1 binding partner, and the NS1-VN complex was detected in plasmas from DENV-infected patients, suggesting that this interaction occurs during DENV infection. We also demonstrated that the NS1-VN complex inhibited membrane attack complex (MAC) formation, thus interfering with the complement terminal pathway. Interestingly

  14. Modulation of the functional association between the HIV-1 intasome and the nucleosome by histone amino-terminal tails.

    PubMed

    Benleulmi, Mohamed S; Matysiak, Julien; Robert, Xavier; Miskey, Csaba; Mauro, Eric; Lapaillerie, Delphine; Lesbats, Paul; Chaignepain, Stéphane; Henriquez, Daniel R; Calmels, Christina; Oladosu, Oyindamola; Thierry, Eloïse; Leon, Oscar; Lavigne, Marc; Andreola, Marie-Line; Delelis, Olivier; Ivics, Zoltán; Ruff, Marc; Gouet, Patrice; Parissi, Vincent

    2017-11-28

    Stable insertion of the retroviral DNA genome into host chromatin requires the functional association between the intasome (integrase·viral DNA complex) and the nucleosome. The data from the literature suggest that direct protein-protein contacts between integrase and histones may be involved in anchoring the intasome to the nucleosome. Since histone tails are candidates for interactions with the incoming intasomes we have investigated whether they could participate in modulating the nucleosomal integration process. We show here that histone tails are required for an optimal association between HIV-1 integrase (IN) and the nucleosome for efficient integration. We also demonstrate direct interactions between IN and the amino-terminal tail of human histone H4 in vitro. Structure/function studies enabled us to identify amino acids in the carboxy-terminal domain of IN that are important for this interaction. Analysis of the nucleosome-binding properties of catalytically active mutated INs confirmed that their ability to engage the nucleosome for integration in vitro was affected. Pseudovirus particles bearing mutations that affect the IN/H4 association also showed impaired replication capacity due to altered integration and re-targeting of their insertion sites toward dynamic regions of the chromatin with lower nucleosome occupancy. Collectively, our data support a functional association between HIV-1 IN and histone tails that promotes anchoring of the intasome to nucleosomes and optimal integration into chromatin.

  15. Expression of recombinant CD59 with an N-terminal peptide epitope facilitates analysis of residues contributing to its complement-inhibitory function.

    PubMed

    Zhou, Q; Zhao, J; Hüsler, T; Sims, P J

    1996-10-01

    CD59 is a plasma membrane-anchored glycoprotein that serves to protect human cells from lysis by the C5b-9 complex of complement. The immunodominant epitopes of CD59 are known to be sensitive to disruption of native tertiary structure, complicating immunological measurement of expressed mutant constructs for structure function analysis. In order to quantify cell-surface expression of wild-type and mutant forms of this complement inhibitor, independent of CD59 antigen, an 11-residue peptide (TAG) recognized by monoclonal antibody (mAb) 9E10 was inserted before the N-terminal codon (L1) of mature CD59, in a pcDNA3 expression plasmid. SV-T2 cells were transfected with this plasmid, yielding cell lines expressing 0 to > 10(5) CD59/cell. The TAG-CD59 fusion protein was confirmed to be GPI-anchored, N-glycosylated and showed identical complement-inhibitory function to wild-type CD59, lacking the TAG peptide sequence. Using this construct, the contribution of each of four surface-localized aromatic residues (4Y, 47F, 61Y, and 62Y) to CD59's complement-inhibitory function was examined. These assays revealed normal surface expression with complete loss of complement-inhibitory function in the 4Y --> S, 47F --> G and 61Y --> S mutants. By contrast, 62Y --> S mutants retained approximately 40% of function of wild-type CD59. These studies confirmed the utility of the TAG-CD59 construct for quantifying CD59 surface expression and activity, and implicate surface aromatic residues 4Y, 47F, 61Y and 62Y as essential to maintenance of CD59's normal complement-regulatory function.

  16. Electrodiffusion of lipids on membrane surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Y. C.

    2012-05-01

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  17. Electrodiffusion of lipids on membrane surfaces.

