Science.gov

Sample records for memory alloy produced

  1. Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Lohan, N. M.; Özkal, B.; Bujoreanu, L. G.; Chicet, D.; Munteanu, C.

    2012-11-01

    In order to produce shape memory rings for constrained-recovery pipe couplings, from Fe-14 Mn-6 Si-9 Cr-5 Ni (mass%) powders, the main technological steps were (i) mechanical alloying, (ii) sintering, (iii) hot rolling, (iv) hot-shape setting, and (v) thermomechanical training. The article generally describes, within its experimental-procedure section, the last four technological steps of this process the primary purpose of which has been to accurately control both chemical composition and the grain size of shape memory rings. Details of the results obtained in the first technological step, on raw powders employed both in an initial commercial state and in a mixture state of commercial and mechanically alloyed (MA) powders, which were subjected to several heating-cooling cycles have been reported and discussed. By means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD), the thermal behaviors of the two sample powders have been analyzed. The effects of the heating-cooling cycles, on raw commercial powders and on 50% MA powders, respectively, were argued from the point of view of specific temperatures and heat variations, of elemental diffusion after thermal cycling and of crystallographic parameters, determined by DSC, SEM, and XRD, respectively.

  2. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  3. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  4. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    NASA Astrophysics Data System (ADS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-04-01

    NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  5. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  6. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  7. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  8. Processing and characterization of Ni-Al-Fe-B shape-memory alloy wires produced by rapid solidification

    SciTech Connect

    Easton, D.S.; Liu, C.T.; Horton, J.A.; George, E.P.; Campbell, J.J.

    1993-12-31

    This work describes net-shape ductile wires of Ni-Al-Fe doped with boron produced directly from the melt by in-rotating-liquid (IRL) melt spinning, thus avoiding the difficult and costly problem of fabricating bulk castings. This method produces wires of 0.1 to 0.5 mm dia and lengths to 2 m. X-ray diffraction scans showed that the as-spun wires consist of B2, Ll{sub 2}, and bct martensite phases and that the B2 phase further transforms to bct martensite upon cold working. Shape-memory behavior showed an Ap temperature of {approximately} 180C as measured by bend recovery tests and by tensile cycling tests. Effects on the wires of IRL processing parameters are discussed.

  9. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  10. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface. PMID:24928669

  11. Production of Cu-Al-Ni Shape Memory Alloys by Mechanical Alloy

    SciTech Connect

    Goegebakan, Musa; Soguksu, Ali Kemal; Uzun, Orhan; Dogan, Ali

    2007-04-23

    The mechanical alloying technique has been used to produce shape memory Cu83Al13Ni4 alloy. The structure and thermal properties were examined by using scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). The morphology of the surface suggests the presence of martensite.

  12. Shape memory alloy/shape memory polymer tools

    DOEpatents

    Seward, Kirk P.; Krulevitch, Peter A.

    2005-03-29

    Micro-electromechanical tools for minimally invasive techniques including microsurgery. These tools utilize composite shape memory alloy (SMA), shape memory polymer (SMP) and combinations of SMA and SMP to produce catheter distal tips, actuators, etc., which are bistable. Applications for these structures include: 1) a method for reversible fine positioning of a catheter tip, 2) a method for reversible fine positioning of tools or therapeutic catheters by a guide catheter, 3) a method for bending articulation through the body's vasculature, 4) methods for controlled stent delivery, deployment, and repositioning, and 5) catheters with variable modulus, with vibration mode, with inchworm capability, and with articulated tips. These actuators and catheter tips are bistable and are opportune for in vivo usage because the materials are biocompatible and convenient for intravascular use as well as other minimal by invasive techniques.

  13. Constitutive Models for Shape Memory Alloy Polycrystals

    NASA Technical Reports Server (NTRS)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  14. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  15. Shape memory alloy consortium (SMAC)

    NASA Astrophysics Data System (ADS)

    Jacot, A. Dean

    1999-07-01

    The application of smart structures to helicopter rotors has received widespread study in recent years. This is one of the major thrusts of the Shape Memory Alloy Consortium (SMAC) program. SMAC includes 3 companies and 4 Universities in a cost sharing consortium funded under DARPA Smart Materials and Structures program. This paper describes the objective of the SMAC effort, and its relationship to a previous DARPA smart structure rotorcraft program from which it originated. The SMAC program includes NiTinol fatigue/characterization studies, SMA actuator development, and ferromagnetic SMA material development. The paper summarizes the SMAC effort, and includes background and details on Boeing's development of a SMA torsional actuator for rotorcraft applications. SMA actuation is used to retwist the rotorcraft blade in flight, and result in a significant payload increase for either helicopters or tiltrotors. This paper is also augmented by several other papers in this conference with specific results from other SMAC consortium members.

  16. A shape-memory alloy for high-temperature applications

    SciTech Connect

    Duerig, T.W.; Albrecht, J.; Gessinger, G.H.

    1982-12-01

    An alloy based on the Cu-Al-Ni ternary system has been developed at the research center of Brown, Boveri and Co., Baden, Switzerland, which provides a fully reversible (two-way) shape memory effect at significantly higher temperatures than those afforded by commercial memory alloys such as NiTi and Cu-Zn-Al. The higher temperature capability of this alloy could open new fields for the application of the shape memory effect, particularly in thermal switching and protection devices. After suitable deformation and processing, a shape change is observed while heating the alloy through the temperature interval from 175 to 190/sup 0/C. This shape change can be completely reversed during subsequent cooling from 155 to 125/sup 0/C. The magnitude of the reversible strain produced by this alloy is 1.5%; somewhat higher strains can be achieved if lower memory temperatures can be accepted, and conversely, better high temperature capabilities can be achieved by accepting smaller reversible strains. The memory effects in this alloy have been found to be unaffected by short overheatings to temperatures as high as 300/sup 0/C.

  17. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)–, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at –150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  18. A lightweight shape-memory magnesium alloy.

    PubMed

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries. PMID:27463668

  19. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  20. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  1. A jumping shape memory alloy under heat.

    PubMed

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  2. A jumping shape memory alloy under heat

    PubMed Central

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  3. A jumping shape memory alloy under heat

    NASA Astrophysics Data System (ADS)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  4. Final Technical Report: Nanostructured Shape Memory ALloys

    SciTech Connect

    Wendy Crone; Walter Drugan; Arthur Ellis; John Perepezko

    2005-07-28

    With this grant we explored the properties that result from combining the effects of nanostructuring and shape memory using both experimental and theoretical approaches. We developed new methods to make nanostructured NiTi by melt-spinning and cold rolling fabrication strategies, which elicited significantly different behavior. A template synthesis method was also used to created nanoparticles. In order to characterize the particles we created, we developed a new magnetically-assisted particle manipulation technique to manipulate and position nanoscale samples for testing. Beyond characterization, this technique has broader implications for assembly of nanoscale devices and we demonstrated promising applications for optical switching through magnetically-controlled scattering and polarization capabilities. Nanoparticles of nickel-titanium (NiTi) shape memory alloy were also produced using thin film deposition technology and nanosphere lithography. Our work revealed the first direct evidence that the thermally-induced martensitic transformation of these films allows for partial indent recovery on the nanoscale. In addition to thoroughly characterizing and modeling the nanoindentation behavior in NiTi thin films, we demonstrated the feasibility of using nanoindentation on an SMA film for write-read-erase schemes for data storage.

  5. Sleep Loss Produces False Memories

    PubMed Central

    Diekelmann, Susanne; Landolt, Hans-Peter; Lahl, Olaf; Born, Jan; Wagner, Ullrich

    2008-01-01

    People sometimes claim with high confidence to remember events that in fact never happened, typically due to strong semantic associations with actually encoded events. Sleep is known to provide optimal neurobiological conditions for consolidation of memories for long-term storage, whereas sleep deprivation acutely impairs retrieval of stored memories. Here, focusing on the role of sleep-related memory processes, we tested whether false memories can be created (a) as enduring memory representations due to a consolidation-associated reorganization of new memory representations during post-learning sleep and/or (b) as an acute retrieval-related phenomenon induced by sleep deprivation at memory testing. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., “night”, “dark”, “coal”,…), lacking the strongest common associate or theme word (here: “black”). Subjects either slept or stayed awake immediately after learning, and they were either sleep deprived or not at recognition testing 9, 33, or 44 hours after learning. Sleep deprivation at retrieval, but not sleep following learning, critically enhanced false memories of theme words. This effect was abolished by caffeine administration prior to retrieval, indicating that adenosinergic mechanisms can contribute to the generation of false memories associated with sleep loss. PMID:18946511

  6. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  7. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800 C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800 C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700 C. at a low cost

  8. Oxidation resistant alloys, method for producing oxidation resistant alloys

    DOEpatents

    Dunning, John S.; Alman, David E.

    2002-11-05

    A method for producing oxidation-resistant austenitic alloys for use at temperatures below 800.degree. C. comprising of: providing an alloy comprising, by weight %: 14-18% chromium, 15-18% nickel, 1-3% manganese, 1-2% molybdenum, 2-4% silicon, 0% aluminum and the balance being iron; heating the alloy to 800.degree. C. for between 175-250 hours prior to use in order to form a continuous silicon oxide film and another oxide film. The method provides a means of producing stainless steels with superior oxidation resistance at temperatures above 700.degree. C. at a low cost

  9. Method of producing superplastic alloys and superplastic alloys produced by the method

    NASA Technical Reports Server (NTRS)

    Troeger, Lillianne P. (Inventor); Starke, Jr., Edgar A. (Inventor); Crooks, Roy (Inventor)

    2002-01-01

    A method for producing new superplastic alloys by inducing in an alloy the formation of precipitates having a sufficient size and homogeneous distribution that a sufficiently refined grain structure to produce superplasticity is obtained after subsequent PSN processing. An age-hardenable alloy having at least one dispersoid phase is selected for processing. The alloy is solution heat-treated and cooled to form a supersaturated solid solution. The alloy is plastically deformed sufficiently to form a high-energy defect structure useful for the subsequent heterogeneous nucleation of precipitates. The alloy is then aged, preferably by a multi-stage low and high temperature process, and precipitates are formed at the defect sites. The alloy then is subjected to a PSN process comprising plastically deforming the alloy to provide sufficient strain energy in the alloy to ensure recrystallization, and statically recrystallizing the alloy. A grain structure exhibiting new, fine, equiaxed and uniform grains is produced in the alloy. An exemplary 6xxx alloy of the type capable of being produced by the present invention, and which is useful for aerospace, automotive and other applications, is disclosed and claimed. The process is also suitable for processing any age-hardenable aluminum or other alloy.

  10. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  11. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  12. Mechanocaloric effects in shape memory alloys.

    PubMed

    Mañosa, Lluís; Planes, Antoni

    2016-08-13

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'.

  13. Fastening apparatus having shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    McKinnis, Darin N.

    1992-11-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  14. Fastening apparatus having shape memory alloy actuator

    NASA Technical Reports Server (NTRS)

    Mckinnis, Darin N. (Inventor)

    1992-01-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  15. Shape memory alloy seals for geothermal applications

    SciTech Connect

    Friske, Warren H.; Schwartzbart, Harry

    1982-10-08

    Rockwell International's Energy Systems Group, under contract to Brookhaven National Laboratory, has completed a 2-year program to develop a novel temperature-actuated seal concept for geothermal applications. This seal concept uses the unique properties of a shape memory alloy (Nitinol) to perform the sealing function. The several advantages of the concept are discussed in the paper. Demonstration tests of both face and shaft seals have shown that leaktight seals are feasible. Supporting materials studies have included corrosion tests in geothermal fluids, elevated temperature tensile tests, experimental electroplating and metallographic evaluations of microstructures.

  16. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  17. Method of preparing a two-way shape memory alloy

    DOEpatents

    Johnson, A.D.

    1984-03-06

    A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases are disclosed. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress. 8 figs.

  18. Method of preparing a two-way shape memory alloy

    DOEpatents

    Johnson, Alfred D.

    1984-01-01

    A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress.

  19. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, John G.

    1985-01-01

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  20. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, J.G.

    1980-05-21

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  1. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  2. Shape memory alloys: New materials for future engineering

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.

    1988-01-01

    Shape memory is a new material property. An alloy which experiences relative severe plastic deformation resumes its original shape again after heating by 10 to 100 C. Besides simple shape memory, in similar alloys there is the second effect where the change in shape is caused exclusively by little temperature change. In pseudo-elasticity, the alloy exhibits a rubber-like behavior, i.e., large, reversible deformation at little change in tension. Beta Cu and beta NiTi alloys have been used in practice. The probability is that soon alloys based on Fe will become available. Recently increasing applications for this alloy were found in various areas of technology, even medical technology. A review with 24 references is given, including properties, production, applications and fundamental principles of the shape memory effect.

  3. Alloy and method of producing the same

    DOEpatents

    Hufnagel, Todd C.; Ott, Ryan T.; Fan, Cang; Kecskes, Laszlo

    2005-07-19

    In accordance with a preferred embodiment of the invention, an alloy or other composite material is provided formed of a bulk metallic glass matrix with a microstructure of crystalline metal particles. The alloy preferably has a composition of (X.sub.a Ni.sub.b Cu.sub.c).sub.100-d-c Y.sub.d Al.sub.c, wherein the sum of a, b and c equals 100, wherein 40.ltoreq.a.ltoreq.80, 0.ltoreq.b.ltoreq.35, 0.ltoreq.c.ltoreq.40, 4.ltoreq.d.ltoreq.30, and 0.ltoreq.e.ltoreq.20, and wherein preferably X is composed of an early transition metal and preferably Y is composed of a refractory body-centered cubic early transition metal. A preferred embodiment of the invention also provides a method of producing an alloy composed of two or more phases at ambient temperature. The method includes the steps of providing a metastable crystalline phase composed of at least two elements, heating the metastable crystalline phase together with at least one additional element to form a liquid, casting the liquid, and cooling the liquid to form the alloy. In accordance with a preferred embodiment of the invention, the composition and cooling rate of the liquid can be controlled to determine the volume fraction of the crystalline phase and determine the size of the crystalline particles, respectively.

  4. Studies on the effect of grain refinement and thermal processing on shape memory characteristics of Cu Al Ni alloys

    NASA Astrophysics Data System (ADS)

    Sampath, V.

    2005-10-01

    Though Ni-Ti shape memory alloys are used extensively in a variety of engineering and medical applications because of their attractive shape memory characteristics, they still suffer from certain drawbacks, such as low transformation temperatures, difficulty in production and processing and high cost of raw materials. Copper-based alloys have, therefore, come as an alternative to Ni-Ti shape memory alloys. They are easier to produce and process and are also less expensive. They are used where Ni-Ti alloys cannot be used. But Cu-Al-Ni shape memory alloys also pose problems since they are brittle and possess lower shape recovery strains and stresses. With a view to increasing the shape memory characteristics and ductility of Cu-Al-Ni shape memory alloys, they were subjected to grain refinement and thermomechanical processing. The present study establishes that grain-refining additions result in considerable reduction in the grain size of the alloys. In addition, grain refinement and alloying cause an increase in the transformation temperatures. The results are analysed in the light of the explanations/theories put forth in recent papers related to Cu-Al-Ni shape memory alloys, and an attempt has been made to compare the results.

  5. Martensite transformation and shape memory effect on NiTi-Zr high temperature shape memory alloys

    SciTech Connect

    Pu, Z.; Tseng, H.; Wu, K.

    1995-10-17

    NiTi-Zr high temperature alloys possess relatively poor shape memory properties and ductility in comparison with NiTi-Hf and NiTi-Pd alloys. During martensite transformation of the newly-developed NiTi-Zr high temperature shape memory alloys (SMAs) the temperature increases along with Zr content when the Zr content is more than 10 at%. As the Zr content increases, the fully reversible strain of the alloys decreases. However, complete strain recovery behavior is exhibited by all the alloys studied in this paper, even those with a Zr content of 20 at%. Stability of the NiTi-Zr alloys during thermal cycling was also tested and results indicate that the NiTi-Zr alloys have poor stability against thermal cycling. The reasons for the deterioration of the shape memory effect and stability have yet to be determined.

  6. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  7. Nonhysteretic superelasticity of shape memory alloys at the nanoscale.

    PubMed

    Zhang, Zhen; Ding, Xiangdong; Sun, Jun; Suzuki, Tetsuro; Lookman, Turab; Otsuka, Kazuhiro; Ren, Xiaobing

    2013-10-01

    We perform molecular dynamics simulations to show that shape memory alloy nanoparticles below the critical size not only demonstrate superelasticity but also exhibit features such as absence of hysteresis, continuous nonlinear elastic distortion, and high blocking force. Atomic level investigations show that this nonhysteretic superelasticity results from a continuous transformation from the parent phase to martensite under external stress. This aspect of shape memory alloys is attributed to a surface effect; i.e., the surface locally retards the formation of martensite and then induces a critical-end-point-like behavior when the system is below the critical size. Our work potentially broadens the application of shape memory alloys to the nanoscale. It also suggests a method to achieve nonhysteretic superelasticity in conventional bulk shape memory alloys.

  8. Memory alloy heat engine and method of operation

    DOEpatents

    Johnson, Alfred Davis

    1977-01-01

    A heat engine and method of operation employing an alloy having a shape memory effect. A memory alloy element such as one or more wire loops are cyclically moved through a heat source, along a path toward a heat sink, through the heat sink and then along another path in counter-flow heat exchange relationship with the wire in the first path. The portion of the wire along the first path is caused to elongate to its trained length under minimum tension as it is cooled. The portion of the wire along the second path is caused to contract under maximum tension as it is heated. The resultant tension differential between the wires in the two paths is applied as a force through a distance to produce mechanical work. In one embodiment a first set of endless memory alloy wires are reeved in non-slip engagement between a pair of pulleys which are mounted for conjoint rotation within respective hot and cold reservoirs. Another set of endless memory alloy wires are reeved in non-slip engagement about another pair of pulleys which are mounted in the respective hot and cold reservoirs. The pulleys in the cold reservoir are of a larger diameter than those in the hot reservoir and the opposite reaches of the wires between the two sets of pulleys extend in closely spaced-apart relationship in counter-flow heat regenerator zones. The pulleys are turned to move the two sets of wires in opposite directions. The wires are stretched as they are cooled upon movement through the heat regenerator toward the cold reservoirs, and the wires contract as they are heated upon movement through the regenerator zones toward the hot reservoir. This contraction of wires exerts a larger torque on the greater diameter pulleys for turning the pulleys and supplying mechanical power. Means is provided for applying a variable tension to the wires. Phase change means is provided for controlling the angular phase of the pulleys of each set for purposes of start up procedure as well as for optimizing engine

  9. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Astrophysics Data System (ADS)

    Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Notardonato, W. U.; Vaidyanathan, R.

    2004-06-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First — a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second — fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  10. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    SciTech Connect

    Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Vaidyanathan, R.; Notardonato, W.U.

    2004-06-28

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  11. A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch

    NASA Technical Reports Server (NTRS)

    Notardonato, W. U.; Krishnan, V. B.; Singh, J. D.; Woodruff, T. R.; Vaidyanathan, R.

    2005-01-01

    Shape memory alloys (SMAs) can produce large strains when deformed (e.g., up to 8%). Heating results in a phase transformation and associated recovery of all the accumulated strain. This strain recovery can occur against large forces, resulting in their use as actuators. Thus an SMA element can integrate both sensory and actuation functions, by inherently sensing a change in temperature and actuating by undergoing a shape change as a result of a temperature-induced phase transformation. Two aspects of our work on cryogenic SMAs are addressed here. First - a shape memory alloy based cryogenic thermal conduction switch for operation between dewars of liquid methane and liquid oxygen in a common bulkhead arrangement is discussed. Such a switch integrates the sensor element and the actuator element and can be used to create a variable thermal sink to other cryogenic tanks for liquefaction, densification, and zero boil-off systems for advanced spaceport applications. Second - fabrication via arc-melting and subsequent materials testing of SMAs with cryogenic transformation temperatures for use in the aforementioned switch is discussed.

  12. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  13. Shape memory effect of the Ni-Ti-Hf high temperature shape memory alloy

    SciTech Connect

    Wu, K.H.; Pu, Z.; Tseng, H.K.; Biancaniello, F.S.

    1995-11-17

    The one-way shape memory effect of the newly-developed TiNi-Hf high temperature shape memory alloys has been investigated. The results of the study show that TiNi-Hf high temperature alloys possess a relatively high shape memory effect. All the alloys, even those with an Hf content as high as 30at%, exhibit complete strain recovery behavior. However, as the Hf content increases, the fully reversible strain of the alloys decreases. The increase of the second phase as the Hf content increases is the primary reason for the deterioration of the shape memory effect and ductility. The shape memory properties also deteriorate as the deformation temperature increases.

  14. Shape memory alloy seals for geothermal applications

    SciTech Connect

    Not Available

    1985-09-15

    A shape memory radial seal was fabricated with a ''U'' cross section. Upon heating the seal recovered its original ''V'' shape and produced a high pressure seal. The sealing pressure which can be developed is approximately 41 MPa (60,000 psi), well in excess of the pressure which can be produced in conventional elastomeric seals. The low modulus martensite can conform readily to the sealing surface, and upon recovery produce a seal capable of high pressure fluid or gas confinement. The corrosion resistance of nickel-titanium in a broad range of aggressive fluids has been well established and, as such, there is little doubt that, had time permitted, a geothermal pump of flange fluid tried would have been successful.

  15. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  16. Damping capacity of TiNi-based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Rong, L. J.; Jiang, H. C.; Liu, S. W.; Zhao, X. Q.

    2007-07-01

    Damping capacity is another primary characteristic of shape memory alloys (SMA) besides shape memory effect and superelasticity. Damping behavior of Ti-riched TiNi SMA, porous TiNi SMA and a novel TiNi/AlSi composite have been investigated using dynamic mechanical analyzer (DMA) in this investigation. All these alloys are in martensitic state at room temperature and thus possess the high potential application value. Ti 50.2Ni 49.8 SMA has better damping capacity in pure martensitic state and phase transformation region due to the motion of martensite twin interface. As a kind of promising material for effective dampers and shock absorbing devices, porous TiNi SMA can exhibit higher damping capacity than the dense one due to the existence of the three-dimensioned connecting pore structure. It is found that the internal friction of porous TiNi SMA mainly originates from microplastic deformation and mobility of martensite interface and increases with the increase of the porosity. A novel TiNi/AlSi composite has been developed successfully by infiltrating AlSi alloy into the open pores of porous TiNi alloy with 60% porosity through compression casting. It shows the same phase transformation characteristics as the porous TiNi alloy. The damping capacity of the composite has been increased and the compressive strength has been also promoted remarkably. Suggestions for developing higher damping alloys based on TiNi shape memory alloy are proposed in this paper.

  17. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II (Inventor)

    2016-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  18. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    NASA Technical Reports Server (NTRS)

    Padula, II, Santo A (Inventor)

    2013-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  19. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  20. High-transition-temperature shape memory alloy film

    NASA Astrophysics Data System (ADS)

    Johnson, A. David; Martynov, Valery V.; Shahoian, Erik J.

    1995-05-01

    Using conventional magnetron sputtering deposition processes three different types of shape memory alloys (FeNi based, CuAl based and TiNi based) were examined as potential candidates for the production of high temperature SMA thin film. CuAlNi and TiNiHf SMA were successfully deposited on silicon wafers and thin films of 4 - 20 micrometers were produced. After annealing at approximately equals 500 degree(s)C both CuAlNi and TiNiHf films exhibited reversible high temperature martensitic transition. For CuAlNi thin films, annealing itself was found to be inadequate for obtaining transformation intervals corresponding to that of the target. To deal with the problem it is expected that additional quenching after solid solution heat treatment will be necessary. Of the three alloys examined, the most promising candidate for high temperature thin film microactuators is TiNiHf. It was found that by changing the Hf content in the target, the transformation start temperature of thin films can be easily adjusted in a temperature range from 100 degree(s)C to 200 degree(s)C.

  1. Producing Low-Oxygen Samarium/Cobalt Magnet Alloy

    NASA Technical Reports Server (NTRS)

    Das, Dilip K.; Kumar, Kaplesh; Frost, Robert T.; Chang, C. W.

    1987-01-01

    Experiments aimed at producing SmCo5 alloy with low oxygen contamination described in report. Two methods of alloying by melting without contact with crucible walls tested. Lowest oxygen contamination, 70 parts per million achieved by dc arc melting on water-cooled, tantalum-clad copper hearth in purified quiescent argon atmosphere. Report includes photographs of equipment, photomicrographs of alloy samples, detailed descriptions of procedures tried, and tables of oxygen contamination and intrinsic coercivities of samples produced.

  2. Fatigue Resistance of Liquid-assisted Self-repairing Aluminum Alloys Reinforced with Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Wright, M. Clara; Manuel, Michele; Wallace, Terryl

    2013-01-01

    A self-repairing aluminum-based composite system has been developed using a liquid-assisted healing theory in conjunction with the shape memory effect of wire reinforcements. The metal-metal composite was thermodynamically designed to have a matrix with a relatively even dispersion of a low-melting eutectic phase, allowing for repair of cracks at a predetermined temperature. Additionally, shape memory alloy (SMA) wire reinforcements were used within the composite to provide crack closure. Investigators focused the research on fatigue cracks propagating through the matrix in order to show a proof-of-concept Shape Memory Alloy Self-Healing (SMASH) technology for aeronautical applications.

  3. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  4. A rotating arm using shape-memory alloy

    NASA Technical Reports Server (NTRS)

    Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    NASA's Mars Pathfinder mission, to be launched in 1996, reflects a new philosophy of exploiting new technologies to reduce mission cost and accelerate the pace of space exploration. One of the experiments on board Pathfinder will demonstrate the first use in space of a multi-cycle, electrically-activated, shape-memory alloy (SMA) actuator. SMA's are metal alloys which, when heated, undergo a crystalline phase change. This change in phase alters the alloy lattice-constant, resulting in a change of dimension. Upon cooling, the alloy returns to its original lattice formation. Wire drawn from an SMA contracts in length when heated. The reversible change in length is 3 percent to 5 percent. The wire used in this actuator is a nickel-titanium alloy known as nitinol.

  5. Review of properties of magnetic shape memory (MSM) alloys and MSM actuator designs

    NASA Astrophysics Data System (ADS)

    Gabdullin, N.; Khan, S. H.

    2015-02-01

    Magnetic shape memory alloys are a new group of "smart" materials that exhibit large strain of 6-12% when subjected to magnetic fields. This indicates their enormous potential to be used in different electromagnetic (EM) devices such as actuators, sensors, energy harvesters and dampers. Shape change in MSM materials is controlled by magnetic field and doesn't involve phase transformation, allowing it to overcome a number of disadvantages of conventional shape memory alloys (SMAs). MSM devices are capable of producing large force and stroke output in considerably small dimensions. At the same time they can have fast response and potentially very long lifetime. This paper discusses different modern designs and approaches to MSM actuator design with their advantages and disadvantages. An overview on characteristics of MSM alloys is also presented in order to highlight how different properties of the material influence the total output of a device.

  6. Switchable Shape Memory Alloys (SMA) Thermal Materials Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Fesmire, James

    2014-01-01

    Develop 2-way switchable thermal systems for use in systems that function in cold to hot temperature ranges using different alloy designs for SMA system concepts. In this project, KSC will specifically address designs of two proof of concept SMA systems with transition temperatures in the 65-95 C range and investigate cycle fatigue and "memory loss" due to thermal cycling.

  7. Shape memory alloys: a state of art review

    NASA Astrophysics Data System (ADS)

    Naresh, C.; Bose, P. S. C.; Rao, C. S. P.

    2016-09-01

    Shape memory alloys (SMAs) are the special materials that have the ability to return to a predetermined shape when heated. When this alloy is in below transformation temperature it undergoes low yield strength and will deform easily into any new shape which it will retain, if this alloy is heated above its transformation temperature it changes its crystal lattice structure which returns to its real shape. SMAs are remarkably different from other materials are primarily due to shape memory effect (SME) and pseudoelasticity which are related with the specific way the phase transformation occurs, biocompatibility, high specific strength, high corrosion resistance, high wear resistance and high anti-fatigue property. SMA are used in many applications such as aerospace, medical, automobile, tubes, controllers for hot water valves in showers, petroleum industry, vibration dampers, ball bearings, sensors, actuators, miniature grippers, micro valves, pumps, landing gears, eye glass frames, Material for helicopter blades, sprinklers in fine alarm systems packaging devices for electronic materials, dental materials, etc. This paper focuses on introducing shape memory alloy and their applications in past, present and in future, also revealed the concept and mechanism of shape memory materials for a particular requirement. Properties of SMAs, behaviour and characteristics of SMA, summary of recent advances and new application opportunities are also discussed.

  8. Thermomechanical Modeling of Shape Memory Alloys and Applications

    NASA Astrophysics Data System (ADS)

    Lexcellent, C.; Leclercq, S.

    The aim of the present paper is a general macroscopic description of the thermomechanical behavior of shape memory alloys (SMA). We use for framework the thermodynamics of irreversible processes. This model is efficient for describing the behavior of "smart" structures as a bronchial, a tentacle element and an prosthesis hybrid structure made of Ti Ni SMA wires embedded in a resin epoxy matrix.

  9. Nanoscale shape-memory alloys for ultrahigh mechanical damping.

    PubMed

    San Juan, Jose; Nó, Maria L; Schuh, Christopher A

    2009-07-01

    Shape memory alloys undergo reversible transformations between two distinct phases in response to changes in temperature or applied stress. The creation and motion of the internal interfaces between these phases during such transformations dissipates energy, making these alloys effective mechanical damping materials. Although it has been shown that reversible phase transformations can occur in nanoscale volumes, it is not known whether these transformations have a sample size dependence. Here, we demonstrate that the two phases responsible for shape memory in Cu-Al-Ni alloys are more stable in nanoscale pillars than they are in the bulk. As a result, the pillars show a damping figure of merit that is substantially higher than any previously reported value for a bulk material, making them attractive for damping applications in nanoscale and microscale devices. PMID:19581892

  10. Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.

    PubMed

    Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y

    2009-05-01

    SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.

  11. Understanding the Shape-Memory Alloys Used in Orthodontics

    PubMed Central

    Fernandes, Daniel J.; Peres, Rafael V.; Mendes, Alvaro M.; Elias, Carlos N.

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA. PMID:21991455

  12. High-Speed Behavior of Some Shape Memory Alloys

    SciTech Connect

    Bragov, Anatoly M.; Lomunov, Andrey K.; Sergeichev, Ivan V.

    2006-07-28

    The results of dynamic tests of shape memory alloys Ti-Ni and Cu-Al-Ni are given. Compressive tests of Ti-Ni alloy were carried out at temperatures 293-573K. Considerable influence of temperature on module of elasticity prior to the dislocation plastic flow and dislocation yield limit has been mentioned in temperature interval of reverse martensitic transformation. For Cu-Al-Ni alloy a strain rate influence on phase yield limit, module of elasticity prior to the phase unelastic flow, module of elasticity prior to the dislocation plastic flow was negligible. The method of determination of duration of reverse martensitic transformation has been realized by the example of Cu-Al-Ni alloy.

  13. Damping of High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.

    2008-01-01

    Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf

  14. Development of Superelastic Effect in Ferrous Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Olson, Scott

    Shape memory alloys (SMAs) with high levels of superelasticity are used where there is a need for the application of large levels of force, or high damping. Current commercially available SMAs require expensive fabrication and lack sufficient ductility for many applications. There is a need for a superelastic material with better properties and easier processing. Y. Tanaka et al. have developed a novel iron based shape memory alloy, NCATB. This alloy still requires complex thermomechanical processing, and does not utilize lessons learned in optimizing Nitinol. To develop the properties of this alloy, it was synthesized in lab from its constituent elements, and thermomechanically processed. Samples were prepared for analysis using conventional metallographic techniques, and investigated with light optical microscopy, scanning electron microscopy equipped with energy dispersive spectroscopy, X-ray diffraction, and mechanical testing. The recrystallization following cold rolling, as well as aging heat treatments, were determined to be critical to increasing the hardness of the NCATB. Overall, smaller grains and longer aging times increased the hardness. The as-cast microstructure exhibits significant tantalum segregation along the dendrite boundaries. Incomplete homogenization of the as-cast microstructure leads to a propensity for a Tarich phase to form along subsequent recrystallized grain boundaries. This phase lead to alloy embrittlement, preventing the NCATB as processed from having the desired superelasticity. An additional high temperature thermomechanical treatment following casting solutionized the tantalum from the dendrite boundaries, and further improved the NCATB hardenability.

  15. Reward-produced memories regulate memory-discrimination learning, extinction, and other forms of discrimination learning.

    PubMed

    Capaldi, E J; Birmingham, K M

    1998-07-01

    In memory-discrimination learning, reward-produced memories are differentially rewarded such that they are the only stimuli available to support discriminative responding. Memory-discrimination learning was used in this study as follows: Reward-produced memories that were assumed to regulate instrumental performance in previously reported extinction and discrimination learning investigations were isolated and explicitly differentially reinforced (prior to a shift to extinction) in each of 4 runway investigations with rats. Results obtained here in the explicit discrimination learning stage and in the subsequent extinction stage were consistent with the prediction of the memory view and with prior discrimination learning and extinction findings. The memory interpretation was applied to memory-discrimination learning, to extinction, and to 2 other types of discrimination learning. It appears that a theory must use reward-produced memories to explain all 4 types of discrimination learning.

  16. Ferromagnetic shape memory alloys for positioning with nanometric resolution

    NASA Astrophysics Data System (ADS)

    Feuchtwanger, Jorge; Asua, Estibalitz; García-Arribas, Alfredo; Etxebarria, Victor; Barandiaran, Jose M.

    2009-08-01

    Ferromagnetic shape memory alloys are promising active elements for actuators. Our work centered on achieving and maintaining an intermediate fixed deformation so that they can be used as precision positioning actuators. For this purpose, a custom actuator was built using a single crystal of NiMnGa. The results show that these alloys can be controlled within less than 5 nm for both precision and accuracy, a result comparable to piezoelectric ceramics. Interestingly, the defect structure plays a fundamental role in achieving such performance. The stochastically distributed defects determine a progressive diminution of the magnetic field strength required to achieve the control.

  17. Shape memory alloys. (Latest citations from the INSPEC database). Published Search

    SciTech Connect

    Not Available

    1994-03-01

    The bibliography contains citations concerning theories and experiments on shape memory effects of various alloys. Alloys studied include nickel, tin, indium, lead, copper, and titanium. Citations discuss shape memory crystallography, properties, processing, alloying, and mechanisms. (Contains 250 citations and includes a subject term index and title list.)

  18. A novel inertial energy harvester using magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Askari Farsangi, Mohammad Amin; Sayyaadi, Hassan; Zakerzadeh, Mohammad Reza

    2016-10-01

    This paper studies the output voltage from a novel inertial energy harvester using magnetic shape memory alloys (MSMAs). The MSMA elements are attached to the root of a cantilever beam by means of two steps. In order to get electrical voltage, two coils are wound around the MSMAs and a shock load is applied to a tip mass at the end of the beam to have vibration in it. The beam vibration causes strain in the MSMAs along their longitudinal directions and as a result the magnetic flux alters in the coils. The change of magnetic flux in the surrounding coil produces an AC voltage. In order to predict the output voltage, the nonlinear governing equations of beam motion based on Euler-Bernoulli model and von Kármán theory are derived. A thermodynamics-based constitutive model is used to predict the nonlinear strain and magnetization response of the MSMAs. Also, the induced voltage during martensite variant reorientation in MSMAs is investigated with the help of Faraday’s law of induction. Finally, the effect of different parameters including bias magnetic field, pre-strain and number of MSMA elements are investigated in details. The results show that this novel energy harvester has the capability of using as an alternative to the current piezoelectric and magnetostrictive ones for harvesting energy from ambient vibration.

  19. On the Potentials of Shape Memory Alloy Valves

    NASA Astrophysics Data System (ADS)

    Czechowicz, A.; Lygin, K.; Langbein, S.

    2014-07-01

    Shape memory alloys (SMA) can be utilized as thermal and electrical-activated drives for valve applications. By using the high actuation forces and medium strokes in combination with SMA intrinsic sensor functions, smart and versatile valve elements for multi-purpose applications can be designed. The sensoric functions, based on the change of the electrical characteristics of the SMA drive, allow to detect the system's condition as well as the system's fatigue. The paper systematizes the usability of the intrinsic sensor function with particular emphasis on service potentials. A methodical overview over the design-options of different applications is presented in the first part of the publications. This is followed by a methodical analysis of the potentials of SMA in service applications. Since the product development process is not only a mechanical engineering matter, the production and the service options according to such valves have to be regarded. Besides this publication presents an innovative production process based on a fused deposition production process (FDPP) of valves which contains the installation of SMA actuators during production. The publications present several demonstrator systems which have been produced with FDPP and analyzed in applications.

  20. Adaptive memory: animacy processing produces mnemonic advantages.

    PubMed

    VanArsdall, Joshua E; Nairne, James S; Pandeirada, Josefa N S; Blunt, Janell R

    2013-01-01

    It is adaptive to remember animates, particularly animate agents, because they play an important role in survival and reproduction. Yet, surprisingly, the role of animacy in mnemonic processing has received little direct attention in the literature. In two experiments, participants were presented with pronounceable nonwords and properties characteristic of either living (animate) or nonliving (inanimate) things. The task was to rate the likelihood that each nonword-property pair represented a living thing or a nonliving object. In Experiment 1, a subsequent recognition memory test for the nonwords revealed a significant advantage for the nonwords paired with properties of living things. To generalize this finding, Experiment 2 replicated the animate advantage using free recall. These data demonstrate a new phenomenon in the memory literature - a possible mnemonic tuning for animacy - and add to growing data supporting adaptive memory theory. PMID:23261948

  1. Shape memory in nanostructured metallic alloys

    NASA Astrophysics Data System (ADS)

    Guda Vishnu, Karthik

    Materials with nanoscale dimensions show mechanical and structural properties different to those at the macro scale and engineering their nanostructure opens up potential avenues for designing materials tailored for a specific application. This work is focused on shape memory materials, an important class of active materials with wide variety of applications in medical, aerospace and automobile industries, due to their two important properties of super-elasticity and shape memory. These unique properties originate from a solid-solid transformation called martensite transformation and the main objectives of this research are to i) study the atomic mechanisms of the martensite transformation, ii) study the effect of nano-structure on shape memory behavior and iii) computationally explore avenues through which their performance is optimized. A combination of density functional theory (DFT) and molecular dynamics (MD) simulations is used to achieve this. This approach gives an atomic level description and the effects of size, surfaces and interfaces are explicitly described. Detailed analysis of the atomic mechanisms of the martensite transformation in NiTi using DFT revealed a new phase transformation (B19'-B19'') that sheds light on why the theoretically predicted ground state (BCO) is not observed experimentally and that the experimentally observed martensite phase (B19') can be stabilized by internal stresses. This finding is very important as the theoretically predicted ground state does not allow for shape memory in nanoscale NiTi samples. The size effects caused by the presence of free surfaces and the role of nanostructure in martensite transformation have been investigated in thin NiTi slabs. Surface energies of B2 phase (austenite), B19 (orthorhombic), B19' (martensite) and the body centered orthorhombic phase (BCO) are calculated using DFT. (110)B2 surfaces with in-plane atomic displacements stabilize the austenite phase with respect to B19' and BCO, thus

  2. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  3. Phenomenological modeling of ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kiefer, Bjorn; Lagoudas, Dimitris C.

    2004-07-01

    A thermodynamically consistent phenomenological model is presented which captures the ferromagnetic shape memory effect, i. e. the large macroscopically observable shape change of magnetic shape memory materials under the application of external magnetic fields. In its most general form the model includes the influence of the microstructure for both the volume fraction of different martensitic variants and magnetic domains on the described macroscopic constitutive behavior. A phase diagram based approach is taken to postulate functions governing the onset and termination of the reorientation process. A numerical example is given for an experiment on a NiMnGa single crystal specimen reported in the literature, for which the model is reduced to a two-dimensional case of an assumed magnetic domain structure.

  4. Shape Control of Solar Collectors Using Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Lobitz, D. W.; Grossman, J. W.; Allen, J. J.; Rice, T. M.; Liang, C.; Davidson, F. M.

    1996-01-01

    Solar collectors that are focused on a central receiver are designed with a mechanism for defocusing the collector or disabling it by turning it out of the path of the sun's rays. This is required to avoid damaging the receiver during periods of inoperability. In either of these two cases a fail-safe operation is very desirable where during power outages the collector passively goes to its defocused or deactivated state. This paper is principally concerned with focusing and defocusing the collector in a fail-safe manner using shape memory alloy actuators. Shape memory alloys are well suited to this application in that once calibrated the actuators can be operated in an on/off mode using a minimal amount of electric power. Also, in contrast to other smart materials that were investigated for this application, shape memory alloys are capable of providing enough stroke at the appropriate force levels to focus the collector. Design and analysis details presented, along with comparisons to test data taken from an actual prototype, demonstrate that the collector can be repeatedly focused and defocused within accuracies required by typical solar energy systems. In this paper the design, analysis and testing of a solar collector which is deformed into its desired shape by shape memory alloy actuators is presented. Computations indicate collector shapes much closer to spherical and with smaller focal lengths can be achieved by moving the actuators inward to a radius of approximately 6 inches. This would require actuators with considerably more stroke and some alternate SMA actuators are currently under consideration. Whatever SMA actuator is finally chosen for this application, repeatability and fatigue tests will be required to investigate the long term performance of the actuator.

  5. Low Temperature Shape Memory Alloys for Adaptive, Autonomous Systems Project

    NASA Technical Reports Server (NTRS)

    Falker, John; Zeitlin, Nancy; Williams, Martha; Benafan, Othmane; Fesmire, James

    2015-01-01

    The objective of this joint activity between Kennedy Space Center (KSC) and Glenn Research Center (GRC) is to develop and evaluate the applicability of 2-way SMAs in proof-of-concept, low-temperature adaptive autonomous systems. As part of this low technology readiness (TRL) activity, we will develop and train low-temperature novel, 2-way shape memory alloys (SMAs) with actuation temperatures ranging from 0 C to 150 C. These experimental alloys will also be preliminary tested to evaluate their performance parameters and transformation (actuation) temperatures in low- temperature or cryogenic adaptive proof-of-concept systems. The challenge will be in the development, design, and training of the alloys for 2-way actuation at those temperatures.

  6. Characterization Results of a Novel Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Collado, M.; Nava, N.; Herranz, S.; Ramiro, C.; San Juan, J. M.; Patti, S.; Lautier, J.-M.

    2012-07-01

    A novel Shape Memory Alloy (SMA) has been developed as an alternative to currently available alloys. This material, called SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now, mainly NiTi based alloys. SMARQ is a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200oC. A full Characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability for the development of space actuators.

  7. Properties of Porous TiNbZr Shape Memory Alloy Fabricated by Mechanical Alloying and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Ma, L. W.; Chung, C. Y.; Tong, Y. X.; Zheng, Y. F.

    2011-07-01

    In the past decades, systematic researches have been focused on studying Ti-Nb-based SMAs by adding ternary elements, such as Mo, Sn, Zr, etc. However, only arc melting or induction melting methods, with subsequent hot or cold rolling, were used to fabricate these Ni-free SMAs. There is no work related to powder metallurgy and porous structures. This study focuses on the fabrication and characterization of porous Ti-22Nb-6Zr (at.%) shape memory alloys produced using elemental powders by means of mechanical alloying and hot isostatic pressing. It is found that the porous Ti-22Nb-6Zr alloys prepared by the HIP process exhibit a homogenous pore distribution with spherical pores, while the pores have irregular shape in the specimen prepared by conventional sintering. X-ray diffraction analysis showed that the solid solution-treated Ti-22Nb-6Zr alloy consists of both β phase and α″ martensite phase. Morphologies of martensite were observed. Finally, the porous Ti-22Nb-6Zr SMAs produced by both MA and HIP exhibit good mechanical properties, such as superior superelasticity, with maximum recoverable strain of ~3% and high compressive strength.

  8. Cyclic response of shape memory alloy smart composite beams

    NASA Astrophysics Data System (ADS)

    Friend, Clifford M.; Morgan, Neil B.

    1994-09-01

    'Smart' structure are an emerging technology which will provide the possibility of engineering structures with enhanced functionality for a wide range of applications. In most current Smart Structural Concepts a mechatronic or 'Frankenstein' approach is adopted where separate sensors, signal processing and actuators are 'bolted-together' to produce a 'Smart' system response. In the majority of these concepts the sensors and actuators are integrated within the host structure itself, and many of the sensor and actuator materials are familiar from other more conventional sensing/actuation applications. Amongst the materials used/proposed for actuators are Shape- Memory Alloys (SMAs) since these materials offer a range of attractive properties, including the possibility of high strain/stress actuation. The literature-base on the integration of SMA actuators into composite structures is not extensive. However, their use has been investigated for vibration [1], acoustic radiation [1,2], damage [3], buckling [1,2], and shape [1] control. An interesting feature of this work has been a heavy bias towards modelling, with only limited attempts to experimentally verify the calculated results. Previous work has also failed to produce a systematic database on one other key issue. This is the durability of SPA hybrid composites. The present work was therefore undertaken to provide a preliminary appraisal of the durability issues associated with the use of SMA hybrid composites. This work addressed a number of issues including (i) the effect of actuator fraction on strain outputs, (ii) the effect of actuator fraction and maximum strain on the cyclic stability of shape changes, and (iii) the effect of these variables on damage accumulation within the hybrid structures.

  9. Thermally activated retainer means utilizing shape memory alloy

    NASA Technical Reports Server (NTRS)

    Grimaldi, Margaret E. (Inventor); Hartz, Leslie S. (Inventor)

    1993-01-01

    A retainer member suitable for retaining a gap filler placed in gaps between adjacent tile members is presented. One edge of the retainer member may be attached to the gap filler and another edge may be provided with a plurality of tab members which in an intermediate position do not interfere with placement or removal of the gap filler between tile members. The retainer member may be fabricated from a shape memory alloy which when heated to a specified memory temperature will thermally activate the tab members to predetermined memory positions engaging the tile members to retain the gap filler in the gap. This invention has particular application to the thermal tiles on space vehicles such as the Space Shuttle Orbiter.

  10. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  11. Effect of Quarterly Element Addition of Cobalt on Phase Transformation Characteristics of Cu-Al-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Saud, Safaa Najah; Abu Bakar, Tuty Asma; Hamzah, Esah; Ibrahim, Mustafa Khaleel; Bahador, Abollah

    2015-08-01

    In the current study, a new type of Cu-based shape memory alloys with the function of shape memory effect was successfully produced with the introduction of high-purity Co precipitates between the phases of Cu-Al-Ni shape memory alloy. The microstructure, transformation characteristics, and mechanical properties were systematically investigated by means of differential scanning calorimetry, field emission scanning electron microscopy, energy dispersive spectroscopy (EDS), transmission electron microscopy, X-ray diffraction (XRD), a tensile test, a hardness test, and a shape memory effect test. The typical microstructures show that a new phase was formed, known as the γ 2 phase, and the volume friction and the size of this phase were gradually increased with the increasing Co content. According to the results of the XRD and EDS, it was confirmed that the γ 2 phase represents a compound of Al75Co22Ni3. However, the presence of γ 2 phase in the modified alloys was found to result in an increase of the transformation temperatures in comparison with the unmodified alloy. Nevertheless, it was found that with 1 wt pct of Co addition, a maximum ductility of 7 pct was achieved, corresponding to an increase in the strain recovery by the shape memory effect to 95 pct with respect to the unmodified alloy of 50 pct.

  12. Thermomechanical testing of FeNiCoTi shape memory alloy for active confinement of concrete

    NASA Astrophysics Data System (ADS)

    Chen, Qiwen; Andrawes, Bassem; Sehitoglu, Huseyin

    2014-05-01

    The thermomechanical properties of a new type of shape memory alloy (SMA), FeNiCoTi, are explored in this paper with the aim of examining the feasibility of using this new material as transverse reinforcement for concrete structures subjected to earthquake loading. One advantage of using FeNiCoTi alloy is its cost effectiveness compared to commonly studied NiTi alloy. Differential scanning calorimetry (DSC) tests are conducted to investigate the transformation temperatures of FeNiCoTi alloy under different heat treatment methods and prestrain schemes. First, a heat treatment method is established to produce FeNiCoTi alloy with wide thermal hysteresis that is pertinent to civil structural applications. Next, recovery stress tests are conducted to explore the effect of parameters including heating method, heating temperature, heating rate, heating protocol and prestrain level on the recovery stress. An optimum prestrain level is determined based on the recovery stress results. Moreover, cyclic tests are carried out to examine the cyclic response of FeNiCoTi alloy after stress recovery. Thermal cyclic tests are also carried out on the FeNiCoTi alloy to better understand the effect of temperature variation on the recovery stress. In addition, reheating of the FeNiCoTi alloy after deformation is conducted to examine the reusability of the material after being subjected to excessive deformation. Test results of the FeNiCoTi alloy indicate that this cost-effective SMA can potentially be a promising new material for civil structural applications.

  13. Solid state engine using nitinol memory alloy

    DOEpatents

    Golestaneh, Ahmad A.

    1981-01-01

    A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.

  14. Solid state engine using nitinol memory alloy

    DOEpatents

    Golestaneh, A.A.

    1980-01-21

    A device for converting heat energy to mechanical energy includes a reservoir of a hot fluid and a rotor assembly mounted thereabove so a portion of it dips into the hot fluid. The rotor assembly may include a shaft having four spokes extending radially outwardly therefrom at right angles to each other, a floating ring and four flexible elements composed of a thermal memory material having a critical temperature between the temperature of the hot fluid and that of the ambient atmosphere extending between the ends of the spokes and the floating ring. Preferably, the flexible elements are attached to the floating ring through curved leaf springs. Energetic shape recovery of the flexible elements in the hot fluid causes the rotor assembly to rotate.

  15. Deformation and Failure Mechanisms of Shape Memory Alloys

    SciTech Connect

    Daly, Samantha Hayes

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior results on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.

  16. Tungsten-nickel-cobalt alloy and method of producing same

    DOEpatents

    Dickinson, James M.; Riley, Robert E.

    1977-03-15

    An improved tungsten alloy having a tungsten content of approximately 95 weight percent, a nickel content of about 3 weight percent, and the balance being cobalt of about 2 weight percent is described. A method for producing said tungsten-nickel-cobalt alloy is further described and comprises (a) coating the tungsten particles with a nickel-cobalt alloy, (b) pressing the coated particles into a compact shape, (c) heating said compact in hydrogen to a temperature in the range of 1400.degree. C and holding at this elevated temperature for a period of about 2 hours, (d) increasing this elevated temperature to about 1500.degree. C and holding for 1 hour at this temperature, (e) cooling to about 1200.degree. C and replacing the hydrogen atmosphere with an inert argon atmosphere while maintaining this elevated temperature for a period of about 1/2 hour, and (f) cooling the resulting alloy to room temperature in this argon atmosphere.

  17. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, James A.; Hayden, H. Wayne

    1995-01-01

    An apparatus and method for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode.

