ERIC Educational Resources Information Center
Mousavi, Shima; Radmehr, Farzad; Alamolhodaei, Hasan
2012-01-01
Introduction: The main objective of this study is (a) to investigate whether cognitive styles and working memory capacity could predict mathematical performance and which variable is relatively most important in predicting mathematical performance and b) to explore whether cognitive styles and working memory capacity could predict mathematical…
Triebel, Kristen L; Novack, Thomas A; Kennedy, Richard; Martin, Roy C; Dreer, Laura E; Raman, Rema; Marson, Daniel C
2016-01-01
To identify neurocognitive predictors of medical decision-making capacity (MDC) in participants with mild and moderate/severe traumatic brain injury (TBI). Academic medical center. Sixty adult controls and 104 adults with TBI (49 mild, 55 moderate/severe) evaluated within 6 weeks of injury. Prospective cross-sectional study. Participants completed the Capacity to Consent to Treatment Instrument to assess MDC and a neuropsychological test battery. We used factor analysis to reduce the battery test measures into 4 cognitive composite scores (verbal memory, verbal fluency, academic skills, and processing speed/executive function). We identified cognitive predictors of the 3 most clinically relevant Capacity to Consent to Treatment Instrument consent standards (appreciation, reasoning, and understanding). In controls, academic skills (word reading, arithmetic) and verbal memory predicted understanding; verbal fluency predicted reasoning; and no predictors emerged for appreciation. In the mild TBI group, verbal memory predicted understanding and reasoning, whereas academic skills predicted appreciation. In the moderate/severe TBI group, verbal memory and academic skills predicted understanding; academic skills predicted reasoning; and academic skills and verbal fluency predicted appreciation. Verbal memory was a predictor of MDC in controls and persons with mild and moderate/severe TBI. In clinical practice, impaired verbal memory could serve as a "red flag" for diminished consent capacity in persons with recent TBI.
Working memory capacity predicts listwise directed forgetting in adults and children.
Aslan, Alp; Zellner, Martina; Bäuml, Karl-Heinz T
2010-05-01
In listwise directed forgetting, participants are cued to forget previously studied material and to learn new material instead. Such cueing typically leads to forgetting of the first set of material and to memory enhancement of the second. The present study examined the role of working memory capacity in adults' and children's listwise directed forgetting. Working memory capacity was assessed with complex span tasks. In Experiment 1 working memory capacity predicted young adults' directed-forgetting performance, demonstrating a positive relationship between working memory capacity and each of the two directed-forgetting effects. In Experiment 2 we replicated the finding with a sample of first and a sample of fourth-grade children, and additionally showed that working memory capacity can account for age-related increases in directed-forgetting efficiency between the two age groups. Following the view that directed forgetting is mediated by inhibition of the first encoded list, the results support the proposal of a close link between working memory capacity and inhibitory function.
LeMoult, Joelle; Carver, Charles S; Johnson, Sheri L; Joormann, Jutta
2015-03-01
Studies on depression risk emphasize the importance of both cognitive and genetic vulnerability factors. The present study has provided the first examination of whether working memory capacity, the BDNF Val66Met polymorphism, and their interaction predict changes in symptoms of depression during the transition to university. Early in the semester, students completed a self-report measure of depressive symptoms and a modified version of the reading span task to assess working memory capacity in the presence of both neutral and negative distractors. Whole blood was genotyped for the BDNF Val66Met polymorphism. Students returned at the end of the semester to complete additional self-report questionnaires. Neither working memory capacity nor the BDNF Val66Met polymorphism predicted change in depressive symptoms either independently or in interaction with self-reported semester difficulty. The BDNF Val66Met polymorphism, however, moderated the association between working memory capacity and symptom change. Among met carriers, lower working memory capacity in the presence of negative-but not neutral-distractors was associated with increased symptoms of depression over the semester. For the val/val group, working memory capacity did not predict symptom change. These findings contribute directly to biological and cognitive models of depression and highlight the importance of examining Gene × Cognition interactions when investigating risk for depression.
Sohn, Young Woo; Doane, Stephanie M
2004-01-01
This research examined the role of working memory (WM) capacity and long-term working memory (LT-WM) in flight situation awareness (SA). We developed spatial and verbal measures of WM capacity and LT-WM skill and then determined the ability of these measures to predict pilot performance on SA tasks. Although both spatial measures of WM capacity and LT-WM skills were important predictors of SA performance, their importance varied as a function of pilot expertise. Spatial WM capacity was most predictive of SA performance for novices, whereas spatial LT-WM skill based on configurations of control flight elements (attitude and power) was most predictive for experts. Furthermore, evidence for an interactive role of WM and LT-WM mechanisms was indicated. Actual or potential applications of this research include cognitive analysis of pilot expertise and aviation training.