    PubMed

    Zhou, Y C

    2012-05-28

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  18. Metal-Assisted Channel Stabilization: Disposition of a Single Histidine on the N-terminus of Alamethicin Yields Channels with Extraordinarily Long Lifetimes

    PubMed Central

    Noshiro, Daisuke; Asami, Koji; Futaki, Shiroh

    2010-01-01

    Abstract Alamethicin, a member of the peptaibol family of antibiotics, is a typical channel-forming peptide with a helical structure. The self-assembly of the peptide in the membranes yields voltage-dependent channels. In this study, three alamethicin analogs possessing a charged residue (His, Lys, or Glu) on their N-termini were designed with the expectation of stabilizing the transmembrane structure. A slight elongation of channel lifetime was observed for the Lys and Glu analogs. On the other hand, extensive stabilization of certain channel open states was observed for the His analog. This stabilization was predominantly observed in the presence of metal ions such as Zn2+, suggesting that metal coordination with His facilitates the formation of a supramolecular assembly in the membranes. Channel stability was greatly diminished by acetylation of the N-terminal amino group, indicating that the N-terminal amino group also plays an important role in metal coordination. PMID:20441743

  19. Site-Directed Mutagenesis of HgcA and HgcB Reveals Amino Acid Residues Important for Mercury Methylation

    DOE PAGES

    Smith, Steven D.; Bridou, Romain; Johs, Alexander; ...

    2015-02-27

    Methylmercury is a potent neurotoxin that is produced by anaerobic microorganisms from inorganic mercury by a recently discovered pathway. A two-gene cluster, consisting of hgcA and hgcB, encodes two of the proteins essential for this activity. hgcA encodes a corrinoid protein with a strictly conserved cysteine proposed to be the ligand for cobalt in the corrinoid cofactor, whereas hgcB encodes a ferredoxin-like protein thought to be an electron donor to HgcA. Deletion of either gene eliminates mercury methylation by the methylator Desulfovibrio desulfuricans ND132. Here, site-directed mutants of HgcA and HgcB were constructed to determine amino acid residues essential formore » mercury methylation. Mutations of the strictly conserved residue Cys93 in HgcA, the proposed ligand for the corrinoid cobalt, to Ala or Thr completely abolished the methylation capacity, but a His substitution produced measurable methylmercury. Mutations of conserved amino acids near Cys93 had various impacts on the methylation capacity but showed that the structure of the putative “cap helix” region harboring Cys93 is crucial for methylation function. In the ferredoxin-like protein HgcB, only one of two conserved cysteines found at the C terminus was necessary for methylation, but either cysteine sufficed. An additional, strictly conserved cysteine, Cys73, was also determined to be essential for methylation. Ultimately, this study supports the previously predicted importance of Cys93 in HgcA for methylation of mercury and reveals additional residues in HgcA and HgcB that facilitate the production of this neurotoxin.« less

  20. Site-specific O-glycosylation of N-terminal serine residues by polypeptide GalNAc-transferase 2 modulates human δ-opioid receptor turnover at the plasma membrane.

    PubMed

    Lackman, Jarkko J; Goth, Christoffer K; Halim, Adnan; Vakhrushev, Sergey Y; Clausen, Henrik; Petäjä-Repo, Ulla E

    2018-01-01

    G protein-coupled receptors (GPCRs) are an important protein family of signalling receptors that govern a wide variety of physiological functions. The capacity to transmit extracellular signals and the extent of cellular response are largely determined by the amount of functional receptors at the cell surface that is subject to complex and fine-tuned regulation. Here, we demonstrate that the cell surface expression level of an inhibitory GPCR, the human δ-opioid receptor (hδOR) involved in pain and mood regulation, is modulated by site-specific N-acetylgalactosamine (GalNAc) -type O-glycosylation. Importantly, we identified one out of the 20 polypeptide GalNAc-transferase isoforms, GalNAc-T2, as the specific regulator of O-glycosylation of Ser6, Ser25 and Ser29 in the N-terminal ectodomain of the receptor. This was demonstrated by in vitro glycosylation assays using peptides corresponding to the hδOR N-terminus, Vicia villosa lectin affinity purification of receptors expressed in HEK293 SimpleCells capable of synthesizing only truncated O-glycans, GalNAc-T edited cell line model systems, and site-directed mutagenesis of the putative O-glycosylation sites. Interestingly, a single-nucleotide polymorphism, at residue 27 (F27C), was found to alter O-glycosylation of the receptor in efficiency as well as in glycosite usage. Furthermore, flow cytometry and cell surface biotinylation assays using O-glycan deficient CHO-ldlD cells revealed that the absence of O-glycans results in decreased receptor levels at the plasma membrane due to enhanced turnover. In addition, mutation of the identified O-glycosylation sites led to a decrease in the number of ligand-binding competent receptors and impaired agonist-mediated inhibition of cyclic AMP accumulation in HEK293 cells. Thus, site-specific O-glycosylation by a selected GalNAc-T isoform can increase the stability of a GPCR, in a process that modulates the constitutive turnover and steady-state levels of functional receptors