  18. Microstructural observation of elastic domains in ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Craciunescu, Corneliu M.; Mitelea, Ion; Sgavardea, Gheorghe

    2012-08-01

    The microstructure of ferromagnetic shape memory alloys belonging to the Co-Ni-Ga and Ni-Mn-Ga system is analyzed in the martensitic state and during the martensitic phase transition, in order to explore the influence of the composition on the occurrence of the shape memory properties. The compositional range of the Co-Ni-Ga alloys investigated is associated with a two-phase microstructure, where the matrix shows the martensitic structure and a transformation into austenite on heating. The microstructure in the Co-Ni-Ga system shows a phase transition between the B2 austenite and L10 martensite, but the γ (disordered fcc A1) and the ordered γ' (fcc L12) can also be present - depending on the composition, and state, and influence the phase transition in as-cast, quenched and aged alloys. The exploration of the microstructural aspects reveals typical elastic domains that form in the martensitic phase, but also precipitates that can influence the overall martensitic transformation, thus hindering the total output. Compared to the NiMnGa system, the CoNiGa shows significantly less brittleness when deformed in the martensitic state.

  19. Properties and medical applications of shape memory alloys.

    PubMed

    Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela

    2009-01-01

    One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications. PMID:19221641

  20. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    SciTech Connect

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-08-06

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations.

  1. Novel tribological systems using shape memory alloys and thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun

    Shape memory alloys and thin films are shown to have robust indentation-induced shape memory and superelastic effects. Loading conditions that are similar to indentations are very common in tribological systems. Therefore novel tribological systems that have better wear resistance and stronger coating to substrate adhesion can be engineered using indentation-induced shape memory and superelastic effects. By incorporating superelastic NiTi thin films as interlayers between chromium nitride (CrN) and diamond-like carbon (DLC) hard coatings and aluminum substrates, it is shown that the superelasticity can improve tribological performance and increase interfacial adhesion. The NiTi interlayers were sputter deposited onto 6061 T6 aluminum and M2 steel substrates. CrN and DLC coatings were deposited by unbalanced magnetron sputter deposition. Temperature scanning X-ray diffraction and nanoindentation were used to characterize NiTi interlayers. Temperature scanning wear and scratch tests showed that superelastic NiTi interlayers improved tribological performance on aluminum substrates significantly. The two-way shape memory effect under contact loading conditions is demonstrated for the first time, which could be used to make novel tribological systems. Spherical indents in NiTi shape memory alloys and thin films had reversible depth changes that were driven by temperature cycling, after thermomechanical cycling, or one-cycle slip-plasticity deformation training. Reversible surface topography was realized after the indents were planarized. Micro- and nano- scale circular surface protrusions arose from planarized spherical indents in bulk and thin film NiTi alloy; line surface protrusions appeared from planarized scratch tracks. Functional surfaces with reversible surface topography can potentially result in novel tribological systems with reversible friction coefficient. A three dimensional constitutive model was developed to describe shape memory effects with slip

  2. Shape Memory Alloy Actuator Design: CASMART Collaborative Best Practices

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Brown, Jeff; Calkins, F. Tad; Kumar, Parikshith; Stebner, Aaron; Turner, Travis; Vaidyanathan, Raj; Webster, John; Young, Marcus L.

    2011-01-01

    Upon examination of shape memory alloy (SMA) actuation designs, there are many considerations and methodologies that are common to them all. A goal of CASMART's design working group is to compile the collective experiences of CASMART's member organizations into a single medium that engineers can then use to make the best decisions regarding SMA system design. In this paper, a review of recent work toward this goal is presented, spanning a wide range of design aspects including evaluation, properties, testing, modeling, alloy selection, fabrication, actuator processing, design optimization, controls, and system integration. We have documented each aspect, based on our collective experiences, so that the design engineer may access the tools and information needed to successfully design and develop SMA systems. Through comparison of several case studies, it is shown that there is not an obvious single, linear route a designer can adopt to navigate the path of concept to product. SMA engineering aspects will have different priorities and emphasis for different applications.

  3. Fabrication of magnetic shape memory alloy/polymer composites

    NASA Astrophysics Data System (ADS)

    Ham-Su, R.; Healey, J. P.; Underhill, R. S.; Farrell, S. P.; Cheng, L. M.; Hyatt, C. V.; Rogge, R.; Gharghouri, M. A.

    2005-05-01

    NiMnGa-based magnetic shape memory (MSM) alloys have attained magnetic-field-induced strains up to approximately 10%, making them very attractive for a variety of applications. However, for applications that require the use of an alternating magnetic field, eddy current losses can be significant. Also, NiMnGa-based MSM alloys' fracture toughness is relatively low. Using these materials in the form of particles embedded in a polymer matrix composite could mitigate these limitations. Since the MSM effect is anisotropic, the crystallographic texture of the particles in the composites is of great interest. In this work, a procedure for fabricating NiMnGa-based MSMA/elastomer composites is described. Processing routes for optimizing the crystallographic texture in the composites are considered.

  4. Damping capacity in shape memory alloy honeycomb structures

    NASA Astrophysics Data System (ADS)

    Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.

    2010-04-01

    SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.

  5. Thermo-Mechanical Methodology for Stabilizing Shape Memory Alloy Response

    NASA Technical Reports Server (NTRS)

    Padula, Santo

    2013-01-01

    This innovation is capable of significantly reducing the amount of time required to stabilize the strain-temperature response of a shape memory alloy (SMA). Unlike traditional stabilization processes that take days to weeks to achieve stabilized response, this innovation accomplishes stabilization in a matter of minutes, thus making it highly useful for the successful and practical implementation of SMA-based technologies in real-world applications. The innovation can also be applied to complex geometry components, not just simple geometries like wires or rods.

  6. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Keefe, Andrew C; Alexander, Paul W; Sarosi, Peter Maxwell; Herrera, Guillermo A; Yates, James Ryan

    2013-12-17

    A heat engine includes a first rotatable pulley and a second rotatable pulled spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes first spring coil and a first fiber core within the first spring coil. A timing cable is disposed about disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  7. Applications of the directional solidification in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Liu, J.; Hu, Q. D.; Liu, Q. H.; Karaman, I.; Li, J. G.

    2016-03-01

    A zone melting liquid metal cooling (ZMLMC) method of directional solidification was applied to prepare highly-oriented Ni52Fe17Ga27Co4 magnetic shape memory alloys. At high temperature gradient and low growth velocity, the well-developed preferred orientation for coarse columnar crystals was obtained. Such a structure leads to a large complete pseudoelastic recovery of 5% at 348 K. Moreover, the pseudoelastic behaviours and the kinetics of the martensitic transformation (MT) are significantly affected by the intersection angle between the loading direction and the grain boundaries.

  8. Characterization of shape memory alloys for safety mechanisms.

    SciTech Connect

    McLaughlin, Jarred T.; Buchheit, Thomas Edward; Massad, Jordan Elias

    2008-03-01

    Shape memory alloys (SMAs) are metals that exhibit large recoverable strains and exert large forces with tremendous energy densities. The behavior of SMAs is thermomechanically coupled. Their response to temperature is sensitive to their loading condition and their response to loading is sensitive to their thermal condition. This coupled behavior is not to be circumvented, but to be confronted and understood, since it is what manifests SMA's superior clamping performance. To reasonably characterize the coupled behavior of SMA clamping rings used in safety mechanisms, we conduct a series of experiments on SMA samples. The results of the tests will allow increased fidelity in modeling and failure analysis of parts.

  9. The Possibility of Muscle Tissue Reconstruction Using Shape Memory Alloys

    PubMed Central

    Higa, Masaru; Amae, Shintaro; Yambe, Tomoyuki; Okuyama, Takeshi; Takagi, Toshiyuki; Matsuki, Hidetoshi

    2005-01-01

    Severe dysfunction of muscle tissues can be treated by transplantation but the success rate is still not high enough. One possibility instead is to replace the dysfunctional muscle with artificial muscles. This article introduces a unique approach using shape memory alloys (SMAs) to replace the anal sphincter muscle for solving the problem of fecal incontinence. The use of SMAs that exhibit a two-way shape memory effect allows the device to function like a sphincter muscle and facilitates simple design. In this article, we will give a brief introduction to the functional material—SMA—together with its medical applications, and will follow this with a description of the recent progress in research and development of an SMA-based artificial sphincter. The possibility of its commercialization will also be discussed. PMID:19521522

  10. Lowering the power consumption of Ni-Ti shape memory alloy

    NASA Astrophysics Data System (ADS)

    Villanueva, Alex; Gupta, Shashaak; Priya, Shashank

    2012-04-01

    Shape memory alloy (SMA) wires are capable of providing contractile strain mimicking the functionality of muscle fibers. They are promising for the development of biomimetic robots due to their high power density and desired form factor. However, they suffer from significantly high power consumption. The focus of this paper was to address this drawback associated with SMAs. Two different parameters were investigated in this study: i) lowering of the martensite to austentite phase transition temperatures and ii) the reduction of the thermal hysteresis. For an equiatomic Ni-Ti alloy, replacing nickel with 10 at% copper reduces the thermal hysteresis by 50% or more. For Ni- Ti alloys with nickel content greater than 50 at%, transition temperature decreases linearly at a rate of 100 °C/Ni at%. Given these two power reducing factors, an alloy with composition of Ni40+xTi50-xCu10 was synthesized with x = 0, +/-1, +/-2, +/-3, +/-4, +/-5. Metal powders were melted in an argon atmosphere using an RF induction furnace to produce ingots. All the synthesized samples were characterized by differential scanning calorimetric (DSC) analysis to reveal martensite to austenite and austenite to martensite transition temperatures during heating and cooling cycles respectively. Scanning electron microscopy (SEM) was conducted to identify the density and microstructure of the fractured samples. The alloy composition and synthesis method presented in this preliminary work shows the possibility of achieving low power consuming, high performance SMAs.

  11. Effects of magnetic field on the shape memory behavior of single and polycrystalline magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Turabi, Ali Sadi

    Shape memory alloys and polymers have been extensively researched recently because of their unique ability to recover large deformations. Shape memory polymers (SMPs) are able to recover large deformations compared to shape memory alloys (SMAs), although SMAs have higher strength and are able to generate more stress during recovery. This project focuses on procedure for fabrication and Finite Element Modeling (FEM) of a shape memory composite actuator. First, SMP was characterized to reveal its mechanical properties. Specifically, glass transition temperature, the effects of temperature and strain rate on compressive response and recovery properties of shape memory polymer were studied. Then, shape memory properties of a NiTi wire, including transformation temperatures and stress generation, were investigated. SMC actuator was fabricated by using epoxy based SMP and NiTi SMA wire. Experimental tests confirmed the reversible behavior of fabricated shape memory composites. (Abstract shortened by ProQuest.).

  12. Structural transformations in NiTi shape memory alloy nanowires

    NASA Astrophysics Data System (ADS)

    Mirzaeifar, Reza; Gall, Ken; Zhu, Ting; Yavari, Arash; DesRoches, Reginald

    2014-05-01

    Martensitic phase transformation in bulk Nickle-Titanium (NiTi)—the most widely used shape memory alloy—has been extensively studied in the past. However, the structures and properties of nanostructured NiTi remain poorly understood. Here, we perform molecular dynamics simulations to study structural transformations in NiTi nanowires. We find that the tendency to reduce the surface energy in NiTi nanowires can lead to a new phase transformation mechanism from the austenitic B2 to the martensitic B19 phase. We further show that the NiTi nanowires exhibit the pseudoelastic effects during thermo-mechanical cycling of loading and unloading via the B2 and B19 transformations. Our simulations also reveal the unique formation of compound twins, which are expected to dominate the patterning of the nanostructured NiTi alloys at high loads. This work provides the novel mechanistic insights into the martensitic phase transformations in nanostructured shape memory alloy systems.

  13. Strategies for Self-Repairing Shape Memory Alloy Actuators

    NASA Astrophysics Data System (ADS)

    Langbein, Sven; Czechowicz, Alexander Jaroslaw; Meier, Horst

    2011-07-01

    Shape memory alloys (SMAs) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape by the means of thermal activation, they are suitable as actuators for microsystems and, within certain limitations, macroscopic systems. A commonly used shape memory actuator type is an alloy of nickel and titanium (NiTi), which starts to transform its inner phase from martensitic to austenitic structure at a certain austenite start temperature. Retransformation starts at martensitic start temperature after running a hysteresis cycle. Most SMA-systems use straight wire actuators because of their simple integration, the occurring cost reduction and the resulting miniaturization. Unfortunately, SMA-actuators are only seldom used by constructors and system developers. This is due to occurring functional fatigue effects which depend on boundary conditions like system loads, strains, and number of cycles. The actuating stroke does not reduce essentially during the first thousand cycles. Striking is the elongation of the wire while maintaining the stroke during cycling (walking). In order to create a system which adjusts and repairs itself, different concepts to solve this problem are presented. They vary from smart control methods to constructive solutions with calibration systems. The systems are analyzed due to their effective, life cycle, and system costs showing outstanding advantages in comparison to commonly used SMA actuators.

  14. Efficient Utilization of Nickel Laterite to Produce Master Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Cui, Zhixiang; Zhao, Baojun

    2016-07-01

    To lower the smelting temperature associated with the carbothermic reduction processing of laterite, the optimization of slag and alloy systems was investigated to enable the reduction of laterite ore in the molten state at 1723 K. The master Fe-Ni-Mo alloy was successfully produced at a lower temperature (1723 K). The liquidus of the slag decreased with the addition of oxide flux (Fe2O3 and CaO) and that of the ferronickel alloy decreased with the addition of Mo/MoO3. More effective metal-slag separation was achieved at 1723 K, which reduces the smelting temperature by 100 K compared with the current electric furnace process. A small addition of Mo/MoO3 not only decreased the melting point of ferronickel alloys but also served as a collector to aggregate the ferronickel sponges allowing them to grow larger. The FeO concentration in the slag and the nickel grade of the alloy decreased with increasing graphite reductant addition.

  15. Thermal response of novel shape memory polymer-shape memory alloy hybrids

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2014-03-01

    Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.

  16. Functional Characterization of a Novel Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Collado, M.; Cabás, R.; San Juan, J.; López-Ferreño, I.

    2014-07-01

    A novel shape memory alloy (SMA) has been developed as an alternative to currently available alloys. This alloy, commercially known by its proprietary brand SMARQ, shows a higher working range of temperatures with respect to the SMA materials used until now in actuators, limited to environment temperatures below 90 °C. SMARQ is a high temperature SMA (HTSMA) based on a fully European material technology and production processes, which allows the manufacture of high quality products, with tuneable transformation temperatures up to 200 °C. Both, material and production processes have been evaluated for its use in space applications. A full characterization test campaign has been completed in order to obtain the material properties and check its suitability to be used as active material in space actuators. In order to perform the functional characterization of the material, it has been considered as the key element of a basic SMA actuator, consisting in the SMA wire and the mechanical and electrical interfaces. The functional tests presented in this work have been focused on the actuator behavior when heated by means of an electrical current. Alloy composition has been adjusted in order to match a transition temperature (As) of +145 °C, which satisfies the application requirements of operating temperatures in the range of -70 and +125 °C. Details of the tests and results of the characterization test campaign, focused in the material unique properties for their use in actuators, will be presented in this work. Some application examples in the field of space mechanisms and actuators, currently under development, will be summarized as part of this work, demonstrating the technology suitability as active material for space actuators.

  17. Radioactive material package closures with the use of shape memory alloys

    SciTech Connect

    Koski, J.A.; Bronowski, D.R.

    1997-11-01

    When heated from room temperature to 165 C, some shape memory metal alloys such as titanium-nickel alloys have the ability to return to a previously defined shape or size with dimensional changes up to 7%. In contrast, the thermal expansion of most metals over this temperature range is about 0.1 to 0.2%. The dimension change of shape memory alloys, which occurs during a martensite to austenite phase transition, can generate stresses as high as 700 MPa (100 kspi). These properties can be used to create a closure for radioactive materials packages that provides for easy robotic or manual operations and results in reproducible, tamper-proof seals. This paper describes some proposed closure methods with shape memory alloys for radioactive material packages. Properties of the shape memory alloys are first summarized, then some possible alternative sealing methods discussed, and, finally, results from an initial proof-of-concept experiment described.

  18. Use of shape memory alloys in the robust control of smart structures. Final report, February 1990-June 1993

    SciTech Connect

    Rao, V.S.; O'Keefe, T.J.; Koval, L.R.

    1993-08-01

    This report details an integrated interdisciplinary approach for designing and implementing robust controllers on smart structures. The application of shape memory alloy materials as actuators and sensors in the active control of smart structures has been investigated. A process was developed for the electrodeposition of In-Tl alloys in a composition range where this system exhibits the shape memory effect. Cu-Zn, Au-Ca, and In-Cd alloy films were produced using the electrolytic techniques and their shape memory properties evaluated. To demonstrate some of the capabilities of smart structures and to determine the limitations imposed by hardware realizations, we have designed and fabricated experimental test articles incorporating flexible structures with SMA actuators, strain gauge sensors, signal processing circuits and digital controllers. Structural identification techniques have been employed in determining mathematical models of test articles from experimental data. A modified robust control design methodology was developed to accommodate the limited control force provided by the SMA actuators. The robustness properties of closed loop structural systems were verified experimentally. Adaptive control methods were implemented. Neural network based identification and control algorithms were developed. Smart structures, Shape memory alloys, Electrodeposition process, Robust control, Control using neural networks.

  19. Electrochemical method of producing eutectic uranium alloy and apparatus

    DOEpatents

    Horton, J.A.; Hayden, H.W.

    1995-01-10

    An apparatus and method are disclosed for continuous production of liquid uranium alloys through the electrolytic reduction of uranium chlorides. The apparatus includes an electrochemical cell formed from an anode shaped to form an electrolyte reservoir, a cathode comprising a metal, such as iron, capable of forming a eutectic uranium alloy having a melting point less than the melting point of pure uranium, and molten electrolyte in the reservoir comprising a chlorine or fluorine containing salt and uranium chloride. The method of the invention produces an eutectic uranium alloy by creating an electrolyte reservoir defined by a container comprising an anode, placing an electrolyte in the reservoir, the electrolyte comprising a chlorine or fluorine containing salt and uranium chloride in molten form, positioning a cathode in the reservoir where the cathode comprises a metal capable of forming an uranium alloy having a melting point less than the melting point of pure uranium, and applying a current between the cathode and the anode. 2 figures.

  20. Multiscale Characterization of Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Gall, Keith

    Shape memory alloys were characterized by a variety of methods to investigate the relationship between microstructural phase transformation, macroscale deformation due to mechanical loading, material geometry, and initial material state. The major portion of the work is application of digital image correlation at several length scales to SMAs under mechanical loading. In addition, the connection between electrical resistance, stress, and strain was studied in NiTi wires. Finally, a new processing method was investigated to develop porous NiTi samples, which can be examined under DIC in future work. The phase transformation temperatures of a Nickel-Titanium based shape memory alloy (SMA) were initially evaluated under stress-free conditions by the differential scanning calorimetric (DSC) technique. Results show that the phase transformation temperature is significantly higher for transition from de-twinned martensite to austenite than from twinned martensite or R phase to austenite. To further examine transformation temperatures as a function of initial state a tensile test apparatus with in-situ electrical resistance (ER) measurements was used to evaluate the transformation properties of SMAs at a variety of stress levels and initial compositions. The results show that stress has a significant influence on the transformation of detwinned martensite, but a small influence on R phase and twinned martensite transformations. Electrical resistance changes linearly with strain during the transformations from both kinds of martensite to austenite. The linearity between ER and strain during the transformation from de-twinned martensite to austenite is not affected by the stress, facilitating application to control algorithms. A revised phase diagram is drawn to express these results. To better understand the nature of the local and global strain fields that accompany phase transformation in shape memory alloys (SMAs), here we use high resolution imaging together with image

  1. Simulation of Payload Vibration Protection by Shape Memory Alloy Parts

    NASA Astrophysics Data System (ADS)

    Volkov, Aleksandr E.; Evard, Margarita E.; Red'kina, Kristina V.; Vikulenkov, Andrey V.; Makarov, Vyacheslav P.; Moisheev, Aleksandr A.; Markachev, Nikolay A.; Uspenskiy, Evgeniy S.

    2014-07-01

    A system of vibroisolation under consideration consists of a payload connected to a vibrating housing by plane shape memory alloy (SMA) slotted elements. The calculation of the mechanical behavior of the SMA is based on a microstructural theory. Simulations of harmonic and of impact excitations are carried out. The results have shown that protective properties of this system depend on the SMA state. The maximum reduction of the acceleration amplitude for harmonic excitation is reached when the SMA is in the martensitic (pseudo-plastic) state or in the two-phase state. A variation of temperature allows changing the resonance frequency and thus escaping from the resonance and controlling a mode of vibration.

  2. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  3. Electromagnetic heating of a shape memory alloy translator

    NASA Astrophysics Data System (ADS)

    Giroux, E.-A.; Maglione, M.; Gueldry, A.; Mantoux, J.-L.

    1996-03-01

    The active part of a linear translator is a shape memory alloy (SMA) made of nickel and titanium (NiTi) wire which is to be thermally cycled. We have achieved heating using electromagnetic radiation with a magnetic sheath and low-frequency waves at 8 kHz and without magnetic sheath and radio frequency waves at 28 MHz. The heating is equivalent for these two arrangements. In vitro experiments have been confirmed by computer simulations of the radiation distribution within the implant. We thus show that electromagnetic radiation could specifically heat a NiTi wire inside a stainless steel tube without heating the tube. An application could be a femoral prosthesis for the lengthening of the bone.

  4. Shape memory alloy heat engines and energy harvesting systems

    DOEpatents

    Browne, Alan L; Johnson, Nancy L; Shaw, John Andrew; Churchill, Christopher Burton; Keefe, Andrew C; McKnight, Geoffrey P; Alexander, Paul W; Herrera, Guillermo A; Yates, James Ryan; Brown, Jeffrey W

    2014-09-30

    A heat engine includes a first rotatable pulley and a second rotatable pulley spaced from the first rotatable pulley. A shape memory alloy (SMA) element is disposed about respective portions of the pulleys at an SMA pulley ratio. The SMA element includes a first wire, a second wire, and a matrix joining the first wire and the second wire. The first wire and the second wire are in contact with the pulleys, but the matrix is not in contact with the pulleys. A timing cable is disposed about respective portions of the pulleys at a timing pulley ratio, which is different than the SMA pulley ratio. The SMA element converts a thermal energy gradient between the hot region and the cold region into mechanical energy.

  5. Simulation of grain size effects in nanocrystalline shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ahluwalia, Rajeev; Quek, Siu Sin; Wu, David T.

    2015-06-01

    Recently, it has been demonstrated that martensitic transformation in nanocrystalline shape memory alloys can be suppressed for small grain sizes. Motivated by these results, we study the grain size dependence of martensitic transformations and stress-strain response of nanocrystalline shape memory alloys within the framework of the Ginzburg-Landau (GL) theory. A GL model for a square to rectangle transformation in polycrystals is extended to account for grain boundary effects. We propose that an inhibition of the transformation in grain boundary regions can occur, if the grain boundary energy of the martensite is higher than that of the austenite phase. We show that this inhibition of transformation in grain boundary regions has a strong influence on domain patterns inside grains. Although the transformation is inhibited only at the grain boundaries, it leads to a suppression of the transformation even inside the grains as grain size is decreased. In fact, below a critical grain size, the transformation can be completely suppressed. We explain these results in terms of the extra strain gradient cost associated with grain boundaries, when the transformation is inhibited at grain boundaries. On the other hand, no significant size effects are observed when transformation is not inhibited at grain boundaries. We also study the grain size dependence of the stress strain curve. It is found that when the transformation is inhibited at grain boundaries, a significant reduction in the hysteresis associated with stress-strain curves during the loading-unloading cycles is observed. The hysteresis for this situation reduces even further as the grain size is reduced, which is consistent with recent experiments. The simulations also demonstrate that the mechanical behavior is influenced by inter-granular interactions and the local microstructural neighbourhood of a grain has a stronger influence than the orientation of the grain itself.

  6. Shape memory alloy resetable spring lift for pedestrian protection

    NASA Astrophysics Data System (ADS)

    Barnes, Brian M.; Brei, Diann E.; Luntz, Jonathan E.; Strom, Kenneth; Browne, Alan L.; Johnson, Nancy

    2008-03-01

    Pedestrian protection has become an increasingly important aspect of automotive safety with new regulations taking effect around the world. Because it is increasingly difficult to meet these new regulations with traditional passive approaches, active lifts are being explored that increase the "crush zone" between the hood and rigid under-hood components as a means of mitigating the consequences of an impact with a non-occupant. Active lifts, however, are technically challenging because of the simultaneously high forces, stroke and quick timing resulting in most of the current devices being single use. This paper introduces the SMArt (Shape Memory Alloy ReseTable) Spring Lift, an automatically resetable and fully reusable device, which couples conventional standard compression springs to store the energy required for a hood lift, with Shape Memory Alloys actuators to achieve both an ultra high speed release of the spring and automatic reset of the system for multiple uses. Each of the four SMArt Device subsystems, lift, release, lower and reset/dissipate, are individually described. Two identical complete prototypes were fabricated and mounted at the rear corners of the hood, incorporated within a full-scale vehicle testbed at the SMARTT (Smart Material Advanced Research and Technology Transfer) lab at University of Michigan. Full operational cycle testing of a stationary vehicle in a laboratory setting confirms the ultrafast latch release, controlled lift profile, gravity lower to reposition the hood, and spring recompression via the ratchet engine successfully rearming the device for repeat cycles. While this is only a laboratory demonstration and extensive testing and development would be required for transition to a fielded product, this study does indicate that the SMArt Lift has promise as an alternative approach to pedestrian protection.

  7. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  8. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    PubMed Central

    Kolobov, A.V.; Fons, P.; Tominaga, J.

    2015-01-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials. PMID:26323962

  9. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-01-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials. PMID:26323962

  10. Magnetic-field-induced strain in Ni2MnGa shape-memory alloy (abstract)

    NASA Astrophysics Data System (ADS)

    Ullakko, K.; Huang, J. K.; Kanter, C.; Kokorin, V. V.; O'Handley, R. C.

    1997-04-01

    Rare-earth/transition-metal alloys can exhibit magnetostrictive strains of order 0.17% in modest fields. Larger strains are of interest for many actuator applications. Certain alloys that undergo martensitic transformations exhibit a shape-memory effect that can yield strains up to 20% upon heating the deformed martensitic phase and they can show superelasticity upon application of a small stress. These methods of activation can be a disadvantage for many applications; magnetic activation of a shape-memory effect is desired. Several magnetic shape-memory alloys exist, among them intermetallics based on Ni2MnGa, which are the subject of this work. These materials experience a 6.6% c-axis contraction on cooling through the martensitic transition temperature, which is near 273 K; this strain is accommodated by formation of an ensemble of strained twin crystals separated by twin boundaries. Strains of several percent could be produced magnetically if the twin boundaries could be moved under application of a magnetic field. We report observations of strains of nearly 0.2% induced along [001] in unstressed crystals of Ni2MnGa with magnetic fields of 8 kOe applied at 265 K (Fig. 1). (This strain is an order of magnitude larger than the magnetostrictive strain we measure in the parent Heusler phase at 283 K.) Our data suggest that these giant strains are associated with the superelastic motion of twin boundaries in the martensitic phase, which is stable below about 274 K; the strength of the measured anisotropy energy density, MSHa/2 is comparable to the elastic energy density, eσ/2, needed for superelastic twin boundary motion.1 The strains we observe are equivalent to those achieved in terfenol-D and represent only a small fraction of the strain available if the twin variants of the martensitic phase can be oriented prior to application of a field.

  11. Shape memory properties and microstructural evolution of rapidly solidified CuAlBe alloys

    SciTech Connect

    Ergen, Semra; Uzun, Orhan; Yilmaz, Fikret; Kiliçaslan, M. Fatih

    2013-06-15

    In this work, the effects of Be addition on the microstructure and phase transformation temperatures of Cu–12Al–xBe (x = 0.4, 0.5 and 0.6 wt.%) shape memory alloys fabricated by using the arc-melting and melt-spinning techniques have been investigated. X-ray diffraction analysis revealed that the arc-melted alloys consisted of austenitic β{sub 1}, martensitic β{sub 1}′ and γ{sub 2} precipitate phases, whereas melt-spun ribbons were composed of a fully martensitic phase. The average grain size of martensitic phases in melt-spun ribbons was determined by electron microscopy images, showing a decrease with increasing Beryllium (Be) amount. Moreover, it was found that the Be addition in the arc-melted alloys had a distinct effect on the morphology of the γ{sub 2} precipitate phase. Transmission electron microscopy analysis showed that the thickness of martensitic plates in the melt-spun ribbons reduced with increasing Be addition. In a differential scanning calorimeter analysis, no martensitic transformation (M{sub s}) peak was observed in arc-melted alloys, but it was clearly detected in melt-spun ribbons, in which M{sub s} decreased dramatically with increasing Be addition. The improvement in the shape memory ability of melt-spun ribbons was explained in terms of the refinement in grain size and martensitic plates. - Highlights: • The CuAlBe SMAs were produced by means of arc-melter and melt-spinner techniques. • MT was directly obtained in melt-spuns without any intermediate process. • The transformation temperatures decreased with increasing Be amount. • The thickness of martensitic plates in the ribbons reduced with increasing Be. • SMP of CuAl was improved by the addition of Be together with rapid solidification.

  12. Applications of shape memory alloys for neurology and neuromuscular rehabilitation.

    PubMed

    Pittaccio, Simone; Garavaglia, Lorenzo; Ceriotti, Carlo; Passaretti, Francesca

    2015-01-01

    Shape memory alloys (SMAs) are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE), shape memory effect (SME) and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb. Two different SMA-based applications in the field of neuroscience are then presented, a guide and a limb mobiliser specially designed to be compatible with diagnostic instrumentations that impose rigid constraints in terms of electromagnetic compatibility and noise distortion. Finally, the paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be advantageous. PMID:26023790

  13. Applications of Shape Memory Alloys for Neurology and Neuromuscular Rehabilitation

    PubMed Central

    Pittaccio, Simone; Garavaglia, Lorenzo; Ceriotti, Carlo; Passaretti, Francesca

    2015-01-01

    Shape memory alloys (SMAs) are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE), shape memory effect (SME) and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb. Two different SMA-based applications in the field of neuroscience are then presented, a guide and a limb mobiliser specially designed to be compatible with diagnostic instrumentations that impose rigid constraints in terms of electromagnetic compatibility and noise distortion. Finally, the paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be advantageous. PMID:26023790

  14. Applications of shape memory alloys for neurology and neuromuscular rehabilitation.

    PubMed

    Pittaccio, Simone; Garavaglia, Lorenzo; Ceriotti, Carlo; Passaretti, Francesca

    2015-01-01

    Shape memory alloys (SMAs) are a very promising class of metallic materials that display interesting nonlinear properties, such as pseudoelasticity (PE), shape memory effect (SME) and damping capacity, due to high mechanical hysteresis and internal friction. Our group has applied SMA in the field of neuromuscular rehabilitation, designing some new devices based on the mentioned SMA properties: in particular, a new type of orthosis for spastic limb repositioning, which allows residual voluntary movement of the impaired limb and has no predetermined final target position, but follows and supports muscular elongation in a dynamic and compliant way. Considering patients in the sub-acute phase after a neurological lesion, and possibly bedridden, the paper presents a mobiliser for the ankle joint, which is designed exploiting the SME to provide passive exercise to the paretic lower limb. Two different SMA-based applications in the field of neuroscience are then presented, a guide and a limb mobiliser specially designed to be compatible with diagnostic instrumentations that impose rigid constraints in terms of electromagnetic compatibility and noise distortion. Finally, the paper discusses possible uses of these materials in the treatment of movement disorders, such as dystonia or hyperkinesia, where their dynamic characteristics can be advantageous.

  15. Fiber laser drilling of Ni46Mn27Ga27 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-11-01

    The interest in ferromagnetic shape memory alloys (SMAs), such as NiMnGa, is increasing, thanks to the functional properties of these smart and functional materials. One of the most evident properties of these systems is their brittleness, which makes attractive the study of unconventional manufacturing processes, such as laser machining. In this work the interaction of laser beam, once focalized on the surface of Ni46Mn27Ga27 [at%] alloy, has been studied. The experiments were performed with a single laser pulse, using a 1 kW continuous wave fiber laser. The morphology of the laser machined surfaces was evaluated using scanning electron microscopy, coupled with energetic dispersion spectroscopy for the measurement of the chemical composition. The results showed that the high quality of the laser beam, coupled with great irradiances available, allow for blind or through holes to be machined on 1.8 mm plates with a single pulse in the order of a few ms. Holes were produced with size in the range of 200-300 μm; despite the long pulse duration, low amount of melted material is produced around the hole periphery. No significant variation of the chemical composition has been detected on the entrance surfaces while the exit ones have been characterized by the loss of Ga content, due to its melting point being significantly lower with respect to the other alloying elements.

  16. Investigation of residual stresses in shape memory alloy (SMA) composites

    NASA Astrophysics Data System (ADS)

    Berman, Justin Bradley

    Shape memory alloy (SMA) composites are a class of smart materials in which SMA actuators are embedded in a host matrix. The shape memory effect allows for stress induced phase transformations and large recoverable strains that make SMA composites promising candidates for structural shape/vibration control, impact absorption, aircraft deicing or in-flight airfoil shape control systems. However, the difference in thermal expansion between the SMA and the host material leads to residual stresses during processing. In addition, the SMA transformation from martensite to austenite, or the reverse, also generate stresses. These stresses acting in combination can lead to SMA/polymer interfacial debonding or microcracking of the host matrix. The present work was undertaken to study the behavior of nitinol shape memory alloys embedded in epoxy and glass/epoxy matrices and to investigate the development of residual stresses during their manufacture and actuation. A three-phase concentric cylinder micromechanics model and an SMA composite thermoelastic beam theory were developed to analyze the micromechanical and structural-level thermal and transformational stresses for nitinol composites induced by nitinol wires embedded in a host matrix. A series of warpage experiments were conducted on nitinol composite beams during heating cycles to provide experimental validation of model predictions and to assess their thermoelastic structural behavior under non-mechanical loading. Micromechanical model results indicate that excessive residual hoop stresses in nitino/graphite/epoxy composites leads to radial cracking around the embedded nitinol wires. Based on modeling results, the most important factor in reducing residual stresses (and thereby preventing radial cracking) is increasing the level of recovery strain for the nitinol wire. The SMA composite beam model agrees well with experimental data captured for the nitinol/epoxy beam series. Warpage experiments on nitinol

  17. Shape memory alloys. (Latest citations from the INSPEC: Information services for the physics and engineering communities database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning theories and experiments on shape memory effects of various alloys. Alloys studied include nickel, tin, indium, lead, copper, and titanium. Citations discuss shape memory crystallography, properties, processing, alloying, and mechanisms. (Contains 250 citations and includes a subject term index and title list.)

  18. Shape memory alloy seals for geothermal applications. Final report. Report ESG-82-14

    SciTech Connect

    Friske, Warren H.; Schwartzbart, Harry

    1982-07-30

    A novel temperature-actuated seal for geothermal applications is under development. This program uses the shape memory property of nickel-titanium (Nitinol) alloys to achieve an improved seal in geothermal downhole pumps. Nitinol flange face seals and pump shaft seals have been designed, fabricated, and tested. It has been demonstrated that the shape memory effect of Nitinol alloys can be utilized to activate and maintain a leaktight seal in geothermal environments.

  19. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  20. Thermomechanical response of shape memory alloy hybrid composites

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.

    2000-10-01

    This study examines the use of embedded shape memory alloy (SMA) actuators for adaptive control of the themomechanical response of composite structures. Control of static and dynamic responses are demonstrated including thermal buckling, thermal post-buckling, vibration, sonic fatigue, and acoustic transmission. A thermomechanical model is presented for analyzing such shape memory alloy hybrid composite (SMAHC) structures exposed to thermal and mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. The constitutive model developed to describe the mechanics of a SMAHC lamina captures the material nonlinearity with temperature of the SMA and matrix material if necessary. It is in a form that is amenable to commercial finite element (FE) code implementation. The model is valid for constrained, restrained, or free recovery configurations with appropriate measurements of fundamental engineering properties. This constitutive model is used along with classical lamination theory and the FE method to formulate the equations of motion for panel-type structures subjected to steady-state thermal and dynamic mechanical loads. Mechanical loads that are considered include acoustic pressure, inertial (base acceleration), and concentrated forces. Four solution types are developed from the governing equations including thermal buckling, thermal post-buckling, dynamic response, and acoustic transmission/radiation. These solution procedures are compared with closed-form and/or other known solutions to benchmark the numerical tools developed in this study. Practical solutions for overcoming fabrication issues and obtaining repeatable

  1. Magnetoelastic coupling in nickel manganese gallium ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zhao, Peng

    NiMnGa alloys have attracted extensive attention because their ferromagnetic characteristic provides an additional degree of freedom to control both the shape memory effect and the multi-stage phase transformations in this Heusler system. Technically, along with the large magnetic-field-induced strains, NiMnGa alloys exhibit giant magnetocaloric effect due to their magnetic entropy changes associated with the coupled magnetostructural transitions. Fundamentally, a sequence of phase transformations, manifesting itself by a rich variety of physical anomalies on cooling to the martensitic transformation (MT) temperature TM, has been established. However, in comparison to the intensive studies of structural transformations, the magnetic properties of NiMnGa premartensite were hardly touched. The purpose of this research is to (i) investigate the temperature dependence of the magnetic driving force of martensitic NiMnGa, which is a critical factor to determine the actuation temperature window of this material; and (ii) understand the magnetoelastic coupling enhanced precursor effects, especially the unique magnetic behavior of NiMnGa premartensite. The singular point detection technique has been applied to determine the magnetic anisotropy constant K1 of a martensitic Ni49.0 Mn23.5Ga27.5 (wt%) crystal. As expected, K 1 increases with decreasing temperatures below TM of 276 K, following a magnetization power law K1(T)/K1(0)=(M s(T)/Ms(0))3. However, the force required to initiate twin boundary motion increases exponentially with decreasing temperature. The combination of both temperature dependences leads to a very restricted temperature window for magnetic actuation using this alloy. The premartensitic transformation has been established by means of neutron powder diffraction and measurements of elastic constants of C44 and C'. The premartensitic phase has been verified by the stiffening of C 44 prior to the MT. The slope change of C' at TC positively confirms that the

  2. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  3. Smart structures for deformable mirrors actuated by shape memory alloy

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.; Zerbi, F. M.

    2010-07-01

    Deformable mirrors actuated by smart structures are promising devices for next generation astronomical instrumentation. Thermal activated Shape Memory Alloys are materials able to recover their original shape, after an external deformation, if heated above a characteristic temperature. If the recovery of the shape is completely or partially prevented by the presence of constraints, the material can generate recovery stress. Thanks to this feature, these materials can be positively exploited in Smart Structures if properly embedded into host materials. This paper will show the technological processes developed for an efficient use of SMA-based actuators embedded in smart structures tailored to astronomical instrumentation. In particular the analysis of the interface with the host material. Some possible modeling approaches to the actuators behavior will be addressed taking into account trade-offs between detailed analysis and overall performance prediction as a function of the computational time. We developed a combined Finite Element and Raytracing analysis devoted to a parametric performance predictions of a SMA based substrate applicable to deformable mirrors. We took in detail into account the possibility to change the focal length of the mirror keeping a satisfactory image quality. Finally a possible approach with some preliminary results for an efficient control system for the strongly non-linear SMA actuators will be presented.

  4. Interfacial stresses in shape memory alloy-reinforced composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Prajapati, Maulik; Rakesh, S.; Roy Mahapatra, D.

    2014-03-01

    Debonding of Shape Memory Alloy (SMA) wires in SMA reinforced polymer matrix composites is a complex phenomenon compared to other fabric fiber debonding in similar matrix composites. This paper focuses on experimental study and analytical correlation of stress required for debonding of thermal SMA actuator wire reinforced composites. Fiber pull-out tests are carried out on thermal SMA actuator at parent state to understand the effect of stress induced detwinned martensites. An ASTM standard is followed as benchmark method for fiber pull-out test. Debonding stress is derived with the help of non-local shear-lag theory applied to elasto-plastic interface. Furthermore, experimental investigations are carried out to study the effect of Laser shot peening on SMA surface to improve the interfacial strength. Variation in debonding stress due to length of SMA wire reinforced in epoxy are investigated for non-peened and peened SMA wires. Experimental results of interfacial strength variation due to various L/d ratio for non-peened and peened SMA actuator wires in epoxy matrix are discussed.

  5. MOSFET Switching Circuit Protects Shape Memory Alloy Actuators

    NASA Technical Reports Server (NTRS)

    Gummin, Mark A.

    2011-01-01

    A small-footprint, full surface-mount-component printed circuit board employs MOSFET (metal-oxide-semiconductor field-effect transistor) power switches to switch high currents from any input power supply from 3 to 30 V. High-force shape memory alloy (SMA) actuators generally require high current (up to 9 A at 28 V) to actuate. SMA wires (the driving element of the actuators) can be quickly overheated if power is not removed at the end of stroke, which can damage the wires. The new analog driver prevents overheating of the SMA wires in an actuator by momentarily removing power when the end limit switch is closed, thereby allowing complex control schemes to be adopted without concern for overheating. Either an integral pushbutton or microprocessor-controlled gate or control line inputs switch current to the actuator until the end switch line goes from logic high to logic low state. Power is then momentarily removed (switched off by the MOSFET). The analog driver is suited to use with nearly any SMA actuator.

  6. Shape Memory Alloy (SMA)-Based Launch Lock

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  7. Modiolus-hugging intracochlear electrode array with shape memory alloy.

    PubMed

    Min, Kyou Sik; Jun, Sang Beom; Lim, Yoon Seob; Park, Se-Ik; Kim, Sung June

    2013-01-01

    In the cochlear implant system, the distance between spiral ganglia and the electrodes within the volume of the scala tympani cavity significantly affects the efficiency of the electrical stimulation in terms of the threshold current level and spatial selectivity. Because the spiral ganglia are situated inside the modiolus, the central axis of the cochlea, it is desirable that the electrode array hugs the modiolus to minimize the distance between the electrodes and the ganglia. In the present study, we propose a shape-memory-alloy-(SMA-) embedded intracochlear electrode which gives a straight electrode a curved modiolus-hugging shape using the restoration force of the SMA as triggered by resistive heating after insertion into the cochlea. An eight-channel ball-type electrode array is fabricated with an embedded titanium-nickel SMA backbone wire. It is demonstrated that the electrode array changes its shape in a transparent plastic human cochlear model. To verify the safe insertion of the electrode array into the human cochlea, the contact pressures during insertion at the electrode tip and the contact pressures over the electrode length after insertion were calculated using a 3D finite element analysis. The results indicate that the SMA-embedded electrode is functionally and mechanically feasible for clinical applications. PMID:23762181

  8. Frequency-dependent energy harvesting via magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Sayyaadi, Hassan; Askari Farsangi, Mohammad Amin

    2015-11-01

    This paper is focused on presenting an accurate framework to describe frequency-dependent energy harvesting via magnetic shape memory alloys (MSMAs). Modeling strategy incorporates the phenomenological constitutive model developed formerly together with the magnetic diffusion equation. A hyperbolic hardening function is employed to define reorientation-induced strain hardening in the material, and the diffusion equation is used to add dynamic effects to the model. The MSMA prismatic specimen is surrounded by a pickup coil, and the induced voltage during martensite-variant reorientation is investigated with the help of Faraday’s law of magnetic field induction. It has been shown that, in order to harvest the maximum RMS voltage in the MSMA-based energy harvester, an optimum value of bias magnetic field exists, which is the corresponding magnetic field for the start of pseudoelasticity behavior. In addition, to achieve a more compact energy harvester with higher energy density, a specimen with a lower aspect ratio can be chosen. As the main novelty of the paper, it is found that the dynamic effects play a major role in determining the harvested voltage and power, especially for high excitation frequency or specimen thickness.

  9. Experimental characterization of shape memory alloy actuator cables

    NASA Astrophysics Data System (ADS)

    Biggs, Daniel B.; Shaw, John A.

    2016-04-01

    Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.

  10. Stable Crack Growth During Thermal Actuation of Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Jape, S.; Baxevanis, T.; Lagoudas, D. C.

    2016-03-01

    A finite element analysis of crack growth is carried out in shape memory alloys subjected to thermal variations under plane strain, mode I, constant applied loading. The crack is assumed to propagate at a critical level of the crack-tip energy release rate which is modeled using the virtual crack closure technique. The load level, applied at a high temperature at which the austenite phase is stable, is assumed sufficiently low so that the resulting crack-tip energy release rate is smaller than the critical value but sufficiently high so that the critical value is reached during cooling, initiating crack growth (Baxevanis and Lagoudas in Int J Fract 191:191-213, 2015). Stable crack growth is observed, mainly associated with the shielding effect of the transformed material left in the wake of the advancing crack. Results pertaining to the near-tip mechanical fields and fracture toughness are presented and their sensitivity to phase transformation metrics and bias load levels is investigated.

  11. Thermomechanical Modeling of Stress Relaxation in Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Zare, Fateme; Kadkhodaei, Mahmoud; Salafian, Iman

    2015-04-01

    When a shape memory alloy (SMA) is subjected to a mechanical load, especially at high strain rates, its temperature varies due to thermomechanical coupling in the response of these materials. Thus, if strain is kept constant during the transformation, temperature change will cause stress to decrease during loading and to increase during unloading. A decrease in stress under constant strain indicates stress relaxation, and an increase in stress indicates stress recovery, i.e., reverse stress relaxation. In this paper, a fully coupled thermomechanical model is developed in a continuum framework to study stress relaxation and stress recovery in SMA wires. Numerical simulations at different ambient temperatures, applied strain rates, wire radii, and relaxation intervals are done to show the abilities of the proposed model in predicting relaxation phenomena in various conditions where strain remains constant during loading or unloading. Relaxation experiments were also performed on NiTi wires, and the numerical and empirical results are shown to be in a good agreement.

  12. Shape memory alloy-based active chiral composite cells

    NASA Astrophysics Data System (ADS)

    Prajapati, Maulik; Roy Mahapatra, D.

    2014-04-01

    Wing morphing is one of the emerging methodology towards improving aerodynamic efficiency of flight vehicle structures. In this paper a morphing structural element is designed and studied which has its origin in the well known chiral structures. The new aspect of design and functionality explored in this paper is that the chiral cell is actuated using thermal Shape Memory Alloy (SMA) actuator wires to provide directional motion. Such structure utilizes the potential of different actuations concepts based on actuator embedded in the chiral structure skin. This paper describes a new class of chiral cell structure with integrated SMA wire for actuation. Chiral topological constructs are obtained by considering passive and active load path decoupling and sub-optimal shape changes. Single cell of chiral honeycomb with actuators are analyzed using finite element simulation results and experiments. To this end, a multi-cell plan-form is characterized showing interesting possibilities in structural morphing applications. The applicability of the developed chiral cell to flexible wing skin, variable stiffness based design and controlling longitudinal-to-transverse stiffness ratio are discussed.

  13. Improvement of needle type applicator made of shape memory alloy.

    PubMed

    Kanazawa, Y; Kato, K; Yabuhara, T; Uzuka, T; Takahashi, H; Fujii, Y

    2008-01-01

    This paper discusses radio frequency (RF) interstitial hyperthermia for brain tumors with a developed needle type applicator made of a shape memory alloy (SMA). The problem with the heating method of interstitial hyperthermia is the small heating area. So, we proposed a new heating method using a needle type electrode made of SMA which consists of nickel (Ni), copper (Cu) and titanium (Ti) for expanding the heating area. Here, we proposed the heating method that the leading end of needle type electrode was divided into four parts and the leading end spreads in four directions with a temperature rise. First, the proposed RF interstitial hyperthermia system with the SMA needle was presented. Second, the results obtained by the experimental heating of the agar phantom by using the developed SMA needle type applicator were presented. Third, comparing experimental results, we discussed the heating properties of the developed system. Finally, from these results, it is confirmed that the developed needle type applicator made of SMA is useful for wide heating by invasive hyperthermia.

  14. Tailored processing of epoxy with embedded shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Kirkby, E. L.; O'Keane, J.; de Oliveira, R.; Michaud, V. J.; Månson, J.-A. E.

    2009-09-01

    We present the development of a low-temperature liquid composite moulding cure schedule that is compatible with the fabrication of shape memory alloy (SMA)-epoxy composite materials. With this process, the SMA wires do not need to be maintained in place with an external frame, even though the peak post-cure temperature exceeds the activation temperature of the SMA wires. The intrinsic interfacial shear strength of the final material is experimentally determined from single wire pull-out tests, and is compared with the shear stress exerted at the interface by an activated SMA wire. These measurements show that the interface is strong enough to withstand the maximum activation stress. This is confirmed through tests involving the cyclic activation of SMA wires embedded in epoxy samples. The paper successfully demonstrates that, by careful tailoring of the processing schedule, an SMA-epoxy composite that maintains a strong interfacial bond during both processing and subsequent activation of the embedded wires can be fabricated using standard composite processing methods.

  15. Shape-Memory-Alloy-Based Deicing System Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ice buildup on aircraft leading edge surfaces has historically been a problem. Most conventional deicing systems rely either on surface heating to melt the accreted ice or pneumatic surface inflation to mechanically debond the ice. Deicers that rely solely on surface heating require large amounts of power. Pneumatic deicers usually cannot remove thin layers of ice and lack durability. Thus, there is a need for an advanced, low-power ice protection system. As part of the NASA Small Business and Innovation Research (SBIR) program, Innovative Dynamics, Inc., developed an aircraft deicing system that utilizes the properties of Shape Memory Alloys (SMA). The SMA-based system has achieved promising improvements in energy efficiency and durability over more conventional deicers. When they are thermally activated, SMA materials change shape; this is analogous to a conventional thermal expansion. The thermal input is currently applied via conventional technology, but there are plans to implement a passive thermal input that is supplied from the energy transfer due to the formation of the ice itself. The actively powered deicer was tested in the NASA Lewis Icing Research Tunnel on a powered rotating rig in early 1995. The system showed promise, deicing both rime and glaze ice shapes as thin as 1/8 in. The first prototype SMA deicer reduced power usage by 45 percent over existing electrothermal systems. This prototype system was targeted for rotorcraft system development. However, there are current plans underway to develop a fixed-wing version of the deicer.

  16. Flutter of buckled shape memory alloy reinforced laminates

    NASA Astrophysics Data System (ADS)

    Kuo, Shih-Yao; Shiau, Le-Chung; Lai, Chin-Hsin

    2012-03-01

    The effect of shape memory alloys (SMA) on the linear and nonlinear flutter behaviors of buckled cross-ply and angle-ply laminates was investigated in the frequency and time domains using the finite element method. In particular, this study takes the first move toward examining the effect of varying the SMA fiber spacing. Von Karman large deformation assumptions and quasi-steady aerodynamic theory were employed. The flutter boundary, stability boundary, time history response, and phase plane plots of SMA reinforced cross-ply and angle-ply laminates are presented. The numerical results show that increase in the SMA fiber volume fraction and prestrain may generate more recovery stress, and increase the stiffness of the SMA reinforced laminates. Therefore, the flutter boundary and critical load of the plate may be increased significantly. All five types of panel behavior, namely flat, buckled, limit-cycle, periodic, and chaotic motion, are clearly displayed and successively identified. This study sheds light on improving the flutter boundary efficiently by increasing the SMA fiber volume fraction to reinforce the center of the plate.

