Method and apparatus for managing access to a memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBenedictis, Erik
A method and apparatus for managing access to a memory of a computing system. A controller transforms a plurality of operations that represent a computing job into an operational memory layout that reduces a size of a selected portion of the memory that needs to be accessed to perform the computing job. The controller stores the operational memory layout in a plurality of memory cells within the selected portion of the memory. The controller controls a sequence by which a processor in the computing system accesses the memory to perform the computing job using the operational memory layout. The operationalmore » memory layout reduces an amount of energy consumed by the processor to perform the computing job.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braiman, Yehuda; Neschke, Brendan; Nair, Niketh S.
Here, we study memory states of a circuit consisting of a small inductively coupled Josephson junction array and introduce basic (write, read, and reset) memory operations logics of the circuit. The presented memory operation paradigm is fundamentally different from conventional single quantum flux operation logics. We calculate stability diagrams of the zero-voltage states and outline memory states of the circuit. We also calculate access times and access energies for basic memory operations.
UPC++ Programmer’s Guide (v1.0 2017.9)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, D.
UPC++ is a C++11 library that provides Asynchronous Partitioned Global Address Space (APGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The APGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, APGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, allmore » operations that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
NASA Astrophysics Data System (ADS)
Wang, Jianhua; Cheng, Lianglun; Wang, Tao; Peng, Xiaodong
2016-03-01
Table look-up operation plays a very important role during the decoding processing of context-based adaptive variable length decoding (CAVLD) in H.264/advanced video coding (AVC). However, frequent table look-up operation can result in big table memory access, and then lead to high table power consumption. Aiming to solve the problem of big table memory access of current methods, and then reduce high power consumption, a memory-efficient table look-up optimized algorithm is presented for CAVLD. The contribution of this paper lies that index search technology is introduced to reduce big memory access for table look-up, and then reduce high table power consumption. Specifically, in our schemes, we use index search technology to reduce memory access by reducing the searching and matching operations for code_word on the basis of taking advantage of the internal relationship among length of zero in code_prefix, value of code_suffix and code_lengh, thus saving the power consumption of table look-up. The experimental results show that our proposed table look-up algorithm based on index search can lower about 60% memory access consumption compared with table look-up by sequential search scheme, and then save much power consumption for CAVLD in H.264/AVC.
Low latency memory access and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less
Low latency memory access and synchronization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Bach processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processormore » only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple prefetching for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefetch rather than some other predictive algorithm. This enables hardware to effectively prefetch memory access patterns that are non-contiguous, but repetitive.« less
Performance of FORTRAN floating-point operations on the Flex/32 multicomputer
NASA Technical Reports Server (NTRS)
Crockett, Thomas W.
1987-01-01
A series of experiments has been run to examine the floating-point performance of FORTRAN programs on the Flex/32 (Trademark) computer. The experiments are described, and the timing results are presented. The time required to execute a floating-point operation is found to vary considerbaly depending on a number of factors. One factor of particular interest from an algorithm design standpoint is the difference in speed between common memory accesses and local memory accesses. Common memory accesses were found to be slower, and guidelines are given for determinig when it may be cost effective to copy data from common to local memory.
Paging memory from random access memory to backing storage in a parallel computer
Archer, Charles J; Blocksome, Michael A; Inglett, Todd A; Ratterman, Joseph D; Smith, Brian E
2013-05-21
Paging memory from random access memory (`RAM`) to backing storage in a parallel computer that includes a plurality of compute nodes, including: executing a data processing application on a virtual machine operating system in a virtual machine on a first compute node; providing, by a second compute node, backing storage for the contents of RAM on the first compute node; and swapping, by the virtual machine operating system in the virtual machine on the first compute node, a page of memory from RAM on the first compute node to the backing storage on the second compute node.
NASA Astrophysics Data System (ADS)
Liu, Chunsen; Yan, Xiao; Song, Xiongfei; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-05-01
As conventional circuits based on field-effect transistors are approaching their physical limits due to quantum phenomena, semi-floating gate transistors have emerged as an alternative ultrafast and silicon-compatible technology. Here, we show a quasi-non-volatile memory featuring a semi-floating gate architecture with band-engineered van der Waals heterostructures. This two-dimensional semi-floating gate memory demonstrates 156 times longer refresh time with respect to that of dynamic random access memory and ultrahigh-speed writing operations on nanosecond timescales. The semi-floating gate architecture greatly enhances the writing operation performance and is approximately 106 times faster than other memories based on two-dimensional materials. The demonstrated characteristics suggest that the quasi-non-volatile memory has the potential to bridge the gap between volatile and non-volatile memory technologies and decrease the power consumption required for frequent refresh operations, enabling a high-speed and low-power random access memory.
Multiple memory stores and operant conditioning: a rationale for memory's complexity.
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-02-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory stores, but such access was penalized as energy expenditure. Model animals were then selected on their fitness in simulated operant conditioning tasks. Results suggest that having access to multiple memory stores and their representations is important in learning to regulate dopamine release, as well as in contextual discrimination. For simple operant conditioning, as well as stimulus discrimination, hippocampal compound representations turned out to suffice, a counterintuitive result given findings that hippocampal lesions tend not to affect performance in such tasks. We argue that there is in fact evidence to support a role for compound representations and the hippocampus in even the simplest conditioning tasks.
NASA Technical Reports Server (NTRS)
Hendry, David F. (Inventor)
1993-01-01
In a data system having a memory, plural input/output (I/O) devices and a bus connecting each of the I/O devices to the memory, a direct memory access (DMA) controller regulating access of each of the I/O devices to the bus, including a priority register storing priorities of bus access requests from the I/O devices, an interrupt register storing bus access requests of the I/O devices, a resolver for selecting one of the I/O devices to have access to the bus, a pointer register storing addresses of locations in the memory for communication with the one I/O device via the bus, a sequence register storing an address of a location in the memory containing a channel program instruction which is to be executed next, an ALU for incrementing and decrementing addresses stored in the pointer register, computing the next address to be stored in the sequence register, computing an initial contents of each of the register. The memory contains a sequence of channel program instructions defining a set up operation wherein the contents of each of the registers in the channel register is initialized in accordance with the initial contents computed by the ALU and an access operation wherein data is transferred on the bus between a location in the memory whose address is currently stored in the pointer register and the one I/O device enabled by the resolver.
Method for prefetching non-contiguous data structures
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Heidelberger, Philip [Cortlandt Manor, NY; Hoenicke, Dirk [Ossining, NY; Ohmacht, Martin [Brewster, NY; Steinmacher-Burow, Burkhard D [Mount Kisco, NY; Takken, Todd E [Mount Kisco, NY; Vranas, Pavlos M [Bedford Hills, NY
2009-05-05
A low latency memory system access is provided in association with a weakly-ordered multiprocessor system. Each processor in the multiprocessor shares resources, and each shared resource has an associated lock within a locking device that provides support for synchronization between the multiple processors in the multiprocessor and the orderly sharing of the resources. A processor only has permission to access a resource when it owns the lock associated with that resource, and an attempt by a processor to own a lock requires only a single load operation, rather than a traditional atomic load followed by store, such that the processor only performs a read operation and the hardware locking device performs a subsequent write operation rather than the processor. A simple perfecting for non-contiguous data structures is also disclosed. A memory line is redefined so that in addition to the normal physical memory data, every line includes a pointer that is large enough to point to any other line in the memory, wherein the pointers to determine which memory line to prefect rather than some other predictive algorithm. This enables hardware to effectively prefect memory access patterns that are non-contiguous, but repetitive.
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.
2014-04-01
In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.
NASA Astrophysics Data System (ADS)
Ohsawa, Takashi; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2014-01-01
Array operation currents in spin-transfer-torque magnetic random access memories (STT-MRAMs) that use four differential pair type magnetic tunnel junction (MTJ)-based memory cells (4T2MTJ, two 6T2MTJs and 8T2MTJ) are simulated and compared with that in SRAM. With L3 cache applications in mind, it is assumed that the memories are composed of 32 Mbyte capacity to be accessed in 64 byte in parallel. All the STT-MRAMs except for the 8T2MTJ one are designed with 32 bit fine-grained power gating scheme applied to eliminate static currents in the memory cells that are not accessed. The 8T2MTJ STT-MRAM, the cell’s design concept being not suitable for the fine-grained power gating, loads and saves 32 Mbyte data in 64 Mbyte unit per 1 Mbit sub-array in 2 × 103 cycles. It is shown that the array operation current of the 4T2MTJ STT-MRAM is 70 mA averaged in 15 ns write cycles at Vdd = 0.9 V. This is the smallest among the STT-MRAMs, about the half of the low standby power (LSTP) SRAM whose array operation current is totally dominated by the cells’ subthreshold leakage.
NASA Astrophysics Data System (ADS)
Sarkar, Biplab; Mills, Steven; Lee, Bongmook; Pitts, W. Shepherd; Misra, Veena; Franzon, Paul D.
2018-02-01
In this work, we report on mimicking the synaptic forgetting process using the volatile mem-capacitive effect of a resistive random access memory (RRAM). TiO2 dielectric, which is known to show volatile memory operations due to migration of inherent oxygen vacancies, was used to achieve the volatile mem-capacitive effect. By placing the volatile RRAM candidate along with SiO2 at the gate of a MOS capacitor, a volatile capacitance change resembling the forgetting nature of a human brain is demonstrated. Furthermore, the memory operation in the MOS capacitor does not require a current flow through the gate dielectric indicating the feasibility of obtaining low power memory operations. Thus, the mem-capacitive effect of volatile RRAM candidates can be attractive to the future neuromorphic systems for implementing the forgetting process of a human brain.
Parameter optimization for transitions between memory states in small arrays of Josephson junctions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rezac, Jacob D.; Imam, Neena; Braiman, Yehuda
Coupled arrays of Josephson junctions possess multiple stable zero voltage states. Such states can store information and consequently can be utilized for cryogenic memory applications. Basic memory operations can be implemented by sending a pulse to one of the junctions and studying transitions between the states. In order to be suitable for memory operations, such transitions between the states have to be fast and energy efficient. Here in this article we employed simulated annealing, a stochastic optimization algorithm, to study parameter optimization of array parameters which minimizes times and energies of transitions between specifically chosen states that can be utilizedmore » for memory operations (Read, Write, and Reset). Simulation results show that such transitions occur with access times on the order of 10–100 ps and access energies on the order of 10 -19–5×10 -18 J. Numerical simulations are validated with approximate analytical results.« less
Programmable Direct-Memory-Access Controller
NASA Technical Reports Server (NTRS)
Hendry, David F.
1990-01-01
Proposed programmable direct-memory-access controller (DMAC) operates with computer systems of 32000 series, which have 32-bit data buses and use addresses of 24 (or potentially 32) bits. Controller functions with or without help of central processing unit (CPU) and starts itself. Includes such advanced features as ability to compare two blocks of memory for equality and to search block of memory for specific value. Made as single very-large-scale integrated-circuit chip.
Blanket Gate Would Address Blocks Of Memory
NASA Technical Reports Server (NTRS)
Lambe, John; Moopenn, Alexander; Thakoor, Anilkumar P.
1988-01-01
Circuit-chip area used more efficiently. Proposed gate structure selectively allows and restricts access to blocks of memory in electronic neural-type network. By breaking memory into independent blocks, gate greatly simplifies problem of reading from and writing to memory. Since blocks not used simultaneously, share operational amplifiers that prompt and read information stored in memory cells. Fewer operational amplifiers needed, and chip area occupied reduced correspondingly. Cost per bit drops as result.
A Decision Model for Selection of Microcomputers and Operating Systems.
1984-06-01
is resilting in application software (for microccmputers) being developed almost exclu- sively tor the IBM PC and compatiole systems. NAVDAC ielt that...location can be indepen- dently accessed. RAN memory is also often called read/ write memory, hecause new information can be written into and read from...when power is lost; this is also read/ write memory. Bubble memory, however, has significantly slower access times than RAM or RON and also is not preva
Contexts and Control Operations Used in Accessing List-Specific, Generalized, and Semantic Memories
ERIC Educational Resources Information Center
Humphreys, Michael S.; Murray, Krista L.; Maguire, Angela M.
2009-01-01
The human ability to focus memory retrieval operations on a particular list, episode or memory structure has not been fully appreciated or documented. In Experiment 1-3, we make it increasingly difficult for participants to switch between a less recent list (multiple study opportunities), and a more recent list (single study opportunity). Task…
A performance comparison of the IBM RS/6000 and the Astronautics ZS-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, W.M.; Abraham, S.G.; Davidson, E.S.
1991-01-01
Concurrent uniprocessor architectures, of which vector and superscalar are two examples, are designed to capitalize on fine-grain parallelism. The authors have developed a performance evaluation method for comparing and improving these architectures, and in this article they present the methodology and a detailed case study of two machines. The runtime of many programs is dominated by time spent in loop constructs - for example, Fortran Do-loops. Loops generally comprise two logical processes: The access process generates addresses for memory operations while the execute process operates on floating-point data. Memory access patterns typically can be generated independently of the data inmore » the execute process. This independence allows the access process to slip ahead, thereby hiding memory latency. The IBM 360/91 was designed in 1967 to achieve slip dynamically, at runtime. One CPU unit executes integer operations while another handles floating-point operations. Other machines, including the VAX 9000 and the IBM RS/6000, use a similar approach.« less
UPC++ Programmer’s Guide, v1.0-2018.3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachan, J.; Baden, S.; Bonachea, Dan
UPC++ is a C++11 library that provides Partitioned Global Address Space (PGAS) programming. It is designed for writing parallel programs that run efficiently and scale well on distributed-memory parallel computers. The PGAS model is single program, multiple-data (SPMD), with each separate thread of execution (referred to as a rank, a term borrowed from MPI) having access to local memory as it would in C++. However, PGAS also provides access to a global address space, which is allocated in shared segments that are distributed over the ranks. UPC++ provides numerous methods for accessing and using global memory. In UPC++, all operationsmore » that access remote memory are explicit, which encourages programmers to be aware of the cost of communication and data movement. Moreover, all remote-memory access operations are by default asynchronous, to enable programmers to write code that scales well even on hundreds of thousands of cores.« less
Digital Equipment Corporation VAX/VMS Version 4.3
1986-07-30
operating system performs process-oriented paging that allows execution of programs that may be larger than the physical memory allocated to them... to higher privileged modes. (For an explanation of how the four access modes provide memory access protection see page 9, "Memory Management".) A... to optimize program performance for real-time applications or interactive environments. July 30, 1986 - 4 - Final Evaluation Report Digital VAX/VMS
NASA Astrophysics Data System (ADS)
Nakamura, Kazuyuki; Sasao, Tsutomu; Matsuura, Munehiro; Tanaka, Katsumasa; Yoshizumi, Kenichi; Nakahara, Hiroki; Iguchi, Yukihiro
2006-04-01
A large-scale memory-technology-based programmable logic device (PLD) using a look-up table (LUT) cascade is developed in the 0.35-μm standard complementary metal oxide semiconductor (CMOS) logic process. Eight 64 K-bit synchronous SRAMs are connected to form an LUT cascade with a few additional circuits. The features of the LUT cascade include: 1) a flexible cascade connection structure, 2) multi phase pseudo asynchronous operations with synchronous static random access memory (SRAM) cores, and 3) LUT-bypass redundancy. This chip operates at 33 MHz in 8-LUT cascades at 122 mW. Benchmark results show that it achieves a comparable performance to field programmable gate array (FPGAs).
NASA Astrophysics Data System (ADS)
Nishikata, Daisuke; Ali, Mohammad Alimudin Bin Mohd; Hosoda, Kento; Matsumoto, Hiroshi; Nakamura, Kazuyuki
2018-04-01
A 36-bit × 32-entry fully digital ternary content addressable memory (TCAM) using the ratioless static random access memory (RL-SRAM) technology and fully complementary hierarchical-AND matching comparators (HAMCs) was developed. Since its fully complementary and digital operation enables the effect of device variabilities to be avoided, it can operate with a quite low supply voltage. A test chip incorporating a conventional TCAM and a proposed 24-transistor ratioless TCAM (RL-TCAM) cells and HAMCs was developed using a 0.18 µm CMOS process. The minimum operating voltage of 0.25 V of the developed RL-TCAM, which is less than half of that of the conventional TCAM, was measured via the conventional CMOS push–pull output buffers with the level-shifting and flipping technique using optimized pull-up voltage and resistors.
Memory-Intensive Benchmarks: IRAM vs. Cache-Based Machines
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Gaeke, Brian R.; Husbands, Parry; Li, Xiaoye S.; Oliker, Leonid; Yelick, Katherine A.; Biegel, Bryan (Technical Monitor)
2002-01-01
The increasing gap between processor and memory performance has lead to new architectural models for memory-intensive applications. In this paper, we explore the performance of a set of memory-intensive benchmarks and use them to compare the performance of conventional cache-based microprocessors to a mixed logic and DRAM processor called VIRAM. The benchmarks are based on problem statements, rather than specific implementations, and in each case we explore the fundamental hardware requirements of the problem, as well as alternative algorithms and data structures that can help expose fine-grained parallelism or simplify memory access patterns. The benchmarks are characterized by their memory access patterns, their basic control structures, and the ratio of computation to memory operation.
NASA Astrophysics Data System (ADS)
Suzuki, Daisuke; Hanyu, Takahiro
2018-04-01
A magnetic-tunnel-junction (MTJ)-oriented nonvolatile lookup table (LUT) circuit, in which a low-power data-shift function is performed by minimizing the number of write operations in MTJ devices is proposed. The permutation of the configuration memory cell for read/write access is performed as opposed to conventional direct data shifting to minimize the number of write operations, which results in significant write energy savings in the data-shift function. Moreover, the hardware cost of the proposed LUT circuit is small since the selector is shared between read access and write access. In fact, the power consumption in the data-shift function and the transistor count are reduced by 82 and 52%, respectively, compared with those in a conventional static random-access memory-based implementation using a 90 nm CMOS technology.
Bubble memory module for spacecraft application
NASA Technical Reports Server (NTRS)
Hayes, P. J.; Looney, K. T.; Nichols, C. D.
1985-01-01
Bubble domain technology offers an all-solid-state alternative for data storage in onboard data systems. A versatile modular bubble memory concept was developed. The key module is the bubble memory module which contains all of the storage devices and circuitry for accessing these devices. This report documents the bubble memory module design and preliminary hardware designs aimed at memory module functional demonstration with available commercial bubble devices. The system architecture provides simultaneous operation of bubble devices to attain high data rates. Banks of bubble devices are accessed by a given bubble controller to minimize controller parts. A power strobing technique is discussed which could minimize the average system power dissipation. A fast initialization method using EEPROM (electrically erasable, programmable read-only memory) devices promotes fast access. Noise and crosstalk problems and implementations to minimize these are discussed. Flight memory systems which incorporate the concepts and techniques of this work could now be developed for applications.
Working memory capacity and controlled serial memory search.
Mızrak, Eda; Öztekin, Ilke
2016-08-01
The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. Copyright © 2016 Elsevier B.V. All rights reserved.
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-11-22
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch(-2), ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns.
High-density magnetoresistive random access memory operating at ultralow voltage at room temperature
Hu, Jia-Mian; Li, Zheng; Chen, Long-Qing; Nan, Ce-Wen
2011-01-01
The main bottlenecks limiting the practical applications of current magnetoresistive random access memory (MRAM) technology are its low storage density and high writing energy consumption. Although a number of proposals have been reported for voltage-controlled memory device in recent years, none of them simultaneously satisfy the important device attributes: high storage capacity, low power consumption and room temperature operation. Here we present, using phase-field simulations, a simple and new pathway towards high-performance MRAMs that display significant improvements over existing MRAM technologies or proposed concepts. The proposed nanoscale MRAM device simultaneously exhibits ultrahigh storage capacity of up to 88 Gb inch−2, ultralow power dissipation as low as 0.16 fJ per bit and room temperature high-speed operation below 10 ns. PMID:22109527
1980-11-01
4006 DMAE Direct Memory Access Enable: ’Ibis command enables direct memory access (DMA). 4007 I)MAi) Direct Memory Access Disable: This command...72 DLI 72 DLR 72 DM 111 DMAD 30 DMAE 30 DMR 111 ONEG 103 DR 117 DS 104 OSAR 53 141 373 ’., M1L-STD-1750A (USAF) 2 July 1980 OSBI 29 OSCR 54 OSIC 48...in 4.7.7, the connectors shall show no defects detrimental to the operation of the connectors and shall A-7 461 -meet the subsequent test requirements
Recollection Rejection: How Children Edit Their False Memories.
ERIC Educational Resources Information Center
Brainerd, C. J.; Reyna, V. F.
2002-01-01
Presents new measure of children's use of an editing operation that suppresses false memories by accessing verbatim traces of true events. Application of the methodology showed that false-memory editing increased dramatically between early and middle childhood. Measure reacted appropriately to experimental manipulations. Developmental reductions…
NASA Astrophysics Data System (ADS)
Kajiyama, Shinya; Fujito, Masamichi; Kasai, Hideo; Mizuno, Makoto; Yamaguchi, Takanori; Shinagawa, Yutaka
A novel 300MHz embedded flash memory for dual-core microcontrollers with a shared ROM architecture is proposed. One of its features is a three-stage pipeline read operation, which enables reduced access pitch and therefore reduces performance penalty due to conflict of shared ROM accesses. Another feature is a highly sensitive sense amplifier that achieves efficient pipeline operation with two-cycle latency one-cycle pitch as a result of a shortened sense time of 0.63ns. The combination of the pipeline architecture and proposed sense amplifiers significantly reduces access-conflict penalties with shared ROM and enhances performance of 32-bit RISC dual-core microcontrollers by 30%.
The Effect of NUMA Tunings on CPU Performance
NASA Astrophysics Data System (ADS)
Hollowell, Christopher; Caramarcu, Costin; Strecker-Kellogg, William; Wong, Antonio; Zaytsev, Alexandr
2015-12-01
Non-Uniform Memory Access (NUMA) is a memory architecture for symmetric multiprocessing (SMP) systems where each processor is directly connected to separate memory. Indirect access to other CPU's (remote) RAM is still possible, but such requests are slower as they must also pass through that memory's controlling CPU. In concert with a NUMA-aware operating system, the NUMA hardware architecture can help eliminate the memory performance reductions generally seen in SMP systems when multiple processors simultaneously attempt to access memory. The x86 CPU architecture has supported NUMA for a number of years. Modern operating systems such as Linux support NUMA-aware scheduling, where the OS attempts to schedule a process to the CPU directly attached to the majority of its RAM. In Linux, it is possible to further manually tune the NUMA subsystem using the numactl utility. With the release of Red Hat Enterprise Linux (RHEL) 6.3, the numad daemon became available in this distribution. This daemon monitors a system's NUMA topology and utilization, and automatically makes adjustments to optimize locality. As the number of cores in x86 servers continues to grow, efficient NUMA mappings of processes to CPUs/memory will become increasingly important. This paper gives a brief overview of NUMA, and discusses the effects of manual tunings and numad on the performance of the HEPSPEC06 benchmark, and ATLAS software.
Chip architecture - A revolution brewing
NASA Astrophysics Data System (ADS)
Guterl, F.
1983-07-01
Techniques being explored by microchip designers and manufacturers to both speed up memory access and instruction execution while protecting memory are discussed. Attention is given to hardwiring control logic, pipelining for parallel processing, devising orthogonal instruction sets for interchangeable instruction fields, and the development of hardware for implementation of virtual memory and multiuser systems to provide memory management and protection. The inclusion of microcode in mainframes eliminated logic circuits that control timing and gating of the CPU. However, improvements in memory architecture have reduced access time to below that needed for instruction execution. Hardwiring the functions as a virtual memory enhances memory protection. Parallelism involves a redundant architecture, which allows identical operations to be performed simultaneously, and can be directed with microcode to avoid abortion of intermediate instructions once on set of instructions has been completed.
How Distinctive Processing Enhances Hits and Reduces False Alarms
Hunt, R. Reed; Smith, Rebekah E.
2015-01-01
Distinctive processing is a concept designed to account for precision in memory, both correct responses and avoidance of errors. The principal question addressed in two experiments is how distinctive processing of studied material reduces false alarms to familiar distractors. Jacoby (Jacoby, Kelley, & McElree, 1999) has used the metaphors early selection and late correction to describe two different types of control processes. Early selection refers to limitations on access whereas late correction describes controlled monitoring of accessed information. The two types of processes are not mutually exclusive, and previous research has provided evidence for the operation of both. The data reported here extend previous work to a criterial recollection paradigm and to a recognition memory test. The results of both experiments show that variables that reduce false memory for highly familiar distracters continue to exert their effect under conditions of minimal post-access monitoring. Level of monitoring was reduced in the first experiment through test instructions and in the second experiment through speeded test responding. The results were consistent with the conclusion that both early selection and late correction operate to control accuracy in memory. PMID:26034343
NASA Astrophysics Data System (ADS)
Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu
2009-03-01
This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.
Semantic Memory and Verbal Working Memory Correlates of N400 to Subordinate Homographs
ERIC Educational Resources Information Center
Salisbury, Dean F.
2004-01-01
N400 is an event-related brain potential that indexes operations in semantic memory conceptual space, whether elicited by language or some other representation (e.g., drawings). Language models typically propose three stages: lexical access or orthographic- and phonological-level analysis; lexical selection or word-level meaning and associate…
Three-dimensional magnetic bubble memory system
NASA Technical Reports Server (NTRS)
Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
A compact memory uses magnetic bubble technology for providing data storage. A three-dimensional arrangement, in the form of stacks of magnetic bubble layers, is used to achieve high volumetric storage density. Output tracks are used within each layer to allow data to be accessed uniquely and unambiguously. Storage can be achieved using either current access or field access magnetic bubble technology. Optical sensing via the Faraday effect is used to detect data. Optical sensing facilitates the accessing of data from within the three-dimensional package and lends itself to parallel operation for supporting high data rates and vector and parallel processing.
Low-power resistive random access memory by confining the formation of conducting filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yi-Jen; Lee, Si-Chen, E-mail: sclee@ntu.edu.tw; Shen, Tzu-Hsien
2016-06-15
Owing to their small physical size and low power consumption, resistive random access memory (RRAM) devices are potential for future memory and logic applications in microelectronics. In this study, a new resistive switching material structure, TiO{sub x}/silver nanoparticles/TiO{sub x}/AlTiO{sub x}, fabricated between the fluorine-doped tin oxide bottom electrode and the indium tin oxide top electrode is demonstrated. The device exhibits excellent memory performances, such as low operation voltage (<±1 V), low operation power, small variation in resistance, reliable data retention, and a large memory window. The current-voltage measurement shows that the conducting mechanism in the device at the high resistancemore » state is via electron hopping between oxygen vacancies in the resistive switching material. When the device is switched to the low resistance state, conducting filaments are formed in the resistive switching material as a result of accumulation of oxygen vacancies. The bottom AlTiO{sub x} layer in the device structure limits the formation of conducting filaments; therefore, the current and power consumption of device operation are significantly reduced.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok
2014-03-07
The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells aremore » formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.« less
Threshold-voltage modulated phase change heterojunction for application of high density memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Baihan; Tong, Hao, E-mail: tonghao@hust.edu.cn; Qian, Hang
2015-09-28
Phase change random access memory is one of the most important candidates for the next generation non-volatile memory technology. However, the ability to reduce its memory size is compromised by the fundamental limitations inherent in the CMOS technology. While 0T1R configuration without any additional access transistor shows great advantages in improving the storage density, the leakage current and small operation window limit its application in large-scale arrays. In this work, phase change heterojunction based on GeTe and n-Si is fabricated to address those problems. The relationship between threshold voltage and doping concentration is investigated, and energy band diagrams and X-raymore » photoelectron spectroscopy measurements are provided to explain the results. The threshold voltage is modulated to provide a large operational window based on this relationship. The switching performance of the heterojunction is also tested, showing a good reverse characteristic, which could effectively decrease the leakage current. Furthermore, a reliable read-write-erase function is achieved during the tests. Phase change heterojunction is proposed for high-density memory, showing some notable advantages, such as modulated threshold voltage, large operational window, and low leakage current.« less
Ho, ThienLuan; Oh, Seung-Rohk
2017-01-01
Approximate string matching with k-differences has a number of practical applications, ranging from pattern recognition to computational biology. This paper proposes an efficient memory-access algorithm for parallel approximate string matching with k-differences on Graphics Processing Units (GPUs). In the proposed algorithm, all threads in the same GPUs warp share data using warp-shuffle operation instead of accessing the shared memory. Moreover, we implement the proposed algorithm by exploiting the memory structure of GPUs to optimize its performance. Experiment results for real DNA packages revealed that the performance of the proposed algorithm and its implementation archived up to 122.64 and 1.53 times compared to that of sequential algorithm on CPU and previous parallel approximate string matching algorithm on GPUs, respectively. PMID:29016700
Evaluation of the SPAR thermal analyzer on the CYBER-203 computer
NASA Technical Reports Server (NTRS)
Robinson, J. C.; Riley, K. M.; Haftka, R. T.
1982-01-01
The use of the CYBER 203 vector computer for thermal analysis is investigated. Strengths of the CYBER 203 include the ability to perform, in vector mode using a 64 bit word, 50 million floating point operations per second (MFLOPS) for addition and subtraction, 25 MFLOPS for multiplication and 12.5 MFLOPS for division. The speed of scalar operation is comparable to that of a CDC 7600 and is some 2 to 3 times faster than Langley's CYBER 175s. The CYBER 203 has 1,048,576 64-bit words of real memory with an 80 nanosecond (nsec) access time. Memory is bit addressable and provides single error correction, double error detection (SECDED) capability. The virtual memory capability handles data in either 512 or 65,536 word pages. The machine has 256 registers with a 40 nsec access time. The weaknesses of the CYBER 203 include the amount of vector operation overhead and some data storage limitations. In vector operations there is a considerable amount of time before a single result is produced so that vector calculation speed is slower than scalar operation for short vectors.
Multiple Memory Stores and Operant Conditioning: A Rationale for Memory's Complexity
ERIC Educational Resources Information Center
Meeter, Martijn; Veldkamp, Rob; Jin, Yaochu
2009-01-01
Why does the brain contain more than one memory system? Genetic algorithms can play a role in elucidating this question. Here, model animals were constructed containing a dorsal striatal layer that controlled actions, and a ventral striatal layer that controlled a dopaminergic learning signal. Both layers could gain access to three modeled memory…
45 CFR 2490.150 - Program accessibility: Existing facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ACTIVITIES CONDUCTED BY THE JAMES MADISON MEMORIAL FELLOWSHIP FOUNDATION § 2490.150 Program accessibility: Existing facilities. (a) General. The agency shall operate each program or activity so that the program or activity, when viewed in its entirety, is readily accessible to and usable by individuals with handicaps...
Optically Addressable, Ferroelectric Memory With NDRO
NASA Technical Reports Server (NTRS)
Thakoor, Sarita
1994-01-01
For readout, memory cells addressed via on-chip semiconductor lasers. Proposed thin-film ferroelectric memory device features nonvolatile storage, optically addressable, nondestructive readout (NDRO) with fast access, and low vulnerability to damage by ionizing radiation. Polarization switched during recording and erasure, but not during readout. As result, readout would not destroy contents of memory, and operating life in specific "read-intensive" applications increased up to estimated 10 to the 16th power cycles.
1984-10-31
five colors , page forward, page back, erase, clear the page, store previously annotated material, and later retrieve it. From this developed a four...system to secure sites. These * enchancements are discussed below. -2- .7- -. . . --. J -. . . . .. . . . . . . . ..- . _77 . -.- 2.1 Enhancements to the...and large cache memory of the Winchester drive allows the SGWS software to run much faster when doing file access or direct memory access (DMA) than
Test Procedures for Semiconductor Random Access Memories
1979-11-01
of each cell exactly complement to each other, the read operations on the base cell in (g) of step 2 following operations ko S odd and in (p) of step...contents of Sko (these cells this address. Furthermore, when more than one contained I at test time and even if the con- cell is accessed then the output
RAPID: A random access picture digitizer, display, and memory system
NASA Technical Reports Server (NTRS)
Yakimovsky, Y.; Rayfield, M.; Eskenazi, R.
1976-01-01
RAPID is a system capable of providing convenient digital analysis of video data in real-time. It has two modes of operation. The first allows for continuous digitization of an EIA RS-170 video signal. Each frame in the video signal is digitized and written in 1/30 of a second into RAPID's internal memory. The second mode leaves the content of the internal memory independent of the current input video. In both modes of operation the image contained in the memory is used to generate an EIA RS-170 composite video output signal representing the digitized image in the memory so that it can be displayed on a monitor.
Eight microprocessor-based instrument data systems in the Galileo Orbiter spacecraft
NASA Technical Reports Server (NTRS)
Barry, R. C.
1980-01-01
Instrument data systems consist of a microprocessor, 3K bytes of Read Only Memory and 3K bytes of Random Access Memory. It interfaces with the spacecraft data bus through an isolated user interface with a direct memory access bus adaptor, and/or parallel data from instrument devices such as registers, buffers, analog to digital converters, multiplexers, and solid state sensors. These data systems support the spacecraft hardware and software communication protocol, decode and process instrument commands, generate continuous instrument operating modes, control the instrument mechanisms, acquire, process, format, and output instrument science data.
Accelerating functional verification of an integrated circuit
Deindl, Michael; Ruedinger, Jeffrey Joseph; Zoellin, Christian G.
2015-10-27
Illustrative embodiments include a method, system, and computer program product for accelerating functional verification in simulation testing of an integrated circuit (IC). Using a processor and a memory, a serial operation is replaced with a direct register access operation, wherein the serial operation is configured to perform bit shifting operation using a register in a simulation of the IC. The serial operation is blocked from manipulating the register in the simulation of the IC. Using the register in the simulation of the IC, the direct register access operation is performed in place of the serial operation.
Accessing sparse arrays in parallel memories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, U.; Gajski, D.; Kuck, D.
The concept of dense and sparse execution of arrays is introduced. Arrays themselves can be stored in a dense or sparse manner in a parallel memory with m memory modules. The paper proposes hardware for speeding up the execution of array operations of the form c(c/sub 0/+ci)=a(a/sub 0/+ai) op b(b/sub 0/+bi), where a/sub 0/, a, b/sub 0/, b, c/sub 0/, c are integer constants and i is an index variable. The hardware handles 'sparse execution', in which the operation op is not executed for every value of i. The hardware also makes provision for 'sparse storage', in which memory spacemore » is not provided for every array element. It is shown how to access array elements of the above form without conflict in an efficient way. The efficiency is obtained by using some specialised units which are basically smart memories with priority detection, one's counting or associative searching. Generalisation to multidimensional arrays is shown possible under restrictions defined in the paper. 12 references.« less
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A; Mamidala, Amith R
2014-02-11
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segment of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
NASA Astrophysics Data System (ADS)
Ma, Yitao; Miura, Sadahiko; Honjo, Hiroaki; Ikeda, Shoji; Hanyu, Takahiro; Ohno, Hideo; Endoh, Tetsuo
2017-04-01
A high-density nonvolatile associative memory (NV-AM) based on spin transfer torque magnetoresistive random access memory (STT-MRAM), which achieves highly concurrent and ultralow-power nearest neighbor search with full adaptivity of the template data format, has been proposed and fabricated using the 90 nm CMOS/70 nm perpendicular-magnetic-tunnel-junction hybrid process. A truly compact current-mode circuitry is developed to realize flexibly controllable and high-parallel similarity evaluation, which makes the NV-AM adaptable to any dimensionality and component-bit of template data. A compact dual-stage time-domain minimum searching circuit is also developed, which can freely extend the system for more template data by connecting multiple NM-AM cores without additional circuits for integrated processing. Both the embedded STT-MRAM module and the computing circuit modules in this NV-AM chip are synchronously power-gated to completely eliminate standby power and maximally reduce operation power by only activating the currently accessed circuit blocks. The operations of a prototype chip at 40 MHz are demonstrated by measurement. The average operation power is only 130 µW, and the circuit density is less than 11 µm2/bit. Compared with the latest conventional works in both volatile and nonvolatile approaches, more than 31.3% circuit area reductions and 99.2% power improvements are achieved, respectively. Further power performance analyses are discussed, which verify the special superiority of the proposed NV-AM in low-power and large-memory-based VLSIs.
Data General Corporation Advanced Operating System/Virtual Storage (AOS/ VS). Revision 7.60
1989-02-22
control list for each directory and data file. An access control list includes the users who can and cannot access files as well as the access...and any required data, it can -5- February 22, 1989 Final Evaluation Report Data General AOS/VS SYSTEM OVERVIEW operate asynchronously and in parallel...memory. The IOC can perform the data transfer without further interventiin from the CPU. The I/O channels interface with the processor or system
NASA Astrophysics Data System (ADS)
Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Li, Yi-Jin
2010-06-01
A three-dimensional finite element model for phase change random access memory is established to simulate electric, thermal and phase state distribution during (SET) operation. The model is applied to simulate the SET behaviors of the heater addition structure (HS) and the ring-type contact in the bottom electrode (RIB) structure. The simulation results indicate that the small bottom electrode contactor (BEC) is beneficial for heat efficiency and reliability in the HS cell, and the bottom electrode contactor with size Fx = 80 nm is a good choice for the RIB cell. Also shown is that the appropriate SET pulse time is 100 ns for the low power consumption and fast operation.
NASA Technical Reports Server (NTRS)
Denning, Peter J.
1988-01-01
Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.
NASA Astrophysics Data System (ADS)
Chase, Patrick; Vondran, Gary
2011-01-01
Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.
Operating systems. [of computers
NASA Technical Reports Server (NTRS)
Denning, P. J.; Brown, R. L.
1984-01-01
A counter operating system creates a hierarchy of levels of abstraction, so that at a given level all details concerning lower levels can be ignored. This hierarchical structure separates functions according to their complexity, characteristic time scale, and level of abstraction. The lowest levels include the system's hardware; concepts associated explicitly with the coordination of multiple tasks appear at intermediate levels, which conduct 'primitive processes'. Software semaphore is the mechanism controlling primitive processes that must be synchronized. At higher levels lie, in rising order, the access to the secondary storage devices of a particular machine, a 'virtual memory' scheme for managing the main and secondary memories, communication between processes by way of a mechanism called a 'pipe', access to external input and output devices, and a hierarchy of directories cataloguing the hardware and software objects to which access must be controlled.
Rutger's CAM2000 chip architecture
NASA Technical Reports Server (NTRS)
Smith, Donald E.; Hall, J. Storrs; Miyake, Keith
1993-01-01
This report describes the architecture and instruction set of the Rutgers CAM2000 memory chip. The CAM2000 combines features of Associative Processing (AP), Content Addressable Memory (CAM), and Dynamic Random Access Memory (DRAM) in a single chip package that is not only DRAM compatible but capable of applying simple massively parallel operations to memory. This document reflects the current status of the CAM2000 architecture and is continually updated to reflect the current state of the architecture and instruction set.
NASA Astrophysics Data System (ADS)
Sawada, Takuya; Takata, Hidehiro; Nii, Koji; Nagata, Makoto
2013-04-01
Static random access memory (SRAM) cores exhibit susceptibility against power supply voltage variation. False operation is investigated among SRAM cells under sinusoidal voltage variation on power lines introduced by direct RF power injection. A standard SRAM core of 16 kbyte in a 90 nm 1.5 V technology is diagnosed with built-in self test and on-die noise monitor techniques. The sensitivity of bit error rate is shown to be high against the frequency of injected voltage variation, while it is not greatly influenced by the difference in frequency and phase against SRAM clocking. It is also observed that the distribution of false bits is substantially random in a cell array.
Integrated Vertical Bloch Line (VBL) memory
NASA Technical Reports Server (NTRS)
Katti, R. R.; Wu, J. C.; Stadler, H. L.
1991-01-01
Vertical Bloch Line (VBL) Memory is a recently conceived, integrated, solid state, block access, VLSI memory which offers the potential of 1 Gbit/sq cm areal storage density, data rates of hundreds of megabits/sec, and submillisecond average access time simultaneously at relatively low mass, volume, and power values when compared to alternative technologies. VBLs are micromagnetic structures within magnetic domain walls which can be manipulated using magnetic fields from integrated conductors. The presence or absence of BVL pairs are used to store binary information. At present, efforts are being directed at developing a single chip memory using 25 Mbit/sq cm technology in magnetic garnet material which integrates, at a single operating point, the writing, storage, reading, and amplification functions needed in a memory. The current design architecture, functional elements, and supercomputer simulation results are described which are used to assist the design process.
NASA Astrophysics Data System (ADS)
Gong, Yue-Feng; Song, Zhi-Tang; Ling, Yun; Liu, Yan; Feng, Song-Lin
2009-11-01
A three-dimensional finite element model for phase change random access memory (PCRAM) is established for comprehensive electrical and thermal analysis during SET operation. The SET behaviours of the heater addition structure (HS) and the ring-type contact in bottom electrode (RIB) structure are compared with each other. There are two ways to reduce the RESET current, applying a high resistivity interfacial layer and building a new device structure. The simulation results indicate that the variation of SET current with different power reduction ways is little. This study takes the RESET and SET operation current into consideration, showing that the RIB structure PCRAM cell is suitable for future devices with high heat efficiency and high-density, due to its high heat efficiency in RESET operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio
Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less
Loaiza, Vanessa M; McCabe, David P
2013-01-01
We investigated age-related changes in two proposed mechanisms of maintenance in working memory, articulatory rehearsal, and attentional refreshing, by examining the consequences of manipulating the opportunity for each on delayed recall. Both experiments utilized modified operation span tasks to vary the opportunity for articulatory rehearsal (Experiment 1) and attentional refreshing opportunities (Experiment 2). In both experiments, episodic memory was tested for items that had been initially studied during the respective operation span task. Older adults' episodic memory benefited less from opportunities for refreshing than younger adults. In contrast, articulatory rehearsal opportunities did not influence episodic memory for either age group. The results suggest that attentional refreshing, and not articulatory rehearsal, is important during working memory in order to bind more accessible traces at later tests, which appears to be more deficient in older adults than younger adults.
NASA Technical Reports Server (NTRS)
Carpenter, K. H.
1974-01-01
The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.
Context controls access to working and reference memory in the pigeon (Columba livia).
Roberts, William A; Macpherson, Krista; Strang, Caroline
2016-01-01
The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. © 2016 Society for the Experimental Analysis of Behavior.
Optimization of a PCRAM Chip for high-speed read and highly reliable reset operations
NASA Astrophysics Data System (ADS)
Li, Xiaoyun; Chen, Houpeng; Li, Xi; Wang, Qian; Fan, Xi; Hu, Jiajun; Lei, Yu; Zhang, Qi; Tian, Zhen; Song, Zhitang
2016-10-01
The widely used traditional Flash memory suffers from its performance limits such as its serious crosstalk problems, and increasing complexity of floating gate scaling. Phase change random access memory (PCRAM) becomes one of the most potential nonvolatile memories among the new memory techniques. In this paper, a 1M-bit PCRAM chip is designed based on the SMIC 40nm CMOS technology. Focusing on the read and write performance, two new circuits with high-speed read operation and highly reliable reset operation are proposed. The high-speed read circuit effectively reduces the reading time from 74ns to 40ns. The double-mode reset circuit improves the chip yield. This 1M-bit PCRAM chip has been simulated on cadence. After layout design is completed, the chip will be taped out for post-test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blocksome, Michael A.; Mamidala, Amith R.
2013-09-03
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to segments of shared random access memory through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and a segmentmore » of shared memory; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.« less
Application of holographic optical techniques to bulk memory.
NASA Technical Reports Server (NTRS)
Anderson, L. K.
1971-01-01
Current efforts to exploit the spatial redundancy and built-in imaging of holographic optical techniques to provide high information densities without critical alignment and tight mechanical tolerances are reviewed. Read-write-erase in situ operation is possible but is presently impractical because of limitations in available recording media. As these are overcome, it should prove feasible to build holographic bulk memories with mechanically replaceable hologram plates featuring very fast (less than 2 microsec) random access to large (greater than 100 million bit) data blocks and very high throughput (greater than 500 Mbit/sec). Using volume holographic storage it may eventually be possible to realize random-access mass memories which require no mechanical motion and yet provide very high capacity.
Low power consumption resistance random access memory with Pt/InOx/TiN structure
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.; Tsai, Ming-Jinn
2013-09-01
In this study, the resistance switching characteristics of a resistive random access memory device with Pt/InOx/TiN structure is investigated. Unstable bipolar switching behavior is observed during the initial switching cycle, which then stabilizes after several switching cycles. Analyses indicate that the current conduction mechanism in the resistance state is dominated by Ohmic conduction. The decrease in electrical conductance can be attributed to the reduction of the cross-sectional area of the conduction path. Furthermore, the device exhibits low operation voltage and power consumption.
Ha, S; Matej, S; Ispiryan, M; Mueller, K
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
NASA Astrophysics Data System (ADS)
Ha, S.; Matej, S.; Ispiryan, M.; Mueller, K.
2013-02-01
We describe a GPU-accelerated framework that efficiently models spatially (shift) variant system response kernels and performs forward- and back-projection operations with these kernels for the DIRECT (Direct Image Reconstruction for TOF) iterative reconstruction approach. Inherent challenges arise from the poor memory cache performance at non-axis aligned TOF directions. Focusing on the GPU memory access patterns, we utilize different kinds of GPU memory according to these patterns in order to maximize the memory cache performance. We also exploit the GPU instruction-level parallelism to efficiently hide long latencies from the memory operations. Our experiments indicate that our GPU implementation of the projection operators has slightly faster or approximately comparable time performance than FFT-based approaches using state-of-the-art FFTW routines. However, most importantly, our GPU framework can also efficiently handle any generic system response kernels, such as spatially symmetric and shift-variant as well as spatially asymmetric and shift-variant, both of which an FFT-based approach cannot cope with.
Artificial intelligence applications of fast optical memory access
NASA Astrophysics Data System (ADS)
Henshaw, P. D.; Todtenkopf, A. B.
The operating principles and performance of rapid laser beam-steering (LBS) techniques are reviewed and illustrated with diagrams; their applicability to fast optical-memory (disk) access is evaluated; and the implications of fast access for the design of expert systems are discussed. LBS methods examined include analog deflection (source motion, wavefront tilt, and phased arrays), digital deflection (polarization modulation, reflectivity modulation, interferometric switching, and waveguide deflection), and photorefractive LBS. The disk-access problem is considered, and typical LBS requirements are listed as 38,000 beam positions, rotational latency 25 ms, one-sector rotation time 1.5 ms, and intersector space 87 microsec. The value of rapid access for increasing the power of expert systems (by permitting better organization of blocks of information) is illustrated by summarizing the learning process of the MVP-FORTH system (Park, 1983).