  1. Studies on lactoferricin-derived Escherichia coli membrane-active peptides reveal differences in the mechanism of N-acylated versus nonacylated peptides.

    PubMed

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-06-17

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis.

  2. Studies on Lactoferricin-derived Escherichia coli Membrane-active Peptides Reveal Differences in the Mechanism of N-Acylated Versus Nonacylated Peptides*

    PubMed Central

    Zweytick, Dagmar; Deutsch, Günter; Andrä, Jörg; Blondelle, Sylvie E.; Vollmer, Ekkehard; Jerala, Roman; Lohner, Karl

    2011-01-01

    To improve the low antimicrobial activity of LF11, an 11-mer peptide derived from human lactoferricin, mutant sequences were designed based on the defined structure of LF11 in the lipidic environment. Thus, deletion of noncharged polar residues and strengthening of the hydrophobic N-terminal part upon adding a bulky hydrophobic amino acid or N-acylation resulted in enhanced antimicrobial activity against Escherichia coli, which correlated with the peptides' degree of perturbation of bacterial membrane mimics. Nonacylated and N-acylated peptides exhibited different effects at a molecular level. Nonacylated peptides induced segregation of peptide-enriched and peptide-poor lipid domains in negatively charged bilayers, although N-acylated peptides formed small heterogeneous domains resulting in a higher degree of packing defects. Additionally, only N-acylated peptides perturbed the lateral packing of neutral lipids and exhibited increased permeability of E. coli lipid vesicles. The latter did not correlate with the extent of improvement of the antimicrobial activity, which could be explained by the fact that elevated binding of N-acylated peptides to lipopolysaccharides of the outer membrane of Gram-negative bacteria seems to counteract the elevated membrane permeabilization, reflected in the respective minimal inhibitory concentration for E. coli. The antimicrobial activity of the peptides correlated with an increase of membrane curvature stress and hence bilayer instability. Transmission electron microscopy revealed that only the N-acylated peptides induced tubular protrusions from the outer membrane, whereas all peptides caused detachment of the outer and inner membrane of E. coli bacteria. Viability tests demonstrated that these bacteria were dead before onset of visible cell lysis. PMID:21515687

  3. An enhancer peptide for membrane-disrupting antimicrobial peptides

    PubMed Central

    2010-01-01

    Background NP4P is a synthetic peptide derived from a natural, non-antimicrobial peptide fragment (pro-region of nematode cecropin P4) by substitution of all acidic amino acid residues with amides (i.e., Glu → Gln, and Asp → Asn). Results In the presence of NP4P, some membrane-disrupting antimicrobial peptides (ASABF-α, polymyxin B, and nisin) killed microbes at lower concentration (e.g., 10 times lower minimum bactericidal concentration for ASABF-α against Staphylococcus aureus), whereas NP4P itself was not bactericidal and did not interfere with bacterial growth at ≤ 300 μg/mL. In contrast, the activities of antimicrobial agents with a distinct mode of action (indolicidin, ampicillin, kanamycin, and enrofloxacin) were unaffected. Although the membrane-disrupting activity of NP4P was slight or undetectable, ASABF-α permeabilized S. aureus membranes with enhanced efficacy in the presence of NP4P. Conclusions NP4P selectively enhanced the bactericidal activities of membrane-disrupting antimicrobial peptides by increasing the efficacy of membrane disruption against the cytoplasmic membrane. PMID:20152058

  4. N-terminal deletions in Rous sarcoma virus p60src: effects on tyrosine kinase and biological activities and on recombination in tissue culture with the cellular src gene.