  17. Shape Memory Alloy (SMA)-based launch lock

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-04-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing free motion of the shaft, which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  18. Directions for High-Temperature Shape Memory Alloys' Improvement: Straight Way to High-Entropy Materials?

    NASA Astrophysics Data System (ADS)

    Firstov, G. S.; Kosorukova, T. A.; Koval, Yu N.; Verhovlyuk, P. A.

    2015-10-01

    Nowadays, all thermo-mechanical effects, associated with the martensitic structural phase transitions, are still in the focus of scientists and engineers, especially once these phenomena are taking place at elevated temperatures. The list of the materials, undergoing high-temperature martensitic transformation, is constantly widening. Still, industrial application of these materials, called high-temperature shape memory alloys, is far enough due to the lack of understanding of the peculiarities of the high-temperature martensitic transformation and shape memory effect. The present work attempts to show how the development of the proper directions for high-temperature shape memory alloys' improvement might lead to the creation of essentially new functional materials.

  19. Potential High-Temperature Shape-Memory-Alloy Actuator Material Identified

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Gaydosh, Darrell J.; Biles, Tiffany A.; Garg, Anita

    2005-01-01

    Shape-memory alloys are unique "smart materials" that can be used in a wide variety of adaptive or "intelligent" components. Because of a martensitic solid-state phase transformation in these materials, they can display rather unusual mechanical properties including shape-memory behavior. This phenomenon occurs when the material is deformed at low temperatures (below the martensite finish temperature, Mf) and then heated through the martensite-to-austenite phase transformation. As the material is heated to the austenite finish temperature Af, it is able to recover its predeformed shape. If a bias is applied to the material as it tries to recover its original shape, work can be extracted from the shape-memory alloy as it transforms. Therefore, shape-memory alloys are being considered for compact solid-state actuation devices to replace hydraulic, pneumatic, or motor-driven systems.

  20. Elevations of Endogenous Kynurenic Acid Produce Spatial Working Memory Deficits

    PubMed Central

    Chess, Amy C.; Simoni, Michael K.; Alling, Torey E.; Bucci, David J.

    2007-01-01

    Kynurenic acid (KYNA) is a tryptophan metabolite that is synthesized and released by astrocytes and acts as a competitive antagonist of the glycine site of N-methyl-D-aspartate receptors at high concentrations and as a noncompetitive antagonist of the α7-nicotinic acetylcholine receptor at low concentrations. The discovery of increased cortical KYNA levels in schizophrenia prompted the hypothesis that elevated KYNA concentration may underlie the working memory dysfunction observed in this population that has been attributed to altered glutamatergic and/or cholinergic transmission. The present study investigated the effect of elevated endogenous KYNA on spatial working memory function in rats. Increased KYNA levels were achieved with intraperitoneal administration of kynurenine (100 mg/kg), the precursor of KYNA synthesis. Rats were treated with either kynurenine or a vehicle solution prior to testing in a radial arm maze task at various delays. Elevations of endogenous KYNA resulted in increased errors in the radial arm maze. In separate experiments, assessment of locomotor activity in an open field and latency to retrieve food reward from one of the maze arms ruled out the possibility that deficits in the maze were attributable to altered locomotor activity or motivation to consume food. These results provide evidence that increased KYNA levels produce spatial working memory deficits and are among the first to demonstrate the influence of glia-derived molecules on cognitive function. The implications for psychopathological conditions such as schizophrenia are discussed. PMID:16920787

  1. Mechanical behaviour and functional properties of porous Ti-45 at. % Ni alloy produced by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Resnina, N.; Belyaev, S.; Voronkov, A.; Gracheva, A.

    2016-05-01

    The mechanical behaviour and shape memory effects were studied in the porous Ti-45.0 at. % Ni alloy produced by self-propagating high-temperature synthesis. It is shown that the porous Ti-45.0 at % Ni alloy is deformed by the same mechanisms as a cast Ti50Ni50 alloy. At low temperatures, the deformation of the porous alloy is realised via martensite reorientation at a low yield limit and by dislocation slip at a high yield limit. At high temperatures (in the austenite B2 phase) the porous Ti-45.0 at % Ni alloy is deformed by the stress-induced martensite at a low yield limit and by dislocation slip at a high yield limit. The pseudoelasticity effect is not found in this alloy, while the transformation plasticity and the shape memory effects are observed on cooling and heating under a constant load. The values of the transformation plasticity, and the shape memory effects, depend linearly on the stress acting on cooling and heating. The temperatures of the martensitic transformation increase linearly when the stress rises up to 80 MPa. The porous Ti-45.0 at % Ni alloy accumulates an irreversible strain on cooling and heating and demonstrates unstable functional behaviour during thermal cycling.

  2. PATH OPTIMIZATION AND CONTROL OF A SHAPE MEMORY ALLOY ACTUATED CATHETER FOR ENDOCARDIAL RADIOFREQUENCY ABLATION

    PubMed Central

    Wiest, Jennifer H.; Buckner, Gregory D.

    2014-01-01

    This paper introduces a real-time path optimization and control strategy for shape memory alloy (SMA) actuated cardiac ablation catheters, potentially enabling the creation of more precise lesions with reduced procedure times and improved patient outcomes. Catheter tip locations and orientations are optimized using parallel genetic algorithms to produce continuous ablation paths with near normal tissue contact through physician-specified points. A nonlinear multivariable control strategy is presented to compensate for SMA hysteresis, bandwidth limitations, and coupling between system inputs. Simulated and experimental results demonstrate efficient generation of ablation paths and optimal reference trajectories. Closed-loop control of the SMA-actuated catheter along optimized ablation paths is validated experimentally. PMID:25684857

  3. Measurement and Prediction of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian; Turner, Travis L.; Seelecke, Stefan

    2008-01-01

    An experimental and numerical investigation into the static and dynamic responses of shape memory alloy hybrid composite (SMAHC) beams is performed to provide quantitative validation of a recently commercialized numerical analysis/design tool for SMAHC structures. The SMAHC beam specimens consist of a composite matrix with embedded pre-strained SMA actuators, which act against the mechanical boundaries of the structure when thermally activated to adaptively stiffen the structure. Numerical results are produced from the numerical model as implemented into the commercial finite element code ABAQUS. A rigorous experimental investigation is undertaken to acquire high fidelity measurements including infrared thermography and projection moire interferometry for full-field temperature and displacement measurements, respectively. High fidelity numerical results are also obtained from the numerical model and include measured parameters, such as geometric imperfection and thermal load. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.

  4. Shape recovery of shape memory alloy fiber embedded resin matrix smart composite after crack repair.

    PubMed

    Hamada, Kenichi; Kawano, Fumiaki; Asaoka, Kenzo

    2003-06-01

    Ni-Ti shape memory alloy fiber embedded resin matrix composites were produced for evaluation of "smart denture", a newly developing denture with the function to close its own crack. Their bending strength and shape recovery after instant crack repair was estimated. The embedded fibers did not decrease the bending strength of the composite after repair. The crack closure of the composites was performed well simply by heating at 80 degrees C. Nevertheless, they showed apparent deflection after crack repair. The following two phenomena were supposed to be the main cause of it: the polymerization shrinkage of matrix resin with heating, and the coefficient of the thermal expansion mismatch between the fiber and the matrix. The embedded fibers could close the crack of the matrix with enough high accuracy for specimen repair, but they turned out to change the specimen shape after repair.

  5. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  6. A Review of TiNiPdCu Alloy System for High Temperature Shape Memory Applications

    NASA Astrophysics Data System (ADS)

    Khan, M. Imran; Kim, Hee Young; Miyazaki, Shuichi

    2015-06-01

    High temperature shape memory alloys (HTSMAs) are important smart materials and possess a significant potential to improve many engineering systems. Many TiNi-based high temperature ternary alloy systems have been reported in literature including TiNiPd, TiNiPt, TiNiZr, TiNiAu, TiNiHf, etc. Some quaternary additions of certain elements in the above systems have been successful to further improve many important shape memory and mechanical properties. The success criteria for an HTSMA become strict in terms of its cyclic stability, maximum recoverable strain, creep resistance, and corrosion resistance at high temperatures. TiNiPdCu alloy system has been recently proposed as a promising HTSMA. Unique nanoscaled precipitates formed in TiNiPdCu-based HTSMAs are found to be stable at temperatures above 773 K, while keeping the benefits of ease of fabrication. It is expected that this alloy system possesses significant potential especially for the high temperature shape memory applications. Till now many research reports have been published on this alloy system. In the present work, a comprehensive review of the TiNiPdCu system is presented in terms of thermomechanical behavior, nanoscale precipitation mechanism, microstructural features, high temperature shape memory and mechanical properties, and the important parameters to control the high temperature performance of these alloys.

  7. Phase Composition and Microstructure of Ti-Nb Alloy Produced by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu P.; Eroshenko, A. Yu; Kovalevskaya, Zh G.; Saprykin, A. A.; Ibragimov, E. A.; Glukhov, I. A.; Chimich, M. A.; Uvarkin, P. V.; Babakova, E. V.

    2016-07-01

    The phase composition and microstructure of Ti-Nb alloy produced from composite titanium and niobium powder by selective laser melting (SLM) was studied. Produced monolayered Ti-Nb alloy enhanced the formation of fine-grained and medium-grained zones with homogeneous element composition of 36-38% Nb mass interval. Alloy phase composition responded to β-alloy substrate phase (grain size was 5-7 pm) and non-equilibrium martensite α"- phase (grain size was 0.1-0.7 µm). α"-phase grains were found along β-phase grain boundaries and inside grains, including decreased niobium content. Alloy microhardness varied within 4200-5500 MPa.

  8. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  9. Shape memory alloy actuation for a variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Rey, Nancy; Tillman, Gregory; Miller, Robin M.; Wynosky, Thomas; Larkin, Michael J.; Flamm, Jeffrey D.; Bangert, Linda S.

    2001-06-01

    The ability to control fan nozzle exit area is an enabling technology for next generation high-bypass-ratio turbofan engines. Performance benefits for such designs are estimated at up to 9% in thrust specific fuel consumption (TSFC) relative to current fixed-geometry engines. Conventionally actuated variable area fan nozzle (VAN) concepts tend to be heavy and complicated, with significant aircraft integration, reliability and packaging issues. The goal of this effort was to eliminate these undesirable features and formulate a design that meets or exceeds leakage, durability, reliability, maintenance and manufacturing cost goals. A Shape Memory Alloy (SMA) bundled cable actuator acting to move an array of flaps around the fan nozzle annulus is a concept that meets these requirements. The SMA bundled cable actuator developed by the United Technologies Corporation (Patents Pending) provides significant work output (greater than 2200 in-lb per flap, through the range of motion) in a compact package and minimizes system complexity. Results of a detailed design study indicate substantial engine performance, weight, and range benefits. The SMA- based actuation system is roughly two times lighter than a conventional mechanical system, with significant aircraft direct operating cost savings (2-3%) and range improvements (5-6%) relative to a fixed-geometry nozzle geared turbofan. A full-scale sector model of this VAN system was built and then tested at the Jet Exit Test Facility at NASA Langley to demonstrate the system's ability to achieve 20% area variation of the nozzle under full scale aerodynamic loads. The actuator exceeded requirements, achieving repeated actuation against full-scale loads representative of typical cruise as well as greater than worst-case (ultimate) aerodynamic conditions. Based on these encouraging results, work is continuing with the goal of a flight test on a C-17 transport aircraft.

  10. Improved Damage Resistant Composite Materials Incorporating Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Paine, Jeffrey S. N.; Rogers, Craig A.

    1996-01-01

    Metallic shape memory alloys (SMA) such as nitinol have unique shape recovery behavior and mechanical properties associated with a material phase change that have been used in a variety of sensing and actuation applications. Recent studies have shown that integrating nitinol-SMA actuators into composite materials increases the composite material's functionality. Hybrid composites of conventional graphite/epoxy or glass/epoxy and nitinol-SMA elements can perform functions in applications where monolithic composites perform inadequately. One such application is the use of hybrid composites to function both in load bearing and armor capacities. While monolithic composites with high strength-to-weight ratios function efficiently as loadbearing structures, because of their brittle nature, impact loading can cause significant catastrophic damage. Initial composite failure modes such as delamination and matrix cracking dissipate some impact energy, but when stress exceeds the composite's ultimate strength, fiber fracture and material perforation become dominant. One of the few methods that has been developed to reduce material perforation is hybridizing polymer matrix composites with tough kevlar or high modulus polyethynylene plies. The tough fibers increase the impact resistance and the stiffer and stronger graphite fibers carry the majority of the load. Similarly, by adding nitinol-SMA elements that absorb impact energy through the stress-induced martensitic phase transformation, the composites' impact perforation resistance can be greatly enhanced. The results of drop-weight and high velocity gas-gun impact testing of various composite materials will be presented. The results demonstrate that hybridizing composites with nitinol-SMA elements significantly increases perforation resistance compared to other traditional toughening elements. Inspection of the composite specimens at various stages of perforation by optical microscope illustrates the mechanisms by which

  11. Magnetic properties of single crystals of Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Farrell, Shannon P.; Dunlap, Richard A.; Cheng, Leon M.; Ham-Su, Rosaura; Gharghouri, Michael A.; Hyatt, Calvin V.

    2004-07-01

    The magnetic shape memory (MSM) effect occurs in some ferromagnetic martensitic alloys at temperatures below the martensite finish temperature and involves the re-orientation of martensite variants by twin boundary motion, in response to an applied stress and/or magnetic field. The driving force for twin boundary motion is the magnetic anisotropy. In this study, magnetization measurements as a function of magnetic field were made on several oriented single crystals of Ni-Mn-Ga alloys using a vibrating sample magnetometer. The magnetization versus magnetic field curves were characteristic of magnetically soft materials with magnetic anisotropy consistent with literature estimates for the different martensite structures observed in Ni-Mn-Ga alloys. Differences in the slope of the curves were due to the martensite structure, the relative proportion of martensite variants present, and their respective easy and hard axis orientations. Thermo-magneto-mechanical training was applied in an attempt to transform multi-variant specimens to single variant martensite. Training of the orthorhombic 7M martensites was sufficient to produce a near single variant of martensite, while the tetragonal 5M martensite responded well to training and produced a single-variant state. The strength of the uniaxial magnetic anisotropy constant for single-variant tetragonal 5M martensite, Ni52.9Mn27.3Ga19.8, was calculated to be Ku=1.8 x 105 J/m3, consistent with literature values. To obtain single-variant martensites, heat-treatment of the specimens prior to thermo-magneto-mechanical training is necessary.

  12. A comparison of methods for the training of NiTi two-way shape memory alloy

    NASA Astrophysics Data System (ADS)

    Luo, H. Y.; Abel, E. W.

    2007-12-01

    The creation of an effective two-way shape memory alloy (TWSMA) requires appropriate heat treatment and optimal training considerations. In particular, the training method used plays a key role. This work investigates different training methods for producing NiTi TWSMA wires with the hot shape of an arc and the cold shape of a straight line. These methods are shape memory cycling, constrained cycling of deformed martensite, pseudoelastic cycling and combined shape memory and pseudoelastic cycling. In order to give a meaningful evaluation of their performance that is relevant to training TWSMA for practical applications, these training methods are assessed in terms of maximum two-way strain, changes in the original hot shape together with the transformation temperatures after the training process, and the effective production of the cold shape. It was found that only the combined shape memory and pseudoelastic cycling provides an effective training method for creating NiTi TWSMA with a non-uniaxial two-way shape change. The undesirable side effects of training are that the NiTi TWSMA wire loses partial memory of the original hot shape and its transformation temperatures shift to lower values. There also exists an optimal number of training cycles, and possibly an optimal training load for obtaining the best cold shape memory and the greatest two-way recoverable strain. These findings give future directions to advance the training technology for TWSMA.

  13. Stabilization of martensite in Cu-Zn-Al shape memory alloys: Effects of {gamma} precipitates and thermal cycling

    SciTech Connect

    Garcia R, J.

    2000-02-01

    The applications of copper based shape memory alloys requiring a prolonged use in the martensitic state have been restricted due to their aging behavior which results in the increase of the reverse martensitic transformation temperatures with time, effect known as stabilization of martensite. The shift of reverse transformation temperatures is only present in the first retransformation after quench and/or aging. When the material reverts to the high temperature (beta) phase a rapid recovering process takes place in such a way that for the following transformations cycles, the normal transformation temperatures are re-established. The effects of thermal cycling (repetition of the temperature induced martensitic transformation) on the transformation characteristics of Cu-based shape memory alloys have been studied by several authors. On the other hand, it is known that the presence of {gamma} precipitates inside the parent {beta}-Cu-Zn-Al phase can produce strong modifications on the transformation temperatures and its thermal hysteresis. In this work the authors present results on the martensite stabilization, produced by aging at room temperature, in Cu-Zn-Al alloys with different distributions of {gamma} phase precipitates with and without thermal cycling, which are compared to the stabilization behavior found in precipitate-free samples.

  14. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  15. Closed-loop control of a shape memory alloy actuation system for variable area fan nozzle

    NASA Astrophysics Data System (ADS)

    Barooah, Prabir; Rey, Nancy

    2002-07-01

    Shape Memory Alloys have been used in a wide variety of actuation applications. A bundled shape memory alloy cable actuator, capable of providing large force and displacement has been developed by United Technologies Corporation (patents pending) for actuating a Variable Area fan Nozzle (VAN). The ability to control fan nozzle exit area is an enabling technology for the next generation turbofan engines. Performance benefits for VAN engines are estimated to be up to 9% in Thrust Specific Fuel Consumption (TSFC) compared to traditional fixed geometry designs. The advantage of SMA actuated VAN design is light weight and low complexity compared to conventionally actuated designs. To achieve the maximum efficiency from a VAN engine, the nozzle exit area has to be continuously varied for a certain period of time during climb, since the optimum nozzle exit area is a function of several flight variables (flight Mach number, altitude etc). Hence, the actuator had to be controlled to provide the time varying desired nozzle area. A new control algorithm was developed for this purpose, which produced the desired flap area by metering the resistive heating of the SMA actuator. Since no active cooling was used, reducing overshoot was a significant challenge of the controller. A full scale, 2 flap model of the VAN system was built, which was capable of simulating a 20% nozzle area variation, and tested under full scale aerodynamic load in NASA Langley Jet Exit Test facility. The controller met all the requirements of the actuation system and was able to drive the flap position to the desired position with less than 2% overshoot in step input tests. The controller is based on a adaptive algorithm formulation with logical switches that reduces its overshoot error. Although the effectiveness of the controller was demonstrated in full scale model tests, no theoretical results as to its stability and robustness has been derived. Stability of the controller will have to be investigated

  16. Optimal Performance of Buildings Isolated By Shape-Memory-Alloy-Rubber-Bearing (SMARB) Under Random Earthquakes

    NASA Astrophysics Data System (ADS)

    Das, Sumanta; Mishra, Sudib K.

    2014-05-01

    Shape Memory Alloy (SMA)-based bearing has been proposed recently for improved base isolation by optimal choice of its transformation strength. Presently, superior performances of the Shape-Memory-Alloy-Rubber-Bearing (SMARB) over the elastomeric bearing are established in mitigating seismic vibration under constraint on maximum isolator displacement. The optimal transformation strengths are proposed through constrained optimization based on stochastic responses. Numerical simulation reveals that Lead Rubber Bearings (LRB) either fails to provide feasible parameters or leads to large floor acceleration, compromising the isolation efficiency. Contrarily, optimal SMARB can efficiently enforce such constraint without greatly affecting the isolation efficiency. Evidence of robustness of SMARB over LRB is also established.

  17. Parametric analysis of a shape memory alloy actuated arm

    NASA Astrophysics Data System (ADS)

    Wright, Cody; Bilgen, Onur

    2016-04-01

    Using a pair of antagonistic Shape Memory Allow (SMA) wires, it may be possible to produce a mechanism that replicates human musculoskeletal movement. The movement of interest is the articulation of the elbow joint actuated by the biceps brachii muscle. In an effort to understand the bio-mechanics of the arm, a single degree of freedom crankslider mechanism is used to model the movement of the arm induced by the biceps brachii muscle. First, a purely kinematical analysis is performed on a rigid body crank-slider. Force analysis is also done modeling the muscle as a simple linear spring. Torque, rocking angle, and energy are calculated for a range of crank-slider geometries. The SMA wire characteristics are experimentally determined for the martensite detwinned and full austenite phases. Using the experimental data, an idealized actuator characteristic curve is produced for the SMA wire. Kinematic and force analyses are performed on the nonlinear wire characteristic curve and a linearized wire curve; both cases are applied to the crankslider mechanism. Performance metrics for both cases are compared, followed by discussion.

  18. THORIUM-BERYLLIUM ALLOYS AND METHOD OF PRODUCING SAME

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1959-09-01

    >The preparation is described of thorium-berylium alloys from halides of the metals by stmultaneously reducing thorium fluoride and beryllium fluoride with calcium at approximately 650 deg C and maintaining the temperature until the thorium-beryhltum alloy separates from the slag.

  19. Comparison of the transformation temperature, microstructure and magnetic properties of Co-Ni-Al and Co-Ni-Al-Cr shape memory alloys

    NASA Astrophysics Data System (ADS)

    Dağdelen, Fethi; Malkoç, Türkan; Kök, Mediha; Ercan, Ercan

    2016-06-01

    In this study, two-phase Co-Ni-Al shape memory alloys that have drawn attention recently due to their technological applications were investigated. Co-Ni-Al and Co-Ni-Al-Cr alloys were produced by melting method in an arc-melter furnace and physical properties between alloys were compared. At the end of experimental measurements it was observed that chromium addition did not change the crystal structure of the Co-Ni-Al alloy, but decreased the martensitic transformation temperature, the most significant property of shape memory alloys. Moreover, there was no significant change in the microstructure of the Co-Ni-Al alloy with chromium addition, and the presence of the two phases determined by X-ray analysis was also determined by optical microscopy. There was no significant change in micro hardness values of the alloys, while important changes in the magnetic properties were determined. It was observed that the Curie temperature decreased by approximately 500 {}^{circ}C with chromium addition and a considerable decrease in the magnetic saturation value was also determined.

  20. Compressive Response of Polycrystalline NiCoMnGa High-Temperature Meta-magnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Karaca, H. E.; Turabi, A. S.; Basaran, B.; Pathak, A. K.; Dubenko, I.; Ali, N.; Chumlyakov, Y. I.; Li, P.

    2013-10-01

    The effects of the addition of quaternary element, Co, to polycrystalline NiMnGa alloys on their magnetic and shape memory properties have been investigated. NiCoMnGa polycrystalline alloys have been found to demonstrate good shape memory and superelasticity behavior under compression at temperatures greater than 100 °C with about 3% transformation strain and low-temperature hysteresis. It is also possible to train the material to demonstrate a large two-way shape memory effect.

  1. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  2. Pulsed-mode operation and performance of a ferromagnetic shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Asua, E.; García-Arribas, A.; Etxebarria, V.; Feuchtwanger, J.

    2014-02-01

    The actuation capabilities and positioning performance of a single crystal ferromagnetic shape memory alloy (FSMA) operated in pulsed mode are evaluated in a prototype device. It consists of two orthogonal coil pairs that produce the magnetic fields necessary for the non-contact deformation of the material. The position of the top of the crystal after actuation is measured by a capacitive sensor. A specifically designed power module drives the discharge of a set of capacitors through the coils, producing fast current pulses of large amplitudes (about 250 A), the coil pairs are driven independently to control the direction of actuation. Open-loop experiments demonstrate that successive pulses of increasing magnitude successfully produced the desired expansion and contraction of the crystal, depending on the pair of coils that is activated. The deformation achieved is maintained after the pulses, highlighting the advantageous set-and-forget operation of the device. Closed-loop experiments are performed using a double proportional-integral-derivative controller, designed to take advantage of the energy-saving quality of the set-and-forget operation. Despite the nonlinear response and hysteric response of FSMA materials, a reference position can be reached and maintained with a maximum error of 0.5 μm.

  3. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    DOE PAGES

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrsmore » at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.« less

  4. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  5. Microstructure–property relationships in a high-strength 51Ni–29Ti–20Hf shape memory alloy

    SciTech Connect

    Coughlin, D. R.; Casalena, L.; Yang, F.; Noebe, R. D.; Mills, M. J.

    2015-09-18

    NiTiHf alloys exhibit remarkable shape memory and pseudoelastic properties that are of fundamental interest to a growing number of industries. In this study, differential scanning calorimetry and isothermal compression tests have revealed that the 51Ni–29Ti–20Hf alloy has useful shape memory properties that include a wide range of transformation temperatures as well as highly stable pseudoelastic behavior. These properties are governed by short-term aging conditions, which may be tailored to control transformation temperatures while giving rise to exceptionally high austenite yield strengths which aid transformation stability. The yield strength of the austenite phase can reach 2.1 GPa by aging for 3hrs at 500°C, while aging for 3hrs at 700°C produced an alloy with an austenite finish temperature (A f ) of 146°C. High-resolution scanning transmission electron microscopy has revealed a new precipitate phase, H-phase, under the homogenized and extruded condition and the aged 3 hrs at 500°C condition, but only the previously identified H-phase precipitate was observed after aging at temperatures of 600°C and 700°C for 3 hrs. Finally, dislocation analysis indicated that plastic deformation of the austenite phase occurred by <100> type slip, similar to that observed in binary NiTi.

  6. Smart Material Demonstrators Based on Shape Memory Alloys and Electroceramics

    NASA Technical Reports Server (NTRS)

    Cooke, Arther V.

    1996-01-01

    This paper describes the development and characterization of two technology demonstrators that were produced under the auspices of an ARPA sponsored smart materials synthesis and processing effort. The ARPA Smart Materials and Synthesis (SMS) Program was a 2 year, $10M partnership led by Martin Marietta Laboratories - Baltimore and included Lockheed Missiles & Space Co., NRL, AVX Corp., Martin Marietta Astronautics Groups, BDM Federal, Inc., Virginia Tech, Clemson, University of Maryland, Denver University, and The Johns Hopkins University. In order to demonstrate the usefulness of magnetron sputtered shape memory foil and the manufacturability of reliable, reproducible electrostrictive actuators, the team designed a broadband active vibration cancellation device for suppressing the vibration load on delicate instruments and precision pointing devices mounted on orbiting satellites and spacecraft. The results of extensive device characterization and bench testing are discussed. Initial simulation results show excellent control authority and amplitude attenuation over the range of anticipated disturbance frequencies. The SMS Team has also developed an active 1-3 composite comprising micro-electrostrictive actuators embedded in a polymeric matrix suitable for underwater applications such as sonar quieting and listening arrays, and for medical imaging. Follow-on programs employing these technologies are also described.

  7. Airfoil-based piezoelectric energy harvesting by exploiting the pseudoelastic hysteresis of shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    de Sousa, Vagner Candido; De Marqui Junior, Carlos

    2015-12-01

    The modeling and analysis of an electromechanically coupled typical aeroelastic section with shape memory alloy springs for wind energy harvesting is addressed in this paper. An airfoil with two-degrees-of-freedom, namely pitch and plunge, is considered and piezoelectric coupling is added to the plunge degree-of-freedom. A load resistance is assumed in the electrical domain of the problem in order to estimate the electrical power output. Shape memory alloy coil springs are modeled in the pitch degree-of-freedom of the typical section. A nickel-titanium alloy that exhibits pseudoelasticity at room temperature is assumed. The constitutive model for the shape memory alloy is based on classical phenomenological models. The unsteady aerodynamic loads are obtained by Jones’ approximation to Wagner’s indicial function. The resulting nonlinear electroaeroelastic model is cast into a state-space representation and solved with a Runge-Kutta method. The effects of preload values of the shape memory springs and resistive power generation on the aeroelastic behavior of the wind energy harvester are investigated at the flutter boundary and in a post-flutter regime. The nonlinear kinetics of the austenite-to-martensite phase transformation changes the typical linear flutter behavior to stable limit-cycle oscillations over a range of airflow speeds. Such nonlinear aeroelastic behavior introduced by the hysteretic behavior of the SMA springs provides an important source of persistent electrical power.

  8. Apparatus and method for low-temperature training of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-12-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  9. Apparatus and Method for Low-Temperature Training of Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Swanger, A. M.; Fesmire, J. E.; Trigwell, S.; Gibson, T. L.; Williams, M. K.; Benafan, O.

    2015-01-01

    An apparatus and method for the low-temperature thermo-mechanical training of shape memory alloys (SMA) has been developed. The experimental SMA materials are being evaluated as prototypes for applicability in novel thermal management systems for future cryogenic applications. Alloys providing two-way actuation at cryogenic temperatures are the chief target. The mechanical training regimen was focused on the controlled movement of rectangular strips, with S-bend configurations, at temperatures as low as 30 K. The custom holding fixture included temperature sensors and a low heat-leak linear actuator with a magnetic coupling. The fixture was mounted to a Gifford-McMahon cryocooler providing up to 25 W of cooling power at 20 K and housed within a custom vacuum chamber. Operations included both training cycles and verification of shape memory movement. The system design and operation are discussed. Results of the training for select prototype alloys are presented.

  10. Magnetic and calorimetric investigations of ferromagnetic shape memory alloy Ni54Fe19Ga27

    NASA Astrophysics Data System (ADS)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Kaul, Rakesh; Majumdar, S.; Roy, S. B.

    2007-06-01

    We report results of magnetization and differential scanning calorimetry measurements in the ferromagnetic shape memory alloy Ni54Fe19Ga27. This alloy undergoes an austenite-martensite phase transition in its ferromagnetic state. The nature of the ferromagnetic state, both in the austenite and the martensite phase, is studied in detail. The ferromagnetic state in the martensite phase is found to have higher anisotropy energy as compared with the austenite phase. The estimated anisotropy constant is comparable to that of a well-studied ferromagnetic shape memory alloy system NiMnGa. Further, the present study highlights various interesting features accompanying the martensitic transition (MT). These features suggest the possibility of either a premartensitic transition and/or an inter-MT in this system.

  11. Positron Annihilation Spectroscopy Study of Ni-Mn-Ga Ferromagnetic Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Merida, David; Garcia, Jose Angel; Apiñaniz, Estibaliz; Plazaola, Fernando; Sanchez-Alarcos, Vicente; Pérez-Landazábal, Jose Ignacio; Recarte, Vicente

    We have studied the role that vacancy type defects play in the martensitic transformation of Ni-Mn-Ga ferromagnetic shape memory alloys by means of positron lifetime spectroscopy. The measurements presented in this work have been performed in five ternary alloys. Three of them transform to modulated and two to non-modulated martensitic phases. With these five samples we cover a large range in composition. Positron experiments have been performed at room temperature after subsequent isochronal annealing at different temperatures and up to a maximum temperature of 600°C. Results show a large variation of the average positron lifetime value with the isochronal annealing temperature in non-modulated samples. However, the response in the modulated samples is quite different. The results are discussed in term of different type of positron trapping defects and their evolution with the annealing temperature. The present work shows a correlation between vacancy concentration and martensitic transformation temperature of ferromagnetic shape memory alloys.

  12. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  13. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications

    PubMed Central

    Pan, Qiang; Cho, Chongdu

    2007-01-01

    Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its unique characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. This study presents a shape memory alloy based micro-damper, which exploits the pseudoelasticity of NiTi wires for energy dissipation. The mechanical model and functional principle of the micro-damper are explained in detail. Moreover, the mechanical behavior of NiTi wires subjected to various temperatures, strain rates and strain amplitudes is observed. Resulting from those experimental results, the damping properties of the micro-damper involving secant stiffness, energy dissipation and loss factor are analyzed. The result indicates the proposed NiTi based micro-damper exhibits good energy dissipation ability, compared with conventional materials damper.

  14. Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys

    NASA Astrophysics Data System (ADS)

    Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard

    2015-10-01

    In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.

  15. Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys

    SciTech Connect

    Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard

    2015-10-07

    In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.

  16. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film.

  17. A Low Hysteresis NiTiFe Shape Memory Alloy Based Thermal Conduction Switch

    SciTech Connect

    Lemanski, J. L.; Krishnan, V. B.; Manjeri, R. Mahadevan; Vaidyanathan, R.; Notardonato, W. U.

    2006-03-31

    Shape memory alloys possess the ability to return to a preset shape by undergoing a solid state phase transformation at a particular temperature. This work reports on the development and testing of a low temperature thermal conduction switch that incorporates a NiTiFe shape memory element for actuation. The switch was developed to provide a variable conductive pathway between liquid methane and liquid oxygen dewars in order to passively regulate the temperature of methane. The shape memory element in the switch undergoes a rhombohedral or R-phase transformation that is associated with a small hysteresis (typically 1-2 deg. C) and offers the advantage of precision control over a set temperature range. For the NiTiFe alloy used, its thermomechanical processing, subsequent characterization using dilatometry, differential scanning calorimetry and implementation in the conduction switch configuration are addressed.

  18. Identification of epsilon martensite in a Fe-based shape memory alloy by means of EBSD.

    PubMed

    Verbeken, K; Van Caenegem, N; Raabe, D

    2009-01-01

    Ferrous shape memory alloys (SMAs) are often thought to become a new, important group of SMAs. The shape memory effect in these alloys is based on the reversible, stress-induced martensitic transformation of austenite to epsilon martensite. The identification and quantification of epsilon martensite is crucial when evaluating the shape memory behaviour of this material. Previous work displayed that promising results were obtained when studying the evolution of the amount of epsilon martensite after different processing steps with Electron BackScatter Diffraction (EBSD). The present work will discuss in detail, on the one hand, the challenges and opportunities arising during the identification of epsilon martensite by means of EBSD and, on the other hand, the possible interpretations that might be given to these findings. It will be illustrated that although the specific nature of the austenite to epsilon martensite transformation can still cause some points of discussion, EBSD has a high potential for identifying epsilon martensite.

  19. Embedded Shape Memory Alloy Particles for the Self-Sensing of Fatigue Crack Growth in an Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Leser, William Paul

    Future aerospace vehicles will be built using novel materials for mission conditions that are difficult to replicate in a laboratory. Structural health monitoring and condition-based maintenance will be critical to ensure the reliability of such vehicles. A multi-functional aluminum alloy containing embedded shape memory alloy (SMA) particles to detect fatigue crack growth is proposed. The regions of intensified strain near the tip of a growing fatigue crack cause the SMA particles to undergo a solid-to-solid phase transformation from austenite to martensite, releasing a detectable and identifiable acoustic emission (AE) signal that can be used to locate the crack in the affected component. This study investigates the AE response of two SMA systems, Ni-Ti, and Co-Ni-Al. Tensile (Ni-Ti) and compressive (Co-Ni-Al) tests were conducted to study the strain-induced transformation response in both of the alloy systems. It was found that the critical stress for transformation in both SMA systems was easily identified by a burst of AE activity during both transformation and reverse transformation. AE signals from these experiments were collected for use as training data for a Bayesian classifier to be used to identify transformation signals in a Al7050 matrix with embedded SMA particles. The Al/SMA composite was made by vacuum hot pressing SMA powder between aluminum plates. The effect of hot pressing temperature and subsequent heat treatments (solutionizing and peak aging) on the SMA particles was studied. It was found that, at the temperatures required, Co-Ni-Al developed a second phase that restricted the transformation from austenite to martensite, thus rendering it ineffective as a candidate for the embedded particles. Conversely, Ni-Ti did survive the embedding process and it was found that the solutionizing heat treatment applied after hot pressing was the main driver in determining the final transformation temperatures for the Ni-Ti particles. The effect of hot

  20. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.

    PubMed

    Chu, C L; Hu, T; Wu, S L; Dong, Y S; Yin, L H; Pu, Y P; Lin, P H; Chung, C Y; Yeung, K W K; Chu, Paul K

    2007-09-01

    Fenton's oxidation is traditionally used to remove inorganic and organic pollutants from water in waster water treatment. It is an advanced oxidation process in which H2O2 is catalytically decomposed by ferrous irons into hydroxyl radicals (*OH) which have a higher oxidation potential (2.8V) than H2O2. In the work reported here, we for the first time use Fenton's oxidation to modify the surface of biomedical NiTi shape memory alloy (SMA). The influences of Fenton's oxidation on the surface microstructure, blood compatibility, leaching of harmful Ni ions and corrosion resistance in simulated body fluids is assessed using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, inductively coupled plasma mass spectrometry, electrochemical tests, hemolysis analysis and the blood platelet adhesion test. The mechanical stability of the surface titania film produced by Fenton's oxidation as well as their effects on the shape memory behavior of the SMA are studied by bending tests. Our results show that Fenton's oxidation produces a novel nanostructured titania gel film with a graded structure on the NiTi substrate without an intermediate Ni-rich layer that is typical of high-temperature oxidation. Moreover, there is a clear Ni-free zone near the top surface of the titania film. The surface structural changes introduced by Fenton's oxidation improve the electrochemical corrosion resistance and mitigate Ni release. The latter effects are comparable to those observed after oxygen plasma immersion ion implantation reported previously and better than those of high-temperature oxidation. Aging in boiling water improves the crystallinity of the titania film and further reduces Ni leaching. Blood platelet adhesion is remarkably reduced after Fenton's oxidation, suggesting that the treated SMA has improved thrombo resistance. Enhancement of blood compatibility is believed to stem from the improved hemolysis resistance, the surface wettability and the

  1. Nanoscale nickel-titanium shape memory alloys thin films fabricated by using biased target ion beam deposition

    NASA Astrophysics Data System (ADS)

    Hou, Huilong

    Shape memory alloys offer the highest work output per unit volume among smart materials and have both high actuation stress and large recoverable strain. Miniaturization of materials and devices requires shape memory actuation which is uncompromised at a small scale. However, size effects need to be understood in order to scale shape memory actuation with the minimum size critical to device design. Controlling material quality and properties is essential in fabrication of shape memory alloys into nanometer regime. This work demonstrates a novel fabrication technique, biased target ion beam deposition (BTIBD), which uses additional adatom energy in order to fabricate high-quality nickel-titanium (NiTi) alloys thin films with nanometer thickness. These fabricated ultrathin NiTi films provide insight into the size scale dependence of shape memory functionality at nanoscale regime. BTIBD provides additional adatom energy to the growing film in order to fundamentally tailor the film growth mode for quality and properties. An independent ion beam source is customized in BTIBD to provide low-energy ions (tens of eV) during growth of films on substrates. Pure Ti and pure Ni targets are co-sputtering in BTIBD to fabricate NiTi thin films. The prepared NiTi films are continuous, and the thickness ranges from several tens to a few hundreds nanometers. The composition is controllable over the range of Ni-rich (>50.5 at% Ni), near-equiatomic, and Ti-rich (<49.5 at% Ni). The film surfaces are consistently ultra-smooth --- twice as smooth as conventional NiTi thin films fabricated by magnetron sputtering --- over all the composition ranges and over wide surface areas. The substrate/film interface is smooth and the interfacial diffusion is a minimal portion of the film thickness. Crystallographic phases and grain size in BTIBD NiTi films with thickness on the order of 100 nm are tunable via heat treatment. The as-deposited BTIBD films are amorphous. A pure B2 phase (without other

  2. Comparative Study by MS and XRD of Fe50Al50 Alloys Produced by Mechanical Alloying, Using Different Ball Mills

    NASA Astrophysics Data System (ADS)

    Rojas Martínez, Y.; Pérez Alcázar, G. A.; Bustos Rodríguez, H.; Oyola Lozano, D.

    2005-02-01

    In this work we report a comparative study of the magnetic and structural properties of Fe50Al50 alloys produced by mechanical alloying using two different planetary ball mills with the same ball mass to powder mass relation. The Fe50Al50 sample milled during 48 h using the Fritsch planetary ball mill pulverisette 5 and balls of 20 mm, presents only a bcc alloy phase with a majority of paramagnetic sites, whereas that sample milled during the same time using the Fritsch planetary ball mill pulverisette 7 with balls of 15 mm, presents a bcc alloy phase with paramagnetic site (doublet) and a majority of ferromagnetic sites which include pure Fe. However for 72 h of milling this sample presents a bcc paramagnetic phase, very similar to that prepared with the first system during 48 h. These results show that the conditions used in the first ball mill equipment make more efficient the milling process.

  3. Low spring index, large displacement Shape Memory Alloy (SMA) coil actuators for use in macro- and micro-systems

    NASA Astrophysics Data System (ADS)

    Holschuh, Brad; Newman, Dava

    2014-03-01

    Shape memory alloys (SMA) offer unique shape changing characteristics that can be exploited to produce low­ mass, low-bulk, large-stroke actuators. We are investigating the use of low spring index (defined as the ratio of coil diameter to wire diameter) SMA coils for use as actuators in morphing aerospace systems. Specifically, we describe the development and characterization of minimum achievable spring index coiled actuators made from 0.3048 mm (0.012") diameter shape memory alloy (SMA) wire for integration in textile architectures for future compression space suit applications. Production and shape setting of the coiled actuators, as well as experimental test methods, are described. Force, length and voltage relationships for multiple coil actuators are reported and discussed. The actuators exhibit a highly linear (R2 < 0.99) relationship between isometric blocking force and coil displacement, which is consistent with current SMA coil models; and SMA coil actuators demonstrate the ability to produce significant linear forces (i.e., greater than 8 N per coil) at strains up to 3x their initial (i.e., fully coiled) length. Discussions of both the potential use of these actuators in future compression space suit designs, and the broader viability of these actuators in both macro- and micro-systems, are presented.

  4. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  5. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.

    PubMed

    Dunand, David C; Müllner, Peter

    2011-01-11

    The off-stoichiometric Ni(2)MnGa Heusler alloy is a magnetic shape-memory alloy capable of reversible magnetic-field-induced strains (MFIS). These are generated by twin boundaries moving under the influence of an internal stress produced by a magnetic field through the magnetocrystalline anisotropy. While MFIS are very large (up to 10%) for monocrystalline Ni-Mn-Ga, they are near zero (<0.01%) in fine-grained polycrystals due to incompatibilities during twinning of neighboring grains and the resulting internal geometrical constraints. By growing the grains and/or shrinking the sample, the grain size becomes comparable to one or more characteristic sample sizes (film thickness, wire or strut diameter, ribbon width, particle diameter, etc), and the grains become surrounded by free space. This reduces the incompatibilities between neighboring grains and can favor twinning and thus increase the MFIS. This approach was validated recently with very large MFIS (0.2-8%) measured in Ni-Mn-Ga fibers and foams with bamboo grains with dimensions similar to the fiber or strut diameters and in thin plates where grain diameters are comparable to plate thickness. Here, we review processing, micro- and macrostructure, and magneto-mechanical properties of (i) Ni-Mn-Ga powders, fibers, ribbons and films with one or more small dimension, which are amenable to the growth of bamboo grains leading to large MFIS, and (ii) "constructs" from these structural elements (e.g., mats, laminates, textiles, foams and composites). Various strategies are proposed to accentuate this geometric effect which enables large MFIS in polycrystalline Ni-Mn-Ga by matching grain and sample sizes.

  6. Influence of the microstructure on the corrosion behaviour of a shape memory Cu-Al-Be alloy in a marine environment

    NASA Astrophysics Data System (ADS)

    Montecinos, S.; Simison, S. N.

    2011-01-01

    The influence of the microstructure on the corrosion behaviour of a shape memory Cu-11.40Al-0.55Be (wt.%) polycrystalline alloy in 3.5% NaCl has been studied by microscopical examinations, spectroscopical and X-ray diffraction measurements, and electrochemical tests. Chloride environment can produce a dealuminization attack, and the corrosion behaviour is affected by the alloy microstructural conditions. After long times of immersion, the single β phase microstructure suffers localized corrosion in some regions but dealuminization is generalized on the whole surface. However, in the (β + γ2) microstructure, preferential dissolution of γ2 dendritic precipitates occurs, which seems to protect β matrix from dealloying.

  7. High-strength, creep-resistant molybdenum alloy and process for producing the same

    SciTech Connect

    Bianco, Robert; Buckman, Jr. William R.; Geller, Clint B.

    1997-12-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume ({approximately}1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum.

  8. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, Robert; Buckman, Jr., R. William; Geller, Clint B.

    1999-01-01

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2-4% by volume (.about.1-4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T.sub.m of molybdenum.

  9. High-strength, creep-resistant molybdenum alloy and process for producing the same

    DOEpatents

    Bianco, R.; Buckman, R.W. Jr.; Geller, C.B.

    1999-02-09

    A wet-doping process for producing an oxide-dispersion strengthened (ODS), creep-resistant molybdenum alloy is disclosed. The alloy is made by adding nitrate or acetate salts of lanthanum, cerium, thorium, or yttrium to molybdenum oxide to produce a slurry, heating the slurry in a hydrogen atmosphere to produce a powder, mixing and cold isostatically pressing the powder, sintering in a hydrogen atmosphere, and thermomechanically processing (swaging, extruding, cold drawing) the product. The ODS molybdenum alloy produced by the process contains 2--4% by volume (ca. 1--4% by weight) of an oxide of lanthanum, cerium, thorium, or yttrium. The alloy has high strength and improved creep-resistance at temperatures greater than 0.55T{sub m} of molybdenum. 10 figs.

  10. Relationship among grain size, annealing twins and shape memory effect in Fe–Mn–Si based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaixia; Peng, Huabei; Zhang, Chengyan; Wang, Shanling; Wen, Yuhua

    2016-07-01

    In order to clarify the relationship among grain size, annealing twins and the shape memory effect in Fe–Mn–Si based shape memory alloys, the Fe–21.63Mn–5.60Si–9.32Cr–5.38Ni (weight %) alloy with a grain size ranging from 48.9 μm–253.6 μm was obtained by adjusting the heating temperature or heating time after 20% cold-rolling. The densities of grain boundaries and annealing twins increase with a decrease in grain size, whereas the volume fraction and width of stress-induced ε martensite after 9% deformation at Ms + 10 K decrease. This result indicates that grain refinement raises the constraint effects of grain boundaries and annealing twins upon martensitic transformation. In this case, the ability to suppress the plastic deformation and facilitate the stress-induced ε martensite transformation deteriorates after grain refinement owing to the enhancement of the constraint effects. It is demonstrated by the result that the difference at Ms + 10 K between the critical stress for plastic yielding and that for inducing martensitic transformation is smaller for the specimen with a grain size of 48.9 μm than for the specimen with a grain size of 253.6 μm. Therefore, the shape memory effect declined by decreasing the grain size.

  11. Relationship among grain size, annealing twins and shape memory effect in Fe-Mn-Si based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaixia; Peng, Huabei; Zhang, Chengyan; Wang, Shanling; Wen, Yuhua

    2016-07-01

    In order to clarify the relationship among grain size, annealing twins and the shape memory effect in Fe-Mn-Si based shape memory alloys, the Fe-21.63Mn-5.60Si-9.32Cr-5.38Ni (weight %) alloy with a grain size ranging from 48.9 μm-253.6 μm was obtained by adjusting the heating temperature or heating time after 20% cold-rolling. The densities of grain boundaries and annealing twins increase with a decrease in grain size, whereas the volume fraction and width of stress-induced ɛ martensite after 9% deformation at Ms + 10 K decrease. This result indicates that grain refinement raises the constraint effects of grain boundaries and annealing twins upon martensitic transformation. In this case, the ability to suppress the plastic deformation and facilitate the stress-induced ɛ martensite transformation deteriorates after grain refinement owing to the enhancement of the constraint effects. It is demonstrated by the result that the difference at Ms + 10 K between the critical stress for plastic yielding and that for inducing martensitic transformation is smaller for the specimen with a grain size of 48.9 μm than for the specimen with a grain size of 253.6 μm. Therefore, the shape memory effect declined by decreasing the grain size.

  12. An Implicit Algorithm for the Numerical Simulation of Shape-Memory Alloys

    SciTech Connect

    Becker, R; Stolken, J; Jannetti, C; Bassani, J

    2003-10-16

    Shape-memory alloys (SMA) have the potential to be used in a variety of interesting applications due to their unique properties of pseudoelasticity and the shape-memory effect. However, in order to design SMA devices efficiently, a physics-based constitutive model is required to accurately simulate the behavior of shape-memory alloys. The scope of this work is to extend the numerical capabilities of the SMA constitutive model developed by Jannetti et. al. (2003), to handle large-scale polycrystalline simulations. The constitutive model is implemented within the finite-element software ABAQUS/Standard using a user defined material subroutine, or UMAT. To improve the efficiency of the numerical simulations, so that polycrystalline specimens of shape-memory alloys can be modeled, a fully implicit algorithm has been implemented to integrate the constitutive equations. Using an implicit integration scheme increases the efficiency of the UMAT over the previously implemented explicit integration method by a factor of more than 100 for single crystal simulations.

  13. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    SciTech Connect

    Sethi, Brahmananda Sarma, S. Srinivasan, A. Santra, S. B.

    2014-04-24

    Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as well as further development of ferromagnetic shape memory materials. In the present study we report the preparation and characterization of bulk Co{sub 45}Ni{sub 25}Ga{sub 30} alloy, prepared by a sequence of arc melting technique followed by homogenization at 1150 °C for 24 hours and ice-water quenching. Structural and magnetic properties of the alloys were studied by means of X-ray diffraction and vibrating sample magnetometer in an applied field range of ±18 kOe equipped with a high temperature oven. We have determined the critical temperature T{sub C} (∼375.5 K) and the critical exponents viz; β=0.40, γ=1.68 and δ=5.2. Asymptotic critical exponents β, γ, and δ obey Widom scaling relation, γ+β=βδ, and the magnetization data satisfy the scaling equation of state for second-order phase transition in the asymptotic critical region.

  14. Shape Memory Effect in Cast Versus Deformation-Processed NiTiNb Alloys

    NASA Astrophysics Data System (ADS)

    Hamilton, Reginald F.; Lanba, Asheesh; Ozbulut, Osman E.; Tittmann, Bernhard R.

    2015-06-01

    The shape memory effect (SME) response of a deformation-processed NiTiNb shape memory alloy is benchmarked against the response of a cast alloy. The insoluble Nb element ternary addition is known to widen the hysteresis with respect to the binary NiTi alloy. Cast microstructures naturally consist of a cellular arrangement of characteristic eutectic microconstituents surrounding primary matrix regions. Deformation processing typically aligns the microconstituents such that the microstructure resembles discontinuous fiber-reinforced composites. Processed alloys are typically characterized for heat-to-recover applications and thus deformed at constant temperature and subsequently heated for SME recovery, and the critical stress levels are expected to facilitate plastic deformation of the microconstituents. The current work employs thermal cycling under constant bias stresses below those critical levels. This comparative study of cast versus deformation-processed NiTiNb alloys contrasts the strain-temperature responses in terms of forward Δ T F = M s - M f and reverse Δ T R = A f - A s temperature intervals, the thermal hysteresis, and the recovery ratio. The results underscore that the deformation-processed microstructure inherently promotes irreversibility and differential forward and reverse transformation pathways.