Spatial working memory capacity predicts bias in estimates of location.
Crawford, L Elizabeth; Landy, David; Salthouse, Timothy A
2016-09-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals' data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Spatial Working Memory Capacity Predicts Bias in Estimates of Location
Crawford, L. Elizabeth; Landy, David H.; Salthouse, Timothy A.
2016-01-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intra-individual stability and inter-individual variation in these patterns of bias. In the current work we align recent empirical and theoretical work on working memory capacity limits and spatial memory bias to generate the prediction that those with lower working memory capacity will show greater bias in memory of the location of a single item. Reanalyzing data from a large study of cognitive aging, we find support for this prediction. Fitting separate models to individuals’ data revealed a surprising variety of strategies. Some were consistent with Bayesian models of spatial category use, however roughly half of participants biased estimates outward in a way not predicted by current models and others seemed to combine these strategies. These analyses highlight the importance of studying individuals when developing general models of cognition. PMID:26900708
Working memory capacity and the spacing effect in cued recall.
Delaney, Peter F; Godbole, Namrata R; Holden, Latasha R; Chang, Yoojin
2018-07-01
Spacing repetitions typically improves memory (the spacing effect). In three cued recall experiments, we explored the relationship between working memory capacity and the spacing effect. People with higher working memory capacity are more accurate on memory tasks that require retrieval relative to people with lower working memory capacity. The experiments used different retention intervals and lags between repetitions, but were otherwise similar. Working memory capacity and spacing of repetitions both improved memory in most of conditions, but they did not interact, suggesting additive effects. The results are consistent with the ACT-R model's predictions, and with a study-phase recognition process underpinning the spacing effect in cued recall.
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2012-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars presented from each category. At test, observers indicated which of 2 exemplars they had previously studied. Memory performance was high and remained quite high (82% accuracy) with 16 exemplars from a category in memory, demonstrating a large memory capacity for object exemplars. However, memory performance decreased as more exemplars were held in memory, implying systematic categorical interference. Object categories with conceptually distinctive exemplars showed less interference in memory as the number of exemplars increased. Interference in memory was not predicted by the perceptual distinctiveness of exemplars from an object category, though these perceptual measures predicted visual search rates for an object target among exemplars. These data provide evidence that observers’ capacity to remember visual information in long-term memory depends more on conceptual structure than perceptual distinctiveness. PMID:20677899
Human short-term spatial memory: precision predicts capacity.
Banta Lavenex, Pamela; Boujon, Valérie; Ndarugendamwo, Angélique; Lavenex, Pierre
2015-03-01
Here, we aimed to determine the capacity of human short-term memory for allocentric spatial information in a real-world setting. Young adults were tested on their ability to learn, on a trial-unique basis, and remember over a 1-min interval the location(s) of 1, 3, 5, or 7 illuminating pads, among 23 pads distributed in a 4m×4m arena surrounded by curtains on three sides. Participants had to walk to and touch the pads with their foot to illuminate the goal locations. In contrast to the predictions from classical slot models of working memory capacity limited to a fixed number of items, i.e., Miller's magical number 7 or Cowan's magical number 4, we found that the number of visited locations to find the goals was consistently about 1.6 times the number of goals, whereas the number of correct choices before erring and the number of errorless trials varied with memory load even when memory load was below the hypothetical memory capacity. In contrast to resource models of visual working memory, we found no evidence that memory resources were evenly distributed among unlimited numbers of items to be remembered. Instead, we found that memory for even one individual location was imprecise, and that memory performance for one location could be used to predict memory performance for multiple locations. Our findings are consistent with a theoretical model suggesting that the precision of the memory for individual locations might determine the capacity of human short-term memory for spatial information. Copyright © 2015 Elsevier Inc. All rights reserved.
The relationship between sustained inattentional blindness and working memory capacity.
Beanland, Vanessa; Chan, Esther Hiu Chung
2016-04-01
Inattentional blindness, whereby observers fail to detect unexpected stimuli, has been robustly demonstrated in a range of situations. Originally research focused primarily on how stimulus characteristics and task demands affect inattentional blindness, but increasingly studies are exploring the influence of observer characteristics on the detection of unexpected stimuli. It has been proposed that individual differences in working memory capacity predict inattentional blindness, on the assumption that higher working memory capacity confers greater attentional capacity for processing unexpected stimuli. Unfortunately, empirical investigations of the association between inattentional blindness and working memory capacity have produced conflicting findings. To help clarify this relationship, we examined the relationship between inattentional blindness and working memory capacity in two samples (Ns = 195, 147) of young adults. We used three common variants of sustained inattentional blindness tasks, systematically manipulating the salience of the unexpected stimulus and primary task practice. Working memory capacity, measured by automated operation span (both Experiments 1 & 2) and N-back (Experiment 1 only) tasks, did not predict detection of the unexpected stimulus in any of the inattentional blindness tasks tested. Together with previous research, this undermines claims that there is a robust relationship between inattentional blindness and working memory capacity. Rather, it appears that any relationship between inattentional blindness and working memory is either too small to have practical significance or is moderated by other factors and consequently varies with attributes such as the sample characteristics within a given study.