Android Protection Mechanism: A Signed Code Security Mechanism for Smartphone Applications
2011-03-01
status registers, exceptions, endian support, unaligned access support, synchronization primitives , the Jazelle Extension, and saturated integer...supports comprehensive non-blocking shared-memory synchronization primitives that scale for multiple-processor system designs. This is an improvement... synchronization . Memory semaphores can be loaded and altered without interruption because the load and store operations are atomic. Processor
Atomic memory access hardware implementations
Ahn, Jung Ho; Erez, Mattan; Dally, William J
2015-02-17
Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.
Memory Operations That Support Language Comprehension: Evidence From Verb-Phrase Ellipsis
Martin, Andrea E.; McElree, Brian
2010-01-01
Comprehension of verb-phrase ellipsis (VPE) requires reevaluation of recently processed constituents, which often necessitates retrieval of information about the elided constituent from memory. A. E. Martin and B. McElree (2008) argued that representations formed during comprehension are content addressable and that VPE antecedents are retrieved from memory via a cue-dependent direct-access pointer rather than via a search process. This hypothesis was further tested by manipulating the location of interfering material—either before the onset of the antecedent (proactive interference; PI) or intervening between antecedent and ellipsis site (retroactive interference; RI). The speed–accuracy tradeoff procedure was used to measure the time course of VPE processing. The location of the interfering material affected VPE comprehension accuracy: RI conditions engendered lower accuracy than PI conditions. Crucially, location did not affect the speed of processing VPE, which is inconsistent with both forward and backward search mechanisms. The observed time-course profiles are consistent with the hypothesis that VPE antecedents are retrieved via a cue-dependent direct-access operation. PMID:19686017
Twin-bit via resistive random access memory in 16 nm FinFET logic technologies
NASA Astrophysics Data System (ADS)
Shih, Yi-Hong; Hsu, Meng-Yin; King, Ya-Chin; Lin, Chrong Jung
2018-04-01
A via resistive random access memory (RRAM) cell fully compatible with the standard CMOS logic process has been successfully demonstrated for high-density logic nonvolatile memory (NVM) modules in advanced FinFET circuits. In this new cell, the transition metal layers are formed on both sides of a via, given two storage bits per via. In addition to its compact cell area (1T + 14 nm × 32 nm), the twin-bit via RRAM cell features a low operation voltage, a large read window, good data retention, and excellent cycling capability. As fine alignments between mask layers become possible, the twin-bit via RRAM cell is expected to be highly scalable in advanced FinFET technology.
NASA Astrophysics Data System (ADS)
Guo, Jiajun; Ren, Shuxia; Wu, Liqian; Kang, Xin; Chen, Wei; Zhao, Xu
2018-03-01
Saving energy and reducing operation parameter fluctuations remain crucial for enabling resistive random access memory (RRAM) to emerge as a universal memory. In this work, we report a resistive memory device based on an amorphous MgO (a-MgO) film that not only exhibits ultralow programming voltage (just 0.22 V) and low power consumption (less than 176.7 μW) but also shows excellent operative uniformity (the coefficient of variation is only 1.7% and 2.2% for SET and RESET voltage, respectively). Moreover, it also shows a forming-free characteristic. Further analysis indicates that these distinctive properties can be attributed to the unstable local structures and the rough surface of the Mg-deficient a-MgO film. These findings show the potential of using a-MgO in high-performance nonvolatile memory applications.
A memory module for experimental data handling
NASA Astrophysics Data System (ADS)
De Blois, J.
1985-02-01
A compact CAMAC memory module for experimental data handling was developed to eliminate the need of direct memory access in computer controlled measurements. When using autonomous controllers it also makes measurements more independent of the program and enlarges the available space for programs in the memory of the micro-computer. The memory module has three modes of operation: an increment-, a list- and a fifo mode. This is achieved by connecting the main parts, being: the memory (MEM), the fifo buffer (FIFO), the address buffer (BUF), two counters (AUX and ADDR) and a readout register (ROR), by an internal 24-bit databus. The time needed for databus operations is 1 μs, for measuring cycles as well as for CAMAC cycles. The FIFO provides temporary data storage during CAMAC cycles and separates the memory part from the application part. The memory is variable from 1 to 64K (24 bits) by using different types of memory chips. The application part, which forms 1/3 of the module, will be specially designed for each application and is added to the memory chian internal connector. The memory unit will be used in Mössbauer experiments and in thermal neutron scattering experiments.
A compact superconducting nanowire memory element operated by nanowire cryotrons
NASA Astrophysics Data System (ADS)
Zhao, Qing-Yuan; Toomey, Emily A.; Butters, Brenden A.; McCaughan, Adam N.; Dane, Andrew E.; Nam, Sae-Woo; Berggren, Karl K.
2018-07-01
A superconducting loop stores persistent current without any ohmic loss, making it an ideal platform for energy efficient memories. Conventional superconducting memories use an architecture based on Josephson junctions (JJs) and have demonstrated access times less than 10 ps and power dissipation as low as 10-19 J. However, their scalability has been slow to develop due to the challenges in reducing the dimensions of JJs and minimizing the area of the superconducting loops. In addition to the memory itself, complex readout circuits require additional JJs and inductors for coupling signals, increasing the overall area. Here, we have demonstrated a superconducting memory based solely on lithographic nanowires. The small dimensions of the nanowire ensure that the device can be fabricated in a dense area in multiple layers, while the high kinetic inductance makes the loop essentially independent of geometric inductance, allowing it to be scaled down without sacrificing performance. The memory is operated by a group of nanowire cryotrons patterned alongside the storage loop, enabling us to reduce the entire memory cell to 3 μm × 7 μm in our proof-of-concept device. In this work we present the operation principles of a superconducting nanowire memory (nMem) and characterize its bit error rate, speed, and power dissipation.
NASA Technical Reports Server (NTRS)
1972-01-01
The conceptual design of a highly reliable 10 to the 8th power-bit bubble domain memory for the space program is described. The memory has random access to blocks of closed-loop shift registers, and utilizes self-contained bubble domain chips with on-chip decoding. Trade-off studies show that the highest reliability and lowest power dissipation is obtained when the memory is organized on a bit-per-chip basis. The final design has 800 bits/register, 128 registers/chip, 16 chips/plane, and 112 planes, of which only seven are activated at a time. A word has 64 data bits +32 checkbits, used in a 16-adjacent code to provide correction of any combination of errors in one plane. 100 KHz maximum rotational frequency keeps power low (equal to or less than, 25 watts) and also allows asynchronous operation. Data rate is 6.4 megabits/sec, access time is 200 msec to an 800-word block and an additional 4 msec (average) to a word. The fabrication and operation are also described for a 64-bit bubble domain memory chip designed to test the concept of on-chip magnetic decoding. Access to one of the chip's four shift registers for the read, write, and clear functions is by means of bubble domain decoders utilizing the interaction between a conductor line and a bubble.
Optimized collectives using a DMA on a parallel computer
Chen, Dong [Croton On Hudson, NY; Gabor, Dozsa [Ardsley, NY; Giampapa, Mark E [Irvington, NY; Heidelberger,; Phillip, [Cortlandt Manor, NY
2011-02-08
Optimizing collective operations using direct memory access controller on a parallel computer, in one aspect, may comprise establishing a byte counter associated with a direct memory access controller for each submessage in a message. The byte counter includes at least a base address of memory and a byte count associated with a submessage. A byte counter associated with a submessage is monitored to determine whether at least a block of data of the submessage has been received. The block of data has a predetermined size, for example, a number of bytes. The block is processed when the block has been fully received, for example, when the byte count indicates all bytes of the block have been received. The monitoring and processing may continue for all blocks in all submessages in the message.
Efficient Memory Access with NumPy Global Arrays using Local Memory Access
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.; Berghofer, Dan C.
This paper discusses the work completed working with Global Arrays of data on distributed multi-computer systems and improving their performance. The tasks completed were done at Pacific Northwest National Laboratory in the Science Undergrad Laboratory Internship program in the summer of 2013 for the Data Intensive Computing Group in the Fundamental and Computational Sciences DIrectorate. This work was done on the Global Arrays Toolkit developed by this group. This toolkit is an interface for programmers to more easily create arrays of data on networks of computers. This is useful because scientific computation is often done on large amounts of datamore » sometimes so large that individual computers cannot hold all of it. This data is held in array form and can best be processed on supercomputers which often consist of a network of individual computers doing their computation in parallel. One major challenge for this sort of programming is that operations on arrays on multiple computers is very complex and an interface is needed so that these arrays seem like they are on a single computer. This is what global arrays does. The work done here is to use more efficient operations on that data that requires less copying of data to be completed. This saves a lot of time because copying data on many different computers is time intensive. The way this challenge was solved is when data to be operated on with binary operations are on the same computer, they are not copied when they are accessed. When they are on separate computers, only one set is copied when accessed. This saves time because of less copying done although more data access operations were done.« less
Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications.
Linn, E; Menzel, S; Ferch, S; Waser, R
2013-09-27
Dynamic physics-based models of resistive switching devices are of great interest for the realization of complex circuits required for memory, logic and neuromorphic applications. Here, we apply such a model of an electrochemical metallization (ECM) cell to complementary resistive switches (CRSs), which are favorable devices to realize ultra-dense passive crossbar arrays. Since a CRS consists of two resistive switching devices, it is straightforward to apply the dynamic ECM model for CRS simulation with MATLAB and SPICE, enabling study of the device behavior in terms of sweep rate and series resistance variations. Furthermore, typical memory access operations as well as basic implication logic operations can be analyzed, revealing requirements for proper spike and level read operations. This basic understanding facilitates applications of massively parallel computing paradigms required for neuromorphic applications.
A CMOS Compatible, Forming Free TaO x ReRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lohn, A. J.; Stevens, J. E.; Mickel, P. R.
2013-08-31
Resistive random access memory (ReRAM) has become a promising candidate for next-generation high-performance non-volatile memory that operates by electrically tuning resistance states via modulating vacancy concentrations. Here, we demonstrate a wafer-scale process for resistive switching in tantalum oxide that is completely CMOS compatible. The resulting devices are forming-free and with greater than 1x10 5 cycle endurance.
Multi-wavelength access gate for WDM-formatted words in optical RAM row architectures
NASA Astrophysics Data System (ADS)
Fitsios, D.; Alexoudi, T.; Vagionas, C.; Miliou, A.; Kanellos, G. T.; Pleros, N.
2013-03-01
Optical RAM has emerged as a promising solution for overcoming the "Memory Wall" of electronics, indicating the use of light in RAM architectures as the approach towards enabling ps-regime memory access times. Taking a step further towards exploiting the unique wavelength properties of optical signals, we reveal new architectural perspectives in optical RAM structures by introducing WDM principles in the storage area. To this end, we demonstrate a novel SOAbased multi-wavelength Access Gate for utilization in a 4x4 WDM optical RAM bank architecture. The proposed multiwavelength Access Gate can simultaneously control random access to a 4-bit optical word, exploiting Cross-Gain-Modulation (XGM) to process 8 Bit and Bit channels encoded in 8 different wavelengths. It also suggests simpler optical RAM row architectures, allowing for the effective sharing of one multi-wavelength Access Gate for each row, substituting the eight AGs in the case of conventional optical RAM architectures. The scheme is shown to support 10Gbit/s operation for the incoming 4-bit data streams, with a power consumption of 15mW/Gbit/s. All 8 wavelength channels demonstrate error-free operation with a power penalty lower than 3 dB for all channels, compared to Back-to-Back measurements. The proposed optical RAM architecture reveals that exploiting the WDM capabilities of optical components can lead to RAM bank implementations with smarter column/row encoders/decoders, increased circuit simplicity, reduced number of active elements and associated power consumption. Moreover, exploitation of the wavelength entity can release significant potential towards reconfigurable optical cache mapping schemes when using the wavelength dimension for memory addressing.
Inverse Resistance Change Cr2Ge2Te6-Based PCRAM Enabling Ultralow-Energy Amorphization.
Hatayama, Shogo; Sutou, Yuji; Shindo, Satoshi; Saito, Yuta; Song, Yun-Heub; Ando, Daisuke; Koike, Junichi
2018-01-24
Phase-change random access memory (PCRAM) has attracted much attention for next-generation nonvolatile memory that can replace flash memory and can be used for storage-class memory. Generally, PCRAM relies on the change in the electrical resistance of a phase-change material between high-resistance amorphous (reset) and low-resistance crystalline (set) states. Herein, we present an inverse resistance change PCRAM with Cr 2 Ge 2 Te 6 (CrGT) that shows a high-resistance crystalline reset state and a low-resistance amorphous set state. The inverse resistance change was found to be due to a drastic decrease in the carrier density upon crystallization, which causes a large increase in contact resistivity between CrGT and the electrode. The CrGT memory cell was demonstrated to show fast reversible resistance switching with a much lower operating energy for amorphization than a Ge 2 Sb 2 Te 5 memory cell. This low operating energy in CrGT should be due to a small programmed amorphous volume, which can be realized by a high-resistance crystalline matrix and a dominant contact resistance. Simultaneously, CrGT can break the trade-off relationship between the crystallization temperature and operating speed.
NASA Technical Reports Server (NTRS)
Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)
2000-01-01
A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.
NASA Astrophysics Data System (ADS)
Cortese, Simone; Khiat, Ali; Carta, Daniela; Light, Mark E.; Prodromakis, Themistoklis
2016-01-01
Resistive random access memory (ReRAM) crossbar arrays have become one of the most promising candidates for next-generation non volatile memories. To become a mature technology, the sneak path current issue must be solved without compromising all the advantages that crossbars offer in terms of electrical performances and fabrication complexity. Here, we present a highly integrable access device based on nickel and sub-stoichiometric amorphous titanium dioxide (TiO2-x), in a metal insulator metal crossbar structure. The high voltage margin of 3 V, amongst the highest reported for monolayer selector devices, and the good current density of 104 A/cm2 make it suitable to sustain ReRAM read and write operations, effectively tackling sneak currents in crossbars without compromising fabrication complexity in a 1 Selector 1 Resistor (1S1R) architecture. Furthermore, the voltage margin is found to be tunable by an annealing step without affecting the device's characteristics.
OS friendly microprocessor architecture: Hardware level computer security
NASA Astrophysics Data System (ADS)
Jungwirth, Patrick; La Fratta, Patrick
2016-05-01
We present an introduction to the patented OS Friendly Microprocessor Architecture (OSFA) and hardware level computer security. Conventional microprocessors have not tried to balance hardware performance and OS performance at the same time. Conventional microprocessors have depended on the Operating System for computer security and information assurance. The goal of the OS Friendly Architecture is to provide a high performance and secure microprocessor and OS system. We are interested in cyber security, information technology (IT), and SCADA control professionals reviewing the hardware level security features. The OS Friendly Architecture is a switched set of cache memory banks in a pipeline configuration. For light-weight threads, the memory pipeline configuration provides near instantaneous context switching times. The pipelining and parallelism provided by the cache memory pipeline provides for background cache read and write operations while the microprocessor's execution pipeline is running instructions. The cache bank selection controllers provide arbitration to prevent the memory pipeline and microprocessor's execution pipeline from accessing the same cache bank at the same time. This separation allows the cache memory pages to transfer to and from level 1 (L1) caching while the microprocessor pipeline is executing instructions. Computer security operations are implemented in hardware. By extending Unix file permissions bits to each cache memory bank and memory address, the OSFA provides hardware level computer security.
Method and apparatus for controlling multiple motors
Jones, Rollin G.; Kortegaard, Bert L.; Jones, David F.
1987-01-01
A method and apparatus are provided for simultaneously controlling a plurality of stepper motors. Addressing circuitry generates address data for each motor in a periodic address sequence. Memory circuits respond to the address data for each motor by accessing a corresponding memory location containing a first operational data set functionally related to a direction for moving the motor, speed data, and rate of speed change. First logic circuits respond to the first data set to generate a motor step command. Second logic circuits respond to the command from the first logic circuits to generate a third data set for replacing the first data set in memory with a current operational motor status, which becomes the first data set when the motor is next addressed.
Development of bubble memory recorder onboard Japan Earth Resources Satellite-1
NASA Astrophysics Data System (ADS)
Araki, Tsunehiko; Ishida, Chu; Ochiai, Kiyoshi; Nozue, Tatsuhiro; Tachibana, Kyozo; Yoshida, Kazutoshi
The Bubble Memory Recorder (BMR) developed for use on the Earth Resources Satellite is described in terms of its design, capabilities, and functions. The specifications of the BMR are given listing memory capacity, functions, and interface types for data, command, and telemetry functions. The BMR has an emergency signal interface to provide contingency recording, and a satellite-separation signal interface can be turned on automatically by signal input. Data are stored in a novolatile memory device so that the memory is retained during power outages. The BMR is characterized by a capability for random access, nonvolatility, and a solid-state design that is useful for space operations since it does not disturb spacecraft attitude.
Silent store detection and recording in memory storage
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
2017-03-07
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memory location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.
Silent store detection and recording in memory storage
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
2016-09-20
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memory location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.
Vortex-Core Reversal Dynamics: Towards Vortex Random Access Memory
NASA Astrophysics Data System (ADS)
Kim, Sang-Koog
2011-03-01
An energy-efficient, ultrahigh-density, ultrafast, and nonvolatile solid-state universal memory is a long-held dream in the field of information-storage technology. The magnetic random access memory (MRAM) along with a spin-transfer-torque switching mechanism is a strong candidate-means of realizing that dream, given its nonvolatility, infinite endurance, and fast random access. Magnetic vortices in patterned soft magnetic dots promise ground-breaking applications in information-storage devices, owing to the very stable twofold ground states of either their upward or downward core magnetization orientation and plausible core switching by in-plane alternating magnetic fields or spin-polarized currents. However, two technologically most important but very challenging issues --- low-power recording and reliable selection of each memory cell with already existing cross-point architectures --- have not yet been resolved for the basic operations in information storage, that is, writing (recording) and readout. Here, we experimentally demonstrate a magnetic vortex random access memory (VRAM) in the basic cross-point architecture. This unique VRAM offers reliable cell selection and low-power-consumption control of switching of out-of-plane core magnetizations using specially designed rotating magnetic fields generated by two orthogonal and unipolar Gaussian-pulse currents along with optimized pulse width and time delay. Our achievement of a new device based on a new material, that is, a medium composed of patterned vortex-state disks, together with the new physics on ultrafast vortex-core switching dynamics, can stimulate further fruitful research on MRAMs that are based on vortex-state dot arrays.
Store operation with conditional push of a tag value to a queue
Heidelberger, Philip; Steinmacher-Burow, Burkhard
2015-07-28
According to one embodiment, a method for a store operation with a conditional push of a tag value to a queue is provided. The method includes configuring a queue that is accessible by an application, setting a value at an address in a memory device including a memory and a controller, receiving a request for an operation using the value at the address and performing the operation. The method also includes the controller writing a result of the operation to the address, thus changing the value at the address, the controller determining if the result of the operation meets a condition and the controller pushing a tag value to the queue based on the condition being met, where the tag value in the queue indicates to the application that the condition is met.
The removal of information from working memory.
Lewis-Peacock, Jarrod A; Kessler, Yoav; Oberauer, Klaus
2018-05-09
What happens to goal-relevant information in working memory after it is no longer needed? Here, we review evidence for a selective removal process that operates on outdated information to limit working memory load and hence facilitates the maintenance of goal-relevant information. Removal alters the representations of irrelevant content so as to reduce access to it, thereby improving access to the remaining relevant content and also facilitating the encoding of new information. Both behavioral and neural evidence support the existence of a removal process that is separate from forgetting due to decay or interference. We discuss the potential mechanisms involved in removal and characterize the time course and duration of the process. In doing so, we propose the existence of two forms of removal: one is temporary, and reversible, which modifies working memory content without impacting content-to-context bindings, and another is permanent, which unbinds the content from its context in working memory (without necessarily impacting long-term forgetting). Finally, we discuss limitations on removal and prescribe conditions for evaluating evidence for or against this process. © 2018 New York Academy of Sciences.
NASA Astrophysics Data System (ADS)
Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan
2018-01-01
Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.
Non-volatile memory based on the ferroelectric photovoltaic effect
Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling
2013-01-01
The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-chuan (Inventor)
1995-01-01
A new read gate design for the vertical Bloch line (VBL) memory is disclosed which offers larger operating margin than the existing read gate designs. In the existing read gate designs, a current is applied to all the stripes. The stripes that contain a VBL pair are chopped, while the stripes that do not contain a VBL pair are not chopped. The information is then detected by inspecting the presence or absence of the bubble. The margin of the chopping current amplitude is very small, and sometimes non-existent. A new method of reading Vertical Bloch Line memory is also disclosed. Instead of using the wall chirality to separate the two binary states, the spatial deflection of the stripe head is used. Also disclosed herein is a compact memory which uses vertical Bloch line (VBL) memory technology for providing data storage. A three-dimensional arrangement in the form of stacks of VBL memory layers is used to achieve high volumetric storage density. High data transfer rate is achieved by operating all the layers in parallel. Using Hall effect sensing, and optical sensing via the Faraday effect to access the data from within the three-dimensional packages, an even higher data transfer rate can be achieved due to parallel operation within each layer.
Advanced Compact Holographic Data Storage System
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin; Zhou, Hanying; Reyes, George
2000-01-01
JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Advanced Holographic Memory (AHM) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electro-optic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and highspeed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology to enhance mission capabilities for all NASA's Earth Science Mission. In this paper, recent technology progress in developing this CHDS at JPL will be presented.
System for loading executable code into volatile memory in a downhole tool
Hall, David R.; Bartholomew, David B.; Johnson, Monte L.
2007-09-25
A system for loading an executable code into volatile memory in a downhole tool string component comprises a surface control unit comprising executable code. An integrated downhole network comprises data transmission elements in communication with the surface control unit and the volatile memory. The executable code, stored in the surface control unit, is not permanently stored in the downhole tool string component. In a preferred embodiment of the present invention, the downhole tool string component comprises boot memory. In another embodiment, the executable code is an operating system executable code. Preferably, the volatile memory comprises random access memory (RAM). A method for loading executable code to volatile memory in a downhole tool string component comprises sending the code from the surface control unit to a processor in the downhole tool string component over the network. A central processing unit writes the executable code in the volatile memory.
NASA Astrophysics Data System (ADS)
Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon
2016-01-01
Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d
Routes to the past: neural substrates of direct and generative autobiographical memory retrieval.
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P; Schacter, Daniel L
2012-02-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. Copyright © 2011 Elsevier Inc. All rights reserved.
Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval
Addis, Donna Rose; Knapp, Katie; Roberts, Reece P.; Schacter, Daniel L.
2011-01-01
Models of autobiographical memory propose two routes to retrieval depending on cue specificity. When available cues are specific and personally-relevant, a memory can be directly accessed. However, when available cues are generic, one must engage a generative retrieval process to produce more specific cues to successfully access a relevant memory. The current study sought to characterize the neural bases of these retrieval processes. During functional magnetic resonance imaging (fMRI), participants were shown personally-relevant cues to elicit direct retrieval, or generic cues (nouns) to elicit generative retrieval. We used spatiotemporal partial least squares to characterize the spatial and temporal characteristics of the networks associated with direct and generative retrieval. Both retrieval tasks engaged regions comprising the autobiographical retrieval network, including hippocampus, and medial prefrontal and parietal cortices. However, some key neural differences emerged. Generative retrieval differentially recruited lateral prefrontal and temporal regions early on during the retrieval process, likely supporting the strategic search operations and initial recovery of generic autobiographical information. However, many regions were activated more strongly during direct versus generative retrieval, even when we time-locked the analysis to the successful recovery of events in both conditions. This result suggests that there may be fundamental differences between memories that are accessed directly and those that are recovered via the iterative search and retrieval process that characterizes generative retrieval. PMID:22001264
Nonvolatile reconfigurable sequential logic in a HfO2 resistive random access memory array.
Zhou, Ya-Xiong; Li, Yi; Su, Yu-Ting; Wang, Zhuo-Rui; Shih, Ling-Yi; Chang, Ting-Chang; Chang, Kuan-Chang; Long, Shi-Bing; Sze, Simon M; Miao, Xiang-Shui
2017-05-25
Resistive random access memory (RRAM) based reconfigurable logic provides a temporal programmable dimension to realize Boolean logic functions and is regarded as a promising route to build non-von Neumann computing architecture. In this work, a reconfigurable operation method is proposed to perform nonvolatile sequential logic in a HfO 2 -based RRAM array. Eight kinds of Boolean logic functions can be implemented within the same hardware fabrics. During the logic computing processes, the RRAM devices in an array are flexibly configured in a bipolar or complementary structure. The validity was demonstrated by experimentally implemented NAND and XOR logic functions and a theoretically designed 1-bit full adder. With the trade-off between temporal and spatial computing complexity, our method makes better use of limited computing resources, thus provides an attractive scheme for the construction of logic-in-memory systems.
Dynamics of the stress-mediated magnetoelectric memory cell N×(TbCo2/FeCo)/PMN-PT
NASA Astrophysics Data System (ADS)
Preobrazhensky, Vladimir; Klimov, Alexey; Tiercelin, Nicolas; Dusch, Yannick; Giordano, Stefano; Churbanov, Anton; Mathurin, Theo; Pernod, Philippe; Sigov, Alexander
2018-08-01
Stress-mediated magnetoelectric heterostructures represent a very promising approach for the realization of ultra-low energy Random Access Memories. The magnetoelectric writing of information has been extensively studied in the past, but it was demonstrated only recently that the magnetoelectric effect can also provide means for reading the stored information. We hereby theoretically study the dynamic behaviour of a magnetoelectric random access memory cell (MELRAM) typically composed of a magnetostrictive multilayer N × (TbCo2 / FeCo) that is elastically coupled with a 〈0 1 1〉 PMN-PT ferroelectric crystal and placed in a Wheatstone bridge-like configuration. The numerical resolution of the LLG and electrodynamics equation system demonstrates high speed write and read operations with an associated extra-low energy consumption. In this model, the reading energy for a 50 nm cell size is estimated to be less than 5 aJ/bit.
Refreshing memory traces: thinking of an item improves retrieval from visual working memory.
Souza, Alessandra S; Rerko, Laura; Oberauer, Klaus
2015-03-01
This article provides evidence that refreshing, a hypothetical attention-based process operating in working memory (WM), improves the accessibility of visual representations for recall. "Thinking of", one of several concurrently active representations, is assumed to refresh its trace in WM, protecting the representation from being forgotten. The link between refreshing and WM performance, however, has only been tenuously supported by empirical evidence. Here, we controlled which and how often individual items were refreshed in a color reconstruction task by presenting cues prompting participants to think of specific WM items during the retention interval. We show that the frequency with which an item is refreshed improves recall of this item from visual WM. Our study establishes a role of refreshing in recall from visual WM and provides a new method for studying the impact of refreshing on the amount of information we can keep accessible for ongoing cognition. © 2014 New York Academy of Sciences.
ERIC Educational Resources Information Center
School Science Review, 1979
1979-01-01
Included is information regarding: fabrication of light emitting diodes, their operation as semiconductors, and an experiment demonstrating electroluminescence; experimenting with Random Access Memory (RAM) circuits; demonstrating Coriolis effect; measuring the diameter of an electron beam, E.H.T. meters; launching a trolley by catapult; a "random…
Multi-Level Bitmap Indexes for Flash Memory Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kesheng; Madduri, Kamesh; Canon, Shane
2010-07-23
Due to their low access latency, high read speed, and power-efficient operation, flash memory storage devices are rapidly emerging as an attractive alternative to traditional magnetic storage devices. However, tests show that the most efficient indexing methods are not able to take advantage of the flash memory storage devices. In this paper, we present a set of multi-level bitmap indexes that can effectively take advantage of flash storage devices. These indexing methods use coarsely binned indexes to answer queries approximately, and then use finely binned indexes to refine the answers. Our new methods read significantly lower volumes of data atmore » the expense of an increased disk access count, thus taking full advantage of the improved read speed and low access latency of flash devices. To demonstrate the advantage of these new indexes, we measure their performance on a number of storage systems using a standard data warehousing benchmark called the Set Query Benchmark. We observe that multi-level strategies on flash drives are up to 3 times faster than traditional indexing strategies on magnetic disk drives.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... INTERNATIONAL TRADE COMMISSION [DN 2859] Certain Dynamic Random Access Memory Devices, and.... International Trade Commission has received a complaint entitled In Re Certain Dynamic Random Access Memory... certain dynamic random access memory devices, and products containing same. The complaint names Elpida...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-01
... Semiconductor Chips Having Synchronous Dynamic Random Access Memory Controllers and Products Containing Same... synchronous dynamic random access memory controllers and products containing same by reason of infringement of... semiconductor chips having synchronous dynamic random access memory controllers and products containing same...
NASA Astrophysics Data System (ADS)
Jian, Wen-Yi; You, Hsin-Chiang; Wu, Cheng-Yen
2018-01-01
In this work, we used a sol-gel process to fabricate a ZnO-ZrO2-stacked resistive switching random access memory (ReRAM) device and investigated its switching mechanism. The Gibbs free energy in ZnO, which is higher than that in ZrO2, facilitates the oxidation and reduction reactions of filaments in the ZnO layer. The current-voltage (I-V) characteristics of the device revealed a forming-free operation because of nonlattice oxygen in the oxide layer. In addition, the device can operate under bipolar or unipolar conditions with a reset voltage of 0 to ±2 V, indicating that in this device, Joule heating dominates at reset and the electric field dominates in the set process. Furthermore, the characteristics reveal why the fabricated device exhibits a greater discrete distribution phenomenon for the set voltage than for the reset voltage. These results will enable the fabrication of future ReRAM devices with double-layer oxide structures with improved characteristics.
Ohmacht, Martin
2017-08-15
In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.
Ohmacht, Martin
2014-09-09
In a multiprocessor system, a central memory synchronization module coordinates memory synchronization requests responsive to memory access requests in flight, a generation counter, and a reclaim pointer. The central module communicates via point-to-point communication. The module includes a global OR reduce tree for each memory access requesting device, for detecting memory access requests in flight. An interface unit is implemented associated with each processor requesting synchronization. The interface unit includes multiple generation completion detectors. The generation count and reclaim pointer do not pass one another.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Access Memory and Nand Flash Memory Devices and Products Containing Same; Notice of Institution of... importation, and the sale within the United States after importation of certain dynamic random access memory and NAND flash memory devices and products containing same by reason of infringement of certain claims...
Silent store detection and recording in memory storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memorymore » location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.« less
Improved Writing-Conductor Designs For Magnetic Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1994-01-01
Writing currents reduced to practical levels. Improved conceptual designs for writing conductors in micromagnet/Hall-effect random-access integrated-circuit memory reduces electrical current needed to magnetize micromagnet in each memory cell. Basic concept of micromagnet/Hall-effect random-access memory presented in "Magnetic Analog Random-Access Memory" (NPO-17999).
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-25
... Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of... the sale within the United States after importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain...
Accessibility limits recall from visual working memory.
Rajsic, Jason; Swan, Garrett; Wilson, Daryl E; Pratt, Jay
2017-09-01
In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response error in these tasks has been largely studied with respect to failures of encoding and maintenance; however, the retrieval operations used in these tasks remain poorly understood. By varying the number and type of object features provided as a cue in a visual delayed-estimation paradigm, we directly assess the nature of retrieval errors in delayed estimation from VWM. Our results demonstrate that providing additional object features in a single cue reliably improves recall, largely by reducing swap, or misbinding, responses. In addition, performance simulations using the binding pool model (Swan & Wyble, 2014) were able to mimic this pattern of performance across a large span of parameter combinations, demonstrating that the binding pool provides a possible mechanism underlying this pattern of results that is not merely a symptom of one particular parametrization. We conclude that accessing visual working memory is a noisy process, and can lead to errors over and above those of encoding and maintenance limitations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The storage system of PCM based on random access file system
NASA Astrophysics Data System (ADS)
Han, Wenbing; Chen, Xiaogang; Zhou, Mi; Li, Shunfen; Li, Gezi; Song, Zhitang
2016-10-01
Emerging memory technologies such as Phase change memory (PCM) tend to offer fast, random access to persistent storage with better scalability. It's a hot topic of academic and industrial research to establish PCM in storage hierarchy to narrow the performance gap. However, the existing file systems do not perform well with the emerging PCM storage, which access storage medium via a slow, block-based interface. In this paper, we propose a novel file system, RAFS, to bring about good performance of PCM, which is built in the embedded platform. We attach PCM chips to the memory bus and build RAFS on the physical address space. In the proposed file system, we simplify traditional system architecture to eliminate block-related operations and layers. Furthermore, we adopt memory mapping and bypassed page cache to reduce copy overhead between the process address space and storage device. XIP mechanisms are also supported in RAFS. To the best of our knowledge, we are among the first to implement file system on real PCM chips. We have analyzed and evaluated its performance with IOZONE benchmark tools. Our experimental results show that the RAFS on PCM outperforms Ext4fs on SDRAM with small record lengths. Based on DRAM, RAFS is significantly faster than Ext4fs by 18% to 250%.
Werner, Craig T; Milovanovic, Mike; Christian, Daniel T; Loweth, Jessica A; Wolf, Marina E
2015-12-01
The ubiquitin-proteasome system (UPS) has been implicated in the retrieval-induced destabilization of cocaine- and fear-related memories in Pavlovian paradigms. However, nothing is known about its role in memory retrieval after self-administration of cocaine, an operant paradigm, or how the length of withdrawal from cocaine may influence retrieval mechanisms. Here, we examined UPS activity after an extended-access cocaine self-administration regimen that leads to withdrawal-dependent incubation of cue-induced cocaine craving. Controls self-administered saline. In initial experiments, memory retrieval was elicited via a cue-induced seeking/retrieval test on withdrawal day (WD) 50-60, when craving has incubated. We found that retrieval of cocaine- and saline-associated memories produced similar increases in polyubiquitinated proteins in the nucleus accumbens (NAc), compared with rats that did not undergo a seeking/retrieval test. Measures of proteasome catalytic activity confirmed similar activation of the UPS after retrieval of saline and cocaine memories. However, in a subsequent experiment in which testing was conducted on WD1, proteasome activity in the NAc was greater after retrieval of cocaine memory than saline memory. Analysis of other brain regions confirmed that effects of cocaine memory retrieval on proteasome activity, relative to saline memory retrieval, depend on withdrawal time. These results, combined with prior studies, suggest that the relationship between UPS activity and memory retrieval depends on training paradigm, brain region, and time elapsed between training and retrieval. The observation that mechanisms underlying cocaine memory retrieval change depending on the age of the memory has implications for development of memory destabilization therapies for cue-induced relapse in cocaine addicts.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-27
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-821] Certain Dynamic Random Access Memory... importation, and the sale within the United States after importation of certain dynamic random access memory... certain dynamic random access memory devices, and products containing same that infringe one or more of...
Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M
2017-05-08
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.
CoNNeCT Baseband Processor Module
NASA Technical Reports Server (NTRS)
Yamamoto, Clifford K; Jedrey, Thomas C.; Gutrich, Daniel G.; Goodpasture, Richard L.
2011-01-01
A document describes the CoNNeCT Baseband Processor Module (BPM) based on an updated processor, memory technology, and field-programmable gate arrays (FPGAs). The BPM was developed from a requirement to provide sufficient computing power and memory storage to conduct experiments for a Software Defined Radio (SDR) to be implemented. The flight SDR uses the AT697 SPARC processor with on-chip data and instruction cache. The non-volatile memory has been increased from a 20-Mbit EEPROM (electrically erasable programmable read only memory) to a 4-Gbit Flash, managed by the RTAX2000 Housekeeper, allowing more programs and FPGA bit-files to be stored. The volatile memory has been increased from a 20-Mbit SRAM (static random access memory) to a 1.25-Gbit SDRAM (synchronous dynamic random access memory), providing additional memory space for more complex operating systems and programs to be executed on the SPARC. All memory is EDAC (error detection and correction) protected, while the SPARC processor implements fault protection via TMR (triple modular redundancy) architecture. Further capability over prior BPM designs includes the addition of a second FPGA to implement features beyond the resources of a single FPGA. Both FPGAs are implemented with Xilinx Virtex-II and are interconnected by a 96-bit bus to facilitate data exchange. Dedicated 1.25- Gbit SDRAMs are wired to each Xilinx FPGA to accommodate high rate data buffering for SDR applications as well as independent SpaceWire interfaces. The RTAX2000 manages scrub and configuration of each Xilinx.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Pradip; Cher, Chen-Yong; Nair, Ravi
An aspect includes receiving a write request that includes a memory address and write data. Stored data is read from a memory location at the memory address. Based on determining that the memory location was not previously modified, the stored data is compared to the write data. Based on the stored data matching the write data, the write request is completed without writing the write data to the memory and a corresponding silent store bit, in a silent store bitmap is set. Based on the stored data not matching the write data, the write data is written to the memorymore » location, the silent store bit is reset and a corresponding modified bit is set. At least one of an application and an operating system is provided access to the silent store bitmap.« less
A study on carbon nanotube bridge as a electromechanical memory device
NASA Astrophysics Data System (ADS)
Kang, Jeong Won; Ha Lee, Jun; Joo Lee, Hoong; Hwang, Ho Jung
2005-04-01
A nanoelectromechanical (NEM) nanotube random access memory (NRAM) device based on carbon nanotube (CNT) was investigated using atomistic simulations. For the CNT-based NEM memory, the mechanical properties of the CNT-bridge and van der Waals interactions between the CNT-bridge and substrate were very important. The critical amplitude of the CNT-bridge was 16% of the length of the CNT-bridge. As molecular dynamics time increased, the CNT-bridge went to the steady state under the electrostatic force with the damping of the potential and the kinetic energies of the CNT-bridge. The interatomic interaction between the CNT-bridge and substrate, value of the CNT-bridge slack, and damping rate of the CNT-bridge were very important for the operation of the NEM memory device as a nonvolatile memory.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-01-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced. PMID:27834352
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic.
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-11
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Multistate Memristive Tantalum Oxide Devices for Ternary Arithmetic
NASA Astrophysics Data System (ADS)
Kim, Wonjoo; Chattopadhyay, Anupam; Siemon, Anne; Linn, Eike; Waser, Rainer; Rana, Vikas
2016-11-01
Redox-based resistive switching random access memory (ReRAM) offers excellent properties to implement future non-volatile memory arrays. Recently, the capability of two-state ReRAMs to implement Boolean logic functionality gained wide interest. Here, we report on seven-states Tantalum Oxide Devices, which enable the realization of an intrinsic modular arithmetic using a ternary number system. Modular arithmetic, a fundamental system for operating on numbers within the limit of a modulus, is known to mathematicians since the days of Euclid and finds applications in diverse areas ranging from e-commerce to musical notations. We demonstrate that multistate devices not only reduce the storage area consumption drastically, but also enable novel in-memory operations, such as computing using high-radix number systems, which could not be implemented using two-state devices. The use of high radix number system reduces the computational complexity by reducing the number of needed digits. Thus the number of calculation operations in an addition and the number of logic devices can be reduced.
Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M
2017-01-01
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891
Fault and Error Latency Under Real Workload: an Experimental Study. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Chillarege, Ram
1986-01-01
A practical methodology for the study of fault and error latency is demonstrated under a real workload. This is the first study that measures and quantifies the latency under real workload and fills a major gap in the current understanding of workload-failure relationships. The methodology is based on low level data gathered on a VAX 11/780 during the normal workload conditions of the installation. Fault occurrence is simulated on the data, and the error generation and discovery process is reconstructed to determine latency. The analysis proceeds to combine the low level activity data with high level machine performance data to yield a better understanding of the phenomena. A strong relationship exists between latency and workload and that relationship is quantified. The sampling and reconstruction techniques used are also validated. Error latency in the memory where the operating system resides was studied using data on the physical memory access. Fault latency in the paged section of memory was determined using data from physical memory scans. Error latency in the microcontrol store was studied using data on the microcode access and usage.
Hamlet, Jason R [Albuquerque, NM; Robertson, Perry J [Albuquerque, NM; Pierson, Lyndon G [Albuquerque, NM; Olsberg, Ronald R [Albuquerque, NM
2012-02-28
A deflate decompressor includes at least one decompressor unit, a memory access controller, a feedback path, and an output buffer unit. The memory access controller is coupled to the decompressor unit via a data path and includes a data buffer to receive the data stream and temporarily buffer a first portion the data stream. The memory access controller transfers fixed length data units of the data stream from the data buffer to the decompressor unit with reference to a memory pointer pointing into the memory buffer. The feedback path couples the decompressor unit to the memory access controller to feed back decrement values to the memory access controller for updating the memory pointer. The decrement values each indicate a number of bits unused by the decompressor unit when decoding the fixed length data units. The output buffer unit buffers a second portion of the data stream after decompression.
Evaluation of Data Retention Characteristics for Ferroelectric Random Access Memories (FRAMs)
NASA Technical Reports Server (NTRS)
Sharma, Ashok K.; Teverovsky, Alexander
2001-01-01
Data retention and fatigue characteristics of 64 Kb lead zirconate titanate (PZT)-based Ferroelectric Random Access Memories (FRAMs) microcircuits manufactured by Ramtron were examined over temperature range from -85 C to +310 C for ceramic packaged parts and from -85 C to +175 C for plastic parts, during retention periods up to several thousand hours. Intrinsic failures, which were caused by a thermal degradation of the ferroelectric cells, occurred in ceramic parts after tens or hundreds hours of aging at temperatures above 200 C. The activation energy of the retention test failures was 1.05 eV and the extrapolated mean-time-to-failure (MTTF) at room temperature was estimated to be more than 280 years. Multiple write-read cycling (up to 3x10(exp 7)) during the fatigue testing of plastic and ceramic parts did not result in any parametric or functional failures. However, operational currents linearly decreased with the logarithm of number of cycles thus indicating fatigue process in PZT films. Plastic parts, that had more recent date code as compared to ceramic parts, appeared to be using die with improved process technology and showed significantly smaller changes in operational currents and data access times.
Software Engineering Principles 3-14 August 1981,
1981-08-01
small disk used (but rot that of the extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the...extended mass storage or large disk option); it is very fast (about 1/5 the speed of the primary memory, where the disk was 1/10000 for access); and...programed and tested - must be correct and fast D. Choice of right synchronization operations: Design problem 1. Several mentioned in literature 9-22
Template Based Low Data Rate Speech Encoder
1993-09-30
Nasality Distinguishes In/ from d/ 95.6 96.9 1m/ from /b/, etc. Sustention Distinguishes /f/ from /p/, $7.5 88.3 ibi from N/, Al from /0 8. etc. Sibilation...processor performs mainly Processor Workstation input/output (I/O) operations. The dynamic random access memory (DRAM) has 16 million bytes of...storage capacity. To execute the 800-b/s voice algorithm, the following amount of memory is needed: 5 MB for tables, 1.5 MB for it "program, and 30 KB for
Integrating Software Modules For Robot Control
NASA Technical Reports Server (NTRS)
Volpe, Richard A.; Khosla, Pradeep; Stewart, David B.
1993-01-01
Reconfigurable, sensor-based control system uses state variables in systematic integration of reusable control modules. Designed for open-architecture hardware including many general-purpose microprocessors, each having own local memory plus access to global shared memory. Implemented in software as extension of Chimera II real-time operating system. Provides transparent computing mechanism for intertask communication between control modules and generic process-module architecture for multiprocessor realtime computation. Used to control robot arm. Proves useful in variety of other control and robotic applications.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-28
... Random Access Memory Semiconductors and Products Containing Same, Including Memory Modules; Notice of a... importation of certain dynamic random access memory semiconductors and products containing same, including memory modules, by reason of infringement of certain claims of U.S. Patent Nos. 5,480,051; 5,422,309; 5...
High Density Memory Based on Quantum Device Technology
NASA Technical Reports Server (NTRS)
vanderWagt, Paul; Frazier, Gary; Tang, Hao
1995-01-01
We explore the feasibility of ultra-high density memory based on quantum devices. Starting from overall constraints on chip area, power consumption, access speed, and noise margin, we deduce boundaries on single cell parameters such as required operating voltage and standby current. Next, the possible role of quantum devices is examined. Since the most mature quantum device, the resonant tunneling diode (RTD) can easily be integrated vertically, it naturally leads to the issue of 3D integrated memory. We propose a novel method of addressing vertically integrated bistable two-terminal devices, such as resonant tunneling diodes (RTD) and Esaki diodes, that avoids individual physical contacts. The new concept has been demonstrated experimentally in memory cells of field effect transistors (FET's) and stacked RTD's.
Sparse distributed memory prototype: Principles of operation
NASA Technical Reports Server (NTRS)
Flynn, Michael J.; Kanerva, Pentti; Ahanin, Bahram; Bhadkamkar, Neal; Flaherty, Paul; Hickey, Philip
1988-01-01
Sparse distributed memory is a generalized random access memory (RAM) for long binary words. Such words can be written into and read from the memory, and they can be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original right address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech and scene analysis, in signal detection and verification, and in adaptive control of automated equipment. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. The research is aimed at resolving major design issues that have to be faced in building the memories. The design of a prototype memory with 256-bit addresses and from 8K to 128K locations for 256-bit words is described. A key aspect of the design is extensive use of dynamic RAM and other standard components.
Flash memory management system and method utilizing multiple block list windows
NASA Technical Reports Server (NTRS)
Chow, James (Inventor); Gender, Thomas K. (Inventor)
2005-01-01
The present invention provides a flash memory management system and method with increased performance. The flash memory management system provides the ability to efficiently manage and allocate flash memory use in a way that improves reliability and longevity, while maintaining good performance levels. The flash memory management system includes a free block mechanism, a disk maintenance mechanism, and a bad block detection mechanism. The free block mechanism provides efficient sorting of free blocks to facilitate selecting low use blocks for writing. The disk maintenance mechanism provides for the ability to efficiently clean flash memory blocks during processor idle times. The bad block detection mechanism provides the ability to better detect when a block of flash memory is likely to go bad. The flash status mechanism stores information in fast access memory that describes the content and status of the data in the flash disk. The new bank detection mechanism provides the ability to automatically detect when new banks of flash memory are added to the system. Together, these mechanisms provide a flash memory management system that can improve the operational efficiency of systems that utilize flash memory.