  15. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Padula, S. A., II; Noebe, R. D.; Benafan, O.; Vaidyanathan, R.

    2014-12-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance.

  16. Single-crystal growth of NiMnGa magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Jingmin; Jiang, Chengbao

    2008-02-01

    The crystal growth of NiMnGa magnetic shape memory alloys was investigated by the optical zone melting method. Slightly macroscopic convex and planar solid-liquid interfaces were achieved by controlling the molten zone morphologies. Single crystals were successfully prepared in three typical series of NiMnGa magnetic shape memory alloys, including stoichiometric Ni 50Mn 25Ga 25, Ni-rich NiMnGa and Mn-rich NiMnGa alloys. Studies on the solute partition during crystal growth revealed the enrichment of Mn and deficiency of both Ni and Ga in front of the solid-liquid interface for both stoichiometric and Mn-rich NiMnGa alloys, while a slight enrichment of Ni for Ni-rich NiMnGa alloys. An initial transient stage was determined to be about 20 mm, and a uniform composition distribution existed along the axis of the crystals in the stable growth parts, which matches well with the proposed mathematic model.

  17. Corrosion Behavior of Ti-55Ni-1.2Co High Stiffness Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Norwich, Dennis W.; Ehrlinspiel, Michael

    2014-07-01

    The corrosion behavior of high stiffness nominal Ti-55Ni-1.2Co (wt.%) shape memory alloys (SMAs) was systematically investigated in the present study including straight wires, wire-formed stents, and laser-cut stents. It was found that the corrosion behavior of Ti-55Ni-1.2Co alloys is comparable with those of binary NiTiNol counterparts, which is attributed to the small alloying amount of cobalt. Additionally, the corrosion resistance of high stiffness Ti-55Ni-1.2Co SMAs is independent of the stent-forming method. To explore the galvanic corrosion susceptibility between Ti-55Ni-1.2Co and binary NiTiNol alloys, a NiTiNol sleeve was laser welded to the Ti-55Ni-1.2Co stent. Interestingly, there is no galvanic corrosion observed in this NiTiCo-NiTiNol component, even after immersion of the component in phosphate-buffered saline solution at 37 °C for three months. This study will shed some light on the industrial applications of high stiffness Ti-55Ni-1.2Co shape memory alloys.

  18. Elevated Temperature, In Situ Micromechanical Characterization of a High Temperature Ternary Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Wheeler, J. M.; Niederberger, C.; Raghavan, R.; Thompson, G.; Weaver, M.; Michler, J.

    2015-12-01

    The microthermomechanical behavior of a precipitation-hardenable Ni-48Ti-25Pd (at.%) shape memory alloy has been investigated as a function of temperature. Micropillars were fabricated within a large <145>-oriented grain and compressed in situ in the SEM at elevated temperatures corresponding to the martensite and austenite phase transformation temperatures. The precipitation-strengthened alloys exhibited stable pseudoelastic behavior with little or no residual strains when near the transformation temperatures. In the plastic regime, slip was observed to occur via pencil glide, circumventing the fine scale precipitates along multiple slip planes.

  19. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2010-01-01

    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  20. The influence of ageing on martensite ordering and stabilization in shape memory Cu-Al-Ni alloys

    SciTech Connect

    Aydogdu, A.; Aydogdu, Y.; Adiguzel, O.

    1997-05-01

    The martensitic transformation and the associated mechanical shape reversibility in copper-based shape memory alloys is strongly influenced by quenching and ageing treatments. Ageing of martensite in as-quenched Cu-Al-Ni alloys can result in loss of memory behavior. Structural studies have been carried out to measure the changes in the degree of order that develop during martensitic ageing of two Cu-Al-Ni alloys. Stabilization is directly related to disordering in martensitic state and the spacing differences ({Delta}d) between selected pairs of diffraction planes reflect the degree of ordering in martensite. The changes in degree of order are shown to be similar in as-quenched and post-quenched {beta}-phase annealed alloys, thereby leading to the conclusion that loss of memory in as-quenched alloys is not solely attributable to any extra changes in degree of order brought about by excess vacancies during martensitic ageing.

  1. Martensite aging effect in a Ti{sub 50}Pd{sub 50} high temperature shape memory alloy

    SciTech Connect

    Cai, W.; Otsuka, Kazuhiro

    1999-11-19

    Ti-Pd alloy system is one of the potential high temperature shape memory alloys due to its high martensitic transformation temperatures. Thus, many researches including shape memory characteristics, martensitic transformations and mechanical behavior of the alloys have been done in recent yeas. However, martensite aging effect in the alloy, which is an important issue as to the stability of martensite at high temperature, has not been reported yet. Ti{sub 50}Pd{sub 50} transforms from B2 parent phase to B19 martensite upon cooling, and M{sub s} is 823 K (25) and T{sub m} is 1,673 K (26). Thus M{sub s}/T{sub m} ratio of the alloy is about 0.49, and the alloy may show strong martensite aging effect according to the above proposal. It is now of interest to examine whether the Ti{sub 50}Pd{sub 50} alloy show martensite aging effect. As will be shown, the Ti{sub 50}Pd{sub 50} alloy indeed shows the aging effect, as expected; however, the aging effect of this alloy exhibits a unique feature, which is not found in other shape memory alloys.

  2. Shape memory alloys. December 1986-December 1987 (citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for December 1986-December 1987

    SciTech Connect

    Not Available

    1987-12-01

    This bibliography contains citations concerning experiments on shape-memory effects of various alloys. Alloys studied include nickel, tin, indium, lead, copper, and titanium. Studies include crystallography, properties, processing, alloying, and mechanisms that result in shape memory effects. (This updated bibliography contains 79 citations, all of which are new entries to the previous edition.)

  3. Shape-memory alloys. January 1975-November 1986 (citations from the INSPEC: Information Services for the Physics and Engineering Communities data base). Report for January 1975-November 1986

    SciTech Connect

    Not Available

    1987-12-01

    This bibliography contains citations concerning experiments on shape-memory effects of various alloys. Alloys studied include nickel, tin, indium, lead, copper, and titanium. Studies include crystallography, properties, processing, alloying, and mechanisms that result in shape-memory effects. (This updated bibliography contains 327 citations, none of which are new entries to the previous edition.)

  4. Shape memory alloy-based moment connections with superior self-centering properties

    NASA Astrophysics Data System (ADS)

    Farmani, Mohammad Amin; Ghassemieh, Mehdi

    2016-07-01

    Superelastic shape memory alloys (SMAs) have the potential to create a spontaneous recentering mechanism on the connections of a structural system under seismic actions, which results in mitigation of the damage in the main structural members. In this article, innovative types of steel beam-to-column moment connections incorporating SMA bolts and plates are introduced and studied through a numerical approach. First, SMA bolted end-plate connection model is produced and analyzed by means of the finite element method to validate the numerical analysis against the prior experimental results. Then, the performance of eleven different end-plate moment connection models subjected to cyclic loading is investigated. By selecting the lower values for the moment capacity based on bolts strength in comparison to the flexural resistance of the beam, the plastic hinge is transferred from the beam section to the beam–column interface. Hence, employing superelastic materials at the connection interface could be potentially effective in providing the desired self-centering effect in the connection. To this end, the impact of utilizing superelastic SMA bolts and end-plates instead of using the conventional structural steel on the overall cyclic response of the connections is evaluated in this study. Results show that extended end-plate connections equipped with SMA bolts and end-plates, if properly proportioned and detailed, not only exhibit a clear reduction in the residual drifts after a seismic event, but also can meet the ductility requirements with good energy dissipation and sufficient stiffness.

  5. Shape memory alloy-based moment connections with superior self-centering properties

    NASA Astrophysics Data System (ADS)

    Farmani, Mohammad Amin; Ghassemieh, Mehdi

    2016-07-01

    Superelastic shape memory alloys (SMAs) have the potential to create a spontaneous recentering mechanism on the connections of a structural system under seismic actions, which results in mitigation of the damage in the main structural members. In this article, innovative types of steel beam-to-column moment connections incorporating SMA bolts and plates are introduced and studied through a numerical approach. First, SMA bolted end-plate connection model is produced and analyzed by means of the finite element method to validate the numerical analysis against the prior experimental results. Then, the performance of eleven different end-plate moment connection models subjected to cyclic loading is investigated. By selecting the lower values for the moment capacity based on bolts strength in comparison to the flexural resistance of the beam, the plastic hinge is transferred from the beam section to the beam-column interface. Hence, employing superelastic materials at the connection interface could be potentially effective in providing the desired self-centering effect in the connection. To this end, the impact of utilizing superelastic SMA bolts and end-plates instead of using the conventional structural steel on the overall cyclic response of the connections is evaluated in this study. Results show that extended end-plate connections equipped with SMA bolts and end-plates, if properly proportioned and detailed, not only exhibit a clear reduction in the residual drifts after a seismic event, but also can meet the ductility requirements with good energy dissipation and sufficient stiffness.

  6. Mechanical properties identification and design optimization of nitinol shape memory alloy microactuators

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Hamedi, M.; Salmani Nohouji, H.; Arghavani, J.

    2014-02-01

    Microactuators are essential elements of MEMS and are widely used in these devices. Microgrippers, micropositioners, microfixtures, micropumps and microvalves are well-known applications of microstructures. In this paper, the design optimization of shape memory alloy microactuators is discussed. Four different configurations of microactuator with variable geometrical parameters, generating different levels of displacement and force, are designed and analysed. In order to determine the optimum values of parameters for each microactuator, statistical design of experiments (DOE) is used. For this purpose, the Souza et al constitutive model (1988 Eur. J. Mech. A 17 789-806) is adapted for use in finite element analysis software. Mechanical properties of the SMA are identified by performing experimental tests on Ti-49.8%Ni. Finally, the specific energy of each microactuator is determined using the calibrated model and regression analysis. Moreover, the characteristic curve of each microactuator is obtained and with this virtual tool one can choose a microactuator with the desired force and displacement. The methodology discussed in this paper can be used as a reference to design appropriate microactuators for different MEMS applications producing various ranges of displacement and force.

  7. Shape memory alloy film for deployment and control of membrane apertures

    NASA Astrophysics Data System (ADS)

    Hill, Lisa R.; Carman, Greg; Lee, Dong-Gun; Patrick, Brian

    2004-02-01

    Nickel Titanium (NiTi) film shape memory alloy (SMA) is integrated with space-qualified polymer and mesh materials for potential use as deployment mechanisms and actuation of flexible space apertures. SMA thin film is successfully applied to Astromesh metal mesh, Kapton, Upilex, and CP-1 polymer films. Sputter deposition of NiTi onto the substrate is used to validate the material system process and demonstrate the NiTi deployment capability. Although successful, the relatively high processing temperatures required to crystallize NiTi onto the substrates requires care. A second approach is demonstrated that deposits NiTi onto a silicon substrate, followed by coating the NiTi with the desired polymer, e.g. CP-1. Micro-electro-mechanical (MEMS) processing steps are then used to remove the silicon substrate beneath the NiTi, thus freeing up the composite membrane (i.e. NiTi + CP-1). Using MEMS fabrication techniques, a hot-shaped small dome shape structure is shaped into the NiTi before deposition of the CP-1 polymer. Activation of the integrated SMA/CP-1 produces deformation of this composite structure without damage. The test articles demonstrate the feasibility to both grossly deploy and locally actuate space-qualified polymer materials.

  8. Design and testing of a shape memory alloy buoyancy engine for unmanned underwater vehicles

    NASA Astrophysics Data System (ADS)

    Angilella, Alex J.; Gandhi, Farhan S.; Miller, Timothy F.

    2015-11-01

    The US Navy’s 2004 Unmanned Underwater Vehicle (UUV) Master Plan outlines the Navy’s aim to expand the role of UUVs, and one of the key areas of interest is the increase in UUV range and endurance. A class of UUVs known as underwater gliders achieves this objective by cyclically modifying its buoyancy and covering horizontal distance with a climb/dive pattern. The present study proposes the use of shape memory alloys (SMAs) in a buoyancy heat engine where the oceanic thermocline would be exploited to produce martensite-austenite phase transformations that in turn change the buoyancy of a piston-cylinder prototype. The working principle of the device involves transitioning between the following two states. At low temperature (at depth) the SMA wires are tensioned into a detwinned martensitic state by a parallel compressed spring. This moves the piston within the cylinder to increase the chamber dry volume and device buoyancy. At higher temperatures (near the surface) the SMA wires undergo a martensite-to-austenite phase transformation, recover part of the applied strain, and reduce the volume and buoyancy of the piston-cylinder. This paper presents the analysis, design, fabrication, and testing of a prototype device. The prototype was immersed in a water bath, and it was demonstrated that its volume would change, as expected, with change in temperature of the water bath. Simulation results showed good correlation with test data.

  9. New design for a rotatory joint actuator made with shape memory alloy contractile wire

    NASA Astrophysics Data System (ADS)

    Wang, Guoping; Shahinpoor, Mohsen

    1996-05-01

    A design approach for a rotatory joint actuator using a contractile shape memory alloy (SMA) wire is presented and an example design is followed. In this example, the output torque of the actuator is 18 Newton-meters, and its angular range is 30 degrees. Compared with a SMA spring type actuating component, a SMA wire type actuating component uses less SMA material and uses less electrical energy when it is electrically powered. On the other hand, a SMA wire type actuating component must have a large SMA wire length to produce a required amount of angular rotation of the joint. When pulleys are used to arrange a lengthy SMA wire in a small space, the friction between pulleys and pins is introduced and the performance of the joint actuator is degenerated to some degree. The investigated joint actuator provides a good chance for developing powered orthoses with SMA actuators for disabled individuals. It can relieve the weight concern with hydraulic and motor-powered orthoses and the safety concern with motor-powered orthoses. When electrically powered, a SMA actuator has the disadvantage of low energy efficiency.

  10. Effects of twin boundary mobility on domain microstructure evolution in magnetic shape memory alloys: Phase field simulation

    SciTech Connect

    Jin, Yongmei M.

    2009-02-09

    Effects of twin boundary mobility on domain microstructure evolution during magnetic field-induced deformation in magnetic shape memory alloys are studied by phase field micromagnetic microelastic modeling. The simulations show that different twin boundary mobilities lead to drastically different domain microstructures and evolution pathways, yielding very different magnetization and strain responses, even with opposite signs. The study also reveals complex domain phenomena in magnetic shape memory alloys.

  11. Shape Memory Alloys and their Applications in Power Generation and Refrigeration

    SciTech Connect

    Cui, Jun

    2013-07-01

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  12. Shape Memory Alloys and Their Applications in Power Generation and Refrigeration

    SciTech Connect

    Cui, Jun

    2013-03-27

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  13. An investigation of wear behaviors of different Monel alloys produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Esgin, U.; Özyürek, D.; Kaya, H.

    2016-04-01

    In the present study, wear behaviors of Monel 400, Monel 404, Monel R-405 and Monel K-500 alloys produced by Powder Metallurgy (P/M) method were investigated. These compounds prepared from elemental powders were cold-pressed (600 MPa) and then, sintered at 1150°C for 2 hours and cooled down to the room temperature in furnace environment. Monel alloys produced by the P/M method were characterized through scanning electron microscope (SEM+EDS), X-ray diffraction (XRD), hardness and density measurements. In wear tests, standard pin-on-disk type device was used. Specimens produced within four different Monel Alloys were tested under 1ms-1 sliding speed, under three different loads (20N, 30N and 40N) and five different sliding distances (400-2000 m). The results show that Monel Alloys have γ matrix and that Al0,9Ni4,22 intermetallic phase was formed in the structure. Also, the highest hardness value was measured with the Monel K-500 alloy. In wear tests, the maximum weight loss according to the sliding distance, was observed in Monel 400 and Monel 404 alloys while the minimum weight loss was achieved by the Monel K-500 alloy.

  14. Effect of boron in Fe 70 Al 30 nanostructured alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rico, M. M.; Pérez Alcázar, G. A.; Greneche, J. M.

    2013-04-01

    The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.

  15. Effect of boron in Fe 70 Al 30 nanostructured alloys produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Rico, M. M.; Pérez Alcázar, G. A.; Greneche, J. M.

    2014-01-01

    The substitution of aluminum by boron in the Fe70Al30 system prepared by high energy ball milling is studied when the B content ranged from 0 up to 20 at. %, and the milling times were 24, 48 and 72 h. X-ray diffraction (XRD) patterns of Fe70Al30 showed a predominant bcc structural phase with a lattice parameter larger than that of α-Fe. A second (tetragonal) phase arose with the addition of boron. It is associated to the existence of (Fe, Al)2B, although the values of the lattice parameters are slightly different from those found in the literature. This phase shows high stability; its lattice parameters and the Mössbauer parameters do not show notable variations, either with milling time or composition. It was also evidenced that an increase of boron content and of milling time produced a decrease of the lattice parameter of the Fe-Al bcc structure. This is in agreement with the small atomic radius of boron in comparison with that of aluminum. This also allows boron to occupy interstitial sites in the lattice, increasing the grain size and giving rise to the ductile character of the alloy. On the other hand, 300 K transmission Mössbauer spectra (TMS) were fitted, for low boron concentrations (<8 at.%), with a hyperfine field distribution (HFD) associated with the bcc phase. For high boron content (≥8 at.%), a magnetic component related to the tetragonal phase is added and its broadened lines are attributed to the disordered character of Fe2B, probably induced by the milling process.

  16. Load carrying capacity of RCC beams by replacing steel reinforcement bars with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Bajoria, Kamal M.; Kaduskar, Shreya S.

    2016-04-01

    In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under two point loading system has been numerically studied, using Finite Element Method. The material used in this study is Super-elastic Shape Memory Alloys (SE SMAs) which contains nickel and titanium. In this study, different quantities of steel and SMA rebars have been used for reinforcement and the behavior of these models under two point bending loading system is studied. A comparison of load carrying capacity for the model between steel reinforced concrete beam and the beam reinforced with S.M.A and steel are performed. The results show that RC beams reinforced with combination of shape memory alloy and steel show better performance.

  17. Development of a shape memory alloy actuator for a robotic eye prosthesis

    NASA Astrophysics Data System (ADS)

    Bunton, T. B. Wolfe; Faulkner, M. G.; Wolfaardt, J.

    2005-08-01

    The quality of life of patients who wear an orbital prosthesis would be vastly improved if their prostheses were also able to execute vertical and horizontal motion. This requires appropriate actuation and control systems to create an intelligent prosthesis. A method of actuation that meets the demanding design criteria is currently not available. The present work considers an activation system that follows a design philosophy of biomimicry, simplicity and space optimization. While several methods of actuation were considered, shape memory alloys were chosen for their high power density, high actuation forces and high displacements. The behaviour of specific shape memory alloys as an actuator was investigated to determine the force obtained, the transformation temperatures and details of the material processing. In addition, a large-scale prototype was constructed to validate the response of the proposed system.

  18. Performance of Integrated Fiber Optic, Piezoelectric, and Shape Memory Alloy Actuators/Sensors in Thermoset Composites

    NASA Technical Reports Server (NTRS)

    Trottier, C. Michael

    1996-01-01

    Recently, scientists and engineers have investigated the advantages of smart materials and structures by including actuators in material systems for controlling and altering the response of structural environments. Applications of these materials systems include vibration suppression/isolation, precision positioning, damage detection and tunable devices. Some of the embedded materials being investigated for accomplishing these tasks include piezoelectric ceramics, shape memory alloys, and fiber optics. These materials have some benefits and some shortcomings; each is being studied for use in active material design in the SPICES (Synthesis and Processing of Intelligent Cost Effective Structures) Consortium. The focus of this paper concerns the manufacturing aspects of smart structures by incorporating piezoelectric ceramics, shape memory alloys and fiber optics in a reinforced thermoset matrix via resin transfer molding (RTM).

  19. The alloy with a memory, 55-Nitinol: Its physical metallurgy, properties, and applications

    NASA Technical Reports Server (NTRS)

    Jackson, C. M.; Wagner, H. J.; Wasilewski, R. J.

    1972-01-01

    A series of nickel titanium alloys (55-Nitinol), which are unique in that they possess a shape memory, are described. Components made of these materials that are altered in their shapes by deformation under proper conditions return to predetermined shapes when they are heated to the proper temperature range. The shape memory, together with the force exerted and the ability of the material to do mechanical work as it returns to its predetermined shape, suggest a wide variety of industrial applications for the alloy. Also included are discussions of the physical metallurgy and the mechanical, physical, and chemical properties of 55-Nitinol; procedures for melting and processing the material into useful shapes; and a summary of applications.

  20. Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams

    NASA Technical Reports Server (NTRS)

    Davis, Brian A.

    2005-01-01

    Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.

  1. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and

  2. Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries

    PubMed Central

    Haldar, K.; Lagoudas, D. C.

    2014-01-01

    A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials. PMID:25197247

  3. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  4. Experimental evaluation of shape memory alloy actuation technique in adaptive antenna design concepts

    NASA Technical Reports Server (NTRS)

    Kefauver, W. Neill; Carpenter, Bernie F.

    1994-01-01

    Creation of an antenna system that could autonomously adapt contours of reflecting surfaces to compensate for structural loads induced by a variable environment would maximize performance of space-based communication systems. Design of such a system requires the comprehensive development and integration of advanced actuator, sensor, and control technologies. As an initial step in this process, a test has been performed to assess the use of a shape memory alloy as a potential actuation technique. For this test, an existing, offset, cassegrain antenna system was retrofit with a subreflector equipped with shape memory alloy actuators for surface contour control. The impacts that the actuators had on both the subreflector contour and the antenna system patterns were measured. The results of this study indicate the potential for using shape memory alloy actuation techniques to adaptively control antenna performance; both variations in gain and beam steering capabilities were demonstrated. Future development effort is required to evolve this potential into a useful technology for satellite applications.

  5. Dynamic mechanical analyze of superelastic CuMnAl shape memory alloy

    NASA Astrophysics Data System (ADS)

    (Dragoș Ursanu, A. I.; Stanciu, S.; Pricop, B.; Săndulache, F.; Cimpoeșu, N.

    2016-08-01

    A new shape memory alloy was obtain from high purity Cu, Mn and Al elements using a induce furnace. The intelligent material present negative transformation temperatures and an austenite like state at room temperature. The austenite state of CuMnAl shape memory alloy present superelasticity property. Five kilograms ingot was obtain of Cu10Mn10Al alloy. From the base material (melted state) were cut samples with 6 mm thickness using a mechanical saw. After an homogenization heat treatment the samples were hot rolled through four passes with a reduction coefficient of 20%. Experimental lamellas were obtained with 1.5 mm thickness and 90x10 mm length and width. After the hot rolled treatment the materials were heat treated at 800°C for 20 minutes and chilled in water. Four samples, one just laminated and three heat treated by aging, were analyzed with a Netzsch DMA equipment to establish the elastic modulus and the internal friction values of the materials. Metallic materials microstructure was analyzed using a scanning electron microscope Vega Tescan LMH II type. After the aging heat treatment a decrease of internal friction is observed on the entire analyze range which is assigned to formation of Al-based precipitates that block the internal movement of the alloy characteristic phases.

  6. Comparative In Vitro Study of Ti-12V-9Sn Shape Memory Alloy with C.P. Ti and Ti-12V Alloy for Potential Biomedical Application

    NASA Astrophysics Data System (ADS)

    Qiu, K. J.; Wang, B. L.; Zhou, F. Y.; Lin, W. J.; Li, L.; Lin, J. P.; Zheng, Y. F.

    2012-12-01

    The microstructure, mechanical properties, and electrochemical behavior of Ti-12V-9Sn shape memory alloy were investigated, with commercial pure titanium (C.P. Ti) and Ti-12V alloy as controls. The metastable β phase was partially retained and α″ martensite phase was obtained in Ti-12V-9Sn alloy, whereas only martensitic phases (α' and α″) existed in Ti-12V alloy at room temperature. Ti-12V-9Sn alloy exhibited a good combination of strength and elongation, which showed a "double yield" feature, along with a complete shape recovery strain of 4%. The electrochemical measurements indicated that all of the experimental samples exhibited excellent corrosion resistance in the artificial saliva with and without 0.2% NaF, among which Ti-12V-9Sn alloy possessed the lowest corrosion current density in both kinds of simulated body fluids.

  7. The martensitic transformation and magnetic properties in Ni50- x Fe x Mn32Al18 ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Xuan, H. C.; Zhang, Y. Q.; Li, H.; Han, P. D.; Wang, D. H.; Du, Y. W.

    2015-05-01

    The martensitic transformation (MT) and magnetic properties have been investigated in a series of Ni50- x Fe x Mn32Al18 ferromagnetic shape memory alloys. The substitution of Fe for Ni reduces the MT temperature of Ni-Fe-Mn-Al alloys effectively, and the magnetization of the austenite was significantly enhanced in these high-doped alloys. The Fe introduction converts antiferromagnetic austenite to ferrimagnetic state, and therefore, the unique MT occurs between ferrimagnetic and antiferromagnetic state in these alloys. The MT temperatures decreased by about 15 K under the magnetic field of 30 kOe for x = 8 alloy. The positive value of magnetic entropy change was determined to 3.35 J/kg K around the MT in the field change of 30 kOe for x = 6 alloy. These results suggest that Ni50- x Fe x Mn32Al18 alloys would be the promising candidates for magnetic multifunctional materials.

  8. A review of modeling techniques for advanced effects in shape memory alloy behavior

    NASA Astrophysics Data System (ADS)

    Cisse, Cheikh; Zaki, Wael; Ben Zineb, Tarak

    2016-10-01

    micro, micro-macro and macro scales focusing pseudoelastic and shape memory effects. The paper reviews and discusses various techniques used in the literature for modeling complex behaviors observed in shape memory alloys (SMAs) that go beyond the core pseudoelastic and shape memory effects. These behaviors, which will be collectively referred to herein as ‘secondary effects’, include mismatch between austenite and martensite moduli, martensite reorientation under nonproportional multiaxial loading, slip and transformation-induced plasticity and their influence on martensite transformation, strong thermomechanical coupling and the influence of loading rate, tensile-compressive asymmetry, and the formation of internal loops due to incomplete phase transformation. In addition, because of their importance for practical design considerations, the paper discusses functional and structural fatigue, and fracture mechanics of SMAs.

  9. Investigation of the Microstructure of Joints of Aluminum Alloys Produced by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Kolubaev, E. A.

    2015-02-01

    Special features of the microstructure of joints of aluminum-magnesium and aluminum-copper alloys produced by friction stir welding are analyzed. It is demonstrated that a layered structure with ultradisperse grains is produced by friction stir welding at the center of the weld joint. An analogy is drawn between the microstructures of joints produced by friction stir welding and surface layer produced by sliding friction.

  10. Mechanical behavior and phase stability of NiAl-based shape memory alloys

    SciTech Connect

    George, E.P.; Liu, C.T.; Horton, J.A.; Kunsmann, H.; King, T.; Kao, M.

    1993-12-31

    NiAl-based shape memory alloys (SMAs) can be made ductile by alloying with 100--300 wppm B and 14--20 at.% Fe. The addition of Fe has the undesirable effect that it lowers the temperature (A{sub p}) of the martensite {yields} austenite phase transformation. Fortunately, however, A can be raised by lowering the ``equivalent`` amount of Al in the alloy. In this way a high A{sub p} temperature of {approximately}190 C has been obtained without sacrificing ductility. Furthermore, a recoverable strain of 0.7% has been obtained in a Ni-Al-Fe alloy with A{sub p} temperature of {approximately}140 C. Iron additions do not suppress the aging-induced embrittlement that occurs in NiAl alloys at 300--500 C as a result of Ni{sub 5}Al{sub 3} precipitation. Manganese additions (up to 10 at.%) have the effect of lowering A{sub p}, degrading hot workability, and decreasing room-temperature ductility.

  11. Microstructure and solidification behavior of Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Gharghouri, Michael A.; Hyatt, Calvin V.

    2004-07-01

    In order to understand the solidification behavior of Ni-Mn-Ga alloys, ingots with different compositions were prepared by arc melting. Two series of compositions were investigated: Ni100-2xMnxGax (15<=x <=30) and Ni50Mn50-yGay (0<=y<=50). The microstructures obtained were observed and the compositions of the phases occurring in the ingots were identified by energy dispersive spectroscopy in the scanning electron microscope. Based on these observations, three solidification paths were identified: direct solidification of γ-Ni from the liquid, direct solidification of β-NiMnGa from the liquid, and solidification of β-NiMnGa phase via a peritectic reaction. It was found that the γ-Ni liquidus surface covers a large area of the ternary phase diagram. The γ-Ni liquidus boundary is located between Ni50Mn25Ga25 and Ni45Mn27.5Ga27.5 in the equal Mn and Ga alloy series, and between Ni50Mn5Ga45 and Ni50Mn10Ga40 in the 50 at.% Ni alloy series. The alloys with compositions close to the stoichiometric Ni2MnGa composition that show the magnetic shape memory effect are all covered by the γ-Ni liquidus surface. The β-NiMnGa liquidus surface covers the remaining alloy compositions.

  12. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  13. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation. PMID:26706563

  14. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation.

  15. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  16. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    SciTech Connect

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  17. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    SciTech Connect

    Seward, K P

    1999-06-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30{mu}{epsilon} and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2 {micro}m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300 {micro}m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90 {micro}m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape

  18. Reversible surface morphology in shape-memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Huang, W. M.; Fu, Y. Q.; Chollet, F.; Hu, Y. Y.; Cai, M.

    2009-02-01

    Reversible surface morphology can be used for significantly changing many surface properties such as roughness, friction, reflection, surface tension, etc. However, it is not easy to realize atop metals at micron scale around ambient temperature. In this paper, we demonstrate that TiNi and TiNi based (e.g., TiNiCu) shape-memory thin films, which are sputter-deposited atop a silicon wafer, may have different types of thermally-induced reversible surface morphologies. Apart from the well-known surface relief phenomenon, irregular surface trenches may appear in the fully crystallized thin films, but disappear upon heating. On the other hand, in partially crystallized thin films, the crystalline structures (islands) appear in chrysanthemum-shape at high temperature; while at room temperature, the surface morphology within the islands changes to standard martensite striations. Both phenomena are fully repeatable upon thermal cycling. The mechanisms behind these phenomena are investigated.

  19. Smart wing shape memory alloy actuator design and performance

    NASA Astrophysics Data System (ADS)

    Jardine, A. Peter; Flanagan, John S.; Martin, Christopher A.; Carpenter, Bernie F.

    1997-05-01

    Shape Memory Effect TiNi torque tubes were fabricated, tested and installed to supply 2500 in.lbs and 500 in.lbs of torque for inboard and outboard sections, respectively, of the DARPA smart wing wind tunnel model. Structural connections to the tubes were designed so that the entire assembly would fit within the interior of the wing, whose maximum dimensions of depth ranged from 1.125' to 0.375', depending on the position along the wing span. The torque tubes themselves were made by the gun drilling a TiNi ingot and ElectroSpark Discharge Machining to the required dimensions, which were calculated from a simple model described in a previous paper. The torque tubes were placed into the wing and twist deflections were measured. Deflections on the wing were measured at 1.3 degree(s), which provided a significant increase (approximately 8%) in the wing rolling moment.

  20. Degradation of the shape memory effect in copper-base alloys

    SciTech Connect

    Stalmans, R.; Van Humbeeck, J.; Delaey, L. . Dept. of Metallurgy and Materials Science)

    1994-12-01

    The reversible transformation of the parent phase (austenite) to the product phase (martensite) is the basis of several shape memory properties in specific Cu-base alloys. In this respect, the two-way memory effect (TWME) refers the reversible, spontaneous shape change from a hot austenitic shape to a cold martensitic shape during cooling and heating without the application of external stresses. It is known that the magnitude of the TWME decrease during thermal or thermomechanical cycling, in particular in Cu-base shape memory alloys. It is however important to remark that this decrease, indicated as degradation of the TWME, can be caused as well by a decrease of the spontaneous martensitic strain, i.e. a degradation of the cold shape, as by an increase of the residual austenitic strain, i.e. a degradation of the hot shape, or by a combination of both. The degradation of the TWME, and of the hot and cold shape is influenced by a number of factors including the alloy composition, the processing, the heat treatment, the training procedure and the parameters of the thermal or thermomechanical cycling. The knowledge of the degradation phenomena is still limited. In a subsequent study of the relationships between training and the two-way memory behavior, the authors have shown that the degradation of the hot shape already starts during training. It was found that the residual austenitic strain [gamma][sub a] increases gradually during training cycling; [gamma][sub a] is also in the case of training composed of a recoverable residual strain [gamma][sub ar] and a non-recoverable residual strain [gamma][sub anr]. The present paper reports the results of the specific experiments which were designed based upon the results described above. The evolutions during thermal cycling of the TWME, of the martensitic strain and austenitic strain, and of the recoverable and non-recoverable austenitic strain are presented and discussed.

  1. Surface structure and corrosion resistance of short-time heat-treated NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Vojtěch, D.; Voděrová, M.; Fojt, J.; Novák, P.; Kubásek, T.

    2010-12-01

    NiTi alloys are attractive materials that are used for medicine, however, Ni-release may cause allergic reactions in an organism. The Ni-release rate is strongly affected by the surface state of the NiTi alloy that is mainly determined by its processing route. In this study, a NiTi shape memory alloy (50.9 at.% Ni) was heat-treated by several regimes simulating the shape setting procedure, the last step in the manufacture of implants. Heating temperatures were between 500 and 550 °C and durations from 5 to 10 min. Heat treatments were performed in air at normal and low pressure and in a salt bath. The purpose of the treatments was to obtain and compare different surface states of the Ni-Ti alloy. The surface state and chemistry of heat-treated samples were investigated by electron microscopy, X-ray photoelectron spectroscopy and Raman spectrometry. The amount of nickel released into a model physiological solution of pH 2 and into concentrated HCl was taken as a measure of the corrosion rate. It was found that the heat treatments produced surface TiO 2 layers measuring 15-50 nm in thickness that were depleted in nickel. The sample covered by the 15-nm thick oxide that was treated at 500 °C/5 min in a low pressure air showed the best corrosion performance in terms of Ni-release. As the oxide thickness increased, due to either temperature or oxygen activity change, Ni-release into the physiological solution accelerated. This finding is discussed in relation to the internal structure of the oxide layers.

  2. Structure-Property Relationship of Cu-Al-Ni-Fe Shape Memory Alloys in Different Quenching Media

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Farahany, S.

    2014-01-01

    This paper presents the effects of heat treatments using various quenching media on the phase transformation parameters and microstructure parameters. The effects of different quenching methods, step-quenched and up-quenched, in various media were evaluated by using differential scanning calorimetry, field emission electron microscopy, energy-dispersive spectrometry, atomic force microscopy, x-ray diffraction, and Vicker's hardness. The variations of the structure and properties of Cu-Al-Ni-Fe shape memory alloys were linked to the variations of morphology, type, and stabilization of the obtained phase. From the DSC results, the use of ice water as a quenching medium produced the highest transformation temperatures, while a brine solution-quenching medium resulted in the highest change of the entropy and enthalpy. Additionally, it was found that the best grain refinement was observed through the use of an oil-quenching medium, due to its high cooling rate.

  3. A smart soft actuator using a single shape memory alloy for twisting actuation

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Eul; Quan, Ying-Jun; Wang, Wei; Rodrigue, Hugo; Song, Sung-Hyuk; Ahn, Sung-Hoon

    2015-12-01

    Recently, robots have become a topic of interest with regard to their functionality as they need to complete a large number of diverse tasks in a variety of environments. When using traditional mechanical components, many parts are needed to realize complex deformations, such as motors, hinges, and cranks. To produce complex deformations, this work introduces a smart soft composite torsional actuator using a single shape memory alloy (SMA) wire without any additional elements. The proposed twisting actuator is composed of a torsionally prestrained SMA wire embedded at the center of a polydimethylsiloxane matrix that twists by applying an electric current upon joule heating of the SMA wire. This report shows the actuator design, fabrication method, and results for the twisting angle and actuation moment. Results show that a higher electric current helps reach the maximum twisting angle faster, but that if the current is too low or too high, it will not be able to reach its maximum deformation. Also, both the twisting angle and the twisting moment increase with a large applied twisting prestrain, but this increase has an asymptotic behavior. However, results for both the width and the thickness of the actuator show that a larger width and thickness reduce the maximum actuation angle of the actuator. This paper also presents a new mechanism for an SMA-actuated active catheter using only two SMA wires with a total length of 170 mm to bend the tip of the catheter in multiple directions. The fabricated active catheter’s maximum twisting angle is 270°, and the maximum bending curvature is 0.02 mm-1.

  4. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor

    NASA Astrophysics Data System (ADS)

    Couch, Ronald Newton

    Actuator concepts utilizing NiMnGa, ferromagnetic shape memory alloy are investigated for potential use on a smart rotor for trailing edge flap actuation. With their high energy density, large dynamic stroke, and wide operating bandwidth, ferromagnetic shape memory alloys (FSMA) like NiMnGa, seem like attractive candidates for smart rotor actuators, potentially able to fulfill the requirements for both primary rotor control and vibration suppression. However, because of the recent discovery of the material, current experimental data and analytical tools are limited. To rectify these shortcomings, an extensive set of detailed experiments were conducted on samples of NiMnGa to characterize the response of the alloy for a wide variety of mechanical and magnetic loading conditions. Measurements of the material performance parameters such as power density, damping properties, magneto-mechanical coupling, and transduction efficiency were included. Once characterized, the experimental data were used to develop a series of analytical tools to predict the behavior of the material. A model, developed in parallel to thermal shape memory alloy models is proposed to predict the quasi-static stress-strain behavior. A simple, low frequency, parameter based model was also developed to predict the alloy's dynamic strain response. A method for developing conceptual actuators utilizing NiMnGa as the actuation element was proposed. This approach incorporates experimental data into a process that down-selects a series of possible actuator configurations to obtain a single configuration optimized for volumetric and weight considerations. The proposed actuator was designed to deliver 2 mm of stroke and 60 N of force at an actuation frequency of 50 Hz. However, to generate the 1.0 T magnetic field, the actuator mass was determined to be 2.8 kg and required a minimum of 320 Watts of power for operation. The mass of the NiMnGa element was only 18.3 g. It was concluded that although the Ni

  5. Stability and optimization of P-phase precipitates in nickel-titanium-palladium shape memory alloys

    NASA Astrophysics Data System (ADS)

    Coppa, Anne Catherine

    The motivation for this research is the understanding of phase transformations that lead to an increase in the shape memory effect (SME) transformation temperature in a Ni-Ti-Pd shape memory alloy (SMA). The research addressed three major parts of this transformation---(1) The phase stability of the P-phase precipitate previously discovered with an emphasis on its stoichiometric limits by changing the Ni and Pd content with the Ti11(Ni,Pd)13 ratio; (2) The effects of P-phase precipitation on the martensitic transformation temperature in near-equiatomic Ti(Ni,Pd) alloys; and (3) The effects of dilute additions of Hf (0.1-1 at.%) to the precipitation and shape memory transformation temperature in Ni-Ti-Pd. P-phase stabilization: The compositional limits of the P-phase have been systematically studied by varying the Pd and Ni content in the P-phase's Ti11(Ni+Pd)13 stoichiometry. Each alloy was solutionized at 1050°C followed by water quenching, and aging at 400°C for 100 hours. Four distinct phases were identified---Ti 2Pd3, B2 Ni-Ti, P- and P1-phases dependent on alloy composition---by electron and x-ray diffraction. The latter precipitate phases become more stable with increasing Ni at the expense of Pd content. Atom probe tomography revealed the P-phase composition to be 45.8Ti-29.2Ni-25Pd (at.%) or Ti 11(Ni7Pd6) as compared to the P1-phase 44.7Ti- 45.8Ni-9.4Pd (at.%) or Ti5Ni5Pd. Optimization of P-phase precipitation: The effect of aging time and temperature on precipitation and subsequent martensitic transformation temperatures for a series of Ni-(50.5-49.2)Ti-32Pd (at.%) shape memory alloys has been studied. Structure-property relationships were developed through detailed microstructural characterization involving transmission electron microscopy, diffraction analysis, and atom probe tomography with links to microhardness measurements and transformation temperatures established by differential scanning calorimetry. The Ti-rich alloy contained relatively coarse

  6. A candidate Zr-doped Sb2Te alloy for phase change memory application

    NASA Astrophysics Data System (ADS)

    Zheng, Yonghui; Cheng, Yan; Zhu, Min; Ji, Xinglong; Wang, Qing; Song, Sannian; Song, Zhitang; Liu, Weili; Feng, Songlin

    2016-02-01

    Here, Zr-doped Sb2Te alloy is proposed for phase change memory (PCM). Zr-doping enhances the crystallization temperature and thermal stability of Sb2Te alloy effectively. Crystalline Zr2(Sb2Te)98 film is manifested as a single phase without phase separation and the growth of crystal grain is dramatically suppressed. The density change of Zr2(Sb2Te)98 material between amorphous and crystalline is ˜2.65 ± 0.03%, which is much smaller than that of Ge2Sb2Te5 (6.5%). Phase change memory cells based on Zr2(Sb2Te)98 material can be reversibly switched by applying 40-400 ns width voltage pulses, and the reset current is relatively small when comparing with the prototypical Ge2Sb2Sb5 material. The resistance ON-OFF ratio of about 1.3 orders of magnitude is enough for figuring "0" and "1" out. Besides, endurance up to 4.1 × 104 cycles makes Zr-doped Sb2Te alloy a potential candidate for PCM.

  7. Thermodynamic constitutive model for load-biased thermal cycling test of shape memory alloy

    SciTech Connect

    Young, Sung; Nam, Tae-Hyun

    2013-12-15

    Graphical abstract: - Highlights: • Thermodynamic calculation model for martensitic transformation of shape memory alloy was proposed. • Evolution of the self-accommodation was considered independently by a rate-dependent kinetic equation. • Finite element calculation was conducted for B2–B19′ transformation of Ti–44.5Ni–5Cu–0.5 V (at.%). • Three-dimensional numerical results predict the macroscopic strain under bias loading accurately. - Abstract: This paper presents a three-dimensional calculation model for martensitic phase transformation of shape memory alloy. Constitutive model based on thermodynamic theory was provided. The average behavior was accounted for by considering the volume fraction of each martensitic variant in the material. Evolution of the volume fraction of each variant was determined by a rate-dependent kinetic equation. We assumed that nucleation rate is faster for the self-accommodation than for the stress-induced variants. Three-dimensional finite element analysis was conducted and the results were compared with the experimental data of Ti–44.5Ni–5Cu–0.5 V (at.%) alloy under bias loading.

  8. Modeling the coupling between martensitic phase transformation and plasticity in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Manchiraju, Sivom

    The thermo-mechanical response of NiTi shape memory alloys (SMAs) is predominantly dictated by two inelastic deformation processes---martensitic phase transformation and plastic deformation. This thesis presents a new microstructural finite element (MFE) model that couples these processes and anisotropic elasticity. The coupling occurs via the stress redistribution induced by each mechanism. The approach includes three key improvements to the literature. First, transformation and plasticity are modeled at a crystallographic level and can occur simultaneously. Second, a rigorous large-strain finite element formulation is used, thereby capturing texture development (crystal rotation). Third, the formulation adopts recent first principle calculations of monoclinic martensite stiffness. The model is calibrated to experimental data for polycrystalline NiTi (49.9 at% Ni). Inputs include anisotropic elastic properties, texture, and DSC data as well as a subset of pseudoelastic and load-biased thermal cycling data. This calibration process provides updated material values---namely, larger self-hardening between similar martensite plates. It is then assessed against additional pseudoelastic and load-biased thermal cycling experimental data and neutron diffraction measurements of martensite texture evolution. Several experimental trends are captured---in particular, the transformation strain during thermal cycling monotonically increases with increasing bias stress, reaching a peak and then decreasing due to intervention of plasticity---a trend which existing MFE models are unable to capture. Plasticity is also shown to enhance stress-induced martensite formation during loading and generate retained martensite upon unloading. The simulations even enable a quantitative connection between deformation processing and two-way shape memory effect. Some experimental trends are not captured---in particular, the ratcheting of macrostrain with repeated thermal cycling. This may

  9. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-07-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni-xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  10. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-10-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni- xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  11. Alloy

    NASA Astrophysics Data System (ADS)

    Cabeza, Sandra; Garcés, Gerardo; Pérez, Pablo; Adeva, Paloma

    2014-07-01

    The Mg98.5Gd1Zn0.5 alloy produced by a powder metallurgy route was studied and compared with the same alloy produced by extrusion of ingots. Atomized powders were cold compacted and extruded at 623 K and 673 K (350 °C and 400 °C). The microstructure of extruded materials was characterized by α-Mg grains, and Mg3Gd and 14H-LPSO particles located at grain boundaries. Grain size decreased from 6.8 μm in the extruded ingot, down to 1.6 μm for powders extruded at 623 K (350 °C). Grain refinement resulted in an increase in mechanical properties at room and high temperatures. Moreover, at high temperatures the PM alloy showed superplasticity at high strain rates, with elongations to failure up to 700 pct.

  12. Microstructure and mechanical behaviour of Ti-6Al-7Nb alloy produced by selective laser melting

    SciTech Connect

    Chlebus, Edward; Kuznicka, Bogumila Kurzynowski, Tomasz; Dybala, Bogdan

    2011-05-15

    Selective laser melting (SLM) is an advanced manufacturing technology providing alternative method of producing complex components directly from 3D computer models. The purpose of this work is to determine the influence of the SLM manufacturing strategy on mechanical properties and microstructure of the as-built Ti-Al-Nb alloy. Specimens of Ti-6Al-7Nb were produced in three versions of the specimen axis orientation with respect to its build direction. Mechanical characteristics of the alloy were determined by tensile and compression testing, as well as hardness measurements. Microstructures were characterised utilising optical microscopy, scanning electron microscopy and X-ray diffraction analysis. It was found that the as-built Ti-6Al-7Nb alloy has microstructure of {alpha}' martensite hardened by dispersive precipitates of the second phase, which results in higher tensile and compressive strengths, but lower ductility in comparison to those of an alloy manufactured by conventional methods. The layered microstructure of the material gives it a significant anisotropy of Young's modulus, moderate anisotropy of mechanical properties, but strong anisotropy of sensitivity to the build porosity. The paper develops understanding of the relationships between the strategy of layered manufacturing of the Ti-6Al-7Nb alloy and its microstructural and mechanical characteristics. This is important for future applications of the SLM technology for producing Ti-6Al-7Nb parts, e.g. the custom medical implants. - Research Highlights: {yields} The as-built SLM Ti-6Al-7Nb alloy has a layered microstructure of {alpha}' martensite. {yields} Size and orientation of the {alpha}' plates are determined by the SLM building strategy. {yields} The layered microstructure gives the alloy an anisotropy of Young's modulus. {yields} The building strategy influences anisotropy of material sensitivity to the built porosity.

  13. NiTiCu Shape Memory Alloy Characterization Through Microhardness Tests

    NASA Astrophysics Data System (ADS)

    Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2014-07-01

    NiTiCu alloys are one of the most investigated shape memory alloys (SMAs) because of their better performance as SMA actuators in a variety of industrial and engineering applications. However, NiTiCu alloys are strongly influenced by thermomechanical cycling (TMC), which causes degradation depending on the stress and strain level applied. Since heat treatment (HT) and TMC are essential for NiTiCu alloys, understanding how hardness evolves at different levels of TMC and different HT temperatures is a useful tool for characterizing the material. The aim of this paper is to investigate the relationship between hardness and different HT temperatures and different TMCs. All the microhardness tests were done below martensite finish temperature (Mf) because the apparent material hardness measured below Mf fairly reflects the relative strengthening of SMAs without involving martensitic transformation artifacts. Resistivity and break tensile tests were carried out as a first step in order to understand the effect of different HT temperatures. Microstructure was also examined to provide a basis for a mechanistic understanding of the effect of different HT temperatures. Next, the degradation of mechanical properties (functional fatigue) at different levels of TMC was evaluated to assess their relationship to the evolution of hardness. Finally, an attempt was made to establish a link between the increase in hardness and different HT temperatures with different levels of TMC.

  14. Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys.

    PubMed

    Planes, Antoni; Mañosa, Lluís; Acet, Mehmet

    2009-06-10

    Magnetic Heusler alloys which undergo a martensitic transition display interesting functional properties. In the present review, we survey the magnetocaloric effects of Ni-Mn-based Heusler alloys and discuss their relation with the magnetic shape-memory and magnetic superelasticity reported in these materials. We show that all these effects are a consequence of a strong coupling between structure and magnetism which enables a magnetic field to rearrange martensitic variants as well as to provide the possibility to induce the martensitic transition. These two features are respectively controlled by the magnetic anisotropy of the martensitic phase and by the difference in magnetic moments between the structural phases. The relevance of each of these contributions to the magnetocaloric properties is analysed.

  15. Improving the bioactivity of NiTi shape memory alloy by heat and alkali treatment

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Zhen-duo, Cui; Xian-jin, Yang; Jie, Shi

    2008-11-01

    TiO 2 films were formed on an NiTi alloy surface by heat treatment in air at 600 °C. Heat treated NiTi shape memory alloys were subsequently alkali treated with 1 M, 3 M and 5 M NaOH solutions respectively, to improve their bioactivity. Then treated NiTi samples were soaked in 1.5SBF to evaluate their in vitro performance. The results showed that the 3 M NaOH treatment is the most appropriate method. A large amount of apatite formed within 1 day's soaking in 1.5SBF, after 7 day's soaking TiO 2/HA composite layer formed on the NiTi surface. SEM, XRD, FT-IR and TEM results showed that the morphology and microstructure are similar to the human bone apatite.

  16. Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width.

    PubMed

    Cui, Jun; Chu, Yong S; Famodu, Olugbenga O; Furuya, Yasubumi; Hattrick-Simpers, Jae; James, Richard D; Ludwig, Alfred; Thienhaus, Sigurd; Wuttig, Manfred; Zhang, Zhiyong; Takeuchi, Ichiro

    2006-04-01

    Reversibility of structural phase transformations has profound technological implications in a wide range of applications from fatigue life in shape-memory alloys (SMAs) to magnetism in multiferroic oxides. The geometric nonlinear theory of martensite universally applicable to all structural transitions has been developed. It predicts the reversibility of the transitions as manifested in the hysteresis behaviour based solely on crystal symmetry and geometric compatibilities between phases. In this article, we report on the verification of the theory using the high-throughput approach. The thin-film composition-spread technique was devised to rapidly map the lattice parameters and the thermal hysteresis of ternary alloy systems. A clear relationship between the hysteresis and the middle eigenvalue of the transformation stretch tensor as predicted by the theory was observed for the first time. We have also identified a new composition region of titanium-rich SMAs with potential for improved control of SMA properties.

  17. Sign reversal of transformation entropy change in Co2Cr(Ga,Si) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Xu, Xiao; Omori, Toshihiro; Nagasako, Makoto; Kanomata, Takeshi; Kainuma, Ryosuke

    2015-11-01

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co2Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy change can be expected on the same alloy.