Palmer, Barton W.; Ryan, Kerry A.; Kim, H. Myra; Karlawish, Jason H.; Appelbaum, Paul S.; Kim, Scott Y. H.
2011-01-01
Objectives To explore the neuropsychological correlates of the capacity to consent to research and to appoint a research proxy among persons with Alzheimer’s disease. Design, Setting, and Participants Interview study of 77 persons with Alzheimer’s disease recruited through an Alzheimer’s disease research center and a memory disorder clinic. Measurements The capacity to consent to two research scenarios (a drug randomized clinical trial and a neurosurgical clinical trial) and the capacity to appoint a research proxy were determined by five experienced consultation psychiatrists who rendered categorical judgments based on videotaped interviews of the MacArthur Competence Assessment Tool-Clinical Research (MacCAT-CR) and the Capacity to Appoint a Proxy Assessment (CAPA). Mattis Dementia Rating Scale-2 (DRS-2) was used to assess neuropsychological functioning. Results The capacity to appoint a proxy and to consent to the drug randomized clinical trial, as determined by a majority or greater opinion of the 5-psychiatrist panel, were predicted by Conceptualization and Initiation/Perseveration subscales whereas the capacity to consent to a neurosurgical randomized clinical trial was predicted by the Memory subscale. Furthermore, the more lenient individual psychiatrists’ judgments were predicted by the Conceptualization subscale whereas the stricter psychiatrists’ judgments were predicted by the Memory subscale. Conclusions How experienced psychiatrists view Alzheimer’s patients’ capacity for consenting to research and for appointing a proxy may be related to the patients’ conceptualization and memory functioning. More explicit and standardized guidance on the role of short term memory in capacity determinations may be useful. PMID:23498384
Improving Working Memory Efficiency by Reframing Metacognitive Interpretation of Task Difficulty
ERIC Educational Resources Information Center
Autin, Frederique; Croizet, Jean-Claude
2012-01-01
Working memory capacity, our ability to manage incoming information for processing purposes, predicts achievement on a wide range of intellectual abilities. Three randomized experiments (N = 310) tested the effectiveness of a brief psychological intervention designed to boost working memory efficiency (i.e., state working memory capacity) by…
ERIC Educational Resources Information Center
Hambrick, D.Z.; Oswald, F.L.
2005-01-01
Research suggests that both working memory capacity and domain knowledge contribute to individual differences in higher-level cognition. This study evaluated three hypotheses concerning the interplay between these factors. The compensation hypothesis predicts that domain knowledge attenuates the influence of working memory capacity on higher-level…
Simmering, Vanessa R
2016-09-01
Working memory is a vital cognitive skill that underlies a broad range of behaviors. Higher cognitive functions are reliably predicted by working memory measures from two domains: children's performance on complex span tasks, and infants' performance in looking paradigms. Despite the similar predictive power across these research areas, theories of working memory development have not connected these different task types and developmental periods. The current project takes a first step toward bridging this gap by presenting a process-oriented theory, focusing on two tasks designed to assess visual working memory capacity in infants (the change-preference task) versus children and adults (the change detection task). Previous studies have shown inconsistent results, with capacity estimates increasing from one to four items during infancy, but only two to three items during early childhood. A probable source of this discrepancy is the different task structures used with each age group, but prior theories were not sufficiently specific to explain how performance relates across tasks. The current theory focuses on cognitive dynamics, that is, how memory representations are formed, maintained, and used within specific task contexts over development. This theory was formalized in a computational model to generate three predictions: 1) capacity estimates in the change-preference task should continue to increase beyond infancy; 2) capacity estimates should be higher in the change-preference versus change detection task when tested within individuals; and 3) performance should correlate across tasks because both rely on the same underlying memory system. I also tested a fourth prediction, that development across tasks could be explained through increasing real-time stability, realized computationally as strengthening connectivity within the model. Results confirmed these predictions, supporting the cognitive dynamics account of performance and developmental changes in real-time stability. The monograph concludes with implications for understanding memory, behavior, and development in a broader range of cognitive development. © 2016 The Society for Research in Child Development, Inc.
ERIC Educational Resources Information Center
Schweizer, Fabian; Wustenberg, Sascha; Greiff, Samuel
2013-01-01
This study examines the validity of the complex problem solving (CPS) test MicroDYN by investigating a) the relation between its dimensions--rule identification (exploration strategy), rule knowledge (acquired knowledge), rule application (control performance)--and working memory capacity (WMC), and b) whether CPS predicts school grades in…
When high working memory capacity is and is not beneficial for predicting nonlinear processes.