Greve, Andrea; Donaldson, David I; van Rossum, Mark C W
2010-02-01
Dual-process theories of episodic memory state that retrieval is contingent on two independent processes: familiarity (providing a sense of oldness) and recollection (recovering events and their context). A variety of studies have reported distinct neural signatures for familiarity and recollection, supporting dual-process theory. One outstanding question is whether these signatures reflect the activation of distinct memory traces or the operation of different retrieval mechanisms on a single memory trace. We present a computational model that uses a single neuronal network to store memory traces, but two distinct and independent retrieval processes access the memory. The model is capable of performing familiarity and recollection-based discrimination between old and new patterns, demonstrating that dual-process models need not to rely on multiple independent memory traces, but can use a single trace. Importantly, our putative familiarity and recollection processes exhibit distinct characteristics analogous to those found in empirical data; they diverge in capacity and sensitivity to sparse and correlated patterns, exhibit distinct ROC curves, and account for performance on both item and associative recognition tests. The demonstration that a single-trace, dual-process model can account for a range of empirical findings highlights the importance of distinguishing between neuronal processes and the neuronal representations on which they operate.
Overview of emerging nonvolatile memory technologies
2014-01-01
Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices. PMID:25278820
Overview of emerging nonvolatile memory technologies.
Meena, Jagan Singh; Sze, Simon Min; Chand, Umesh; Tseng, Tseung-Yuen
2014-01-01
Nonvolatile memory technologies in Si-based electronics date back to the 1990s. Ferroelectric field-effect transistor (FeFET) was one of the most promising devices replacing the conventional Flash memory facing physical scaling limitations at those times. A variant of charge storage memory referred to as Flash memory is widely used in consumer electronic products such as cell phones and music players while NAND Flash-based solid-state disks (SSDs) are increasingly displacing hard disk drives as the primary storage device in laptops, desktops, and even data centers. The integration limit of Flash memories is approaching, and many new types of memory to replace conventional Flash memories have been proposed. Emerging memory technologies promise new memories to store more data at less cost than the expensive-to-build silicon chips used by popular consumer gadgets including digital cameras, cell phones and portable music players. They are being investigated and lead to the future as potential alternatives to existing memories in future computing systems. Emerging nonvolatile memory technologies such as magnetic random-access memory (MRAM), spin-transfer torque random-access memory (STT-RAM), ferroelectric random-access memory (FeRAM), phase-change memory (PCM), and resistive random-access memory (RRAM) combine the speed of static random-access memory (SRAM), the density of dynamic random-access memory (DRAM), and the nonvolatility of Flash memory and so become very attractive as another possibility for future memory hierarchies. Many other new classes of emerging memory technologies such as transparent and plastic, three-dimensional (3-D), and quantum dot memory technologies have also gained tremendous popularity in recent years. Subsequently, not an exaggeration to say that computer memory could soon earn the ultimate commercial validation for commercial scale-up and production the cheap plastic knockoff. Therefore, this review is devoted to the rapidly developing new class of memory technologies and scaling of scientific procedures based on an investigation of recent progress in advanced Flash memory devices.
KITTEN Lightweight Kernel 0.1 Beta
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedretti, Kevin; Levenhagen, Michael; Kelly, Suzanne
2007-12-12
The Kitten Lightweight Kernel is a simplified OS (operating system) kernel that is intended to manage a compute node's hardware resources. It provides a set of mechanisms to user-level applications for utilizing hardware resources (e.g., allocating memory, creating processes, accessing the network). Kitten is much simpler than general-purpose OS kernels, such as Linux or Windows, but includes all of the esssential functionality needed to support HPC (high-performance computing) MPI, PGAS and OpenMP applications. Kitten provides unique capabilities such as physically contiguous application memory, transparent large page support, and noise-free tick-less operation, which enable HPC applications to obtain greater efficiency andmore » scalability than with general purpose OS kernels.« less
Evaluating OpenSHMEM Explicit Remote Memory Access Operations and Merged Requests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boehm, Swen; Pophale, Swaroop S; Gorentla Venkata, Manjunath
The OpenSHMEM Library Specification has evolved consid- erably since version 1.0. Recently, non-blocking implicit Remote Memory Access (RMA) operations were introduced in OpenSHMEM 1.3. These provide a way to achieve better overlap between communication and computation. However, the implicit non-blocking operations do not pro- vide a separate handle to track and complete the individual RMA opera- tions. They are guaranteed to be completed after either a shmem quiet(), shmem barrier() or a shmem barrier all() is called. These are global com- pletion and synchronization operations. Though this semantic is expected to achieve a higher message rate for the applications, themore » drawback is that it does not allow fine-grained control over the completion of RMA operations. In this paper, first, we introduce non-blocking RMA operations with requests, where each operation has an explicit request to track and com- plete the operation. Second, we introduce interfaces to merge multiple requests into a single request handle. The merged request tracks multiple user-selected RMA operations, which provides the flexibility of tracking related communication operations with one request handle. Lastly, we explore the implications in terms of performance, productivity, usability and the possibility of defining different patterns of communication via merging of requests. Our experimental results show that a well designed and implemented OpenSHMEM stack can hide the overhead of allocating and managing the requests. The latency of RMA operations with requests is similar to blocking and implicit non-blocking RMA operations. We test our implementation with the Scalable Synthetic Compact Applications (SSCA #1) benchmark and observe that using RMA operations with requests and merging of these requests outperform the implementation using blocking RMA operations and implicit non-blocking operations by 49% and 74% respectively.« less
NASA Astrophysics Data System (ADS)
Wu, Yunnan; Luo, Lin; Li, Jin; Zhang, Ya-Qin
2000-05-01
The concentric mosaics offer a quick solution to the construction and navigation of a virtual environment. To reduce the vast data amount of the concentric mosaics, a compression scheme based on 3D wavelet transform has been proposed in a previous paper. In this work, we investigate the efficient implementation of the renderer. It is preferable not to expand the compressed bitstream as a whole, so that the memory consumption of the renderer can be reduced. Instead, only the data necessary to render the current view are accessed and decoded. The progressive inverse wavelet synthesis (PIWS) algorithm is proposed to provide the random data access and to reduce the calculation for the data access requests to a minimum. A mixed cache is used in PIWS, where the entropy decoded wavelet coefficient, intermediate result of lifting and fully synthesized pixel are all stored at the same memory unit because of the in- place calculation property of the lifting implementation. PIWS operates with a finite state machine, where each memory unit is attached with a state to indicate what type of content is currently stored. The computational saving achieved by PIWS is demonstrated with extensive experiment results.
Deployment of 802.15.4 Sensor Networks for C4ISR Operations
2006-06-01
43 Figure 20.MSP410CA Dense Grid Monitoring (Crossbow User’s Manual, 2005). ....................................44 Figure 21.(a)MICA2 without...Deployment of Sensor Grid (COASTS OPORD, 2006). ...56 Figure 27.Topology View of Two Nodes and Base Station .......57 Figure 28.Nodes Employing Multi...Random Access Memory TCP/IP Transmission Control Protocol/Internet Protocol TinyOS Tiny Micro Threading Operating System UARTs Universal
Aslan, Alp; Schlichting, Andreas; John, Thomas; Bäuml, Karl-Heinz T
2015-12-01
Recent work with young adults has shown that, depending on study context access, selective memory retrieval can both impair and improve recall of other memories (Bäuml & Samenieh, 2010). Here, we investigated the 2 opposing effects of selective retrieval in older age. In Experiment 1, we examined 64 younger (20-35 years) and 64 older participants (above 60 years), and manipulated study context access using list-method directed forgetting. Whereas both age groups showed a detrimental effect of selective retrieval on to-be-remembered items, only younger but not older adults showed a beneficial effect on to-be-forgotten items. In Experiment 2, we examined 112 participants from a relatively wide age range (40-85 years), and manipulated study context access by varying the retention interval between study and test. Overall, a detrimental effect of selective retrieval arose when the retention interval was relatively short, but a beneficial effect when the retention interval was prolonged. Critically, the size of the beneficial but not the detrimental effect of retrieval decreased with age and this age-related decline was mediated by individuals' working memory capacity, as measured by the complex operation span task. Together, the results suggest an age-related dissociation in retrieval dynamics, indicating an earlier decline of the beneficial than the detrimental effect of selective retrieval with older age. (c) 2015 APA, all rights reserved).
Multi-Resolution Indexing for Hierarchical Out-of-Core Traversal of Rectilinear Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pascucci, V.
2000-07-10
The real time processing of very large volumetric meshes introduces specific algorithmic challenges due to the impossibility of fitting the input data in the main memory of a computer. The basic assumption (RAM computational model) of uniform-constant-time access to each memory location is not valid because part of the data is stored out-of-core or in external memory. The performance of most algorithms does not scale well in the transition from the in-core to the out-of-core processing conditions. The performance degradation is due to the high frequency of I/O operations that may start dominating the overall running time. Out-of-core computing [28]more » addresses specifically the issues of algorithm redesign and data layout restructuring to enable data access patterns with minimal performance degradation in out-of-core processing. Results in this area are also valuable in parallel and distributed computing where one has to deal with the similar issue of balancing processing time with data migration time. The solution of the out-of-core processing problem is typically divided into two parts: (i) analysis of a specific algorithm to understand its data access patterns and, when possible, redesign the algorithm to maximize their locality; and (ii) storage of the data in secondary memory with a layout consistent with the access patterns of the algorithm to amortize the cost of each I/O operation over several memory access operations. In the case of a hierarchical visualization algorithms for volumetric data the 3D input hierarchy is traversed to build derived geometric models with adaptive levels of detail. The shape of the output models is then modified dynamically with incremental updates of their level of detail. The parameters that govern this continuous modification of the output geometry are dependent on the runtime user interaction making it impossible to determine a priori what levels of detail are going to be constructed. For example they can be dependent from external parameters like the viewpoint of the current display window or from internal parameters like the isovalue of an isocontour or the position of an orthogonal slice. The structure of the access pattern can be summarized into two main points: (i) the input hierarchy is traversed level by level so that the data in the same level of resolution or in adjacent levels is traversed at the same time and (ii) within each level of resolution the data is mostly traversed at the same time in regions that are geometrically close. In this paper I introduce a new static indexing scheme that induces a data layout satisfying both requirements (i) and (ii) for the hierarchical traversal of n-dimensional regular grids. In one particular implementation the scheme exploits in a new way the recursive construction of the Z-order space filling curve. The standard indexing that maps the input nD data onto a 1D sequence for the Z-order curve is based on a simple bit interleaving operation that merges the n input indices into one index n times longer. This helps in grouping the data for geometric proximity but only for a specific level of detail. In this paper I show how this indexing can be transformed into an alternative index that allows to group the data per level of resolution first and then the data within each level per geometric proximity. This yields a data layout that is appropriate for hierarchical out-of-core processing of large grids.« less
Hardware packet pacing using a DMA in a parallel computer
Chen, Dong; Heidelberger, Phillip; Vranas, Pavlos
2013-08-13
Method and system for hardware packet pacing using a direct memory access controller in a parallel computer which, in one aspect, keeps track of a total number of bytes put on the network as a result of a remote get operation, using a hardware token counter.
MPEG-1 low-cost encoder solution
NASA Astrophysics Data System (ADS)
Grueger, Klaus; Schirrmeister, Frank; Filor, Lutz; von Reventlow, Christian; Schneider, Ulrich; Mueller, Gerriet; Sefzik, Nicolai; Fiedrich, Sven
1995-02-01
A solution for real-time compression of digital YCRCB video data to an MPEG-1 video data stream has been developed. As an additional option, motion JPEG and video telephone streams (H.261) can be generated. For MPEG-1, up to two bidirectional predicted images are supported. The required computational power for motion estimation and DCT/IDCT, memory size and memory bandwidth have been the main challenges. The design uses fast-page-mode memory accesses and requires only one single 80 ns EDO-DRAM with 256 X 16 organization for video encoding. This can be achieved only by using adequate access and coding strategies. The architecture consists of an input processing and filter unit, a memory interface, a motion estimation unit, a motion compensation unit, a DCT unit, a quantization control, a VLC unit and a bus interface. For using the available memory bandwidth by the processing tasks, a fixed schedule for memory accesses has been applied, that can be interrupted for asynchronous events. The motion estimation unit implements a highly sophisticated hierarchical search strategy based on block matching. The DCT unit uses a separated fast-DCT flowgraph realized by a switchable hardware unit for both DCT and IDCT operation. By appropriate multiplexing, only one multiplier is required for: DCT, quantization, inverse quantization, and IDCT. The VLC unit generates the video-stream up to the video sequence layer and is directly coupled with an intelligent bus-interface. Thus, the assembly of video, audio and system data can easily be performed by the host computer. Having a relatively low complexity and only small requirements for DRAM circuits, the developed solution can be applied to low-cost encoding products for consumer electronics.
Yoon, Doe Hyun; Muralimanohar, Naveen; Chang, Jichuan; Ranganthan, Parthasarathy
2017-09-26
A disclosed example method involves performing simultaneous data accesses on at least first and second independently selectable logical sub-ranks to access first data via a wide internal data bus in a memory device. The memory device includes a translation buffer chip, memory chips in independently selectable logical sub-ranks, a narrow external data bus to connect the translation buffer chip to a memory controller, and the wide internal data bus between the translation buffer chip and the memory chips. A data access is performed on only the first independently selectable logical sub-rank to access second data via the wide internal data bus. The example method also involves locating a first portion of the first data, a second portion of the first data, and the second data on the narrow external data bus during separate data transfers.
The Efficiency and the Scalability of an Explicit Operator on an IBM POWER4 System
NASA Technical Reports Server (NTRS)
Frumkin, Michael; Biegel, Bryan A. (Technical Monitor)
2002-01-01
We present an evaluation of the efficiency and the scalability of an explicit CFD operator on an IBM POWER4 system. The POWER4 architecture exhibits a common trend in HPC architectures: boosting CPU processing power by increasing the number of functional units, while hiding the latency of memory access by increasing the depth of the memory hierarchy. The overall machine performance depends on the ability of the caches-buses-fabric-memory to feed the functional units with the data to be processed. In this study we evaluate the efficiency and scalability of one explicit CFD operator on an IBM POWER4. This operator performs computations at the points of a Cartesian grid and involves a few dozen floating point numbers and on the order of 100 floating point operations per grid point. The computations in all grid points are independent. Specifically, we estimate the efficiency of the RHS operator (SP of NPB) on a single processor as the observed/peak performance ratio. Then we estimate the scalability of the operator on a single chip (2 CPUs), a single MCM (8 CPUs), 16 CPUs, and the whole machine (32 CPUs). Then we perform the same measurements for a chache-optimized version of the RHS operator. For our measurements we use the HPM (Hardware Performance Monitor) counters available on the POWER4. These counters allow us to analyze the obtained performance results.
Enabling the High Level Synthesis of Data Analytics Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino
Conventional High Level Synthesis (HLS) tools mainly tar- get compute intensive kernels typical of digital signal pro- cessing applications. We are developing techniques and ar- chitectural templates to enable HLS of data analytics appli- cations. These applications are memory intensive, present fine-grained, unpredictable data accesses, and irregular, dy- namic task parallelism. We discuss an architectural tem- plate based around a distributed controller to efficiently ex- ploit thread level parallelism. We present a memory in- terface that supports parallel memory subsystems and en- ables implementing atomic memory operations. We intro- duce a dynamic task scheduling approach to efficiently ex- ecute heavilymore » unbalanced workload. The templates are val- idated by synthesizing queries from the Lehigh University Benchmark (LUBM), a well know SPARQL benchmark.« less
Scalable quantum memory in the ultrastrong coupling regime.
Kyaw, T H; Felicetti, S; Romero, G; Solano, E; Kwek, L-C
2015-03-02
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances.
Scalable quantum memory in the ultrastrong coupling regime
Kyaw, T. H.; Felicetti, S.; Romero, G.; Solano, E.; Kwek, L.-C.
2015-01-01
Circuit quantum electrodynamics, consisting of superconducting artificial atoms coupled to on-chip resonators, represents a prime candidate to implement the scalable quantum computing architecture because of the presence of good tunability and controllability. Furthermore, recent advances have pushed the technology towards the ultrastrong coupling regime of light-matter interaction, where the qubit-resonator coupling strength reaches a considerable fraction of the resonator frequency. Here, we propose a qubit-resonator system operating in that regime, as a quantum memory device and study the storage and retrieval of quantum information in and from the Z2 parity-protected quantum memory, within experimentally feasible schemes. We are also convinced that our proposal might pave a way to realize a scalable quantum random-access memory due to its fast storage and readout performances. PMID:25727251
Optical memory development. Volume 3: The membrane light value page composer
NASA Technical Reports Server (NTRS)
Cosentino, L. S.; Nagle, E. M.; Stewart, W. C.
1972-01-01
The feasibility of producing a page composer for optical memory systems using thin, deformable, membrane-mirror elements as light valves was investigated. The electromechanical and optical performances of such elements were determined both analytically and experimentally. It was found that fast switching (approximately 10 microseconds), high-contrast (10 or greater), fatigue-free operation over missions of cycles, and efficient utilization of input light could be obtained with membrane light valves. Several arrays of 64 elements were made on substrates with feedthroughs, allowing access to individual elements from the backside of the substrate. Single light valves on such arrays were successfully operated with the transistors designed and produced for selection and storage at each bit location. This simulated the operation of a prototype page composer with semiconductor chips beam-lead bonded to the back of the substrate.
Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw
2015-03-23
Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less
Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon
2016-01-21
Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.
Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A
2012-01-01
In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.
Memory availability and referential access
Johns, Clinton L.; Gordon, Peter C.; Long, Debra L.; Swaab, Tamara Y.
2013-01-01
Most theories of coreference specify linguistic factors that modulate antecedent accessibility in memory; however, whether non-linguistic factors also affect coreferential access is unknown. Here we examined the impact of a non-linguistic generation task (letter transposition) on the repeated-name penalty, a processing difficulty observed when coreferential repeated names refer to syntactically prominent (and thus more accessible) antecedents. In Experiment 1, generation improved online (event-related potentials) and offline (recognition memory) accessibility of names in word lists. In Experiment 2, we manipulated generation and syntactic prominence of antecedent names in sentences; both improved online and offline accessibility, but only syntactic prominence elicited a repeated-name penalty. Our results have three important implications: first, the form of a referential expression interacts with an antecedent’s status in the discourse model during coreference; second, availability in memory and referential accessibility are separable; and finally, theories of coreference must better integrate known properties of the human memory system. PMID:24443621
Efficient Graph Based Assembly of Short-Read Sequences on Hybrid Core Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sczyrba, Alex; Pratap, Abhishek; Canon, Shane
2011-03-22
Advanced architectures can deliver dramatically increased throughput for genomics and proteomics applications, reducing time-to-completion in some cases from days to minutes. One such architecture, hybrid-core computing, marries a traditional x86 environment with a reconfigurable coprocessor, based on field programmable gate array (FPGA) technology. In addition to higher throughput, increased performance can fundamentally improve research quality by allowing more accurate, previously impractical approaches. We will discuss the approach used by Convey?s de Bruijn graph constructor for short-read, de-novo assembly. Bioinformatics applications that have random access patterns to large memory spaces, such as graph-based algorithms, experience memory performance limitations on cache-based x86more » servers. Convey?s highly parallel memory subsystem allows application-specific logic to simultaneously access 8192 individual words in memory, significantly increasing effective memory bandwidth over cache-based memory systems. Many algorithms, such as Velvet and other de Bruijn graph based, short-read, de-novo assemblers, can greatly benefit from this type of memory architecture. Furthermore, small data type operations (four nucleotides can be represented in two bits) make more efficient use of logic gates than the data types dictated by conventional programming models.JGI is comparing the performance of Convey?s graph constructor and Velvet on both synthetic and real data. We will present preliminary results on memory usage and run time metrics for various data sets with different sizes, from small microbial and fungal genomes to very large cow rumen metagenome. For genomes with references we will also present assembly quality comparisons between the two assemblers.« less
On VLSI Design of Rank-Order Filtering using DCRAM Architecture
Lin, Meng-Chun; Dung, Lan-Rong
2009-01-01
This paper addresses on VLSI design of rank-order filtering (ROF) with a maskable memory for real-time speech and image processing applications. Based on a generic bit-sliced ROF algorithm, the proposed design uses a special-defined memory, called the dual-cell random-access memory (DCRAM), to realize major operations of ROF: threshold decomposition and polarization. Using the memory-oriented architecture, the proposed ROF processor can benefit from high flexibility, low cost and high speed. The DCRAM can perform the bit-sliced read, partial write, and pipelined processing. The bit-sliced read and partial write are driven by maskable registers. With recursive execution of the bit-slicing read and partial write, the DCRAM can effectively realize ROF in terms of cost and speed. The proposed design has been implemented using TSMC 0.18 μm 1P6M technology. As shown in the result of physical implementation, the core size is 356.1 × 427.7μm2 and the VLSI implementation of ROF can operate at 256 MHz for 1.8V supply. PMID:19865599
Quantum memories with zero-energy Majorana modes and experimental constraints
NASA Astrophysics Data System (ADS)
Ippoliti, Matteo; Rizzi, Matteo; Giovannetti, Vittorio; Mazza, Leonardo
2016-06-01
In this work we address the problem of realizing a reliable quantum memory based on zero-energy Majorana modes in the presence of experimental constraints on the operations aimed at recovering the information. In particular, we characterize the best recovery operation acting only on the zero-energy Majorana modes and the memory fidelity that can be therewith achieved. In order to understand the effect of such restriction, we discuss two examples of noise models acting on the topological system and compare the amount of information that can be recovered by accessing either the whole system, or the zero modes only, with particular attention to the scaling with the size of the system and the energy gap. We explicitly discuss the case of a thermal bosonic environment inducing a parity-preserving Markovian dynamics in which the memory fidelity achievable via a read-out of the zero modes decays exponentially in time, independent from system size. We argue, however, that even in the presence of said experimental limitations, the Hamiltonian gap is still beneficial to the storage of information.
2010-07-22
dependent , providing a natural bandwidth match between compute cores and the memory subsystem. • High Bandwidth Dcnsity. Waveguides crossing the chip...simulate this memory access architecture on a 2S6-core chip with a concentrated 64-node network lIsing detailed traces of high-performance embedded...memory modulcs, wc placc memory access poi nts (MAPs) around the pcriphery of the chip connected to thc nctwork. These MAPs, shown in Figure 4, contain
Sparse distributed memory: Principles and operation
NASA Technical Reports Server (NTRS)
Flynn, M. J.; Kanerva, P.; Bhadkamkar, N.
1989-01-01
Sparse distributed memory is a generalized random access memory (RAM) for long (1000 bit) binary words. Such words can be written into and read from the memory, and they can also be used to address the memory. The main attribute of the memory is sensitivity to similarity, meaning that a word can be read back not only by giving the original write address but also by giving one close to it as measured by the Hamming distance between addresses. Large memories of this kind are expected to have wide use in speech recognition and scene analysis, in signal detection and verification, and in adaptive control of automated equipment, in general, in dealing with real world information in real time. The memory can be realized as a simple, massively parallel computer. Digital technology has reached a point where building large memories is becoming practical. Major design issues were resolved which were faced in building the memories. The design is described of a prototype memory with 256 bit addresses and from 8 to 128 K locations for 256 bit words. A key aspect of the design is extensive use of dynamic RAM and other standard components.
NASA Astrophysics Data System (ADS)
Ishii, Yuichiro; Tanaka, Miki; Yabuuchi, Makoto; Sawada, Yohei; Tanaka, Shinji; Nii, Koji; Lu, Tien Yu; Huang, Chun Hsien; Sian Chen, Shou; Tse Kuo, Yu; Lung, Ching Cheng; Cheng, Osbert
2018-04-01
We propose a highly symmetrical 10 transistor (10T) 2-read/write (2RW) dual-port (DP) static random access memory (SRAM) bitcell in 28 nm high-k/metal-gate (HKMG) planar bulk CMOS. It replaces the conventional 8T 2RW DP SRAM bitcell without any area overhead. It significantly improves the robustness of process variations and an asymmetric issue between the true and bar bitline pairs. Measured data show that read current (I read) and read static noise margin (SNM) are respectively boosted by +20% and +15 mV by introducing the proposed bitcell with enlarged pull-down (PD) and pass-gate (PG) N-channel MOSs (NMOSs). The minimum operating voltage (V min) of the proposed 256 kbit 10T DP SRAM is 0.53 V in the TT process, 25 °C under the worst access condition with read/write disturbances, and improved by 90 mV (15%) compared with the conventional one.
The dynamic interplay between acute psychosocial stress, emotion and autobiographical memory.
Sheldon, Signy; Chu, Sonja; Nitschke, Jonas P; Pruessner, Jens C; Bartz, Jennifer A
2018-06-06
Although acute psychosocial stress can impact autobiographical memory retrieval, the nature of this effect is not entirely clear. One reason for this ambiguity is because stress can have opposing effects on the different stages of autobiographical memory retrieval. We addressed this issue by testing how acute stress affects three stages of the autobiographical memory retrieval - accessing, recollecting and reconsolidating a memory. We also investigate the influence of emotion valence on this effect. In a between-subjects design, participants were first exposed to an acute psychosocial stressor or a control task. Next, the participants were shown positive, negative or neutral retrieval cues and asked to access and describe autobiographical memories. After a three to four day delay, participants returned for a second session in which they described these autobiographical memories. During initial retrieval, stressed participants were slower to access memories than were control participants; moreover, cortisol levels were positively associated with response times to access positively-cued memories. There were no effects of stress on the amount of details used to describe memories during initial retrieval, but stress did influence memory detail during session two. During session two, stressed participants recovered significantly more details, particularly emotional ones, from the remembered events than control participants. Our results indicate that the presence of stress impairs the ability to access consolidated autobiographical memories; moreover, although stress has no effect on memory recollection, stress alters how recollected experiences are reconsolidated back into memory traces.
Non-volatile, high density, high speed, Micromagnet-Hall effect Random Access Memory (MHRAM)
NASA Technical Reports Server (NTRS)
Wu, Jiin C.; Katti, Romney R.; Stadler, Henry L.
1991-01-01
The micromagnetic Hall effect random access memory (MHRAM) has the potential of replacing ROMs, EPROMs, EEPROMs, and SRAMs because of its ability to achieve non-volatility, radiation hardness, high density, and fast access times, simultaneously. Information is stored magnetically in small magnetic elements (micromagnets), allowing unlimited data retention time, unlimited numbers of rewrite cycles, and inherent radiation hardness and SEU immunity, making the MHRAM suitable for ground based as well as spaceflight applications. The MHRAM device design is not affected by areal property fluctuations in the micromagnet, so high operating margins and high yield can be achieved in large scale integrated circuit (IC) fabrication. The MHRAM has short access times (less than 100 nsec). Write access time is short because on-chip transistors are used to gate current quickly, and magnetization reversal in the micromagnet can occur in a matter of a few nanoseconds. Read access time is short because the high electron mobility sensor (InAs or InSb) produces a large signal voltage in response to the fringing magnetic field from the micromagnet. High storage density is achieved since a unit cell consists only of two transistors and one micromagnet Hall effect element. By comparison, a DRAM unit cell has one transistor and one capacitor, and a SRAM unit cell has six transistors.
A Comparison of the Two Leading Electronic Braille Notetakers.
ERIC Educational Resources Information Center
Leventhal, J. D.; Uslan, M. M.
1992-01-01
Comparison of two electronic braille notetakers found that the Braille 'n Speak was less expensive, easier to learn, and easier for both experienced users and beginners to operate than the BrailleMate, though the BrailleMate offers a unique alternative by including a braille display and a Random Access Memory card storage system. (JDD)
Frenken, Marius; Berti, Stefan
2018-04-01
Working memory enables humans to maintain selected information for cognitive processes and ensures instant access to the memorized contents. Theories suggest that switching the focus of attention between items within working memory realizes the access. This is reflected in object-switching costs in response times when the item for the task processing is to be changed. Another correlate of attentional allocation in working memory is the P3a-component of the human event-related potential. The aim of this study was to demonstrate that switching of attention within working memory is a separable processing step. Participants completed a cued memory-updating task in which they were instructed to update one memory item at a time out of a memory list of four digits by applying a mathematical operation indicated by a target sign. The hypotheses predicted (1) prolonged updating times in switch (different item compared to previous trial) versus repetition trials (same item), (2) an influence of cues (valid/neutral) presented before the mathematical target on switching costs, and (3) that the P3a-component is more pronounced in the cue-target interval in the valid cue condition and more pronounced in the post-target interval in the neutral cue condition. A student's t-test verified the first hypothesis, repeated-measurement analyses of variance demonstrated that hypotheses 2 and 3 should be rejected. Results suggest that switching of attention within working memory could not be separated from further processing steps and retro-cue benefits are not due to a head start of retrieval as well as that switch costs represent internal processes. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zellmann, Stefan; Percan, Yvonne; Lang, Ulrich
2015-01-01
Reconstruction of 2-d image primitives or of 3-d volumetric primitives is one of the most common operations performed by the rendering components of modern visualization systems. Because this operation is often aided by GPUs, reconstruction is typically restricted to first-order interpolation. With the advent of in situ visualization, the assumption that rendering algorithms are in general executed on GPUs is however no longer adequate. We thus propose a framework that provides versatile texture filtering capabilities: up to third-order reconstruction using various types of cubic filtering and interpolation primitives; cache-optimized algorithms that integrate seamlessly with GPGPU rendering or with software rendering that was optimized for cache-friendly "Structure of Array" (SoA) access patterns; a memory management layer (MML) that gracefully hides the complexities of extra data copies necessary for memory access optimizations such as swizzling, for rendering on GPGPUs, or for reconstruction schemes that rely on pre-filtered data arrays. We prove the effectiveness of our software architecture by integrating it into and validating it using the open source direct volume rendering (DVR) software DeskVOX.
ERIC Educational Resources Information Center
Oberauer, Klaus; Bialkova, Svetlana
2009-01-01
Processing information in working memory requires selective access to a subset of working-memory contents by a focus of attention. Complex cognition often requires joint access to 2 items in working memory. How does the focus select 2 items? Two experiments with an arithmetic task and 1 with a spatial task investigate time demands for successive…
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-13
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination Affirming a Final Initial Determination..., and the sale within the United States after importation of certain static random access memories and...
Davis, J T
2001-06-01
The author reviews a contemporary cognitive psychology perspective on memory that views memory as being composed of multiple separate systems. Most researchers draw a fundamental distinction between declarative/explicit and non-declarative/implicit forms of memory. Declarative memory is responsible for the conscious recollection of facts and events--what is typically meant by the everyday and the common psychoanalytic use of the word 'memory'. Non-declarative forms of memory, in contrast, are specialised processes that influence experience and behaviour without representing the past in terms of any consciously accessible content. They operate outside of an individual's awareness, but are not repressed or otherwise dynamically unconscious. Using this theoretical framework, the question of how childhood relationship experiences are carried forward from the past to influence the present is examined. It is argued that incorporating a conceptualisation of non-declarative memory processing into psychoanalytic theory is essential. Non-declarative memory processes are capable of forming complex and sophisticated representations of the interpersonal world. These non-declarative memory processes exert a major impact on interpersonal experience and behaviour that needs to be analysed on its own terms and not mistakenly viewed as a form of resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dae Yun; Lee, Tae-Ho; Kim, Tae Geun, E-mail: tgkim1@korea.ac.kr
The authors report an improvement in resistive switching (RS) characteristics of amorphous indium-gallium-zinc-oxide (a-IGZO)-based resistive random access memory devices using hydrogen post-annealing. Because this a-IGZO thin film has oxygen off-stoichiometry in the form of deficient and excessive oxygen sites, the film properties can be improved by introducing hydrogen atoms through the annealing process. After hydrogen post-annealing, the device exhibited a stable bipolar RS, low-voltage set and reset operation, long retention (>10{sup 5 }s), good endurance (>10{sup 6} cycles), and a narrow distribution in each current state. The effect of hydrogen post-annealing is also investigated by analyzing the sample surface using X-raymore » photon spectroscopy and atomic force microscopy.« less
Giovannetti, Vittorio; Lloyd, Seth; Maccone, Lorenzo
2008-04-25
A random access memory (RAM) uses n bits to randomly address N=2(n) distinct memory cells. A quantum random access memory (QRAM) uses n qubits to address any quantum superposition of N memory cells. We present an architecture that exponentially reduces the requirements for a memory call: O(logN) switches need be thrown instead of the N used in conventional (classical or quantum) RAM designs. This yields a more robust QRAM algorithm, as it in general requires entanglement among exponentially less gates, and leads to an exponential decrease in the power needed for addressing. A quantum optical implementation is presented.
Implementation of collisions on GPU architecture in the Vorpal code
NASA Astrophysics Data System (ADS)
Leddy, Jarrod; Averkin, Sergey; Cowan, Ben; Sides, Scott; Werner, Greg; Cary, John
2017-10-01
The Vorpal code contains a variety of collision operators allowing for the simulation of plasmas containing multiple charge species interacting with neutrals, background gas, and EM fields. These existing algorithms have been improved and reimplemented to take advantage of the massive parallelization allowed by GPU architecture. The use of GPUs is most effective when algorithms are single-instruction multiple-data, so particle collisions are an ideal candidate for this parallelization technique due to their nature as a series of independent processes with the same underlying operation. This refactoring required data memory reorganization and careful consideration of device/host data allocation to minimize memory access and data communication per operation. Successful implementation has resulted in an order of magnitude increase in simulation speed for a test-case involving multiple binary collisions using the null collision method. Work supported by DARPA under contract W31P4Q-16-C-0009.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-792] Certain Static Random Access Memories and Products Containing Same; Commission Determination To Review in Part a Final Initial... States after importation of certain static random access memories and products containing the same by...
NASA Astrophysics Data System (ADS)
Ogasawara, Ryosuke; Endoh, Tetsuo
2018-04-01
In this study, with the aim to achieve a wide noise margin and an excellent power delay product (PDP), a vertical body channel (BC)-MOSFET-based six-transistor (6T) static random access memory (SRAM) array is evaluated by changing the number of pillars in each part of a SRAM cell, that is, by changing the cell ratio in the SRAM cell. This 60 nm vertical BC-MOSFET-based 6T SRAM array realizes 0.84 V operation under the best PDP and up to 31% improvement of PDP compared with the 6T SRAM array based on a 90 nm planar MOSFET whose gate length and channel width are the same as those of the 60 nm vertical BC-MOSFET. Additionally, the vertical BC-MOSFET-based 6T SRAM array achieves an 8.8% wider read static noise margin (RSNM), a 16% wider write margin (WM), and an 89% smaller leakage. Moreover, it is shown that changing the cell ratio brings larger improvements of RSNM, WM, and write time in the vertical BC-MOSFET-based 6T SRAM array.
Low latency and persistent data storage
Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd E
2014-02-18
Persistent data storage is provided by a method that includes receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS.
Fast and Efficient XML Data Access for Next-Generation Mass Spectrometry
Röst, Hannes L.; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2015-01-01
Motivation In mass spectrometry-based proteomics, XML formats such as mzML and mzXML provide an open and standardized way to store and exchange the raw data (spectra and chromatograms) of mass spectrometric experiments. These file formats are being used by a multitude of open-source and cross-platform tools which allow the proteomics community to access algorithms in a vendor-independent fashion and perform transparent and reproducible data analysis. Recent improvements in mass spectrometry instrumentation have increased the data size produced in a single LC-MS/MS measurement and put substantial strain on open-source tools, particularly those that are not equipped to deal with XML data files that reach dozens of gigabytes in size. Results Here we present a fast and versatile parsing library for mass spectrometric XML formats available in C++ and Python, based on the mature OpenMS software framework. Our library implements an API for obtaining spectra and chromatograms under memory constraints using random access or sequential access functions, allowing users to process datasets that are much larger than system memory. For fast access to the raw data structures, small XML files can also be completely loaded into memory. In addition, we have improved the parsing speed of the core mzML module by over 4-fold (compared to OpenMS 1.11), making our library suitable for a wide variety of algorithms that need fast access to dozens of gigabytes of raw mass spectrometric data. Availability Our C++ and Python implementations are available for the Linux, Mac, and Windows operating systems. All proposed modifications to the OpenMS code have been merged into the OpenMS mainline codebase and are available to the community at https://github.com/OpenMS/OpenMS. PMID:25927999
System and method for programmable bank selection for banked memory subsystems
Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Hoenicke, Dirk; Ohmacht, Martin; Salapura, Valentina; Sugavanam, Krishnan
2010-09-07
A programmable memory system and method for enabling one or more processor devices access to shared memory in a computing environment, the shared memory including one or more memory storage structures having addressable locations for storing data. The system comprises: one or more first logic devices associated with a respective one or more processor devices, each first logic device for receiving physical memory address signals and programmable for generating a respective memory storage structure select signal upon receipt of pre-determined address bit values at selected physical memory address bit locations; and, a second logic device responsive to each of the respective select signal for generating an address signal used for selecting a memory storage structure for processor access. The system thus enables each processor device of a computing environment memory storage access distributed across the one or more memory storage structures.
Carbon nanomaterials for non-volatile memories
NASA Astrophysics Data System (ADS)
Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric
2018-03-01
Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.
NASA Astrophysics Data System (ADS)
Natsui, Masanori; Hanyu, Takahiro
2018-04-01
In realizing a nonvolatile microcontroller unit (MCU) for sensor nodes in Internet-of-Things (IoT) applications, it is important to solve the data-transfer bottleneck between the central processing unit (CPU) and the nonvolatile memory constituting the MCU. As one circuit-oriented approach to solving this problem, we propose a memory access minimization technique for magnetoresistive-random-access-memory (MRAM)-embedded nonvolatile MCUs. In addition to multiplexing and prefetching of memory access, the proposed technique realizes efficient instruction fetch by eliminating redundant memory access while considering the code length of the instruction to be fetched and the transition of the memory address to be accessed. As a result, the performance of the MCU can be improved while relaxing the performance requirement for the embedded MRAM, and compact and low-power implementation can be performed as compared with the conventional cache-based one. Through the evaluation using a system consisting of a general purpose 32-bit CPU and embedded MRAM, it is demonstrated that the proposed technique increases the peak efficiency of the system up to 3.71 times, while a 2.29-fold area reduction is achieved compared with the cache-based one.
Forming free and ultralow-power erase operation in atomically crystal TiO2 resistive switching
NASA Astrophysics Data System (ADS)
Dai, Yawei; Bao, Wenzhong; Hu, Linfeng; Liu, Chunsen; Yan, Xiao; Chen, Lin; Sun, Qingqing; Ding, Shijin; Zhou, Peng; Zhang, David Wei
2017-06-01
Two-dimensional layered materials (2DLMs) have attracted broad interest from fundamental sciences to industrial applications. Their applications in memory devices have been demonstrated, yet much still remains to explore optimal materials and device structure for practical application. In this work, a forming-free, bipolar resistive switching behavior are demonstrated in 2D TiO2-based resistive random access memory (RRAM). Physical adsorption method is adopted to achieve high quality, continuous 2D TiO2 network efficiently. The 2D TiO2 RRAM devices exhibit superior properties such as fast switching capability (20 ns of erase operation) and extremely low erase energy consumption (0.16 fJ). Furthermore, the resistive switching mechanism is attributed to the formation and rupture of oxygen vacancies-based percolation path in 2D TiO2 crystals. Our results pave the way for the implementation of high performance 2DLMs-based RRAM in the next generation non-volatile memory (NVM) application.
Non-Markovian quantum processes: Complete framework and efficient characterization
NASA Astrophysics Data System (ADS)
Pollock, Felix A.; Rodríguez-Rosario, César; Frauenheim, Thomas; Paternostro, Mauro; Modi, Kavan
2018-01-01
Currently, there is no systematic way to describe a quantum process with memory solely in terms of experimentally accessible quantities. However, recent technological advances mean we have control over systems at scales where memory effects are non-negligible. The lack of such an operational description has hindered advances in understanding physical, chemical, and biological processes, where often unjustified theoretical assumptions are made to render a dynamical description tractable. This has led to theories plagued with unphysical results and no consensus on what a quantum Markov (memoryless) process is. Here, we develop a universal framework to characterize arbitrary non-Markovian quantum processes. We show how a multitime non-Markovian process can be reconstructed experimentally, and that it has a natural representation as a many-body quantum state, where temporal correlations are mapped to spatial ones. Moreover, this state is expected to have an efficient matrix-product-operator form in many cases. Our framework constitutes a systematic tool for the effective description of memory-bearing open-system evolutions.
Ultra-High Density Holographic Memory Module with Solid-State Architecture
NASA Technical Reports Server (NTRS)
Markov, Vladimir B.
2000-01-01
NASA's terrestrial. space, and deep-space missions require technology that allows storing. retrieving, and processing a large volume of information. Holographic memory offers high-density data storage with parallel access and high throughput. Several methods exist for data multiplexing based on the fundamental principles of volume hologram selectivity. We recently demonstrated that a spatial (amplitude-phase) encoding of the reference wave (SERW) looks promising as a way to increase the storage density. The SERW hologram offers a method other than traditional methods of selectivity, such as spatial de-correlation between recorded and reconstruction fields, In this report we present the experimental results of the SERW-hologram memory module with solid-state architecture, which is of particular interest for space operations.
A low-voltage sense amplifier with two-stage operational amplifier clamping for flash memory
NASA Astrophysics Data System (ADS)
Guo, Jiarong
2017-04-01
A low-voltage sense amplifier with reference current generator utilizing two-stage operational amplifier clamp structure for flash memory is presented in this paper, capable of operating with minimum supply voltage at 1 V. A new reference current generation circuit composed of a reference cell and a two-stage operational amplifier clamping the drain pole of the reference cell is used to generate the reference current, which avoids the threshold limitation caused by current mirror transistor in the traditional sense amplifier. A novel reference voltage generation circuit using dummy bit-line structure without pull-down current is also adopted, which not only improves the sense window enhancing read precision but also saves power consumption. The sense amplifier was implemented in a flash realized in 90 nm flash technology. Experimental results show the access time is 14.7 ns with power supply of 1.2 V and slow corner at 125 °C. Project supported by the National Natural Science Fundation of China (No. 61376028).
Development of non-volatile semiconductor memory
NASA Technical Reports Server (NTRS)
Heikkila, W. W.
1979-01-01
A 256 word by 8-bit random access memory chip was developed utilizing p channel, metal gate metal-nitride-oxide-silicon (MNOS) technology; with operational characteristics of a 2.5 microsecond read cycle, a 6.0 microsecond write cycle, 800 milliwatts of power dissipation; and retention characteristics of 10 to the 8th power read cycles before data refresh and 5000 hours of no power retention. Design changes were implemented to reduce switching currents that caused parasitic bipolar transistors inherent in the MNOS structure to turn on. Final wafer runs exhibited acceptable yields for a die 250 mils on a side. Evaluation testing was performed on the device in order to determine the maturity of the device. A fixed gate breakdown mechanism was found when operated continuously at high temperature.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-13
... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory... administrative review of the countervailing duty order on dynamic random access memory semiconductors from the... following events have occurred since the publication of the preliminary results of this review. See Dynamic...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-20
... DEPARTMENT OF COMMERCE International Trade Administration [C-580-851] Dynamic Random Access Memory Semiconductors from the Republic of Korea: Extension of Time Limit for Preliminary Results of Countervailing Duty... access memory semiconductors from the Republic of Korea, covering the period January 1, 2008 through...
Accessibility versus Accuracy in Retrieving Spatial Memory: Evidence for Suboptimal Assumed Headings
ERIC Educational Resources Information Center
Yerramsetti, Ashok; Marchette, Steven A.; Shelton, Amy L.
2013-01-01
Orientation dependence in spatial memory has often been interpreted in terms of accessibility: Object locations are encoded relative to a reference orientation that affords the most accurate access to spatial memory. An open question, however, is whether people naturally use this "preferred" orientation whenever recalling the space. We…
Conductance Quantization in Resistive Random Access Memory
NASA Astrophysics Data System (ADS)
Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming
2015-10-01
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Conductance Quantization in Resistive Random Access Memory.
Li, Yang; Long, Shibing; Liu, Yang; Hu, Chen; Teng, Jiao; Liu, Qi; Lv, Hangbing; Suñé, Jordi; Liu, Ming
2015-12-01
The intrinsic scaling-down ability, simple metal-insulator-metal (MIM) sandwich structure, excellent performances, and complementary metal-oxide-semiconductor (CMOS) technology-compatible fabrication processes make resistive random access memory (RRAM) one of the most promising candidates for the next-generation memory. The RRAM device also exhibits rich electrical, thermal, magnetic, and optical effects, in close correlation with the abundant resistive switching (RS) materials, metal-oxide interface, and multiple RS mechanisms including the formation/rupture of nanoscale to atomic-sized conductive filament (CF) incorporated in RS layer. Conductance quantization effect has been observed in the atomic-sized CF in RRAM, which provides a good opportunity to deeply investigate the RS mechanism in mesoscopic dimension. In this review paper, the operating principles of RRAM are introduced first, followed by the summarization of the basic conductance quantization phenomenon in RRAM and the related RS mechanisms, device structures, and material system. Then, we discuss the theory and modeling of quantum transport in RRAM. Finally, we present the opportunities and challenges in quantized RRAM devices and our views on the future prospects.
Low latency and persistent data storage
Fitch, Blake G; Franceschini, Michele M; Jagmohan, Ashish; Takken, Todd
2014-11-04
Persistent data storage is provided by a computer program product that includes computer program code configured for receiving a low latency store command that includes write data. The write data is written to a first memory device that is implemented by a nonvolatile solid-state memory technology characterized by a first access speed. It is acknowledged that the write data has been successfully written to the first memory device. The write data is written to a second memory device that is implemented by a volatile memory technology. At least a portion of the data in the first memory device is written to a third memory device when a predetermined amount of data has been accumulated in the first memory device. The third memory device is implemented by a nonvolatile solid-state memory technology characterized by a second access speed that is slower than the first access speed.
More than a feeling: Emotional cues impact the access and experience of autobiographical memories.
Sheldon, Signy; Donahue, Julia
2017-07-01
Remembering is impacted by several factors of retrieval, including the emotional content of a memory cue. Here we tested how musical retrieval cues that differed on two dimensions of emotion-valence (positive and negative) and arousal (high and low)-impacted the following aspects of autobiographical memory recall: the response time to access a past personal event, the experience of remembering (ratings of memory vividness), the emotional content of a cued memory (ratings of event arousal and valence), and the type of event recalled (ratings of event energy, socialness, and uniqueness). We further explored how cue presentation affected autobiographical memory retrieval by administering cues of similar arousal and valence levels in a blocked fashion to one half of the tested participants, and randomly to the other half. We report three main findings. First, memories were accessed most quickly in response to musical cues that were highly arousing and positive in emotion. Second, we observed a relation between a cue and the elicited memory's emotional valence but not arousal; however, both the cue valence and arousal related to the nature of the recalled event. Specifically, high cue arousal led to lower memory vividness and uniqueness ratings, but cues with both high arousal and positive valence were associated with memories rated as more social and energetic. Finally, cue presentation impacted both how quickly and specifically memories were accessed and how cue valence affected the memory vividness ratings. The implications of these findings for views of how emotion directs the access to memories and the experience of remembering are discussed.