  18. Martensitic and magnetic transformation in Ni-Mn-Ga-Co ferromagnetic shape memory alloys.

    SciTech Connect

    Cong, D. Y.; Wang, S.; Wang, Y. D.; Ren, Y.; Zuo, L.; Esling, C.; X-Ray Science Division; Northeastern Univ.; Univ. of Metz

    2008-01-01

    The effect of Co addition on crystal structure, martensitic transformation, Curie temperature and compressive properties of Ni{sub 53-x}Mn{sub 25}Ga{sub 22}Co{sub x} alloys with the Co content up to 14 at% was investigated. An abrupt decrease of martensitic transformation temperature was observed when the Co content exceeded 6 at.%, which can be attributed to the atomic disorder resulting from the Co addition. Substitution of Co for Ni proved efficient in increasing the Curie temperature. Compression experiments showed that the substitution of 4 at.% Co for Ni did not change the fracture strain, but lead to the increase in the compressive strength and the decrease in the yield stress. This study may offer experimental data for developing high performance ferromagnetic shape memory alloys.

  19. Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Merida, D.; García, J. A.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Plazaola, F.

    2014-06-01

    Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.

  20. Histomorphometric analysis of the response of rat tibiae to shape memory alloy (nitinol).

    PubMed

    Takeshita, F; Takata, H; Ayukawa, Y; Suetsugu, T

    1997-01-01

    The bone reaction to nitinol (Ni-Ti), a metal with shape memory, and other materials inserted transcortically and extending into the medullary canal of rat tibiae was quantitatively assessed using an image processing system. The materials examined were implants, all of the same shape and size, composed of nitinol, pure titanium (Ti), anodic oxidized Ti (AO-Ti), a titanium alloy (Ti-6Al-4V) and pure nickel (Ni). While the other four implant materials were progressively encapsulated with bone tissues, Ni was encapsulated with connective tissues through the 168-day experimental period, and the Ni implants showed no bone contact at any time during the experimental period. Histometric analysis revealed no significant difference among the tissue reactions to Ti, AO-Ti and Ti-6Al-4V, but Ni-Ti implants showed significantly (P < 0.01) lower percentage bone contact and bone contact area than any of the other titanium or titanium alloy materials.

  1. Temperature dependence of magnetic susceptibility in the vicinity of martensitic transformation in ferromagnetic shape memory alloys.

    PubMed

    Zablotskii, V; Pérez-Landazábal, J I; Recarte, V; Gómez-Polo, C

    2010-08-11

    Temperature dependences of low-field quasistatic magnetic susceptibility in the vicinity of martensitic transitions in an NiFeGa alloy are studied both by experiment and analytically. Pronounced reversible jumps of the magnetic susceptibility were observed near the martensitic transition temperature. A general description of the temperature dependences of the susceptibility in ferromagnetic austenite and martensite phases and the susceptibility jump at the transition is suggested. As a result, the main factors governing the temperature dependences of the magnetic susceptibility in the magnetic shape memory alloys are revealed. The magnetic susceptibility jump value is found to be related to changes of: (i) magnetic anisotropy; (ii) magnetic domain wall geometrical constraints (those determined by the alignment and size of twin variants) and (iii) mean magnetic domain spacing.

  2. Vacancy dynamic in Ni-Mn-Ga ferromagnetic shape memory alloys

    SciTech Connect

    Merida, D.; Sánchez-Alarcos, V.; Pérez-Landazábal, J. I.; Recarte, V.; Plazaola, F.

    2014-06-09

    Vacancies control any atomic ordering process and consequently most of the order-dependent properties of the martensitic transformation in ferromagnetic shape memory alloys. Positron annihilation spectroscopy demonstrates to be a powerful technique to study vacancies in NiMnGa alloys quenched from different temperatures and subjected to post-quench isothermal annealing treatments. Considering an effective vacancy type the temperature dependence of the vacancy concentration has been evaluated. Samples quenched from 1173 K show a vacancy concentration of 1100 ± 200 ppm. The vacancy migration and formation energies have been estimated to be 0.55 ± 0.05 eV and 0.90 ± 0.07 eV, respectively.

  3. Magnetic ordering in magnetic shape memory alloy Ni-Mn-In-Co

    NASA Astrophysics Data System (ADS)

    Ollefs, K.; Schöppner, Ch.; Titov, I.; Meckenstock, R.; Wilhelm, F.; Rogalev, A.; Liu, J.; Gutfleisch, O.; Farle, M.; Wende, H.; Acet, M.

    2015-12-01

    Structural and magnetic properties across the martensite-austenite phase transitions in the shape memory alloy Ni-Mn-In-Co are studied using complementary experimental techniques: ferromagnetic resonance, macroscopic magnetization measurements, and x-ray magnetic circular dichroism in the temperature range from 5 to 450 K. Ferromagnetic resonance experiments show coexisting antiferromagnetic and ferromagnetic correlations for the martensite phase and ferromagnetic and paramagnetic correlations in the austenite phase. Magnetization measurements reveal spin-glass-like behavior for T <30 K and Ni and Co K -edge x-ray magnetic circular dichroism measurements confirm an assignment of a ferromagnetic resonance line purely to Ni (and Co) for a wide temperature range from 125 to 225 K. Hence a combined analysis of ferromagnetic resonance and x-ray magnetic circular dichroism allows us to attribute particular magnetic resonance signals to individual elemental species in the alloy.

  4. Radiopaque Shape Memory Alloys: NiTi-Er with Stable Superelasticity

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Carr, Shane; Butler, James; Gandhi, Abbasi A.; O'Donoghue, Lisa; McNamara, Karrina; Carlson, James M.; Lavelle, Shay; Tiernan, Peter; Biffi, Carlo A.; Bassani, Paola; Tofail, Syed A. M.

    2016-06-01

    Binary NiTi alloy is one of the most important biomaterials currently used in minimally invasive procedures and indwelling devices. The poor visibility of intermetallic NiTi under X-ray could be an unsatisfactory feature especially for developing low-dimensional implantable devices for the body. It is a matter of fact that the alloying of a third radiopaque element, such as noble or heavy metals, in NiTi can significantly enhance the alloy's radiopacity. Recently, it was demonstrated that the addition of a rare earth element such as Erbium has led to an equivalent radiopacity at a much lower cost than the equivalent addition of noble metals. This work reviews the main physical aspects related to the radiopacity of NiTi alloys and compares the radiopacity of NiTi-Er compositions with other NiTi-based alloys containing Pd, Pt, W and Cr. Furthermore, a NiTi-6Er alloy is produced by spark plasma sintering, and successfully processed by conventional hot and cold working procedures to a continuous wire showing stable superelastic behaviour (up to 4 % in strain), suitable for developing biomedical devices.

  5. Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications.

    PubMed

    Guiza-Arguello, Viviana R; Monroe, James A; Karaman, Ibrahim; Hahn, Mariah S

    2016-07-01

    Recently, magnetic shape memory alloys (MSMAs) have emerged as an interesting extension to conventional shape memory alloys (SMAs) due to their capacity to undergo reversible deformation in response to an externally applied magnetic field. Meta-magnetic SMAs (M-MSMAs) are a class of MSMAs that are able to transform magnetic energy to mechanical work by harnessing a magnetic-field induced phase transformation, and thus have the capacity to impose up to 10 times greater stress than conventional MSMAs. As such, M-MSMAs may hold substantial promise in biomedical applications requiring extracorporeal device activation. In the present study, the cytotoxicity and ion release from an Ni50 Mn36 Sn14 atomic percent composition M-MSMA were evaluated using NIH/3T3 fibroblasts. Initial studies showed that the viability of cells exposed to NiMnSn ion leachants was 60 to 67% of tissue culture polystyrene (TCP) controls over 10 to 14 days of culture. This represents a significant improvement in cytocompatibility relative to NiMnGa alloys, one of the most extensively studied MSMA systems, which have been reported to induce 80% cell death in only 48 h. Furthermore, NiMnSn M-MSMA associated cell viability was increased to 80% of TCP controls following layer-by-layer alloy coating with poly(allylamine hydrochloride)/poly(acrylic acid) [PAH/PAA]. Ion release measures revealed that the PAH/PAA coatings decreased total Sn and Mn ion release by 50% and 25%, respectively, and optical microscopy evaluation indicated that the coatings reduced NiMnSn surface oxidation. To our knowledge, this study presents the first cytotoxicity evaluation of NiMnSn M-MSMAs and lays the groundwork for their further biological evaluation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 853-863, 2016. PMID:25953682

  6. Effects of interface treatment on the fatigue behaviour of shape memory alloy reinforced polymer composites

    NASA Astrophysics Data System (ADS)

    Hiremath, S. R.; Harish, K.; Vasireddi, Ramakrishna; Benal, M. M.; Mahapatra, D. R.

    2015-04-01

    Interfacial properties of Shape Memory Alloy (SMA) reinforced polymer matrix composites can be enhanced by improving the interfacial bonding. This paper focuses on studying the interfacial stresses developed in the SMAepoxy interface due to various laser shot penning conditions. Fiber-pull test-setup is designed to understand the role of mechanical bias stress cycling and thermal actuation cycling. Phase transformation is tracked over mechanical and thermal fatigue cycles. A micromechanics based model developed earlier based on shear lag in SMA and energy based consistent homogenization is extended here to incorporate the stress-temperature phase diagram parameters for modeling fatigue.

  7. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGES

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; Shen, Guoyin; Park, Changyong; Yang, Wenge

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  8. A condensed variational model for thermo-mechanically coupled phase transformations in polycrystalline shape memory alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hackl, Klaus

    2013-11-01

    We derive an energy-based material model for thermomechanically coupled phase transformations in polycrystalline shape memory alloys. For the variational formulation of the model, we use the principle of the minimum of the dissipation potential for nonisothermal processes for which only a minimal number of constitutive assumptions has to be made. By introducing a condensed formulation for the representative orientation distribution function, the resulting material model is numerically highly efficient. For a first analysis, we present the results of material point calculations, where the evolution of temperature as well as its influence on the mechanical material response is investigated.

  9. Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys

    SciTech Connect

    Stipcich, M.; Manosa, L.; Planes, A.; Morin, M.; Zarestky, Jerel L; Lograsso, Tom; Stassis, C.

    2004-01-01

    We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structural transitions.

  10. Development of NiMnGa-based ferromagnetic shape memory alloy by rapid solidification route

    NASA Astrophysics Data System (ADS)

    Panda, A. K.; Kumar, Arvind; Ghosh, M.; Mitra, A.

    The ferromagnetic shape memory alloy with nominal composition of Ni 52.5Mn 24.5Ga 23(at%) was developed by the melt-spinning technique. The as-spun ribbon showed dominant L2 1 austenitic (cubic) structure with splitting of primary peak in the X-ray diffractogram indicating existence of a martensitic feature. The quenched-in martensitic plates were revealed from Transmission electron microscopy (TEM). Increase of magnetisation at low-temperature rise indicates martensite to austenite transformation and its reverse with a drop in magnetisation during cooling cycle. The martensite to austenite transformation can be made spontaneous at higher magnetic field.

  11. Variable area nozzle for gas turbine engines driven by shape memory alloy actuators

    NASA Technical Reports Server (NTRS)

    Rey, Nancy M. (Inventor); Miller, Robin M. (Inventor); Tillman, Thomas G. (Inventor); Rukus, Robert M. (Inventor); Kettle, John L. (Inventor); Dunphy, James R. (Inventor); Chaudhry, Zaffir A. (Inventor); Pearson, David D. (Inventor); Dreitlein, Kenneth C. (Inventor); Loffredo, Constantino V. (Inventor)

    2001-01-01

    A gas turbine engine includes a variable area nozzle having a plurality of flaps. The flaps are actuated by a plurality of actuating mechanisms driven by shape memory alloy (SMA) actuators to vary fan exist nozzle area. The SMA actuator has a deformed shape in its martensitic state and a parent shape in its austenitic state. The SMA actuator is heated to transform from martensitic state to austenitic state generating a force output to actuate the flaps. The variable area nozzle also includes a plurality of return mechanisms deforming the SMA actuator when the SMA actuator is in its martensitic state.

  12. Development of a shape memory alloy actuator for transanal endoscopic microsurgery.

    PubMed

    Wang, Zhigang; Hewit, Jim; Abel, Eric; Slade, Alan; Steele, Bob

    2005-01-01

    This paper describes problems in traditional transanal endoscopic microsurgery (TEM), and proposes a mechatronics approach in new design. As one of several actuation mechanisms to expose rectal cavity, a compression coil spring made of shape memory alloy (SMA) has been studied. A custom SMA spring actuator was designed to displace 12 mm with 45 N driving force. This actuator was embedded with our new TEM tubular structure and can be used to expose a rectal site up to 60 mm wide and 80 mm long. This exposure is considered to be sufficient for treating many tumors.

  13. Mobile Interfacial Microstructures in Single Crystals of Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Seiner, Hanuš

    2015-06-01

    This paper summarizes the main properties of the microstructures formed during reverse (austenite → martensite) transitions in single crystals of the Cu-Al-Ni shape memory alloy, and discusses the relation between these properties and the mechanical stabilization effect. It is shown that all experimentally observed interfacial microstructures ( X- and λ-interfaces and their non-classical equivalents) are not local minimizers of the quasi-static energy, and their formation is probably governed by requirements on mobility and dissipation. This conclusion is supported by finite elements models, and acoustic emission measurements.

  14. Thermodynamics of shape memory alloy wire: Modeling, experimental calibration, and simulation

    NASA Astrophysics Data System (ADS)

    Chang, Bi-Chiau

    A thermomechanical model for a shape memory alloy (SMA) wire under uniaxial loading is implemented in a finite element framework, and simulation results are compared with mechanical and infrared experimental data. The constitutive model is a one-dimensional strain-gradient continuum model of an SMA wire element, including two internal field variables, possible unstable mechanical behavior, and the relevant thermomechanical couplings resulting from latent heat effects. The model is calibrated to recent and new experiments of typical commercially available polycrystalline NiTi wire. The shape memory effect and pseudoelastic behaviors are demonstrated numerically as a function of applied displacement rate and environmental parameters, and the results compare favorably to experimental data. The model is then used to simulate a simple SMA actuator device, and its performance is assessed for different thermal boundary conditions.

  15. Low-cycle fatigue of TiNi shape memory alloy and formulation of fatigue life

    SciTech Connect

    Tobushi, Hisaaki; Nakahara, Takafumi; Shimeno, Yoshirou; Hashimoto, Takahiro

    2000-04-01

    The low-cycle fatigue of a TiNi shape memory alloy was investigated by the rotating-bending fatigue tests in air, in water and in silicone oil. (1) The influence of corrosion fatigue in water does not appear in the region of low-cycle fatigue. (2) The temperature rise measured through an infrared thermograph during the fatigue test in air is four times as large as that measured through a thermocouple. (3) The fatigue life at an elevated temperature in air coincides with the fatigue life at the same elevated temperature in water. (4) The shape memory processing temperature does not affect the fatigue life. (5) The fatigue equation is proposed to describe the fatigue life depending on strain amplitude, temperature and frequency. The fatigue life is estimated well by the proposed equation.

  16. Thermomechanical characterization of nickel-titanium-copper shape memory alloy films

    SciTech Connect

    Seward, K P; Ramsey, P B; Krulevitch, P

    2000-10-31

    In an effort to develop a more extensive model for the thermomechanical behavior of shape memory alloy (SMA) films, a novel characterization method has been developed. This automated test has been tailored to characterize films for use in micro-electromechanical system (MEMS) actuators. The shape memory effect in NiTiCu is seen in the solid-state phase transformation from an easily deformable low-temperature state to a 'shape remembering' high-temperature state. The accurate determination of engineering properties for these films necessitates measurements of both stress and strain in microfabricated test structures over the full range of desired deformation. Our various experimental methods (uniaxial tensile tests, bimorph curvature tests and diaphragm bulge tests) provide recoverable stress and strain data and the stress-strain relations for these films. Tests were performed over a range of temperatures by resistive heating or ambient heating. These measurements provide the results necessary for developing active SMA structural film design models.

  17. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  18. Aging effects in a Cu-12Al-5Ni-2Mn-1Ti shape memory alloy

    SciTech Connect

    Wei, Z.G.; Peng, H.Y.; Yang, D.Z.; Zou, W.H.

    1997-04-01

    The isothermal aging effects in an as-quenched Cu-11.88Al-5.06Ni-1.65Mn-0.96Ti (wt pct) shape memory alloy at temperatures in the range 250 C to 400 C were investigated. The changes in the state of atomic order and microstructural evolutions were traced by means of in situ X-ray diffraction and electrical resistivity measurements, as well as transmission electron microscopy (TEM) and optical observations. The kinetics of the aging process, i.e., the temperature and time dependence of the properties including hardness, resistivity, martensitic transformation temperatures, and shape memory capacity were characterized, and at least three temperature-dependent aging stages were distinguished: (1) D0{sub 3} or L2{sub 1} atomic reordering, which causes the martensic transformation temperatures to shift upward and leads the M18R martensite to tend to be a N18R type structure; (2) formation of solute-depleted bainite which results in a drastic depression in martensitic transformation temperatures and loss of the shape memory capacity, accompanied by the atomic disordering in both the remaining parent phase and bainite; and (3) precipitation of the equilibrium {alpha} and {gamma}{sub 2} phases and destruction of the shape memory capacity.

  19. Narrowing of hysteresis of cubic-tetragonal martensitic transformation by weak axial stressing of ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kosogor, Anna

    2016-06-01

    An influence of axial mechanical stress on the hysteresis of martensitic transformation and ordinary magnetostriction of ferromagnetic shape memory alloy has been described in the framework of a Landau-type theory of phase transitions. It has been shown that weak stress can noticeably reduce the hysteresis of martensitic transformation. Moreover, the anhysteretic deformation can be observed when the applied mechanical stress exceeds a critical stress value. The main theoretical results were compared with recent experimental data. It is argued that shape memory alloys with extremely low values of shear elastic modulus are the candidates for the experimental observation of large anhysteretic deformations.

  20. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  1. Transformation-induced plasticity in high-temperature shape memory alloys: a one-dimensional continuum model

    NASA Astrophysics Data System (ADS)

    Sakhaei, Amir Hosein; Lim, Kian-Meng

    2016-07-01

    A constitutive model based on isotropic plasticity consideration is presented in this work to model the thermo-mechanical behavior of high-temperature shape memory alloys. In high-temperature shape memory alloys (HTSMAs), both martensitic transformation and rate-dependent plasticity (creep) occur simultaneously at high temperatures. Furthermore, transformation-induced plasticity is another deformation mechanism during martensitic transformation. All these phenomena are considered as dissipative processes to model the mechanical behavior of HTSMAs in this study. The constitutive model was implemented for one-dimensional cases, and the results have been compared with experimental data from thermal cycling test for actuator applications.

  2. Damage Produced in Solder Alloys during Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Liu, X. W.; Plumbridge, W. J.

    2007-09-01

    The anisotropy of tin is associated with significant variations in its coefficient of thermal expansion and elastic modulus, with crystallographic direction. Under pure thermal cycling (with no externally applied stress or strain), substantial strains, in excess of 100%, may develop locally, and for very small structures, such as soldered interconnections comprising a few grains, structural integrity may be adversely affected. To examine this possibility, freestanding samples of tin, Sn-3.5wt.%Ag, Sn-0.5wt.%Cu, and Sn-3.8wt.%Ag-0.7wt.%Cu, have been subjected to thermal cycling. Temperature cycles from 30°C to 125°C or from -40°C to 55°C initially caused surface cracking, with openings up to several tens of microns after 3,000 cycles. Subsequently, the surface cracks grew into the interior of the specimens, with the maximum penetration ranging from a few microns after 100 cycles to more than 200 μm after 3,000 cycles. The cracks initiated from damage accumulated along grain boundaries. For the same temperature range, less damage resulted after the lower maximum (or mean) temperature cycle, and there appears to be a thermally activated component of cracking. The microstructure produced by rapid cooling (water quenching) was slightly more resistant than that formed by air, or furnace, cooling. Apart from microstructural coarsening, no damage accrues from isothermal exposure alone.

  3. Experimental Analysis and Numerical Simulation of Tensile Behaviour of TiNi Shape Memory Alloy Fibres Reinforced Epoxy Matrix Composite at High Temperatures

    SciTech Connect

    Sahli, M. L.; Necib, B.

    2011-05-04

    The shape memory alloys (SMA) possess both sensing and actuating functions due to their shape memory effect, pseudo-elasticity, high damping capability and other remarkable properties. Combining the SMA with other materials can create intelligent or smart composites. The epoxy resin composites filled with TiNi alloys fibres were fabricated and their mechanical properties have been investigated. In this study, stress/strain relationships for a composite with embedded shape memory materials (SMA) fibres are presented. The paper illustrates influence of the SMA fibres upon changes in mechanical behaviour of a composite plate with the SMA components, firstly and secondly, the actuating ability and reliability of shape memory alloy hybrid composites.

  4. Continuous mandibular distraction osteogenesis using superelastic shape memory alloy (SMA).

    PubMed

    Idelsohn, S; Peña, J; Lacroix, D; Planell, J A; Gil, F J; Arcas, A

    2004-04-01

    Distraction osteogenesis is a well-established method of endogenous tissue engineering. It is a biological process of bone neo-formation between segments subjected to tension. The concept of this study was to investigate the distraction osteogenesis with a device capable of creating a permanent and constant force during the whole process as if a very large number of small elongations were applied constantly. The mechanical testing of the device used to produce the constant force and the in vivo analysis of the bone growth after it was implanted in rabbits are presented on this work. The device consists of a NiTi coil spring, superelastic at body temperature, in order to have a stress plateau during the austenitic retransformation during the unloading. The in vivo analysis was made on six female rabbits of 12 months old. A segmental mandibulectomy at the horizontal arm of the mandible and a corticotomy at 5mm distant from the gap were made. Next, following a latency period of five days, the SMA springs were implanted to induce the bone neo-formation. The displacement at the unloading plateau shows that it is necessary to have longer springs or to use several (available commercially) in series in order to fulfil the requirements of a human distraction. The temperature variations induced changes in the spring force. However, when the temperature returns to 37 degrees C the distraction force recovers near the initial level and does so completely when the distraction process continues. For the in vivo study, all six rabbits successfully completed the distraction. The radiographies showed the gap as distraction advanced. A continuity in the newly formed bone with similar transversal and horizontal dimensions than the original bone can be observed on the histologies. In conclusion, the application of a constant force on distraction osteogenesis, using SMA springs, may be a successful alternative to the conventional gradual distraction.

  5. Shape memory Ni-Ti alloy swan-like bone connector for treatment of humeral shaft nonunion

    PubMed Central

    Su, Jia-can; Liu, Xin-wei; Yu, Bao-qing; Li, Zhuo-dong

    2009-01-01

    From August 1990 to December 2007, 156 patients with humeral shaft nonunion were treated with our patented Ni-Ti shape memory alloy swan-like memory pressure connector (SMC). The SMC device cooled with ice before implantation was warmed to 40–50°C after implantation to produce balanced axial and compression forces to stabilise the fracture three-dimensionally. This combined with autologous bone grafting achieved bone tissue regeneration in the fracture and promoted smooth recovery of joint function, with a nonunion healing rate of 98.7% after a single SMC implantation. Failure of nonunion healing occurred in only two cases but was successfully managed by a further operation. Complications were not found in any of these patients apart from four with pre-existing radial nerve injuries. These results demonstrate the effectiveness of the SMC device for the management of humeral shaft nonunion. The device provides continuous compression of the fracture with minimal trauma to the local blood supply. PMID:19198838

  6. Improvement of the functional properties of nanostructured Ti-Ni shape memory alloys by means of thermomechanical processing

    NASA Astrophysics Data System (ADS)

    Kreitcberg, Alena

    knowledge in the field of Ti-Ni SMAs' processing-structure-properties interactions, and the main conclusions of this study can be summed-up as follows: • Nanocrystalline Ti-Ni alloys significantly outperform nanosubgrain Ti-Ni alloys in terms of the absolute values and stability of their single- and multiple-cycle functional properties (superelasticity and shape memory characteristics). The main factor limiting the number of cycles to failure of the nanocrystalline alloys is the processingrelated damage. • The structure of Ti-Ni alloys plays significantly higher role in the realization of their functional potential that does their texture. • In terms of fatigue life, the nanocrystalline structure has lower small-crack sensitivity than does the nanosubgrained structure. • Grain refinement makes it possible to improve deformability of Ti-Ni alloys at any temperature. • To produce nanocrystalline Ti-Ni SMAs free of processing-induced-defects, a novel three-step processing is proposed (ECAP+CR+PDA): grain-refining severe plastic deformation at elevated temperatures (ECAP), followed-up by amorphizing SPD at low temperatures (CR), and ended-up by nanocrystallizing post-deformation heat treatment (PDA).

  7. Effect of Heat-Treatment on the Phases of Ni-Mn-Ga Magnetic Shape Memory Alloys

    SciTech Connect

    Huq, Ashfia; Ari-Gur, Pnina; Kimmel, Giora; Richardson, James W; Sharma, Kapil

    2009-01-01

    The Heusler alloys Ni50Mn25+xGa25-x display magnetic shape memory effect (MSM) with very fast and large reversible strain under magnetic fields. This large strain and the speed of reaction make MSM alloys attractive as smart materials. Our crystallographic investigation of these alloys, focused on non-stoichiometric composition with excess of manganese. Using neutron diffraction, we revealed the necessary processing parameters to achieve and preserve the homogeneous metastable one-phase martensitic structure that is needed for an MSM effect at room temperature.

  8. Twinning-Induced Elasticity in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther

    2016-06-01

    Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.

  9. Shape memory alloys for astronomical instrumentation: space and ground-based applications

    NASA Astrophysics Data System (ADS)

    Riva, M.; Rigamonti, D.; Zanetti, F.; Passaretti, F.; Villa, E.; Zerbi, F. M.

    2012-09-01

    This paper wants to illustrate possible applications of Shape Memory Alloy (SMA) as functional devices for space and ground based application in Instrumentations for Astronomy. Thermal activated Shape Memory Alloys are materials able to recover their original shape, after an external deformation, if heated above a characteristic temperature. If the recovery of the shape is completely or partially prevented by the presence of constraints, the material can generate recovery stress. Thanks to this feature, these materials can be positively exploited in Smart Structures if properly embedded into host materials. Some technological processes developed for an ecient use of SMA-based actuators embedded in smart structures tailored to astronomical instrumentation will be presented here. Some possible modeling approaches of the actuators behavior will be addressed taking into account trade- offs between detailed analysis and overall performance prediction as a function of the computational time. The Material characterization procedure adopted for the constitutive laws implementation will be described as well. Deformable composite mirrors,1 opto-mechanical mounting with superelastic kinematic behavior and damping of launch loads onto optical element2 are feasible applications that will be deeply investigated in this paper.

  10. Force-displacement characteristics of simply supported beam laminated with shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Qiang; Zhang, Zhen-Hua

    2011-12-01

    As a preliminary step in the nonlinear design of shape memory alloy (SMA) composite structures, the force-displacement characteristics of the SMA layer are studied. The bilinear hysteretic model is adopted to describe the constitutive relationship of SMA material. Under the assumption that there is no point of SMA layer finishing martensitic phase transformation during the loading and unloading process, the generalized restoring force generated by SMA layer is deduced for the case that the simply supported beam vibrates in its first mode. The generalized force is expressed as piecewise-nonlinear hysteretic function of the beam transverse displacement. Furthermore the energy dissipated by SMA layer during one period is obtained by integration, then its dependencies are discussed on the vibration amplitude and the SMA's strain (Ms-Strain) value at the beginning of martensitic phase transformation. It is shown that SMA's energy dissipating capacity is proportional to the stiffness difference of bilinear model and nonlinearly dependent on Ms-Strain. The increasing rate of the dissipating capacity gradually reduces with the amplitude increasing. The condition corresponding to the maximum dissipating capacity is deduced for given value of the vibration amplitude. The obtained results are helpful for designing beams laminated with shape memory alloys.

  11. Static rock splitters based on high temperature shape memory alloys for planetary explorations

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Halsmer, T. J.

    2016-01-01

    A static rock splitter device based on high-force, high-temperature shape memory alloys (HTSMAs) was developed for space related applications requiring controlled geologic excavation in planetary bodies such as the moon, Mars, and near-Earth asteroids. The device, hereafter referred to as the shape memory alloy rock splitter (SMARS), consisted of active (expanding) elements made of Ni50.3Ti29.7Hf20 (at%) that generate extremely large forces in response to thermal input. The pre-shaping (training) of these elements was accomplished using isothermal, isobaric and cyclic training methods, which resulted in active components capable of generating stresses in excess of 1.5 GPa. The corresponding strains (or displacements) were also evaluated and were found to be 2-3%, essential to rock fracturing and/or splitting when placed in a borehole. SMARS performance was evaluated using a testbed consisting of a temperature controller, custom heaters and heater holders, and an enclosure for rock placement and breakage. The SMARS system was evaluated using various rock types including igneous rocks (e.g., basalt, quartz, granite) and sedimentary rocks (e.g., sandstone, limestone).

  12. Sensorless control for a sophisticated artificial myocardial contraction by using shape memory alloy fibre.

    PubMed

    Shiraishi, Y; Yambe, T; Saijo, Y; Sato, F; Tanaka, A; Yoshizawa, M; Sugai, T K; Sakata, R; Luo, Y; Park, Y; Uematsu, M; Umezu, M; Fujimoto, T; Masumoto, N; Liu, H; Baba, A; Konno, S; Nitta, S; Imachi, K; Tabayashi, K; Sasada, H; Homma, D

    2008-01-01

    The authors have been developing an artificial myocardium, which is capable of supporting natural contractile function from the outside of the ventricle. The system was originally designed by using sophisticated covalent shape memory alloy fibres, and the surface did not implicate blood compatibility. The purpose of our study on the development of artificial myocardium was to achieve the assistance of myocardial functional reproduction by the integrative small mechanical elements without sensors, so that the effective circulatory support could be accomplished. In this study, the authors fabricated the prototype artificial myocardial assist unit composed of the sophisticated shape memory alloy fibre (Biometal), the diameter of which was 100 microns, and examined the mechanical response by using pulse width modulation (PWM) control method in each unit. Prior to the evaluation of dynamic characteristics, the relationship between strain and electric resistance and also the initial response of each unit were obtained. The component for the PWM control was designed in order to regulate the myocardial contractile function, which consisted of an originally-designed RISC microcomputer with the input of displacement, and its output signal was controlled by pulse wave modulation method. As a result, the optimal PWM parameters were confirmed and the fibrous displacement was successfully regulated under the different heat transfer conditions simulating internal body temperature as well as bias tensile loading. Then it was indicated that this control theory might be applied for more sophisticated ventricular passive or active restraint by the artificial myocardium on physiological demand.

  13. Micromechanics of composites with shape memory alloy fibers in uniform thermal fields

    NASA Technical Reports Server (NTRS)

    Birman, Victor; Saravanos, Dimitris A.; Hopkins, Dale A.

    1995-01-01

    Analytical procedures are developed for a composite system consisting of shape memory alloy fibers within an elastic matrix subject to uniform temperature fluctuations. Micromechanics for the calculation of the equivalent properties of the composite are presented by extending the multi-cell model to incorporate shape memory alloy fibers. A three phase concentric cylinder model is developed for the analysis of local stresses which includes the fiber, the matrix, and the surrounding homogenized composite. The solution addresses the complexities induced by the nonlinear dependence of the in-situ martensite fraction of the fibers to the local stresses and temperature, and the local stresses developed from interactions between the fibers and matrix during the martensitic and reverse phase transformations. Results are presented for a nitinol/epoxy composite. The applications illustrate the response of the composite in isothermal longitudinal loading and unloading, and in temperature induced actuation. The local stresses developed in the composite under various stages of the martensitic and reverse phase transformation are also shown.

  14. Brain catalase mediates potentiation of social recognition memory produced by ethanol in mice.

    PubMed

    Manrique, Héctor M; Miquel, Marta; Aragon, Carlos M G

    2005-09-01

    The involvement of catalase in ethanol-induced locomotion has been clearly proven. However, studies addressing the role of this enzyme in the effects that ethanol exerts on memory are lacking. In the present study, the social recognition test (SRT) was used to evaluate ethanol effects on memory. In this test, the reduction in investigation time of a juvenile conspecific, when this social stimulus is presented for the second time, is considered a reliable index of memory. Exploration ratios (ER) were calculated to evaluate the recognition capacity of mice. Ethanol (0.0, 0.5, 1.0 or 1.5g/kg, i.p.) was administered immediately after the first juvenile presentation, and 2h later the juvenile was re-exposed to the adult. Additionally, adult mice received aminotriazole (AT) or sodium azide (two catalase inhibitors) 5h or 30 min before juvenile presentation, respectively. Ethanol (1.0 and 1.5g/kg) was able to reduce ER, indicating an improving effect on memory. This improvement was prevented by either AT or sodium azide pre-treatment. However, neither AT nor sodium azide attenuated the memory-enhancing capacity of NMDA or nicotine, suggesting a specific interaction between catalase inhibitors and ethanol in their effects on memory. The present results suggest that brain catalase activity could mediate the memory-enhancing capacity of ethanol and add further support to the idea that this enzyme mediates some of the psychopharmacological effects produced by ethanol. PMID:16102377

  15. The relationship between alloying elements and biologically produced ennoblement in natural waters.

    PubMed

    Eashwar, M; Lakshman Kumar, A; Hariharasuthan, R; Sreedhar, G

    2015-01-01

    A range of stainless steels, nickel-chromium and nickel-chromium-molybdenum alloys were exposed to coastal seawater from Mandapam (Indian Ocean) and freshwater from a perennial pond. Biofilms from both test waters produced an ennoblement of the open circuit potential (OCP) on all alloys as expected, which was slower but substantially larger in freshwater. In both waters an interesting relationship was perceived between the plateau OCP (Emax) and the mass percentage of the major alloying elements. In particular, iron exhibited strong positive correlations with Emax (r(2) ≥ 0.77; p < 0.0005), while the sum of chromium, nickel and molybdenum presented significant negative correlations (r(2) ≤ -0.81; p = 0.0002). Consistent with the regression analyses, Euclidean distance clustering yielded patterns where Inconel-600 and the nickel-chromium-molybdenum alloys had the smallest similarities of OCP with other alloys. The results emphatically reinforce a key role for surface passive films in the ennoblement phenomenon in natural waters. PMID:26098205

  16. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, D.T.; Troup, R.L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide. 1 fig.

  17. Carbothermic reduction and prereduced charge for producing aluminum-silicon alloys

    DOEpatents

    Stevenson, David T.; Troup, Robert L.

    1985-01-01

    Disclosed is a method for the carbothermic reduction of aluminum oxide to form an aluminum alloy including producing silicon carbide by heating a first mix of carbon and silicon oxide in a combustion reactor to an elevated temperature sufficient to produce silicon carbide at an accelerated rate, the heating being provided by an in situ combustion with oxygen gas, and then admixing the silicon carbide with carbon and aluminum oxide to form a second mix and heating the second mix in a second reactor to an elevated metal-forming temperature sufficient to produce aluminum-silicon alloy. The prereduction step includes holding aluminum oxide substantially absent from the combustion reactor. The metal-forming step includes feeding silicon oxide in a preferred ratio with silicon carbide.

  18. Processing studies of powder metallurgically-produced high temperature alloys (Processing studies of oxide dispersed alloys for service above 1000/sup 0/ C). Final report

    SciTech Connect

    Grant, N.J.; Smith, C.H.

    1986-01-01

    It was demonstrated that the use of homogeneous, fine, R.S. powders of Nickel-base Superalloy IN-100 (a commercial jet engine blade alloy), converted to very fine flake and blended with Y/sub 2/O/sub 3/, will produce an extremely stable alloy with outstanding creep and stress rupture properties from about 950 to at least 1100/sup 0/C. The RS OD IN-100 alloy has comparable properties to those reported for the MA-6000 alloy developed by Benjamin et al, but offers a cheaper, faster, much more reproducible product. An operating temperature advantage of 150 to 200/sup 0/C appears attainable for the RS OD IN-100 alloy over that for the commercial precision cast alloy of the same basic composition.

  19. Mathematical Modeling and Control of Nonlinear Oscillators with Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bendame, Mohamed

    Shape memory alloys (SMAs) belong to an interesting type of materials that have attracted the attention of scientists and engineers over the last few decades. They have some interesting properties that made them the subject of extensive research to find the best ways to utilize them in different engineering, biomedical, and scientific applications. In this thesis, we develop a mathematical model and analyze the behavior of SMAs by considering a one degree of freedom nonlinear oscillator consisting of a mass connected to a fixed frame through a viscous damping and a shape memory alloy device. Due to the nonlinear and dissipative nature of shape memory alloys, optimal control and Lyapunov stability theories are used to design a controller to stabilize the response of the one degree of freedom nonlinear oscillator. Since SMAs exist in two phases, martensite and austenite, and their phase transformations are dependent on stress and temperature, this work is presented in two parts. The first part deals with the nonlinear oscillator system in its two separate phases by considering a temperature where the SMA exists in only one of the phases. A model for each phase is developed based on Landau-Ginzburg-Devonshire theory that defines the free energy in a polynomial form enabling us to describe the SMAs shape memory effect and pseudoelasticity. However, due to the phenomenon of hysteresis in SMAs, the response of the nonlinear oscillator with a SMA element, in either phase, is chaotic and unstable. In order to stabilize the chaotic behavior, an optimal linear quadratic regulator controller is designed around a stable equilibrium for the martensitic and the austenitic phases. The closed-loop response for each phase is then simulated and computational results are presented. The second part of the thesis deals with the entire system in its dynamics by combining the two phases and taking into account the effect of temperature on the response of the system. Governing equations

  20. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGES

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  1. Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-04-01

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. The unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

  2. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  3. A Study of Thermo-mechanically Processed High Stiffness NiTiCo Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Manjeri, R. M.; Norwich, D.; Sczerzenie, F.; Huang, X.; Long, M.; Ehrlinspiel, M.

    2016-03-01

    This work investigates a vacuum induction melted-vacuum arc re-melted (VIM-VAR) and thermo-mechanically processed ternary NiTiCo shape memory alloy. The NiTiCo ingot was hot processed to 6.35-mm-diameter coiled wire. The coiled wire was subsequently cold drawn to a final wire diameter of 0.53 mm, with interpass anneals. The wires were shape set at 450 °C for 3.5 min. After electropolishing, the wires were subjected to microstructural, thermal, and mechanical characterization studies. Microstructural analysis was performed by transmission electron microscope (TEM), thermal analyses by differential scanning calorimeter (DSC), and bend-free recovery and mechanical testing by uniaxial tensile testing. TEM did not reveal Ni-rich precipitates—either at the grain boundary or in the grain interior. Energy dispersive x-ray spectroscopy showed a uniform distribution of Ni, Ti, and Co in the sample. The DSC results on the shape set wire showed a single-step transformation between the austenite and the R-phase, in the forward and reverse directions. Cyclic tensile tests of the shape set wire, processed under optimum conditions, showed minimum residual strain and a stable upper plateau stress. Further, the fatigue behavior of NiTi and NiTiCo alloys was studied by rotating beam testing. The results showed that the fatigue properties of NiTiCo, under zero mean strain, are equivalent to that of binary NiTi in the high-cycle and medium-cycle regimes, taking into account the higher stiffness of NiTiCo. The above analyses helped in establishing the processing-structure-property correlation in a VIM-VAR-melted NiTiCo shape memory alloy.

  4. Energy-dispersive neutron imaging and diffraction of magnetically driven twins in a Ni2MnGa single crystal magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Kabra, Saurabh; Kelleher, Joe; Kockelmann, Winfried; Gutmann, Matthias; Tremsin, Anton

    2016-09-01

    Single crystals of a partially twinned magnetic shape memory alloy, Ni2MnGa, were imaged using neutron diffraction and energy-resolved imaging techniques at the ISIS spallation neutron source. Single crystal neutron diffraction showed that the crystal produces two twin variants with a specific crystallographic relationship. Transmission images were captured using a time of flight MCP/Timepix neutron counting detector. The twinned and untwinned regions were clearly distinguishable in images corresponding to narrow-energy transmission images. Further, the spatially-resolved transmission spectra were used to elucidate the orientations of the crystallites in the different volumes of the crystal.

  5. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  6. Microstructure of cryogenically treated martensitic shape memory nickel-titanium alloy

    PubMed Central

    Vinothkumar, Thilla Sekar; Kandaswamy, Deivanayagam; Prabhakaran, Gopalakrishnan; Rajadurai, Arunachalam

    2015-01-01

    Context: Recent introduction of shape memory (SM) nickel-titanium (NiTi) alloy into endodontics is a major breakthrough. Although the flexibility of these instruments was enhanced, fracture of rotary endodontic instruments during instrumentation is an important challenge for the operator. Implementation of supplementary manufacturing methods that would improve the fatigue life of the instrument is desirable. Aim: The purpose of this study was to investigate the role of dry cryogenic treatment (CT) conditions on the microstructure of martensitic SM NiTi alloy. Materials and Methods: Experiments were conducted on Ni-51 wt% Ti-49 wt% SM alloy. Five cylindrical specimens and five sheet specimens were subjected to different CT conditions: Deep CT (DCT) 24 group: −185°C; 24 h, DCT 6 group: −185°C; 6 h, shallow CT (SCT) 24 group: −80°C, 24 h, SCT 6 group: −80°C, 6 h and control group. Microstructure of surface was observed on cylindrical specimens with an optical microscope and scanning electron microscope at different magnifications. Subsurface structure was analyzed on sheet specimens using X-ray diffraction (XRD). Results: Microstructures of all SM NiTi specimens had equiaxed grains (approximately 25 μm) with well-defined boundaries and precipitates. XRD patterns of cryogenically treated specimens revealed accentuation of austenite and martensite peaks. The volume of martensite and its crystallite size was relatively more in DCT 24 specimen. Conclusions: DCT with 24 h soaking period increases the martensite content of the SM NiTi alloy without altering the grain size. PMID:26180413

  7. Fast Preisach modeling method for shape memory alloy actuators using major hysteresis loops

    NASA Astrophysics Data System (ADS)

    Choi, Byung-Jun; Lee, Yun-Jung; Choi, Bong-Yeol

    2004-10-01

    The control accuracy of smart actuators, such as a shape memory alloy (SMA) or piezoceramic actuator, is limited due to their inherent hysteresis nonlinearities with a local memory, resulting from the influence of a previous input on subsequent behavior. In addition, the existence of minor loops in the major loop because of a local memory also makes the mathematical modeling and design of a controller difficult for SMA actuators. Therefore, to enhance the controllability of a smart actuator, the Preisach hysteresis model has emerged as an appropriate behavioral model, yet the modeling is difficult and the model equation complex. Accordingly, to resolve these difficulties, the current paper proposes a simple method based on applying the proportional relationship between the major loop and the FOD curves of an SMA actuator to the Preisach model. As such, using only data for the major hysteresis loop, the proposed method enables the FOD curves to be easily approximated and the output length rapidly computed. The efficacy of the proposed Preisach modeling method is confirmed based on comparative experiments with the classical Preisach model.

  8. A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys.

    PubMed

    Ashrafi, M J; Arghavani, J; Naghdabadi, R; Sohrabpour, S

    2015-02-01

    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper internal variables, free energy and limit functions are introduced. With the aim of numerical implementation, time discretization and solution algorithm for the proposed model are also presented. Due to lack of enough experimental data on multiaxial loadings of porous SMAs, we employ a computational simulation method (CSM) together with available experimental data to validate the proposed constitutive model. The method is based on a 3-D finite element model of a representative volume element (RVE) with random pores pattern. Good agreement between the numerical predictions of the model and CSM results is observed for elastic and phase transformation behaviors in various thermomechanical loadings.

  9. Quasi-static modeling of NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Chopra, Inderjit

    2004-07-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated on the basis of NiTi SMA constitutive models such as the Brinson model, because of the similarities that exist in the behavior of both materials. NiMnGa shows a magnetically induced shape memory effect as well as a pseudoelastic behavior. Quasi-static tests at constant applied magnetic field and stress were conducted to identify the model parameters. The material parameters include free strain, Young's modulus, critical threshold fields and stress-influence coefficients. The Young's moduli of the material in its field preferred and stress preferred states were determined to be 450 MPa and 820 MPa respectively. Critical threshold fields as a function of stress were determined from constant stress testing. These test data were used to assemble a critical stress-temperature profile that is useful in predicting the various states of the material for a wide range of magnetic or mechanical loading conditions. Although the constant applied field and constant stress data have yet to be fully correlated, the model parameters identified from the experiments were used to implement an initial version of the quasi-static model. The model shows good correlation with test data and captures both the magnetic shape memory effect and pseudoelasticity. This introductory model provides a sound basis for further refinements of a quasi-static NiMnGa model.

  10. Formation of Nanocrystalline Surface of Cu-Sn Alloy Foam Electrochemically Produced for Li-Ion Battery Electrode.

    PubMed

    Ye, Bora; Kim, Sunjung

    2015-10-01

    Cu-Sn alloy foam is a promising electrode material for Li-ion batteries. In this study, Cu-Sn alloy foam was produced by diffusion-limited electrodeposition in alkaline electrolyte using polyurethane (PU) foam template. Our major concern is to form Cu-Sn alloy foam with nanocrystalline surface morphology by adjusting electrodeposition conditions such as deposition potential and metal ion concentration. Cu-Sn alloy layers comprising of nanoclusters such as nanospheres, nanoellipsoids, and nanoflakes were created depending on electrodeposition conditions. Larger surface area of nanocluster-interconnected Cu-Sn alloy layer was created when both Sn concentration and negative deposition potential were higher. After decomposing PU template thermally, Cu-Sn alloy foam of Cu, Cu6Sn5, and Cu3Sn phases was finally produced. PMID:26726491

  11. Shape memory metals. Final report

    SciTech Connect

    Dworak, T.D.

    1993-09-01

    The ability to define a manufacturing process to form, heat-treat, and join parts made of nickel-titanium and/or copper-zinc-aluminum shape memory alloys was investigated. The specific emphasis was to define a process that would produce shape memory alloy parts in the configuration of helical coils emulating the appearance of compression springs. In addition, the mechanical strength of the finished parts along with the development of a electrical lead attachment method using shape memory alloy wire was investigated.

  12. Generation and Perceptual Implicit Memory: Different Generation Tasks Produce Different Effects on Perceptual Priming

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Dew, Ilana T. Z.

    2009-01-01

    The generation manipulation has been critical in delineating differences between implicit and explicit memory. In contrast to past research, the present experiments indicate that generating from a rhyme cue produces as much perceptual priming as does reading. This is demonstrated for 3 visual priming tasks: perceptual identification, word-fragment…

  13. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  14. Collaboration in recall: do pairs of people cross-cue each other to produce new memories?

    PubMed

    Meudell, P R; Hitch, G J; Boyle, M M

    1995-02-01

    When people collaborate over their recall of a shared experience, it might be expected that they could "cross-cue" each other so as to produce new memories not available to either member of the pair on their own. In a previous series of experiments (Meudell et al., 1992), we found that pairs of people always recalled more than one person, but we failed to show that social interaction facilitated performance so as to produce such "emergent" new memories. However, a phenomenon akin to cross-cuing was employed by Tulving and Pearlstone (1966) in their classic study of the availability and accessibility of memories; accordingly, in this study, we repeated Tulving and Pearlstone's work directly in a social context. So as to assess whether new memories emerged in collaborating pairs, a sequential design was employed. People learned categorized lists of words, and then all the subjects recalled the items strictly on their own. Subjects then recalled again in pairs (collaboratively) or once more on their own. The results showed that even when the opportunity for cross-cuing was directly manipulated through the provision of categorized lists, no additional new memories emerged in the collaborating groups. Possible mechanisms for the results are considered.

  15. Superelasticity and compression behavior of porous TiNi alloys produced using Mg spacers.

    PubMed

    Aydoğmuş, Tarık; Bor, Sakir

    2012-11-01

    In the scope of the present study, Ni-rich TiNi (Ti-50.6 at %Ni) foams with porosities in the range 38-59% were produced by space holder technique using spherical magnesium powders as space formers. Single phase porous TiNi alloys produced with spherical pores were subjected to loading-unloading cycles in compression up to 250 MPa stress levels at different temperatures in as-processed and aged conditions. It has been observed that strength, elastic modulus and critical stress for inducing martensite decrease with increasing porosity. Partial superelasticity was observed for all porosity levels at different test temperatures and conditions employed. Irrecoverable strain was found to decrease with pre-straining and with increasing test temperature. Unlike in bulk TiNi alloys a constant stress plateau has not been observed during the compression testing of porous TiNi alloys. Instead linear superelasticity with a quite steep slope allowing 5% applied strain to be recovered after pre-straining or aging was observed. Even at test temperatures higher than austenite finish temperature in as-sintered and aged condition, strain applied could not be recovered fully due to martensite stabilization resulting from heavy deformation of macro-pore walls and sintering necks. TiNi foams produced with porosities in the range of 38-51% meet the main requirements of biomaterials in terms of mechanical properties for use as bone implant.

  16. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  17. In Situ Photoelectron Emission Microscopy of a Thermally Induced Martensitic Transformation in a CuZnAI Shape Memory Alloy

    SciTech Connect

    Xiong, Gang; Joly, Alan G.; Beck, Kenneth M.; Hess, Wayne P.; Cai, Mingdong; Langford, Stephen C.; Dickinson, J T.

    2006-02-27

    Photoemission electron microscopy, in conjunction with photoemission spectroscopy, reflectivity, and surface roughness measurements, is used to study the thermally-induced martensitic transformation in a CuZnAI shape memory alloy. Real-time phase transformation is observed as a nearly instantaneous change of photoelectron intensity, accompanied by microstructural deformation and displacement due to the shape memory effect. The difference in the photoelectron intensity before and after the phase transformation is attributed to the concomitant change of work function as measured by photoelectron spectroscopy. Photoemission electron microscopy is shown to be a valuable new technique facilitating the study of phase transformations in shape memory alloys, and provides real-time information on microstructural changes and phase-dependent electronic properties.

  18. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.

    PubMed

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-12-01

    The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings.

  19. In vitro osteoblast-like cell proliferation on nano-hydroxyapatite coatings with different morphologies on a titanium-niobium shape memory alloy.

    PubMed

    Xiong, Jianyu; Li, Yuncang; Hodgson, Peter D; Wen, Cui'e

    2010-12-01

    The morphology of nanomaterials significantly affects their physical, chemical, and biological properties. In the present study, nano-hydroxyapatite coatings with different morphologies were produced on the surface of a titanium-niobium shape memory alloy via a hydrothermal process. The effect of the nano-hydroxyapatite coatings on the in vitro proliferation of SaOS-2 osteoblast-like cells was investigated. Factors including crystallinity, surface micro-roughness, and surface energy of the nano-hydroxyapatite coatings were discussed. Results show that in vitro proliferation of the osteoblast-like cells was significantly enhanced on the nano-hydroxyapatite-coated titanium-niobium alloy compared to the titanium-niobium alloy without coating. The cell numbers on the nano-hydroxyapatite-coated titanium-niobium alloy changed consistently with the surface energy of the hydroxyapatite coatings. This study suggests that surface energy as a characteristic parameter influencing the in vitro proliferation of osteoblast-like cells was predominant over the crystallinity and surface micro-roughness of the nano-hydroxyapatite coatings. PMID:20725978

  20. Microstructure and mechanical properties of Nb15Al10Ti alloy produced by mechanical alloying and high temperature processing.