    PubMed Central

    Cross, F R; Garber, E A; Hanafusa, H

    1985-01-01

    We have constructed deletions within the region of cloned Rous sarcoma virus DNA coding for the N-terminal 30 kilodaltons of p60src. Infectious virus was recovered after transfection. Deletions of amino acids 15 to 149, 15 to 169, or 149 to 169 attenuated but did not abolish transforming activity, as assayed by focus formation and anchorage-independent growth. These deletions also had only slight effects on the tyrosine kinase activity of the mutant src protein. Deletion of amino acids 169 to 264 or 15 to 264 completely abolished transforming activity, and src kinase activity was reduced at least 10-fold. However, these mutant viruses generated low levels of transforming virus by recombination with the cellular src gene. The results suggest that as well as previously identified functional domains for p60src myristylation and membrane binding (amino acids 1 to 14) and tyrosine kinase activity (amino acids 250 to 526), additional N-terminal sequences (particularly amino acids 82 to 169) can influence the transforming activity of the src protein. Images PMID:2426576

  5. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Crystal Structure of the C-terminal Domain of Splicing Factor Prp8 Carrying Retinitis Pigmentosa Mutants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang,L.; Shen, J.; Guarnieri, M.

    2007-01-01

    Prp8 is a critical pre-mRNA splicing factor. Prp8 is proposed to help form and stabilize the spliceosome catalytic core and to be an important regulator of spliceosome activation. Mutations in human Prp8 (hPrp8) cause a severe form of the genetic disorder retinitis pigmentosa, RP13. Understanding the molecular mechanism of Prp8's function in pre-mRNA splicing and RP13 has been hindered by its large size (over 2000 amino acids) and remarkably low-sequence similarity with other proteins. Here we present the crystal structure of the C-terminal domain (the last 273 residues) of Caenorhabditis elegans Prp8 (cPrp8). The core of the C-terminal domain ismore » an / structure that forms the MPN (Mpr1, Pad1 N-terminal) fold but without Zn{sup 2+} coordination. We propose that the C-terminal domain is a protein interaction domain instead of a Zn{sup 2+}-dependent metalloenzyme as proposed for some MPN proteins. Mapping of RP13 mutants on the Prp8 structure suggests that these residues constitute a binding surface between Prp8 and other partner(s), and the disruption of this interaction provides a plausible molecular mechanism for RP13.« less

  7. Mutational Insights into the Roles of Amino Acid Residues in Ligand Binding for Two Closely Related Family 16 Carbohydrate Binding Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Xiaoyun; Agarwal, Vinayak; Dodd, Dylan

    2010-11-22

    Carbohydrate binding modules (CBMs) are specialized proteins that bind to polysaccharides and oligosaccharides. Caldanaerobius polysaccharolyticus Man5ACBM16-1/CBM16-2 bind to glucose-, mannose-, and glucose/mannose-configured substrates. The crystal structures of the two proteins represent the only examples in CBM family 16, and studies that evaluate the roles of amino acid residues in ligand binding in this family are lacking. In this study, we probed the roles of amino acids (selected based on CBM16-1/ligand co-crystal structures) on substrate binding. Two tryptophan (Trp-20 and Trp-125) and two glutamine (Gln-81 and Gln-93) residues are shown to be critical in ligand binding. Additionally, several polar residues thatmore » flank the critical residues also contribute to ligand binding. The CBM16-1 Q121E mutation increased affinity for all substrates tested, whereas the Q21G and N97R mutants exhibited decreased substrate affinity. We solved CBM/substrate co-crystal structures to elucidate the molecular basis of the increased substrate binding by CBM16-1 Q121E. The Gln-121, Gln-21, and Asn-97 residues can be manipulated to fine-tune ligand binding by the Man5A CBMs. Surprisingly, none of the eight residues investigated was absolutely conserved in CBM family 16. Thus, the critical residues in the Man5A CBMs are either not essential for substrate binding in the other members of this family or the two CBMs are evolutionarily distinct from the members available in the current protein database. Man5A is dependent on its CBMs for robust activity, and insights from this study should serve to enhance our understanding of the interdependence of its catalytic and substrate binding modules.« less