Fischer, Helen; Holt, Daniel V
2017-04-01
Predicting the development of dynamic processes is vital in many areas of life. Previous findings are inconclusive as to whether higher working memory capacity (WMC) is always associated with using more accurate prediction strategies, or whether higher WMC can also be associated with using overly complex strategies that do not improve accuracy. In this study, participants predicted a range of systematically varied nonlinear processes based on exponential functions where prediction accuracy could or could not be enhanced using well-calibrated rules. Results indicate that higher WMC participants seem to rely more on well-calibrated strategies, leading to more accurate predictions for processes with highly nonlinear trajectories in the prediction region. Predictions of lower WMC participants, in contrast, point toward an increased use of simple exemplar-based prediction strategies, which perform just as well as more complex strategies when the prediction region is approximately linear. These results imply that with respect to predicting dynamic processes, working memory capacity limits are not generally a strength or a weakness, but that this depends on the process to be predicted.
Poll, Gerard H; Miller, Carol A; Mainela-Arnold, Elina; Adams, Katharine Donnelly; Misra, Maya; Park, Ji Sook
2013-01-01
More limited working memory capacity and slower processing for language and cognitive tasks are characteristics of many children with language difficulties. Individual differences in processing speed have not consistently been found to predict language ability or severity of language impairment. There are conflicting views on whether working memory and processing speed are integrated or separable abilities. To evaluate four models for the relations of individual differences in children's processing speed and working memory capacity in sentence imitation. The models considered whether working memory and processing speed are integrated or separable, as well as the effect of the number of operations required per sentence. The role of working memory as a mediator of the effect of processing speed on sentence imitation was also evaluated. Forty-six children with varied language and reading abilities imitated sentences. Working memory was measured with the Competing Language Processing Task (CLPT), and processing speed was measured with a composite of truth-value judgment and rapid automatized naming tasks. Mixed-effects ordinal regression models evaluated the CLPT and processing speed as predictors of sentence imitation item scores. A single mediator model evaluated working memory as a mediator of the effect of processing speed on sentence imitation total scores. Working memory was a reliable predictor of sentence imitation accuracy, but processing speed predicted sentence imitation only as a component of a processing speed by number of operations interaction. Processing speed predicted working memory capacity, and there was evidence that working memory acted as a mediator of the effect of processing speed on sentence imitation accuracy. The findings support a refined view of working memory and processing speed as separable factors in children's sentence imitation performance. Processing speed does not independently explain sentence imitation accuracy for all sentence types, but contributes when the task requires more mental operations. Processing speed also has an indirect effect on sentence imitation by contributing to working memory capacity. © 2013 Royal College of Speech and Language Therapists.
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
Visuospatial Working Memory Capacity Predicts Physiological Arousal in a Narrative Task.
Smithson, Lisa; Nicoladis, Elena
2016-06-01
Physiological arousal that occurs during narrative production is thought to reflect emotional processing and cognitive effort (Bar-Haim et al. in Dev Psychobiol 44:238-249, 2004). The purpose of this study was to determine whether individual differences in visuospatial working memory and/or verbal working memory capacity predict physiological arousal in a narrative task. Visuospatial working memory was a significant predictor of skin conductance level (SCL); verbal working memory was not. When visuospatial working memory interference was imposed, visuospatial working memory was no longer a significant predictor of SCL. Visuospatial interference also resulted in a significant reduction in SCL. Furthermore, listener ratings of narrative quality were contingent upon the visuospatial working memory resources of the narrator. Potential implications for educators and clinical practitioners are discussed.
Kreitz, Carina; Furley, Philip; Memmert, Daniel; Simons, Daniel J
2016-04-01
The probability of inattentional blindness, the failure to notice an unexpected object when attention is engaged on some primary task, is influenced by contextual factors like task demands, features of the unexpected object, and the observer's attention set. However, predicting who will notice an unexpected object and who will remain inattentionally blind has proven difficult, and the evidence that individual differences in cognition affect noticing remains ambiguous. We hypothesized that greater working memory capacity might modulate the effect of attention sets on noticing because working memory is associated with the ability to focus attention selectively. People with greater working memory capacity might be better able to attend selectively to target items, thereby increasing the chances of noticing unexpected objects that were similar to the attended items while decreasing the odds of noticing unexpected objects that differed from the attended items. Our study (N = 120 participants) replicated evidence that task-induced attention sets modulate noticing but found no link between noticing and working memory capacity. Our results are largely consistent with the idea that individual differences in working memory capacity do not predict noticing of unexpected objects in an inattentional blindness task. © The Author(s) 2015.