    PubMed

    Rozmus, M; Blicharski, M; Dymek, S

    2010-03-01

    In this work, an Nb15Al10Ti alloy produced by mechanical alloying was investigated. The milling of elemental powders of Nb, Al as well as TiAl intermetallic phase resulted in the formation of homogenous niobium solid solution, Nb(ss), and refinement of powder particles. Powder after milling was consolidated by conventional hot pressing at 1300 degrees C under pressure of 25 MPa as well as by hot isostatic pressing at 1200 degrees C under pressure of 1 GPa. Microstructure of consolidated material was examined by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. Materials after consolidation were composed of three phases: niobium solid solution Nb(ss), Nb(3)Al intermetallic phase and titanium oxide dispersoid TiO. The analysis of the mechanical properties indicated that both refinement of microstructure as well as introduction of ductile Nb(ss) into the microstructure contributed to very high yield strength and fracture toughness satisfactory for this strength. PMID:20500425

  1. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory

    PubMed Central

    Fá, M.; Puzzo, D.; Piacentini, R.; Staniszewski, A.; Zhang, H.; Baltrons, M. A.; Li Puma, D. D.; Chatterjee, I.; Li, J.; Saeed, F.; Berman, H. L.; Ripoli, C.; Gulisano, W.; Gonzalez, J.; Tian, H.; Costa, J. A.; Lopez, P.; Davidowitz, E.; Yu, W. H.; Haroutunian, V.; Brown, L. M.; Palmeri, A.; Sigurdsson, E. M.; Duff, K. E.; Teich, A. F.; Honig, L. S.; Sierks, M.; Moe, J. G.; D’Adamio, L.; Grassi, C.; Kanaan, N. M.; Fraser, P. E.; Arancio, O.

    2016-01-01

    Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer’s disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology. PMID:26786552

  2. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory.

    PubMed

    Fá, M; Puzzo, D; Piacentini, R; Staniszewski, A; Zhang, H; Baltrons, M A; Li Puma, D D; Chatterjee, I; Li, J; Saeed, F; Berman, H L; Ripoli, C; Gulisano, W; Gonzalez, J; Tian, H; Costa, J A; Lopez, P; Davidowitz, E; Yu, W H; Haroutunian, V; Brown, L M; Palmeri, A; Sigurdsson, E M; Duff, K E; Teich, A F; Honig, L S; Sierks, M; Moe, J G; D'Adamio, L; Grassi, C; Kanaan, N M; Fraser, P E; Arancio, O

    2016-01-20

    Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology.

  3. Extracellular Tau Oligomers Produce An Immediate Impairment of LTP and Memory.

    PubMed

    Fá, M; Puzzo, D; Piacentini, R; Staniszewski, A; Zhang, H; Baltrons, M A; Li Puma, D D; Chatterjee, I; Li, J; Saeed, F; Berman, H L; Ripoli, C; Gulisano, W; Gonzalez, J; Tian, H; Costa, J A; Lopez, P; Davidowitz, E; Yu, W H; Haroutunian, V; Brown, L M; Palmeri, A; Sigurdsson, E M; Duff, K E; Teich, A F; Honig, L S; Sierks, M; Moe, J G; D'Adamio, L; Grassi, C; Kanaan, N M; Fraser, P E; Arancio, O

    2016-01-01

    Non-fibrillar soluble oligomeric forms of amyloid-β peptide (oAβ) and tau proteins are likely to play a major role in Alzheimer's disease (AD). The prevailing hypothesis on the disease etiopathogenesis is that oAβ initiates tau pathology that slowly spreads throughout the medial temporal cortex and neocortices independently of Aβ, eventually leading to memory loss. Here we show that a brief exposure to extracellular recombinant human tau oligomers (oTau), but not monomers, produces an impairment of long-term potentiation (LTP) and memory, independent of the presence of high oAβ levels. The impairment is immediate as it raises as soon as 20 min after exposure to the oligomers. These effects are reproduced either by oTau extracted from AD human specimens, or naturally produced in mice overexpressing human tau. Finally, we found that oTau could also act in combination with oAβ to produce these effects, as sub-toxic doses of the two peptides combined lead to LTP and memory impairment. These findings provide a novel view of the effects of tau and Aβ on memory loss, offering new therapeutic opportunities in the therapy of AD and other neurodegenerative diseases associated with Aβ and tau pathology. PMID:26786552

  4. Exposure to radiation accelerates normal brain aging and produces deficits in spatial learning and memory

    NASA Astrophysics Data System (ADS)

    Shukitt-Hale, B.; Casadesus, G.; Carey, A.; Rabin, B. M.; Joseph, J. A.

    Previous studies have shown that radiation exposure, particularly to particles of high energy and charge (HZE particles), produces deficits in spatial learning and memory. These adverse behavioral effects are similar to those seen in aged animals. It is possible that these shared effects may be produced by the same mechanism; oxidative stress damage to the central nervous system caused by an increased release of reactive oxygen species is likely responsible for the deficits seen in aging and following irradiation. Both aged and irradiated rats display cognitive impairment in tests of spatial learning and memory such as the Morris water maze and the radial arm maze. These rats have decrements in the ability to build spatial representations of the environment and they utilize non-spatial strategies to solve tasks. Furthermore, they show a lack of spatial preference, due to a decline in the ability to process or retain place (position of a goal with reference to a "map" provided by the configuration of numerous cues in the environment) information. These declines in spatial memory occur in measures dependent on both reference and working memory, and in the flexibility to reset mental images. These results show that irradiation with high-energy particles produces age-like decrements in cognitive behavior that may impair the ability of astronauts to perform critical tasks during long-term space travel beyond the magnetosphere. Supported by NASA Grants NAG9-1190 and NAG9-1529

  5. Shape memory effect associated with a deformation at a temperature just below A[sub S] in a Fe-Mn-Cr-Si-Ni shape memory alloy

    SciTech Connect

    Federzoni, L.; Guenin, G. )

    1994-07-01

    The shape memory effect of Fe-Mn based shape memory alloys is due to the formation of stress-induced [var epsilon]-martensite by deformation and to its reversion by heating over A[sub f], which permit it to recover a part of the original shape. The shape memory effect is directly associated with the [gamma][yields][var epsilon] transformation. For this reason, the authors have established the best conditions to induce the [var epsilon]-martensite inside an austenitic matrix: the deformation must take place at a temperature close to the M[sub s]. It has been established that a deformation made at a higher temperature degrades the shape memory effect. The purpose of this paper is to evaluate the shape memory effect in the case of a deformation applied at a relatively high temperature (just below A[sub s]) on samples containing a high volume fraction of [var epsilon]-martensite before the deformation. It is shown that an other mechanism of shape memory effect occurs in these conditions and allows to reach an interesting shape memory effect ([approximately]2%).

  6. Shape memory alloy nanostructures with coupled dynamic thermo-mechanical effects

    NASA Astrophysics Data System (ADS)

    Dhote, R. P.; Gomez, H.; Melnik, R. N. V.; Zu, J.

    2015-07-01

    Employing the Ginzburg-Landau phase-field theory, a new coupled dynamic thermo-mechanical 3D model has been proposed for modeling the cubic-to-tetragonal martensitic transformations in shape memory alloy (SMA) nanostructures. The stress-induced phase transformations and thermo-mechanical behavior of nanostructured SMAs have been investigated. The mechanical and thermal hysteresis phenomena, local non-uniform phase transformations and corresponding non-uniform temperatures and deformations' distributions are captured successfully using the developed model. The predicted microstructure evolution qualitatively matches with the experimental observations. The developed coupled dynamic model has provided a better understanding of underlying martensitic transformation mechanisms in SMAs, as well as their effect on the thermo-mechanical behavior of nanostructures.

  7. Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy

    SciTech Connect

    Veis, M. Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O.

    2014-05-07

    Magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy in martensite and austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. At room temperature, the sample was in modulated 10M martensite phase and transformed to cubic austenite at 323 K. Spectral dependence of polar magneto-optical Kerr effect was obtained by generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.2 to 4 eV, and from room temperature to temperature above the Curie point. The Kerr rotation spectra exhibit prominent features typical for complexes containing Mn atoms. Significant spectral changes during transformation to austenite can be explained by different optical properties caused by changes in density of states near the Fermi energy.

  8. Calibration and Finite Element Implementation of an Energy-Based Material Model for Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Junker, Philipp; Hackl, Klaus

    2016-06-01

    Numerical simulations are a powerful tool to analyze the complex thermo-mechanically coupled material behavior of shape memory alloys during product engineering. The benefit of the simulations strongly depends on the quality of the underlying material model. In this contribution, we discuss a variational approach which is based solely on energetic considerations and demonstrate that unique calibration of such a model is sufficient to predict the material behavior at varying ambient temperature. In the beginning, we recall the necessary equations of the material model and explain the fundamental idea. Afterwards, we focus on the numerical implementation and provide all information that is needed for programing. Then, we show two different ways to calibrate the model and discuss the results. Furthermore, we show how this model is used during real-life industrial product engineering.

  9. A Shape-Memory Alloy Thermal Conduction Switch for Use at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Raj

    2004-01-01

    The following summarizes the activities performed under NASA grant NAG10-323 from September 1, 2002 through September 30, 2004 at the. Univ ersity of Central Florida. A version of this has already been submitt ed for publication in the international journal Swart Materials and S tructures in December 2004. Additionally, a version of this has alrea dy appeared in print in Advances in Cryogenic Engineering, American Institute of Physics, (2004) 50A 26-3; in an article entitled "A Shape Memory Alloy Based Cryogenic Thermal Conduction Switch" by V.B. Krish nan. J.D. Singh. T.R. Woodruff. W.U. Notardonato and R. Vaidyanathan (article is attached at the end of this report).

  10. Issues Concerning the Oxidation of Ni(Pt)Ti Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    The oxidation behavior of the Ni-30Pt-50Ti high temperature shape memory alloy is compared to that of conventional NiTi nitinol SMAs. The oxidation rates were 1/4 those of NiTi under identical conditions. Ni-Ti-X SMAs are dominated by TiO2 scales, but, in some cases, the activation energy diverges for unexplained reasons. Typically, islands of metallic Ni or Pt(Ni) particles are embedded in lower scale layers due to rapid selective growth of TiO2 and low oxygen potential within the scale. The blocking effect of Pt-rich particles and lower diffusivity of Pt-rich depletion zones are proposed to account for the reduction in oxidation rates.

  11. Shape Memory Alloy Research and Development at NASA Glenn - Current and Future Progress

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2015-01-01

    Shape memory alloys (SMAs) are a unique class of multifunctional materials that have the ability to recover large deformations or generate high stresses in response to thermal, mechanical and or electromagnetic stimuli. These abilities have made them a viable option for actuation systems in aerospace, medical, and automotive applications, amongst others. However, despite many advantages and the fact that SMA actuators have been developed and used for many years, so far they have only found service in a limited range of applications. In order to expand their applications, further developments are needed to increase their reliability and stability and to address processing, testing and qualification needed for large-scale commercial application of SMA actuators.

  12. Fatigue properties of NiTi shape-memory alloy thin plates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Saito, Makoto

    2013-04-01

    The mechanical and fatigue characteristics of superelastic NiTi thin plates in the large strain area were obtained by tensile and pulsating 4-point bending tests to establish the design guidelines for the ferromagnetic shape memory alloy (FSMA) composite actuator and its fatigue life. The stress-strain curves of NiTi thin plates were found to be strain rate dependent. The finite element analysis (FEA) result using the stress-strain curve measured by tensile test is in good agreement with the experimental results of the 4-point bending tests. The relationship between the maximum bending strain and the number of cycles to failure in pulsating 4-point bending fatigue tests was obtained as well as an analysis of the fatigue fracture surfaces of NiTi thin plates.

  13. Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation

    PubMed Central

    Wu, Yicong; Zhang, Yuying; Xi, Jiefeng; Li, Ming-Jun; Li, Xingde

    2010-01-01

    A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe with an extremely compact electrically driven shape memory alloy (SMA). The 10-mm-long SMA allows 150-μm contractions with a driving voltage varying only from 50 to 100 mV. The response of the SMA contraction with the applied voltage is nonlinear, but repeatable and can be accurately calibrated. Depth-resolved imaging of acriflavine-stained biological tissues and unstained white paper with the endomicroscope is performed, and the results demonstrate the feasibility of 3-D nonlinear optical imaging with the SMA-based scanning fiber-optic endomicroscope. PMID:21198147

  14. Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2002-01-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  15. Computational modeling of size-dependent superelasticity of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Lei; Radovitzky, Raul

    2016-08-01

    We propose a nonlocal continuum model to describe the size-dependent superelastic responses observed in recent experiments of shape memory alloys. The modeling approach extends a superelasticity formulation based on the martensitic volume fraction, and combines it with gradient plasticity theories. Size effects are incorporated through two internal length scales, an energetic length scale and a dissipative length scale, which correspond to the gradient terms in the free energy and the dissipation, respectively. We also propose a computational framework based on a variational formulation to solve the coupled governing equations resulting from the nonlocal superelastic model. Within this framework, a robust and scalable algorithm is implemented for large scale three-dimensional problems. A numerical study of the grain boundary constraint effect shows that the model is able to capture the size-dependent stress hysteresis and strain hardening during the loading and unloading cycles in polycrystalline SMAs.

  16. Development of shape memory alloy (SMA)-based actuator for remotely piloted vehicles (RPVs)

    NASA Astrophysics Data System (ADS)

    Prasad, M. Hari

    2003-10-01

    While the experimental use of shape memory alloys (SMAs) is widespread in aerospace integrated actuation systems, much of the practical value of SMA technology is realized in linear and rotary actuators. This report will introduce an attempt to develop a full-scaled SMA based actuator to replace electro-mechanical actuator for flap actuation of a Remotely Piloted Vehicle (RPV). At the heart of this actuator there is thermally sensitive wire that, when heated, contracts and provides useable mechanical energy. This linear actuation is converted into rotary, for the required actuation of flap. The actuator configurations were sized to fit inside the wing of the RPV where presently the electro-mechanical actuator is housed. The torque supplied to the flap is similarly calculated from full-scale requirements. Using common engineering principles, this design will demonstrate how to design a typical SMA actuator. Test of the actuator performance (stroke, force movement) is done on special test fixture.

  17. Vibration suppression by modulation of elastic modulus using shape memory alloy

    SciTech Connect

    Segalman, D.J.; Parker, G.G.; Inman, D.J.

    1993-03-01

    The first portion of this paper proposes a method of fabricating a material whose modulus can be changed substantially through the application of a specified stimulus. The particular implementation presented here indirectly exploits the large deformation associated with shape memory alloys to achieve the desired modulation of stiffness. The next portion of this paper discusses a class of vibration problems for which such materials have a serious potential for vibration suppression. These are problems, such as the spinning up of rotating machinery, in which the excitation at any time lies within a narrow frequency band, and that band moves through the frequency spectrum in a predictable manner. Finally, an example problem is examined and the utility of this approach is discussed.

  18. High thermal stable and fast switching Ni-Ge-Te alloy for phase change memory applications

    NASA Astrophysics Data System (ADS)

    Cao, Liangliang; Wu, Liangcai; Zhu, Wenqing; Ji, Xinglong; Zheng, Yonghui; Song, Zhitang; Rao, Feng; Song, Sannian; Ma, Zhongyuan; Xu, Ling

    2015-12-01

    Ni-Ge-Te phase change material is proposed and investigated for phase change memory (PCM) applications. With Ni addition, the crystallization temperature, the data retention ability, and the crystallization speed are remarkably improved. The Ni-Ge-Te material has a high crystallization temperature (250 °C) and good data retention ability (149 °C). A reversible switching between SET and RESET state can be achieved by an electrical pulse as short as 6 ns. Up to ˜3 × 104 SET/RESET cycles are obtained with a resistance ratio of about two orders of magnitude. All of these demonstrate that Ni-Ge-Te alloy is a promising material for high speed and high temperature PCM applications.

  19. Lattice dynamics of the high-temperature shape-memory alloy Nb-Ru

    SciTech Connect

    Shapiro, S. M.; Xu, G.; Gu, G.; Fonda, R. W.

    2006-06-01

    Nb-Ru is a high-temperature shape-memory alloy that undergoes a martensitic transformation from a parent cubic {beta}-phase into a tetragonal {beta}{sup '} phase at T{sub M}{approx}900 deg. C. Measurements of the phonon dispersion curves on a single crystal show that the [110]-TA{sub 2} phonon branch, corresponding in the q=0 limit to the elastic constant C{sup '}=1/2(C{sub 11}-C{sub 12}) has an anomalous temperature dependence. Nearly the entire branch softens with decreasing temperature as T{sub M} is approached. The temperature dependence of the low-q phonon energies suggests that the elastic constants would approach 0 as T approaches T{sub M}, indicating a second-order transition. No additional lattice modulation is observed in the cubic phase.

  20. Tuning the vibration of a rotor with shape memory alloy metal rubber supports

    NASA Astrophysics Data System (ADS)

    Ma, Yanhong; Zhang, Qicheng; Zhang, Dayi; Scarpa, Fabrizio; Liu, Baolong; Hong, Jie

    2015-09-01

    The paper describes a novel smart rotor support damper with variable stiffness made with a new multifunctional material - the shape memory alloy metal rubber (SMA-MR). SMA-MR gives high load bearing capability (yield limit up to 100 MPa and stiffness exceeding 1e8 N/m), high damping (loss factor between 0.15 and 0.3) and variable stiffness (variation of 2.6 times between martensite and austenite phases). The SMA-MR has been used to replace a squeeze film damper and combined with an elastic support. The mechanical performance of the smart support damper has been investigated at room and high temperatures on a rotor test rig. The vibration tuning capabilities of the SMA-MR damper have been evaluated through FEM simulations and experimental tests. The study shows the feasibility of using the SMA-MR material for potential applications of active vibration control at different temperatures in rotordynamics systems.

  1. Photofabrication of the third dimension of NiTi shape memory alloy microactuators

    NASA Astrophysics Data System (ADS)

    Allen, David M.; Leong, Tony; Lim, Siang H.; Kohl, Manfred

    1997-09-01

    This paper describes experimental results of using various microlithography techniques to fabricate a range of microactuator devices from NiTi shape memory alloys. The range of products includes: planar double-beams form rolled foils etched form both sides; tapered double-beams; planar double beams from sputter-deposited films etched rom one side; a tubular test piece. Such photofabrication in not easily achieved and problems discussed in this paper include: achieving acceptable edge profiles through the thickness of the materials while maintaining high etch factors; tapering foil microactuators by means of chemical micro milling; coating NiTi tubes with electrophoretic photoresist; imaging a curved surface with a small radius of curvature; control of etching parameters for a constant rate of etch; the influence of NiTi oxide coatings on etching and; technical comparisons with other potential manufacturing processes.

  2. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices.

  3. A novel shape memory alloy microactuator for large in-plane strokes and forces

    NASA Astrophysics Data System (ADS)

    Kabla, M.; Ben-David, E.; Shilo, D.

    2016-07-01

    This paper describes a novel concept for in-plane actuators based on a thin free-standing shape memory alloy (SMA) film. The presented guidelines can be used to design a variety of actuators that can provide a combination of large strokes and forces for linear and rotary motions. A prototype actuator demonstrated a displacement of 45 μm related to 4.5% of the SMA film length, and a force of up to 115 mN related to a stress of 230 MPa in the SMA film without plastic deformations. These capabilities allow the actuator to work against the stiff springs that are essential for the devices’ ability to sustain vibrations, impacts, and accelerations.

  4. Coupling of metals and biominerals: characterizing the interface between ferromagnetic shape-memory alloys and hydroxyapatite.

    PubMed

    Allenstein, Uta; Selle, Susanne; Tadsen, Meike; Patzig, Christian; Höche, Thomas; Zink, Mareike; Mayr, Stefan G

    2015-07-22

    Durable, mechanically robust osseointegration of metal implants poses one of the largest challenges in contemporary orthopedics. The application of biomimetic hydroxyapatite (HAp) coatings as mediators for enhanced mechanical coupling to natural bone constitutes a promising approach. Motivated by recent advances in the field of smart metals that might open the venue for alternate therapeutic concepts, we explore their mechanical coupling to sputter-deposited HAp layers in a combined experimental-theoretical study. While experimental delamination tests and comprehensive structural characterization, including high-resolution transmission electron microscopy, are utilized to establish structure-property relationships, density functional theory based total energy calculations unravel the underlying physics and chemistry of bonding and confirm the experimental findings. Experiments and modeling indicate that sputter-deposited HAp coatings are strongly adherent to the exemplary ferromagnetic shape-memory alloys, Ni-Mn-Ga and Fe-Pd, with delamination stresses and interface bonding strength exceeding the physiological scales by orders of magnitude.

  5. On the driving force for crack growth during thermal actuation of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Baxevanis, T.; Parrinello, A. F.; Lagoudas, D. C.

    2016-04-01

    The effect of thermomechanically induced phase transformation on the driving force for crack growth in polycrystalline shape memory alloys is analyzed in an infinite center-cracked plate subjected to a thermal actuation cycle under mechanical load in plain strain. Finite element calculations are carried out to determine the mechanical fields near the static crack and the crack-tip energy release rate using the virtual crack closure technique. A substantial increase of the energy release rate - an order of magnitude for some material systems - is observed during the thermal cycle due to the stress redistribution induced by large scale phase transformation. Thus, phase transformation occurring due to thermal variations under mechanical load may result in crack growth if the crack-tip energy release rate reaches a material specific critical value.

  6. Design of a shape adaptive airfoil actuated by a Shape Memory Alloy strip for airplane tail

    NASA Astrophysics Data System (ADS)

    Shirzadeh, R.; Raissi Charmacani, K.; Tabesh, M.

    2011-04-01

    Of the factors that mainly affect the efficiency of the wing during a special flow regime, the shape of its airfoil cross section is the most significant. Airfoils are generally designed for a specific flight condition and, therefore, are not fully optimized in all flight conditions. It is very desirable to have an airfoil with the ability to change its shape based on the current regime. Shape memory alloy (SMA) actuators activate in response to changes in the temperature and can recover their original configuration after being deformed. This study presents the development of a method to control the shape of an airfoil using SMA actuators. To predict the thermomechanical behaviors of an SMA thin strip, 3D incremental formulation of the SMA constitutive model is implemented in FEA software package ABAQUS. The interactions between the airfoil structure and SMA thin strip actuator are investigated. Also, the aerodynamic performance of a standard airfoil with a plain flap is compared with an adaptive airfoil.

  7. Active control of sound radiation from panels using embedded shape memory alloy fibers

    NASA Astrophysics Data System (ADS)

    Rogers, C. A.; Fuller, C. R.; Liang, C.

    1990-01-01

    The fundamental relations and techniques demonstrating active structural-acoustic control using shape memory alloy (SMA) reinforced composites are discussed. A symmetric SMA reinforced laminate is described by the governing equation, then the Rayleigh-Ritz method is used to obtain an approximate solution to the governing equation, and the assumed solution is employed for the necessary energy expression. Transmission of sound through the composite plates is analyzed, the calculated natural frequencies for the first ten natural frequencies of the inactivated and fully activated plate are presented, and the transmission loss for the SMA reinforced composite plates is calculated for both the activated and inactivated cases. It is shown that acoustically excited SMA reinforced composite plates have the ability to adaptively change radiation efficiency, transmission loss, and directivity patterns of transmitted sound.

  8. Modeling the dynamic behavior of a shape memory alloy actuated catheter

    NASA Astrophysics Data System (ADS)

    Veeramani, Arun S.; Buckner, Gregory D.; Owen, Stephen B.; Cook, Richard C.; Bolotin, Gil

    2008-02-01

    In this paper we investigate the transient behavior of a simple active catheter: a central tube actuated by a single nitinol tendon enclosed by an outer sleeve. Dynamic models are developed to characterize the transient behavior and optimize the design of an experimental prototype. The bending mechanics are derived using a circular arc model and are experimentally validated. Nitinol actuation is described using the Seelecke-Muller-Achenbach model for single-crystal shape memory alloys using experimentally determined parameters. The dynamic characteristics of this active catheter system are simulated and compared with experimental results. Joule heating is used to generate tip deflections, which are computed in real time using a dual-camera imaging system. The effects of outer sleeve thickness on heat transfer and transient response characteristics are studied.

  9. Modeling and Bayesian parameter estimation for shape memory alloy bending actuators

    NASA Astrophysics Data System (ADS)

    Crews, John H.; Smith, Ralph C.

    2012-04-01

    In this paper, we employ a homogenized energy model (HEM) for shape memory alloy (SMA) bending actuators. Additionally, we utilize a Bayesian method for quantifying parameter uncertainty. The system consists of a SMA wire attached to a flexible beam. As the actuator is heated, the beam bends, providing endoscopic motion. The model parameters are fit to experimental data using an ordinary least-squares approach. The uncertainty in the fit model parameters is then quantified using Markov Chain Monte Carlo (MCMC) methods. The MCMC algorithm provides bounds on the parameters, which will ultimately be used in robust control algorithms. One purpose of the paper is to test the feasibility of the Random Walk Metropolis algorithm, the MCMC method used here.

  10. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  11. Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-09-01

    In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.

  12. Fracture toughness of shape memory alloy actuators: effect of transformation-induced plasticity

    NASA Astrophysics Data System (ADS)

    Jape, Sameer; Solomou, Alexandros; Baxevanis, Theocharis; Lagoudas, Dimitris C.

    2016-04-01

    Numerical analysis of static cracks in a plane strain center-cracked infinite medium shape memory alloy (SMA) panel subjected to cyclic thermal variations and a constant mechanical load is conducted using the finite element method. In solid-state SMA actuators, permanent changes in the material's microstructure in the form of dislocations are caused during cyclic thermomechanical loading, leading to macroscopic irreversible strains, known as transformation induced plastic (TRIP) strains. The influence of these accumulated TRIP strains on mechanical fields close to the crack tip is investigated in the present paper. Virtual crack growth technique (VCCT) in ABAQUS FEA suite is employed to calculate the crack tip energy release rate and crack is assumed to be stationary (or static) so that the crack tip energy release rate never reaches the material specific critical value. Increase in the crack tip energy release rate is observed during cooling and its relationship with accumulation of TRIP due to cyclic transformation is studied.

  13. Wear Properties of Porous NiTi Orthopedic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Shuilin; Liu, Xiangmei; Yeung, K. W. K.; Xu, Z. S.; Chung, C. Y.; Chu, Paul K.

    2012-12-01

    Porous NiTi shape memory alloy (SMA) scaffolds have great potential to be used as orthopedic implants because of their porous structure and superior physical properties. Its metallic nature provides it with better mechanical properties and Young's modulus close to that of natural bones. Besides allowing tissue ingrowth and transfer of nutrients, porous SMA possesses unique pseudoelastic properties compatible to natural hard tissues like bones and tendons, thus expediting in vivo osseointegration. However, the nickel release from debris and the metal surface may cause osteocytic osteolysis at the interface between the artificial implants and bone tissues. Subsequent mobilization may finally lead to implant failure. In this study, the wear properties of porous NiTi with different porosities processed at different treatment temperatures are determined. The results of the study show that the porosity, phase transformation temperature, and annealing temperature are major factors influencing the wear characteristics of porous NiTi SMA.

  14. A thermomechanical model accounting for the behavior of shape memory alloys in finite deformations

    NASA Astrophysics Data System (ADS)

    Haller, Laviniu; Nedjar, Boumedienne; Moumni, Ziad; Vedinaş, Ioan; Trană, Eugen

    2016-07-01

    Shape memory alloys (SMA) comport an interesting behavior. They can undertake large strains and then recover their undeformed shape by heating. In this context, one of the aspects that challenged many researchers was the development of a mathematical model to predict the behavior of a known SMA under real-life conditions, or finite strain. This paper is aimed at working out a finite strain mathematical model for a Ni-Ti SMA, under the superelastic experiment conditions and under uniaxial mechanical loading, based on the Zaki-Moumni 3D mathematical model developed under the small perturbations assumption. Within the current article, a comparison between experimental findings and calculated results is also investigated. The proposed finite strain mathematical model shows good agreement with experimental data.

  15. Energy-based fatigue model for shape memory alloys including thermomechanical coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Yahui; Zhu, Jihong; Moumni, Ziad; Van Herpen, Alain; Zhang, Weihong

    2016-03-01

    This paper is aimed at developing a low cycle fatigue criterion for pseudoelastic shape memory alloys to take into account thermomechanical coupling. To this end, fatigue tests are carried out at different loading rates under strain control at room temperature using NiTi wires. Temperature distribution on the specimen is measured using a high speed thermal camera. Specimens are tested to failure and fatigue lifetimes of specimens are measured. Test results show that the fatigue lifetime is greatly influenced by the loading rate: as the strain rate increases, the fatigue lifetime decreases. Furthermore, it is shown that the fatigue cracks initiate when the stored energy inside the material reaches a critical value. An energy-based fatigue criterion is thus proposed as a function of the irreversible hysteresis energy of the stabilized cycle and the loading rate. Fatigue life is calculated using the proposed model. The experimental and computational results compare well.

  16. Direct observation of hierarchical nucleation of martensite and size-dependent superelasticity in shape memory alloys.

    PubMed

    Liu, Lifeng; Ding, Xiangdong; Li, Ju; Lookman, Turab; Sun, Jun

    2014-02-21

    Martensitic transformation usually creates hierarchical internal structures beyond mere change of the atomic crystal structure. Multi-stage nucleation is thus required, where nucleation (level-1) of the underlying atomic crystal lattice does not have to be immediately followed by the nucleation of higher-order superstructures (level-2 and above), such as polysynthetic laths. Using in situ transmission electron microscopy (TEM), we directly observe the nucleation of the level-2 superstructure in a Cu-Al-Ni single crystal under compression, with critical super-nuclei size L2c around 500 nm. When the sample size D decreases below L2c, the superelasticity behavior changes from a flat stress plateau to a continuously rising stress-strain curve. Such size dependence definitely would impact the application of shape memory alloys in miniaturized MEMS/NEMS devices. PMID:24384687

  17. Adherence of sulfide mineral layers produced by corrosion of copper alloys

    SciTech Connect

    McNeil, M.B. . Office of Research); Amos, A.L.; Woods, T.L. . Dept. of Geology)

    1993-09-01

    Sulfiding corrosion of copper alloys can occur from microbiologically induced corrosion (MIC) mechanisms involving sulfate reducing bacteria (SRB) or from exposure to bulk waters containing reduced sulfur (S) species of microbiological, industrial, or geologic origin. The sulfide minerals produced generally are nonadherent. Under some circumstances, adherent sulfide layers can form and offer a degree of protection against further attack. Test were conducted in sterile synthetic seawater with various levels of dissolved sulfide, and the structure of the corrosion products was examined. Results, combined with MIC observations from literature and geochemical studies of copper sulfide paragenesis, revealed the nature of the reactions that produce dense, relatively protective sulfides.

  18. Design and analysis of variable-twist tiltrotor blades using shape memory alloy hybrid composites

    NASA Astrophysics Data System (ADS)

    Park, Jae-Sang; Kim, Seong-Hwan; Jung, Sung Nam; Lee, Myeong-Kyu

    2011-01-01

    The tiltrotor blade, or proprotor, acts as a rotor in the helicopter mode and as a propeller in the airplane mode. For a better performance, the proprotor should have different built-in twist distributions along the blade span, suitable for each operational mode. This paper proposes a new variable-twist proprotor concept that can adjust the built-in twist distribution for given flight modes. For a variable-twist control, the present proprotor adopts shape memory alloy hybrid composites (SMAHC) containing shape memory alloy (SMA) wires embedded in the composite matrix. The proprotor of the Korea Aerospace Research Institute (KARI) Smart Unmanned Aerial Vehicle (SUAV), which is based on the tiltrotor concept, is used as a baseline proprotor model. The cross-sectional properties of the variable-twist proprotor are designed to maintain the cross-sectional properties of the original proprotor as closely as possible. However, the torsion stiffness is significantly reduced to accommodate the variable-twist control. A nonlinear flexible multibody dynamic analysis is employed to investigate the dynamic characteristics of the proprotor such as natural frequency and damping in the whirl flutter mode, the blade structural loads in a transition flight and the rotor performance in hover. The numerical results show that the present proprotor is designed to have a strong similarity to the baseline proprotor in dynamic and load characteristics. It is demonstrated that the present proprotor concept could be used to improve the hover performance adaptively when the variable-twist control using the SMAHC is applied appropriately.

  19. Thermal control of shape memory alloy artificial anal sphincters for complete implantation

    NASA Astrophysics Data System (ADS)

    Luo, Yun; Okuyama, Takeshi; Takagi, Toshiyuki; Kamiyama, Takamichi; Nishi, Kotaro; Yambe, Tomoyuki

    2005-02-01

    This paper presents an approach for the thermal control of an artificial anal sphincter using shape memory alloys. An artificial anal sphincter has been proposed by the authors to resolve problems of severe fecal incontinence in patients. The basic design of the artificial sphincter consists of two all-round shape memory alloy plates as the main functional parts, and heaters that are attached to the SMA plates for generating the thermal cycles required for the phase transformation accompanied shape changes of the plates. The SMA artificial sphincter could be fitted around intestines, performing an occlusion function at body temperature and a release function upon heating. Thermal compatibility of such prostheses is most important and is critical for practical use. Since a temperature rise of approximately 20 °C from body temperature is needed to activate a complete transformation of SMA plates, an earlier model of ours allowed only a short period of heating, resulting in incomplete evacuation. In this work, a thermal control approach using a temperature-responsive reed switch has been incorporated into the device to prevent the SMA plates from overheating. Then, with thermal insulation the artificial anal sphincter is expected to allow a long enough opening period for fecal continence; without any thermal impact to the surrounding tissues that would be in contact with the artificial sphincter. Thermal control was confirmed in both in vitro and in vivo experiments, suggesting the effectiveness of the present approach. The modified SMA artificial anal sphincter has been implanted into animal models for chronic experiments of up to 4 weeks, and has exhibited good performance by maintaining occlusion and release functions. At autopsy, no anomaly due to thermal impact was found on the surfaces of intestines that had been in contact with the artificial anal sphincter.

  20. Effects of porosity on corrosion resistance of Mg alloy foam produced by powder metallurgy technology

    SciTech Connect

    Aghion, E. Perez, Y.

    2014-10-15

    Magnesium alloy foams have the potential to serve as structural material for regular light-weight applications as well as for biodegradable scaffold implants. However, their main disadvantage relates to the high reactivity of magnesium and consequently their natural tendency to corrode in regular service conditions and in physiological environments. The present study aims at evaluating the effect of porosity on the corrosion resistance of MRI 201S magnesium alloy foams in 0.9% NaCl solution and in phosphate buffer saline solution as a simulated physiological electrolyte. The magnesium foams were produced by powder metallurgy technology using space-holding particles to control the porosity content. Machined chips were used as raw material for the production of Mg alloy powder by milling process. The microstructure of the foams was examined using optical and scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy analysis. The corrosion behavior was evaluated by immersion test and potentiodynamic polarization analysis. The results obtained clearly demonstrate that the porosity has a significant effect on the corrosion resistance of the tested foams. Foams with 14–19% porosity have a corrosion rate of 4–10 mcd and 7–15 mcd in NaCl and phosphate buffer saline solution, respectively, compared to only 0.10 mcd for the same alloy in as cast conditions. This increased corrosion degradation of the Mg foams by more than one order of magnitude compared to the cast alloy may limit their potential application in regular and physiological environments. - Highlights: • Porosity has a detrimental effect on corrosion resistance of MRI 201S Mg foams. • 14–19% porosity increases the corrosion rate by more than one order of magnitude. • Accelerated corrosion limits the use of foams in regular/physiological environments.

  1. Microstructural characterization of low and high carbon CoCrMo alloy nanoparticles produced by mechanical milling

    NASA Astrophysics Data System (ADS)

    Simoes, T. A.; Goode, A. E.; Porter, A. E.; Ryan, M. P.; Milne, S. J.; Brown, A. P.; Brydson, R. M. D.

    2014-06-01

    CoCrMo alloys are utilised as the main material in hip prostheses. The link between this type of hip prosthesis and chronic pain remains unclear. Studies suggest that wear debris generated in-vivo may be related to post-operative complications such as inflammation. These alloys can contain different amounts of carbon, which improves the mechanical properties of the alloy. However, the formation of carbides could become sites that initiate corrosion, releasing ions and/or particles into the human body. This study analysed the mechanical milling of alloys containing both high and low carbon levels in relevant biological media, as an alternative route to generate wear debris. The results show that low carbon alloys produce significantly more nanoparticles than high carbon alloys. During the milling process, strain induces an fcc to hcp phase transformation. Evidence for cobalt and molybdenum dissolution in the presence of serum was confirmed by ICP-MS and TEM EDX techniques.

  2. Properties of High Volume Fraction Fly Ash/Al Alloy Composites Produced by Infiltration Process

    NASA Astrophysics Data System (ADS)

    Kountouras, D. T.; Stergioudi, F.; Tsouknidas, A.; Vogiatzis, C. A.; Skolianos, S. M.

    2015-09-01

    In the present study, pressure infiltration is employed to synthesize aluminum alloy 7075-fly ash composites. The microstructure and chemical composition of the fly ash and the produced composite material was examined using optical and scanning electron microscopy, as well as x-ray diffraction. Several properties of the produced composite material were examined and evaluated including macro-hardness, wear, thermal expansion, and corrosion behavior. The wear characteristics of the composite, in the as-cast conditions, were studied by dry sliding wear tests. The corrosion behavior of composite material was evaluated by means of potentiodynamic corrosion experiments in a 3.5 wt.% NaCl solution. The composite specimens exhibit a homogeneous distribution of fly ash particles and present enhanced hardness values, compared to the matrix material. The high volume fraction of the fly ash reinforcement (>40%) in the composite material led to increased wear rates, attributed to the fragmentation of the fly ash particles. However, the presence of fly ash particles in the Al alloy matrix considerably decreased the coefficiency of thermal expansion, while resulting in an altered corrosion mechanism of the composite material with respect to the matrix alloy.

  3. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy.

    PubMed

    Zhao, Tingting; Li, Yan; Liu, Yong; Zhao, Xinqing

    2012-09-01

    NiTi shape memory alloy was modified by Hf ion implantation to improve its wear resistance and surface integrity against deformation. The Auger electron spectroscopy and x-ray photoelectron spectroscopy results indicated that the oxide thickness of NiTi alloy was increased by the formation of TiO₂/HfO₂ nanofilm on the surface. The nano-hardness measured by nano-indentation was decreased even at the depth larger than the maximum reach of the implanted Hf ion. The lower coefficient of friction with much longer fretting time indicated the remarkable improvement of wear resistance of Hf implanted NiTi, especially for the sample with a moderate incident dose. The formation of TiO₂/HfO₂ nanofilm with larger thickness and decrease of the nano-hardness played important roles in the improvement of wear resistance. Moreover, Hf implanted NiTi exhibited larger pseudoelastic recovery strain and retained better surface integrity even after being strained to 10% as demonstrated by in situ scanning electron microscope observation.

  4. Shakedown based model for high-cycle fatigue of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Gu, Xiaojun; Moumni, Ziad; Zaki, Wael; Zhang, Weihong

    2016-11-01

    The paper presents a high-cycle fatigue criterion for shape memory alloys (SMAs) based on shakedown analysis. The analysis accounts for phase transformation as well as reorientation of martensite variants as possible sources of fatigue damage. In the case of high-cycle fatigue, once the structure has reached an asymptotic state, damage is assumed to become confined at the mesoscopic scale, or the scale of the grain, with no discernable inelasticity at the macroscopic scale. Using a multiscale approach, a high-cycle fatigue criterion analogous to the Dang Van model (Dang Van 1973) for elastoplastic metals is derived for SMAs obeying the Zaki–Moumni model for SMAs (Zaki and Moumni 2007a). For these alloys, a safe domain is established in stress deviator space, consisting of a hypercylinder with axis parallel to the direction of martensite orientation at the mesoscopic scale. Safety with regard to high-cycle fatigue, upon elastic shakedown, is conditioned by the persistence of the macroscopic stress path at every material point within the hypercylinder, whose size depends on the volume fraction of martensite. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high cycle fatigue.

  5. Gradation of Nanostructures in Cold-Rolled and Annealed Ti-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Prokoshkin, S.; Brailovski, V.; Dubinskiy, S.; Inaekyan, K.; Kreitcberg, A.

    2016-03-01

    Nanostructures formed in Ti-50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3-1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5-1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2-1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti-Ni alloys and of their effect on the transformation and mechanical behaviors.

  6. Determination of strain fields in porous shape memory alloys using micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; Friess, Sebastian; de Wild, Michael; Schumacher, Ralf; Schulz, Georg; Müller, Bert

    2010-09-01

    Shape memory alloys (SMAs) belong to 'intelligent' materials since the metal alloy can change its macroscopic shape as the result of the temperature-induced, reversible martensite-austenite phase transition. SMAs are often applied for medical applications such as stents, hinge-less instruments, artificial muscles, and dental braces. Rapid prototyping techniques, including selective laser melting (SLM), allow fabricating complex porous SMA microstructures. In the present study, the macroscopic shape changes of the SMA test structures fabricated by SLM have been investigated by means of micro computed tomography (μCT). For this purpose, the SMA structures are placed into the heating stage of the μCT system SkyScan 1172™ (SkyScan, Kontich, Belgium) to acquire three-dimensional datasets above and below the transition temperature, i.e. at room temperature and at about 80°C, respectively. The two datasets were registered on the basis of an affine registration algorithm with nine independent parameters - three for the translation, three for the rotation and three for the scaling in orthogonal directions. Essentially, the scaling parameters characterize the macroscopic deformation of the SMA structure of interest. Furthermore, applying the non-rigid registration algorithm, the three-dimensional strain field of the SMA structure on the micrometer scale comes to light. The strain fields obtained will serve for the optimization of the SLM-process and, more important, of the design of the complex shaped SMA structures for tissue engineering and medical implants.

  7. Critical Stresses for Twinning, Slip, and Transformation in Ti-Based Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Ojha, A.; Sehitoglu, H.

    2016-06-01

    We investigate the effect of Nb and Ta contents on the (i) critical resolved shear stress (CRSS) for the β - α″ transformation, (ii) the CRSS for austenite slip, and (iii) the CRSS for twin nucleation in martensite ( α″ phase) that govern shape memory and superelasticity in Ti-based alloys. The critical stresses for slip and twinning are achieved with a modified Peierls Nabarro formalism utilizing generalized stacking fault energy and the generalized planar fault energy (GPFE), respectively, obtained from first-principles density functional theory (DFT) calculations. During the calculation of the twinning stress, we show the importance of the shuffling process in stabilizing and lowering the GPFE curve. Similarly, the transformation stress is obtained with heterogeneous martensite nucleation mechanism incorporating the energy barriers associated with the transformation process. Here, we point to the role of dislocations in the shuffling process during the early stage of transformation. We show that the increase of Ta content raises the CRSS more effectively for the case of slip compared to twinning or transformation. The slip stress and twin stress magnitudes increase with an increase in the unstable fault energy ( {γ_{{us}} } ) and unstable twinning fault energy ( {γ_{{ut}} } ), respectively. In summary, as the Ta composition increases, the difference between martensite/austenite slip resistance and the transformation/twinning stress widens showing the efficacy of Ta alloying additions.

  8. Development of a Numerical Model for High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan A.; Melcher, Kevin J.; Noebe, Ronald D.; Gaydosh, Darrell J.

    2006-01-01

    A thermomechanical hysteresis model for a high-temperature shape memory alloy (HTSMA) actuator material is presented. The model is capable of predicting strain output of a tensile-loaded HTSMA when excited by arbitrary temperature-stress inputs for the purpose of actuator and controls design. Common quasi-static generalized Preisach hysteresis models available in the literature require large sets of experimental data for model identification at a particular operating point, and substantially more data for multiple operating points. The novel algorithm introduced here proposes an alternate approach to Preisach methods that is better suited for research-stage alloys, such as recently-developed HTSMAs, for which a complete database is not yet available. A detailed description of the minor loop hysteresis model is presented in this paper, as well as a methodology for determination of model parameters. The model is then qualitatively evaluated with respect to well-established Preisach properties and against a set of low-temperature cycled loading data using a modified form of the one-dimensional Brinson constitutive equation. The computationally efficient algorithm demonstrates adherence to Preisach properties and excellent agreement to the validation data set.

  9. Control of Thermal Deflection, Panel Flutter and Acoustic Fatigue at Elevated Temperatures Using Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Huang, Jen-Kuang

    1996-01-01

    The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.

  10. Thermal Stabilization of NiTiCuV Shape Memory Alloys: Observations During Elastocaloric Training

    NASA Astrophysics Data System (ADS)

    Schmidt, Marvin; Ullrich, Johannes; Wieczorek, André; Frenzel, Jan; Schütze, Andreas; Eggeler, Gunther; Seelecke, Stefan

    2015-06-01

    The paper presents novel findings observed during the training process of superelastic, elastocalorically optimized Ni-Ti-based shape memory alloys (SMA). NiTiCuV alloys exhibit large latent heats and a small mechanical hysteresis, which may potentially lead to the development of efficient solid-state-based cooling processes. The paper starts with a brief introduction to the underlying principles of elastocaloric cooling, illustrating the effect by means of a typical thermodynamic cycle. It proceeds with the description of a custom-built testing platform that allows observation of temperature profiles and heat transfer between SMA and heat source/sink during high-loading-rate tensile tests. Similar to other SMA applications, a training process is necessary in order to guarantee stable performance. This well-known mechanical stabilization affects the stress-strain hysteresis and the cycle-dependent evolution of differential scanning calorimetry results. In addition, it can be shown here that the training is also accompanied by a cycle-dependent evolution of temperature profiles on the surface of an SMA ribbon. The applied training leads to local temperature peaks with intensity, number, and distribution of the temperature fronts showing a cycle dependency. The homogeneity of the elastocaloric effect has a significant influence on the efficiency of elastocaloric cooling process and is a key aspect of the specific material characterization.

  11. Effect of Pore Structure Regulation on the Properties of Porous TiNbZr Shape Memory Alloys for Biomedical Application

    NASA Astrophysics Data System (ADS)

    Lai, Ming; Gao, Yan; Yuan, Bin; Zhu, Min

    2015-01-01

    Recently, porous Ti-Nb-based shape memory alloys have been considered as promising implants for biomedical application, because of their non-toxic elements, low elastic modulus, and stable superelasticity. However, the inverse relationship between pore characteristics and superelasticity of porous SMAs will strongly affect their clinical application. Until now, there have been few works specifically focusing on the effect of pore structure on the mechanical properties and superelasticity of porous Ti-Nb-based SMAs. In this study, the pore structure, including porosity and pore size, of porous Ti-22Nb-6Zr alloys was successfully regulated by adjusting the amount and size of space-holder particles. XRD and SEM investigation showed that all these porous alloys had homogeneous composition. Compression tests indicated that porosity played an important role in the mechanical properties and superelasticity of these porous alloys. Those alloys with porosity in the range of 38.5%-49.7% exhibited mechanical properties approaching to cortical bones, with elastic modulus, compressive strength, and recoverable strain in the range of 7.2-11.4 GPa, 188-422 MPa, and 2.4%-2.6%, respectively. Under the same porosity, the alloys with larger pores exhibited lower elastic modulus, while the alloys with smaller pores presented higher compressive strength.

  12. Study of the transformation sequence on a high temperature martensitic transformation Ni-Mn-Ga-Co shape memory alloy

    NASA Astrophysics Data System (ADS)

    Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.

    2014-11-01

    Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.

  13. Fatigue behaviour of friction stir processed AZ91 magnesium alloy produced by high pressure die casting

    SciTech Connect

    Cavaliere, P. . E-mail: pasquale.cavaliere@unile.it; De Marco, P.P.

    2007-03-15

    The room temperature fatigue properties of AZ91 magnesium alloy produced by high pressure die casting (HPDC) as cast, heat treated, friction stir processed (FSP) and FSP and heat treated were studied. The fatigue properties of the material were evaluated for the HPDC magnesium alloy in the as-received state and after a solution treatment at 415 deg. C for 2 h and an ageing treatment at 220 deg. C for 4 h. The heat treatment resulted in a significant increase in the fatigue properties of the HPDC material, while no significance influence of heat treatment was recorded in the FSP condition. The morphology of fracture surfaces was examined by employing a field emission gun scanning electron microscope (FEGSEM)

  14. Posttraining Epinephrine Reverses Memory Deficits Produced by Traumatic Brain Injury in Rats

    PubMed Central

    Lorón-Sánchez, Alejandro; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Costa-Miserachs, David; Portell-Cortés, Isabel

    2016-01-01

    The aim of this research is to evaluate whether posttraining systemic epinephrine is able to improve object recognition memory in rats with memory deficits produced by traumatic brain injury. Forty-nine two-month-old naïve male Wistar rats were submitted to surgical procedures to induce traumatic brain injury (TBI) or were sham-operated. Rats were trained in an object recognition task and, immediately after training, received an intraperitoneal injection of distilled water (Sham-Veh and TBI-Veh group) or 0.01 mg/kg epinephrine (TBI-Epi group) or no injection (TBI-0 and Sham-0 groups). Retention was tested 3 h and 24 h after acquisition. The results showed that brain injury produced severe memory deficits and that posttraining administration of epinephrine was able to reverse them. Systemic administration of distilled water also had an enhancing effect, but of a lower magnitude. These data indicate that posttraining epinephrine and, to a lesser extent, vehicle injection reduce memory deficits associated with TBI, probably through induction of a low-to-moderate emotional arousal. PMID:27127685

  15. A Biomechanical Research of Growth Control of Spine by Shape Memory Alloy Staples

    PubMed Central

    Zhang, Wei; Zheng, Guoquan; Zhang, Ruyi; Wang, Yan

    2013-01-01

    Shape memory alloy (SMA) staples in nickel titanium with shape memory effect are effective for spinal growth control. This study was designed to evaluate the biomechanical properties of the staples and observe the stability of the fixed segments spine after the staples were implanted. According to the vertical distance of the vertebrae, SMA staples of 5, 6.5, and 8 mm were designed. The recovery stress of 24 SMA staples in three groups was measured. The pullout strength of SMA staples and stainless steel staples in each functional spinal unit was measured. Each of the six fresh specimens was divided into three conditions: normal, single staple, and double staples. Under each condition, the angle and torque of spinal movements in six directions were tested. Results show that the differences in recovery stress and maximum pullout strength between groups were statistically significant. In left and right bending, flextion, and extention, the stability of spine was decreased in conditions of single staple and double staples. Biomechanical function of SMA staples was superior to stainless steel staple. SMA staples have the function of hemiepiphyseal compression and kyphosis and scoliosis model of thoracic vertebrae in goat could be successfully created by the fusionless technique. PMID:24350265

  16. Electro-bending characterization of adaptive 3D fiber reinforced plastics based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ashir, Moniruddoza; Hahn, Lars; Kluge, Axel; Nocke, Andreas; Cherif, Chokri

    2016-03-01

    The industrial importance of fiber reinforced plastics (FRPs) is growing steadily in recent years, which are mostly used in different niche products, has been growing steadily in recent years. The integration of sensors and actuators in FRP is potentially valuable for creating innovative applications and therefore the market acceptance of adaptive FRP is increasing. In particular, in the field of highly stressed FRP, structural integrated systems for continuous component parts monitoring play an important role. This presented work focuses on the electro-mechanical characterization of adaptive three-dimensional (3D)FRP with integrated textile-based actuators. Here, the friction spun hybrid yarn, consisting of shape memory alloy (SMA) in wire form as core, serves as an actuator. Because of the shape memory effect, the SMA-hybrid yarn returns to its original shape upon heating that also causes the deformation of adaptive 3D FRP. In order to investigate the influences of the deformation behavior of the adaptive 3D FRP, investigations in this research are varied according to the structural parameters such as radius of curvature of the adaptive 3D FRP, fabric types and number of layers of the fabric in the composite. Results show that reproducible deformations can be realized with adaptive 3D FRP and that structural parameters have a significant impact on the deformation capability.