Data systems and computer science programs: Overview
NASA Technical Reports Server (NTRS)
Smith, Paul H.; Hunter, Paul
1991-01-01
An external review of the Integrated Technology Plan for the Civil Space Program is presented. The topics are presented in viewgraph form and include the following: onboard memory and storage technology; advanced flight computers; special purpose flight processors; onboard networking and testbeds; information archive, access, and retrieval; visualization; neural networks; software engineering; and flight control and operations.
Optical memories in digital computing
NASA Technical Reports Server (NTRS)
Alford, C. O.; Gaylord, T. K.
1979-01-01
High capacity optical memories with relatively-high data-transfer rate and multiport simultaneous access capability may serve as basis for new computer architectures. Several computer structures that might profitably use memories are: a) simultaneous record-access system, b) simultaneously-shared memory computer system, and c) parallel digital processing structure.
Price, John M.; Colflesh, Gregory J. H.; Cerella, John; Verhaeghen, Paul
2014-01-01
We investigated the effects of 10 hours of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. PMID:24486803
How intention and monitoring your thoughts influence characteristics of autobiographical memories.
Barzykowski, Krystian; Staugaard, Søren Risløv
2018-05-01
Involuntary autobiographical memories come to mind effortlessly and unintended, but the mechanisms of their retrieval are not fully understood. We hypothesize that involuntary retrieval depends on memories that are highly accessible (e.g., intense, unusual, recent, rehearsed), while the elaborate search that characterizes voluntary retrieval also produces memories that are mundane, repeated or distant - memories with low accessibility. Previous research provides some evidence for this 'threshold hypothesis'. However, in almost every prior study, participants have been instructed to report only memories while ignoring other thoughts. It is possible that such an instruction can modify the phenomenological characteristics of involuntary memories. This study aimed to investigate the effects of retrieval intentionality (i.e., wanting to retrieve a memory) and selective monitoring (i.e., instructions to report only memories) on the phenomenology of autobiographical memories. Participants were instructed to (1) intentionally retrieve autobiographical memories, (2) intentionally retrieve any type of thought (3) wait for an autobiographical memory to spontaneously appear, or (4) wait for any type of thought to spontaneously appear. They rated the mental content on a number of phenomenological characteristics both during retrieval and retrospectively following retrieval. The results support the prediction that highly accessible memories mostly enter awareness unintended and without selective monitoring, while memories with low accessibility rely on intention and selective monitoring. We discuss the implications of these effects. © 2017 The British Psychological Society.
INM. Integrated Noise Model Version 4.11. User’s Guide - Supplement
1993-12-01
KB of Random Access Memory (RAM) or 3 MB of RAM, if operating the INM from a RAM disk, as discussed in Section 1.2.1 below; 0 Math co-processor, Series... accessible from the Data Base using the ACDB11.EXE computer program, supplied with the Version 4.11 release. With the exception of INM airplane numbers 1, 6...9214 10760 -- -.-- 27 7053 6215 9470 10703 --- --- - 28 SS7 5940 SS94 729S . ... ... 29 4223 4884 7897 9214 10760 ..... 30 sots 6474 7939 8774
Operating System For Numerically Controlled Milling Machine
NASA Technical Reports Server (NTRS)
Ray, R. B.
1992-01-01
OPMILL program is operating system for Kearney and Trecker milling machine providing fast easy way to program manufacture of machine parts with IBM-compatible personal computer. Gives machinist "equation plotter" feature, which plots equations that define movements and converts equations to milling-machine-controlling program moving cutter along defined path. System includes tool-manager software handling up to 25 tools and automatically adjusts to account for each tool. Developed on IBM PS/2 computer running DOS 3.3 with 1 MB of random-access memory.
NAS technical summaries: Numerical aerodynamic simulation program, March 1991 - February 1992
NASA Technical Reports Server (NTRS)
1992-01-01
NASA created the Numerical Aerodynamic Simulation (NAS) Program in 1987 to focus resources on solving critical problems in aeroscience and related disciplines by utilizing the power of the most advanced supercomputers available. The NAS Program provides scientists with the necessary computing power to solve today's most demanding computational fluid dynamics problems and serves as a pathfinder in integrating leading-edge supercomputing technologies, thus benefiting other supercomputer centers in Government and industry. This report contains selected scientific results from the 1991-92 NAS Operational Year, March 4, 1991 to March 3, 1992, which is the fifth year of operation. During this year, the scientific community was given access to a Cray-2 and a Cray Y-MP. The Cray-2, the first generation supercomputer, has four processors, 256 megawords of central memory, and a total sustained speed of 250 million floating point operations per second. The Cray Y-MP, the second generation supercomputer, has eight processors and a total sustained speed of one billion floating point operations per second. Additional memory was installed this year, doubling capacity from 128 to 256 megawords of solid-state storage-device memory. Because of its higher performance, the Cray Y-MP delivered approximately 77 percent of the total number of supercomputer hours used during this year.
High speed magneto-resistive random access memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor); Katti, Romney R. (Inventor)
1992-01-01
A high speed read MRAM memory element is configured from a sandwich of magnetizable, ferromagnetic film surrounding a magneto-resistive film which may be ferromagnetic or not. One outer ferromagnetic film has a higher coercive force than the other and therefore remains magnetized in one sense while the other may be switched in sense by a switching magnetic field. The magneto-resistive film is therefore sensitive to the amplitude of the resultant field between the outer ferromagnetic films and may be constructed of a high resistivity, high magneto-resistive material capable of higher sensing currents. This permits higher read voltages and therefore faster read operations. Alternate embodiments with perpendicular anisotropy, and in-plane anisotropy are shown, including an embodiment which uses high permeability guides to direct the closing flux path through the magneto-resistive material. High density, high speed, radiation hard, memory matrices may be constructed from these memory elements.
Historical Contingency in Controlled Evolution
NASA Astrophysics Data System (ADS)
Schuster, Peter
2014-12-01
A basic question in evolution is dealing with the nature of an evolutionary memory. At thermodynamic equilibrium, at stable stationary states or other stable attractors the memory on the path leading to the long-time solution is erased, at least in part. Similar arguments hold for unique optima. Optimality in biology is discussed on the basis of microbial metabolism. Biology, on the other hand, is characterized by historical contingency, which has recently become accessible to experimental test in bacterial populations evolving under controlled conditions. Computer simulations give additional insight into the nature of the evolutionary memory, which is ultimately caused by the enormous space of possibilities that is so large that it escapes all attempts of visualization. In essence, this contribution is dealing with two questions of current evolutionary theory: (i) Are organisms operating at optimal performance? and (ii) How is the evolutionary memory built up in populations?
Gara, Alan; Ohmacht, Martin
2014-09-16
In a multiprocessor system with at least two levels of cache, a speculative thread may run on a core processor in parallel with other threads. When the thread seeks to do a write to main memory, this access is to be written through the first level cache to the second level cache. After the write though, the corresponding line is deleted from the first level cache and/or prefetch unit, so that any further accesses to the same location in main memory have to be retrieved from the second level cache. The second level cache keeps track of multiple versions of data, where more than one speculative thread is running in parallel, while the first level cache does not have any of the versions during speculation. A switch allows choosing between modes of operation of a speculation blind first level cache.
Blocksome, Michael A.; Mamidala, Amith R.
2015-07-07
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Blocksome, Michael A.; Mamidala, Amith R.
2015-07-14
Fencing direct memory access (`DMA`) data transfers in a parallel active messaging interface (`PAMI`) of a parallel computer, the PAMI including data communications endpoints, each endpoint including specifications of a client, a context, and a task, the endpoints coupled for data communications through the PAMI and through DMA controllers operatively coupled to a deterministic data communications network through which the DMA controllers deliver data communications deterministically, including initiating execution through the PAMI of an ordered sequence of active DMA instructions for DMA data transfers between two endpoints, effecting deterministic DMA data transfers through a DMA controller and the deterministic data communications network; and executing through the PAMI, with no FENCE accounting for DMA data transfers, an active FENCE instruction, the FENCE instruction completing execution only after completion of all DMA instructions initiated prior to execution of the FENCE instruction for DMA data transfers between the two endpoints.
Low latency, high bandwidth data communications between compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.; Ratterman, Joseph D.; Smith, Brian E.
2010-11-02
Methods, parallel computers, and computer program products are disclosed for low latency, high bandwidth data communications between compute nodes in a parallel computer. Embodiments include receiving, by an origin direct memory access (`DMA`) engine of an origin compute node, data for transfer to a target compute node; sending, by the origin DMA engine of the origin compute node to a target DMA engine on the target compute node, a request to send (`RTS`) message; transferring, by the origin DMA engine, a predetermined portion of the data to the target compute node using memory FIFO operation; determining, by the origin DMA engine whether an acknowledgement of the RTS message has been received from the target DMA engine; if the an acknowledgement of the RTS message has not been received, transferring, by the origin DMA engine, another predetermined portion of the data to the target compute node using a memory FIFO operation; and if the acknowledgement of the RTS message has been received by the origin DMA engine, transferring, by the origin DMA engine, any remaining portion of the data to the target compute node using a direct put operation.
A comparison of the Cray-2 performance before and after the installation of memory pseudo-banking
NASA Technical Reports Server (NTRS)
Schmickley, Ronald D.; Bailey, David H.
1987-01-01
A suite of 13 large Fortran benchmark codes were run on a Cray-2 configured with memory pseudo-banking circuits, and floating point operation rates were measured for each under a variety of system load configurations. These were compared with similar flop measurements taken on the same system before installation of the pseudo-banking. A useful memory access efficiency parameter was defined and calculated for both sets of performance rates, allowing a crude quantitative measure of the improvement in efficiency due to pseudo-banking. Programs were categorized as either highly scalar (S) or highly vectorized (V) and either memory-intensive or register-intensive, giving 4 categories: S-memory, S-register, V-memory, and V-register. Using flop rates as a simple quantifier of these 4 categories, a scatter plot of efficiency gain vs Mflops roughly illustrates the improvement in floating point processing speed due to pseudo-banking. On the Cray-2 system tested this improvement ranged from 1 percent for S-memory codes to about 12 percent for V-memory codes. No significant gains were made for V-register codes, which was to be expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gala, Alan; Ohmacht, Martin
A multiprocessor system includes nodes. Each node includes a data path that includes a core, a TLB, and a first level cache implementing disambiguation. The system also includes at least one second level cache and a main memory. For thread memory access requests, the core uses an address associated with an instruction format of the core. The first level cache uses an address format related to the size of the main memory plus an offset corresponding to hardware thread meta data. The second level cache uses a physical main memory address plus software thread meta data to store the memorymore » access request. The second level cache accesses the main memory using the physical address with neither the offset nor the thread meta data after resolving speculation. In short, this system includes mapping of a virtual address to a different physical addresses for value disambiguation for different threads.« less
Is random access memory random?
NASA Technical Reports Server (NTRS)
Denning, P. J.
1986-01-01
Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.
Distributed multiport memory architecture
NASA Technical Reports Server (NTRS)
Kohl, W. H. (Inventor)
1983-01-01
A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.
Support for Diagnosis of Custom Computer Hardware
NASA Technical Reports Server (NTRS)
Molock, Dwaine S.
2008-01-01
The Coldfire SDN Diagnostics software is a flexible means of exercising, testing, and debugging custom computer hardware. The software is a set of routines that, collectively, serve as a common software interface through which one can gain access to various parts of the hardware under test and/or cause the hardware to perform various functions. The routines can be used to construct tests to exercise, and verify the operation of, various processors and hardware interfaces. More specifically, the software can be used to gain access to memory, to execute timer delays, to configure interrupts, and configure processor cache, floating-point, and direct-memory-access units. The software is designed to be used on diverse NASA projects, and can be customized for use with different processors and interfaces. The routines are supported, regardless of the architecture of a processor that one seeks to diagnose. The present version of the software is configured for Coldfire processors on the Subsystem Data Node processor boards of the Solar Dynamics Observatory. There is also support for the software with respect to Mongoose V, RAD750, and PPC405 processors or their equivalents.
Direct Observation of a Carbon Filament in Water-Resistant Organic Memory.
Lee, Byung-Hyun; Bae, Hagyoul; Seong, Hyejeong; Lee, Dong-Il; Park, Hongkeun; Choi, Young Joo; Im, Sung-Gap; Kim, Sang Ouk; Choi, Yang-Kyu
2015-07-28
The memory for the Internet of Things (IoT) requires versatile characteristics such as flexibility, wearability, and stability in outdoor environments. Resistive random access memory (RRAM) to harness a simple structure and organic material with good flexibility can be an attractive candidate for IoT memory. However, its solution-oriented process and unclear switching mechanism are critical problems. Here we demonstrate iCVD polymer-intercalated RRAM (i-RRAM). i-RRAM exhibits robust flexibility and versatile wearability on any substrate. Stable operation of i-RRAM, even in water, is demonstrated, which is the first experimental presentation of water-resistant organic memory without any waterproof protection package. Moreover, the direct observation of a carbon filament is also reported for the first time using transmission electron microscopy, which puts an end to the controversy surrounding the switching mechanism. Therefore, reproducibility is feasible through comprehensive modeling. Furthermore, a carbon filament is superior to a metal filament in terms of the design window and selection of the electrode material. These results suggest an alternative to solve the critical issues of organic RRAM and an optimized memory type suitable for the IoT era.
Operational Exercise Integration Recommendations for DoD Cyber Ranges
2015-08-05
be the precision and recall of a security information and event management (SIEM) system ’s notifications of unauthorized access to that directory...network traffic, port scanning Deplete Resources TCP flooding, memory leak exploitation Injection Cross-site scripting attacks, SQL injection Deceptive...requirements for personnel development; tactics, techniques, and procedures (TTPs) devel- opment; and mission rehearsals . While unique in their own
Price, John M; Colflesh, Gregory J H; Cerella, John; Verhaeghen, Paul
2014-05-01
We investigated the effects of 10h of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. Copyright © 2014 Elsevier B.V. All rights reserved.
zorder-lib: Library API for Z-Order Memory Layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nowell, Lucy; Edward W. Bethel
2015-04-01
This document describes the motivation for, elements of, and use of the zorder-lib, a library API that implements organization of and access to data in memory using either a-order (also known as "row-major" order) or z-order memory layouts. The primary motivation for this work is to improve the performance of many types of data- intensive codes by increasing both spatial and temporal locality of memory accesses. The basic idea is that the cost associated with accessing a datum is less when it is nearby in either space or time.
Efficient accesses of data structures using processing near memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jayasena, Nuwan S.; Zhang, Dong Ping; Diez, Paula Aguilera
Systems, apparatuses, and methods for implementing efficient queues and other data structures. A queue may be shared among multiple processors and/or threads without using explicit software atomic instructions to coordinate access to the queue. System software may allocate an atomic queue and corresponding queue metadata in system memory and return, to the requesting thread, a handle referencing the queue metadata. Any number of threads may utilize the handle for accessing the atomic queue. The logic for ensuring the atomicity of accesses to the atomic queue may reside in a management unit in the memory controller coupled to the memory wheremore » the atomic queue is allocated.« less
Microcontroller-based binary integrator for millimeter-wave radar experiments.
Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni
2010-05-01
An easily on-site reconfigurable multiple binary integrator for millimeter radar experiments has been constructed of static random access memories, an eight bit microcontroller, and high speed video operational amplifiers. The design uses a raw comparator path and two adjustable m-out-of-n chains in a wired-OR configuration. Standard high speed memories allow the use of pulse widths below 100 ns. For eight pulse repetition intervals it gives a maximum improvement of 6.6 dB for stationary low-level target echoes. The doubled configuration enhances the capability against fluctuating targets. Because of the raw comparator path, also single return pulses of relatively high amplitude are processed.
Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array
NASA Astrophysics Data System (ADS)
Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng
2016-05-01
Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.
Piezotronic nanowire-based resistive switches as programmable electromechanical memories.
Wu, Wenzhuo; Wang, Zhong Lin
2011-07-13
We present the first piezoelectrically modulated resistive switching device based on piezotronic ZnO nanowire (NW), through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.
Performance of hashed cache data migration schemes on multicomputers
NASA Technical Reports Server (NTRS)
Hiranandani, Seema; Saltz, Joel; Mehrotra, Piyush; Berryman, Harry
1991-01-01
After conducting an examination of several data-migration mechanisms which permit an explicit and controlled mapping of data to memory, a set of schemes for storage and retrieval of off-processor array elements is experimentally evaluated and modeled. All schemes considered have their basis in the use of hash tables for efficient access of nonlocal data. The techniques in question are those of hashed cache, partial enumeration, and full enumeration; in these, nonlocal data are stored in hash tables, so that the operative difference lies in the amount of memory used by each scheme and in the retrieval mechanism used for nonlocal data.
The potential of multi-port optical memories in digital computing
NASA Technical Reports Server (NTRS)
Alford, C. O.; Gaylord, T. K.
1975-01-01
A high-capacity memory with a relatively high data transfer rate and multi-port simultaneous access capability may serve as the basis for new computer architectures. The implementation of a multi-port optical memory is discussed. Several computer structures are presented that might profitably use such a memory. These structures include (1) a simultaneous record access system, (2) a simultaneously shared memory computer system, and (3) a parallel digital processing structure.
Fast associative memory + slow neural circuitry = the computational model of the brain.
NASA Astrophysics Data System (ADS)
Berkovich, Simon; Berkovich, Efraim; Lapir, Gennady
1997-08-01
We propose a computational model of the brain based on a fast associative memory and relatively slow neural processors. In this model, processing time is expensive but memory access is not, and therefore most algorithmic tasks would be accomplished by using large look-up tables as opposed to calculating. The essential feature of an associative memory in this context (characteristic for a holographic type memory) is that it works without an explicit mechanism for resolution of multiple responses. As a result, the slow neuronal processing elements, overwhelmed by the flow of information, operate as a set of templates for ranking of the retrieved information. This structure addresses the primary controversy in the brain architecture: distributed organization of memory vs. localization of processing centers. This computational model offers an intriguing explanation of many of the paradoxical features in the brain architecture, such as integration of sensors (through DMA mechanism), subliminal perception, universality of software, interrupts, fault-tolerance, certain bizarre possibilities for rapid arithmetics etc. In conventional computer science the presented type of a computational model did not attract attention as it goes against the technological grain by using a working memory faster than processing elements.
Saying what’s on your mind: Working memory effects on sentence production
Slevc, L. Robert
2011-01-01
The role of working memory (WM) in sentence comprehension has received considerable interest, but little work has investigated how sentence production relies on memory mechanisms. These three experiments investigated speakers’ tendency to produce syntactic structures that allow for early production of material that is accessible in memory. In Experiment 1, speakers produced accessible information early less often when under a verbal WM load than when under no load. Experiment 2 found the same pattern for given-new ordering, i.e., when accessibility was manipulated by making information given. Experiment 3 addressed the possibility that these effects do not reflect WM mechanisms but rather increased task difficulty by relying on the distinction between verbal and spatial WM: Speakers’ tendency to produce sentences respecting given-new ordering was reduced more by a verbal than by a spatial WM load. These patterns show that accessibility effects do in fact reflect accessibility in verbal WM, and that representations in sentence production are vulnerable to interference from other information in memory. PMID:21767058
Working memory at work: how the updating process alters the nature of working memory transfer.
Zhang, Yanmin; Verhaeghen, Paul; Cerella, John
2012-01-01
In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. Copyright © 2011 Elsevier B.V. All rights reserved.
Working Memory at Work: How the Updating Process Alters the Nature of Working Memory Transfer
Zhang, Yanmin; Verhaeghen, Paul; Cerella, John
2011-01-01
In three N-Back experiments, we investigated components of the process of working memory (WM) updating, more specifically access to items stored outside the focus of attention and transfer from the focus to the region of WM outside the focus. We used stimulus complexity as a marker. We found that when WM transfer occurred under full attention, it was slow and highly sensitive to stimulus complexity, much more so than WM access. When transfer occurred in conjunction with access, however, it was fast and no longer sensitive to stimulus complexity. Thus the updating context altered the nature of WM processing: The dual-task situation (transfer in conjunction with access) drove memory transfer into a more efficient mode, indifferent to stimulus complexity. In contrast, access times consistently increased with complexity, unaffected by the processing context. This study reinforces recent reports that retrieval is a (perhaps the) key component of working memory functioning. PMID:22105718
ERIC Educational Resources Information Center
Gerhardt, Lillian N.
1981-01-01
Evaluates the Prince George's County Memorial Public Library's approach to providing access to its services for children, and examines policies, regulations, practices, and conditions that affect such access. Six references are cited. (FM)
Sheldon, Signy; Chu, Sonja
2017-09-01
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
NASA Technical Reports Server (NTRS)
Katti, Romney R.
1995-01-01
Random-access memory (RAM) devices of proposed type exploit magneto-optical properties of magnetic garnets exhibiting perpendicular anisotropy. Magnetic writing and optical readout used. Provides nonvolatile storage and resists damage by ionizing radiation. Because of basic architecture and pinout requirements, most likely useful as small-capacity memory devices.
Development of Curie point switching for thin film, random access, memory device
NASA Technical Reports Server (NTRS)
Lewicki, G. W.; Tchernev, D. I.
1967-01-01
Managanese bismuthide films are used in the development of a random access memory device of high packing density and nondestructive readout capability. Memory entry is by Curie point switching using a laser beam. Readout is accomplished by microoptical or micromagnetic scanning.
Markovian Interpretations of Dual Retrieval Processes
Gomes, C. F. A.; Nakamura, K.; Reyna, V. F.
2013-01-01
A half-century ago, at the dawn of the all-or-none learning era, Estes showed that finite Markov chains supply a tractable, comprehensive framework for discrete-change data of the sort that he envisioned for shifts in conditioning states in stimulus sampling theory. Shortly thereafter, such data rapidly accumulated in many spheres of human learning and animal conditioning, and Estes’ work stimulated vigorous development of Markov models to handle them. A key outcome was that the data of the workhorse paradigms of episodic memory, recognition and recall, proved to be one- and two-stage Markovian, respectively, to close approximations. Subsequently, Markov modeling of recognition and recall all but disappeared from the literature, but it is now reemerging in the wake of dual-process conceptions of episodic memory. In recall, in particular, Markov models are being used to measure two retrieval operations (direct access and reconstruction) and a slave familiarity operation. In the present paper, we develop this family of models and present the requisite machinery for fit evaluation and significance testing. Results are reviewed from selected experiments in which the recall models were used to understand dual memory processes. PMID:24948840
Tehan, G; Lalor, D M
2000-11-01
Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the subject population, have suggested other contributors to span performance, notably contributions from long-term memory and forgetting and retrieval processes occurring during recall. In the current research we explore individual differences in span with respect to measures of rehearsal, output time, and access to lexical memory. We replicate standard short-term phenomena; we show that the variables that influence children's span performance influence adult performance in the same way; and we show that lexical memory access appears to be a more potent source of individual differences in span than either rehearsal speed or output factors.
Dynamically programmable cache
NASA Astrophysics Data System (ADS)
Nakkar, Mouna; Harding, John A.; Schwartz, David A.; Franzon, Paul D.; Conte, Thomas
1998-10-01
Reconfigurable machines have recently been used as co- processors to accelerate the execution of certain algorithms or program subroutines. The problems with the above approach include high reconfiguration time and limited partial reconfiguration. By far the most critical problems are: (1) the small on-chip memory which results in slower execution time, and (2) small FPGA areas that cannot implement large subroutines. Dynamically Programmable Cache (DPC) is a novel architecture for embedded processors which offers solutions to the above problems. To solve memory access problems, DPC processors merge reconfigurable arrays with the data cache at various cache levels to create a multi-level reconfigurable machines. As a result DPC machines have both higher data accessibility and FPGA memory bandwidth. To solve the limited FPGA resource problem, DPC processors implemented multi-context switching (Virtualization) concept. Virtualization allows implementation of large subroutines with fewer FPGA cells. Additionally, DPC processors can parallelize the execution of several operations resulting in faster execution time. In this paper, the speedup improvement for DPC machines are shown to be 5X faster than an Altera FLEX10K FPGA chip and 2X faster than a Sun Ultral SPARC station for two different algorithms (convolution and motion estimation).
Adult Age Differences in Accessing and Retrieving Information from Long-Term Memory.
ERIC Educational Resources Information Center
Petros, Thomas V.; And Others
1983-01-01
Investigated adult age differences in accessing and retrieving information from long-term memory. Results showed that older adults (N=26) were slower than younger adults (N=35) at feature extraction, lexical access, and accessing category information. The age deficit was proportionally greater when retrieval of category information was required.…
Can your software engineer program your PLC?
NASA Astrophysics Data System (ADS)
Borrowman, Alastair J.; Taylor, Philip
2016-07-01
The use of Programmable Logic Controllers (PLCs) in the control of large physics experiments is ubiquitous1, 2, 3. The programming of these controllers is normally the domain of engineers with a background in electronics, this paper introduces PLC program development from the software engineer's perspective. PLC programs provide the link between control software running on PC architecture systems and physical hardware controlled and monitored by digital and analog signals. The higher-level software running on the PC is typically responsible for accepting operator input and from this deciding when and how hardware connected to the PLC is controlled. The PLC accepts demands from the PC, considers the current state of its connected hardware and if correct to do so (based upon interlocks or other constraints) adjusts its hardware output signals appropriately for the PC's demands. A published ICD (Interface Control Document) defines the PLC memory locations available to be written and read by the PC to control and monitor the hardware. Historically the method of programming PLCs has been ladder diagrams that closely resemble circuit diagrams, however, PLC manufacturers nowadays also provide, and promote, the use of higher-level programming languages4. Based on techniques used in the development of high-level PC software to control PLCs for multiple telescopes, this paper examines the development of PLC programs to operate the hardware of a medical cyclotron beamline controlled from a PC using the Experimental Physics and Industrial Control System (EPICS), which is also widely used in telescope control5, 6, 7. The PLC used is the new generation Siemens S7-1200 programmed using Siemens Pascal based Structured Control Language (SCL), which is their implementation of Structured Text (ST). The approach described is that from a software engineer's perspective, utilising Siemens Totally Integrated Automation (TIA) Portal integrated development environment (IDE) to create modular PLC programs based upon reusable functions capable of being unit tested without the PLC connected to hardware. Emphasis has been placed on designing an interface between EPICS and SCL that enforces correct operation of hardware through stringent separation of PC accessible PLC memory and hardware I/O addresses used only by the PLC. The paper also introduces the method used to automate the creation, from the same source document, the PLC memory structure (tag) definitions (defining memory used to access hardware I/O and that accessed by the PC) and creation of the PC program data structures (EPICS database records) used to access the permitted PLC addresses. From direct experience this paper demonstrates the advantages of PLC program development being shared between electronic and software engineers, to enable use of the most appropriate processes from both the perspective of the hardware and the higher-level software used to control it.
Wide-Range Motion Estimation Architecture with Dual Search Windows for High Resolution Video Coding
NASA Astrophysics Data System (ADS)
Dung, Lan-Rong; Lin, Meng-Chun
This paper presents a memory-efficient motion estimation (ME) technique for high-resolution video compression. The main objective is to reduce the external memory access, especially for limited local memory resource. The reduction of memory access can successfully save the notorious power consumption. The key to reduce the memory accesses is based on center-biased algorithm in that the center-biased algorithm performs the motion vector (MV) searching with the minimum search data. While considering the data reusability, the proposed dual-search-windowing (DSW) approaches use the secondary windowing as an option per searching necessity. By doing so, the loading of search windows can be alleviated and hence reduce the required external memory bandwidth. The proposed techniques can save up to 81% of external memory bandwidth and require only 135 MBytes/sec, while the quality degradation is less than 0.2dB for 720p HDTV clips coded at 8Mbits/sec.
Blumrich, Matthias A.; Salapura, Valentina
2010-11-02
An apparatus and method are disclosed for single-stepping coherence events in a multiprocessor system under software control in order to monitor the behavior of a memory coherence mechanism. Single-stepping coherence events in a multiprocessor system is made possible by adding one or more step registers. By accessing these step registers, one or more coherence requests are processed by the multiprocessor system. The step registers determine if the snoop unit will operate by proceeding in a normal execution mode, or operate in a single-step mode.
Radiation Effects of Commercial Resistive Random Access Memories
NASA Technical Reports Server (NTRS)
Chen, Dakai; LaBel, Kenneth A.; Berg, Melanie; Wilcox, Edward; Kim, Hak; Phan, Anthony; Figueiredo, Marco; Buchner, Stephen; Khachatrian, Ani; Roche, Nicolas
2014-01-01
We present results for the single-event effect response of commercial production-level resistive random access memories. We found that the resistive memory arrays are immune to heavy ion-induced upsets. However, the devices were susceptible to single-event functional interrupts, due to upsets from the control circuits. The intrinsic radiation tolerant nature of resistive memory makes the technology an attractive consideration for future space applications.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.
2018-02-01
Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.
Accessibility Limits Recall from Visual Working Memory
ERIC Educational Resources Information Center
Rajsic, Jason; Swan, Garrett; Wilson, Daryl E.; Pratt, Jay
2017-01-01
In this article, we demonstrate limitations of accessibility of information in visual working memory (VWM). Recently, cued-recall has been used to estimate the fidelity of information in VWM, where the feature of a cued object is reproduced from memory (Bays, Catalao, & Husain, 2009; Wilken & Ma, 2004; Zhang & Luck, 2008). Response…
Physical principles and current status of emerging non-volatile solid state memories
NASA Astrophysics Data System (ADS)
Wang, L.; Yang, C.-H.; Wen, J.
2015-07-01
Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, A., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr; Song, J.; Hwang, H., E-mail: amitknp@postech.ac.kr, E-mail: amit.knp02@gmail.com, E-mail: hwanghs@postech.ac.kr
In order to obtain reliable multilevel cell (MLC) characteristics, resistance controllability between the different resistance levels is required especially in resistive random access memory (RRAM), which is prone to resistance variability mainly due to its intrinsic random nature of defect generation and filament formation. In this study, we have thoroughly investigated the multilevel resistance variability in a TaO{sub x}-based nanoscale (<30 nm) RRAM operated in MLC mode. It is found that the resistance variability not only depends on the conductive filament size but also is a strong function of oxygen vacancy concentration in it. Based on the gained insights through experimentalmore » observations and simulation, it is suggested that forming thinner but denser conductive filament may greatly improve the temporal resistance variability even at low operation current despite the inherent stochastic nature of resistance switching process.« less
Tunnel junctions with multiferroic barriers
NASA Astrophysics Data System (ADS)
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La0.1Bi0.9MnO3 (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
Tunnel junctions with multiferroic barriers.
Gajek, Martin; Bibes, Manuel; Fusil, Stéphane; Bouzehouane, Karim; Fontcuberta, Josep; Barthélémy, Agnès; Fert, Albert
2007-04-01
Multiferroics are singular materials that can exhibit simultaneously electric and magnetic orders. Some are ferroelectric and ferromagnetic and provide the opportunity to encode information in electric polarization and magnetization to obtain four logic states. However, such materials are rare and schemes allowing a simple electrical readout of these states have not been demonstrated in the same device. Here, we show that films of La(0.1)Bi(0.9)MnO(3) (LBMO) are ferromagnetic and ferroelectric, and retain both ferroic properties down to a thickness of 2 nm. We have integrated such ultrathin multiferroic films as barriers in spin-filter-type tunnel junctions that exploit the magnetic and ferroelectric degrees of freedom of LBMO. Whereas ferromagnetism permits read operations reminiscent of magnetic random access memories (MRAM), the electrical switching evokes a ferroelectric RAM write operation. Significantly, our device does not require the destructive ferroelectric readout, and therefore represents an advance over the original four-state memory concept based on multiferroics.
NASA Astrophysics Data System (ADS)
Han, Yishi; Luo, Zhixiao; Wang, Jianhua; Min, Zhixuan; Qin, Xinyu; Sun, Yunlong
2014-09-01
In general, context-based adaptive variable length coding (CAVLC) decoding in H.264/AVC standard requires frequent access to the unstructured variable length coding tables (VLCTs) and significant memory accesses are consumed. Heavy memory accesses will cause high power consumption and time delays, which are serious problems for applications in portable multimedia devices. We propose a method for high-efficiency CAVLC decoding by using a program instead of all the VLCTs. The decoded codeword from VLCTs can be obtained without any table look-up and memory access. The experimental results show that the proposed algorithm achieves 100% memory access saving and 40% decoding time saving without degrading video quality. Additionally, the proposed algorithm shows a better performance compared with conventional CAVLC decoding, such as table look-up by sequential search, table look-up by binary search, Moon's method, and Kim's method.
Preliminary design for a standard 10 sup 7 bit Solid State Memory (SSM)
NASA Technical Reports Server (NTRS)
Hayes, P. J.; Howle, W. M., Jr.; Stermer, R. L., Jr.
1978-01-01
A modular concept with three separate modules roughly separating bubble domain technology, control logic technology, and power supply technology was employed. These modules were respectively the standard memory module (SMM), the data control unit (DCU), and power supply module (PSM). The storage medium was provided by bubble domain chips organized into memory cells. These cells and the circuitry for parallel data access to the cells make up the SMM. The DCU provides a flexible serial data interface to the SMM. The PSM provides adequate power to enable one DCU and one SMM to operate simultaneously at the maximum data rate. The SSM was designed to handle asynchronous data rates from dc to 1.024 Mbs with a bit error rate less than 1 error in 10 to the eight power bits. Two versions of the SSM, a serial data memory and a dual parallel data memory were specified using the standard modules. The SSM specification includes requirements for radiation hardness, temperature and mechanical environments, dc magnetic field emission and susceptibility, electromagnetic compatibility, and reliability.
Parallel Implementation of MAFFT on CUDA-Enabled Graphics Hardware.
Zhu, Xiangyuan; Li, Kenli; Salah, Ahmad; Shi, Lin; Li, Keqin
2015-01-01
Multiple sequence alignment (MSA) constitutes an extremely powerful tool for many biological applications including phylogenetic tree estimation, secondary structure prediction, and critical residue identification. However, aligning large biological sequences with popular tools such as MAFFT requires long runtimes on sequential architectures. Due to the ever increasing sizes of sequence databases, there is increasing demand to accelerate this task. In this paper, we demonstrate how graphic processing units (GPUs), powered by the compute unified device architecture (CUDA), can be used as an efficient computational platform to accelerate the MAFFT algorithm. To fully exploit the GPU's capabilities for accelerating MAFFT, we have optimized the sequence data organization to eliminate the bandwidth bottleneck of memory access, designed a memory allocation and reuse strategy to make full use of limited memory of GPUs, proposed a new modified-run-length encoding (MRLE) scheme to reduce memory consumption, and used high-performance shared memory to speed up I/O operations. Our implementation tested in three NVIDIA GPUs achieves speedup up to 11.28 on a Tesla K20m GPU compared to the sequential MAFFT 7.015.
Calia, Clara; Darling, Stephen; Havelka, Jelena; Allen, Richard J
2018-05-01
Immediate serial recall of digits is better when the digits are shown by highlighting them in a familiar array, such as a phone keypad, compared with presenting them serially in a single location, a pattern referred to as "visuospatial bootstrapping." This pattern implies the establishment of temporary links between verbal and spatial working memory, alongside access to information in long-term memory. However, the role of working memory control processes like those implied by the "Central Executive" in bootstrapping has not been directly investigated. Here, we report a study addressing this issue, focusing on executive processes of attentional shifting. Tasks in which information has to be sequenced are thought to be heavily dependent on shifting. Memory for digits presented in keypads versus single locations was assessed under two secondary task load conditions, one with and one without a sequencing requirement, and hence differing in the degree to which they invoke shifting. Results provided clear evidence that multimodal binding (visuospatial bootstrapping) can operate independently of this form of executive control process.
Neese, Steven L.; Korol, Donna L.; Schantz, Susan L.
2013-01-01
Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long- Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions. PMID:24013039
Bäuml, Karl-Heinz T; Dobler, Ina M
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas recall specificity of the beneficial effect has not been examined to date. Addressing the issue, we compared in 2 experiments the effects of retrieval and restudy on recall of other items, when access to the study context was (largely) maintained and when access to the study context was impaired (in Experiment 1 by using the listwise directed-forgetting task, in Experiment 2 by using a prolonged retention interval). In both experiments, selective retrieval but not restudy induced forgetting of other items when context access was maintained, which replicates prior work. In contrast, when context access was impaired, both selective retrieval and restudy induced beneficial effects on other memories. These findings suggest that the detrimental but not the beneficial effect of selective memory retrieval is recall specific. The results are consistent with a recent 2-factor account of selective memory retrieval that attributes the detrimental effect to inhibition or blocking but the beneficial effect to context reactivation processes. PsycINFO Database Record (c) 2015 APA, all rights reserved.
Ultra-low power, highly uniform polymer memory by inserted multilayer graphene electrode
NASA Astrophysics Data System (ADS)
Jang, Byung Chul; Seong, Hyejeong; Kim, Jong Yun; Koo, Beom Jun; Kim, Sung Kyu; Yang, Sang Yoon; Gap Im, Sung; Choi, Sung-Yool
2015-12-01
Filament type resistive random access memory (RRAM) based on polymer thin films is a promising device for next generation, flexible nonvolatile memory. However, the resistive switching nonuniformity and the high power consumption found in the general filament type RRAM devices present critical issues for practical memory applications. Here, we introduce a novel approach not only to reduce the power consumption but also to improve the resistive switching uniformity in RRAM devices based on poly(1,3,5-trimethyl-3,4,5-trivinyl cyclotrisiloxane) by inserting multilayer graphene (MLG) at the electrode/polymer interface. The resistive switching uniformity was thereby significantly improved, and the power consumption was markedly reduced by 250 times. Furthermore, the inserted MLG film enabled a transition of the resistive switching operation from unipolar resistive switching to bipolar resistive switching and induced self-compliance behavior. The findings of this study can pave the way toward a new area of application for graphene in electronic devices.
Compact Holographic Data Storage
NASA Technical Reports Server (NTRS)
Chao, T. H.; Reyes, G. F.; Zhou, H.
2001-01-01
NASA's future missions would require massive high-speed onboard data storage capability to Space Science missions. For Space Science, such as the Europa Lander mission, the onboard data storage requirements would be focused on maximizing the spacecraft's ability to survive fault conditions (i.e., no loss in stored science data when spacecraft enters the 'safe mode') and autonomously recover from them during NASA's long-life and deep space missions. This would require the development of non-volatile memory. In order to survive in the stringent environment during space exploration missions, onboard memory requirements would also include: (1) survive a high radiation environment (1 Mrad), (2) operate effectively and efficiently for a very long time (10 years), and (3) sustain at least a billion write cycles. Therefore, memory technologies requirements of NASA's Earth Science and Space Science missions are large capacity, non-volatility, high-transfer rate, high radiation resistance, high storage density, and high power efficiency. JPL, under current sponsorship from NASA Space Science and Earth Science Programs, is developing a high-density, nonvolatile and rad-hard Compact Holographic Data Storage (CHDS) system to enable large-capacity, high-speed, low power consumption, and read/write of data in a space environment. The entire read/write operation will be controlled with electrooptic mechanism without any moving parts. This CHDS will consist of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high-speed. The nonvolatile, rad-hard characteristics of the holographic memory will provide a revolutionary memory technology meeting the high radiation challenge facing the Europa Lander mission. Additional information is contained in the original extended abstract.
Plated wire random access memories
NASA Technical Reports Server (NTRS)
Gouldin, L. D.
1975-01-01
A program was conducted to construct 4096-work by 18-bit random access, NDRO-plated wire memory units. The memory units were subjected to comprehensive functional and environmental tests at the end-item level to verify comformance with the specified requirements. A technical description of the unit is given, along with acceptance test data sheets.
The Dynamics of Access to Groups in Working Memory
ERIC Educational Resources Information Center
Farrell, Simon; Lelievre, Anna
2012-01-01
The finding that participants leave a pause between groups when attempting serial recall of temporally grouped lists has been taken to indicate access to a hierarchical representation of the list in working memory. An alternative explanation is that the dynamics of serial recall solely reflect output (rather than memorial) processes, with the…
Block-Based Connected-Component Labeling Algorithm Using Binary Decision Trees
Chang, Wan-Yu; Chiu, Chung-Cheng; Yang, Jia-Horng
2015-01-01
In this paper, we propose a fast labeling algorithm based on block-based concepts. Because the number of memory access points directly affects the time consumption of the labeling algorithms, the aim of the proposed algorithm is to minimize neighborhood operations. Our algorithm utilizes a block-based view and correlates a raster scan to select the necessary pixels generated by a block-based scan mask. We analyze the advantages of a sequential raster scan for the block-based scan mask, and integrate the block-connected relationships using two different procedures with binary decision trees to reduce unnecessary memory access. This greatly simplifies the pixel locations of the block-based scan mask. Furthermore, our algorithm significantly reduces the number of leaf nodes and depth levels required in the binary decision tree. We analyze the labeling performance of the proposed algorithm alongside that of other labeling algorithms using high-resolution images and foreground images. The experimental results from synthetic and real image datasets demonstrate that the proposed algorithm is faster than other methods. PMID:26393597
PANDA: A distributed multiprocessor operating system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chubb, P.
1989-01-01
PANDA is a design for a distributed multiprocessor and an operating system. PANDA is designed to allow easy expansion of both hardware and software. As such, the PANDA kernel provides only message passing and memory and process management. The other features needed for the system (device drivers, secondary storage management, etc.) are provided as replaceable user tasks. The thesis presents PANDA's design and implementation, both hardware and software. PANDA uses multiple 68010 processors sharing memory on a VME bus, each such node potentially connected to others via a high speed network. The machine is completely homogeneous: there are no differencesmore » between processors that are detectable by programs running on the machine. A single two-processor node has been constructed. Each processor contains memory management circuits designed to allow processors to share page tables safely. PANDA presents a programmers' model similar to the hardware model: a job is divided into multiple tasks, each having its own address space. Within each task, multiple processes share code and data. Tasks can send messages to each other, and set up virtual circuits between themselves. Peripheral devices such as disc drives are represented within PANDA by tasks. PANDA divides secondary storage into volumes, each volume being accessed by a volume access task, or VAT. All knowledge about the way that data is stored on a disc is kept in its volume's VAT. The design is such that PANDA should provide a useful testbed for file systems and device drivers, as these can be installed without recompiling PANDA itself, and without rebooting the machine.« less
Automatic generation of reports at the TELECOM SCC
NASA Astrophysics Data System (ADS)
Beltan, Thierry; Jalbaud, Myriam; Fronton, Jean Francois
In-orbit satellite follow-up produces a certain amount of reports on a regular basis (daily, weekly, quarterly, annually). Most of these documents use the information of former issues with the increments of the last period of time. They are made up of text, tables, graphs or pictures. The system presented here is the SGMT (Systeme de Gestion de la Memoire Technique), which means Technical Memory Mangement System. It provides the system operators with tools to generate the greatest part of these reports, as automatically as possible. It gives an easy access to the reports and the large amount of available memory enables the user to consult data on the complete lifetime of a satellite family.
ERIC Educational Resources Information Center
Brock, Jack L., Jr.
This testimony discusses ways in which some federal government agencies use technology to provide the public with cheaper, faster access to a wider range of information which can be searched and manipulated in ways never possible on the printed page. Technologies included in the discussion are compact disc-read only memory (CD-ROM), electronic…
Partitioned key-value store with atomic memory operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bent, John M.; Faibish, Sorin; Grider, Gary
A partitioned key-value store is provided that supports atomic memory operations. A server performs a memory operation in a partitioned key-value store by receiving a request from an application for at least one atomic memory operation, the atomic memory operation comprising a memory address identifier; and, in response to the atomic memory operation, performing one or more of (i) reading a client-side memory location identified by the memory address identifier and storing one or more key-value pairs from the client-side memory location in a local key-value store of the server; and (ii) obtaining one or more key-value pairs from themore » local key-value store of the server and writing the obtained one or more key-value pairs into the client-side memory location identified by the memory address identifier. The server can perform functions obtained from a client-side memory location and return a result to the client using one or more of the atomic memory operations.« less
Improving the effectiveness of an interruption lag by inducing a memory-based strategy.
Morgan, Phillip L; Patrick, John; Tiley, Leyanne
2013-01-01
The memory for goals model (Altmann & Trafton, 2002) posits the importance of a short delay (the 'interruption lag') before an interrupting task to encode suspended goals for retrieval post-interruption. Two experiments used the theory of soft constraints (Gray, Simms, Fu & Schoelles, 2006) to investigate whether the efficacy of an interruption lag could be improved by increasing goal-state access cost to induce a more memory-based encoding strategy. Both experiments used a copying task with three access cost conditions (Low, Medium, and High) and a 5-s interruption lag with a no lag control condition. Experiment 1 found that the participants in the High access cost condition resumed more interrupted trials and executed more actions correctly from memory when coupled with an interruption lag. Experiment 2 used a prospective memory test post-interruption and an eyetracker recorded gaze activity during the interruption lag. The participants in the High access cost condition with an interruption lag were best at encoding target information during the interruption lag, evidenced by higher scores on the prospective memory measure and more gaze activity on the goal-state during the interruption lag. Theoretical and practical issues regarding the use of goal-state access cost and an interruption lag are discussed. Copyright © 2012. Published by Elsevier B.V.
Protein-Based Three-Dimensional Memories and Associative Processors
NASA Astrophysics Data System (ADS)
Birge, Robert
2008-03-01
The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial intelligence due to the serial nature of random access memories. Software cannot provide a satisfactory work-around that does not introduce unacceptable latency. Holographic associative memories provide a useful approach to large scale associative recall. Bacteriorhodopsin has long been recognized for its outstanding holographic properties, and when utilized in the Paek and Psaltis design, provides a high-speed real-time associative memory with variable thresholding and feedback. What remains is to make an associative memory capable of high-speed association and long-term data storage. The use of directed evolution to create a protein with the necessary unique properties will be discussed.
NASA Technical Reports Server (NTRS)
Batcher, K. E.; Eddey, E. E.; Faiss, R. O.; Gilmore, P. A.
1981-01-01
The processing of synthetic aperture radar (SAR) signals using the massively parallel processor (MPP) is discussed. The fast Fourier transform convolution procedures employed in the algorithms are described. The MPP architecture comprises an array unit (ARU) which processes arrays of data; an array control unit which controls the operation of the ARU and performs scalar arithmetic; a program and data management unit which controls the flow of data; and a unique staging memory (SM) which buffers and permutes data. The ARU contains a 128 by 128 array of bit-serial processing elements (PE). Two-by-four surarrays of PE's are packaged in a custom VLSI HCMOS chip. The staging memory is a large multidimensional-access memory which buffers and permutes data flowing with the system. Efficient SAR processing is achieved via ARU communication paths and SM data manipulation. Real time processing capability can be realized via a multiple ARU, multiple SM configuration.