  8. Quinone-induced Enhancement of DNA Cleavage by Human Topoisomerase IIα: Adduction of Cysteine Residues 392 and 405†

    PubMed Central

    Bender, Ryan P.; Ham, Amy-Joan L.; Osheroff, Neil

    2010-01-01

    Several quinone-based metabolites of drugs and environmental toxins are potent topoisomerase II poisons. These compounds act by adducting the protein, and appear to increase levels of enzyme-DNA cleavage complexes by at least two potentially independent mechanisms. Treatment of topoisomerase IIα with quinones inhibits DNA religation, and blocks the N-terminal gate of the protein by crosslinking its two protomer subunits. It is not known whether these two effects result from quinone adduction to the same amino acid residue(s) in topoisomerase IIα or whether they are mediated by modification of separate residues. Therefore, the present study identified amino acid residues in human topoisomerase IIα that are modified by quinones and determined their role in the actions of these compounds as topoisomerase II poisons. Four cysteine residues were identified by mass spectrometry as sites of quinone adduction: cys170, cys392, cys405, and cys455. Mutations (cys–>ala) were individually generated at each position. Only mutations at cys392 or cys405 reduced sensitivity (~50% resistance) to benzoquinone. Top2αC392A and top2αC405A displayed faster rates (~2–fold) of DNA religation than wild-type topoisomerase IIα in the presence of the quinone. In contrast, as determined by DNA binding, protein clamp closing, and protomer crosslinking experiments, mutations at cys392 and cys405 did not affect the ability of benzoquinone to block the N-terminal gate of topoisomerase IIα. These findings indicate that adduction of cys392 and cys405 is important for the actions of quinones against the enzyme, and increases levels of cleavage complexes primarily by inhibiting DNA religation. PMID:17298034

  9. Amino acid mutations in the caldesmon COOH-terminal functional domain increase force generation in bladder smooth muscle

    PubMed Central

    Deng, Maoxian; Boopathi, Ettickan; Hypolite, Joseph A.; Raabe, Tobias; Chang, Shaohua; Zderic, Stephen; Wein, Alan J.

    2013-01-01

    Caldesmon (CaD), a component of smooth muscle thin filaments, binds actin, tropomyosin, calmodulin, and myosin and inhibits actin-activated ATP hydrolysis by smooth muscle myosin. Internal deletions of the chicken CaD functional domain that spans from amino acids (aa) 718 to 731, which corresponds to aa 512–530 including the adjacent aa sequence in mouse CaD, lead to diminished CaD-induced inhibition of actin-activated ATP hydrolysis by myosin. Transgenic mice with mutations of five aa residues (Lys523 to Gln, Val524 to Leu, Ser526 to Thr, Pro527 to Cys, and Lys529 to Ser), which encompass the ATPase inhibitory determinants located in exon 12, were generated by homologous recombination. Homozygous (−/−) animals did not develop, but heterozygous (+/−) mice carrying the expected mutations in the CaD ATPase inhibitory domain (CaD mutant) matured and reproduced normally. The peak force produced in response to KCl and electrical field stimulation by the detrusor smooth muscle from the CaD mutant was high compared with that of the wild type. CaD mutant mice revealed nonvoiding contractions during bladder filling on awake cystometry, suggesting that the CaD ATPase inhibitory domain suppresses force generation during the filling phase and this suppression is partially released by mutations in 50% of CaD in heterozygous. Our data show for the first time a functional phenotype, at the intact smooth muscle tissue and in vivo organ levels, following mutation of a functional domain at the COOH-terminal region of CaD. PMID:23986516

  10. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminusmore » is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.« less

  11. Homology-based modeling of the Erwinia amylovora type III secretion chaperone DspF used to identify amino acids required for virulence and interaction with the effector DspE.