ERIC Educational Resources Information Center
McVay, Jennifer C.; Kane, Michael J.
2012-01-01
Some people are better readers than others, and this variation in comprehension ability is predicted by measures of working memory capacity (WMC). The primary goal of this study was to investigate the mediating role of mind-wandering experiences in the association between WMC and normal individual differences in reading comprehension, as predicted…
ERIC Educational Resources Information Center
McVay, Jennifer C.; Kane, Michael J.
2012-01-01
A combined experimental, individual-differences, and thought-sampling study tested the predictions of executive attention (e.g., Engle & Kane, 2004) and coordinative binding (e.g., Oberauer, Suss, Wilhelm, & Sander, 2007) theories of working memory capacity (WMC). We assessed 288 subjects' WMC and their performance and mind-wandering rates…
High visual working memory capacity in trait social anxiety.
Moriya, Jun; Sugiura, Yoshinori
2012-01-01
Working memory capacity is one of the most important cognitive functions influencing individual traits, such as attentional control, fluid intelligence, and also psychopathological traits. Previous research suggests that anxiety is associated with impaired cognitive function, and studies have shown low verbal working memory capacity in individuals with high trait anxiety. However, the relationship between trait anxiety and visual working memory capacity is still unclear. Considering that people allocate visual attention more widely to detect danger under threat, visual working memory capacity might be higher in anxious people. In the present study, we show that visual working memory capacity increases as trait social anxiety increases by using a change detection task. When the demand to inhibit distractors increased, however, high visual working memory capacity diminished in individuals with social anxiety, and instead, impaired filtering of distractors was predicted by trait social anxiety. State anxiety was not correlated with visual working memory capacity. These results indicate that socially anxious people could potentially hold a large amount of information in working memory. However, because of an impaired cognitive function, they could not inhibit goal-irrelevant distractors and their performance decreased under highly demanding conditions.
Mood induction effects on motor sequence learning and stop signal reaction time.
Greeley, Brian; Seidler, Rachael D
2017-01-01
The neurobiological theory of positive affect proposes that positive mood states may benefit cognitive performance due to an increase of dopamine throughout the brain. However, the results of many positive affect studies are inconsistent; this may be due to individual differences. The relationship between dopamine and performance is not linear, but instead follows an inverted "U" shape. Given this, we hypothesized that individuals with high working memory capacity, a proxy measure for dopaminergic transmission, would not benefit from positive mood induction and in fact performance in dopamine-mediated tasks would decline. In contrast, we predicted that individuals with low working memory capacities would receive the most benefit after positive mood induction. Here, we explored the effect of positive affect on two dopamine-mediated tasks, an explicit serial reaction time sequence learning task and the stop signal task, predicting that an individual's performance is modulated not only by working memory capacity, but also on the type of mood. Improvements in explicit sequence learning from pre- to post-positive mood induction were associated with working memory capacity; performance declined in individuals with higher working memory capacities following positive mood induction, but improved in individuals with lower working memory capacities. This was not the case for negative or neutral mood induction. Moreover, there was no relationship between the change in stop signal reaction time with any of the mood inductions and individual differences in working memory capacity. These results provide partial support for the neurobiological theory of positive affect and highlight the importance of taking into account individual differences in working memory when examining the effects of positive mood induction.
Statistical prediction with Kanerva's sparse distributed memory
NASA Technical Reports Server (NTRS)
Rogers, David
1989-01-01
A new viewpoint of the processing performed by Kanerva's sparse distributed memory (SDM) is presented. In conditions of near- or over-capacity, where the associative-memory behavior of the model breaks down, the processing performed by the model can be interpreted as that of a statistical predictor. Mathematical results are presented which serve as the framework for a new statistical viewpoint of sparse distributed memory and for which the standard formulation of SDM is a special case. This viewpoint suggests possible enhancements to the SDM model, including a procedure for improving the predictiveness of the system based on Holland's work with genetic algorithms, and a method for improving the capacity of SDM even when used as an associative memory.
Simple Predictions Fueled by Capacity Limitations: When Are They Successful?
ERIC Educational Resources Information Center
Gaissmaier, Wolfgang; Schooler, Lael J.; Rieskamp, Jorg
2006-01-01
Counterintuitively, Y. Kareev, I. Lieberman, and M. Lev (1997) found that a lower short-term memory capacity benefits performance on a correlation detection task. They assumed that people with low short-term memory capacity (low spans) perceived the correlations as more extreme because they relied on smaller samples, which are known to exaggerate…
Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan
2016-01-01
We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions.