  17. Smart composite shell structures with shape memory alloy wires and thin foils

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Taek; Kim, Cheol; Lee, Sang-Ryong

    2005-02-01

    Shape memory alloys (SMAs) find many applications in smart composite structural systems as the active components. Their ability to provide a high force and large displacement makes them an excellent candidate for an actuator for controlling the shape of smart structures. In this paper, using a macroscopic model that captures the thermo-mechanical behaviors and the two-way shape memory effect (TWSME) of SMAs smart morphing polymeric composite shell structures like shape-changeable UAV wings is demonstrated and analyzed numerically and experimentally when subjected to various kinds of pressure loads. The controllable shapes of the morphing shells to that thin SMA strip actuator are attached are investigated depending on various phase transformation temperatures. SMA strips start to transform from the martensitic into the austenitic state upon actuation through resistive heating, simultaneously recover the prestrain, and thus cause the shell structures to deform three dimensionally. The behaviors of composite shells attached with SMA strip actuators are analyzed using the finite element methods and 3-D constitutive equations of SMAs. Several morphing composite shell structures are fabricated and their experimental shape changes depending on temperatures are compared to the numerical results. That two results show good correlations indicates the finite element analysis and 3-D constitutive equations are accurate enough to utilize them for the design of smart composite shell structures for various applications.

  18. Shape memory alloy actuated accumulator for ultra-deepwater oil and gas exploration

    NASA Astrophysics Data System (ADS)

    Patil, Devendra; Song, Gangbing

    2016-04-01

    As offshore oil and gas exploration moves further offshore and into deeper waters to reach hydrocarbon reserves, it is becoming essential for the industry to develop more reliable and efficient hydraulic accumulators to supply pressured hydraulic fluid for various control and actuation operations, such as closing rams of blowout preventers and controlling subsea valves on the seafloor. By utilizing the shape memory effect property of nitinol, which is a type of shape memory alloy (SMA), an innovative SMA actuated hydraulic accumulator prototype has been developed and successfully tested at Smart Materials and Structure Laboratory at the University of Houston. Absence of gas in the developed SMA accumulator prototype makes it immune to hydrostatic head loss caused by water depth and thus reduces the number of accumulators required in deep water operations. Experiments with a feedback control have demonstrated that the proposed SMA actuated accumulator can provide precisely regulated pressurized fluids. Furthermore the potential use of ultracapacitors along with an embedded system to control the electric power supplied to SMA allows this accumulator to be an autonomous device for deployment. The developed SMA accumulator will make deepwater oil extraction systems more compact and cost effective.

  19. Precipitation Effects on the Martensitic Transformation in a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Lohan, Nicoleta-Monica; Pricop, Bogdan; Mihalache, Elena; Mocanu, Mihai; Bujoreanu, Leandru-Gheorghe

    2016-04-01

    This paper describes the effects of precipitation of α-phase on a Cu-Al-Ni shape memory alloy (SMA) with chemical composition bordering on β region. By differential scanning calorimetry, a series of reproducible heat flow fluctuations was determined on heating a hot-rolled martensitic Cu-Al-Ni SMA, which was associated with the precipitation of α-phase. Two heat treatments were given to the SMA so as to "freeze" its states before and after the thermal range for precipitation, respectively. The corresponding microstructures of the two heat-treated states were observed by optical and scanning electron microscopy and were compared with the initial martensitic state. Energy dispersive spectroscopy experiments were carried out to determine the chemical compositions of the different phases formed in heat-treated specimens. The initial as well as the heat-treated specimens with a lamellar shape were further comparatively investigated by dynamic mechanical analysis and two-way shape memory effect (TWSME) tests comprising heating-cooling cycles under a bending load. Temperature scans were applied to the three types of specimens (initial and heat-treated states), so as to bring out the effects of heat treatment. The storage modulus increased, corresponding to the reversion of thermoelastic martensite and disappeared with the formation of precipitates. These features are finally discussed in association with TWSME under bending.

  20. Effect of micro-arc oxidation surface modification on the properties of the NiTi shape memory alloy.

    PubMed

    Xu, J L; Zhong, Z C; Yu, D Z; Liu, F; Luo, J M

    2012-12-01

    In this paper, the effects of micro-arc oxidation (MAO) surface modification (alumina coatings) on the phase transformation behavior, shape memory characteristics, in vitro haemocopatibility and cytocompatibility of the biomedical NiTi alloy were investigated respectively by differential scanning calorimetry, bending test, hemolysis ratio test, dynamic blood clotting test, platelet adhesion test and cytotoxicity testing by human osteoblasts (Hobs). The results showed that there were no obvious changes of the phase transformation temperatures and shape memory characteristics of the NiTi alloy after the MAO surface modification and the coating could withstand the thermal shock and volume change caused by martensite-austenite phase transformation. Compared to the uncoated NiTi alloys, the MAO surface modification could effectively improve the haemocopatibility of the coated NiTi alloys by the reduced hemolysis ratio, the prolonged dynamic clotting time and the decreased number of platelet adhesion; and the rough and porous alumina coatings could obviously promote the adherence, spread and proliferation of the Hobs with the significant increase of proliferation number of Hobs adhered on the surface of the coated NiTi alloys (P < 0.05).

  1. Quasi-static modeling of NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Chopra, Inderjit

    2005-05-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated in parallel to the Brinson and Tanaka thermal SMA constitutive models. Since the shape memory effect (SME) and pseudoelasticity exist in both NiTi and NiMnGa, constitutive models for SMAs can serve as a basis for MSMA behavioral modeling. The quasi-static model for NiMnGa was characterized by nine material parameters identified by conducting a series of uniaxial compression tests in a constant field environment. These model parameters include free strain, Young"s modulus, fundamental critical stresses, fundamental threshold fields, and stress-influence coefficients. The Young"s moduli of the material in both its field and stress preferred configurations were determined to be 450 MPa and 820 MPa respectively, while the free strain was measured to be 5.8%. These test data were used to assemble a critical stress profile that is useful for determining model parameters and for understanding the dependence of critical stresses on magnetic fields. Once implemented, the analytical model shows good correlation with test data for all modes of NiMnGa quasi-static behavior, capturing both the magnetic shape memory effect and pseudoelasticity. Furthermore, the model is also capable of predicting partial pseudoelasticity, minor hysteretic loops and stress-strain behaviors. To correct for the effects of magnetic saturation, a series of stress influence functions were developed from the critical stress profile. Although requiring further refinement, the model"s results are encouraging, indicating that the model is a useful analytical tool for predicting NiMnGa actuator behavior.

  2. A quasi-static model for NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Couch, Ronald N.; Chopra, Inderjit

    2007-02-01

    A quasi-static model for NiMnGa magnetic shape memory alloy (MSMA) is formulated in parallel to the Brinson and Tanaka thermal SMA constitutive models. Since the shape memory effect (SME) and pseudoelasticity exist in both NiTi and NiMnGa, constitutive models for SMAs can serve as a basis for MSMA behavioral modeling. The simplified, linear, quasi-static model for NiMnGa was characterized by nine material parameters identified by conducting a series of uniaxial compression tests in a constant field environment. These model parameters include free strain, Young's modulus, fundamental critical stresses, fundamental threshold fields, and stress-influence coefficients. The Young's moduli of the material in both its field and stress preferred configurations were determined to be 450 MPa and 820 MPa respectively, while the free strain was measured to be 5.8%. These test data were used to assemble a critical stress profile that is useful for determining model parameters and for understanding the dependence of critical stresses on magnetic fields. Once implemented, the analytical model shows good correlation with test data for all modes of NiMnGa quasi-static behavior, capturing both the magnetic shape memory effect and pseudoelasticity. Furthermore, the model is also capable of predicting partial pseudoelasticity, minor hysteretic loops and stress-strain behaviors. To correct for the effects of magnetic saturation, a series of stress influence functions were developed from the critical stress profile. Although requiring further refinement, the model's results are encouraging, indicating that the model is a useful analytical tool for predicting NiMnGa actuator behavior.

  3. Formation of the thermodeformational properties of Mn-Cu-based alloys having the two-way shape memory effect

    NASA Astrophysics Data System (ADS)

    Nosova, G. I.

    2008-08-01

    The specific features of the thermodeformational behavior of Mn-Cu-based alloys with the two-way shape memory effect are revealed, and their connection with the diffusionless fcc → fct phase transition and the forming structure is discussed. The mechanism of the reversible thermal deformation caused by directed internal stresses is considered. The factors that affect the temperature interval of the highest thermal sensitivity and the value of reversible and specific thermal deformation are found, and the possibilities of their change by additional alloying and heat treatment are studied.

  4. Effects of microstructure and deformation conditions on the hot formability of Ni-Ti-Hf shape memory alloys.

    PubMed

    Kim, Jeoung Han; Park, Chan Hee; Kim, Seong Woong; Hong, Jae Keun; Oh, Chang-Seok; Jeon, Yeong Min; Kim, Kyong Min; Yeom, Jong Taek

    2014-12-01

    Ingots of Ni-Ti-Hf shape memory alloys were prepared by vacuum arc re-melting. Isothermal hot compression tests were conducted at temperatures ranging from 700 to 1000 degrees C and at strain rates from 10(-2) s(-1) to 1.0 s(-1). A decrease in the Ni content below 50.2 at.% significantly deteriorated the hot workability due to the formation of a brittle second phase. Also, the low Ni content alloy showed poor workability when the temperature exceeded 900 degrees C. Additional compression tests were conducted under various conditions to clarify the effects of the chemical composition, solidification anisotropy, and the strain rate.

  5. Structure and hot hardness of RuAl-based alloys produced by reactive sintering using hot isostatic pressing

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Morozov, A. E.; Padalko, A. G.; Drozdov, A. A.

    2008-04-01

    The structure and hot hardness (at temperatures up to 1100°C) of RuAl-based powder alloys with 1 3 at % Ni, Mo, Re, or Ru are studied. The alloys are produced by the reactive sintering of cold-compacted bars and subsequent threefold isostatic pressing with intermediate annealing at 1500°C performed after the first hot isostatic pressing. The samples have a residual pore content of 1 2.5 vol % and are characterized by a micrononuniform distribution of base and alloying elements. The alloys with refractory metals, such as Re, Mo, or Ru, are found to have the maximum hardness at all temperatures under study. At low temperatures, the effect is more substantial; the hardness of the Re-containing alloys exceeds that of the other alloys by a factor of 1.3 3.6. The increase in the hardness related to solid-solution alloying becomes more substantial owing to the microinhomogeneity of the sintered powder alloys and weakens because of microporosity. Recommendations that allow the uniformity of the distribution of the base and alloying elements to be increased are given.

  6. The properties of aluminum alloys containing nickel, produced using powder metallurgy method

    NASA Astrophysics Data System (ADS)

    Naeem, Haider T.; Mohammad, Kahtan S.; Jamaludin Shamsul, B.; Ahmad, Khairel R.; Hussein, Wan M. H.

    2015-05-01

    In this paper, the effects of nickel on the microstructure and mechanical properties of experimental an Al-Zn-Mg-Cu PM alloys under the impacts of the retrogression and re-aging treatment was investigated. Green compacts pressed at 370 MPa were then sintered at temperature 650°C in argon atmosphere for two hours. The sintered samples subjected to the homogenizing condition at 470°C for 1.5 hours then aging at 120°C for 24 hours and retrogressed at 180°C for 30 minutes, and then re-aged at 120°C for 24 hours. Characterization's results indicate that the microstructures of an Al-Zn-Mg-Cu-Ni PM alloys presented an intermetallics compound in the aluminum's matrix, identified as the AlNi and Al3Ni2 phases besides the MgZn and Mg2Zn11 phases which produced of the precipitation hardening during heat treatment. These compounds with precipitates provided strengthening of dispersion that led to improved Vickers's hardness and dinsifications properties of the alloys.

  7. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  8. Design and thermo-mechanical analysis of a new NiTi shape memory alloy fixing clip.

    PubMed

    Nespoli, Adelaide; Dallolio, Villiam; Stortiero, Francesco; Besseghini, Stefano; Passaretti, Francesca; Villa, Elena

    2014-04-01

    In this work, a new NiTi shape memory alloy (SMA) bone fixator is proposed. Thanks to the shape memory effect, this device does not need any external tool for the fixation, as the anchorage is obtained only by the self-accommodation of the clip during the parent transformation. Calorimetry and thermo-mechanical tests were used to evaluate the phase transformation temperatures and to estimate the forces generated both during the fixing surgical procedure and after the surgical operation. An application on animal anatomical sample was also performed; an appropriate mechanical tightness as well as a good handiness has been found.

  9. Most microbe-specific naïve CD4⁺ T cells produce memory cells during infection.

    PubMed

    Tubo, Noah J; Fife, Brian T; Pagan, Antonio J; Kotov, Dmitri I; Goldberg, Michael F; Jenkins, Marc K

    2016-01-29

    Infection elicits CD4(+) memory T lymphocytes that participate in protective immunity. Although memory cells are the progeny of naïve T cells, it is unclear that all naïve cells from a polyclonal repertoire have memory cell potential. Using a single-cell adoptive transfer and spleen biopsy method, we found that in mice, essentially all microbe-specific naïve cells produced memory cells during infection. Different clonal memory cell populations had different B cell or macrophage helper compositions that matched effector cell populations generated much earlier in the response. Thus, each microbe-specific naïve CD4(+) T cell produces a distinctive ratio of effector cell types early in the immune response that is maintained as some cells in the clonal population become memory cells.

  10. Influence of aging and thermomechanical cycling on the magnetostriction and magnetic shape memory effect in martensitic alloy

    NASA Astrophysics Data System (ADS)

    L'vov, Victor A.; Kosogor, Anna; Barandiaran, Jose M.; Chernenko, Volodymyr A.

    2015-10-01

    An influence of internal stress created by the crystal defects on the magnetically induced reorientation (MIR) of martensite variants in the ferromagnetic shape memory alloy (FSMA) has been analyzed. Using the internal stress conception, a noticeable influence of the spatial reconfiguration of crystal defects on the ordinary magnetostriction of FSMA and magnetic shape memory (MSM) effect has been predicted. It has been shown that the defect reconfiguration, which stabilizes the martensitic phase during martensite aging, increases the shear elastic modulus. The increase of shear modulus reduces the magnetostriction value and in this way suppresses the MSM effect. The magneto-thermo-mechanical training of aged alloys destabilizes the martensitic phase, restores the initial magnetostriction value, and promotes the MSM effect.

  11. Study of Martensitic Phase transformation in a NiTiCu Thin Film Shape Memory Alloy Using Photoelectron Emission Microscopy

    SciTech Connect

    Cai, Mingdong; Langford, Stephen C.; Wu, Maggie J.; Huang, W. M.; Xiong, Gang; Droubay, Timothy C.; Joly, Alan G.; Beck, Kenneth; Hess, Wayne P.; Dickinson, J. T.

    2007-01-01

    The thermally-induced martensitic phase transformation in a polycrystalline NiTiCu thin film shape memory alloy was probed by photoelectron emission microscopy (PEEM). In situ PEEM images reveal distinct changes in microstructure and photoemission intensity at the phase transition temperatures. In particular, images of the low temperature, martensite phase are brighter than that of the high temperature, austenite phase, due to the relatively lower work function of the martensite. Ultra-violet photoelectron spectroscopy shows that the effective work function changes by about 0.16 eV during thermal cycling. In situ PEEM images also show that the network of trenches observed on the room temperature film disappear suddenly during heating and reappear suddenly during subsequent cooling. These trenches are also characterized by atomic force microscopy at selected temperatures. We describe implications of these observations with respect to the spatial distribution of phases during thermal cycling in this thin film shape memory alloy.

  12. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    SciTech Connect

    Çakir, Asli; Aktürk, Selçuk; Righi, Lara

    2013-11-14

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.

  13. Improvement of the shape memory characteristics of a Cu-Zn-Al alloy with manganese and zirconium addition

    SciTech Connect

    Zou, W.H.; Lam, C.W.H.; Chung, C.Y.; Lai, J.K.L.

    1997-04-15

    Cu-based shape memory alloys (SMAs) possess good shape memory effect (SME) and have the advantage of lower price than Ti-Ni SMA. However, there are still some problems which should be solved before they can be used widely. Addition of suitable alloying elements can improve the mechanical properties, stabilization of martensitic transformations and also the SME of Cu-based SMAs significantly. Cu-Zn-Al is an important Cu-based SMA that suffers from the martensite stabilization and intergranular cracking in the processing procedures and service. As a modification of Cu-Zn-Al SMAs, the effects of Mn and Zr addition on the structure and martensite transformation behavior of different heat treated Cu-21Zn-6Al-1Mn-0.5Zr (wt%) SMA have been studied and compared to that of Cu-21Zn-6Al (wt%) SMA in the present paper.

  14. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa

    PubMed Central

    Pataky, Garrett J.; Ertekin, Elif; Sehitoglu, Huseyin

    2015-01-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress–strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1] PMID:26380838

  15. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa.

    PubMed

    Pataky, Garrett J; Ertekin, Elif; Sehitoglu, Huseyin

    2015-12-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress-strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1].

  16. Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff

    2006-01-01

    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.

  17. Closed chamber pupilloplasty with an injectable shape memory alloy clip in enucleated porcine eyes in the laboratory setting.

    PubMed

    Erlanger, Michael S; Olson, Jeffrey L

    2012-01-01

    A novel surgical technique and novel surgical instrumentation for closing a pupil defect in a closed chamber eye is described. The technique was performed in a laboratory setting using ex-vivo porcine eyes using a 30-gauge deployment system to repair iris defects. Given the difficulty of suturing in a closed chamber eye, the use of an injectable, shape memory alloy clip offers the advantages of rapid, easy deployment and increased strength over conventional suture techniques. PMID:22767338

  18. Modelling and control of an adaptive tuned mass damper based on shape memory alloys and eddy currents

    NASA Astrophysics Data System (ADS)

    Berardengo, M.; Cigada, A.; Guanziroli, F.; Manzoni, S.

    2015-08-01

    Tuned mass dampers have long since been used to attenuate vibrations. The need to make them adaptive in order to function even after changes of the dynamic characteristics of the system to be controlled has led to using many different technologies with the aim of improving adaptation performances. Shape memory alloys have already been proven to have properties suitable for creating adaptive tuned mass dampers for light structures. However, the literature has evidenced a number of issues concerning tuned mass dampers based on shape memory alloys, for instance the limited range of adaptation for the eigenfrequency of the damper. The present paper proposes a new layout for adaptive tuned mass dampers based on shape memory alloys, which allows to overcome many of the limitations and to reach a wide range of adaptation for the eigenfrequency. This layout relies on the use of shape memory alloy wires, so that the change of eigenfrequency is achieved by changing the axial load acting on these wires. The new tuned mass damper is then made fully adaptive by including a device that uses the principle of eddy currents, which allows also to change the damping of the tuned mass damper. Indeed, this new kind of damper is designed to dampen vibrations in systems excited by a random disturbance. The paper illustrates the layout and the model of the whole damper and validates it. This model moreover evidences all the advantages allowed by the new layout proposed. Finally, two different strategies to control the dynamic characteristics of the new adaptive tuned mass damper are presented and compared, both numerically as well as experimentally, so to illustrate strengths and drawbacks of each. The experiments and the simulations show that this new damper is fully capable of functioning when random excitation acts as disturbance on the system to control.

  19. Design and development of a shape memory alloy activated heat pipe-based thermal switch

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Notardonato, W. U.; Meneghelli, B. J.; Vaidyanathan, R.

    2013-10-01

    This work reports on the design, fabrication and testing of a thermal switch wherein the open and closed states were actuated by shape memory alloy (SMA) elements while heat was transferred by a two-phase heat pipe. The motivation for such a switch comes from NASA’s need for thermal management in advanced spaceport applications associated with future lunar and Mars missions. As the temperature can approximately vary between -233 and 127 ° C during lunar day/night cycles, the switch was designed to reject heat from a cryogen tank into space during the night cycle while providing thermal isolation during the day cycle. A Ni47.1Ti49.6Fe3.3 (at.%) alloy that exhibited a reversible phase transformation between a trigonal R-phase and a cubic austenite phase was used as the sensing and actuating elements. Thermomechanical actuation, accomplished through an antagonistic spring system, resulted in strokes up to 7 mm against bias forces of up to 45 N. The actuation system was tested for more than thirty cycles, equivalent to one year of operation. The thermal performance, accomplished via a variable length, closed two-phase heat pipe, was evaluated, resulting in heat transfer rates of 13 W using pentane and 10 W using R-134a as working fluids. Experimental data were also compared to theoretical predictions where possible. Direct comparisons between different design approaches of SMA helical actuators, highlighting the effects of the helix angle, were carried out to give a layout of more accurate design methodologies.

  20. Utilization of nickel-titanium shape memory alloy for stapes prosthesis.

    PubMed

    Kasano, F; Morimitsu, T

    1997-04-01

    A new type of stapes prosthesis made of nickel-titanium shape memory alloy wire was developed and its biocompatibility was examined in 24 ears of 12 cats. The prosthesis was implanted at the long crus of the incus. The incus was examined 27-355 days after operation. In 23 ears, the prosthesis was found macroscopically well implanted at the aimed position. In one ear the prosthesis was found to be dislocated and in another the prosthesis was slightly loosened. The incudes were removed and five specimens were prepared for scanning electron microscopy and the other specimens were observed under light microscopy. Histological studies revealed severe bone resorption of the long crus in the dislocated case and moderate bone resorption in the slightly loosened case. These bone resorptions were found to be caused by the inadvertent removal of the mucosal membrane during the implant operations. In seven ears under a light microscope and in one ear under a scanning electron microscope, slight bone resorption as bone erosion was seen at the contact area of the prosthesis. This bone resorption was induced by the mechanical pressure of the prosthesis and was not progressive due to fading of the pressure of the prosthesis. With the exception of pressure induced bone erosions, there was no progressive bone resorption which was prosthesis induced. The biocompatibility of the nickel-titanium alloy stapes prosthesis with the long crus of the incus was proved. The prosthesis should be implanted loosely at the long crus of the incus without removal of the mucosal membrane. PMID:9134135

  1. Simulating Solid-Solid Phase Transition in Shape-Memory Alloy Microstructure by Face-Offsetting Method

    SciTech Connect

    Bellur Ramaswamy, Ravi S.; Tortorelli, Daniel A.; Fried, Eliot; Jiao Xiangmin

    2008-02-15

    Advances in the understanding of martensitic transformations (diffusionless, solid-solid phase transformations) have been instrumental to the recent discovery of new low hysteresis alloys. However, some key fundamental issues must be better understood to design still better alloys. Restricting attention to antiplane shear, we use finite element analysis to model the shape-memory alloy microstructure within the Abeyaratne-Knowles continuum thermomechanical framework and use an interface kinetic relation of the kind proposed by Rosakis and Tsai. Geometric singularities and topological changes associated with microstructural evolution pose significant numerical challenges. We address such challenges with a recently developed front-tracking scheme called the face-offsetting method (FOM) to explicitly model phase interfaces. Initial results demonstrate the effectiveness of FOM in resolving needle-like twinned microstructures.

  2. Effect of CO2 laser welding on the shape-memory and corrosion characteristics of TiNi alloys

    NASA Astrophysics Data System (ADS)

    Hsu, Y. T.; Wang, Y. R.; Wu, S. K.; Chen, C.

    2001-03-01

    A CO2 laser has been employed to join binary Ti50Ni50 and Ti49.5Ni50.5 shape-memory alloys (SMAs), with an emphasis on the shape-memory and corrosion characteristics. Experimental results showed that a slightly lowered martensite start ( M S) temperature and no deterioration in shape-memory character of both alloys were found after laser welding. The welded Ti50Ni50, with an increased amount of B2 phase in the weld metal (WM), had higher strength and considerably lower elongation than the base metal (BM). Potentiodynamic tests revealed the satisfactory performance of laser-welded Ti50Ni50 in 1.5 M H2SO4 and 1.5 M HNO3 solutions. However, the WM exhibited a significantly higher corrosion rate and a less stable passivity than the BM in artificial saliva. On the other hand, the pseudoelastic behavior of the laser weld was investigated only for the Ti49.5Ni50.5 alloy, to facilitate tension cycling at room temperature. The cyclic deformation of Ti49.5Ni50.5 indicated that the stress required to form stress-induced martensite ( σ m) and the permanent residual strain ( ɛ p) were higher after welding at a given number of cycles ( N), which were certainly related to the more inhomogeneous nature of the WM.

  3. Effect of Cold Rolling on Phase Transformation Temperatures of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pattabi, Manjunatha; Murari, M. S.

    2015-02-01

    The effect of cold rolling and heat treatment on the phase transformation behavior of NiTi shape memory alloy (SMA) heat treated at 660 °C has been investigated. Four sets of samples were cold rolled after heat treatment. The austenite-to-martensite and martensite-to-austenite transformation temperatures for samples without any cold rolling are determined through differential scanning calorimetry (DSC). The austenitic start temperature gets shifted to the higher temperature side with increase in the percentage of the cold rolling up to 12.5%. Austenitic finish temperature could not be detected in cold-rolled samples. Martensitic start temperature increases slightly with increased cold rolling while martensitc finish temperature slightly decreases. Beyond 12.5% cold work, the shape memory effect (SME) is completely lost. The evolution of austenitic phase in SMA subjected to cold rolling was studied through powder x-ray diffraction (XRD) at different temperatures in the range 25 to 160 °C at intervals of 10 °C, during heating and cooling. The XRD results agree with those of DSC. Two sets of cold-rolled samples were again heat treated to 300 and 500 °C and the transformation behavior was studied using DSC. Heat treatment at 300 °C brings back the SME, but with the presence of an intermediate R-Phase due to the additional dislocations present. Even with a heat treatment at 500 °C, the effect of cold work is not completely removed and a single-step transformation is not observed. Another set of samples subjected to cold work were heat treated at 660 °C and the transformation is studied. The effect of cold work even up to 25% is completely removed with this heat treatment as indicated by DSC. The complete regaining of the SME is further confirmed by electrical resistivity measurements also.

  4. Diffusion aluminizing coatings to produce Ni{sub 3}Al alloy welding rods

    SciTech Connect

    McVay, C.; Rapp, R.A.

    1995-07-15

    A pack chemistry of 40 wt% Ni-Al powder (30 at% Ni-70 Al), 1.75 wt% AlF{sub 3}, and balance Al{sub 2}O{sub 3} was used to produce Ni{sub 2}Al{sub 3} coatings that contained the required amount of Al for the average composition of a Ni{sub 3}Al alloy welding rod. The coating time was 7.8 hr. at a temperature of 1,000 C. Coatings produced at shorter time showed slower kinetics and a lower Al surface composition due to an adherent layer of sintered pack powder that was not present for longer coating times.

  5. Influence of roll and solution treatment processing on shape memory effect of Fe-14Mn-5Si-9Cr-5Ni alloy

    SciTech Connect

    Li, C.L.; Jin, Z.H.

    1998-10-01

    The shape memory effect was studied in an Fe-14Mn-5Si-9Cr-5Ni alloy rerolled at 1123 K after hot rolling at 1423 K, followed by solution treatment at different temperatures. It was found that the alloy exhibits a maximum degree of shape recovery in a bending test and a complete recovery tensile strain of 2.2% in samples that were solution heated at 973 K for 600 s and then quenched in water. The rerolled processing at 1123 K after hot rolling at 1423 K and the microstructure under solution treatment state are important for obtaining a good shape memory effect in the alloy.

  6. A two-degrees-of-freedom miniature manipulator actuated by antagonistic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lai, Chih-Ming; Chu, Cheng-Yu; Lan, Chao-Chieh

    2013-08-01

    This paper presents a miniature manipulator that can provide rotations around two perpendicularly intersecting axes. Each axis is actuated by a pair of shape memory alloy (SMA) wires. SMA wire actuators are known for their large energy density and ease of actuation. These advantages make them ideal for applications that have stringent size and weight constraints. SMA actuators can be temperature-controlled to contract and relax like muscles. When correctly designed, antagonistic SMA actuators have a faster response and larger range of motion than bias-type SMA actuators. This paper proposes an antagonistic actuation model to determine the manipulator parameters that are required to generate sufficient workspace. Effects of SMA prestrain and spring stiffness on the manipulator are investigated. Taking advantage of proper prestrain, the actuator size can be made much smaller while maintaining the same motion. The use of springs in series with SMA can effectively reduce actuator stress. A controller and an anti-slack algorithm are developed to ensure fast and accurate motion. Speed, stress, and loading experiments are conducted to demonstrate the performance of the manipulator.

  7. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  8. A validated model for induction heating of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Saunders, Robert N.; Boyd, James G.; Hartl, Darren J.; Brown, Jonathan K.; Calkins, Frederick T.; Lagoudas, Dimitris C.

    2016-04-01

    Shape memory alloy (SMA) actuators deliver high forces while being compact and reliable, making them ideal for consideration in aerospace applications. One disadvantage of these thermally driven actuators is their slow cyclic time response compared to conventional actuators. Induction heating has recently been proposed to quickly heat SMA components. However efforts to date have been purely empirical. The present work approachs this problem in a computational manner by developing a finite element model of induction heating in which the time-harmonic electromagnetic equations are solved for the Joule heat power field, the energy equation is solved for the temperature field, and the linear momentum equations are solved to find the stress, displacement, and internal state variable fields. The combined model was implemented in Abaqus using a Python script approach and applied to SMA torque tube and beam actuators. The model has also been used to examine magnetic flux concentrators to improve the induction systems performance. Induction heating experiments were performed using the SMA torque tube, and the model agreed well with the experiments.

  9. Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim; Wickenheiser, Adam; Horner, Garnett C.

    2005-05-01

    As more alternative, lightweight actuators have become available, the conventional fixed-wing configuration seen on modern aircraft is under investigation for efficiency on a broad scale. If an aircraft could be designed with multiple functional equilibria of drastically varying aerodynamic parameters, one craft capable of 'morphing' its shape could be used to replace two or three designed with particular intentions. One proposed shape for large-scale (geometry change on the same order of magnitude as wingspan) morphing is the Hyper-Elliptical Cambered Span (HECS) wing, designed at NASA Langley to be implemented on an unmanned aerial vehicle (UAV). Proposed mechanisms to accomplish the spanwise curvature (in the y-z plane of the craft) that allow near-continuous bending of the wing are narrowed to a tendon-based DC motor actuated system, and a shape memory alloy-based (SMA) mechanism. At Cornell, simulations and wind tunnel experiments assess the validity of the HECS wing as a potential shape for a blended-wing body craft with the potential to effectively serve the needs of two conventional UAVs, and analyze the energetics of actuation associated with a morphing maneuver accomplished with both a DC motor and SMA wire.

  10. Analysis of interfacial debonding in shape memory alloy wire-reinforced composites

    NASA Astrophysics Data System (ADS)

    Miramini, A.; Kadkhodaei, M.; Alipour, A.; Mashayekhi, M.

    2016-01-01

    One of the common types of failure in shape memory alloy (SMA) wire-reinforced composites is interfacial debonding between the fiber and the matrix. In this paper, a three dimensional finite element model for an SMA wire-reinforced composite is developed based on cohesive zone modeling to predict interfacial debonding between the SMA wire and the surrounding matrix. The interfacial debonding is also experimentally investigated by conducting a number of pull-out tests on steel as well as Nitinol wires embedded in an epoxy matrix. To evaluate the presented method, the developed finite element analysis is employed to simulate a single wire pull-out test for ordinary (e.g. steel) wires. In order to simulate SMA wire pull-out, a 3D SMA constitutive model is implemented into the commercial finite element software ABAQUS using a user material subroutine (UMAT). An acceptable agreement is shown to exist between the theoretical results and the experimental data, indicating the efficiency of the proposed approach to model interfacial debonding in SMA wire-reinforced composites.

  11. TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications.

    PubMed

    Li, Huafang; Zheng, Yufeng; Pei, Y T; De Hosson, J Th M

    2014-05-01

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin films. The hardness of the TiNi SMA with and without tungsten thin films was measured by nanoindentation tests. It is demonstrated that the tungsten thin films deposited at different magnetron sputtering conditions are characterized by a columnar microstructure and exhibit different surface morphology and roughness. The hardness of the TiNi SMA was improved significantly by tungsten thin films. The ion release, hemolysis rate, cell adhesion and cell proliferation have been investigated by inductively coupled plasma atomic emission spectrometry, CCK-8 assay and alkaline phosphatase activity test. The experimental findings indicate that TiNi SMA coated with tungsten thin film shows a substantial reduction in the release of nickel. Therefore, it has a better in vitro biocompatibility, in particular, reduced hemolysis rate, enhanced cell adhesion and differentiation due to the hydrophilic properties of the tungsten films. PMID:24481534

  12. Design and implementation of shape memory alloy-actuated nanotweezers for nanoassembly

    NASA Astrophysics Data System (ADS)

    Zhao, Hao; Chang, Ming; Liu, Xiaojun; Gabayno, Jacque Lynn; Chen, Hsieh Tsun

    2014-09-01

    Reliable and accurate tools for nanoscale manipulation are constantly sought to complement new breakthroughs in nanomaterials and nanotechnology. In this study, a new design of electrically actuated nanotweezers was developed for manipulation of individual nanowires. The design featured two chemically etched tungsten tips attached to a carbon fiber-reinforced polymer and two shape memory alloy actuators. The shape recovery effect of the spring actuators was exploited as a control mechanism for the bending and relaxation modes of the nanotweezers. This was activated by driving a potential difference of less than 1 V across the coils, which was considerably lower than for electromechanical micro/nanotweezers previously developed. To demonstrate the pick-and-place capability of the system, experiments were implemented inside the vacuum chamber of a JEOL-JSM 6300 SEM. Individual Au nanowires averaging 5-10 µm in length and 200 nm in diameter were assembled on silicon substrates using the tungsten tips to draw initials out of various nanowire shapes such as curls, loops, crosses, and zigzags. With such capability, the nanotweezers may find applications in the manufacturing of complex nanostructures or modification of surface properties of materials.

  13. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-07-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  14. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold.

    PubMed

    Wu, Shuilin; Liu, Xiangmei; Wu, Guosong; Yeung, Kelvin W K; Zheng, Dong; Chung, C Y; Xu, Z S; Chu, Paul K

    2013-09-01

    The abraded debris might cause osteocytic osteolysis on the interface between implants and bone tissues, thus inducing the subsequent mobilization of implants gradually and finally resulting in the failure of bone implants, which imposes restrictions on the applications of porous NiTi shape memory alloys (SMAs) scaffolds for bone tissue engineering. In this work, the effects of the annealing temperature, applied load, and porosity on the tribological behavior and wear resistance of three-dimensional porous NiTi SMA are investigated systematically. The porous structure and phase transformation during the exothermic process affect the tribological properties and wear mechanism significantly. In general, a larger porosity leads to better tribological resistance but sometimes, SMAs with small porosity possess better wear resistance than ones with higher porosity during the initial sliding stage. It can be ascribed to the better superelasticity of the former at the test temperature. The porous NiTi phase during the exothermic reaction also plays an important role in the wear resistance. Generally, porous NiTi has smaller friction coefficients under high loads due to stress-induced superelasticity. The wear mechanism is discussed based on plastic deformation and microcrack propagation.

  15. Applicability of Shape Memory Alloy Wire for an Active, Soft Orthotic

    NASA Astrophysics Data System (ADS)

    Stirling, Leia; Yu, Chih-Han; Miller, Jason; Hawkes, Elliot; Wood, Robert; Goldfield, Eugene; Nagpal, Radhika

    2011-07-01

    Current treatments for gait pathologies associated with neuromuscular disorders may employ a passive, rigid brace. While these provide certain benefits, they can also cause muscle atrophy. In this study, we examined NiTi shape memory alloy (SMA) wires that were annealed into springs to develop an active, soft orthotic (ASO) for the knee. Actively controlled SMA springs may provide variable assistances depending on factors such as when, during the gait cycle, the springs are activated; ongoing muscle activity level; and needs of the wearer. Unlike a passive brace, an active orthotic may provide individualized control, assisting the muscles so that they may be used more appropriately, and possibly leading to a re-education of the neuro-motor system and eventual independence from the orthotic system. A prototype was tested on a suspended, robotic leg to simulate the swing phase of a typical gait. The total deflection generated by the orthotic depended on the knee angle and the total number of actuators triggered, with a max deflection of 35°. While SMA wires have a high energy density, they require a significant amount of power. Furthermore, the loaded SMA spring response times were much longer than the natural frequency of an average gait for the power conditions tested. While the SMA wires are not appropriate for correction of gait pathologies as currently implemented, the ability to have a soft, actuated material could be appropriate for slower timescale applications.

  16. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators.

    PubMed

    Villanueva, Alex; Smith, Colin; Priya, Shashank

    2011-09-01

    An analysis is conducted on the design, fabrication and performance of an underwater vehicle mimicking the propulsion mechanism and physical appearance of a medusa (jellyfish). The robotic jellyfish called Robojelly mimics the morphology and kinematics of the Aurelia aurita species. Robojelly actuates using bio-inspired shape memory alloy composite actuators. A systematic fabrication technique was developed to replicate the essential structural features of A. aurita. Robojelly's body was fabricated from RTV silicone having a total mass of 242 g and bell diameter of 164 mm. Robojelly was able to generate enough thrust in static water conditions to propel itself and achieve a proficiency of 0.19 s(-1) while the A. aurita achieves a proficiency of around 0.25 s(-1). A thrust analysis based on empirical measurements for a natural jellyfish was used to compare the performance of the different robotic configurations. The configuration with best performance was a Robojelly with segmented bell and a passive flap structure. Robojelly was found to consume an average power on the order of 17 W with the actuators not having fully reached a thermal steady state. PMID:21852714

  17. Experimental characterization and modeling of a three-variant magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Feigenbaum, Heidi P.; Ciocanel, Constantin; Eberle, J. Lance; Dikes, Jason L.

    2016-10-01

    Researchers have attempted to characterize and predict the magneto-mechanical behavior of magnetic shape memory alloys (MSMAs) for over a decade. However, all prior experimental investigations on MSMA have been performed on samples accommodating two martensite variants and generally the MSMA is only exposed to two-dimensional magneto-mechanical loading. As efforts have been underway to develop models able to predict the most general (i.e. 3D) loading conditions for MSMAs with three-varints, there is also a need for experimental data to support the calibration and validation of these models. This paper presents magneto-mechanical data from experiments where MSMA specimens, whose microstructure accommodates three martensite variants, is subjected to three-dimensional magneto-mechanical loading, along with model predictions of these experimental results. The 3D magneto-mechanical model deployed here is a modified version of the model developed by our group (LaMaster et al 2015 J. Intell. Mater. Syst. Struct. 26 663-79), and assumes that three martensite variants coexist in the material. The LaMaster et al model captures some of the general trends seen in the experimental data, but does not predict the data with a high degree of accuracy. Possible reasons for the mismatch between experimental data and model predictions are discussed.

  18. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/-16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g-1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  19. Laser-Machined Shape Memory Alloy Sensors for Position Feedback in Active Catheters

    PubMed Central

    Tung, Alexander T.; Park, Byong-Ho; Liang, David H.; Niemeyer, Günter

    2008-01-01

    Catheter-based interventions are a form of minimally invasive surgery that can decrease hospitalization time and greatly lower patient morbidity compared to traditional methods. However, percutaneous catheter procedures are hindered by a lack of precise tip manipulation when actuation forces are transmitted over the length of the catheter. Active catheters with local shape-memory-alloy (SMA) actuation can potentially provide the desired manipulation of a catheter tip, but hysteresis makes it difficult to control the actuators. A method to integrate small-volume, compliant sensors on an active catheter to provide position feedback for control would greatly improve the viability of SMA-based active catheters. In this work, we describe the design, fabrication, and performance of resistance-based position sensors that are laser-machined from superelastic SMA tubing. Combining simple material models and rapid prototyping, we can develop sensors of appropriate stiffness and sensitivity with simple modifications in sensor geometry. The sensors exhibit excellent linearity over the operating range and are designed to be easily integrated onto an active catheter substrate. PMID:19759806

  20. GA-based optimum design of a shape memory alloy device for seismic response mitigation

    NASA Astrophysics Data System (ADS)

    Ozbulut, O. E.; Roschke, P. N.; Y Lin, P.; Loh, C. H.

    2010-06-01

    Damping systems discussed in this work are optimized so that a three-story steel frame structure and its shape memory alloy (SMA) bracing system minimize response metrics due to a custom-tailored earthquake excitation. Multiple-objective numerical optimization that simultaneously minimizes displacements and accelerations of the structure is carried out with a genetic algorithm (GA) in order to optimize SMA bracing elements within the structure. After design of an optimal SMA damping system is complete, full-scale experimental shake table tests are conducted on a large-scale steel frame that is equipped with the optimal SMA devices. A fuzzy inference system is developed from data collected during the testing to simulate the dynamic material response of the SMA bracing subcomponents. Finally, nonlinear analyses of a three-story braced frame are carried out to evaluate the performance of comparable SMA and commonly used steel braces under dynamic loading conditions and to assess the effectiveness of GA-optimized SMA bracing design as compared to alternative designs of SMA braces. It is shown that peak displacement of a structure can be reduced without causing significant acceleration response amplification through a judicious selection of physical characteristics of the SMA devices. Also, SMA devices provide a recentering mechanism for the structure to return to its original position after a seismic event.

  1. Study on CO2 laser weldability of Fe-Mn-Si shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Lin, Chengxin; Liu, Linlin

    2012-04-01

    In this study, a cross-flow laser with maximum out power of 5kW was applied to the welding of Fe-Mn-Si shape memory alloys (SMA). The optimal welding processing parameters of 1mm thick Fe-Mn-Si SMA were established by orthogonal experiment. With the optimal processing parameters, power 1600W, welding speed 2.2m/min, defocusing distance 0.6mm, the tensile strength of the welded joint can achieve 93.5% of the base material, and the weld undercut and reinforcement transfer smoothly on the surface of the welding seam and the cross-section of the welding seam morphology presents "X" shape. The fracture appears in the weld fusion zone, so this area is weak during the laser welding. By the metallographic observation, the weld center structure is small equated, and the region of fusion zone is thick cellular crystal that decreases the strength of the welded joint, and the X-ray diffraction (XRD) test proves that the laser welding promotes the grain refinement. The micro-hardness analysis shows that the hardness of the fusion zone is lower than the other area clearly which is also associated to the weld structure. By the fracture scanning electron microscope (SEM) analysis, it is found that the fracture of Fe-Mn-Si SMA shows many small dimples with the optimal parameters, and the result is accorded with the base material which belongs to plastic fracture.

  2. Study on CO2 laser weldability of Fe-Mn-Si shape memory alloy

    NASA Astrophysics Data System (ADS)

    Zhou, Chaoyu; Lin, Chengxin; Liu, Linlin

    2011-11-01

    In this study, a cross-flow laser with maximum out power of 5kW was applied to the welding of Fe-Mn-Si shape memory alloys (SMA). The optimal welding processing parameters of 1mm thick Fe-Mn-Si SMA were established by orthogonal experiment. With the optimal processing parameters, power 1600W, welding speed 2.2m/min, defocusing distance 0.6mm, the tensile strength of the welded joint can achieve 93.5% of the base material, and the weld undercut and reinforcement transfer smoothly on the surface of the welding seam and the cross-section of the welding seam morphology presents "X" shape. The fracture appears in the weld fusion zone, so this area is weak during the laser welding. By the metallographic observation, the weld center structure is small equated, and the region of fusion zone is thick cellular crystal that decreases the strength of the welded joint, and the X-ray diffraction (XRD) test proves that the laser welding promotes the grain refinement. The micro-hardness analysis shows that the hardness of the fusion zone is lower than the other area clearly which is also associated to the weld structure. By the fracture scanning electron microscope (SEM) analysis, it is found that the fracture of Fe-Mn-Si SMA shows many small dimples with the optimal parameters, and the result is accorded with the base material which belongs to plastic fracture.

  3. Hysteresis phenomena in shape memory alloys by non-isothermal Ginzburg-Landau models

    NASA Astrophysics Data System (ADS)

    Dhote, R. P.; Fabrizio, M.; Melnik, R. N. V.; Zu, J.

    2013-09-01

    In this paper, we propose the new one- and three- dimensional models for the description of hysteretic phenomena in shape memory alloys (SMAs). These thermodynamic models are non-isothermal and allow to account for the thermo-mechanical material properties of both austenite and martensite phases based on the local phase value of the order parameter. They are based on the Ginzburg-Landau free energy and the phase field theory. The core of the models is a phase evolution governed by the time dependent Ginzburg-Landau (TDGL) equation and the conservation balance laws with nonlinear coupling between stress, strain and the phase order parameter. The models account for the gradient energy and have been tested in the study of material properties evolution under harmonic stress loading for all important practical cases. The representative numerical simulations have been carried out here without the gradient energy term. The developed models account for the phase dependent properties based on the compliance tensor as a function of the order parameter and stress. We also compared the results obtained with these models and observed differences in homogeneous and inhomogeneous situations due to the change in compliance. In this way, the description of quasiplastic and pseudoelastic behaviors in SMA specimens is improved and becomes in an agreement with existing experiments.

  4. Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Minorowicz, Bartosz; Leonetti, Giuseppe; Stefanski, Frederik; Binetti, Giulio; Naso, David

    2016-07-01

    This paper presents an actuator based on magnetic shape memory alloys (MSMAs) suitable for precise positioning in a wide range (up to 1 mm). The actuator is based on the spring returned operating mode and uses a Smalley wave spring to maintain the same operating parameters of a classical coil spring, while being characterized by a smaller dimension. The MSMA element inside the actuator provides a deformation when excited by an external magnetic field, but its behavior is characterized by an asymmetric and saturated hysteresis. Thus, two models are exploited in this work to represent such a non-linear behavior, i.e., the modified and generalized Prandtl–Ishlinskii models. These models are particularly suitable for control purposes due to the existence of their analytical inversion that can be easily exploited in real time control systems. To this aim, this paper investigates three closed-loop control strategies, namely a classical PID regulator, a PID regulator with direct hysteresis compensation, and a combined PID and feedforward compensation strategy. The effectiveness of both modelling and control strategies applied to the designed MSMA-based actuator is illustrated by means of experimental results.

  5. Analysis of shape memory alloy sensory particles for damage detection via substructure and continuum damage modeling

    NASA Astrophysics Data System (ADS)

    Bielefeldt, Brent R.; Benzerga, A. Amine; Hartl, Darren J.

    2016-04-01

    The ability to monitor and predict the structural health of an aircraft is of growing importance to the aerospace industry. Currently, structural inspections and maintenance are based upon experiences with similar aircraft operating in similar conditions. While effective, these methods are time-intensive and unnecessary if the aircraft is not in danger of structural failure. It is imagined that future aircraft will utilize non-destructive evaluation methods, allowing for the near real-time monitoring of structural health. A particularly interesting method involves utilizing the unique transformation response of shape memory alloy (SMA) particles embedded in an aircraft structure. By detecting changes in the mechanical and/or electromagnetic responses of embedded particles, operators could detect the formation or propagation of fatigue cracks in the vicinity of these particles. This work focuses on a finite element model of SMA particles embedded in an aircraft wing using a substructure modeling approach in which degrees of freedom are retained only at specified points of connection to other parts or the application of boundary conditions, greatly reducing computational cost. Previous work evaluated isolated particle response to a static crack to numerically demonstrate and validate this damage detection method. This paper presents the implementation of a damage model to account for crack propagation and examine for the first time the effect of particle configuration and/or relative placement with respect to the ability to detect damage.

  6. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  7. TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications.

    PubMed

    Li, Huafang; Zheng, Yufeng; Pei, Y T; De Hosson, J Th M

    2014-05-01

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin films. The hardness of the TiNi SMA with and without tungsten thin films was measured by nanoindentation tests. It is demonstrated that the tungsten thin films deposited at different magnetron sputtering conditions are characterized by a columnar microstructure and exhibit different surface morphology and roughness. The hardness of the TiNi SMA was improved significantly by tungsten thin films. The ion release, hemolysis rate, cell adhesion and cell proliferation have been investigated by inductively coupled plasma atomic emission spectrometry, CCK-8 assay and alkaline phosphatase activity test. The experimental findings indicate that TiNi SMA coated with tungsten thin film shows a substantial reduction in the release of nickel. Therefore, it has a better in vitro biocompatibility, in particular, reduced hemolysis rate, enhanced cell adhesion and differentiation due to the hydrophilic properties of the tungsten films.

  8. Energy-efficient miniature-scale heat pumping based on shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Wendler, Frank; Gueltig, Marcel; Lambrecht, Franziska; Miyazaki, Shuichi; Kohl, Manfred

    2016-08-01

    Cooling and thermal management comprise a major part of global energy consumption. The by far most widespread cooling technology today is vapor compression, reaching rather high efficiencies, but promoting global warming due to the use of environmentally harmful refrigerants. For widespread emerging applications using microelectronics and micro-electro-mechanical systems, thermoelectrics is the most advanced technology, which however hardly reaches coefficients of performance (COP) above 2.0. Here, we introduce a new approach for energy-efficient heat pumping using the elastocaloric effect in shape memory alloys. This development is mainly targeted at applications on miniature scales, while larger scales are envisioned by massive parallelization. Base materials are cold-rolled textured Ti49.1Ni50.5Fe0.4 foils of 30 μm thickness showing an adiabatic temperature change of +20/‑16 K upon superelastic loading/unloading. Different demonstrator layouts consisting of mechanically coupled bridge structures with large surface-to-volume ratios are developed allowing for control by a single actuator as well as work recovery. Heat transfer times are in the order of 1 s, being orders of magnitude faster than for bulk geometries. Thus, first demonstrators achieve values of specific heating and cooling power of 4.5 and 2.9 W g‑1, respectively. A maximum temperature difference of 9.4 K between heat source and sink is reached within 2 min. Corresponding COP on the device level are 4.9 (heating) and 3.1 (cooling).

  9. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material.