    PubMed

    Triplett, Lindsay R; Wedemeyer, William J; Sundin, George W

    2010-09-01

    The structure of DspF, a type III secretion system (T3SS) chaperone required for virulence of the fruit tree pathogen Erwinia amylovora, was modeled based on predicted structural homology to characterized T3SS chaperones. This model guided the selection of 11 amino acid residues that were individually mutated to alanine via site-directed mutagenesis. Each mutant was assessed for its effect on virulence complementation, dimerization and interaction with the N-terminal chaperone-binding site of DspE. Four amino acid residues were identified that did not complement the virulence defect of a dspF knockout mutant, and three of these residues were required for interaction with the N-terminus of DspE. This study supports the significance of the predicted beta-sheet helix-binding groove in DspF chaperone function. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  12. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product

    NASA Astrophysics Data System (ADS)

    Rustgi, Anil K.; Dyson, Nicholas; Bernards, Rene

    1991-08-01

    THE proteins encoded by the myc gene family are involved in the control of cell proliferation and differentiation, and aberrant expression of myc proteins has been implicated in the genesis of a variety of neoplasms1. In the carboxyl terminus, myc proteins have two domains that encode a basic domain/helix-loop-helix and a leucine zipper motif, respectively. These motifs are involved both in DNA binding and in protein dimerization2-5. In addition, myc protein family members share several regions of highly conserved amino acids in their amino termini that are essential for transformation6,7. We report here that an N-terminal domain present in both the c-myc and N-myc proteins mediates binding to the retinoblastoma gene product, pRb. We show that the human papilloma virus E7 protein competes with c-myc for binding to pRb, indicating that these proteins share overlapping binding sites on pRb. Furthermore, a mutant Rb protein from a human tumour cell line that carried a 35-amino-acid deletion in its C terminus failed to bind to c-myc. Our results suggest that c-myc and pRb cooperate through direct binding to control cell proliferation.

  13. Backbone hydration determines the folding signature of amino acid residues.

    PubMed

    Bignucolo, Olivier; Leung, Hoi Tik Alvin; Grzesiek, Stephan; Bernèche, Simon

    2015-04-08

    The relation between the sequence of a protein and its three-dimensional structure remains largely unknown. A lasting dream is to elucidate the side-chain-dependent driving forces that govern the folding process. Different structural data suggest that aromatic amino acids play a particular role in the stabilization of protein structures. To better understand the underlying mechanism, we studied peptides of the sequence EGAAXAASS (X = Gly, Ile, Tyr, Trp) through comparison of molecular dynamics (MD) trajectories and NMR residual dipolar coupling (RDC) measurements. The RDC data for aromatic substitutions provide evidence for a kink in the peptide backbone. Analysis of the MD simulations shows that the formation of internal hydrogen bonds underlying a helical turn is key to reproduce the experimental RDC values. The simulations further reveal that the driving force leading to such helical-turn conformations arises from the lack of hydration of the peptide chain on either side of the bulky aromatic side chain, which can potentially act as a nucleation point initiating the folding process.

  14. Molecular cloning, expression, functional characterization, chromosomal localization, and gene structure of junctate, a novel integral calcium binding protein of sarco(endo)plasmic reticulum membrane.