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing
NASA Astrophysics Data System (ADS)
Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan
2017-12-01
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge2Sb2Te5). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc0.2Sb2Te3) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems.
Some pitfalls in measuring memory in animals.
Thorpe, Christina M; Jacova, Claudia; Wilkie, Donald M
2004-11-01
Because the presence or absence of memories in the brain cannot be directly observed, scientists must rely on indirect measures and use inferential reasoning to make statements about the status of memories. In humans, memories are often accessed through spoken or written language. In animals, memory is accessed through overt behaviours such as running down an arm in a maze, pressing a lever, or visiting a food cache site. Because memory is measured by these indirect methods, errors in the veracity of statements about memory can occur. In this brief paper, we identify three areas that may serve as pitfalls in reasoning about memory in animals: (1) the presence of 'silent associations', (2) intrusions of species-typical behaviours on memory tasks, and (3) improper mapping between human and animals memory tasks. There are undoubtedly other areas in which scientists should act cautiously when reasoning about the status of memory.
MemAxes: Visualization and Analytics for Characterizing Complex Memory Performance Behaviors.
Gimenez, Alfredo; Gamblin, Todd; Jusufi, Ilir; Bhatele, Abhinav; Schulz, Martin; Bremer, Peer-Timo; Hamann, Bernd
2018-07-01
Memory performance is often a major bottleneck for high-performance computing (HPC) applications. Deepening memory hierarchies, complex memory management, and non-uniform access times have made memory performance behavior difficult to characterize, and users require novel, sophisticated tools to analyze and optimize this aspect of their codes. Existing tools target only specific factors of memory performance, such as hardware layout, allocations, or access instructions. However, today's tools do not suffice to characterize the complex relationships between these factors. Further, they require advanced expertise to be used effectively. We present MemAxes, a tool based on a novel approach for analytic-driven visualization of memory performance data. MemAxes uniquely allows users to analyze the different aspects related to memory performance by providing multiple visual contexts for a centralized dataset. We define mappings of sampled memory access data to new and existing visual metaphors, each of which enabling a user to perform different analysis tasks. We present methods to guide user interaction by scoring subsets of the data based on known performance problems. This scoring is used to provide visual cues and automatically extract clusters of interest. We designed MemAxes in collaboration with experts in HPC and demonstrate its effectiveness in case studies.
Integrated semiconductor-magnetic random access memory system
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Blaes, Brent R. (Inventor)
2001-01-01
The present disclosure describes a non-volatile magnetic random access memory (RAM) system having a semiconductor control circuit and a magnetic array element. The integrated magnetic RAM system uses CMOS control circuit to read and write data magnetoresistively. The system provides a fast access, non-volatile, radiation hard, high density RAM for high speed computing.
Ti-Doped GaOx Resistive Switching Memory with Self-Rectifying Behavior by Using NbOx/Pt Bilayers.
Park, Ju Hyun; Jeon, Dong Su; Kim, Tae Geun
2017-12-13
Crossbar arrays (CBAs) with resistive random access memory (ReRAM) constitute an established architecture for high-density memory. However, sneak paths via unselected cells increase the total power consumption of these devices and limit the array size. To eliminate such sneak-path problems, we propose a Ti/GaO x /NbO x /Pt structure with a self-rectifying resistive-switching (RS) behavior. In this structure, to reduce the operating voltage, we used a Ti/GaO x stack to increase the number of trap sites in the RS GaO x layer through interfacial reactions between the Ti and GaO x layers. This increase enables easier carrier transport with reduced electric fields. We then adopted a NbO x /Pt stack to add rectifying behavior to the RS GaO x layer. This behavior is a result of the large Schottky barrier height between the NbO x and Pt layers. Finally, both the Ti/GaO x and NbO x /Pt stacks were combined to realize a self-rectifying ReRAM device, which exhibited excellent performance. Characteristics of the device include a low operating voltage range (-2.8 to 2.5 V), high on/off ratios (∼20), high selectivity (∼10 4 ), high operating speeds (200-500 ns), a very low forming voltage (∼3 V), stable operation, and excellent uniformity for high-density CBA-based ReRAM applications.
Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo
2014-01-01
Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.
NASA Astrophysics Data System (ADS)
Bonafos, C.; Benassayag, G.; Cours, R.; Pécassou, B.; Guenery, P. V.; Baboux, N.; Militaru, L.; Souifi, A.; Cossec, E.; Hamga, K.; Ecoffey, S.; Drouin, D.
2018-01-01
We report on the direct ion beam synthesis of a delta-layer of indium oxide nanocrystals (In2O3-NCs) in silica matrices by using ultra-low energy ion implantation. The formation of the indium oxide phase can be explained by (i) the affinity of indium with oxygen, (ii) the generation of a high excess of oxygen recoils generated by the implantation process in the region where the nanocrystals are formed and (iii) the proximity of the indium-based nanoparticles with the free surface and oxidation from the air. Taking advantage of the selective diffusivity of implanted indium in SiO2 with respect to Si3N4, In2O3-NCs have been inserted in the SiO2 switching oxide of micrometric planar oxide-based resistive random access memory (OxRAM) devices fabricated using the nanodamascene process. Preliminary electrical measurements show switch voltage from high to low resistance state. The devices with In2O3-NCs have been cycled 5 times with identical operating voltages and RESET current meanwhile no switch has been observed for non implanted devices. This first measurement of switching is very promising for the concept of In2O3-NCs based OxRAM memories.
Dyslexia Limits the Ability to Categorize Talker Dialect
Long, Gayle Beam; Jacewicz, Ewa
2016-01-01
Purpose The purpose of this study was to determine whether the underlying phonological impairment in dyslexia is associated with a deficit in categorizing regional dialects. Method Twenty adults with dyslexia, 20 school-age children with dyslexia, and 40 corresponding control listeners with average reading ability listened to sentences produced by multiple talkers (both sexes) representing two dialects: Midland dialect in Ohio (same as listeners' dialect) and Southern dialect in Western North Carolina. Participants' responses were analyzed using signal detection theory. Results Listeners with dyslexia were less sensitive to talker dialect than listeners with average reading ability. Children were less sensitive to dialect than adults. Under stimulus uncertainty, listeners with average reading ability were biased toward Ohio dialect, whereas listeners with dyslexia were unbiased in their responses. Talker sex interacted with sensitivity and bias differently for listeners with dyslexia than for listeners with average reading ability. The correlations between dialect sensitivity and phonological memory scores were strongest for adults with dyslexia. Conclusions The results imply that the phonological deficit in dyslexia arises from impaired access to intact phonological representations rather than from poorly specified representations. It can be presumed that the impeded access to implicit long-term memory representations for indexical (dialect) information is due to less efficient operations in working memory, including deficiencies in utilizing talker normalization processes. PMID:27575597
A chip-integrated coherent photonic-phononic memory.
Merklein, Moritz; Stiller, Birgit; Vu, Khu; Madden, Stephen J; Eggleton, Benjamin J
2017-09-18
Controlling and manipulating quanta of coherent acoustic vibrations-phonons-in integrated circuits has recently drawn a lot of attention, since phonons can function as unique links between radiofrequency and optical signals, allow access to quantum regimes and offer advanced signal processing capabilities. Recent approaches based on optomechanical resonators have achieved impressive quality factors allowing for storage of optical signals. However, so far these techniques have been limited in bandwidth and are incompatible with multi-wavelength operation. In this work, we experimentally demonstrate a coherent buffer in an integrated planar optical waveguide by transferring the optical information coherently to an acoustic hypersound wave. Optical information is extracted using the reverse process. These hypersound phonons have similar wavelengths as the optical photons but travel at five orders of magnitude lower velocity. We demonstrate the storage of phase and amplitude of optical information with gigahertz bandwidth and show operation at separate wavelengths with negligible cross-talk.Optical storage implementations based on optomechanical resonator are limited to one wavelength. Here, exploiting stimulated Brillouin scattering, the authors demonstrate a coherent optical memory based on a planar integrated waveguide, which can operate at different wavelengths without cross-talk.
NASA Astrophysics Data System (ADS)
Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.
An Investigation of Unified Memory Access Performance in CUDA
Landaverde, Raphael; Zhang, Tiansheng; Coskun, Ayse K.; Herbordt, Martin
2015-01-01
Managing memory between the CPU and GPU is a major challenge in GPU computing. A programming model, Unified Memory Access (UMA), has been recently introduced by Nvidia to simplify the complexities of memory management while claiming good overall performance. In this paper, we investigate this programming model and evaluate its performance and programming model simplifications based on our experimental results. We find that beyond on-demand data transfers to the CPU, the GPU is also able to request subsets of data it requires on demand. This feature allows UMA to outperform full data transfer methods for certain parallel applications and small data sizes. We also find, however, that for the majority of applications and memory access patterns, the performance overheads associated with UMA are significant, while the simplifications to the programming model restrict flexibility for adding future optimizations. PMID:26594668
ERIC Educational Resources Information Center
Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick
2016-01-01
High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…
ERIC Educational Resources Information Center
Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.
2014-01-01
The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…
Boosting the FM-Index on the GPU: Effective Techniques to Mitigate Random Memory Access.
Chacón, Alejandro; Marco-Sola, Santiago; Espinosa, Antonio; Ribeca, Paolo; Moure, Juan Carlos
2015-01-01
The recent advent of high-throughput sequencing machines producing big amounts of short reads has boosted the interest in efficient string searching techniques. As of today, many mainstream sequence alignment software tools rely on a special data structure, called the FM-index, which allows for fast exact searches in large genomic references. However, such searches translate into a pseudo-random memory access pattern, thus making memory access the limiting factor of all computation-efficient implementations, both on CPUs and GPUs. Here, we show that several strategies can be put in place to remove the memory bottleneck on the GPU: more compact indexes can be implemented by having more threads work cooperatively on larger memory blocks, and a k-step FM-index can be used to further reduce the number of memory accesses. The combination of those and other optimisations yields an implementation that is able to process about two Gbases of queries per second on our test platform, being about 8 × faster than a comparable multi-core CPU version, and about 3 × to 5 × faster than the FM-index implementation on the GPU provided by the recently announced Nvidia NVBIO bioinformatics library.
NASA Technical Reports Server (NTRS)
Poole, L. R.
1974-01-01
A study was conducted of an alternate method for storage and use of bathymetry data in the Langley Research Center and Virginia Institute of Marine Science mid-Atlantic continental-shelf wave-refraction computer program. The regional bathymetry array was divided into 105 indexed modules which can be read individually into memory in a nonsequential manner from a peripheral file using special random-access subroutines. In running a sample refraction case, a 75-percent decrease in program field length was achieved by using the random-access storage method in comparison with the conventional method of total regional array storage. This field-length decrease was accompanied by a comparative 5-percent increase in central processing time and a 477-percent increase in the number of operating-system calls. A comparative Langley Research Center computer system cost savings of 68 percent was achieved by using the random-access storage method.
NASA Technical Reports Server (NTRS)
Bailey, G. A.
1976-01-01
Optical and magnetic variants in the design of trillion-bit read/write memories are compared and tabulated. Components and materials suitable for a random access read/write nonmoving memory system are examined, with preference given to holography and photoplastic materials. Advantages and deficiencies of photoplastics are reviewed. Holographic page composer design, essential features of an optical memory with no moving parts, fiche-oriented random access memory design, and materials suitable for an efficient photoplastic fiche are considered. The optical variants offer advantages in lower volume and weight at data transfer rates near 1 Mbit/sec, but power drain is of the same order as for the magnetic variants (tape memory, disk memory). The mechanical properties of photoplastic film materials still leave much to be desired.
BCH codes for large IC random-access memory systems
NASA Technical Reports Server (NTRS)
Lin, S.; Costello, D. J., Jr.
1983-01-01
In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
... Static Random Access Memories and Products Containing Same, DN 2816; the Commission is soliciting... importation of certain static random access memories and products containing same. The complaint names as...
Providing the Public with Online Access to Large Bibliographic Data Bases.
ERIC Educational Resources Information Center
Firschein, Oscar; Summit, Roger K.
DIALOG, an interactive, computer-based information retrieval language, consists of a series of computer programs designed to make use of direct access memory devices in order to provide the user with a rapid means of identifying records within a specific memory bank. Using the system, a library user can be provided access to sixteen distinct and…
Reconfigurable Fault Tolerance for FPGAs
NASA Technical Reports Server (NTRS)
Shuler, Robert, Jr.
2010-01-01
The invention allows a field-programmable gate array (FPGA) or similar device to be efficiently reconfigured in whole or in part to provide higher capacity, non-redundant operation. The redundant device consists of functional units such as adders or multipliers, configuration memory for the functional units, a programmable routing method, configuration memory for the routing method, and various other features such as block RAM, I/O (random access memory, input/output) capability, dedicated carry logic, etc. The redundant device has three identical sets of functional units and routing resources and majority voters that correct errors. The configuration memory may or may not be redundant, depending on need. For example, SRAM-based FPGAs will need some type of radiation-tolerant configuration memory, or they will need triple-redundant configuration memory. Flash or anti-fuse devices will generally not need redundant configuration memory. Some means of loading and verifying the configuration memory is also required. These are all components of the pre-existing redundant FPGA. This innovation modifies the voter to accept a MODE input, which specifies whether ordinary voting is to occur, or if redundancy is to be split. Generally, additional routing resources will also be required to pass data between sections of the device created by splitting the redundancy. In redundancy mode, the voters produce an output corresponding to the two inputs that agree, in the usual fashion. In the split mode, the voters select just one input and convey this to the output, ignoring the other inputs. In a dual-redundant system (as opposed to triple-redundant), instead of a voter, there is some means to latch or gate a state update only when both inputs agree. In this case, the invention would require modification of the latch or gate so that it would operate normally in redundant mode, and would separately latch or gate the inputs in non-redundant mode.
Social Desirability Bias in Smoking Cessation: Effects in the Laboratory and Field
2012-03-16
and Child Health Journal, 2(2), 77-83. Bradburn, N., Rips, L., & Shevell, S. (1987). Answering autobiographical questions: the impact of memory ...how accessible smoking outcomes are in an individual’s memory . Research has shown that smokers tend to exhibit greater accessibility for positive...body of research that suggests that acute tobacco abstinence hinders cognitive functioning, such as attention, memory , information processing
Fast Magnetoresistive Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.
Kokkos: Enabling manycore performance portability through polymorphic memory access patterns
Carter Edwards, H.; Trott, Christian R.; Sunderland, Daniel
2014-07-22
The manycore revolution can be characterized by increasing thread counts, decreasing memory per thread, and diversity of continually evolving manycore architectures. High performance computing (HPC) applications and libraries must exploit increasingly finer levels of parallelism within their codes to sustain scalability on these devices. We found that a major obstacle to performance portability is the diverse and conflicting set of constraints on memory access patterns across devices. Contemporary portable programming models address manycore parallelism (e.g., OpenMP, OpenACC, OpenCL) but fail to address memory access patterns. The Kokkos C++ library enables applications and domain libraries to achieve performance portability on diversemore » manycore architectures by unifying abstractions for both fine-grain data parallelism and memory access patterns. In this paper we describe Kokkos’ abstractions, summarize its application programmer interface (API), present performance results for unit-test kernels and mini-applications, and outline an incremental strategy for migrating legacy C++ codes to Kokkos. Furthermore, the Kokkos library is under active research and development to incorporate capabilities from new generations of manycore architectures, and to address a growing list of applications and domain libraries.« less
Design, processing, and testing of lsi arrays for space station
NASA Technical Reports Server (NTRS)
Lile, W. R.; Hollingsworth, R. J.
1972-01-01
The design of a MOS 256-bit Random Access Memory (RAM) is discussed. Technological achievements comprise computer simulations that accurately predict performance; aluminum-gate COS/MOS devices including a 256-bit RAM with current sensing; and a silicon-gate process that is being used in the construction of a 256-bit RAM with voltage sensing. The Si-gate process increases speed by reducing the overlap capacitance between gate and source-drain, thus reducing the crossover capacitance and allowing shorter interconnections. The design of a Si-gate RAM, which is pin-for-pin compatible with an RCA bulk silicon COS/MOS memory (type TA 5974), is discussed in full. The Integrated Circuit Tester (ICT) is limited to dc evaluation, but the diagnostics and data collecting are under computer control. The Silicon-on-Sapphire Memory Evaluator (SOS-ME, previously called SOS Memory Exerciser) measures power supply drain and performs a minimum number of tests to establish operation of the memory devices. The Macrodata MD-100 is a microprogrammable tester which has capabilities of extensive testing at speeds up to 5 MHz. Beam-lead technology was successfully integrated with SOS technology to make a simple device with beam leads. This device and the scribing are discussed.
Total Ionizing Dose Influence on the Single-Event Upset Sensitivity of 130-nm PD SOI SRAMs
NASA Astrophysics Data System (ADS)
Zheng, Qiwen; Cui, Jiangwei; Liu, Mengxin; Zhou, Hang; Liu, Mohan; Wei, Ying; Su, Dandan; Ma, Teng; Lu, Wu; Yu, Xuefeng; Guo, Qi; He, Chengfa
2017-07-01
Effect of total ionizing dose (TID) on single-event upset (SEU) hardness of 130 nm partially depleted (PD) silicon-on-insulator (SOI) static random access memories (SRAMs) is investigated in this paper. The measurable synergistic effect of TID on SEU sensitivity of 130-nm PD SOI SRAM was observed in our experiment, even though that is far less than micrometer and submicrometer devices. Moreover, SEU cross section after TID irradiation has no dependence on the data pattern that was applied during TID exposure: SEU cross sections are characterized by TID data pattern and its complement data pattern are decreased consistently rather than a preferred state and a nonpreferred state as micrometer and sub-micrometer SRAMs. The memory cell test structure allowing direct measurement of static noise margin (SNM) under standby operation was designed using identical memory cell layout of SRAM. Direct measurement of the memory cell SNM shows that both data sides' SNM is decreased by TID, indicating that SEU cross section of 130-nm PD SOI SRAM will be increased by TID. And, the decreased SNM is caused by threshold shift in memory cell transistors induced by “radiation-induced narrow channel effect”.
Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.
Brainerd, C J; Reyna, V F
2001-01-01
Fuzzy-trace theory has evolved in response to counterintuitive data on how memory development influences the development of reasoning. The two traditional perspectives on memory-reasoning relations--the necessity and constructivist hypotheses--stipulate that the accuracy of children's memory for problem information and the accuracy of their reasoning are closely intertwined, albeit for different reasons. However, contrary to necessity, correlational and experimental dissociations have been found between children's memory for problem information that is determinative in solving certain problems and their solutions of those problems. In these same tasks, age changes in memory for problem information appear to be dissociated from age changes in reasoning. Contrary to constructivism, correlational and experimental dissociations also have been found between children's performance on memory tests for actual experience and memory tests for the meaning of experience. As in memory-reasoning studies, age changes in one type of memory performance do not seem to be closely connected to age changes in the other type of performance. Subsequent experiments have led to dual-process accounts in both the memory and reasoning spheres. The account of memory development features four other principles: parallel verbatim-gist storage, dissociated verbatim-gist retrieval, memorial bases of conscious recollection, and identity/similarity processes. The account of the development of reasoning features three principles: gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences. The fuzzy-processing preference is a particularly important notion because it implies that gist-based intuitive reasoning often suffices to deliver "logical" solutions and that such reasoning confers multiple cognitive advantages that enhance accuracy. The explanation of memory-reasoning dissociations in cognitive development then falls out of fuzzy-trace theory's dual-process models of memory and reasoning. More explicitly, in childhood reasoning tasks, it is assumed that both verbatim and gist traces of problem information are stored. Responding accurately to memory tests for presented problem information depends primarily on verbatim memory abilities (preserving traces of that information and accessing them when the appropriate memory probes are administered). However, accurate solutions to reasoning problems depend primarily on gist-memory abilities (extracting the correct gist from problem information, focusing on that gist during reasoning, and accessing reasoning operations that process that gist). Because verbatim and gist memories exhibit considerable dissociation, both during storage and when they are subsequently accessed on memory tests, dissociations of verbatim-based memory performance from gist-based reasoning are predictable. Conversely, associations are predicted in situations in which memory and reasoning are based on the same verbatim traces (Brainerd & Reyna, 1988) and in situations in which memory and reasoning are based on the same gist traces (Reyna & Kiernan, 1994). Fuzzy-trace theory's memory and reasoning principles have been applied in other research domains. Four such domains are developmental cognitive neuroscience studies of false memory, studies of false memory in brain-damaged patients, studies of reasoning errors in judgment and decision making, and studies of retrieval mechanisms in recall. In the first domain, the principles of parallel verbatim-gist storage, dissociated verbatim-gist retrieval, and identity/similarity processes have been used to explain both spontaneous and implanted false reports in children and in the elderly. These explanations have produced some surprising predictions that have been verified: false reports do not merely decline with age during childhood but increase under theoretically specified conditions; reports of events that were not experienced can nevertheless be highly persistent over time; and false reports can be suppressed by retrieving verbatim traces of corresponding true events. In the second domain, the same principles have been invoked to explain why some forms of brain damage lead to elevated levels of false memory and other forms lead to reduced levels of false memory. In the third domain, the principles of gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences have been exploited to formulate a general theory of loci of processing failures in judgment and decision making, cluminating in a developmental account of degrees of rationality that distinguishes more and less advanced reasoning. This theory has in turn been used to formulate local models, such as the inclusion illusions model, that explain the characteristic reasoning errors that are observed on specific judgment and decision-making tasks. Finally, in the fourth domain, a dual-process conception of recall has been derived from the principles of parallel verbatim-gist storage and dissociated verbatim-gist retrieval. In this conception, which has been used to explain cognitive triage effects in recall and robust false recall, targets are recalled either by directly accessing their verbatim traces and reading the retrieved information out of consciousness or by reconstructively processing their gist traces.
Accessing global data from accelerator devices
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.; Sura, Zehra N.
2016-12-06
An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the device memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.
Application of phase-change materials in memory taxonomy.
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects.
A Cerebellar-model Associative Memory as a Generalized Random-access Memory
NASA Technical Reports Server (NTRS)
Kanerva, Pentti
1989-01-01
A versatile neural-net model is explained in terms familiar to computer scientists and engineers. It is called the sparse distributed memory, and it is a random-access memory for very long words (for patterns with thousands of bits). Its potential utility is the result of several factors: (1) a large pattern representing an object or a scene or a moment can encode a large amount of information about what it represents; (2) this information can serve as an address to the memory, and it can also serve as data; (3) the memory is noise tolerant--the information need not be exact; (4) the memory can be made arbitrarily large and hence an arbitrary amount of information can be stored in it; and (5) the architecture is inherently parallel, allowing large memories to be fast. Such memories can become important components of future computers.
Accessing global data from accelerator devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bertolli, Carlo; O'Brien, John K.; Sallenave, Olivier H.
2016-12-06
An aspect includes a table of contents (TOC) that was generated by a compiler being received at an accelerator device. The TOC includes an address of global data in a host memory space. The global data is copied from the address in the host memory space to an address in the device memory space. The address in the host memory space is obtained from the received TOC. The received TOC is updated to indicate that global data is stored at the address in the device memory space. A kernel that accesses the global data from the address in the devicemore » memory space is executed. The address in the device memory space is obtained based on contents of the updated TOC. When the executing is completed, the global data from the address in the device memory space is copied to the address in the host memory space.« less
Millogo, Victor Emmanuel
2005-05-01
This paper describes the acquisition of the 3rd person pronoun 'il/elle' (he, she, it) in seven to twelve-year-old French children (N = 58), in written production. An experiment was conducted to examine the relationship between the use of this anaphoric pronoun and the accessibility of the memory-trace of the corresponding referent in the texts. Referential accessibility in short texts was varied according to three factors: referential distance, thematization of the agent role (first sentence subject), and discourse focus. We found that the children were sensitive to the distance factor as early as 7;0, i.e. they used fewer personal pronouns when the referential distance increased. However, children of different ages differed in their weighting of the discourse focus factor and the thematization factor: the seven-year-olds (N = 18) and the eleven-year-olds (N = 20) were sensitive to variation of the discourse focus but not the thematization factor, while for the nine-year-olds (N = 20) it was the reverse. The main results suggest: (a) when seven and nine-year-olds use the pronoun 'il/elle', they do not comply with the constraints associated with the accessibility of the memory-trace of the referent; (b) memory constraints have an effect from the age of 7;0, but only when the discourse focus is maintained. It was concluded that the discourse management of the French personal pronoun 'il/elle' is not totally mastered at 11;0: children cannot operationally integrate the whole array of constraints implied in anaphoric management.
Tehan, Gerald; Fogarty, Gerard; Ryan, Katherine
2004-07-01
Rehearsal speed has traditionally been seen to be the prime determinant of individual differences in memory span. Recent studies, in the main using young children as the participant population, have suggested other contributors to span performance. In the present research, we used structural equation modeling to explore, at the construct level, individual differences in immediate serial recall with respect to rehearsal, search, phonological coding, and speed of access to lexical memory. We replicated standard short-term phenomena; we showed that the variables that influence children's span performance influence adult performance in the same way; and we showed that speed of access to lexical memory and facility with phonological codes appear to be more potent sources of individual differences in immediate memory than is either rehearsal speed or search factors.
Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory
NASA Astrophysics Data System (ADS)
Wang, Yong; Zheng, Yonghui; Liu, Guangyu; Li, Tao; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Song, Sannian; Ren, Kun; Song, Zhitang
2018-03-01
To bridge the gap of access time between memories and storage systems, the concept of storage class memory has been put forward based on emerging nonvolatile memory technologies. For all the nonvolatile memory candidates, the unpleasant tradeoff between operation speed and retention seems to be inevitable. To promote both the write speed and the retention of phase change memory (PCM), Sc doped Ge2Sb2Te5 (SGST) has been proposed as the storage medium. Octahedral Sc-Te motifs, acting as crystallization precursors to shorten the nucleation incubation period, are the possible reason for the high write speed of 6 ns in PCM cells, five-times faster than that of Ge2Sb2Te5 (GST) cells. Meanwhile, an enhanced 10-year data retention of 119 °C has been achieved. Benefiting from both the increased crystalline resistance and the inhibited formation of the hexagonal phase, the SGST cell has a 77% reduction in power consumption compared to the GST cell. Adhesion of the SGST/SiO2 interface has been strengthened, attributed to the reduced stress by forming smaller grains during crystallization, guaranteeing the reliability of the device. These improvements have made the SGST material a promising candidate for PCM application.
Gao, Shuang; Liu, Gang; Chen, Qilai; Xue, Wuhong; Yang, Huali; Shang, Jie; Chen, Bin; Zeng, Fei; Song, Cheng; Pan, Feng; Li, Run-Wei
2018-02-21
Resistive random access memory (RRAM) with inherent logic-in-memory capability exhibits great potential to construct beyond von-Neumann computers. Particularly, unipolar RRAM is more promising because its single polarity operation enables large-scale crossbar logic-in-memory circuits with the highest integration density and simpler peripheral control circuits. However, unipolar RRAM usually exhibits poor switching uniformity because of random activation of conducting filaments and consequently cannot meet the strict uniformity requirement for logic-in-memory application. In this contribution, a new methodology that constructs cone-shaped conducting filaments by using chemically a active metal cathode is proposed to improve unipolar switching uniformity. Such a peculiar metal cathode will react spontaneously with the oxide switching layer to form an interfacial layer, which together with the metal cathode itself can act as a load resistor to prevent the overgrowth of conducting filaments and thus make them more cone-like. In this way, the rupture of conducting filaments can be strictly limited to the tip region, making their residual parts favorable locations for subsequent filament growth and thus suppressing their random regeneration. As such, a novel "one switch + one unipolar RRAM cell" hybrid structure is capable to realize all 16 Boolean logic functions for large-scale logic-in-memory circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jared Stimson
FORENSIC ANALYSIS OF WINDOW’S® VIRTUAL MEMORY INCORPORATING THE SYSTEM’S PAGEFILE Computer Forensics is concerned with the use of computer investigation and analysis techniques in order to collect evidence suitable for presentation in court. The examination of volatile memory is a relatively new but important area in computer forensics. More recently criminals are becoming more forensically aware and are now able to compromise computers without accessing the hard disk of the target computer. This means that traditional incident response practice of pulling the plug will destroy the only evidence of the crime. While some techniques are available for acquiring the contentsmore » of main memory, few exist which can analyze these data in a meaningful way. One reason for this is how memory is managed by the operating system. Data belonging to one process can be distributed arbitrarily across physical memory or the hard disk, making it very difficult to recover useful information. This report will focus on how these disparate sources of information can be combined to give a single, contiguous address space for each process. Using address translation a tool is developed to reconstruct the virtual address space of a process by combining a physical memory dump with the page-file on the hard disk. COUNTERINTELLIGENCE THROUGH MALICIOUS CODE ANALYSIS As computer network technology continues to grow so does the reliance on this technology for everyday business functionality. To appeal to customers and employees alike, businesses are seeking an increased online prescience, and to increase productivity the same businesses are computerizing their day-to-day operations. The combination of a publicly accessible interface to the businesses network, and the increase in the amount of intellectual property present on these networks presents serious risks. All of this intellectual property now faces constant attacks from a wide variety of malicious software that is intended to uncover company and government secrets. Every year billions of dollars are invested in preventing and recovering from the introduction of malicious code into a system. However, there is little research being done on leveraging these attacks for counterintelligence opportunities. With the ever-increasing number of vulnerable computers on the Internet the task of attributing these attacks to an organization or a single person is a daunting one. This thesis will demonstrate the idea of intentionally running a piece of malicious code in a secure environment in order to gain counterintelligence on an attacker.« less
Al-Haddad, Ahmed; Wang, Chengliang; Qi, Haoyuan; Grote, Fabian; Wen, Liaoyong; Bernhard, Jörg; Vellacheri, Ranjith; Tarish, Samar; Nabi, Ghulam; Kaiser, Ute; Lei, Yong
2016-09-07
Resistive switching random access memories (RRAM) have attracted great scientific and industrial attention for next generation data storage because of their advantages of nonvolatile properties, high density, low power consumption, fast writing/erasing speed, good endurance, and simple and small operation system. Here, by using a template-assisted technique, we demonstrate a three-dimensional highly ordered vertical RRAM device array with density as high as that of the nanopores of the template (10(8)-10(9) cm(-2)), which can also be fabricated in large area. The high crystallinity of the materials, the large contact area and the intimate semiconductor/electrode interface (3 nm interfacial layer) make the ultralow voltage operation (millivolt magnitude) and ultralow power consumption (picowatt) possible. Our procedure for fabrication of the nanodevice arrays in large area can be used for producing many other different materials and such three-dimensional electronic device arrays with the capability to adjust the device densities can be extended to other applications of the next generation nanodevice technology.
Kirk, Marie; Berntsen, Dorthe
2018-02-01
Older adults diagnosed with Alzheimer's disease (AD) have difficulties accessing autobiographical memories. However, this deficit tends to spare memories dated to earlier parts of their lives, and may partially reflect retrieval deficits rather than complete memory loss. Introducing a novel paradigm, the present study examines whether autobiographical memory recall can be improved in AD by manipulating the sensory richness, concreteness and cultural dating of the memory cues. Specifically, we examine whether concrete everyday objects historically dated to the participants' youth (e.g., a skipping rope), relative to verbal cues (i.e., the verbal signifiers for the objects) facilitate access to autobiographical memories. The study includes 49 AD patients, and 50 healthy, older matched control participants, all tested on word versus object-cued recall. Both groups recalled significantly more memories, when cued by objects relative to words, but the advantage was significantly larger in the AD group. In both groups, memory descriptions were longer and significantly more episodic in nature in response to object-cued recall. Together these findings suggest that the multimodal nature of the object cues (i.e. vision, olfaction, audition, somatic sensation) along with specific cue characteristics, such as time reference, texture, shape, may constrain the retrieval search, potentially minimizing executive function demands, and hence strategic processing requirements, thus easing access to autobiographical memories in AD. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aspects of GPU perfomance in algorithms with random memory access
NASA Astrophysics Data System (ADS)
Kashkovsky, Alexander V.; Shershnev, Anton A.; Vashchenkov, Pavel V.
2017-10-01
The numerical code for solving the Boltzmann equation on the hybrid computational cluster using the Direct Simulation Monte Carlo (DSMC) method showed that on Tesla K40 accelerators computational performance drops dramatically with increase of percentage of occupied GPU memory. Testing revealed that memory access time increases tens of times after certain critical percentage of memory is occupied. Moreover, it seems to be the common problem of all NVidia's GPUs arising from its architecture. Few modifications of the numerical algorithm were suggested to overcome this problem. One of them, based on the splitting the memory into "virtual" blocks, resulted in 2.5 times speed up.
Out-of-Core Streamline Visualization on Large Unstructured Meshes
NASA Technical Reports Server (NTRS)
Ueng, Shyh-Kuang; Sikorski, K.; Ma, Kwan-Liu
1997-01-01
It's advantageous for computational scientists to have the capability to perform interactive visualization on their desktop workstations. For data on large unstructured meshes, this capability is not generally available. In particular, particle tracing on unstructured grids can result in a high percentage of non-contiguous memory accesses and therefore may perform very poorly with virtual memory paging schemes. The alternative of visualizing a lower resolution of the data degrades the original high-resolution calculations. This paper presents an out-of-core approach for interactive streamline construction on large unstructured tetrahedral meshes containing millions of elements. The out-of-core algorithm uses an octree to partition and restructure the raw data into subsets stored into disk files for fast data retrieval. A memory management policy tailored to the streamline calculations is used such that during the streamline construction only a very small amount of data are brought into the main memory on demand. By carefully scheduling computation and data fetching, the overhead of reading data from the disk is significantly reduced and good memory performance results. This out-of-core algorithm makes possible interactive streamline visualization of large unstructured-grid data sets on a single mid-range workstation with relatively low main-memory capacity: 5-20 megabytes. Our test results also show that this approach is much more efficient than relying on virtual memory and operating system's paging algorithms.
Configurable memory system and method for providing atomic counting operations in a memory device
Bellofatto, Ralph E.; Gara, Alan G.; Giampapa, Mark E.; Ohmacht, Martin
2010-09-14
A memory system and method for providing atomic memory-based counter operations to operating systems and applications that make most efficient use of counter-backing memory and virtual and physical address space, while simplifying operating system memory management, and enabling the counter-backing memory to be used for purposes other than counter-backing storage when desired. The encoding and address decoding enabled by the invention provides all this functionality through a combination of software and hardware.
2015-08-01
metal structures, memristors, resistive random access memory, RRAM, titanium dioxide, Zr40Cu35Al15Ni10, ZCAN, resistive memory, tunnel junction 16...TiO2 thickness ........................6 1 1. Introduction Resistive-switching memory elements based on metal-insulator-metal (MIM) diodes ...have attracted great interest due to their potential as components for simple, inexpensive, and high-density non-volatile storage devices. MIM diodes
Digital Holographic Data Storage with Fast Access
NASA Astrophysics Data System (ADS)
Ma, J.; Chang, T.; Choi, S.; Hong, J.
Recent investigations in holographic mass memory systems have produced proof of concept demonstrations that have highlighted their potential for providing unprecedented capacity, data transfer rates and fast random access performance [1-4]. The exploratory nature of most such investigations has been largely confined to benchtop experiments in which the practical constraints of packaging and environmental concerns have been ignored. We have embarked on an effort to demonstrate the holographic mass memory concept by developing a compact prototype system geared for avionics and similar applications, which demand the following features (mostly interdependent factors): (1) solid-state design (no moving parts), (2) fast data-seek time, (3) robustness with respect to environmental factors (temperature, vibration, shock). In this chapter, we report on the development and demonstration of two systems, one with 100 Mbytes and the other with more than 1 Gbyte of storage capacity. Both systems feature solid-state design with the addressing mechanism realized with acousto-optic deflectors that are capable of better than 50 µs data seek time. Since the basic designs for the two systems are similar, we describe only the larger system in detail. The operation of the smaller system has been demonstrated in various environments, including hand-held operation and thermal/mechanical shock, and a photograph of the smaller system is provided as well as actual digital data retrieved from the same system.
Packaged digital holographic data storage with fast access
NASA Astrophysics Data System (ADS)
Ma, Jian; Chang, Tallis Y.; Choi, Sung; Hong, John H.
1998-11-01
Recent investigations in holographic mass memory systems have produced proof of concept demonstrations that have highlighted their potential for providing unprecedented capacity, data transfer rates and fast random access performance. The exploratory nature of most such investigations have been largely confined to benchtop experiments in which the practical constraints of packaging and environmental concerns have been ignored. We have embarked on an effort to demonstrate the holographic mass memory concept by developing a compact prototype system geared for avionics and similar applications which demand the following features (mostly interdependent factors): (1) solid state design (no moving parts), (2) fast data seek time, (3) robust with respect to environmental factors (temperature, vibration, shock). In this paper, we report on the development and demonstration of two systems, one with 100 Mbytes and the other with more than 1 Gbyte of storage capacity. Both systems feature solid state design with the addressing mechanism realized with acousto- optic deflectors that are capable of better than 50 microseconds data seek time. Since the basic designs for the two systems are similar, we describe only the larger system in detail. The operation of the smaller system has been demonstrated in various environments including hand-held operation and thermal/mechanical shock and a photograph of the smaller system is provided as well as actual digital data retrieved from the same system.
Archer, Charles J.; Blocksome, Michael A.
2012-12-11
Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, J. A., E-mail: jad95@cam.ac.uk; Guo, Y.; Robertson, J.
2015-09-21
Energetics for a variety of intrinsic defects in NiO are calculated using state-of-the-art ab initio hybrid density functional theory calculations. At the O-rich limit, Ni vacancies are the lowest cost defect for all Fermi energies within the gap, in agreement with the well-known p-type behaviour of NiO. However, the ability of the metal electrode in a resistive random access memory metal-oxide-metal setup to shift the oxygen chemical potential towards the O-poor limit results in unusual NiO behaviour and O vacancies dominating at lower Fermi energy levels. Calculated band diagrams show that O vacancies in NiO are positively charged at themore » operating Fermi energy giving it the advantage of not requiring a scavenger metal layer to maximise drift. Ni and O interstitials are generally found to be higher in energy than the respective vacancies suggesting that significant recombination of O vacancies and interstitials does not take place as proposed in some models of switching behaviour.« less
NASA Astrophysics Data System (ADS)
Tseng, Po-Hao; Hsu, Kai-Chieh; Lin, Yu-Yu; Lee, Feng-Min; Lee, Ming-Hsiu; Lung, Hsiang-Lan; Hsieh, Kuang-Yeu; Chung Wang, Keh; Lu, Chih-Yuan
2018-04-01
A high performance physically unclonable function (PUF) implemented with WO3 resistive random access memory (ReRAM) is presented in this paper. This robust ReRAM-PUF can eliminated bit flipping problem at very high temperature (up to 250 °C) due to plentiful read margin by using initial resistance state and set resistance state. It is also promised 10 years retention at the temperature range of 210 °C. These two stable resistance states enable stable operation at automotive environments from -40 to 125 °C without need of temperature compensation circuit. The high uniqueness of PUF can be achieved by implementing a proposed identification (ID)-generation method. Optimized forming condition can move 50% of the cells to low resistance state and the remaining 50% remain at initial high resistance state. The inter- and intra-PUF evaluations with unlimited separation of hamming distance (HD) are successfully demonstrated even under the corner condition. The number of reproduction was measured to exceed 107 times with 0% bit error rate (BER) at read voltage from 0.4 to 0.7 V.
Application-Controlled Demand Paging for Out-of-Core Visualization
NASA Technical Reports Server (NTRS)
Cox, Michael; Ellsworth, David; Kutler, Paul (Technical Monitor)
1997-01-01
In the area of scientific visualization, input data sets are often very large. In visualization of Computational Fluid Dynamics (CFD) in particular, input data sets today can surpass 100 Gbytes, and are expected to scale with the ability of supercomputers to generate them. Some visualization tools already partition large data sets into segments, and load appropriate segments as they are needed. However, this does not remove the problem for two reasons: 1) there are data sets for which even the individual segments are too large for the largest graphics workstations, 2) many practitioners do not have access to workstations with the memory capacity required to load even a segment, especially since the state-of-the-art visualization tools tend to be developed by researchers with much more powerful machines. When the size of the data that must be accessed is larger than the size of memory, some form of virtual memory is simply required. This may be by segmentation, paging, or by paged segments. In this paper we demonstrate that complete reliance on operating system virtual memory for out-of-core visualization leads to poor performance. We then describe a paged segment system that we have implemented, and explore the principles of memory management that can be employed by the application for out-of-core visualization. We show that application control over some of these can significantly improve performance. We show that sparse traversal can be exploited by loading only those data actually required. We show also that application control over data loading can be exploited by 1) loading data from alternative storage format (in particular 3-dimensional data stored in sub-cubes), 2) controlling the page size. Both of these techniques effectively reduce the total memory required by visualization at run-time. We also describe experiments we have done on remote out-of-core visualization (when pages are read by demand from remote disk) whose results are promising.
Memory Benchmarks for SMP-Based High Performance Parallel Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A B; de Supinski, B; Mueller, F
2001-11-20
As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less
Measuring autobiographical fluency in the self-memory system.
Rathbone, Clare J; Moulin, Chris J A
2014-01-01
Autobiographical memory is widely considered to be fundamentally related to concepts of self and identity. However, few studies have sought to test models of self and memory directly using experimental designs. Using a novel autobiographical fluency paradigm, the present study investigated memory accessibility for different levels of self-related knowledge. Forty participants generated 20 "I am" statements about themselves, from which the 1st, 5th, 10th, 15th, and 20th were used as cues in a two-minute autobiographical fluency task. The most salient aspects of the self, measured by both serial position and ratings of personal significance, were associated with more accessible sets of autobiographical memories. This finding supports theories that view the self as a powerful organizational structure in memory. Results are discussed with reference to models of self and memory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arumugam, Kamesh
Efficient parallel implementations of scientific applications on multi-core CPUs with accelerators such as GPUs and Xeon Phis is challenging. This requires - exploiting the data parallel architecture of the accelerator along with the vector pipelines of modern x86 CPU architectures, load balancing, and efficient memory transfer between different devices. It is relatively easy to meet these requirements for highly structured scientific applications. In contrast, a number of scientific and engineering applications are unstructured. Getting performance on accelerators for these applications is extremely challenging because many of these applications employ irregular algorithms which exhibit data-dependent control-ow and irregular memory accesses. Furthermore,more » these applications are often iterative with dependency between steps, and thus making it hard to parallelize across steps. As a result, parallelism in these applications is often limited to a single step. Numerical simulation of charged particles beam dynamics is one such application where the distribution of work and memory access pattern at each time step is irregular. Applications with these properties tend to present significant branch and memory divergence, load imbalance between different processor cores, and poor compute and memory utilization. Prior research on parallelizing such irregular applications have been focused around optimizing the irregular, data-dependent memory accesses and control-ow during a single step of the application independent of the other steps, with the assumption that these patterns are completely unpredictable. We observed that the structure of computation leading to control-ow divergence and irregular memory accesses in one step is similar to that in the next step. It is possible to predict this structure in the current step by observing the computation structure of previous steps. In this dissertation, we present novel machine learning based optimization techniques to address the parallel implementation challenges of such irregular applications on different HPC architectures. In particular, we use supervised learning to predict the computation structure and use it to address the control-ow and memory access irregularities in the parallel implementation of such applications on GPUs, Xeon Phis, and heterogeneous architectures composed of multi-core CPUs with GPUs or Xeon Phis. We use numerical simulation of charged particles beam dynamics simulation as a motivating example throughout the dissertation to present our new approach, though they should be equally applicable to a wide range of irregular applications. The machine learning approach presented here use predictive analytics and forecasting techniques to adaptively model and track the irregular memory access pattern at each time step of the simulation to anticipate the future memory access pattern. Access pattern forecasts can then be used to formulate optimization decisions during application execution which improves the performance of the application at a future time step based on the observations from earlier time steps. In heterogeneous architectures, forecasts can also be used to improve the memory performance and resource utilization of all the processing units to deliver a good aggregate performance. We used these optimization techniques and anticipation strategy to design a cache-aware, memory efficient parallel algorithm to address the irregularities in the parallel implementation of charged particles beam dynamics simulation on different HPC architectures. Experimental result using a diverse mix of HPC architectures shows that our approach in using anticipation strategy is effective in maximizing data reuse, ensuring workload balance, minimizing branch and memory divergence, and in improving resource utilization.« less
Heap/stack guard pages using a wakeup unit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gooding, Thomas M; Satterfield, David L; Steinmacher-Burow, Burkhard
A method and system for providing a memory access check on a processor including the steps of detecting accesses to a memory device including level-1 cache using a wakeup unit. The method includes invalidating level-1 cache ranges corresponding to a guard page, and configuring a plurality of wakeup address compare (WAC) registers to allow access to selected WAC registers. The method selects one of the plurality of WAC registers, and sets up a WAC register related to the guard page. The method configures the wakeup unit to interrupt on access of the selected WAC register. The method detects access ofmore » the memory device using the wakeup unit when a guard page is violated. The method generates an interrupt to the core using the wakeup unit, and determines the source of the interrupt. The method detects the activated WAC registers assigned to the violated guard page, and initiates a response.« less
Montgomery, Catharine; Fisk, John E; Newcombe, Russell; Murphy, Phillip N
2005-10-01
Recent theoretical models suggest that the central executive may not be a unified structure. The present study explored the nature of central executive deficits in ecstasy users. In study 1, 27 ecstasy users and 34 non-users were assessed using tasks to tap memory updating (computation span; letter updating) and access to long-term memory (a semantic fluency test and the Chicago Word Fluency Test). In study 2, 51 ecstasy users and 42 non-users completed tasks that assess mental set switching (number/letter and plus/minus) and inhibition (random letter generation). MANOVA revealed that ecstasy users performed worse on both tasks used to assess memory updating and on tasks to assess access to long-term memory (C- and S-letter fluency). However, notwithstanding the significant ecstasy group-related effects, indices of cocaine and cannabis use were also significantly correlated with most of the executive measures. Unexpectedly, in study 2, ecstasy users performed significantly better on the inhibition task, producing more letters than non-users. No group differences were observed on the switching tasks. Correlations between indices of ecstasy use and number of letters produced were significant. The present study provides further support for ecstasy/polydrug-related deficits in memory updating and in access to long-term memory. The surplus evident on the inhibition task should be treated with some caution, as this was limited to a single measure and has not been supported by our previous work.