Nicenboim, Bruno; Logačev, Pavel; Gattei, Carolina; Vasishth, Shravan
2016-01-01
We examined the effects of argument-head distance in SVO and SOV languages (Spanish and German), while taking into account readers' working memory capacity and controlling for expectation (Levy, 2008) and other factors. We predicted only locality effects, that is, a slowdown produced by increased dependency distance (Gibson, 2000; Lewis and Vasishth, 2005). Furthermore, we expected stronger locality effects for readers with low working memory capacity. Contrary to our predictions, low-capacity readers showed faster reading with increased distance, while high-capacity readers showed locality effects. We suggest that while the locality effects are compatible with memory-based explanations, the speedup of low-capacity readers can be explained by an increased probability of retrieval failure. We present a computational model based on ACT-R built under the previous assumptions, which is able to give a qualitative account for the present data and can be tested in future research. Our results suggest that in some cases, interpreting longer RTs as indexing increased processing difficulty and shorter RTs as facilitation may be too simplistic: The same increase in processing difficulty may lead to slowdowns in high-capacity readers and speedups in low-capacity ones. Ignoring individual level capacity differences when investigating locality effects may lead to misleading conclusions. PMID:27014113
Brain oscillatory substrates of visual short-term memory capacity.
Sauseng, Paul; Klimesch, Wolfgang; Heise, Kirstin F; Gruber, Walter R; Holz, Elisa; Karim, Ahmed A; Glennon, Mark; Gerloff, Christian; Birbaumer, Niels; Hummel, Friedhelm C
2009-11-17
The amount of information that can be stored in visual short-term memory is strictly limited to about four items. Therefore, memory capacity relies not only on the successful retention of relevant information but also on efficient suppression of distracting information, visual attention, and executive functions. However, completely separable neural signatures for these memory capacity-limiting factors remain to be identified. Because of its functional diversity, oscillatory brain activity may offer a utile solution. In the present study, we show that capacity-determining mechanisms, namely retention of relevant information and suppression of distracting information, are based on neural substrates independent of each other: the successful maintenance of relevant material in short-term memory is associated with cross-frequency phase synchronization between theta (rhythmical neural activity around 5 Hz) and gamma (> 50 Hz) oscillations at posterior parietal recording sites. On the other hand, electroencephalographic alpha activity (around 10 Hz) predicts memory capacity based on efficient suppression of irrelevant information in short-term memory. Moreover, repetitive transcranial magnetic stimulation at alpha frequency can modulate short-term memory capacity by influencing the ability to suppress distracting information. Taken together, the current study provides evidence for a double dissociation of brain oscillatory correlates of visual short-term memory capacity.
ERIC Educational Resources Information Center
Hamilton, Stephen; Freed, Erin; Long, Debra L.
2016-01-01
The aim of this study was to examine predictions derived from a proposal about the relation between word-decoding skill and working memory capacity, called verbal efficiency theory. The theory states that poor word representations and slow decoding processes consume resources in working memory that would otherwise be used to execute high-level…
The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement
2015-01-01
In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in serial order. These tasks were calibrated against traditional measures of simple and complex span. Clear age-related changes in these primary memory estimates were observed. There were marked individual differences in primary memory capacity, but each novel measure was predictive of simple span performance. Among older children, each measure shared variance with reading and mathematics performance, whereas for younger children, the interleaved lists task was the strongest single predictor of academic ability. We argue that these novel tasks have considerable potential for the measurement of primary memory capacity and provide new, complementary ways of measuring the transient memory processes that predict academic performance. The interleaved lists task also shared features with interference control tasks, and our findings suggest that young children have a particular difficulty in resisting distraction and that variance in the ability to resist distraction is also shared with measures of educational attainment. PMID:26075630
An Ideal Observer Analysis of Visual Working Memory
Sims, Chris R.; Jacobs, Robert A.; Knill, David C.
2013-01-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this paper we develop an ideal observer analysis of human visual working memory, by deriving the expected behavior of an optimally performing, but limited-capacity memory system. This analysis is framed around rate–distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in two empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (for example, how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis—one which allows variability in the number of stored memory representations, but does not assume the presence of a fixed item limit—provides an excellent account of the empirical data, and further offers a principled re-interpretation of existing models of visual working memory. PMID:22946744
The developmental influence of primary memory capacity on working memory and academic achievement.
Hall, Debbora; Jarrold, Christopher; Towse, John N; Zarandi, Amy L
2015-08-01
In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in serial order. These tasks were calibrated against traditional measures of simple and complex span. Clear age-related changes in these primary memory estimates were observed. There were marked individual differences in primary memory capacity, but each novel measure was predictive of simple span performance. Among older children, each measure shared variance with reading and mathematics performance, whereas for younger children, the interleaved lists task was the strongest single predictor of academic ability. We argue that these novel tasks have considerable potential for the measurement of primary memory capacity and provide new, complementary ways of measuring the transient memory processes that predict academic performance. The interleaved lists task also shared features with interference control tasks, and our findings suggest that young children have a particular difficulty in resisting distraction and that variance in the ability to resist distraction is also shared with measures of educational attainment. (c) 2015 APA, all rights reserved).