    PubMed

    Treves, S; Feriotto, G; Moccagatta, L; Gambari, R; Zorzato, F

    2000-12-15

    Screening a cDNA library from human skeletal muscle and cardiac muscle with a cDNA probe derived from junctin led to the isolation of two groups of cDNA clones. The first group displayed a deduced amino acid sequence that is 84% identical to that of dog heart junctin, whereas the second group had a single open reading frame that encoded a polypeptide with a predicted mass of 33 kDa, whose first 78 NH(2)-terminal residues are identical to junctin whereas its COOH terminus domain is identical to aspartyl beta-hydroxylase, a member of the alpha-ketoglutarate-dependent dioxygenase family. We named the latter amino acid sequence junctate. Northern blot analysis indicates that junctate is expressed in a variety of human tissues including heart, pancreas, brain, lung, liver, kidney, and skeletal muscle. Fluorescence in situ hybridization analysis revealed that the genetic loci of junctin and junctate map to the same cytogenetic band on human chromosome 8. Analysis of intron/exon boundaries of the genomic BAC clones demonstrate that junctin, junctate, and aspartyl beta-hydroxylase result from alternative splicing of the same gene. The predicted lumenal portion of junctate is enriched in negatively charged residues and is able to bind calcium. Scatchard analysis of equilibrium (45)Ca(2+) binding in the presence of a physiological concentration of KCl demonstrate that junctate binds 21.0 mol of Ca(2+)/mol protein with a k(D) of 217 +/- 20 microm (n = 5). Tagging recombinant junctate with green fluorescent protein and expressing the chimeric polypeptide in COS-7-transfected cells indicates that junctate is located in endoplasmic reticulum membranes and that its presence increases the peak amplitude and transient calcium released by activation of surface membrane receptors coupled to InsP(3) receptor activation. Our study shows that alternative splicing of the same gene generates the following functionally distinct proteins: an enzyme (aspartyl beta-hydroxylase), a structural

  15. Effect of egg weight on composition, embryonic growth, and expression of amino acid transporter genes in yolk sac membranes and small intestines of the domestic pigeon (Columba livia).

    PubMed

    Chen, M X; Li, X G; Yan, H C; Wang, X Q; Gao, C Q

    2016-06-01

    The objective of this study was to investigate the effect of egg weight on the composition of the egg, the growth of the embryo, and the expression of amino acid transporter genes in the yolk sac membranes and small intestines of the domestic pigeon (Columba livia). A total of 240 fertilized eggs were collected and divided into two groups based on the weight of the eggs, light (LE) and heavy (HE). The composition of 20 eggs from each group was measured, and the remaining eggs were weighed and placed in an incubator. On embryonic days (E) 9, 11, 13, and 15 and day of hatch (DOH), 15 embryos/hatchlings from each group were measured for embryonic growth, and samples were collected. The HE had heavier yolk and albumen weights than the LE (P < 0.01). Compared with the LE, the HE had heavier yolk-free embryonic body and yolk sac weights from E13 to DOH (P < 0.05). Additionally, the HE had larger yolk sac membrane weights from E13 to E15 (P < 0.05) and had more residual yolk sac content on DOH than those of the LE (P < 0.01). The yolk absorption was greater for the HE than for the LE from E11 to E13 (P < 0.05). Furthermore, the abundance of CAT2 and PepT1 mRNA in the yolk sac membranes was greater in the HE than in the LE on E13 (P < 0.05). Compared with the LE, the gene expression of EAAT2 in the intestine on E13 was greater in the HE, whereas the expression of EAAT3 was lower in the HE (P < 0.05). Taken together, our results suggest that egg weight influenced the composition of the eggs, embryonic development, and expression of amino acid transporter genes in the yolk sac membranes and small intestines of pigeon embryos. © 2016 Poultry Science Association Inc.

  16. N-terminal aliphatic residues dictate the structure, stability, assembly, and small molecule binding of the coiled-coil region of cartilage oligomeric matrix protein.

    PubMed

    Gunasekar, Susheel K; Asnani, Mukta; Limbad, Chandani; Haghpanah, Jennifer S; Hom, Wendy; Barra, Hanna; Nanda, Soumya; Lu, Min; Montclare, Jin Kim

    2009-09-15

    The coiled-coil domain of cartilage oligomeric matrix protein (COMPcc) assembles into a homopentamer that naturally recognizes the small molecule 1,25-dihydroxyvitamin D(3) (vit D). To identify the residues critical for the structure, stability, oligomerization, and binding to vit D as well as two other small molecules, all-trans-retinol (ATR) and curcumin (CCM), here we perform an alanine scanning mutagenesis study. Ten residues lining the hydrophobic pocket of COMPcc were mutated into alanine; of the mutated residues, the N-terminal aliphatic residues L37, L44, V47, and L51 are responsible for maintaining the structure and function. Furthermore, two polar residues, T40 and Q54, within the N-terminal region when converted into alanine improve the alpha-helical structure, stability, and self-assembly behavior. Helical stability, oligomerization, and binding appear to be linked in a manner in which mutations that abolish helical structure and assembly bind poorly to vit D, ATR, and CCM. These results provide not only insight into COMPcc and its functional role but also useful guidelines for the design of stable, pentameric coiled-coils capable of selectively storing and delivering various small molecules.