Performance Evaluation of Remote Memory Access (RMA) Programming on Shared Memory Parallel Computers
NASA Technical Reports Server (NTRS)
Jin, Hao-Qiang; Jost, Gabriele; Biegel, Bryan A. (Technical Monitor)
2002-01-01
The purpose of this study is to evaluate the feasibility of remote memory access (RMA) programming on shared memory parallel computers. We discuss different RMA based implementations of selected CFD application benchmark kernels and compare them to corresponding message passing based codes. For the message-passing implementation we use MPI point-to-point and global communication routines. For the RMA based approach we consider two different libraries supporting this programming model. One is a shared memory parallelization library (SMPlib) developed at NASA Ames, the other is the MPI-2 extensions to the MPI Standard. We give timing comparisons for the different implementation strategies and discuss the performance.
The Earth Data Analytic Services (EDAS) Framework
NASA Astrophysics Data System (ADS)
Maxwell, T. P.; Duffy, D.
2017-12-01
Faced with unprecedented growth in earth data volume and demand, NASA has developed the Earth Data Analytic Services (EDAS) framework, a high performance big data analytics framework built on Apache Spark. This framework enables scientists to execute data processing workflows combining common analysis operations close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using vetted earth data analysis tools (ESMF, CDAT, NCO, etc.). EDAS utilizes a dynamic caching architecture, a custom distributed array framework, and a streaming parallel in-memory workflow for efficiently processing huge datasets within limited memory spaces with interactive response times. EDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be accessed using direct web service calls, a Python script, a Unix-like shell client, or a JavaScript-based web application. New analytic operations can be developed in Python, Java, or Scala (with support for other languages planned). Client packages in Python, Java/Scala, or JavaScript contain everything needed to build and submit EDAS requests. The EDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service enables decision makers to compare multiple reanalysis datasets and investigate trends, variability, and anomalies in earth system dynamics around the globe.
Metal oxide resistive random access memory based synaptic devices for brain-inspired computing
NASA Astrophysics Data System (ADS)
Gao, Bin; Kang, Jinfeng; Zhou, Zheng; Chen, Zhe; Huang, Peng; Liu, Lifeng; Liu, Xiaoyan
2016-04-01
The traditional Boolean computing paradigm based on the von Neumann architecture is facing great challenges for future information technology applications such as big data, the Internet of Things (IoT), and wearable devices, due to the limited processing capability issues such as binary data storage and computing, non-parallel data processing, and the buses requirement between memory units and logic units. The brain-inspired neuromorphic computing paradigm is believed to be one of the promising solutions for realizing more complex functions with a lower cost. To perform such brain-inspired computing with a low cost and low power consumption, novel devices for use as electronic synapses are needed. Metal oxide resistive random access memory (ReRAM) devices have emerged as the leading candidate for electronic synapses. This paper comprehensively addresses the recent work on the design and optimization of metal oxide ReRAM-based synaptic devices. A performance enhancement methodology and optimized operation scheme to achieve analog resistive switching and low-energy training behavior are provided. A three-dimensional vertical synapse network architecture is proposed for high-density integration and low-cost fabrication. The impacts of the ReRAM synaptic device features on the performances of neuromorphic systems are also discussed on the basis of a constructed neuromorphic visual system with a pattern recognition function. Possible solutions to achieve the high recognition accuracy and efficiency of neuromorphic systems are presented.
Enhancing Memory Access for Less Skilled Readers
ERIC Educational Resources Information Center
Smith, Emily R.; O'Brien, Edward J.
2016-01-01
Less skilled readers' comprehension often suffers because they have an impoverished representation of text in long-term memory; this, in turn, increases the difficulty of gaining access to backgrounded information necessary for maintaining coherence. The results of four experiments demonstrated that providing less skilled readers with additional…
Application of phase-change materials in memory taxonomy
Wang, Lei; Tu, Liang; Wen, Jing
2017-01-01
Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557
A review of emerging non-volatile memory (NVM) technologies and applications
NASA Astrophysics Data System (ADS)
Chen, An
2016-11-01
This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.
Jacob, Jane; Jacobs, Christianne; Silvanto, Juha
2015-01-01
What is the role of top-down attentional modulation in consciously accessing working memory (WM) content? In influential WM models, information can exist in different states, determined by allocation of attention; placing the original memory representation in the center of focused attention gives rise to conscious access. Here we discuss various lines of evidence indicating that such attentional modulation is not sufficient for memory content to be phenomenally experienced. We propose that, in addition to attentional modulation of the memory representation, another type of top-down modulation is required: suppression of all incoming visual information, via inhibition of early visual cortex. In this view, there are three distinct memory levels, as a function of the top-down control associated with them: (1) Nonattended, nonconscious associated with no attentional modulation; (2) attended, phenomenally nonconscious memory, associated with attentional enhancement of the actual memory trace; (3) attended, phenomenally conscious memory content, associated with enhancement of the memory trace and top-down suppression of all incoming visual input.
Selective memory retrieval can impair and improve retrieval of other memories.
Bäuml, Karl-Heinz T; Samenieh, Anuscheh
2012-03-01
Research from the past decades has shown that retrieval of a specific memory (e.g., retrieving part of a previous vacation) typically attenuates retrieval of other memories (e.g., memories for other details of the event), causing retrieval-induced forgetting. More recently, however, it has been shown that retrieval can both attenuate and aid recall of other memories (K.-H. T. Bäuml & A. Samenieh, 2010). To identify the circumstances under which retrieval aids recall, the authors examined retrieval dynamics in listwise directed forgetting, context-dependent forgetting, proactive interference, and in the absence of any induced memory impairment. They found beneficial effects of selective retrieval in listwise directed forgetting and context-dependent forgetting but detrimental effects in all the other conditions. Because context-dependent forgetting and listwise directed forgetting arguably reflect impaired context access, the results suggest that memory retrieval aids recall of memories that are subject to impaired context access but attenuates recall in the absence of such circumstances. The findings are consistent with a 2-factor account of memory retrieval and suggest the existence of 2 faces of memory retrieval. 2012 APA, all rights reserved
Khalil, Amr Farid; Iwasaki, Masaki; Nishio, Yoshiyuki; Jin, Kazutaka; Nakasato, Nobukazu; Tominaga, Teiji
2016-11-15
Post-operative memory changes after temporal lobe surgery have been established mainly by group analysis of cognitive outcome. This study investigated individual patient-based memory outcome in surgically-treated patients with mesial temporal lobe epilepsy (TLE). This study included 84 consecutive patients with intractable TLE caused by unilateral hippocampal sclerosis (HS) who underwent epilepsy surgery (47 females, 41 left [Lt] TLE). Memory functions were evaluated with the Wechsler Memory Scale-Revised before and at 1 year after surgery. Pre-operative memory function was classified into three patterns: verbal dominant memory impairment (Verb-D), visual dominant impairment (Vis-D), and no material-specific impairment. Post-operative changes in verbal and visual memory indices were classified into meaningful improvement, worsening, or no significant changes. Pre-operative patterns and post-operative changes in verbal and visual memory function were compared between the Lt and right (Rt) TLE groups. Pre-operatively, Verb-D was the most common type of impairment in both the Lt and Rt TLE groups (65.9 and 48.8%), and verbal memory indices were lower than visual memory indices, especially in the Lt compared with Rt TLE group. Vis-D was observed only in 11.6% of Rt and 7.3% of Lt TLE patients. Post-operatively, meaningful improvement of memory indices was observed in 23.3-36.6% of the patients, and the memory improvement was equivalent between Lt and Rt TLE groups and between verbal and visual materials. In conclusion, Verb-D is most commonly observed in patients with both the Lt and Rt TLE associated with HS. Hippocampectomy can improve memory indices in such patients regardless of the side of surgery and the function impaired.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clima, Sergiu, E-mail: clima@imec.be; Chen, Yang Yin; Goux, Ludovic
Resistive Random Access Memories are among the most promising candidates for the next generation of non-volatile memory. Transition metal oxides such as HfOx and TaOx attracted a lot of attention due to their CMOS compatibility. Furthermore, these materials do not require the inclusion of extrinsic conducting defects since their operation is based on intrinsic ones (oxygen vacancies). Using Density Functional Theory, we evaluated the thermodynamics of the defects formation and the kinetics of diffusion of the conducting species active in transition metal oxide RRAM materials. The gained insights based on the thermodynamics in the Top Electrode, Insulating Matrix and Bottommore » Electrode and at the interfaces are used to design a proper defect reservoir, which is needed for a low-energy reliable switching device. The defect reservoir has also a direct impact on the retention of the Low Resistance State due to the resulting thermodynamic driving forces. The kinetics of the diffusing conducting defects in the Insulating Matrix determine the switching dynamics and resistance retention. The interface at the Bottom Electrode has a significant impact on the low-current operation and long endurance of the memory cell. Our first-principles findings are confirmed by experimental measurements on fabricated RRAM devices.« less
NASA Technical Reports Server (NTRS)
Gaillard, J. P.
1981-01-01
The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes.
Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays.
Luo, Qing; Xu, Xiaoxin; Liu, Hongtao; Lv, Hangbing; Gong, Tiancheng; Long, Shibing; Liu, Qi; Sun, Haitao; Banerjee, Writam; Li, Ling; Gao, Jianfeng; Lu, Nianduan; Liu, Ming
2016-08-25
Vertical crossbar arrays provide a cost-effective approach for high density three-dimensional (3D) integration of resistive random access memory. However, an individual selector device is not allowed to be integrated with the memory cell separately. The development of V-RRAM has impeded the lack of satisfactory self-selective cells. In this study, we have developed a high performance bilayer self-selective device using HfO2 as the memory switching layer and a mixed ionic and electron conductor as the selective layer. The device exhibits high non-linearity (>10(3)) and ultra-low half-select leakage (<0.1 pA). A four layer vertical crossbar array was successfully demonstrated based on the developed self-selective device. High uniformity, ultra-low leakage, sub-nA operation, self-compliance, and excellent read/write disturbance immunity were achieved. The robust array level performance shows attractive potential for low power and high density 3D data storage applications.
Capacitorless 1T-DRAM on crystallized poly-Si TFT.
Kim, Min Soo; Cho, Won Ju
2011-07-01
The single-transistor dynamic random-access memory (1T-DRAM) using a polycrystalline-silicon thin-film transistor (poly-Si TFT) was investigated. A 100-nm amorphous silicon thin film was deposited onto a 200-nm oxidized silicon wafer via low-pressure chemical vapor deposition (LPCVD), and the amorphous silicon layer was crystallized via eximer laser annealing (ELA) with a KrF source of 248 nm wavelength and 400 mJ/cm2 power. The fabricated capacitor less 1T-DRAM on the poly-Si TFT was evaluated via impact ionization and gate-induced drain leakage (GIDL) current programming. The device showed a clear memory margin between the "1" and "0" states, and as the channel length decreased, a floating body effect which induces a kink effect increases with high mobility. Furthermore, the GIDL current programming showed improved memory properties compared to the impact ionization method. Although the sensing margins and retention times in both program methods are commercially insufficient, it was confirmed the feasibility of the application of 1T-DRAM operation to TFTs.
Enhancements to the IBM version of COSMIC/NASTRAN
NASA Technical Reports Server (NTRS)
Brown, W. Keith
1989-01-01
Major improvements were made to the IBM version of COSMIC/NASTRAN by RPK Corporation under contract to IBM Corporation. These improvements will become part of COSMIC's IBM version and will be available in the second quarter of 1989. The first improvement is the inclusion of code to take advantage of IBM's new Vector Facility (VF) on its 3090 machines. The remaining improvements are modifications that will benefit all users as a result of the extended addressing capability provided by the MVS/XA operating system. These improvements include the availability of an in-memory data base that potentially eliminates the need for I/O to the PRIxx disk files. Another improvement is the elimination of multiple load modules that have to be loaded for every link switch within NASTRAN. The last improvement allows for NASTRAN to execute above the 16 mega-byte line. This improvement allows for NASTRAN to have access to 2 giga-bytes of memory for open core and the in-memory data base.
NASA Astrophysics Data System (ADS)
Yoon, Bongno; Sung, Man Young; Yeon, Sujin; Oh, Hyun S.; Kwon, Yoonjoo; Kim, Chuljin; Kim, Kyung-Ho
2009-03-01
With the circuits using metal-ferroelectric-metal (MFM) capacitor, rf operational signal properties are almost the same or superior to those of polysilicon-insulator-polysilicon, metal-insulator-metal, and metal-oxide-semiconductor (MOS) capacitors. In electronic product code global class-1 generation-2 uhf radio-frequency identification (RFID) protocols, the MFM can play a crucial role in satisfying the specifications of the inventoried flag's persistence times (Tpt) for each session (S0-S3, SL). In this paper, we propose and design a new MFM capacitor based memory scheme of which persistence time for S1 flag is measured at 2.2 s as well as indefinite for S2, S3, and SL flags during the period of power-on. A ferroelectric random access memory embedded RFID tag chip is fabricated with an industry-standard complementary MOS process. The chip size is around 500×500 μm2 and the measured power consumption is about 10 μW.
Digital correlation detector for low-cost Omega navigation
NASA Technical Reports Server (NTRS)
Chamberlin, K. A.
1976-01-01
Techniques to lower the cost of using the Omega global navigation network with phase-locked loops (PLL) were developed. The technique that was accepted as being "optimal" is called the memory-aided phase-locked loop (MAPLL) since it allows operation on all eight Omega time slots with one PLL through the implementation of a random access memory. The receiver front-end and the signals that it transmits to the PLL were first described. A brief statistical analysis of these signals was then made to allow a rough comparison between the front-end presented in this work and a commercially available front-end to be made. The hardware and theory of application of the MAPLL were described, ending with an analysis of data taken with the MAPLL. Some conclusions and recommendations were also given.
Improving the Spacelab mass memory unit tape layout with a simulation model
NASA Technical Reports Server (NTRS)
Noneman, S. R.
1984-01-01
A tape drive called the Mass Memory Unit (MMU) stores software used by Spacelab computers. MMU tape motion must be minimized during typical flight operations to avoid a loss of scientific data. A projection of the tape motion is needed for evaluation of candidate tape layouts. A computer simulation of the scheduled and unscheduled MMU tape accesses is developed for this purpose. This simulation permits evaluations of candidate tape layouts by tracking and summarizing tape movements. The factors that affect tape travel are investigated and a heuristic is developed to find a good tape layout. An improved tape layout for Spacelab I is selected after the evaluation of fourteen candidates. The simulation model will provide the ability to determine MMU layouts that substantially decrease the tape travel on future Spacelab flights.
Operant conditioning of autobiographical memory retrieval.
Debeer, Elise; Raes, Filip; Williams, J Mark G; Craeynest, Miet; Hermans, Dirk
2014-01-01
Functional avoidance is considered as one of the key mechanisms underlying overgeneral autobiographical memory (OGM). According to this view OGM is regarded as a learned cognitive avoidance strategy, based on principles of operant conditioning; i.e., individuals learn to avoid the emotionally painful consequences associated with the retrieval of specific negative memories. The aim of the present study was to test one of the basic assumptions of the functional avoidance account, namely that autobiographical memory retrieval can be brought under operant control. Here 41 students were instructed to retrieve personal memories in response to 60 emotional cue words. Depending on the condition, they were punished with an aversive sound for the retrieval of specific or nonspecific memories in an operant conditioning procedure. Analyzes showed that the course of memory specificity significantly differed between conditions. After the procedure participants punished for nonspecific memories retrieved significantly more specific memories compared to participants punished for specific memories. However, whereas memory specificity significantly increased in participants punished for specific memories, it did not significantly decrease in participants punished for nonspecific memories. Thus, while our findings indicate that autobiographical memory retrieval can be brought under operant control, they do not support a functional avoidance view on OGM.
NASA Astrophysics Data System (ADS)
Hao, Aize; Ismail, Muhammad; He, Shuai; Huang, Wenhua; Qin, Ni; Bao, Dinghua
2018-02-01
The coexistence of unipolar and bipolar resistive switching (RS) behaviors of Ag-nanoparticles (Ag-NPs) doped NiFe2O4 (NFO) based memory devices was investigated. The switching voltages of required operations in the unipolar mode were smaller than those in the bipolar mode, while ON/OFF resistance levels of both modes were identical. Ag-NPs doped NFO based devices could switch between the unipolar and bipolar modes just by preferring the polarity of RESET voltage. Besides, the necessity of identical compliance current during the SET process of unipolar and bipolar modes provided an additional advantage of simplicity in device operation. Performance characteristics and cycle-to-cycle uniformity (>103 cycles) in unipolar operation were considerably better than those in bipolar mode (>102 cycles) at 25 °C. Moreover, good endurance (>600 cycles) at 200 °C was observed in unipolar mode and excellent nondestructive retention characteristics were obtained on memory cells at 125 °C and 200 °C. On the basis of temperature dependence of resistance at low resistance state, it was believed that physical origin of the RS mechanism involved the formation/rupture of the conducting paths consisting of oxygen vacancies and Ag atoms, considering Joule heating and electrochemical redox reaction effects for the unipolar and bipolar resistive switching behaviors. Our results demonstrate that 0.5% Ag-NPs doped nickel ferrites are promising resistive switching materials for resistive access memory applications.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2016-11-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Protein Solvent-Accessibility Prediction by a Stacked Deep Bidirectional Recurrent Neural Network.
Zhang, Buzhong; Li, Linqing; Lü, Qiang
2018-05-25
Residue solvent accessibility is closely related to the spatial arrangement and packing of residues. Predicting the solvent accessibility of a protein is an important step to understand its structure and function. In this work, we present a deep learning method to predict residue solvent accessibility, which is based on a stacked deep bidirectional recurrent neural network applied to sequence profiles. To capture more long-range sequence information, a merging operator was proposed when bidirectional information from hidden nodes was merged for outputs. Three types of merging operators were used in our improved model, with a long short-term memory network performing as a hidden computing node. The trained database was constructed from 7361 proteins extracted from the PISCES server using a cut-off of 25% sequence identity. Sequence-derived features including position-specific scoring matrix, physical properties, physicochemical characteristics, conservation score and protein coding were used to represent a residue. Using this method, predictive values of continuous relative solvent-accessible area were obtained, and then, these values were transformed into binary states with predefined thresholds. Our experimental results showed that our deep learning method improved prediction quality relative to current methods, with mean absolute error and Pearson's correlation coefficient values of 8.8% and 74.8%, respectively, on the CB502 dataset and 8.2% and 78%, respectively, on the Manesh215 dataset.
Designing a VMEbus FDDI adapter card
NASA Astrophysics Data System (ADS)
Venkataraman, Raman
1992-03-01
This paper presents a system architecture for a VMEbus FDDI adapter card containing a node core, FDDI block, frame buffer memory and system interface unit. Most of the functions of the PHY and MAC layers of FDDI are implemented with National's FDDI chip set and the SMT implementation is simplified with a low cost microcontroller. The factors that influence the system bus bandwidth utilization and FDDI bandwidth utilization are the data path and frame buffer memory architecture. The VRAM based frame buffer memory has two sections - - LLC frame memory and SMT frame memory. Each section with an independent serial access memory (SAM) port provides an independent access after the initial data transfer cycle on the main port and hence, the throughput is maximized on each port of the memory. The SAM port simplifies the system bus master DMA design and the VMEbus interface can be designed with low-cost off-the-shelf interface chips.
Oudman, Erik; Postma, Albert; Nijboer, Tanja C W; Wijnia, Jan W; Van der Stigchel, Stefan
2017-03-20
Korsakoff's syndrome (KS) is a neuropsychiatric disorder characterised by severe amnesia. Although the presence of impairments in memory has long been acknowledged, there is a lack of knowledge about the precise characteristics of declarative memory capacities in order to implement memory rehabilitation. In this study, we investigated the extent to which patients diagnosed with KS have preserved declarative memory capacities in working memory, long-term memory encoding or long-term memory recall operations, and whether these capacities are most preserved for verbal or visuospatial content. The results of this study demonstrate that patients with KS have compromised declarative memory functioning on all memory indices. Performance was lowest for the encoding operation compared to the working memory and delayed recall operation. With respect to the content, visuospatial memory was relatively better preserved than verbal memory. All memory operations functioned suboptimally, although the most pronounced disturbance was found in verbal memory encoding. Based on the preserved declarative memory capacities in patients, visuospatial memory can form a more promising target for compensatory memory rehabilitation than verbal memory. It is therefore relevant to increase the number of spatial cues in memory rehabilitation for KS patients.
Scaling Irregular Applications through Data Aggregation and Software Multithreading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Tumeo, Antonino; Chavarría-Miranda, Daniel
Bioinformatics, data analytics, semantic databases, knowledge discovery are emerging high performance application areas that exploit dynamic, linked data structures such as graphs, unbalanced trees or unstructured grids. These data structures usually are very large, requiring significantly more memory than available on single shared memory systems. Additionally, these data structures are difficult to partition on distributed memory systems. They also present poor spatial and temporal locality, thus generating unpredictable memory and network accesses. The Partitioned Global Address Space (PGAS) programming model seems suitable for these applications, because it allows using a shared memory abstraction across distributed-memory clusters. However, current PGAS languagesmore » and libraries are built to target regular remote data accesses and block transfers. Furthermore, they usually rely on the Single Program Multiple Data (SPMD) parallel control model, which is not well suited to the fine grained, dynamic and unbalanced parallelism of irregular applications. In this paper we present {\\bf GMT} (Global Memory and Threading library), a custom runtime library that enables efficient execution of irregular applications on commodity clusters. GMT integrates a PGAS data substrate with simple fork/join parallelism and provides automatic load balancing on a per node basis. It implements multi-level aggregation and lightweight multithreading to maximize memory and network bandwidth with fine-grained data accesses and tolerate long data access latencies. A key innovation in the GMT runtime is its thread specialization (workers, helpers and communication threads) that realize the overall functionality. We compare our approach with other PGAS models, such as UPC running using GASNet, and hand-optimized MPI code on a set of typical large-scale irregular applications, demonstrating speedups of an order of magnitude.« less
The influence of training and experience on memory strategy.
Patrick, John; Morgan, Phillip L; Smy, Victoria; Tiley, Leyanne; Seeby, Helen; Patrick, Tanya; Evans, Jonathan
2015-07-01
This paper investigates whether, and if so how much, prior training and experience overwrite the influence of the constraints of the task environment on strategy deployment. This evidence is relevant to the theory of soft constraints that focuses on the role of constraints in the task environment (Gray, Simms, Fu, & Schoelles, Psychological Review, 113: 461-482, 2006). The theory explains how an increase in the cost of accessing information induces a more memory-based strategy involving more encoding and planning. Experiments 1 and 3 adopt a traditional training and transfer design using the Blocks World Task in which participants were exposed to training trials involving a 2.5-s delay in accessing goal-state information before encountering transfer trials in which there was no access delay. The effect of prior training was assessed by the degree of memory-based strategy adopted in the transfer trials. Training with an access delay had a substantial carry-over effect and increased the subsequent degree of memory-based strategy adopted in the transfer environment. However, such effects do not necessarily occur if goal-state access cost in training is less costly than in transfer trials (Experiment 2). Experiment 4 used a fine-grained intra-trial design to examine the effect of experiencing access cost on one, two, or three occasions within the same trial and found that such experience on two consecutive occasions was sufficient to induce a more memory-based strategy. This paper establishes some effects of training that are relevant to the soft constraints theory and also discusses practical implications.
Optoelectronic-cache memory system architecture.
Chiarulli, D M; Levitan, S P
1996-05-10
We present an investigation of the architecture of an optoelectronic cache that can integrate terabit optical memories with the electronic caches associated with high-performance uniprocessors and multiprocessors. The use of optoelectronic-cache memories enables these terabit technologies to provide transparently low-latency secondary memory with frame sizes comparable with disk pages but with latencies that approach those of electronic secondary-cache memories. This enables the implementation of terabit memories with effective access times comparable with the cycle times of current microprocessors. The cache design is based on the use of a smart-pixel array and combines parallel free-space optical input-output to-and-from optical memory with conventional electronic communication to the processor caches. This cache and the optical memory system to which it will interface provide a large random-access memory space that has a lower overall latency than that of magnetic disks and disk arrays. In addition, as a consequence of the high-bandwidth parallel input-output capabilities of optical memories, fault service times for the optoelectronic cache are substantially less than those currently achievable with any rotational media.
Chaining direct memory access data transfer operations for compute nodes in a parallel computer
Archer, Charles J.; Blocksome, Michael A.
2010-09-28
Methods, systems, and products are disclosed for chaining DMA data transfer operations for compute nodes in a parallel computer that include: receiving, by an origin DMA engine on an origin node in an origin injection FIFO buffer for the origin DMA engine, a RGET data descriptor specifying a DMA transfer operation data descriptor on the origin node and a second RGET data descriptor on the origin node, the second RGET data descriptor specifying a target RGET data descriptor on the target node, the target RGET data descriptor specifying an additional DMA transfer operation data descriptor on the origin node; creating, by the origin DMA engine, an RGET packet in dependence upon the RGET data descriptor, the RGET packet containing the DMA transfer operation data descriptor and the second RGET data descriptor; and transferring, by the origin DMA engine to a target DMA engine on the target node, the RGET packet.
Generalized enhanced suffix array construction in external memory.
Louza, Felipe A; Telles, Guilherme P; Hoffmann, Steve; Ciferri, Cristina D A
2017-01-01
Suffix arrays, augmented by additional data structures, allow solving efficiently many string processing problems. The external memory construction of the generalized suffix array for a string collection is a fundamental task when the size of the input collection or the data structure exceeds the available internal memory. In this article we present and analyze [Formula: see text] [introduced in CPM (External memory generalized suffix and [Formula: see text] arrays construction. In: Proceedings of CPM. pp 201-10, 2013)], the first external memory algorithm to construct generalized suffix arrays augmented with the longest common prefix array for a string collection. Our algorithm relies on a combination of buffers, induced sorting and a heap to avoid direct string comparisons. We performed experiments that covered different aspects of our algorithm, including running time, efficiency, external memory access, internal phases and the influence of different optimization strategies. On real datasets of size up to 24 GB and using 2 GB of internal memory, [Formula: see text] showed a competitive performance when compared to [Formula: see text] and [Formula: see text], which are efficient algorithms for a single string according to the related literature. We also show the effect of disk caching managed by the operating system on our algorithm. The proposed algorithm was validated through performance tests using real datasets from different domains, in various combinations, and showed a competitive performance. Our algorithm can also construct the generalized Burrows-Wheeler transform of a string collection with no additional cost except by the output time.
Cerebellar models of associative memory: Three papers from IEEE COMPCON spring 1989
NASA Technical Reports Server (NTRS)
Raugh, Michael R. (Editor)
1989-01-01
Three papers are presented on the following topics: (1) a cerebellar-model associative memory as a generalized random-access memory; (2) theories of the cerebellum - two early models of associative memory; and (3) intelligent network management and functional cerebellum synthesis.
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Oscillatory mechanisms of process binding in memory.
Klimesch, Wolfgang; Freunberger, Roman; Sauseng, Paul
2010-06-01
A central topic in cognitive neuroscience is the question, which processes underlie large scale communication within and between different neural networks. The basic assumption is that oscillatory phase synchronization plays an important role for process binding--the transient linking of different cognitive processes--which may be considered a special type of large scale communication. We investigate this question for memory processes on the basis of different types of oscillatory synchronization mechanisms. The reviewed findings suggest that theta and alpha phase coupling (and phase reorganization) reflect control processes in two large memory systems, a working memory and a complex knowledge system that comprises semantic long-term memory. It is suggested that alpha phase synchronization may be interpreted in terms of processes that coordinate top-down control (a process guided by expectancy to focus on relevant search areas) and access to memory traces (a process leading to the activation of a memory trace). An analogous interpretation is suggested for theta oscillations and the controlled access to episodic memories. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Magnet/Hall-Effect Random-Access Memory
NASA Technical Reports Server (NTRS)
Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.
1991-01-01
In proposed magnet/Hall-effect random-access memory (MHRAM), bits of data stored magnetically in Perm-alloy (or equivalent)-film memory elements and read out by using Hall-effect sensors to detect magnetization. Value of each bit represented by polarity of magnetization. Retains data for indefinite time or until data rewritten. Speed of Hall-effect sensors in MHRAM results in readout times of about 100 nanoseconds. Other characteristics include high immunity to ionizing radiation and storage densities of order 10(Sup6)bits/cm(Sup 2) or more.
Investigation of multilayer magnetic domain lattice file
NASA Technical Reports Server (NTRS)
Torok, E. J.; Kamin, M.; Tolman, C. H.
1980-01-01
The feasibility of the self structured multilayered bubble domain memory as a mass memory medium for satellite applications is examined. Theoretical considerations of multilayer bubble supporting materials are presented, in addition to the experimental evaluation of current accessed circuitry for various memory functions. The design, fabrication, and test of four device designs is described, and a recommended memory storage area configuration is presented. Memory functions which were demonstrated include the current accessed propagation of bubble domains and stripe domains, pinning of stripe domain ends, generation of single and double bubbles, generation of arrays of coexisting strip and bubble domains in a single garnet layer, and demonstration of different values of the strip out field for single and double bubbles indicating adequate margins for data detection. All functions necessary to develop a multilayer self structured bubble memory device were demonstrated in individual experiments.
NASA Astrophysics Data System (ADS)
Ando, K.; Fujita, S.; Ito, J.; Yuasa, S.; Suzuki, Y.; Nakatani, Y.; Miyazaki, T.; Yoda, H.
2014-05-01
Most parts of present computer systems are made of volatile devices, and the power to supply them to avoid information loss causes huge energy losses. We can eliminate this meaningless energy loss by utilizing the non-volatile function of advanced spin-transfer torque magnetoresistive random-access memory (STT-MRAM) technology and create a new type of computer, i.e., normally off computers. Critical tasks to achieve normally off computers are implementations of STT-MRAM technologies in the main memory and low-level cache memories. STT-MRAM technology for applications to the main memory has been successfully developed by using perpendicular STT-MRAMs, and faster STT-MRAM technologies for applications to the cache memory are now being developed. The present status of STT-MRAMs and challenges that remain for normally off computers are discussed.
Indexing and retrieving point and region objects
NASA Astrophysics Data System (ADS)
Ibrahim, Azzam T.; Fotouhi, Farshad A.
1996-03-01
R-tree and its variants are examples of spatial data structures for paged-secondary memory. To process a query, these structures require multiple path traversals. In this paper, we present a new image access method, SB+-tree which requires a single path traversal to process a query. Also, SB+-tree will allow commercial databases an access method for spatial objects without a major change, since most commercial databases already support B+-tree as an access method for text data. The SB+-tree can be used for zero and non-zero size data objects. Non-zero size objects are approximated by their minimum bounding rectangles (MBRs). The number of SB+-trees generated is dependent upon the number of dimensions of the approximation of the object. The structure supports efficient spatial operations such as regions-overlap, distance and direction. In this paper, we experimentally and analytically demonstrate the superiority of SB+-tree over R-tree.
Non-volatile magnetic random access memory
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Stadler, Henry L. (Inventor); Wu, Jiin-Chuan (Inventor)
1994-01-01
Improvements are made in a non-volatile magnetic random access memory. Such a memory is comprised of an array of unit cells, each having a Hall-effect sensor and a thin-film magnetic element made of material having an in-plane, uniaxial anisotropy and in-plane, bipolar remanent magnetization states. The Hall-effect sensor is made more sensitive by using a 1 m thick molecular beam epitaxy grown InAs layer on a silicon substrate by employing a GaAs/AlGaAs/InAlAs superlattice buffering layer. One improvement avoids current shunting problems of matrix architecture. Another improvement reduces the required magnetizing current for the micromagnets. Another improvement relates to the use of GaAs technology wherein high electron-mobility GaAs MESFETs provide faster switching times. Still another improvement relates to a method for configuring the invention as a three-dimensional random access memory.
Staging memory for massively parallel processor
NASA Technical Reports Server (NTRS)
Batcher, Kenneth E. (Inventor)
1988-01-01
The invention herein relates to a computer organization capable of rapidly processing extremely large volumes of data. A staging memory is provided having a main stager portion consisting of a large number of memory banks which are accessed in parallel to receive, store, and transfer data words simultaneous with each other. Substager portions interconnect with the main stager portion to match input and output data formats with the data format of the main stager portion. An address generator is coded for accessing the data banks for receiving or transferring the appropriate words. Input and output permutation networks arrange the lineal order of data into and out of the memory banks.
NASA Astrophysics Data System (ADS)
Okamoto, Shin-ichi; Maekawa, Kei-ichi; Kawashima, Yoshiyuki; Shiba, Kazutoshi; Sugiyama, Hideki; Inoue, Masao; Nishida, Akio
2015-04-01
High quality static random access memory (SRAM) for 40-nm embedded MONOS flash memory with split gate (SG-MONOS) was developed. Marginal failure, which results in threshold voltage/drain current tailing and outliers of SRAM transistors, occurs when using a conventional SRAM structure. These phenomena can be explained by not only gate depletion but also partial depletion and percolation path formation in the MOS channel. A stacked poly-Si gate structure can suppress these phenomena and achieve high quality SRAM without any defects in the 6σ level and with high affinity to the 40-nm SG-MONOS process was developed.
Making Physical Activity Accessible to Older Adults with Memory Loss: A Feasibility Study
ERIC Educational Resources Information Center
Logsdon, Rebecca G.; McCurry, Susan M.; Pike, Kenneth C.; Teri, Linda
2009-01-01
Purpose: For individuals with mild cognitive impairment (MCI), memory loss may prevent successful engagement in exercise, a key factor in preventing additional disability. The Resources and Activities for Life Long Independence (RALLI) program uses behavioral principles to make exercise more accessible for these individuals. Exercises are broken…
NASA Astrophysics Data System (ADS)
Fang, Juan; Hao, Xiaoting; Fan, Qingwen; Chang, Zeqing; Song, Shuying
2017-05-01
In the Heterogeneous multi-core architecture, CPU and GPU processor are integrated on the same chip, which poses a new challenge to the last-level cache management. In this architecture, the CPU application and the GPU application execute concurrently, accessing the last-level cache. CPU and GPU have different memory access characteristics, so that they have differences in the sensitivity of last-level cache (LLC) capacity. For many CPU applications, a reduced share of the LLC could lead to significant performance degradation. On the contrary, GPU applications can tolerate increase in memory access latency when there is sufficient thread-level parallelism. Taking into account the GPU program memory latency tolerance characteristics, this paper presents a method that let GPU applications can access to memory directly, leaving lots of LLC space for CPU applications, in improving the performance of CPU applications and does not affect the performance of GPU applications. When the CPU application is cache sensitive, and the GPU application is insensitive to the cache, the overall performance of the system is improved significantly.
Szőllősi, Ágnes; Keresztes, Attila; Conway, Martin A; Racsmány, Mihály
2015-01-01
Recording the events of a day in a diary may help improve their later accessibility. An interesting question is whether improvements in long-term accessibility will be greater if the diary is completed at the end of the day, or after a period of sleep, the following morning. We investigated this question using an internet-based diary method. On each of five days, participants (n = 109) recorded autobiographical memories for that day or for the previous day. Recording took place either in the morning or in the evening. Following a 30-day retention interval, the diary events were free recalled. We found that participants who recorded their memories in the evening before sleep had best memory performance. These results suggest that the time of reactivation and recording of recent autobiographical events has a significant effect on the later accessibility of those diary events. We discuss our results in the light of related findings that show a beneficial effect of reduced interference during sleep on memory consolidation and reconsolidation.
Facial Expression Influences Face Identity Recognition During the Attentional Blink
2014-01-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry—suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another. PMID:25286076
Facial expression influences face identity recognition during the attentional blink.
Bach, Dominik R; Schmidt-Daffy, Martin; Dolan, Raymond J
2014-12-01
Emotional stimuli (e.g., negative facial expressions) enjoy prioritized memory access when task relevant, consistent with their ability to capture attention. Whether emotional expression also impacts on memory access when task-irrelevant is important for arbitrating between feature-based and object-based attentional capture. Here, the authors address this question in 3 experiments using an attentional blink task with face photographs as first and second target (T1, T2). They demonstrate reduced neutral T2 identity recognition after angry or happy T1 expression, compared to neutral T1, and this supports attentional capture by a task-irrelevant feature. Crucially, after neutral T1, T2 identity recognition was enhanced and not suppressed when T2 was angry-suggesting that attentional capture by this task-irrelevant feature may be object-based and not feature-based. As an unexpected finding, both angry and happy facial expressions suppress memory access for competing objects, but only angry facial expression enjoyed privileged memory access. This could imply that these 2 processes are relatively independent from one another.
Event memory and moving in a well-known environment.
Tamplin, Andrea K; Krawietz, Sabine A; Radvansky, Gabriel A; Copeland, David E
2013-11-01
Research in narrative comprehension has repeatedly shown that when people read about characters moving in well-known environments, the accessibility of object information follows a spatial gradient. That is, the accessibility of objects is best when they are in the same room as the protagonist, and it becomes worse the farther away they are see, e.g., Morrow, Greenspan, & Bower, (Journal of Memory and Language, 26, 165-187, 1987). In the present study, we assessed this finding using an interactive environment in which we had people memorize a map and navigate a virtual simulation of the area. During navigation, people were probed with pairs of object names and indicated whether both objects were in the same room. In contrast to the narrative studies described above, several experiments showed no evidence of a clear spatial gradient. Instead, memory for objects in currently occupied locations (e.g., the location room) was more accessible, especially after a small delay, but no clear decline was evident in the accessibility of information in memory with increased distance. Also, memory for objects along the pathway of movement (i.e., rooms that a person only passed through) showed a transitory suppression effect that was present immediately after movement, but attenuated over time. These results were interpreted in light of the event horizon model of event cognition.
The special role of item-context associations in the direct-access region of working memory.
Campoy, Guillermo
2017-09-01
The three-embedded-component model of working memory (WM) distinguishes three representational states corresponding to three WM regions: activated long-term memory, direct-access region (DAR), and focus of attention. Recent neuroimaging research has revealed that access to the DAR is associated with enhanced hippocampal activity. Because the hippocampus mediates the encoding and retrieval of item-context associations, it has been suggested that this hippocampal activation is a consequence of the fact that item-context associations are particularly strong and accessible in the DAR. This study provides behavioral evidence for this view using an item-recognition task to assess the effect of non-intentional encoding and maintenance of item-location associations across WM regions. Five pictures of human faces were sequentially presented in different screen locations followed by a recognition probe. Visual cues immediately preceding the probe indicated the location thereof. When probe stimuli appeared in the same location that they had been presented within the memory set, the presentation of the cue was expected to elicit the activation of the corresponding WM representation through the just-established item-location association, resulting in faster recognition. Results showed this same-location effect, but only for items that, according to their serial position within the memory set, were held in the DAR.
Multi-port, optically addressed RAM
NASA Technical Reports Server (NTRS)
Johnston, Alan R. (Inventor); Nixon, Robert H. (Inventor); Bergman, Larry A. (Inventor); Esener, Sadik (Inventor)
1989-01-01
A random access memory addressing system utilizing optical links between memory and the read/write logic circuits comprises addressing circuits including a plurality of light signal sources, a plurality of optical gates including optical detectors associated with the memory cells, and a holographic optical element adapted to reflect and direct the light signals to the desired memory cell locations. More particularly, it is a multi-port, binary computer memory for interfacing with a plurality of computers. There are a plurality of storage cells for containing bits of binary information, the storage cells being disposed at the intersections of a plurality of row conductors and a plurality of column conductors. There is interfacing logic for receiving information from the computers directing access to ones of the storage cells. There are first light sources associated with the interfacing logic for transmitting a first light beam with the access information modulated thereon. First light detectors are associated with the storage cells for receiving the first light beam, for generating an electrical signal containing the access information, and for conducting the electrical signal to the one of the storage cells to which it is directed. There are holographic optical elements for reflecting the first light beam from the first light sources to the first light detectors.
Development of land based radar polarimeter processor system
NASA Technical Reports Server (NTRS)
Kronke, C. W.; Blanchard, A. J.
1983-01-01
The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.
Injecting Artificial Memory Errors Into a Running Computer Program
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin J.; Granat, Robert A.; Wagstaff, Kiri L.
2008-01-01
Single-event upsets (SEUs) or bitflips are computer memory errors caused by radiation. BITFLIPS (Basic Instrumentation Tool for Fault Localized Injection of Probabilistic SEUs) is a computer program that deliberately injects SEUs into another computer program, while the latter is running, for the purpose of evaluating the fault tolerance of that program. BITFLIPS was written as a plug-in extension of the open-source Valgrind debugging and profiling software. BITFLIPS can inject SEUs into any program that can be run on the Linux operating system, without needing to modify the program s source code. Further, if access to the original program source code is available, BITFLIPS offers fine-grained control over exactly when and which areas of memory (as specified via program variables) will be subjected to SEUs. The rate of injection of SEUs is controlled by specifying either a fault probability or a fault rate based on memory size and radiation exposure time, in units of SEUs per byte per second. BITFLIPS can also log each SEU that it injects and, if program source code is available, report the magnitude of effect of the SEU on a floating-point value or other program variable.
A Calendar Savant with Episodic Memory Impairments
Olson, Ingrid R.; Berryhill, Marian E.; Drowos, David B.; Brown, Lawrence; Chatterjee, Anjan
2010-01-01
Patients with memory disorders have severely restricted learning and memory. For instance, patients with anterograde amnesia can learn motor procedures as well as retaining some restricted ability to learn new words and factual information. However, such learning is inflexible and frequently inaccessible to conscious awareness. Here we present a case of patient AC596, a 25-year old male with severe episodic memory impairments, presumably due to anoxia during a preterm birth. In contrast to his poor episodic memory, he exhibits savant-like memory for calendar information that can be flexibly accessed by day, month, and year cues. He also has the ability to recollect the exact date of a wide range of personal experiences over the past 20 years. The patient appears to supplement his generally poor episodic memory by using memorized calendar information as a retrieval cue for autobiographical events. These findings indicate that islands of preserved memory functioning, such as a highly developed semantic memory system, can exist in individuals with severely impaired episodic memory systems. In this particular case, our patient’s memory for dates far outstripped that of normal individuals and served as a keen retrieval cue, allowing him to access information that was otherwise unavailable. PMID:20104390
ERIC Educational Resources Information Center
Voss, Joel L.; Paller, Ken A.
2007-01-01
During episodic recognition tests, meaningful stimuli such as words can engender both conscious retrieval (explicit memory) and facilitated access to meaning that is distinct from the awareness of remembering (conceptual implicit memory). Neuroimaging investigations of one type of memory are frequently subject to the confounding influence of the…
Morgan, Phillip L; Patrick, John; Waldron, Samuel M; King, Sophia L; Patrick, Tanya
2009-12-01
Forgetting what one was doing prior to interruption is an everyday problem. The recent soft constraints hypothesis (Gray, Sims, Fu, & Schoelles, 2006) emphasizes the strategic adaptation of information processing strategy to the task environment. It predicts that increasing information access cost (IAC: the time, and physical and mental effort involved in accessing information) encourages a more memory-intensive strategy. Like interruptions, access costs are also intrinsic to most work environments, such as when opening documents and e-mails. Three experiments investigated whether increasing IAC during a simple copying task can be an effective method for reducing forgetting following interruption. IAC was designated Low (all information permanently visible), Medium (a mouse movement to uncover target information), or High (an additional few seconds to uncover such information). Experiment 1 found that recall improved across all three levels of IAC. Subsequent experiments found that High IAC facilitated resumption after interruption, particularly when interruption occurred on half of all trials (Experiment 2), and improved prospective memory following two different interrupting tasks, even when one involved the disruptive effect of using the same type of resource as the primary task (Experiment 3). The improvement of memory after interruption with increased IAC supports the prediction of the soft constraints hypothesis. The main disadvantage of a high access cost was a reduction in speed of task completion. The practicality of manipulating IAC as a design method for inducing a memory-intensive strategy to protect against forgetting is discussed. Copyright 2009 APA
Electrical Evaluation of RCA MWS5501D Random Access Memory, Volume 2, Appendix a
NASA Technical Reports Server (NTRS)
Klute, A.
1979-01-01
The electrical characterization and qualification test results are presented for the RCA MWS5001D random access memory. The tests included functional tests, AC and DC parametric tests, AC parametric worst-case pattern selection test, determination of worst-case transition for setup and hold times, and a series of schmoo plots. The address access time, address readout time, the data hold time, and the data setup time are some of the results surveyed.
ERIC Educational Resources Information Center
Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael
2013-01-01
Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…
Tracing the time course of picture--word processing.
Smith, M C; Magee, L E
1980-12-01
A number of independent lines of research have suggested that semantic and articulatory information become available differentially from pictures and words. The first of the experiments reported here sought to clarify the time course by which information about pictures and words becomes available by considering the pattern of interference generated when incongruent pictures and words are presented simultaneously in a Stroop-like situation. Previous investigators report that picture naming is easily disrupted by the presence of a distracting word but that word naming is relatively immune to interference from an incongruent picture. Under the assumption that information available from a completed process may disrupt an ongoing process, these results suggest that words access articulatory information more rapidly than do pictures. Experiment 1 extended this paradigm by requiring subjects to verify the category of the target stimulus. In accordance with the hypothesis that picture access the semantic code more rapidly than words, there was a reversal in the interference pattern: Word categorization suffered considerable disruption, whereas picture categorization was minimally affected by the presence of an incongruent word. Experiment 2 sought to further test the hypothesis that access to semantic and articulatory codes is different for pictures and words by examining memory for those items following naming or categorization. Categorized words were better recognized than named words, whereas the reverse was true for pictures, a result which suggests that picture naming involves more extensive processing than picture categorization. Experiment 3 replicated this result under conditions in which viewing time was held constant. The last experiment extended the investigation of memory differences to a situation in which subjects were required to generate the superordinate category name. Here, memory for categorized pictures was as good as memory for named pictures. Category generation also influenced memory for words, memory performance being superior to that following a yes--no verification of category membership. These experiments suggest a model of information access whereby pictures access semantic information were readily than name information, with the reverse being true for words. Memory for both pictures and words was a function of the amount of processing required to access a particular type of information as well as the extent of response differentiation necessitated by the task.
Semi-Automated Identification of Rocks in Images
NASA Technical Reports Server (NTRS)
Bornstein, Benjamin; Castano, Andres; Anderson, Robert
2006-01-01
Rock Identification Toolkit Suite is a computer program that assists users in identifying and characterizing rocks shown in images returned by the Mars Explorer Rover mission. Included in the program are components for automated finding of rocks, interactive adjustments of outlines of rocks, active contouring of rocks, and automated analysis of shapes in two dimensions. The program assists users in evaluating the surface properties of rocks and soil and reports basic properties of rocks. The program requires either the Mac OS X operating system running on a G4 (or more capable) processor or a Linux operating system running on a Pentium (or more capable) processor, plus at least 128MB of random-access memory.