  10. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis

    PubMed Central

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-01-01

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis. PMID:27328764

  11. Computational Thermodynamics and Kinetics-Based ICME Framework for High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Arróyave, Raymundo; Talapatra, Anjana; Johnson, Luke; Singh, Navdeep; Ma, Ji; Karaman, Ibrahim

    2015-11-01

    Over the last decade, considerable interest in the development of High-Temperature Shape Memory Alloys (HTSMAs) for solid-state actuation has increased dramatically as key applications in the aerospace and automotive industry demand actuation temperatures well above those of conventional SMAs. Most of the research to date has focused on establishing the (forward) connections between chemistry, processing, (micro)structure, properties, and performance. Much less work has been dedicated to the development of frameworks capable of addressing the inverse problem of establishing necessary chemistry and processing schedules to achieve specific performance goals. Integrated Computational Materials Engineering (ICME) has emerged as a powerful framework to address this problem, although it has yet to be applied to the development of HTSMAs. In this paper, the contributions of computational thermodynamics and kinetics to ICME of HTSMAs are described. Some representative examples of the use of computational thermodynamics and kinetics to understand the phase stability and microstructural evolution in HTSMAs are discussed. Some very recent efforts at combining both to assist in the design of HTSMAs and limitations to the full implementation of ICME frameworks for HTSMA development are presented.

  12. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  13. Preparing TiNiNb shape memory alloy powders by hydriding-dehydriding process

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Cui, Lishan; Jiang, Xiaohua; Guo, Fangmin; Liu, Yinong; Hao, Shijie

    2016-07-01

    High-quality TiNiNb shape memory alloy (SMA) powders were prepared by hydrogenation of cold-worked TiNiNb SMA wire composed of amorphous and nancrystalline microstructure, by mechanical pulverization and vacuum dehydrogenation. It is revealed that abundant structural defects introduced by cold-work greatly promoted hydrogen diffusion, which significantly decreased hydriding temperature and shortened hydriding time. After hydrogenation, the hydrogenated sample composed of TiNiH and NbH with high brittleness can be easily ground into ultra-fine powers. The TiNiNb powers obtained by following vacuum dehydrogenation exhibit almost the same reversible phase transformation behavior as that of the original TiNiNb SMA before cold-work. Moreover, a TiNiNb part was obtained by hot-pressure sintering the hydrogenated powders, where sintering and dehydrogenation are carried out in one single step. The sintered TiNiNb part shows most the same reversible phase transformation behaviors as that of the original TiNiNb SMA and there is no visible additional brittle phase appearance.

  14. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis

    NASA Astrophysics Data System (ADS)

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-06-01

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis.

  15. High Strain Rate Compression of Martensitic NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2015-09-01

    The compressive response of martensitic NiTi shape memory alloys (SMAs) under high strain rate (1200 s-1) was investigated on a modified Kolsky (Split Hopkinson) compression bar. The single-loading momentum trapping system ensures precise deformation control (1.4, 1.8, 3.0, 4.8, and 9.6 % strain) and single loading during dynamic compression. With increasing strain, the phase transformation peaks shift toward lower temperatures, while the intensities of these peaks decrease and eventually disappear completely at strains above 7 %, where the onset of plastic deformation of reoriented martensite occurs. All transformation peaks are recoverable after deformation simply by annealing at 873 K (600 °C) for 30 min, except those peaks corresponding to strains above 7 % (e.g., 9.6 %) which return upon annealing, but at a lower temperature. XRD results showed the variation of the strongest diffraction peak from (1bar{1}1) to (111) crystal plane before and after high strain rate compression.

  16. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    SciTech Connect

    Frenzel, J.; George, Easo P; Dlouhy, A.; Somsen, Ch.; Wagner, M. F.-X; Eggeler, G.

    2010-01-01

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalized on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.

  17. Development of an implantable artificial anal sphincter by the use of the shape memory alloy.

    PubMed

    Amae, S; Wada, M; Luo, Y; Nakamura, H; Yoshida, S; Kamiyama, T; Yambe, T; Takagi, T; Nitta, S; Ohi, R

    2001-01-01

    In this study, we developed and assessed an artificial anal sphincter driven by an shape memory alloy actuator (AS-SMA). The performance characteristics of the device were analyzed with a measurement system. Assessment showed that the AS-SMA could generate a pressure of 55 mm Hg at an atmospheric temperature of 36 degrees C, and displacement of the SMA actuator was 7.5 mm when the temperature of the SMA plate was 55 degrees C. To evaluate opening and closing, we studied a piglet colostomy model, in which the AS-SMA was implanted around the colostomy in the extraperitoneal space. Flow control tests using living porcine intestine revealed that the AS-SMA could maintain fecal continence against an intestinal pressure of 75 mm Hg. The high pressure zone corresponding to the location of the device was demonstrated in a manometric examination. For 6 days after surgery, we activated the AS-SMA twice a day and observed the bowel movements. The animal experiment indicated that the AS-SMA is able to control the bowel movements of patients with fecal incontinence if several problems, such as burning of tissue around the device and compression injury of the intestine, are resolved.

  18. Progress on Shape Memory Alloy Actuator Development for Active Clearance Control

    NASA Technical Reports Server (NTRS)

    DeCastro, Jonathan; Melcher, Kevin; Noebe, Ronald

    2006-01-01

    Results of a numerical analysis evaluating the feasibility of high-temperature shape memory alloys (HTSMA) for active clearance control actuation in the high-pressure turbine section of a modern turbofan engine has been conducted. The prototype actuator concept considered here consists of parallel HTSMA wires attached to the shroud that is located on the exterior of the turbine case. A transient model of an HTSMA actuator was used to evaluate active clearance control at various operating points in a test bed aircraft engine simulation. For the engine under consideration, each actuator must be designed to counteract loads from 380 to 2000 lbf and displace at least 0.033 in. Design results show that an actuator comprised of 10 wires 2 in. in length is adequate for control at critical engine operating points and still exhibit acceptable failsafe operability and cycle life. A proportional-integral-derivative (PID) controller with integrator windup protection was implemented to control clearance amidst engine transients during a normal mission. Simulation results show that the control system exhibits minimal variability in clearance control performance across the operating envelope. The final actuator design is sufficiently small to fit within the limited space outside the high-pressure turbine case and is shown to consume only small amounts of bleed air to adequately regulate temperature.

  19. Design, modelling and control of a micro-positioning actuator based on magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Minorowicz, Bartosz; Leonetti, Giuseppe; Stefanski, Frederik; Binetti, Giulio; Naso, David

    2016-07-01

    This paper presents an actuator based on magnetic shape memory alloys (MSMAs) suitable for precise positioning in a wide range (up to 1 mm). The actuator is based on the spring returned operating mode and uses a Smalley wave spring to maintain the same operating parameters of a classical coil spring, while being characterized by a smaller dimension. The MSMA element inside the actuator provides a deformation when excited by an external magnetic field, but its behavior is characterized by an asymmetric and saturated hysteresis. Thus, two models are exploited in this work to represent such a non-linear behavior, i.e., the modified and generalized Prandtl-Ishlinskii models. These models are particularly suitable for control purposes due to the existence of their analytical inversion that can be easily exploited in real time control systems. To this aim, this paper investigates three closed-loop control strategies, namely a classical PID regulator, a PID regulator with direct hysteresis compensation, and a combined PID and feedforward compensation strategy. The effectiveness of both modelling and control strategies applied to the designed MSMA-based actuator is illustrated by means of experimental results.

  20. Temperature dependence of the giant magnetostrain in a NiMnGa magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Jiang, Chengbao; Wang, Jingmin; Xu, Huibin

    2005-06-01

    The temperature dependence of the magnetostrain was investigated in the Ni50Mn27.5Ga22.5 magnetic shape memory alloy with a five-layer martensitic (5M) structure in the temperature range from 110Kto300K. A temperature threshold at 166K was found for the magnetostrain. A giant magnetostrain of 6.3% was achieved above the temperature, while no magnetostrain was monitored below the temperature. No intermartensitic transformation was detected around the temperature threshold. The lattice parameter a slightly increases, c largely decreases, and the tetragonality (a/c-1) drastically increases with decreasing the temperature. The increase of the tetragonality is thought to be related to the temperature threshold of the magnetostrain by inducing a change of the electronic structure, twin structure, or the type of the variant with the same 5M martensitic structure below the temperature threshold. The interpretation is reasonably understood by the fact that only few samples with the same 5M martensitic structure exhibit a giant magnetostrain.

  1. Structural and dynamical fluctuations in off-stoichiometric NiMnGa shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Barabash, R. I.; Barabash, O. M.; Karapetrova, E. A.; Manley, M. E.

    2014-06-01

    Measurements and modeling of the 3D diffuse scattering from off-stoichiometric NiMnGa shape memory alloys reveal evidence of structural and dynamical precursors to the phase transition. A model of the diffuse scattering in the high temperature cubic L21 phase indicates that at temperatures tens of degrees higher than transition temperature, Tc, the lattice exhibits tetragonally distorted local regions that are clear precursors to the phase transition. The model also accounts for lattice deformation caused by precursor nanoregions of the martensite phase and thermal scattering from phonons and agrees well with the observed diffuse scattering maps in reciprocal space. A distinctive feature of the diffuse scattering is that it is highly anisotropic: Around (H0H) reflections, the diffuse scattering is strongly compressed along the [H0H] and enhanced along the [-H0H] direction. Additionally, localized intensity maxima associated with phasons are observed at temperatures 30-50 K above Tc. They clearly demonstrate that each phason corresponds to an individual point in reciprocal space, which is consistent with dynamical phase fluctuations of a well-formed charge density wave resulting from Peierls instability.

  2. Rearrangement of twin variants in ferromagnetic shape memory alloy polyurethane composites studied by stroboscopic neutron diffraction

    NASA Astrophysics Data System (ADS)

    Feuchtwanger, J.; Lázpita, P.; Vidal, N.; Barandiaran, J. M.; Gutiérrez, J.; Hansen, T.; Peel, M.; Mondelli, C.; O'Handley, R. C.; Allen, S. M.

    2008-03-01

    The use of ferromagnetic shape memory alloy (FSMA) particles as fillers in polymeric matrix composites has been proposed for vibration damping. The large pseudo-plastic recoverable deformation of the FSMA particles due to the rearrangement of twin variants can dissipate a large amount of energy, both under compression and tension. The composites studied are made by mixing particles of NiMnGa with a polyurethane matrix. A magnetic field is applied to the composite while the matrix sets, to achieve a strong [112] texture in the field direction. In situ strobed neutron diffraction measurements were carried out while the composites were subjected to a cyclic deformation. They show that the intensity of certain peaks varies during the deformation cycle. All the peaks that show this behavior can be grouped into pairs that stem from a single austenitic peak. The (020) and (112) martensite peaks correspond to the splitting of the (220) austenite peak, and the intensity of one increases as that of the other decreases. The neutron measurements show directly that there is a change in the texture of the composite during the stress cycle applied to the composite and confirm that the large mechanical loss observed in the stress-strain cycles is in good part due to the rearrangement of twin variants in the FSMA filler used in the composites.

  3. Novel far infrared imaging sensor based on the use of titanium-nickel shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ho, Ho-Pui; Chung, Jonathan C. Y.; Ng, Ki-Cheong; Cheng, K. L.; Wu, Shu-Yuen

    2002-11-01

    In this paper we describe a novel imaging sensor design1 that uses the thermo-mechanical properties of nickel-titanium (NiTi) shape memory alloys (SMAs) for detecting far infrared radiation (FIR). A thin NiTi SMA cantilever is coated with a FIR absorbing layer on one surface, while the other is coated with a highly reflecting metallic layers such as gold. Upon absorption of FIR, the temperature of the cantilever changes. This causes the tilt angle of the cantilever to change as well. The deflection is very large if the temperature change coincides with the temperature range of the phase transformation of the NiTi SMA. The detection of the mechanical movements in the cantilever is achieved by illuminating the reflective side using a visible laser beam. A Michelson interferometer is used to covert the reflected light into optical modulation. In doing this, very small displacement in the cantilever can be visualized as laser intensity variation. A single element device has been fabricated for this purpose and our initial experimental results have demonstrated the successful detection of FIR. An estimation of angular deflection per unit change of temperature suggests that our approach can offer sensitivity higher than the reported design based on the use of bi-material strips. We envisage that a two-dimensional array of such devices can lead to the possibility of realizing a practical low-cost infrared imaging device operating under room temperature conditions.

  4. Optimal design of a shape memory alloy actuated composite structure with iterative finite element analysis

    NASA Astrophysics Data System (ADS)

    Widdle, Richard D., Jr.; Grimshaw, Matthew T.; Shome, Moushumi

    2009-03-01

    A method is described for solving an inverse design problem to find the unassembled, stress-free component shapes of a structure thatis integrally actuated with shape memory alloy (SMA) actuators. Morphing and multifunctional structures are of interest in the aerospace industry becasue of the potential for improving structural and aerodynamic performance across multiple operating conditions. The focus of this work is on structures that are morphed with SMA flexural actuators. For the case where the geometry is known for unassembled components, assembly can be simulated to find the assembled shapes of the morphing structure. In the usual design case, however, only the desired shapes as assembled are known in multiple actuation states, and the corresponding unassembled shapes must be determined by an iterative solution process. An iterative finite element analysis approach to this problem is reported here. First an initial guess for the unassembled shapes is made and assembly is simulated with the finite element method. The resulting shapes are found for both SMA phases and compared with the desired shapes. A gradient-based optimization method is employed to update the initial geometry and iteration continues until the desired shapes are achieved. A simplified method of modeling the SMA material behavior is used for computational efficiently. It is found that this approach provides a practical way to solve the inverse design problem for structures that are integrally actuated with SMA material.

  5. Saddle-shaped, bistable morphing panel with shape memory alloy spring actuator

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Gu; Ryu, Junghyun; Lee, Hyeok; Cho, Maenghyo

    2014-07-01

    Bistable structures are attractive morphing components because they can transform from one stable state to another simply through the application of an external force or moment. Each stable state is preserved despite the absence of a continuous energy supply. However, its competency is quite limited because most bistable composites (unsymmetric laminated bistable composites) have limited equilibrium shape configurations after curing. Most of them are cylindrical in shape. In this paper, for the first time, we present a saddle-shaped bistable panel that can be used for various soft-morphing applications. The mechanics of the saddle-shaped, bistable panel are investigated using the Rayleigh-Ritz approximation. A simple analytical model is proposed to obtain saddle bistability and deformations. Finite element (FE) numerical analysis is also performed to validate the analytical model approach. The numerical FE analysis shows good correlation with simple analytical solutions. Furthermore, for practical, smart-structure applications of the saddle-shaped bistable panel, the FE method simulated a snap-through action induced by a shape memory alloy (SMA) spring actuator. A simple design criterion for the snap-through action of a saddle composite panel actuated by an SMA spring component is suggested, based on the FE analysis.

  6. Finite element analysis of the needle type applicator made of shape memory alloy.

    PubMed

    Yabuhara, T; Kato, K; Kanazawa, Y; Kubo, M; Takahashi, H; Uzuka, T; Fujii, Y

    2008-01-01

    In this paper, we propose a new heating method in which we use shape memory alloy (SMA) in a needle type applicator for brain tumor hyperthermia. In order to expand the heating area of a needle type applicator and to control the heating pattern for various sizes of tumors, some kinds of SMA needle type applicators were developed. To apply the proposed heating method safely to clinical hyperthermia, it is necessary to make appropriate thermal distribution to the region of the brain tumor. However, it is not easy to predict the three dimensional temperature distribution during the human brain tumor hyperthermia. Therefore, we estimated the temperature distribution inside the agar phantom by the finite element method (FEM). Here, first, the computer simulation results of temperature distributions under the different heating times are discussed. Second, a comparison of the heating properties obtained by using the needle type electrodes made of different shaped SMA is discussed. From these results, it is confirmed that the proposed heating method can expand the heating area and control the heating pattern for the various sizes of brain tumors.

  7. Pulse width modulation-based temperature tracking for feedback control of a shape memory alloy actuator

    PubMed Central

    Ayvali, Elif; Desai, Jaydev P.

    2013-01-01

    This work presents a temperature-feedback approach to control the radius of curvature of an arc-shaped shape memory alloy (SMA) wire. The nonlinear properties of the SMA such as phase transformation and its dependence on temperature and stress make SMA actuators difficult to control. Tracking a desired trajectory is more challenging than controlling just the position of the SMA actuator since the desired path is continuously changing. Consequently, tracking the desired strain directly or tracking the parameters such as temperature and electrical resistance that are related to strain with a model is a challenging task. Temperature-feedback is an attractive approach when direct measurement of strain is not practical. Pulse width modulation (PWM) is an effective method for SMA actuation and it can be used along with a compensator to control the temperature of the SMA. Using the constitutive model of the SMA, the desired temperature profile can be obtained for a given strain trajectory. A PWM-based nonlinear PID controller with a feed-forward heat transfer model is proposed to use temperature-feedback for tracking a desired temperature trajectory. The proposed controller is used during the heating phase of the SMA actuator. The controller proves to be effective in tracking step-wise and continuous trajectories. PMID:24791130

  8. Standardization of shape memory alloy test methods toward certification of aerospace applications

    NASA Astrophysics Data System (ADS)

    Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.

    2015-08-01

    The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.

  9. An innovative seismic bracing system based on a superelastic shape memory alloy ring

    NASA Astrophysics Data System (ADS)

    Gao, Nan; Jeon, Jong-Su; Hodgson, Darel E.; DesRoches, Reginald

    2016-05-01

    Shape memory alloys (SMAs) have great potential in seismic applications because of their remarkable superelasticity. Seismic bracing systems based on SMAs can mitigate the damage caused by earthquakes. The current study investigates a bracing system based on an SMA ring which is capable of both re-centering and energy dissipation. This lateral force resisting system is a cross-braced system consisting of an SMA ring and four tension-only cable assemblies, which can be applied to both new construction and seismic retrofit. The performance of this bracing system is examined through a quasi-static cyclic loading test and finite element (FE) analysis. This paper describes the experimental design in detail, discusses the experimental results, compares the performance with other bracing systems based on SMAs, and presents an Abaqus FE model calibrated on the basis of experimental results to simulate the superelastic behavior of the SMA ring. The experimental results indicate that the seismic performance of this system is promising in terms of damping and re-centering. The FE model can be used in the simulation of building structures using the proposed bracing system.

  10. Experimental investigation of bond in concrete members reinforced with shape memory alloy bars

    NASA Astrophysics Data System (ADS)

    Daghash, S. M.; Sherif, M. M.; Ozbulut, O. E.

    2015-04-01

    Conventional seismic design of reinforced concrete structures relies on yielding of steel reinforcement to dissipate energy while undergoing residual deformations. Therefore, reinforced concrete structures subjected to strong earthquakes experience large permanent displacements and are prone to severe damage or collapse. Shape memory alloys (SMAs) have gained increasing acceptance in recent years for use in structural engineering due to its attractive properties such as high corrosion resistance, excellent re-centering ability, good energy dissipation capacity, and durability. SMAs can undergo large deformations in the range of 6-8% strain and return their original undeformed position upon unloading. Due to their appealing characteristics, SMAs have been considered as an alternative to traditional steel reinforcement in concrete structures to control permanent deformations. However, the behavior of SMAs in combination with concrete has yet to be explored. In particular, the bond strength is important to ensure the composite action between concrete and SMA reinforcements. This study investigates the bond behavior between SMA bars and concrete through pull-out tests. To explore the size effect on bond strength, the tests are performed using various diameters of SMA bars. For the same diameter, the tests are also conducted with different embedment length to assess the effect of embedment length on bond properties of SMA bars. To monitor the slippage of the SMA reinforcement, an optical Digital Image Correlation method is used and the bond-slip curves are obtained.

  11. Atomic and magnetic order in the shape memory alloy Mn2NiGa.

    PubMed

    Brown, P J; Kanomata, T; Neumann, K; Neumann, K U; Ouladdiaf, B; Sheikh, A; Ziebeck, K R A

    2010-12-22

    Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory alloy Mn(2)NiGa have confirmed that it is ferromagnetic with a Curie temperature above 500 K. The compound undergoes a broad structural phase transformation ΔT ∼ 90 K with a mean transition temperature T(M) ∼ 270 K. The high temperature parent phase is cubic (a = 5.937 Å) and has a modified L 2(1) structure. At 500 K the ordered magnetic moment essentially all on the 4a site is 1.35 μ(B)/Mn. The low temperature martensite has space group I4/mmm and is related to the cubic phase through a Bain transformation a(tet) = (a(cub) + b(cub))/2, b(tet) = (a(cub) - b(cub)) and c(tet) = c(cub) in which the change in cell volume is < 2.6%. In this structure at 5 K the ordered moment of ≈2.3 μ(B) is again found to be confined to the sites with full Mn occupation and is aligned parallel to c. Neutron diffraction patterns obtained at 5 K suggested the presence of a weak incommensurate antiferromagnetic phase characterized by either a ((1/3)0(1/3)) or (00(1/3)) propagation vector.

  12. Design of High Temperature Ti-Pd-Cr Shape Memory Alloys with Small Thermal Hysteresis.

    PubMed

    Xue, Deqing; Yuan, Ruihao; Zhou, Yumei; Xue, Dezhen; Lookman, Turab; Zhang, Guojun; Ding, Xiangdong; Sun, Jun

    2016-06-22

    The large thermal hysteresis (ΔT) during the temperature induced martensitic transformation is a major obstacle to the functional stability of shape memory alloys (SMAs), especially for high temperature applications. We propose a design strategy for finding SMAs with small thermal hysteresis. That is, a small ΔT can be achieved in the compositional crossover region between two different martensitic transformations with opposite positive and negative changes in electrical resistance at the transformation temperature. We demonstrate this for a high temperature ternary Ti-Pd-Cr SMA by achieving both a small ΔT and high transformation temperature. We propose two possible underlying physics governing the reduction in ΔT. One is that the interfacial strain is accommodated at the austenite/martensite interface via coexistence of B19 and 9R martensites. The other is that one of transformation eigenvalues equal to 1, i.e., λ2 = 1, indicating a perfect coherent interface between austenite and martensite. Our results are not limited to Ti-Pd-Cr SMAs but potentially provide a strategy for searching for SMAs with small thermal hysteresis.

  13. Carbon nanotube (CNT) fins for enhanced cooling of shape memory alloy wire

    NASA Astrophysics Data System (ADS)

    Pathak, Anupam; AuBuchon, Joseph; Brei, Diann; Shaw, John; Luntz, Jonathan; Jin, Sungho

    2008-03-01

    A commonly noted disadvantage of shape memory alloys is their frequency response which is limited by how fast the material can be cooled. This paper presents a feasibility study of using vertically aligned carbon nanotubes (CNT) as microscopic cooling fins to improve convective heat transfer. Using DC plasma enhanced chemical vapor deposition (PECVD), aligned CNT's were successfully grown directly on ½ of the surface of a 0.38 mm diameter SMA wire, achieving desirable thermal contact. Cooling speeds were measured with a thermal imaging camera, and the effective convective coefficient was extracted from the temperature profiles using a basic cooling model of the wire. From this model, the effective convective coefficient was estimated to have increased by 24% (from 50 W/m2K for untreated SMA wire to 62 W/m2K for the nanotube treated wire), indicating that the deposition of CNT's indeed increased performance. By extrapolating these results to full wire coverage, up to a 46% improvement in frequency response with zero weight or volumetric penalties is predicted. Further improvements in cooling performance are likely to occur with higher CNT densities and longer nanotube lengths, allowing further developments of this technology to benefit many future applications utilizing high-speed miniature/micro-scale SMA actuators.

  14. A stabilized, high stress self-biasing shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Panton, B.; Zhou, Y. N.; Khan, M. I.

    2016-09-01

    A shape memory alloy (SMA) actuator that is biased internally would not need an external bias to achieve multiple actuation cycles. This would reduce cost, complexity and weight compared to standard one-way SMAs. The self-biasing actuators that have been developed to date have a lack of geometric and actuation stability. The current study developed a self-biasing NiTi actuator using a laser based vaporization process to alter the bulk composition of different regions. The martensitic laser processed NiTi region was the actuator, and un-processed austenitic base metal region was the internal bias. It was discovered that the laser processed region of the self-biasing actuator was unstable during high stress thermomechanical cycling due to the coarse grained microstructure. Cold-working of the half martensitic and half austenitic component resulted in similar deformation characteristics to single phase NiTi, which enabled the formation of a uniform nanocrystalline microstructure in both regions. When thermomechanically cycled 6000 times under stresses ranging from 180 to 400 MPa, it was discovered that this treated self-biasing actuator exhibited the stabilization behavior of traditional one-way actuators. This behavior was due to the uniform nanocrystalline microstructure, which impeded dislocation activity and ensured minimal plastic deformation.

  15. Development and experimental evaluation of a novel annuloplasty ring with a shape memory alloy core

    NASA Astrophysics Data System (ADS)

    Purser, Molly Ferris

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring provides comparable mechanical properties as commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8 mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.508 mm diameter NiTi, which is maintained below its M s temperature (24°C) during deployment and suturing. After suturing, the stiffener is heated to its Af temperature (37°C, normal human body temperature) enabling the NiTi to retain its optimal geometry and stiffness characteristics indefinitely. The NiTi core is shape set in a furnace to the appropriate size and optimal geometry during fabrication. The ring is cooled in a saline bath prior to surgery, making it compliant and easy to manipulate. Evaluation of the ring included mechanical testing, robotic evaluation, static pressure testing, dynamic flow testing and fatigue testing. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted mitral valve repair.

  16. Design and analysis of eccentrically braced steel frames with vertical links using shape memory alloys

    NASA Astrophysics Data System (ADS)

    Massah, Saeed Reza; Dorvar, Hosein

    2014-10-01

    In recent years, the philosophy behind traditional methods by which structures were designed to withstand natural disasters has gone through major changes. Shape memory alloys (SMAs) are characterized by their superelastic behavior, which enables them to recover their original shape after experiencing large deformations. This characteristic provides an ideal reversibility capacity that can be used in the passive control of buildings exposed to earthquakes. This article has attempted to identify the effects of changing the hysteretic characteristics of SMA materials when they are used as passive control systems in eccentric bracing frames. By evaluating the numerical analysis results obtained from the modeling of an experimental sample and the modeling of the proposed EBF system, the accuracy of the above-stated notion was confirmed. Moreover, the results that pertain to the nonlinear pushover analysis, time-history dynamic analysis and seismic damage analysis of eccentric steel bracing frames of 4-, 9- and 14-story structures indicate that the use of SMA superelastic materials, in addition to effectively improving their ductility, stiffness and lateral strength, provides an excellent reversibility capacity, which considerably reduces both the maximum relative displacement and the residual deformation in the structure.

  17. Evolution of the martensitic transformation in shape memory alloys under high strain rates

    NASA Astrophysics Data System (ADS)

    Saletti, D.; Pattofatto, S.; Zhao, H.

    2010-06-01

    The specific properties of the shape memory alloys are mainly due to the martensitic transformation occuring in the material when mechanical or thermal loadings are applied. Here, the effect of strain rate on the transformation on an NiTi SMA is studied in tension. Different tests were performed at different strain rates in the range of 0,0001 /s to 15 /s. Two distinct methods were used to measure the extension rate of the martensitic phase region in the specimen: digital image correlation technique and infrared thermography (IR during quasi-static tensile tests only). For the dynamic tensile tests, a Split Hopkinson Tensile Bar set-up was used with a fast camera recording at 45’000 fps. A superimposition of DIC and IR measurements in time and space can be done during quasi-static tests and results show that the temperature peak, as expected, follows the transformation front. As a consequence of the former validation of the DIC procedure, the velocity of the transformation front at high strain rate is deduced from space-time figures. As a conclusion, in the range of strain rates investigated in this paper, no strain rate sensitivity is observed for dynamics of extension of the transformation region.

  18. Phenomenological 3D and 1D consistent models for shape-memory alloy materials

    NASA Astrophysics Data System (ADS)

    Evangelista, Veronica; Marfia, Sonia; Sacco, Elio

    2009-08-01

    The paper deals with the modeling and the development of a numerical procedure for the analysis of shape-memory alloy (SMA) elements in order to predict the main features of SMA devices. A 3D SMA model in the framework of small strain theory is developed starting from the thermo-mechanical model proposed by Souza et al. (Eur J Mech A/Solids 17:789-806, 1998) and modified by Auricchio and Petrini (Int J Numer Methods Eng 55:1255-1284, 2002). The aim of this paper is to propose some more modifications to the original model, to derive its consistent 1D formulation, to clarify the mechanical meaning of the material parameters governing the constitutive model. A robust time integration algorithm is developed in the framework of the finite element method and a new beam finite element is proposed. Some numerical applications and a comparison with experimental data available in literature are carried out in order to assess the ability of the proposed model to describe the SMA behavior.

  19. Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys

    NASA Astrophysics Data System (ADS)

    Asadi, H.; Akbarzadeh, A. H.; Chen, Z. T.; Aghdam, M. M.

    2015-04-01

    The present paper deals with the nonlinear thermal instability of geometrically imperfect sandwich cylindrical shells under uniform heating. The sandwich shells are made of a shape memory alloy (SMA)-fiber-reinforced composite and functionally graded (FG) face sheets (FG/SMA/FG). The Brinson phenomenological model is used to express the constitutive characteristics of SMA fibers. The governing equations are established within the framework of the third-order shear deformation shell theory by taking into account the von Karman geometrical nonlinearity and initial imperfection. The material properties of constituents are assumed to be temperature dependent. The Galerkin technique is utilized to derive expressions of the bifurcation points and bifurcation paths of the sandwich cylindrical shells. Using the developed closed-form solutions, extensive numerical results are presented to provide an insight into the influence of the SMA fiber volume fraction, SMA pre-strain, core thickness, non-homogeneity index, geometrical imperfection, geometry parameters of sandwich shells and temperature dependency of materials on the stability of shells. The results reveal that proper application of SMA fibers postpones the thermal bifurcation point and dramatically decreases thermal post-buckling deflection. Moreover, the induced tensile recovery stress of SMA fibers could also stabilize the geometrically imperfect shells during the inverse martensite phase transformation.

  20. A Novel Shape Memory Alloy Annuloplasty Ring for Minimally Invasive Surgery: Design, Fabrication, and Evaluation

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring has comparable mechanical properties to commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8-mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.50 mm diameter NiTi, which is maintained below its martensitic transition temperature (24 °C) during deployment and suturing. After suturing, the ring is heated above its austenitic transition temperature (37 °C, normal human body temperature) enabling the NiTi core to attain its optimal geometry and stiffness characteristics indefinitely. This article summarizes the design, fabrication, and evaluation of this prototype ring. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted minimally invasive mitral valve repair. PMID:20652747

  1. Design of an antagonistic shape memory alloy actuator for flap type control surfaces

    NASA Astrophysics Data System (ADS)

    Dönmez, Burcu; Özkan, Bülent

    2011-03-01

    This paper deals with the flap control of unmanned aerial vehicles (UAVs) using shape memory alloy (SMA) actuators in an antagonistic configuration. The use of SMA actuators has the advantage of significant weight and cost reduction over the conventional actuation of the UAV flaps by electric motors or hydraulic actuators. In antagonistic configuration, two SMA actuators are used: one to rotate the flap clockwise and the other to rotate the flap counterclockwise. In this content, mathematical modeling of strain and power dissipation of SMA wire is obtained through characterization tests. Afterwards, the model of the antagonistic flap mechanism is derived. Later, based on these models both flap angle and power dissipation of the SMA wire are controlled in two different loops employing proportional-integral type and neural network based control schemes. The angle commands are converted to power commands through the outer loop controller later, which are updated using the error in the flap angle induced because of the indirect control and external effects. In this study, power consumption of the wire is introduced as a new internal feedback variable. Constructed simulation models are run and performance specifications of the proposed control systems are investigated. Consequently, it is shown that proposed controllers perform well in terms of achieving small tracking errors.

  2. 35 Hz shape memory alloy actuator with bending-twisting mode

    PubMed Central

    Song, Sung-Hyuk; Lee, Jang-Yeob; Rodrigue, Hugo; Choi, Ik-Seong; Kang, Yeon June; Ahn, Sung-Hoon

    2016-01-01

    Shape Memory Alloy (SMA) materials are widely used as an actuating source for bending actuators due to their high power density. However, due to the slow actuation speed of SMAs, there are limitations in their range of possible applications. This paper proposes a smart soft composite (SSC) actuator capable of fast bending actuation with large deformations. To increase the actuation speed of SMA actuator, multiple thin SMA wires are used to increase the heat dissipation for faster cooling. The actuation characteristics of the actuator at different frequencies are measured with different actuator lengths and results show that resonance can be used to realize large deformations up to 35 Hz. The actuation characteristics of the actuator can be modified by changing the design of the layered reinforcement structure embedded in the actuator, thus the natural frequency and length of an actuator can be optimized for a specific actuation speed. A model is used to compare with the experimental results of actuators with different layered reinforcement structure designs. Also, a bend-twist coupled motion using an anisotropic layered reinforcement structure at a speed of 10 Hz is also realized. By increasing their range of actuation characteristics, the proposed actuator extends the range of application of SMA bending actuators. PMID:26892438

  3. Composition-structure-function diagrams of Ti-Ni-Au thin film shape memory alloys.

    PubMed

    Buenconsejo, Pio John S; Ludwig, Alfred

    2014-12-01

    Ti-Ni-Au thin film materials libraries were prepared from multilayer precursors by combinatorial sputtering. The materials libraries were annealed at 500, 600, and 700 °C for 1 h and then characterized by high-throughput methods to investigate the relations between composition, structure and functional properties. The identified relations were visualized in functional phase diagrams. The goal is to identify composition regions that are suitable as high temperature shape memory alloys. Phase transforming compositions were identified by electrical resistance measured during thermal cycles in the range of -20 and 250 °C. Three phase transformation paths were confirmed: (1) B2-R, (2) B2-R-B19', and (3) B2-B19. For the materials library annealed at 500 °C only the B2-R transformation was observed. For the materials libraries annealed at 600 and 700 °C, all transformation paths were observed. High transformation temperatures (M(s) ≈ 100 °C) were only obtained by annealing at 600 or 700 °C, and with compositions of Ti ≈ 50 at. % and Au > 20 at. %. This is the composition range that undergoes B2-B19 transformation. The phase transformation behaviors were explained according to the compositional and annealing temperature dependence of phase/structure formation, as revealed by X-ray diffraction analysis of the materials libraries.

  4. Deformation of the UI-14at%Nb shape memory alloy: experiments and modeling

    SciTech Connect

    Field, Robert D; Tome, Carlos N; Mc Cabe, Rodney J; Clarke, Amy J; Brown, Donald W; Tupper, Catherine N

    2010-12-22

    U-14at%Nb is a shape memory effect (SME) alloy that undergoes deformation by the motion of complex twins and twin related lath boundaries up to the limit of SME deformation ({approx}7%). All of the twins present in the as-transformed martensite and active during SME deformation are derived from those of the orthorhombic alpha-U phase, modified for the monoclinic distortion of the alpha martensite phase. In the SME regime a simple Bain strain model qualitatively predicts variant selection, texture development in polycrystalline samples, and stress-strain behavior as a function of parent phase orientation in single crystal micropillars. In the post-SME regime, unrecoverable deformation occurs by a combination of slip and twinning, with the first few percent of strain in tension apparently governed by a twin species specifically associated with the monoclinic distortion (i.e. not present in the orthorhombic alpha-U phase). The situation in compression is more complicated, with a combination of slip and twinning systems believed responsible for deformation. A review of the Bain strain model for SME deformation will be presented in conjunction with experimental data. In addition, results from modeling of post-SME behavior using the Visco-Plastic Self-Consistent (VPSC) model will be compared to experimental texture measurements.

  5. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material. PMID:25746282

  6. Modeling of thermo-mechanical fatigue and damage in shape memory alloy axial actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert W.; Hartl, Darren J.; Chemisky, Yves; Lagoudas, Dimitris C.

    2015-04-01

    The aerospace, automotive, and energy industries have seen the potential benefits of using shape memory alloys (SMAs) as solid state actuators. Thus far, however, these actuators are generally limited to non-critical components or over-designed due to a lack of understanding regarding how SMAs undergo thermomechanical or actuation fatigue and the inability to accurately predict failure in an actuator during use. The purpose of this study was to characterize the actuation fatigue response of Nickel-Titanium-Hafnium (NiTiHf) axial actuators and, in turn, use this characterization to predict failure and monitor damage in dogbone actuators undergoing various thermomechanical loading paths. Calibration data was collected from constant load, full cycle tests ranging from 200-600MPa. Subsequently, actuator lifetimes were predicted for four additional loading paths. These loading paths consisted of linearly varying load with full transformation (300-500MPa) and step loads which transition from zero stress to 300-400MPa at various martensitic volume fractions. Thermal cycling was achieved via resistive heating and convective cooling and was controlled via a state machine developed in LabVIEW. A previously developed fatigue damage model, which is formulated such that the damage accumulation rate is general in terms of its dependence on current and local stress and actuation strain states, was utilized. This form allows the model to be utilized for specimens undergoing complex loading paths. Agreement between experiments and simulations is discussed.

  7. Computational design of multifunctional composites made of shape memory alloys and fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Senf, Björn; Eppler, Christoph; Bucht, André; Navarro y de Sosa, Iñaki; Kunze, Holger

    2013-04-01

    Shape memory alloys (SMA) like Nickel-Titanium possess a very high mechanical energy density in relation to conventional drives. Fiber reinforced plastics (FRP) will be increasingly applied to create lightweight structures. Combining both innovative materials will evolve synergy effects. Due to functional integration of SMA sheets into a base of FRP it is possible to realize adaptive composites for resource-efficient constructions as for instance flaps or spoilers on cars. For this purpose the interaction between SMA as an actuator and FRP as a return spring need to be designed in a suitable way. The computation of such structures is complex because of its non-linear (SMA) and anisotropic (FRP) mechanical behavior. Therefore, a structural simulation model based on the finite element method was developed by means of the software ANSYS. Based on that simulation model it is possible to determine proper geometrical parameters for a composite made of SMA and FRP to perform a certain mechanism. The material properties of SMA or FRP could also be varied to investigate their influence. For exemplary components it could be shown that the stress-strain behavior is computable.

  8. Dynamic fast terminal sliding mode control of a shape memory alloy actuated system

    NASA Astrophysics Data System (ADS)

    Marathe, Meeshawn S.; Srinivasan, S. M.

    2016-04-01

    In this paper we address the chattering phenomenon which is a common drawback associated with the normal Sliding Mode Control (SMC) law for a basic shape memory alloy (SMA) actuated system. A new method has been proposed to counter this effect by combining the concepts of Fast Terminal SMC and Dynamic controller. A phenomenological model is developed for the SMA which incorporates a piecewise linear hysteresis behavior. This model is used for both open loop as well as closed loop simulations for a linear motion control system. Based on this model, a dynamic terminal sliding mode control law is derived and applied to the system. A normal SMC law with saturation function which is known to reduce chattering is compared with the proposed control law for its effectiveness to curb the issue of chattering versus its ability to faithfully track a desired trajectory. Numerical Simulations indicate that the proposed law is able to reduce the chattering effect sufficiently and at par with the control technique involving saturation function.

  9. The effect of doped elements on the martensitic transformation in Ni Mn Ga magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Guo, Shihai; Zhang, Yanghuan; Quan, Baiyun; Li, Jianliang; Qi, Yan; Wang, Xinlin

    2005-10-01

    Ni-Mn-Ga alloy is a new actuator material due to the fact that its shape memory effect can be controlled by magnetic field in addition to the conventional controls by temperature and stress. However, the alloy shows relatively low martensitic transformation and Curie temperatures. In this paper, we report the results of adding small amounts of Fe, Co and Tb to NiMnGa alloys. The effect of small additions of these doped elements on the martensitic transformation temperature is remarkable, but the Heusler structure of the alloys remains unchanged. For Ni50Mn27Ga23-xFex (x = 0,1,2) with partial replacement of Ga by Fe, the martensitic transformation temperatures increase with increase of the Fe content, and so does the Curie temperature. This phenomenon of increasing both the martensitic transformation temperatures and the Curie temperature was found for the first time. For Ni47Mn31X1Ga21 (X = Fe,Co), Fe and Co substitution for Mn, Fe increases the martensitic transformation temperature but decreases the Curie temperature, while Co has the opposite effect. For Ni48Mn33Ga18Tb1, the addition of the rare earth element Tb decreases the martensitic transformation temperature and the Curie temperature remarkably. Therefore, the transformation temperatures of the alloys can be improved by these doping methods.

  10. Remarkable Improvement of Shape-Memory Effect in a Co-31Ni-3Si Alloy by Ausforming

    NASA Astrophysics Data System (ADS)

    Sun, Jiangwei; Wang, Shanling; Yan, Zhiwei; Peng, Huabei; Wen, Yuhua

    2015-04-01

    In order to improve the shape-memory effect (SME) in Co-Ni alloys, the influence of ausforming temperature on the SME, microstructures, and mechanical behavior in a Co-31Ni-3Si alloy was studied. The results show that the ausforming at 1073 K (800 °C) could remarkably improve the SME in Co-31Ni-3Si alloy. A large recovery strain of 2.3 pct was obtained after bent by 3.7 pct at 77 K (-196 °C). The increase of yield strength and the decrease of the critical stress for the stress-induced gamma to epsilon martensitc transformation are responsible for the remarkable improvement of SME. The results indirectly showed that the SME in Co-Ni alloys results from the stress-induced gamma to epsilon martensitic transformation, and their low yield strength account for their poor SME. It can be expected that the strengthening of matrix by other methods, such as solution, dispersion, and grain refinement hardening, will improve the SME of Co-Ni alloys.

  11. Intracranial electrode implantation produces regional neuroinflammation and memory deficits in rats

    SciTech Connect

    Kuttner-Hirshler, Y.; Biegon, A.; Kuttner-Hirshler, Y.; Polat, U.; Biegon, A.

    2009-12-21

    Deep brain stimulation (DBS) is an established treatment for advanced Parkinson's disease (PD). The procedure entails intracranial implantation of an electrode in a specific brain structure followed by chronic stimulation. Although the beneficial effects of DBS on motor symptoms in PD are well known, it is often accompanied by cognitive impairments, the origin of which is not fully understood. To explore the possible contribution of the surgical procedure itself, we studied the effect of electrode implantation in the subthalamic nucleus (STN) on regional neuroinflammation and memory function in rats implanted bilaterally with stainless steel electrodes. Age-matched sham and intact rats were used as controls. Brains were removed 1 or 8 weeks post-implantation and processed for in vitro autoradiography with [(3)H]PK11195, an established marker of microglial activation. Memory function was assessed by the novel object recognition test (ORT) before surgery and 2 and 8 weeks after surgery. Electrode implantation produced region-dependent changes in ligand binding density in the implanted brains at 1 as well as 8 weeks post-implantation. Cortical regions showed more intense and widespread neuroinflammation than striatal or thalamic structures. Furthermore, implanted animals showed deficits in ORT performance 2 and 8 weeks post-implantation. Thus, electrode implantation resulted in a widespread and persistent neuroinflammation and sustained memory impairment. These results suggest that the insertion and continued presence of electrodes in the brain, even without stimulation, may lead to inflammation-mediated cognitive deficits in susceptible individuals, as observed in patients treated with DBS.

  12. Apolipoprotein E4 produced in GABAergic interneurons causes learning and memory deficits in mice.

    PubMed

    Knoferle, Johanna; Yoon, Seo Yeon; Walker, David; Leung, Laura; Gillespie, Anna K; Tong, Leslie M; Bien-Ly, Nga; Huang, Yadong

    2014-10-15

    Apolipoprotein (apo) E4 is expressed in many types of brain cells, is associated with age-dependent decline of learning and memory in humans, and is the major genetic risk factor for AD. To determine whether the detrimental effects of apoE4 depend on its cellular sources, we generated human apoE knock-in mouse models in which the human APOE gene is conditionally deleted in astrocytes, neurons, or GABAergic interneurons. Here we report that deletion of apoE4 in astrocytes does not protect aged mice from apoE4-induced GABAergic interneuron loss and learning and memory deficits. In contrast, deletion of apoE4 in neurons does protect aged mice from both deficits. Furthermore, deletion of apoE4 in GABAergic interneurons is sufficient to gain similar protection. This study demonstrates a detrimental effect of endogenously produced apoE4 on GABAergic interneurons that leads to learning and memory deficits in mice and provides a novel target for drug development for AD related to apoE4.

  13. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  14. Effect of aging on the phase transformation and mechanical behavior of Ti{sub 36}Ni{sub 49}Hf{sub 15} high temperature shape memory alloy

    SciTech Connect

    Meng, X.L.; Zheng, Y.F.; Wang, Z.; Zhao, L.C.

    2000-01-31

    The TiNiHf alloys are newly developed as high temperature shape memory alloys with the high transformation temperatures and with lower cost in comparison with TiNiX (X = Pd, Pt) alloys. Until now, no results about the effects of aging at high temperature (above 953K) in the TiNiHf alloys are reported. The purpose of the present work is to investigate the microstructure, transformation temperature, mechanical properties and shape memory effects (SMEs) for Ti{sub 36}Ni{sub 49}Hf{sub 15} alloy aged at 973K for different hours by transmission electron microscopy (TEM), X-ray diffraction (XRD) techniques, electrical resistance-temperature measurement, bending and tensile tests.

  15. Influence of Test Procedures on the Thermomechanical Properties of a 55NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II; Gaydosh, Darrell J.; Noebe, Ronald D.; Bigelow, Glen S.; Garg, Anita; Lagoudas, Dimitris; Karaman, Ibrahim; Atli, Kadri C.

    2008-01-01

    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA s are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cu cm (290 in!lbf/cu in). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and

  16. Processing and microstructural characterization of Al-Cu alloys produced from rapidly solidified powders

    SciTech Connect

    Conlon, K.T.; Maire, E.; Wilkinson, D.S.; Henein, H.

    2000-01-01

    This paper concerns the processing of Al-Cu alloys via a novel powder-metallurgy route. The specific technique used for powder processing involves the rapid solidification of coarse, molten droplets following impulse atomization. This produces a fine, homogeneous, dendritic microstructure within the alloy granules. Following consolidation via hot pressing, the microstructure consists mostly of an Al matrix with fine CuAl{sub 2} particles and partially recrystallized dendrites. Further heat treatment and/or thermomechanical processing completes the spheroidization process in the CuAl{sub 2} phase. Blending powders with different Cu has been used to make materials with a bimodal distribution of the local particle-volume-fraction content. The high temperature (773 K) strength of these materials decreases with increasing CuAl{sub 2} content. This can be explained using a flow model based on superplastic deformation, controlled by diffusion-accommodated sliding at Al grain boundaries. This mechanism may also explain the deformation-enhanced particle coarsening observed during channel-die forging operations.

  17. Structural, thermal, and photoacoustic study of nanocrystalline Cr{sub 3}Ge produced by mechanical alloying

    SciTech Connect

    Prates, P. B.; Maliska, A. M.; Ferreira, A. S.; Borges, Z. V.; Lima, J. C. de

    2015-10-21

    A thermodynamic analysis of the Cr-Ge system suggested that it was possible to produce a nanostructured Cr{sub 3}Ge phase by mechanical alloying. The same analysis showed that, due to low activation energies, Cr-poor crystalline and/or amorphous alloy could also be formed. In fact, when the experiment was performed, Cr{sub 11}Ge{sub 19} and amorphous phases were present for small milling times. For milling times larger than 15 h these additional phases decomposed and only the nanostructured Cr{sub 3}Ge phase remained up to the highest milling time used (32 h). From the differential scanning calorimetry measurements, the Avrami exponent n was obtained, indicating that the nucleation and growth of the nanostructured Cr{sub 3}Ge phase may be restricted to one or two dimensions, where the Cr and Ge atoms diffuse along the surface and grain boundaries. In addition, contributions from three-dimensional diffusion with a constant nucleation rate may be present. The thermal diffusivity of the nanostructured Cr{sub 3}Ge phase was determined by photoacoustic absorption spectroscopy measurements.

  18. Microstructure and mechanical behavior of ODS and non-ODS Fe-14Cr model alloys produced by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Auger, M. A.; de Castro, V.; Leguey, T.; Muñoz, A.; Pareja, R.

    2013-05-01

    In this work the spark plasma sintering (SPS) technique has been explored as an alternative consolidation route for producing ultra-fine grained Fe-14Cr model alloys containing a dispersion of oxide nanoparticles. Elemental powders of Fe and Cr, and nanosized Y2O3 powder have been mechanically alloyed in a planetary ball mill and rapidly sintered in a spark plasma furnace. Two alloys, with nominal compositions Fe-14%Cr and Fe-14%Cr-0.3%Y2O3 (wt.%), have been fabricated and their microstructure and mechanical properties investigated. The results have been compared with those obtained for other powder metallurgy processed alloys of the same composition but consolidated by hot isostatic pressing. The SPS technique under the present conditions has produced Fe-14Cr materials that apparently exhibit different microstructures yielding inferior mechanical properties than the counterpart material consolidated by hot isostatic pressing. Although the presence of a dispersion of Y-rich particles is evident, the oxide dispersion strengthened (ODS) Fe-14Cr alloy consolidated by SPS exhibits poor tensile properties. The extensive decoration of the powder particle surfaces with Cr-rich precipitates and the residual porosity appear to be responsible for the impaired properties of this ODS alloy consolidated by SPS.

  19. Glass forming ability and thermodynamic properties of Ti(Zr,Hf)NiCu shape memory alloys

    NASA Astrophysics Data System (ADS)

    Pasko, A.; Kolomytsev, V.; Babanly, M.; Sezonenko, A.; Ochin, P.; Portier, R.; Vermaut, Ph.

    2003-10-01

    Rapidly solidified amorphous and crystalline-amorphous ribbons have been produced from a number of quatemary Ti{50+z-x}(Zr,Hf){ x}Ni{50- z-y}Cu{ y} alloys where z =(-5, 0, 5). Structural states were checked by XRD, crystallization behaviour of amorphous phase and martensitic transformations in crystalline material were studied by DSC. The glass transition and crystallization temperatures have been measured at different heating rates, and the crystallization activation energy for each composition and heat event bas been calculated. Isothermal crystallization gives an alternative method of determining the activation energy according to the Arrhenius equation. Contradictory requirements for the conditions of martensitic transformation and good glass forming ability is discussed.

  20. Metastable alloy materials produced by solid state reaction of compacted, mechanically deformed mixtures

    DOEpatents

    Atzmon, M.; Johnson, W.L.; Verhoeven, J.D.

    1987-02-03

    Bulk metastable, amorphous or fine crystalline alloy materials are produced by reacting cold-worked, mechanically deformed filamentary precursors such as metal powder mixtures or intercalated metal foils. Cold-working consolidates the metals, increases the interfacial area, lowers the free energy for reaction, and reduces at least one characteristic dimension of the metals. For example, the grains of powder or the sheets of foil are clad in a container to form a disc. The disc is cold-rolled between the nip of rollers to form a flattened disc. The grains are further elongated by further rolling to form a very thin sheet of a lamellar filamentary structure containing filaments having a thickness of less than 0.01 microns. Thus, diffusion distance and time for reaction are substantially reduced when the flattened foil is thermally treated in oven to form a composite sheet containing metastable material dispersed in unreacted polycrystalline material. 4 figs.