  17. Repression of HNF1α-mediated transcription by amino-terminal enhancer of split (AES).

    PubMed

    Han, Eun Hee; Gorman, Amanda A; Singh, Puja; Chi, Young-In

    HNF1α (Hepatocyte Nuclear Factor 1α) is one of the master regulators in pancreatic beta-cell development and function, and the mutations in Hnf1α are the most common monogenic causes of diabetes mellitus. As a member of the POU transcription factor family, HNF1α exerts its gene regulatory function through various molecular interactions; however, there is a paucity of knowledge in their functional complex formation. In this study, we identified the Groucho protein AES (Amino-terminal Enhancer of Split) as a HNF1α-specific physical binding partner and functional repressor of HNF1α-mediated transcription, which has a direct link to glucose-stimulated insulin secretion in beta-cells that is impaired in the HNF1α mutation-driven diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Membrane topology of Golgi-localized probable S-adenosylmethionine-dependent methyltransferase in tobacco (Nicotiana tabacum) BY-2 cells.

    PubMed

    Liu, Jianping; Hayashi, Kyoko; Matsuoka, Ken

    2015-01-01

    S-adenosylmethionine (SAM)-dependent methyltransferases (MTases) transfer methyl groups to substrates. In this study, a novel putative tobacco SAM-MTase termed Golgi-localized methyl transferase 1 (GLMT1) has been characterized. GLMT1 is comprised of 611 amino acids with short N-terminal region, putative transmembrane region, and C-terminal SAM-MTase domain. Expression of monomeric red fluorescence protein (mRFP)-tagged protein in tobacco BY-2 cell indicated that GLMT1 is a Golgi-localized protein. Analysis of the membrane topology by protease digestion suggested that both C-terminal catalytic region and N-terminal region seem to be located to the cytosolic side of the Golgi apparatus. Therefore, GLMT1 might have a different function than the previously studied SAM-MTases in plants.

  19. Plant and yeast cornichon possess a conserved acidic motif required for correct targeting of plasma membrane cargos.

    PubMed

    Rosas-Santiago, Paul; Lagunas-Gomez, Daniel; Yáñez-Domínguez, Carolina; Vera-Estrella, Rosario; Zimmermannová, Olga; Sychrová, Hana; Pantoja, Omar

    2017-10-01

    The export of membrane proteins along the secretory pathway is initiated at the endoplasmic reticulum after proteins are folded and packaged inside this organelle by their recruiting into the coat complex COPII vesicles. It is proposed that cargo receptors are required for the correct transport of proteins to its target membrane, however, little is known about ER export signals for cargo receptors. Erv14/Cornichon belong to a well conserved protein family in Eukaryotes, and have been proposed to function as cargo receptors for many transmembrane proteins. Amino acid sequence alignment showed the presence of a conserved acidic motif in the C-terminal in homologues from plants and yeast. Here, we demonstrate that mutation of the C-terminal acidic motif from ScErv14 or OsCNIH1, did not alter the localization of these cargo receptors, however it modified the proper targeting of the plasma membrane transporters Nha1p, Pdr12p and Qdr2p. Our results suggest that mistargeting of these plasma membrane proteins is a consequence of a weaker interaction between the cargo receptor and cargo proteins caused by the mutation of the C-terminal acidic motif. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. The “Electrostatic-Switch” Mechanism: Monte Carlo Study of MARCKS-Membrane Interaction

    PubMed Central

    Tzlil, Shelly; Murray, Diana; Ben-Shaul, Avinoam

    2008-01-01

    The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (ζ = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of “beads” representing the amino acid residues. The membranes contain neutral (ζ = 0), monovalent (ζ = −1), and tetravalent (ζ = −4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP2 lipids (ζ = −4) to its vicinity, and how phosphorylation of the central domain (ζ = +13 to ζ = +7) triggers an “electrostatic switch”, which weakens both the membrane interaction and PIP2 sequestration. This scheme captures the essence of “discreteness of charge” at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes. PMID:18502797