Flight control system design factors for applying automated testing techniques
NASA Technical Reports Server (NTRS)
Sitz, Joel R.; Vernon, Todd H.
1990-01-01
The principal design features and operational experiences of the X-29 forward-swept-wing aircraft and F-18 high alpha research vehicle (HARV) automated test systems are discussed. It is noted that operational experiences in developing and using these automated testing techniques have highlighted the need for incorporating target system features to improve testability. Improved target system testability can be accomplished with the addition of nonreal-time and real-time features. Online access to target system implementation details, unobtrusive real-time access to internal user-selectable variables, and proper software instrumentation are all desirable features of the target system. Also, test system and target system design issues must be addressed during the early stages of the target system development. Processing speeds of up to 20 million instructions/s and the development of high-bandwidth reflective memory systems have improved the ability to integrate the target system and test system for the application of automated testing techniques. It is concluded that new methods of designing testability into the target systems are required.
Write operation study of Co/BTO/LSMO ferroelectric tunnel junction
NASA Astrophysics Data System (ADS)
Wang, Z. H.; Zhao, W. S.; Kang, W.; Bouchenak-Khelladi, A.; Zhang, Y.; Klein, J.-O.; Ravelosona, D.; Chappert, C.
2013-07-01
Recently, a Co/BaTiO3/La0.67Sr0.33MnO3 (Co/BTO/LSMO) ferroelectric tunnel junction (FTJ) has shown the great potential towards non-volatile memory and logic applications due to its excellent performance. Especially, the giant OFF/ON tunnel resistance ratio (e.g., ˜100) assures that FTJ-based random access memory (FTRAM) can achieve lower reading error rate than emerging magnetic RAM. Nevertheless, in this paper, our investigation demonstrated that this FTJ suffered from difficulties in write operation when integrating with current CMOS technology into a FTRAM. Specifically, the write performances of Co/BTO/LSMO 1T1R FTRAM such as cell area, speed, energy dissipation, and thermal fluctuation effect were simulated and evaluated with a compact model and CMOS 40 nm design kit. Simulation results indicate the drawbacks of this FTRAM including significant performance asymmetry between two write orientations, high write voltage, large cell area, and severe thermal fluctuation disturbance. Simultaneously, this research provides several methods of improving write performance of FTRAM from the perspective of device size and process parameters.
NASA Astrophysics Data System (ADS)
Fellman, Ronald D.; Kaneshiro, Ronald T.; Konstantinides, Konstantinos
1990-03-01
The authors present the design and evaluation of an architecture for a monolithic, programmable, floating-point digital signal processor (DSP) for instrumentation applications. An investigation of the most commonly used algorithms in instrumentation led to a design that satisfies the requirements for high computational and I/O (input/output) throughput. In the arithmetic unit, a 16- x 16-bit multiplier and a 32-bit accumulator provide the capability for single-cycle multiply/accumulate operations, and three format adjusters automatically adjust the data format for increased accuracy and dynamic range. An on-chip I/O unit is capable of handling data block transfers through a direct memory access port and real-time data streams through a pair of parallel I/O ports. I/O operations and program execution are performed in parallel. In addition, the processor includes two data memories with independent addressing units, a microsequencer with instruction RAM, and multiplexers for internal data redirection. The authors also present the structure and implementation of a design environment suitable for the algorithmic, behavioral, and timing simulation of a complete DSP system. Various benchmarking results are reported.
Review of optical memory technologies
NASA Technical Reports Server (NTRS)
Chen, D.
1972-01-01
Optical technologies for meeting the demands of large capacity fast access time memory are discussed in terms of optical phenomena and laser applications. The magneto-optic and electro-optic approaches are considered to be the most promising memory approaches.
Wang, Kang; Gu, Huaxi; Yang, Yintang; Wang, Kun
2015-08-10
With the number of cores increasing, there is an emerging need for a high-bandwidth low-latency interconnection network, serving core-to-memory communication. In this paper, aiming at the goal of simultaneous access to multi-rank memory, we propose an optical interconnection network for core-to-memory communication. In the proposed network, the wavelength usage is delicately arranged so that cores can communicate with different ranks at the same time and broadcast for flow control can be achieved. A distributed memory controller architecture that works in a pipeline mode is also designed for efficient optical communication and transaction address processes. The scaling method and wavelength assignment for the proposed network are investigated. Compared with traditional electronic bus-based core-to-memory communication, the simulation results based on the PARSEC benchmark show that the bandwidth enhancement and latency reduction are apparent.
Chen, Kai-Huang; Chang, Kuan-Chang; Chang, Ting-Chang; Tsai, Tsung-Ming; Liang, Shu-Ping; Young, Tai-Fa; Syu, Yong-En; Sze, Simon M
2016-12-01
Bipolar switching resistance behaviors of the Gd:SiO2 resistive random access memory (RRAM) devices on indium tin oxide electrode by the low-temperature supercritical CO2-treated technology were investigated. For physical and electrical measurement results obtained, the improvement on oxygen qualities, properties of indium tin oxide electrode, and operation current of the Gd:SiO2 RRAM devices were also observed. In addition, the initial metallic filament-forming model analyses and conduction transferred mechanism in switching resistance properties of the RRAM devices were verified and explained. Finally, the electrical reliability and retention properties of the Gd:SiO2 RRAM devices for low-resistance state (LRS)/high-resistance state (HRS) in different switching cycles were also measured for applications in nonvolatile random memory devices.
On improving linear solver performance: a block variant of GMRES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, A H; Dennis, J M; Jessup, E R
2004-05-10
The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors.more » Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.« less
2017-03-01
models of software execution, for example memory access patterns, to check for security intrusions. Additional research was performed to tackle the...considered using indirect models of software execution, for example memory access patterns, to check for security intrusions. Additional research ...deterioration for example , no longer corresponds to the model used during verification time. Finally, the research looked at ways to combine hybrid systems
NASA Technical Reports Server (NTRS)
Feng, Hui-Yu; VanderWijngaart, Rob; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2001-01-01
We describe the design of a new method for the measurement of the performance of modern computer systems when solving scientific problems featuring irregular, dynamic memory accesses. The method involves the solution of a stylized heat transfer problem on an unstructured, adaptive grid. A Spectral Element Method (SEM) with an adaptive, nonconforming mesh is selected to discretize the transport equation. The relatively high order of the SEM lowers the fraction of wall clock time spent on inter-processor communication, which eases the load balancing task and allows us to concentrate on the memory accesses. The benchmark is designed to be three-dimensional. Parallelization and load balance issues of a reference implementation will be described in detail in future reports.
A Pilot Memory Café for People with Learning Disabilities and Memory Difficulties
ERIC Educational Resources Information Center
Kiddle, Hannah; Drew, Neil; Crabbe, Paul; Wigmore, Jonathan
2016-01-01
Memory cafés have been found to normalise experiences of dementia and provide access to an accepting social network. People with learning disabilities are at increased risk of developing dementia, but the possible benefits of attending a memory café are not known. This study evaluates a 12-week pilot memory café for people with learning…
NASA Astrophysics Data System (ADS)
Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng
2015-01-01
A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.
Large Capacity of Conscious Access for Incidental Memories in Natural Scenes.
Kaunitz, Lisandro N; Rowe, Elise G; Tsuchiya, Naotsugu
2016-09-01
When searching a crowd, people can detect a target face only by direct fixation and attention. Once the target is found, it is consciously experienced and remembered, but what is the perceptual fate of the fixated nontarget faces? Whereas introspection suggests that one may remember nontargets, previous studies have proposed that almost no memory should be retained. Using a gaze-contingent paradigm, we asked subjects to visually search for a target face within a crowded natural scene and then tested their memory for nontarget faces, as well as their confidence in those memories. Subjects remembered up to seven fixated, nontarget faces with more than 70% accuracy. Memory accuracy was correlated with trial-by-trial confidence ratings, which implies that the memory was consciously maintained and accessed. When the search scene was inverted, no more than three nontarget faces were remembered. These findings imply that incidental memory for faces, such as those recalled by eyewitnesses, is more reliable than is usually assumed. © The Author(s) 2016.
Self-pacing direct memory access data transfer operations for compute nodes in a parallel computer
Blocksome, Michael A
2015-02-17
Methods, apparatus, and products are disclosed for self-pacing DMA data transfer operations for nodes in a parallel computer that include: transferring, by an origin DMA on an origin node, a RTS message to a target node, the RTS message specifying an message on the origin node for transfer to the target node; receiving, in an origin injection FIFO for the origin DMA from a target DMA on the target node in response to transferring the RTS message, a target RGET descriptor followed by a DMA transfer operation descriptor, the DMA descriptor for transmitting a message portion to the target node, the target RGET descriptor specifying an origin RGET descriptor on the origin node that specifies an additional DMA descriptor for transmitting an additional message portion to the target node; processing, by the origin DMA, the target RGET descriptor; and processing, by the origin DMA, the DMA transfer operation descriptor.
Enhancing Memory in Your Students: COMPOSE Yourself!
ERIC Educational Resources Information Center
Rotter, Kathleen M.
2009-01-01
The essence of teaching is, in fact, creating new memories for your students. The teacher's role is to help students store the correct information (memories) in ways that make recall and future access and use likely. Therefore, choosing techniques to enhance memory is possibly the most critical aspect of instructional design. COMPOSE is an acronym…
NASA Astrophysics Data System (ADS)
Reece, Timothy James
Ferroelectric field effect transistors (FeFETs) have attracted much attention recently because of their ability to combine high speed, low power consumption, and fast nondestructive readout with the potential for high density nonvolatile memory. The polarization of the ferroelectric is used to switch the channel at the silicon surface between states of high and low conductance. Among the ferroelectric thin films used in FET devices; the ferroelectric copolymer of Polyvinylidene fluoride, PVDF (C2H2F 2), with trifluoroethylene, TrFE (C2HF3), has distinct advantages, including low dielectric constant, low processing temperature, low cost and compatibility with organic semiconductors. By employing the Langmuir-Blodgett technique, films as thin as 1.8 nm can be deposited, reducing the operating voltage. An MFIS structure consisting of aluminum, 170 nm P(VDF-TrFE), 100 nm silicon oxide and n-type silicon exhibited low leakage current (˜1x10 -8 A/cm2), a large memory window (4.2 V) and operated at 35 Volts. The operating voltage was lowered through use of high k insulators like cerium oxide. A sample consisting of 25 nm P(VDF-TrFE), 30 nm cerium oxide and p-type silicon exhibited a 1.9 V window with 7 Volt gate amplitude. The leakage current in this case was considerably higher (1x10 -6 A/cm2). The characterization, modeling, and fabrication of metal-ferroelectricinsulator semiconductor (MFIS) structures based on these films are discussed.
On the non-stationary generalized Langevin equation
NASA Astrophysics Data System (ADS)
Meyer, Hugues; Voigtmann, Thomas; Schilling, Tanja
2017-12-01
In molecular dynamics simulations and single molecule experiments, observables are usually measured along dynamic trajectories and then averaged over an ensemble ("bundle") of trajectories. Under stationary conditions, the time-evolution of such averages is described by the generalized Langevin equation. By contrast, if the dynamics is not stationary, it is not a priori clear which form the equation of motion for an averaged observable has. We employ the formalism of time-dependent projection operator techniques to derive the equation of motion for a non-equilibrium trajectory-averaged observable as well as for its non-stationary auto-correlation function. The equation is similar in structure to the generalized Langevin equation but exhibits a time-dependent memory kernel as well as a fluctuating force that implicitly depends on the initial conditions of the process. We also derive a relation between this memory kernel and the autocorrelation function of the fluctuating force that has a structure similar to a fluctuation-dissipation relation. In addition, we show how the choice of the projection operator allows us to relate the Taylor expansion of the memory kernel to data that are accessible in MD simulations and experiments, thus allowing us to construct the equation of motion. As a numerical example, the procedure is applied to Brownian motion initialized in non-equilibrium conditions and is shown to be consistent with direct measurements from simulations.
Bürger, Kai; Krüger, Jens; Westermann, Rüdiger
2011-01-01
In this paper, we present a sample-based approach for surface coloring, which is independent of the original surface resolution and representation. To achieve this, we introduce the Orthogonal Fragment Buffer (OFB)—an extension of the Layered Depth Cube—as a high-resolution view-independent surface representation. The OFB is a data structure that stores surface samples at a nearly uniform distribution over the surface, and it is specifically designed to support efficient random read/write access to these samples. The data access operations have a complexity that is logarithmic in the depth complexity of the surface. Thus, compared to data access operations in tree data structures like octrees, data-dependent memory access patterns are greatly reduced. Due to the particular sampling strategy that is employed to generate an OFB, it also maintains sample coherence, and thus, exhibits very good spatial access locality. Therefore, OFB-based surface coloring performs significantly faster than sample-based approaches using tree structures. In addition, since in an OFB, the surface samples are internally stored in uniform 2D grids, OFB-based surface coloring can efficiently be realized on the GPU to enable interactive coloring of high-resolution surfaces. On the OFB, we introduce novel algorithms for color painting using volumetric and surface-aligned brushes, and we present new approaches for particle-based color advection along surfaces in real time. Due to the intermediate surface representation we choose, our method can be used to color polygonal surfaces as well as any other type of surface that can be sampled. PMID:20616392
El-Zawawy, Mohamed A.
2014-01-01
This paper introduces new approaches for the analysis of frequent statement and dereference elimination for imperative and object-oriented distributed programs running on parallel machines equipped with hierarchical memories. The paper uses languages whose address spaces are globally partitioned. Distributed programs allow defining data layout and threads writing to and reading from other thread memories. Three type systems (for imperative distributed programs) are the tools of the proposed techniques. The first type system defines for every program point a set of calculated (ready) statements and memory accesses. The second type system uses an enriched version of types of the first type system and determines which of the ready statements and memory accesses are used later in the program. The third type system uses the information gather so far to eliminate unnecessary statement computations and memory accesses (the analysis of frequent statement and dereference elimination). Extensions to these type systems are also presented to cover object-oriented distributed programs. Two advantages of our work over related work are the following. The hierarchical style of concurrent parallel computers is similar to the memory model used in this paper. In our approach, each analysis result is assigned a type derivation (serves as a correctness proof). PMID:24892098
Cricket: A Mapped, Persistent Object Store
NASA Technical Reports Server (NTRS)
Shekita, Eugene; Zwilling, Michael
1996-01-01
This paper describes Cricket, a new database storage system that is intended to be used as a platform for design environments and persistent programming languages. Cricket uses the memory management primitives of the Mach operating system to provide the abstraction of a shared, transactional single-level store that can be directly accessed by user applications. In this paper, we present the design and motivation for Cricket. We also present some initial performance results which show that, for its intended applications, Cricket can provide better performance than a general-purpose database storage system.
Retention and Fading of Military Skills: Literature Review
2000-04-01
distinction between availability and accessibility of human memory ( Tulving & Pearlstone , 1966; Tulving , 1983). Observation of some decrement in performance...Army War College. TULVING , E. (1983). Elements of Episodic Memory. London: Oxford University Press. TULVING , E., & PEARLSTONE , Z. (1966). Availability...store ( Tulving , 1983). To access this knowledge, the individual consciously recalls facts about the task and attempts to use them to guide performance
ERIC Educational Resources Information Center
Wood, Wendy; And Others
Research literature shows that people with access to attitude-relevant information in memory are able to draw on relevant beliefs and prior experiences when analyzing a persuasive message. This suggests that people who can retrieve little attitude-relevant information should be less able to engage in systematic processing. Two experiments were…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-28
... supplementing the amended complaint was filed on June 28, 2011. A second amended complaint was filed on July 13... of certain static random access memories and products containing same by reason of infringement of... 13 of the `937 patent, and whether an industry in the United States exists as required by subsection...
Performing an allreduce operation using shared memory
Archer, Charles J [Rochester, MN; Dozsa, Gabor [Ardsley, NY; Ratterman, Joseph D [Rochester, MN; Smith, Brian E [Rochester, MN
2012-04-17
Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.
Performing an allreduce operation using shared memory
Archer, Charles J; Dozsa, Gabor; Ratterman, Joseph D; Smith, Brian E
2014-06-10
Methods, apparatus, and products are disclosed for performing an allreduce operation using shared memory that include: receiving, by at least one of a plurality of processing cores on a compute node, an instruction to perform an allreduce operation; establishing, by the core that received the instruction, a job status object for specifying a plurality of shared memory allreduce work units, the plurality of shared memory allreduce work units together performing the allreduce operation on the compute node; determining, by an available core on the compute node, a next shared memory allreduce work unit in the job status object; and performing, by that available core on the compute node, that next shared memory allreduce work unit.
Implementing a bubble memory hierarchy system
NASA Technical Reports Server (NTRS)
Segura, R.; Nichols, C. D.
1979-01-01
This paper reports on implementation of a magnetic bubble memory in a two-level hierarchial system. The hierarchy used a major-minor loop device and RAM under microprocessor control. Dynamic memory addressing, dual bus primary memory, and hardware data modification detection are incorporated in the system to minimize access time. It is the objective of the system to incorporate the advantages of bipolar memory with that of bubble domain memory to provide a smart, optimal memory system which is easy to interface and independent of user's system.
Guilt as a Motivator for Moral Judgment: An Autobiographical Memory Study
Knez, Igor; Nordhall, Ola
2017-01-01
The aim was to investigate the phenomenology of self-defining moral memory and its relations to self-conscious feelings of guilt and willingness to do wrong (moral intention) in social and economic moral situations. We found that people use guilt as a moral motivator for their moral intention. The reparative function of guilt varied, however, with type of situation; that is, participants felt guiltier and were less willing to do wrong in economic compared to social moral situations. The self-defining moral memory was shown to be relatively more easy to access (accessibility), logically structured (coherence), vivid, seen from the first-person perspective (visual perspective), real (sensory detail); but was relatively less positive (valence), emotionally intense, chronologically clear (time perspective), in agreement with the present self (distancing), and shared. Finally, it was indicated that the more guilt people felt the more hidden/denied (less accessible), but more real (more sensory details), the self-defining moral memory. PMID:28539906
Design of a motion JPEG (M/JPEG) adapter card
NASA Astrophysics Data System (ADS)
Lee, D. H.; Sudharsanan, Subramania I.
1994-05-01
In this paper we describe a design of a high performance JPEG (Joint Photographic Experts Group) Micro Channel adapter card. The card, tested on a range of PS/2 platforms (models 50 to 95), can complete JPEG operations on a 640 by 240 pixel image within 1/60 of a second, thus enabling real-time capture and display of high quality digital video. The card accepts digital pixels for either a YUV 4:2:2 or an RGB 4:4:4 pixel bus and has been shown to handle up to 2.05 MBytes/second of compressed data. The compressed data is transmitted to a host memory area by Direct Memory Access operations. The card uses a single C-Cube's CL550 JPEG processor that complies with the baseline JPEG. We give broad descriptions of the hardware that controls the video interface, CL550, and the system interface. Some critical design points that enhance the overall performance of the M/JPEG systems are pointed out. The control of the adapter card is achieved by an interrupt driven software that runs under DOS. The software performs a variety of tasks that include change of color space (RGB or YUV), change of quantization and Huffman tables, odd and even field control and some diagnostic operations.
The Research on Linux Memory Forensics
NASA Astrophysics Data System (ADS)
Zhang, Jun; Che, ShengBing
2018-03-01
Memory forensics is a branch of computer forensics. It does not depend on the operating system API, and analyzes operating system information from binary memory data. Based on the 64-bit Linux operating system, it analyzes system process and thread information from physical memory data. Using ELF file debugging information and propose a method for locating kernel structure member variable, it can be applied to different versions of the Linux operating system. The experimental results show that the method can successfully obtain the sytem process information from physical memory data, and can be compatible with multiple versions of the Linux kernel.
A malicious pattern detection engine for embedded security systems in the Internet of Things.
Oh, Doohwan; Kim, Deokho; Ro, Won Woo
2014-12-16
With the emergence of the Internet of Things (IoT), a large number of physical objects in daily life have been aggressively connected to the Internet. As the number of objects connected to networks increases, the security systems face a critical challenge due to the global connectivity and accessibility of the IoT. However, it is difficult to adapt traditional security systems to the objects in the IoT, because of their limited computing power and memory size. In light of this, we present a lightweight security system that uses a novel malicious pattern-matching engine. We limit the memory usage of the proposed system in order to make it work on resource-constrained devices. To mitigate performance degradation due to limitations of computation power and memory, we propose two novel techniques, auxiliary shifting and early decision. Through both techniques, we can efficiently reduce the number of matching operations on resource-constrained systems. Experiments and performance analyses show that our proposed system achieves a maximum speedup of 2.14 with an IoT object and provides scalable performance for a large number of patterns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyakh, Dmitry I.
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typicallymore » appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the na ve scattering algorithm (no memory access optimization). Furthermore, the tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).« less
Multicore Architecture-aware Scientific Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srinivasa, Avinash
Modern high performance systems are becoming increasingly complex and powerful due to advancements in processor and memory architecture. In order to keep up with this increasing complexity, applications have to be augmented with certain capabilities to fully exploit such systems. These may be at the application level, such as static or dynamic adaptations or at the system level, like having strategies in place to override some of the default operating system polices, the main objective being to improve computational performance of the application. The current work proposes two such capabilites with respect to multi-threaded scientific applications, in particular a largemore » scale physics application computing ab-initio nuclear structure. The first involves using a middleware tool to invoke dynamic adaptations in the application, so as to be able to adjust to the changing computational resource availability at run-time. The second involves a strategy for effective placement of data in main memory, to optimize memory access latencies and bandwidth. These capabilties when included were found to have a significant impact on the application performance, resulting in average speedups of as much as two to four times.« less
[Development of a video image system for wireless capsule endoscopes based on DSP].
Yang, Li; Peng, Chenglin; Wu, Huafeng; Zhao, Dechun; Zhang, Jinhua
2008-02-01
A video image recorder to record video picture for wireless capsule endoscopes was designed. TMS320C6211 DSP of Texas Instruments Inc. is the core processor of this system. Images are periodically acquired from Composite Video Broadcast Signal (CVBS) source and scaled by video decoder (SAA7114H). Video data is transported from high speed buffer First-in First-out (FIFO) to Digital Signal Processor (DSP) under the control of Complex Programmable Logic Device (CPLD). This paper adopts JPEG algorithm for image coding, and the compressed data in DSP was stored to Compact Flash (CF) card. TMS320C6211 DSP is mainly used for image compression and data transporting. Fast Discrete Cosine Transform (DCT) algorithm and fast coefficient quantization algorithm are used to accelerate operation speed of DSP and decrease the executing code. At the same time, proper address is assigned for each memory, which has different speed;the memory structure is also optimized. In addition, this system uses plenty of Extended Direct Memory Access (EDMA) to transport and process image data, which results in stable and high performance.
Resistive switching characteristics of HfO2-based memory devices on flexible plastics.
Han, Yong; Cho, Kyoungah; Park, Sukhyung; Kim, Sangsig
2014-11-01
In this study, we examine the characteristics of HfO2-based resistive switching random access memory (ReRAM) devices on flexible plastics. The Pt/HfO2/Au ReRAM devices exhibit the unipolar resistive switching behaviors caused by the conducting filaments. From the Auger depth profiles of the HfO2 thin film, it is confirmed that the relatively lower oxygen content in the interface of the bottom electrode is responsible for the resistive switching by oxygen vacancies. And the unipolar resistive switching behaviors are analyzed from the C-V characteristics in which negative and positive capacitances are measured in the low-resistance state and the high-resistance state, respectively. The devices have a high on/off ratio of 10(4) and the excellent retention properties even after a continuous bending test of two thousand cycles. The correlation between the device size and the memory characteristics is investigated as well. A relatively smaller-sized device having a higher on/off ratio operates at a higher voltage than a relatively larger-sized device.
NASA Astrophysics Data System (ADS)
Kim, Tae-Wan; Baek, Il-Jin; Cho, Won-Ju
2018-02-01
In this study, we employed microwave irradiation (MWI) at low temperature in the fabrication of solution-processed AlZnSnO (AZTO) resistive random access memory (ReRAM) devices with a structure of Ti/AZTO/Pt and compared the memory characteristics with the conventional thermal annealing (CTA) process. Typical bipolar resistance switching (BRS) behavior was observed in AZTO ReRAM devices treated with as-deposited (as-dep), CTA and MWI. In the low resistance state, the Ohmic conduction mechanism describes the dominant conduction of these devices. On the other hand, the trap-controlled space charge limited conduction (SCLC) mechanism predominates in the high resistance state. The AZTO ReRAM devices processed with MWI showed larger memory windows, uniform distribution of resistance state and operating voltage, stable DC durability (>103 cycles) and stable retention characteristics (>104 s). In addition, the AZTO ReRAM devices treated with MWI exhibited multistage storage characteristics by modulating the amplitude of the reset bias, and eight distinct resistance levels were obtained with stable retention capability.
Reducing the stochasticity of crystal nucleation to enable subnanosecond memory writing.
Rao, Feng; Ding, Keyuan; Zhou, Yuxing; Zheng, Yonghui; Xia, Mengjiao; Lv, Shilong; Song, Zhitang; Feng, Songlin; Ronneberger, Ider; Mazzarello, Riccardo; Zhang, Wei; Ma, Evan
2017-12-15
Operation speed is a key challenge in phase-change random-access memory (PCRAM) technology, especially for achieving subnanosecond high-speed cache memory. Commercialized PCRAM products are limited by the tens of nanoseconds writing speed, originating from the stochastic crystal nucleation during the crystallization of amorphous germanium antimony telluride (Ge 2 Sb 2 Te 5 ). Here, we demonstrate an alloying strategy to speed up the crystallization kinetics. The scandium antimony telluride (Sc 0.2 Sb 2 Te 3 ) compound that we designed allows a writing speed of only 700 picoseconds without preprogramming in a large conventional PCRAM device. This ultrafast crystallization stems from the reduced stochasticity of nucleation through geometrically matched and robust scandium telluride (ScTe) chemical bonds that stabilize crystal precursors in the amorphous state. Controlling nucleation through alloy design paves the way for the development of cache-type PCRAM technology to boost the working efficiency of computing systems. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU
NASA Astrophysics Data System (ADS)
Lyakh, Dmitry I.
2015-04-01
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).
Network acceleration techniques
NASA Technical Reports Server (NTRS)
Crowley, Patricia (Inventor); Maccabe, Arthur Barney (Inventor); Awrach, James Michael (Inventor)
2012-01-01
Splintered offloading techniques with receive batch processing are described for network acceleration. Such techniques offload specific functionality to a NIC while maintaining the bulk of the protocol processing in the host operating system ("OS"). The resulting protocol implementation allows the application to bypass the protocol processing of the received data. Such can be accomplished this by moving data from the NIC directly to the application through direct memory access ("DMA") and batch processing the receive headers in the host OS when the host OS is interrupted to perform other work. Batch processing receive headers allows the data path to be separated from the control path. Unlike operating system bypass, however, the operating system still fully manages the network resource and has relevant feedback about traffic and flows. Embodiments of the present disclosure can therefore address the challenges of networks with extreme bandwidth delay products (BWDP).
Platzer, Christine; Bröder, Arndt; Heck, Daniel W
2014-05-01
Decision situations are typically characterized by uncertainty: Individuals do not know the values of different options on a criterion dimension. For example, consumers do not know which is the healthiest of several products. To make a decision, individuals can use information about cues that are probabilistically related to the criterion dimension, such as sugar content or the concentration of natural vitamins. In two experiments, we investigated how the accessibility of cue information in memory affects which decision strategy individuals rely on. The accessibility of cue information was manipulated by means of a newly developed paradigm, the spatial-memory-cueing paradigm, which is based on a combination of the looking-at-nothing phenomenon and the spatial-cueing paradigm. The results indicated that people use different decision strategies, depending on the validity of easily accessible information. If the easily accessible information is valid, people stop information search and decide according to a simple take-the-best heuristic. If, however, information that comes to mind easily has a low predictive validity, people are more likely to integrate all available cue information in a compensatory manner.
ERIC Educational Resources Information Center
Bahrick, Lorraine E.; Hernandez-Reif, Maria; Pickens, Jeffrey N.
1997-01-01
Tested hypothesis from Bahrick and Pickens' infant attention model that retrieval cues increase memory accessibility and shift visual preferences toward greater novelty to resemble recent memories. Found that after retention intervals associated with remote or intermediate memory, previous familiarity preferences shifted to null or novelty…
ERIC Educational Resources Information Center
Oberauer, Klauss; Lange, Elke B.
2009-01-01
The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…
Recognition-induced forgetting is not due to category-based set size.
Maxcey, Ashleigh M
2016-01-01
What are the consequences of accessing a visual long-term memory representation? Previous work has shown that accessing a long-term memory representation via retrieval improves memory for the targeted item and hurts memory for related items, a phenomenon called retrieval-induced forgetting. Recently we found a similar forgetting phenomenon with recognition of visual objects. Recognition-induced forgetting occurs when practice recognizing an object during a two-alternative forced-choice task, from a group of objects learned at the same time, leads to worse memory for objects from that group that were not practiced. An alternative explanation of this effect is that category-based set size is inducing forgetting, not recognition practice as claimed by some researchers. This alternative explanation is possible because during recognition practice subjects make old-new judgments in a two-alternative forced-choice task, and are thus exposed to more objects from practiced categories, potentially inducing forgetting due to set-size. Herein I pitted the category-based set size hypothesis against the recognition-induced forgetting hypothesis. To this end, I parametrically manipulated the amount of practice objects received in the recognition-induced forgetting paradigm. If forgetting is due to category-based set size, then the magnitude of forgetting of related objects will increase as the number of practice trials increases. If forgetting is recognition induced, the set size of exemplars from any given category should not be predictive of memory for practiced objects. Consistent with this latter hypothesis, additional practice systematically improved memory for practiced objects, but did not systematically affect forgetting of related objects. These results firmly establish that recognition practice induces forgetting of related memories. Future directions and important real-world applications of using recognition to access our visual memories of previously encountered objects are discussed.
Remote Control and Monitoring of VLBI Experiments by Smartphones
NASA Astrophysics Data System (ADS)
Ruztort, C. H.; Hase, H.; Zapata, O.; Pedreros, F.
2012-12-01
For the remote control and monitoring of VLBI operations, we developed a software optimized for smartphones. This is a new tool based on a client-server architecture with a Web interface optimized for smartphone screens and cellphone networks. The server uses variables of the Field System and its station specific parameters stored in the shared memory. The client running on the smartphone by a Web interface analyzes and visualizes the current status of the radio telescope, receiver, schedule, and recorder. In addition, it allows commands to be sent remotely to the Field System computer and displays the log entries. The user has full access to the entire operation process, which is important in emergency cases. The software also integrates a webcam interface.
NASA Astrophysics Data System (ADS)
Tsai, Chih-Wei; Lo, Yu-Lung; Chang, Chia-Chen; Liu, Han-Ying; Yang, Wei-Bin; Cheng, Kuo-Hsing
2017-04-01
A synchronous and highly accurate all-digital duty-cycle corrector (ADDCC), which uses simplified dual-loop architecture, is presented in this paper. To explain the operational principle, a detailed circuit description and formula derivation are provided. To verify the proposed design, a chip was fabricated through the 0.18-µm standard complementary metal oxide semiconductor process with a core area of 0.091 mm2. The measurement results indicate that the proposed ADDCC can operate between 300 and 600 MHz with an input duty-cycle range of 40-60%, and that the output duty-cycle error is less than 1% with a root-mean-square jitter of 3.86 ps.
Pacing a data transfer operation between compute nodes on a parallel computer
Blocksome, Michael A [Rochester, MN
2011-09-13
Methods, systems, and products are disclosed for pacing a data transfer between compute nodes on a parallel computer that include: transferring, by an origin compute node, a chunk of an application message to a target compute node; sending, by the origin compute node, a pacing request to a target direct memory access (`DMA`) engine on the target compute node using a remote get DMA operation; determining, by the origin compute node, whether a pacing response to the pacing request has been received from the target DMA engine; and transferring, by the origin compute node, a next chunk of the application message if the pacing response to the pacing request has been received from the target DMA engine.
New modeling method for the dielectric relaxation of a DRAM cell capacitor
NASA Astrophysics Data System (ADS)
Choi, Sujin; Sun, Wookyung; Shin, Hyungsoon
2018-02-01
This study proposes a new method for automatically synthesizing the equivalent circuit of the dielectric relaxation (DR) characteristic in dynamic random access memory (DRAM) without frequency dependent capacitance measurement. Charge loss due to DR can be observed by a voltage drop at the storage node and this phenomenon can be analyzed by an equivalent circuit. The Havariliak-Negami model is used to accurately determine the electrical characteristic parameters of an equivalent circuit. The DRAM sensing operation is performed in HSPICE simulations to verify this new method. The simulation demonstrates that the storage node voltage drop resulting from DR and the reduction in the sensing voltage margin, which has a critical impact on DRAM read operation, can be accurately estimated using this new method.
Vertical Launch System Loadout Planner
2015-03-01
United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this
Nonvolatile GaAs Random-Access Memory
NASA Technical Reports Server (NTRS)
Katti, Romney R.; Stadler, Henry L.; Wu, Jiin-Chuan
1994-01-01
Proposed random-access integrated-circuit electronic memory offers nonvolatile magnetic storage. Bits stored magnetically and read out with Hall-effect sensors. Advantages include short reading and writing times and high degree of immunity to both single-event upsets and permanent damage by ionizing radiation. Use of same basic material for both transistors and sensors simplifies fabrication process, with consequent benefits in increased yield and reduced cost.
MemAxes Visualization Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.
I/O performance evaluation of a Linux-based network-attached storage device
NASA Astrophysics Data System (ADS)
Sun, Zhaoyan; Dong, Yonggui; Wu, Jinglian; Jia, Huibo; Feng, Guanping
2002-09-01
In a Local Area Network (LAN), clients are permitted to access the files on high-density optical disks via a network server. But the quality of read service offered by the conventional server is not satisfied because of the multiple functions on the server and the overmuch caller. This paper develops a Linux-based Network-Attached Storage (NAS) server. The Operation System (OS), composed of an optimized kernel and a miniaturized file system, is stored in a flash memory. After initialization, the NAS device is connected into the LAN. The administrator and users could configure the access the server through the web page respectively. In order to enhance the quality of access, the management of buffer cache in file system is optimized. Some benchmark programs are peformed to evaluate the I/O performance of the NAS device. Since data recorded in optical disks are usually for reading accesses, our attention is focused on the reading throughput of the device. The experimental results indicate that the I/O performance of our NAS device is excellent.
Temporal texture of associative encoding modulates recall processes.
Tibon, Roni; Levy, Daniel A
2014-02-01
Binding aspects of an experience that are distributed over time is an important element of episodic memory. In the current study, we examined how the temporal complexity of an experience may govern the processes required for its retrieval. We recorded event-related potentials during episodic cued recall following pair associate learning of concurrently and sequentially presented object-picture pairs. Cued recall success effects over anterior and posterior areas were apparent in several time windows. In anterior locations, these recall success effects were similar for concurrently and sequentially encoded pairs. However, in posterior sites clustered over parietal scalp the effect was larger for the retrieval of sequentially encoded pairs. We suggest that anterior aspects of the mid-latency recall success effects may reflect working-with-memory operations or direct access recall processes, while more posterior aspects reflect recollective processes which are required for retrieval of episodes of greater temporal complexity. Copyright © 2013 Elsevier Inc. All rights reserved.
System, methods and apparatus for program optimization for multi-threaded processor architectures
Bastoul, Cedric; Lethin, Richard A; Leung, Allen K; Meister, Benoit J; Szilagyi, Peter; Vasilache, Nicolas T; Wohlford, David E
2015-01-06
Methods, apparatus and computer software product for source code optimization are provided. In an exemplary embodiment, a first custom computing apparatus is used to optimize the execution of source code on a second computing apparatus. In this embodiment, the first custom computing apparatus contains a memory, a storage medium and at least one processor with at least one multi-stage execution unit. The second computing apparatus contains at least two multi-stage execution units that allow for parallel execution of tasks. The first custom computing apparatus optimizes the code for parallelism, locality of operations and contiguity of memory accesses on the second computing apparatus. This Abstract is provided for the sole purpose of complying with the Abstract requirement rules. This Abstract is submitted with the explicit understanding that it will not be used to interpret or to limit the scope or the meaning of the claims.
Systems and methods for performing wireless financial transactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCown, Steven Harvey
2012-07-03
A secure computing module (SCM) is configured for connection with a host device. The SCM includes a processor for performing secure processing operations, a host interface for coupling the processor to the host device, and a memory connected to the processor wherein the processor logically isolates at least some of the memory from access by the host device. The SCM also includes a proximate-field wireless communicator connected to the processor to communicate with another SCM associated with another host device. The SCM generates a secure digital signature for a financial transaction package and communicates the package and the signature tomore » the other SCM using the proximate-field wireless communicator. Financial transactions are performed from person to person using the secure digital signature of each person's SCM and possibly message encryption. The digital signatures and transaction details are communicated to appropriate financial organizations to authenticate the transaction parties and complete the transaction.« less
A system for the automated data-acquisition of fast transient signals in excitable membranes.
Bustamante, J O
1988-01-01
This paper provides a description of a system for the acquisition of fast transient currents flowing across excitable membranes. The front end of the system consists of a CAMAC crate with plug-in modules. The modules provide control of CAMAC operations, analog to digital conversion, electronic memory storage and timing of events. The signals are transferred under direct memory access to an IBM PC microcomputer through a special-purpose interface. Voltage levels from a digital to analog board in the microcomputer are passed through multiplexers to produce the desired voltage pulse patterns to elicit the transmembrane currents. The dead time between consecutive excitatory voltage pulses is limited only by the computer data bus and the software characteristics. The dead time between data transfers can be reduced to the order of milliseconds, which is sufficient for most experiments with transmembrane ionic currents.
Stress-based control of magnetic nanowire domain walls in artificial multiferroic systems
NASA Astrophysics Data System (ADS)
Dean, J.; Bryan, M. T.; Schrefl, T.; Allwood, D. A.
2011-01-01
Artificial multiferroic systems, which combine piezoelectric and piezomagnetic materials, offer novel methods of controlling material properties. Here, we use combined structural and magnetic finite element models to show how localized strains in a piezoelectric film coupled to a piezomagnetic nanowire can attract and pin magnetic domain walls. Synchronous switching of addressable contacts enables the controlled movement of pinning sites, and hence domain walls, in the nanowire without applied magnetic field or spin-polarized current, irrespective of domain wall structure. Conversely, domain wall-induced strain in the piezomagnetic material induces a local potential difference in the piezoelectric, providing a mechanism for sensing domain walls. This approach overcomes the problems in magnetic nanowire memories of domain wall structure-dependent behavior and high power consumption. Nonvolatile random access or shift register memories based on these effects can achieve storage densities >1 Gbit/In2, sub-10 ns switching times, and power consumption <100 keV per operation.
Direct memory access transfer completion notification
Archer, Charles J [Rochester, MN; Blocksome, Michael A [Rochester, MN; Parker, Jeffrey J [Rochester, MN
2011-02-15
DMA transfer completion notification includes: inserting, by an origin DMA engine on an origin node in an injection first-in-first-out (`FIFO`) buffer, a data descriptor for an application message to be transferred to a target node on behalf of an application on the origin node; inserting, by the origin DMA engine, a completion notification descriptor in the injection FIFO buffer after the data descriptor for the message, the completion notification descriptor specifying a packet header for a completion notification packet; transferring, by the origin DMA engine to the target node, the message in dependence upon the data descriptor; sending, by the origin DMA engine, the completion notification packet to a local reception FIFO buffer using a local memory FIFO transfer operation; and notifying, by the origin DMA engine, the application that transfer of the message is complete in response to receiving the completion notification packet in the local reception FIFO buffer.
Mathematical Logic in the Human Brain: Semantics
Friedrich, Roland M.; Friederici, Angela D.
2013-01-01
As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge. PMID:23301101
Unforgeable Noise-Tolerant Quantum Tokens
NASA Astrophysics Data System (ADS)
Yao, Norman; Pastawski, Fernando; Jiang, Liang; Lukin, Mikhail; Cirac, Ignacio
2012-06-01
The realization of devices which harness the laws of quantum mechanics represents an exciting challenge at the interface of modern technology and fundamental science. An exemplary paragon of the power of such quantum primitives is the concept of ``quantum money.'' A dishonest holder of a quantum bank-note will invariably fail in any forging attempts; indeed, under assumptions of ideal measurements and decoherence-free memories such security is guaranteed by the no-cloning theorem. In any practical situation, however, noise, decoherence and operational imperfections abound. Thus, the development of secure ``quantum money''-type primitives capable of tolerating realistic infidelities is of both practical and fundamental importance. Here, we propose a novel class of such protocols and demonstrate their tolerance to noise; moreover, we prove their rigorous security by determining tight fidelity thresholds. Our proposed protocols require only the ability to prepare, store and measure single qubit quantum memories, making their experimental realization accessible with current technologies.
Synchronous clock stopper for microprocessor
NASA Technical Reports Server (NTRS)
Kitchin, David A. (Inventor)
1985-01-01
A synchronous clock stopper circuit for inhibiting clock pulses to a microprocessor in response to a stop request signal, and for reinstating the clock pulses in response to a start request signal thereby to conserve power consumption of the microprocessor when used in an environment of limited power. The stopping and starting of the microprocessor is synchronized, by a phase tracker, with the occurrences of a predetermined phase in the instruction cycle of the microprocessor in which the I/O data and address lines of the microprocessor are of high impedance so that a shared memory connected to the I/O lines may be accessed by other peripheral devices. The starting and stopping occur when the microprocessor initiates and completes, respectively, an instruction, as well as before and after transferring data with a memory. Also, the phase tracker transmits phase information signals over a bus to other peripheral devices which signals identify the current operational phase of the microprocessor.
Deliberative and spontaneous cognitive processes associated with HIV risk behavior
Ames, Susan L.; Stacy, Alan W.
2012-01-01
Dual process models of decision-making suggest that behavior is mediated by a spontaneous behavior selection process or by a more deliberative evaluation of behavioral options. We examined whether the deliberative system moderates the influence of spontaneous cognition on HIV-risk behaviors. A measure of spontaneous sex-related associations (word association), a measure of deliberative working memory capacity (operation span), and two measures of sexual behavior (condom use and multiple partners) were assessed in a cross-sectional study among 490 adult drug offenders. Significant effects were observed among men but not among women in two latent interaction models. In a novel finding, the accessibility of spontaneous safe sex-related associations was significantly more predictive of condom use among men with higher working memory capacity than among men with lower capacity. These results have implications for the design of interventions to promote safe sex practices. PMID:22331437
Real-time depth processing for embedded platforms
NASA Astrophysics Data System (ADS)
Rahnama, Oscar; Makarov, Aleksej; Torr, Philip
2017-05-01
Obtaining depth information of a scene is an important requirement in many computer-vision and robotics applications. For embedded platforms, passive stereo systems have many advantages over their active counterparts (i.e. LiDAR, Infrared). They are power efficient, cheap, robust to lighting conditions and inherently synchronized to the RGB images of the scene. However, stereo depth estimation is a computationally expensive task that operates over large amounts of data. For embedded applications which are often constrained by power consumption, obtaining accurate results in real-time is a challenge. We demonstrate a computationally and memory efficient implementation of a stereo block-matching algorithm in FPGA. The computational core achieves a throughput of 577 fps at standard VGA resolution whilst consuming less than 3 Watts of power. The data is processed using an in-stream approach that minimizes memory-access bottlenecks and best matches the raster scan readout of modern digital image sensors.
Mathematical logic in the human brain: semantics.
Friedrich, Roland M; Friederici, Angela D
2013-01-01
As a higher cognitive function in humans, mathematics is supported by parietal and prefrontal brain regions. Here, we give an integrative account of the role of the different brain systems in processing the semantics of mathematical logic from the perspective of macroscopic polysynaptic networks. By comparing algebraic and arithmetic expressions of identical underlying structure, we show how the different subparts of a fronto-parietal network are modulated by the semantic domain, over which the mathematical formulae are interpreted. Within this network, the prefrontal cortex represents a system that hosts three major components, namely, control, arithmetic-logic, and short-term memory. This prefrontal system operates on data fed to it by two other systems: a premotor-parietal top-down system that updates and transforms (external) data into an internal format, and a hippocampal bottom-up system that either detects novel information or serves as an access device to memory for previously acquired knowledge.
Interactive water monitoring system accessible by cordless telephone
NASA Astrophysics Data System (ADS)
Volpicelli, Richard; Andeweg, Pierre; Hagar, William G.
1985-12-01
A battery-operated, microcomputer-controlled monitoring device linked with a cordless telephone has been developed for remote measurements. This environmental sensor is self-contained and collects and processes data according to the information sent to its on-board computer system. An RCA model 1805 microprocessor forms the basic controller with a program encoded in memory for data acquisition and analysis. Signals from analog sensing devices used to monitor the environment are converted into digital signals and stored in random access memory of the microcomputer. This remote sensing system is linked to the laboratory by means of a cordless telephone whose base unit is connected to regular telephone lines. This offshore sensing system is simply accessed by a phone call originating from a computer terminal in the laboratory. Data acquisition is initiated upon request: Information continues to be processed and stored until the computer is reprogrammed by another phone call request. Information obtained may be recalled by a phone call after the desired environmental measurements are finished or while they are in progress. Data sampling parameters may be reset at any time, including in the middle of a measurement cycle. The range of the system is limited only by existing telephone grid systems and by the transmission characteristics of the cordless phone used as a communications link. This use of a cordless telephone, coupled with the on-board computer system, may be applied to other field studies requiring data transfer between an on-site analytical system and the laboratory.
Blank, Hartmut
2005-02-01
Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.
NASA Astrophysics Data System (ADS)
Lee, Jong-Sun; Kim, Dong-Won; Kim, Hea-Jee; Jin, Soo-Min; Song, Myung-Jin; Kwon, Ki-Hyun; Park, Jea-Gun; Jalalah, Mohammed; Al-Hajry, Ali
2018-01-01
The Conductive-bridge random-access memory (CBRAM) cell is a promising candidate for a terabit-level non-volatile memory due to its remarkable advantages. We present for the first time TiN as a diffusion barrier in CBRAM cells for enhancing their reliability. CuO solid-electrolyte-based CBRAM cells implemented with a 0.1-nm TiN liner demonstrated better non-volatile memory characteristics such as 106 AC write/erase endurance cycles with 100-μs AC pulse width and a long retention time of 7.4-years at 85 °C. In addition, the analysis of Ag diffusion in the CBRAM cell suggests that the morphology of the Ag filaments in the electrolyte can be effectively controlled by tuning the thickness of the TiN liner. These promising results pave the way for faster commercialization of terabit-level non-volatile memories.