Effects of emotional content on working memory capacity.
Garrison, Katie E; Schmeichel, Brandon J
2018-02-13
Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.
The Role of Visual Processing Speed in Reading Speed Development
Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane
2013-01-01
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children. PMID:23593117
The role of visual processing speed in reading speed development.
Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane
2013-01-01
A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.
Gonthier, Corentin; Thomassin, Noémylle
2015-10-01
Working memory capacity consistently correlates with fluid intelligence. It has been suggested that this relationship is partly attributable to strategy use: Participants with high working memory capacity would use more effective strategies, in turn leading to higher performance on fluid intelligence tasks. However, this idea has never been directly investigated. In 2 experiments, we tested this hypothesis by directly manipulating strategy use in a combined experimental-correlational approach (Experiment 1; N = 250) and by measuring strategy use with a self-report questionnaire (Experiment 2; N = 93). Inducing all participants to use an effective strategy in Raven's matrices decreased the correlation between working memory capacity and performance; the strategy use measure fully mediated the relationship between working memory capacity and performance on the matrices task. These findings indicate that individual differences in strategic behavior drive the predictive utility of working memory. We interpret the results within a theoretical framework integrating the multiple mediators of the relationship between working memory capacity and high-level cognition. (c) 2015 APA, all rights reserved).
Attentional Demands Predict Short-Term Memory Load Response in Posterior Parietal Cortex
ERIC Educational Resources Information Center
Magen, Hagit; Emmanouil, Tatiana-Aloi; McMains, Stephanie A.; Kastner, Sabine; Treisman, Anne
2009-01-01
Limits to the capacity of visual short-term memory (VSTM) indicate a maximum storage of only 3 or 4 items. Recently, it has been suggested that activity in a specific part of the brain, the posterior parietal cortex (PPC), is correlated with behavioral estimates of VSTM capacity and might reflect a capacity-limited store. In three experiments that…
Compression in Working Memory and Its Relationship With Fluid Intelligence.
Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien
2018-06-01
Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.
Memory self-efficacy predicts responsiveness to inductive reasoning training in older adults.
Payne, Brennan R; Jackson, Joshua J; Hill, Patrick L; Gao, Xuefei; Roberts, Brent W; Stine-Morrow, Elizabeth A L
2012-01-01
In the current study, we assessed the relationship between memory self-efficacy at pretest and responsiveness to inductive reasoning training in a sample of older adults. Participants completed a measure of self-efficacy assessing beliefs about memory capacity. Participants were then randomly assigned to a waitlist control group or an inductive reasoning training intervention. Latent change score models were used to examine the moderators of change in inductive reasoning. Inductive reasoning showed clear improvements in the training group compared with the control. Within the training group, initial memory capacity beliefs significantly predicted change in inductive reasoning such that those with higher levels of capacity beliefs showed greater responsiveness to the intervention. Further analyses revealed that self-efficacy had effects on how trainees allocated time to the training materials over the course of the intervention. Results indicate that self-referential beliefs about cognitive potential may be an important factor contributing to plasticity in adulthood.
Neural activity in the hippocampus predicts individual visual short-term memory capacity.
von Allmen, David Yoh; Wurmitzer, Karoline; Martin, Ernst; Klaver, Peter
2013-07-01
Although the hippocampus had been traditionally thought to be exclusively involved in long-term memory, recent studies raised controversial explanations why hippocampal activity emerged during short-term memory tasks. For example, it has been argued that long-term memory processes might contribute to performance within a short-term memory paradigm when memory capacity has been exceeded. It is still unclear, though, whether neural activity in the hippocampus predicts visual short-term memory (VSTM) performance. To investigate this question, we measured BOLD activity in 21 healthy adults (age range 19-27 yr, nine males) while they performed a match-to-sample task requiring processing of object-location associations (delay period = 900 ms; set size conditions 1, 2, 4, and 6). Based on individual memory capacity (estimated by Cowan's K-formula), two performance groups were formed (high and low performers). Within whole brain analyses, we found a robust main effect of "set size" in the posterior parietal cortex (PPC). In line with a "set size × group" interaction in the hippocampus, a subsequent Finite Impulse Response (FIR) analysis revealed divergent hippocampal activation patterns between performance groups: Low performers (mean capacity = 3.63) elicited increased neural activity at set size two, followed by a drop in activity at set sizes four and six, whereas high performers (mean capacity = 5.19) showed an incremental activity increase with larger set size (maximal activation at set size six). Our data demonstrated that performance-related neural activity in the hippocampus emerged below capacity limit. In conclusion, we suggest that hippocampal activity reflected successful processing of object-location associations in VSTM. Neural activity in the PPC might have been involved in attentional updating. Copyright © 2013 Wiley Periodicals, Inc.