Marijuana effects on long-term memory assessment and retrieval.
Darley, C F; Tinklenberg, J R; Roth, W T; Vernon, S; Kopell, B S
1977-05-09
The ability of 16 college-educated male subjects to recall from long-term memory a series of common facts was tested during intoxication with marijuana extract calibrated to 0.3 mg/kg delta-9-tetrahydrocannabinol and during placebo conditions. The subjects' ability to assess their memory capabilities was then determined by measuring how certain they were about the accuracy of their recall performance and by having them predict their performance on a subsequent recognition test involving the same recall items. Marijuana had no effect on recall or recognition performance. These results do not support the view that marijuana provides access to facts in long-term storage which are inaccessible during non-intoxication. During both marijuana and placebo conditions, subjects could accurately predict their recognition memory performance. Hence, marijuana did not alter the subjects' ability to accurately assess what information resides in long-term memory even though they did not have complete access to that information.
NASA Astrophysics Data System (ADS)
Hoar, T. J.; Anderson, J. L.; Collins, N.; Kershaw, H.; Hendricks, J.; Raeder, K.; Mizzi, A. P.; Barré, J.; Gaubert, B.; Madaus, L. E.; Aydogdu, A.; Raeder, J.; Arango, H.; Moore, A. M.; Edwards, C. A.; Curchitser, E. N.; Escudier, R.; Dussin, R.; Bitz, C. M.; Zhang, Y. F.; Shrestha, P.; Rosolem, R.; Rahman, M.
2016-12-01
Strongly-coupled ensemble data assimilation with multiple high-resolution model components requires massive state vectors which need to be efficiently stored and accessed throughout the assimilation process. Supercomputer architectures are tending towards increasing the number of cores per node but have the same or less memory per node. Recent advances in the Data Assimilation Research Testbed (DART), a freely-available community ensemble data assimilation facility that works with dozens of large geophysical models, have addressed the need to run with a smaller memory footprint on a higher node count by utilizing MPI-2 one-sided communication to do non-blocking asynchronous access of distributed data. DART runs efficiently on many computational platforms ranging from laptops through thousands of cores on the newest supercomputers. Benefits of the new DART implementation will be shown. In addition, overviews of the most recently supported models will be presented: CAM-CHEM, WRF-CHEM, CM1, OpenGGCM, FESOM, ROMS, CICE5, TerrSysMP (COSMO, CLM, ParFlow), JULES, and CABLE. DART provides a comprehensive suite of software, documentation, and tutorials that can be used for ensemble data assimilation research, operations, and education. Scientists and software engineers at NCAR are available to support DART users who want to use existing DART products or develop their own applications. Current DART users range from university professors teaching data assimilation, to individual graduate students working with simple models, through national laboratories and state agencies doing operational prediction with large state-of-the-art models.
Don’t make cache too complex: A simple probability-based cache management scheme for SSDs
Cho, Sangyeun; Choi, Jongmoo
2017-01-01
Solid-state drives (SSDs) have recently become a common storage component in computer systems, and they are fueled by continued bit cost reductions achieved with smaller feature sizes and multiple-level cell technologies. However, as the flash memory stores more bits per cell, the performance and reliability of the flash memory degrade substantially. To solve this problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to reduce the long latency required to write data. Absorbing small writes in a fast NVM cache can also reduce the number of flash memory erase operations. To maximize the benefits of an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose and study ProCache, a simple NVM cache management scheme, that makes cache-entrance decisions based on random probability testing. Our scheme is motivated by the observation that frequently written hot data will eventually enter the cache with a high probability, and that infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, ProCache is easy to implement at a substantially smaller cost than similar previously studied techniques. We evaluate ProCache and conclude that it achieves comparable performance compared to a more complex reference counter-based cache-management scheme. PMID:28358897
Don't make cache too complex: A simple probability-based cache management scheme for SSDs.
Baek, Seungjae; Cho, Sangyeun; Choi, Jongmoo
2017-01-01
Solid-state drives (SSDs) have recently become a common storage component in computer systems, and they are fueled by continued bit cost reductions achieved with smaller feature sizes and multiple-level cell technologies. However, as the flash memory stores more bits per cell, the performance and reliability of the flash memory degrade substantially. To solve this problem, a fast non-volatile memory (NVM-)based cache has been employed within SSDs to reduce the long latency required to write data. Absorbing small writes in a fast NVM cache can also reduce the number of flash memory erase operations. To maximize the benefits of an NVM cache, it is important to increase the NVM cache utilization. In this paper, we propose and study ProCache, a simple NVM cache management scheme, that makes cache-entrance decisions based on random probability testing. Our scheme is motivated by the observation that frequently written hot data will eventually enter the cache with a high probability, and that infrequently accessed cold data will not enter the cache easily. Owing to its simplicity, ProCache is easy to implement at a substantially smaller cost than similar previously studied techniques. We evaluate ProCache and conclude that it achieves comparable performance compared to a more complex reference counter-based cache-management scheme.
... pdf . Accessed on June 27, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...
NASA Technical Reports Server (NTRS)
Harper, Richard E.; Butler, Bryan P.
1990-01-01
The Draper fault-tolerant processor with fault-tolerant shared memory (FTP/FTSM), which is designed to allow application tasks to continue execution during the memory alignment process, is described. Processor performance is not affected by memory alignment. In addition, the FTP/FTSM incorporates a hardware scrubber device to perform the memory alignment quickly during unused memory access cycles. The FTP/FTSM architecture is described, followed by an estimate of the time required for channel reintegration.
ERIC Educational Resources Information Center
Bäuml, Karl-Heinz T.; Dobler, Ina M.
2015-01-01
Depending on the degree to which the original study context is accessible, selective memory retrieval can be detrimental or beneficial for the recall of other memories (Bäuml & Samenieh, 2012). Prior work has shown that the detrimental effect of memory retrieval is typically recall specific and does not arise after restudy trials, whereas…
Efficacy of Code Optimization on Cache-based Processors
NASA Technical Reports Server (NTRS)
VanderWijngaart, Rob F.; Chancellor, Marisa K. (Technical Monitor)
1997-01-01
The current common wisdom in the U.S. is that the powerful, cost-effective supercomputers of tomorrow will be based on commodity (RISC) micro-processors with cache memories. Already, most distributed systems in the world use such hardware as building blocks. This shift away from vector supercomputers and towards cache-based systems has brought about a change in programming paradigm, even when ignoring issues of parallelism. Vector machines require inner-loop independence and regular, non-pathological memory strides (usually this means: non-power-of-two strides) to allow efficient vectorization of array operations. Cache-based systems require spatial and temporal locality of data, so that data once read from main memory and stored in high-speed cache memory is used optimally before being written back to main memory. This means that the most cache-friendly array operations are those that feature zero or unit stride, so that each unit of data read from main memory (a cache line) contains information for the next iteration in the loop. Moreover, loops ought to be 'fat', meaning that as many operations as possible are performed on cache data-provided instruction caches do not overflow and enough registers are available. If unit stride is not possible, for example because of some data dependency, then care must be taken to avoid pathological strides, just ads on vector computers. For cache-based systems the issues are more complex, due to the effects of associativity and of non-unit block (cache line) size. But there is more to the story. Most modern micro-processors are superscalar, which means that they can issue several (arithmetic) instructions per clock cycle, provided that there are enough independent instructions in the loop body. This is another argument for providing fat loop bodies. With these restrictions, it appears fairly straightforward to produce code that will run efficiently on any cache-based system. It can be argued that although some of the important computational algorithms employed at NASA Ames require different programming styles on vector machines and cache-based machines, respectively, neither architecture class appeared to be favored by particular algorithms in principle. Practice tells us that the situation is more complicated. This report presents observations and some analysis of performance tuning for cache-based systems. We point out several counterintuitive results that serve as a cautionary reminder that memory accesses are not the only factors that determine performance, and that within the class of cache-based systems, significant differences exist.
Memory hierarchy using row-based compression
Loh, Gabriel H.; O'Connor, James M.
2016-10-25
A system includes a first memory and a device coupleable to the first memory. The device includes a second memory to cache data from the first memory. The second memory includes a plurality of rows, each row including a corresponding set of compressed data blocks of non-uniform sizes and a corresponding set of tag blocks. Each tag block represents a corresponding compressed data block of the row. The device further includes decompression logic to decompress data blocks accessed from the second memory. The device further includes compression logic to compress data blocks to be stored in the second memory.
Characterizing filamentary switching in resistive memories (Presentation Recording)
NASA Astrophysics Data System (ADS)
Busby, Yan; Pireaux, Jean-Jacques
2015-09-01
Characterizing filamentary switching in resistive memories For many organic, inorganic and hybrid memory devices the resistive switching mechanism is well known to rely on filament formation [1]. This implies that localized conductive paths are established between the two terminal electrodes during the forming step. This filaments sustain the current flow when the memory is in the low conductive state and they can be ruptured and possibly re-formed for more than hundreds of I-V cycles. The nature and morphology of filaments has been long time debated especially for organic memories. The filament size, density and formation mechanism have been very challenging to be characterized, and need appropriate experimental techniques. However, filaments in organic memories have been recently identified and characterized by cross-section transmission electron microscopy (TEM), conductive-AFM, AFM-tomography and through depth profile analysis combining Time-of-flight secondary ions mass spectrometry (SIMS) and X-ray photoelectron spectroscopy (XPS). In particular, 3D spectroscopic images obtained with ToF-SIMS give access for the first time to filament formation process and rupture mechanism. From these results, a clear picture of the filament(s) dynamics during memory operation can be drawn. In this contribution, recent results showing filaments in memories based on different structures and architectures will be discussed. The memories are based on insulating polymers (polystyrene [2] and poly methyl methacrylate [3]), conductive polymers/nanocomposites (polyera N1400 with metal NPs [4]), and small semiconducting molecules (Tris(8-hydroxyquinolinato)aluminium - Alq3 [5]). The results show that resistive switching clearly involves the inhomogeneous metal diffusion in the organic layer taking place during the top electrode deposition and during memory operation. This may be of great relevance in many other organic electronics applications. REFERENCES [1] S. Nau, S. Sax, E.J.W. List-Kratochvil, Adv. Mater. 2014, 26, 2508-2513. [2] Y. Busby, N. Crespo-Monteiro, M. Girleanu, M. Brinkmann, O. Ersen, J.-J. Pireaux, Organic Electronics 2015, 16, 40-45. [3] C. Wolf, S. Nau, S. Sax, Y. Busby, J.-J. Pireaux, E.J.W. List-Kratochvil (under submission). [4] G. Casula, P. Cosseddu, Y. Busby, J.-J. Pireaux, M. Rosowski, B. Tkacz Szczesna, K. Soliwoda, G. Celichowski, J. Grobelny, J. Novák, R. Banerjee, F. Schreiber, A. Bonfiglio, Organic Electronics, 2015, 18, 17-23. [5] Y. Busby, S. Nau, S. Sax, E.J.W. List- Kratochvil, J. Novak, R. Banerjee, F. Schreiber, J.-J. Pireaux, (under submission)
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-02-07
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
Schedulers with load-store queue awareness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tong; Eichenberger, Alexandre E.; Jacob, Arpith C.
2017-01-24
In one embodiment, a computer-implemented method includes tracking a size of a load-store queue (LSQ) during compile time of a program. The size of the LSQ is time-varying and indicates how many memory access instructions of the program are on the LSQ. The method further includes scheduling, by a computer processor, a plurality of memory access instructions of the program based on the size of the LSQ.
NASA Astrophysics Data System (ADS)
Chang, Liang-Shun; Lin, Chrong Jung; King, Ya-Chin
2014-01-01
The temperature dependent characteristics of the random telegraphic noise (RTN) on contact resistive random access memory (CRRAM) are studied in this work. In addition to the bi-level switching, the occurrences of the middle states in the RTN signal are investigated. Based on the unique its temperature dependent characteristics, a new temperature sensing scheme is proposed for applications in ultra-low power sensor modules.
A simple GPU-accelerated two-dimensional MUSCL-Hancock solver for ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Bard, Christopher M.; Dorelli, John C.
2014-02-01
We describe our experience using NVIDIA's CUDA (Compute Unified Device Architecture) C programming environment to implement a two-dimensional second-order MUSCL-Hancock ideal magnetohydrodynamics (MHD) solver on a GTX 480 Graphics Processing Unit (GPU). Taking a simple approach in which the MHD variables are stored exclusively in the global memory of the GTX 480 and accessed in a cache-friendly manner (without further optimizing memory access by, for example, staging data in the GPU's faster shared memory), we achieved a maximum speed-up of ≈126 for a 10242 grid relative to the sequential C code running on a single Intel Nehalem (2.8 GHz) core. This speedup is consistent with simple estimates based on the known floating point performance, memory throughput and parallel processing capacity of the GTX 480.
Overgeneral Autobiographical Memory and Traumatic Events: An Evaluative Review
ERIC Educational Resources Information Center
Moore, Sally A.; Zoellner, Lori A.
2007-01-01
Does trauma exposure impair retrieval of autobiographical memories? Many theorists have suggested that the reduced ability to access specific memories of life events, termed overgenerality, is a protective mechanism helping attenuate painful emotions associated with trauma. The authors addressed this question by reviewing 24 studies that assessed…
Working Memory Underpins Cognitive Development, Learning, and Education
ERIC Educational Resources Information Center
Cowan, Nelson
2014-01-01
Working memory is the retention of a small amount of information in a readily accessible form. It facilitates planning, comprehension, reasoning, and problem solving. I examine the historical roots and conceptual development of the concept and the theoretical and practical implications of current debates about working memory mechanisms. Then, I…
DOE Office of Scientific and Technical Information (OSTI.GOV)
YU, DANTONG; Jin, Shudong
2014-03-01
Data-intensive applications, including high energy and nuclear physics, astrophysics, climate modeling, nano-scale materials science, genomics, and financing, are expected to generate exabytes of data over the coming years, which must be transferred, visualized, and analyzed by geographically distributed teams of users. High-performance network capabilities must be available to these users at the application level in a transparent, virtualized manner. Moreover, the application users must have the capability to move large datasets from local and remote locations across network environments to their home institutions. To solve these challenges, the main goal of our project is to design and evaluate high-performance datamore » transfer software to support various data-intensive applications. First, we have designed a middleware software that provides access to Remote Direct Memory Access (RDMA) functionalities. This middleware integrates network access, memory management and multitasking in its core design. We address a number of issues related to its efficient implementation, for instance, explicit buffer management and memory registration, and parallelization of RDMA operations, which are vital to delivering the benefit of RDMA to the applications. Built on top of this middleware, an implementation and experimental evaluation of the RDMA-based FTP software, RFTP, is described and evaluated. This application has been implemented by our team to exploit the full capabilities of advanced RDMA mechanisms for ultra-high speed bulk data transfer applications on Energy Sciences Network (ESnet). Second, we designed our data transfer software to optimize TCP/IP based data transfer performance such that RFTP can be fully compatible with today’s Internet. Our kernel optimization techniques with Linux system calls sendfile and splice, can reduce data copy cost. In this report, we summarize the technical challenges of our project, the primary software design methods, the major project milestones achieved, as well as the testbed evaluation work and demonstrations during our project life time.« less
Lyu, Mengjie; Liu, Youwen; Zhi, Yuduo; Xiao, Chong; Gu, Bingchuan; Hua, Xuemin; Fan, Shaojuan; Lin, Yue; Bai, Wei; Tong, Wei; Zou, Youming; Pan, Bicai; Ye, Bangjiao; Xie, Yi
2015-12-02
Fabricating a flexible room-temperature ferromagnetic resistive-switching random access memory (RRAM) device is of fundamental importance to integrate nonvolatile memory and spintronics both in theory and practice for modern information technology and has the potential to bring about revolutionary new foldable information-storage devices. Here, we show that a relatively low operating voltage (+1.4 V/-1.5 V, the corresponding electric field is around 20,000 V/cm) drives the dual vacancies evolution in ultrathin SnO2 nanosheets at room temperature, which causes the reversible transition between semiconductor and half-metal, accompanyied by an abrupt conductivity change up to 10(3) times, exhibiting room-temperature ferromagnetism in two resistance states. Positron annihilation spectroscopy and electron spin resonance results show that the Sn/O dual vacancies in the ultrathin SnO2 nanosheets evolve to isolated Sn vacancy under electric field, accounting for the switching behavior of SnO2 ultrathin nanosheets; on the other hand, the different defect types correspond to different conduction natures, realizing the transition between semiconductor and half-metal. Our result represents a crucial step to create new a information-storage device realizing the reversible transition between semiconductor and half-metal with flexibility and room-temperature ferromagnetism at low energy consumption. The as-obtained half-metal in the low-resistance state broadens the application of the device in spintronics and the semiconductor to half-metal transition on the basis of defects evolution and also opens up a new avenue for exploring random access memory mechanisms and finding new half-metals for spintronics.
Performance Prediction Toolkit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chennupati, Gopinath; Santhi, Nanadakishore; Eidenbenz, Stephen
The Performance Prediction Toolkit (PPT), is a scalable co-design tool that contains the hardware and middle-ware models, which accept proxy applications as input in runtime prediction. PPT relies on Simian, a parallel discrete event simulation engine in Python or Lua, that uses the process concept, where each computing unit (host, node, core) is a Simian entity. Processes perform their task through message exchanges to remain active, sleep, wake-up, begin and end. The PPT hardware model of a compute core (such as a Haswell core) consists of a set of parameters, such as clock speed, memory hierarchy levels, their respective sizes,more » cache-lines, access times for different cache levels, average cycle counts of ALU operations, etc. These parameters are ideally read off a spec sheet or are learned using regression models learned from hardware counters (PAPI) data. The compute core model offers an API to the software model, a function called time_compute(), which takes as input a tasklist. A tasklist is an unordered set of ALU, and other CPU-type operations (in particular virtual memory loads and stores). The PPT application model mimics the loop structure of the application and replaces the computational kernels with a call to the hardware model's time_compute() function giving tasklists as input that model the compute kernel. A PPT application model thus consists of tasklists representing kernels and the high-er level loop structure that we like to think of as pseudo code. The key challenge for the hardware model's time_compute-function is to translate virtual memory accesses into actual cache hierarchy level hits and misses.PPT also contains another CPU core level hardware model, Analytical Memory Model (AMM). The AMM solves this challenge soundly, where our previous alternatives explicitly include the L1,L2,L3 hit-rates as inputs to the tasklists. Explicit hit-rates inevitably only reflect the application modeler's best guess, perhaps informed by a few small test problems using hardware counters; also, hard-coded hit-rates make the hardware model insensitive to changes in cache sizes. Alternatively, we use reuse distance distributions in the tasklists. In general, reuse profiles require the application modeler to run a very expensive trace analysis on the real code that realistically can be done at best for small examples.« less
Library API for Z-Order Memory Layout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bethel, E. Wes
This library provides a simple-to-use API for implementing an altnerative to traditional row-major order in-memory layout, one based on a Morton- order space filling curve (SFC) , specifically, a Z-order variant of the Morton order curve. The library enables programmers to, after a simple initialization step, to convert a multidimensional array from row-major to Z- order layouts, then use a single, generic API call to access data from any arbitrary (i,j,k) location from within the array, whether it it be stored in row- major or z-order format. The motivation for using a SFC in-memory layout is for improved spatial locality,more » which results in increased use of local high speed cache memory. The basic idea is that with row-major order layouts, a data access to some location that is nearby in index space is likely far away in physical memory, resulting in poor spatial locality and slow runtime. On the other hand, with a SFC-based layout, accesses that are nearby in index space are much more likely to also be nearby in physical memory, resulting in much better spatial locality, and better runtime performance. Numerous studies over the years have shown significant runtime performance gains are realized by using a SFC-based memory layout compared to a row-major layout, sometimes by as much as 50%, which result from the better use of the memory and cache hierarchy that are attendant with a SFC-based layout (see, for example, [Beth2012]). This library implementation is intended for use with codes that work with structured, array-based data in 2 or 3 dimensions. It is not appropriate for use with unstructured or point-based data.« less
Symptoms and Cognitive Functions in Adolescents in Relation to Mobile Phone Use during Night
Schoeni, Anna; Roser, Katharina; Röösli, Martin
2015-01-01
Many adolescents tend to leave their mobile phones turned on during night, accepting that they may be awakened by an incoming text message or call. Using self-reported and objective operator recorded mobile phone use data, we thus aimed to analyze how being awakened during night by mobile phone affects adolescents’ perceived health and cognitive functions. In this cross-sectional study, 439 adolescents completed questionnaires about their mobile phone use during night, health related quality of life and possible confounding factors. Standardized computerized cognitive tests were performed to assess memory and concentration capacity. Objective operator recorded mobile phone use data was further collected for 233 study participants. Data were analyzed by multivariable regression models adjusted for relevant confounders including amount of mobile phone use. For adolescents reporting to be awakened by a mobile phone during night at least once a month the odds ratio for daytime tiredness and rapid exhaustibility were 1.86 (95% CI: 1.02–3.39) and 2.28 (95% CI: 0.97–5.34), respectively. Similar results were found when analyzing objective operator recorded mobile phone use data (tiredness: 1.63, 95% CI: 0.94–2.82 and rapid exhaustibility: 2.32, 95% CI: 1.01–5.36). The cognitive tests on memory and concentration capacity were not related to mobile phone use during night. Overall, being awakened during night by mobile phone was associated with an increase in health symptom reports such as tiredness, rapid exhaustibility, headache and physical ill-being, but not with memory and concentration capacity. Prevention strategies should focus on helping adolescents set limits for their accessibility by mobile phone, especially during night. PMID:26222312
Symptoms and Cognitive Functions in Adolescents in Relation to Mobile Phone Use during Night.
Schoeni, Anna; Roser, Katharina; Röösli, Martin
2015-01-01
Many adolescents tend to leave their mobile phones turned on during night, accepting that they may be awakened by an incoming text message or call. Using self-reported and objective operator recorded mobile phone use data, we thus aimed to analyze how being awakened during night by mobile phone affects adolescents' perceived health and cognitive functions. In this cross-sectional study, 439 adolescents completed questionnaires about their mobile phone use during night, health related quality of life and possible confounding factors. Standardized computerized cognitive tests were performed to assess memory and concentration capacity. Objective operator recorded mobile phone use data was further collected for 233 study participants. Data were analyzed by multivariable regression models adjusted for relevant confounders including amount of mobile phone use. For adolescents reporting to be awakened by a mobile phone during night at least once a month the odds ratio for daytime tiredness and rapid exhaustibility were 1.86 (95% CI: 1.02-3.39) and 2.28 (95% CI: 0.97-5.34), respectively. Similar results were found when analyzing objective operator recorded mobile phone use data (tiredness: 1.63, 95% CI: 0.94-2.82 and rapid exhaustibility: 2.32, 95% CI: 1.01-5.36). The cognitive tests on memory and concentration capacity were not related to mobile phone use during night. Overall, being awakened during night by mobile phone was associated with an increase in health symptom reports such as tiredness, rapid exhaustibility, headache and physical ill-being, but not with memory and concentration capacity. Prevention strategies should focus on helping adolescents set limits for their accessibility by mobile phone, especially during night.
Dementia - what to ask your doctor
... recs.pdf . Accessed December 8, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...
Dementia - keeping safe in the home
... recs.pdf . Accessed June 27, 2016. Budson AE, Solomon PR. Life adjustments for memory loss, Alzheimer's disease, and dementia. In: Budson AE, Solomon PR, eds. Memory Loss, Alzheimer's Disease, and Dementia: ...
Memory Applications Using Resonant Tunneling Diodes
NASA Astrophysics Data System (ADS)
Shieh, Ming-Huei
Resonant tunneling diodes (RTDs) producing unique folding current-voltage (I-V) characteristics have attracted considerable research attention due to their promising application in signal processing and multi-valued logic. The negative differential resistance of RTDs renders the operating points self-latching and stable. We have proposed a multiple -dimensional multiple-state RTD-based static random-access memory (SRAM) cell in which the number of stable states can significantly be increased to (N + 1)^ m or more for m number of N-peak RTDs connected in series. The proposed cells take advantage of the hysteresis and folding I-V characteristics of RTD. Several cell designs are presented and evaluated. A two-dimensional nine-state memory cell has been implemented and demonstrated by a breadboard circuit using two 2-peak RTDs. The hysteresis phenomenon in a series of RTDs is also further analyzed. The switch model provided in SPICE 3 can be utilized to simulate the hysteretic I-V characteristics of RTDs. A simple macro-circuit is described to model the hysteretic I-V characteristic of RTD for circuit simulation. A new scheme for storing word-wide multiple-bit information very efficiently in a single memory cell using RTDs is proposed. An efficient and inexpensive periphery circuit to read from and write into the cell is also described. Simulation results on the design of a 3-bit memory cell scheme using one-peak RTDs are also presented. Finally, a binary transistor-less memory cell which is only composed of a pair of RTDs and an ordinary rectifier diode is presented and investigated. A simple means for reading and writing information from or into the memory cell is also discussed.
Insights from child development on the relationship between episodic and semantic memory.
Robertson, Erin K; Köhler, Stefan
2007-11-05
The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.
Memory inhibition as a critical factor preventing creative problem solving.
Gómez-Ariza, Carlos J; Del Prete, Francesco; Prieto Del Val, Laura; Valle, Tania; Bajo, M Teresa; Fernandez, Angel
2017-06-01
The hypothesis that reduced accessibility to relevant information can negatively affect problem solving in a remote associate test (RAT) was tested by using, immediately before the RAT, a retrieval practice procedure to hinder access to target solutions. The results of 2 experiments clearly showed that, relative to baseline, target words that had been competitors during selective retrieval were much less likely to be provided as solutions in the RAT, demonstrating that performance in the problem-solving task was strongly influenced by the predetermined accessibility status of the solutions in memory. Importantly, this was so even when participants were unaware of the relationship between the memory and the problem-solving procedures in the experiments. This finding is consistent with an inhibitory account of retrieval-induced forgetting effects and, more generally, constitutes support for the idea that the activation status of mental representations originating in a given task (e.g., episodic memory) can unwittingly have significant consequences for a different, unrelated task (e.g., problem solving). (PsycINFO Database Record (c) 2017 APA, all rights reserved).
If It Is Stored in My Memory I Will Surely Retrieve It: Anatomy of a Metacognitive Belief
ERIC Educational Resources Information Center
Kornell, Nate
2015-01-01
Retrieval failures--moments when a memory will not come to mind--are a universal human experience. Yet many laypeople believe human memory is a reliable storage system in which a stored memory should be accessible. I predicted that people would see retrieval failures as aberrations and predict that fewer retrieval failures would happen in the…
Synesthetic experiences enhance unconscious learning.
Rothen, Nicolas; Scott, Ryan B; Mealor, Andy D; Coolbear, Daniel J; Burckhardt, Vera; Ward, Jamie
2013-01-01
Synesthesia is characterized by consistent extra perceptual experiences in response to normal sensory input. Recent studies provide evidence for a specific profile of enhanced memory performance in synesthesia, but focus exclusively on explicit memory paradigms for which the learned content is consciously accessible. In this study, for the first time, we demonstrate with an implicit memory paradigm that synesthetic experiences also enhance memory performance relating to unconscious knowledge.
Unstructured Adaptive Meshes: Bad for Your Memory?
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Feng, Hui-Yu; VanderWijngaart, Rob
2003-01-01
This viewgraph presentation explores the need for a NASA Advanced Supercomputing (NAS) parallel benchmark for problems with irregular dynamical memory access. This benchmark is important and necessary because: 1) Problems with localized error source benefit from adaptive nonuniform meshes; 2) Certain machines perform poorly on such problems; 3) Parallel implementation may provide further performance improvement but is difficult. Some examples of problems which use irregular dynamical memory access include: 1) Heat transfer problem; 2) Heat source term; 3) Spectral element method; 4) Base functions; 5) Elemental discrete equations; 6) Global discrete equations. Nonconforming Mesh and Mortar Element Method are covered in greater detail in this presentation.
Integrated, nonvolatile, high-speed analog random access memory
NASA Technical Reports Server (NTRS)
Katti, Romney R. (Inventor); Wu, Jiin-Chuan (Inventor); Stadler, Henry L. (Inventor)
1994-01-01
This invention provides an integrated, non-volatile, high-speed random access memory. A magnetically switchable ferromagnetic or ferrimagnetic layer is sandwiched between an electrical conductor which provides the ability to magnetize the magnetically switchable layer and a magneto resistive or Hall effect material which allows sensing the magnetic field which emanates from the magnetization of the magnetically switchable layer. By using this integrated three-layer form, the writing process, which is controlled by the conductor, is separated from the storage medium in the magnetic layer and from the readback process which is controlled by the magnetoresistive layer. A circuit for implementing the memory in CMOS or the like is disclosed.
Optical memory development. Volume 2: Gain-assisted holographic storage media
NASA Technical Reports Server (NTRS)
Gange, R. A.; Mezrich, R. S.
1972-01-01
Thin deformable films were investigated for use as the storage medium in a holographic optical memory. The research was directed toward solving the problems of material fatigue, selective heat addressing, electrical charging of the film surface and charge patterning by light. A number of solutions to these problems were found but the main conclusion to be drawn from the work is that deformable media which employ heat in the recording process are not satisfactory for use in a high-speed random-access read/write holographic memory. They are, however, a viable approach in applications where either high speed or random-access is not required.
Ferroelectric tunneling element and memory applications which utilize the tunneling element
Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN
2010-07-20
A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.
Cost aware cache replacement policy in shared last-level cache for hybrid memory based fog computing
NASA Astrophysics Data System (ADS)
Jia, Gangyong; Han, Guangjie; Wang, Hao; Wang, Feng
2018-04-01
Fog computing requires a large main memory capacity to decrease latency and increase the Quality of Service (QoS). However, dynamic random access memory (DRAM), the commonly used random access memory, cannot be included into a fog computing system due to its high consumption of power. In recent years, non-volatile memories (NVM) such as Phase-Change Memory (PCM) and Spin-transfer torque RAM (STT-RAM) with their low power consumption have emerged to replace DRAM. Moreover, the currently proposed hybrid main memory, consisting of both DRAM and NVM, have shown promising advantages in terms of scalability and power consumption. However, the drawbacks of NVM, such as long read/write latency give rise to potential problems leading to asymmetric cache misses in the hybrid main memory. Current last level cache (LLC) policies are based on the unified miss cost, and result in poor performance in LLC and add to the cost of using NVM. In order to minimize the cache miss cost in the hybrid main memory, we propose a cost aware cache replacement policy (CACRP) that reduces the number of cache misses from NVM and improves the cache performance for a hybrid memory system. Experimental results show that our CACRP behaves better in LLC performance, improving performance up to 43.6% (15.5% on average) compared to LRU.
NASA Astrophysics Data System (ADS)
Liu, Hong-Tao; Yang, Bao-He; Lv, Hang-Bing; Xu, Xiao-Xin; Luo, Qing; Wang, Guo-Ming; Zhang, Mei-Yun; Long, Shi-Bing; Liu, Qi; Liu, Ming
2015-02-01
We investigate the effect of the formation process under pulse and dc modes on the performance of one transistor and one resistor (1T1R) resistance random access memory (RRAM) device. All the devices are operated under the same test conditions, except for the initial formation process with different modes. Based on the statistical results, the high resistance state (HRS) under the dc forming mode shows a lower value with better distribution compared with that under the pulse mode. One of the possible reasons for such a phenomenon originates from different properties of conductive filament (CF) formed in the resistive switching layer under two different modes. For the dc forming mode, the formed filament is thought to be continuous, which is hard to be ruptured, resulting in a lower HRS. However, in the case of pulse forming, the filament is discontinuous where the transport mechanism is governed by hopping. The low resistance state (LRS) can be easily changed by removing a few trapping states from the conducting path. Hence, a higher HRS is thus observed. However, the HRS resistance is highly dependent on the length of the gap opened. A slight variation of the gap length will cause wide dispersion of resistance.
NASA Technical Reports Server (NTRS)
Rogers, David
1988-01-01
The advent of the Connection Machine profoundly changes the world of supercomputers. The highly nontraditional architecture makes possible the exploration of algorithms that were impractical for standard Von Neumann architectures. Sparse distributed memory (SDM) is an example of such an algorithm. Sparse distributed memory is a particularly simple and elegant formulation for an associative memory. The foundations for sparse distributed memory are described, and some simple examples of using the memory are presented. The relationship of sparse distributed memory to three important computational systems is shown: random-access memory, neural networks, and the cerebellum of the brain. Finally, the implementation of the algorithm for sparse distributed memory on the Connection Machine is discussed.
Yang, X Jessie; Wickens, Christopher D; Park, Taezoon; Fong, Liesel; Siah, Kewin T H
2015-12-01
We aimed to examine the effects of information access cost and accountability on medical residents' information retrieval strategy and performance during prehandover preparation. Prior studies observing doctors' prehandover practices witnessed the use of memory-intensive strategies when retrieving patient information. These strategies impose potential threats to patient safety as human memory is prone to errors. Of interest in this work are the underlying determinants of information retrieval strategy and the potential impacts on medical residents' information preparation performance. A two-step research approach was adopted, consisting of semistructured interviews with 21 medical residents and a simulation-based experiment with 32 medical residents. The semistructured interviews revealed that a substantial portion of medical residents (38%) relied largely on memory for preparing handover information. The simulation-based experiment showed that higher information access cost reduced information access attempts and access duration on patient documents and harmed information preparation performance. Higher accountability led to marginally longer access to patient documents. It is important to understand the underlying determinants of medical residents' information retrieval strategy and performance during prehandover preparation. We noted the criticality of easy access to patient documents in prehandover preparation. In addition, accountability marginally influenced medical residents' information retrieval strategy. Findings from this research suggested that the cost of accessing information sources should be minimized in developing handover preparation tools. © 2015, Human Factors and Ergonomics Society.
Kiefer, Gundolf; Lehmann, Helko; Weese, Jürgen
2006-04-01
Maximum intensity projections (MIPs) are an important visualization technique for angiographic data sets. Efficient data inspection requires frame rates of at least five frames per second at preserved image quality. Despite the advances in computer technology, this task remains a challenge. On the one hand, the sizes of computed tomography and magnetic resonance images are increasing rapidly. On the other hand, rendering algorithms do not automatically benefit from the advances in processor technology, especially for large data sets. This is due to the faster evolving processing power and the slower evolving memory access speed, which is bridged by hierarchical cache memory architectures. In this paper, we investigate memory access optimization methods and use them for generating MIPs on general-purpose central processing units (CPUs) and graphics processing units (GPUs), respectively. These methods can work on any level of the memory hierarchy, and we show that properly combined methods can optimize memory access on multiple levels of the hierarchy at the same time. We present performance measurements to compare different algorithm variants and illustrate the influence of the respective techniques. On current hardware, the efficient handling of the memory hierarchy for CPUs improves the rendering performance by a factor of 3 to 4. On GPUs, we observed that the effect is even larger, especially for large data sets. The methods can easily be adjusted to different hardware specifics, although their impact can vary considerably. They can also be used for other rendering techniques than MIPs, and their use for more general image processing task could be investigated in the future.
Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L
2014-09-01
The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information.
Air Force Geophysics Laboratory portable PCM ground station
NASA Astrophysics Data System (ADS)
Shaw, H.; Lawrence, F. A.
The present paper is concerned with the development of a portable Pulse-Code Modulation (PCM) telemetry station for the Air Force Geophysics Laboratory (AFGL). A system description is provided, taking into account the system equipment, the interface, the decommutator (DECOM) section of the interface, the direct memory access (DMA) section, and system specifications and capabilities. In the context of selecting between two conflicting philosophies regarding software, it was decided to favor a small scale specialized approach. Attention is given to the operating system, aspects of setting up the software, the application software, and questions of portability.
Simultaneous Cognitive Operations in Working Memory After Dual-Task Practice
ERIC Educational Resources Information Center
Oberauer, Klaus; Kliegl, Reinhold
2004-01-01
The authors tested the hypothesis that with adequate practice, people can execute 2 cognitive operations in working memory simultaneously. In Experiment 1, 6 students practiced updating 2 items in working memory through 2 sequences of operations (1 numerical, 1 spatial). In different blocks, imperative stimuli for the 2 sequences of operations…
ACCESS: A Communicating and Cooperating Expert Systems System.
1988-01-31
therefore more quickly accepted by programmers. This is in part due to the already familiar concepts of multi-processing environments (e.g. semaphores ...Di68] and monitors [Br75]) which can be viewed as a special case of synchronized shared memory models [Di6S]. Heterogeneous systems however, are by...locality of nodes is not possible and frequent access of memory is required. Synchronization of processes also suffers from a loss of efficiency in
Constraints on Access: Costs and Benefits (Spontaneous Memory for Relevant Experiences)
1989-05-01
F. I. M. Craik (Eds.), Levels of processing and human memory. Hillsdale, NJ: Erlbaum. Dewey, J. (1963). How we think. Portions published in R. M...transfer. Pictures (vs. words) and levels of processing and elaborative encoding manipulations are shown to affect directed access but are found to have...includes most 5 6 list-learning experiments, research on schema/script abstraction, and studies of remembering which might manipulate levels of processing
Activating representations in permanent memory: different benefits for pictures and words.
Seifert, L S
1997-09-01
Previous research has suggested that pictures have privileged access to semantic memory (W. R. Glaser, 1992), but J. Theios and P. C. Amrhein (1989b) argued that prior studies inappropriately used large pictures and small words. In Experiment 1, participants categorized pictures reliably faster than words, even when both types of items were of optimal perceptual size. In Experiment 2, a poststimulus flashmask and judgments about internal features did not eliminate picture superiority, indicating that it was not due to differences in early visual processing or analysis of visible features. In Experiment 3, when participants made judgments about whether items were related, latencies were reliably faster for categorically related pictures than for words, but there was no picture advantage for noncategorically associated items. Results indicate that pictures have privileged access to semantic memory for categories, but that neither pictures nor words seem to have privileged access to noncategorical associations.
Implementation of Ferroelectric Memories for Space Applications
NASA Technical Reports Server (NTRS)
Philpy, Stephen C.; Derbenwick, Gary F.; Kamp, David A.; Isaacson, Alan F.
2000-01-01
Ferroelectric random access semiconductor memories (FeRAMs) are an ideal nonvolatile solution for space applications. These memories have low power performance, high endurance and fast write times. By combining commercial ferroelectric memory technology with radiation hardened CMOS technology, nonvolatile semiconductor memories for space applications can be attained. Of the few radiation hardened semiconductor manufacturers, none have embraced the development of radiation hardened FeRAMs, due a limited commercial space market and funding limitations. Government funding may be necessary to assure the development of radiation hardened ferroelectric memories for space applications.
A review of the Z2-FET 1T-DRAM memory: Operation mechanisms and key parameters
NASA Astrophysics Data System (ADS)
Cristoloveanu, S.; Lee, K. H.; Parihar, M. S.; El Dirani, H.; Lacord, J.; Martinie, S.; Le Royer, C.; Barbe, J.-Ch.; Mescot, X.; Fonteneau, P.; Galy, Ph.; Gamiz, F.; Navarro, C.; Cheng, B.; Duan, M.; Adamu-Lema, F.; Asenov, A.; Taur, Y.; Xu, Y.; Kim, Y.-T.; Wan, J.; Bawedin, M.
2018-05-01
The band-modulation and sharp-switching mechanisms in Z2-FET device operated as a capacitorless 1T-DRAM memory are reviewed. The main parameters that govern the memory performance are discussed based on detailed experiments and simulations. This 1T-DRAM memory does not suffer from super-coupling effect and can be integrated in sub-10 nm thick SOI films. It offers low leakage current, high current margin, long retention, low operating voltage especially for programming, and high speed. The Z2-FET is suitable for embedded memory applications.
Reducing power consumption during execution of an application on a plurality of compute nodes
Archer, Charles J.; Blocksome, Michael A.; Peters, Amanda E.; Ratterman, Joseph D.; Smith, Brian E.
2013-09-10
Methods, apparatus, and products are disclosed for reducing power consumption during execution of an application on a plurality of compute nodes that include: powering up, during compute node initialization, only a portion of computer memory of the compute node, including configuring an operating system for the compute node in the powered up portion of computer memory; receiving, by the operating system, an instruction to load an application for execution; allocating, by the operating system, additional portions of computer memory to the application for use during execution; powering up the additional portions of computer memory allocated for use by the application during execution; and loading, by the operating system, the application into the powered up additional portions of computer memory.
van Schie, Kevin; Engelhard, Iris M.; van den Hout, Marcel A.
2015-01-01
Earlier studies have shown that when individuals recall an emotional memory while simultaneously doing a demanding dual-task [e.g., playing Tetris, mental arithmetic, making eye movements (EM)], this reduces self-reported vividness and emotionality of the memory. These effects have been found up to 1 week later, but have largely been confined to self-report ratings. This study examined whether this dual-tasking intervention reduces memory performance (i.e., accessibility of emotional memories). Undergraduates (N = 60) studied word-image pairs and rated the retrieved image on vividness and emotionality when cued with the word. Then they viewed the cues and recalled the images with or without making EM. Finally, they re-rated the images on vividness and emotionality. Additionally, fragments from images from all conditions were presented and participants identified which fragment was paired earlier with which cue. Findings showed no effect of the dual-task manipulation on self-reported ratings and latency responses. Several possible explanations for the lack of effects are discussed, but the cued recall procedure in our experiment seems to explain the absence of effects best. The study demonstrates boundaries to the effects of the “dual-tasking” procedure. PMID:25729370
Miniature, ruggedized data collector
NASA Astrophysics Data System (ADS)
Jackson, Scott; Calcutt, Wade; Knobler, Ron; Jones, Barry; Klug, Robert
2009-05-01
McQ has developed a miniaturized, programmable, ruggedized data collector intended for use in weapon testing or data collection exercises that impose severe stresses on devices under test. The recorder is designed to survive these stresses which include acceleration and shock levels up to 100,000 G. The collector acquires and stores up to four channels of signal data to nonvolatile memory for later retrieval by a user. It is small (< 7 in3), light weight (< 1 lb), and can operate from various battery chemistries. A built-in menuing system, accessible via a USB interface, allows the user to configure parameters of the recorder operation, such as channel gain, filtering, and signal offsets, and also to retrieve recorded data for analysis. An overview of the collector, its features, performance, and potential uses, is presented.
Left Ventrolateral Prefrontal Cortex and the Cognitive Control of Memory
ERIC Educational Resources Information Center
Badre, David; Wagner, Anthony D.
2007-01-01
Cognitive control mechanisms permit memory to be accessed strategically, and so aid in bringing knowledge to mind that is relevant to current goals and actions. In this review, we consider the contribution of left ventrolateral prefrontal cortex (VLPFC) to the cognitive control of memory. Reviewed evidence supports a two-process model of mnemonic…
Patterns of Autobiographical Memory in Adults with Autism Spectrum Disorder
ERIC Educational Resources Information Center
Crane, Laura; Pring, Linda; Jukes, Kaylee; Goddard, Lorna
2012-01-01
Two studies are presented that explored the effects of experimental manipulations on the quality and accessibility of autobiographical memories in adults with autism spectrum disorder (ASD), relative to a typical comparison group matched for age, gender and IQ. Both studies found that the adults with ASD generated fewer specific memories than the…
Ames Lab 101: Ultrafast Magnetic Switching
Wang; Jigang
2018-01-01
Ames Laboratory physicists have found a new way to switch magnetism that is at least 1000 times faster than currently used in magnetic memory technologies. Magnetic switching is used to encode information in hard drives, magnetic random access memory and other computing devices. The discovery potentially opens the door to terahertz and faster memory speeds.
Memory for Recently Accessed Visual Attributes
ERIC Educational Resources Information Center
Jiang, Yuhong V.; Shupe, Joshua M.; Swallow, Khena M.; Tan, Deborah H.
2016-01-01
Recent reports have suggested that the attended features of an item may be rapidly forgotten once they are no longer relevant for an ongoing task (attribute amnesia). This finding relies on a surprise memory procedure that places high demands on declarative memory. We used intertrial priming to examine whether the representation of an item's…
Episodic and Semantic Memory Influences on Picture Naming in Alzheimer's Disease
ERIC Educational Resources Information Center
Small, Jeff A.; Sandhu, Nirmaljeet
2008-01-01
This study investigated the relationship between semantic and episodic memory as they support lexical access by healthy younger and older adults and individuals with Alzheimer's disease (AD). In particular, we were interested in examining the pattern of semantic and episodic memory declines in AD (i.e., word-finding difficulty and impaired recent…
Hemispheric Differences in the Organization of Memory for Text Ideas
ERIC Educational Resources Information Center
Long, Debra L.; Johns, Clinton L.; Jonathan, Eunike
2012-01-01
The goal of this study was to examine hemispheric asymmetries in episodic memory for discourse. Access to previously comprehended information is essential for mapping incoming information to representations of "who did what to whom" in memory. An item-priming-in-recognition paradigm was used to examine differences in how the hemispheres represent…
Individual Differences in the Effects of Retrieval from Long-Term Memory
ERIC Educational Resources Information Center
Brewer, Gene A.; Unsworth, Nash
2012-01-01
The current study examined individual differences in the effects of retrieval from long-term memory (i.e., the testing effect). The effects of retrieving from memory make tested information more accessible for future retrieval attempts. Despite the broad applied ramifications of such a potent memorization technique there is a paucity of research…
A Neuroanatomical Model of Prefrontal Inhibitory Modulation of Memory Retrieval
Depue, Brendan E.
2012-01-01
Memory of past experience is essential for guiding goal-related behavior. Being able to control accessibility of memory through modulation of retrieval enables humans to flexibly adapt to their environment. Understanding the specific neural pathways of how this control is achieved has largely eluded cognitive neuroscience. Accordingly, in the current paper I review literature that examines the overt control over retrieval in order to reduce accessibility. I first introduce three hypotheses of inhibition of retrieval. These hypotheses involve: i) attending to other stimuli as a form of diversionary attention, ii) inhibiting the specific individual neural representation of the memory, and iii) inhibiting the hippocampus and retrieval process more generally to prevent reactivation of the representation. I then analyze literature taken from the White Bear Suppression, Directed Forgetting and Think/No-Think tasks to provide evidence for these hypotheses. Finally, a neuroanatomical model is developed to indicate three pathways from PFC to the hippocampal complex that support inhibition of memory retrieval. Describing these neural pathways increases our understanding of control over memory in general. PMID:22374224