Ekman, Matthias; Fiebach, Christian J; Melzer, Corina; Tittgemeyer, Marc; Derrfuss, Jan
2016-03-09
The ability to temporarily store and manipulate information in working memory is a hallmark of human intelligence and differs considerably across individuals, but the structural brain correlates underlying these differences in working memory capacity (WMC) are only poorly understood. In two separate studies, diffusion MRI data and WMC scores were collected for 70 and 109 healthy individuals. Using a combination of probabilistic tractography and network analysis of the white matter tracts, we examined whether structural brain network properties were predictive of individual WMC. Converging evidence from both studies showed that lateral prefrontal cortex and posterior parietal cortex of high-capacity individuals are more densely connected compared with low-capacity individuals. Importantly, our network approach was further able to dissociate putative functional roles associated with two different pathways connecting frontal and parietal regions: a corticocortical pathway and a subcortical pathway. In Study 1, where participants were required to maintain and update working memory items, the connectivity of the direct and indirect pathway was predictive of WMC. In contrast, in Study 2, where participants were required to maintain working memory items without updating, only the connectivity of the direct pathway was predictive of individual WMC. Our results suggest an important dissociation in the circuitry connecting frontal and parietal regions, where direct frontoparietal connections might support storage and maintenance, whereas subcortically mediated connections support the flexible updating of working memory content. Copyright © 2016 the authors 0270-6474/16/362894-10$15.00/0.
Working Memory Capacity and Stroop Interference: Global versus Local Indices of Executive Control
ERIC Educational Resources Information Center
Meier, Matt E.; Kane, Michael J.
2013-01-01
Two experiments examined the relations among working memory capacity (WMC), congruency-sequence effects, proportion-congruency effects, and the color-word Stroop effect to test whether congruency-sequence effects might inform theoretical claims regarding WMC's prediction of Stroop interference. In Experiment 1, subjects completed either a…
Why Does Working Memory Capacity Predict RAPM Performance? A Possible Role of Distraction
ERIC Educational Resources Information Center
Jarosz, Andrew F.; Wiley, Jennifer
2012-01-01
Current theories concerning individual differences in working memory capacity (WMC) suggest that WMC reflects the ability to control the focus of attention and resist interference and distraction. The current set of experiments tested whether susceptibility to distraction is partially responsible for the established relationship between…
The contribution of attentional lapses to individual differences in visual working memory capacity.
Adam, Kirsten C S; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K
2015-08-01
Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe.
The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity
Adam, Kirsten C. S.; Mance, Irida; Fukuda, Keisuke; Vogel, Edward K.
2015-01-01
Attentional control and working memory capacity are important cognitive abilities that substantially vary between individuals. Although much is known about how attentional control and working memory capacity relate to each other and to constructs like fluid intelligence, little is known about how trial-by-trial fluctuations in attentional engagement impact trial-by-trial working memory performance. Here, we employ a novel whole-report memory task that allowed us to distinguish between varying levels of attentional engagement in humans performing a working memory task. By characterizing low-performance trials, we can distinguish between models in which working memory performance failures are caused by either (1) complete lapses of attention or (2) variations in attentional control. We found that performance failures increase with set-size and strongly predict working memory capacity. Performance variability was best modeled by an attentional control model of attention, not a lapse model. We examined neural signatures of performance failures by measuring EEG activity while participants performed the whole-report task. The number of items correctly recalled in the memory task was predicted by frontal theta power, with decreased frontal theta power associated with poor performance on the task. In addition, we found that poor performance was not explained by failures of sensory encoding; the P1/N1 response and ocular artifact rates were equivalent for high- and low-performance trials. In all, we propose that attentional lapses alone cannot explain individual differences in working memory performance. Instead, we find that graded fluctuations in attentional control better explain the trial-by-trial differences in working memory that we observe. PMID:25811710
An ideal observer analysis of visual working memory.
Sims, Chris R; Jacobs, Robert A; Knill, David C
2012-10-01
Limits in visual working memory (VWM) strongly constrain human performance across many tasks. However, the nature of these limits is not well understood. In this article we develop an ideal observer analysis of human VWM by deriving the expected behavior of an optimally performing but limited-capacity memory system. This analysis is framed around rate-distortion theory, a branch of information theory that provides optimal bounds on the accuracy of information transmission subject to a fixed information capacity. The result of the ideal observer analysis is a theoretical framework that provides a task-independent and quantitative definition of visual memory capacity and yields novel predictions regarding human performance. These predictions are subsequently evaluated and confirmed in 2 empirical studies. Further, the framework is general enough to allow the specification and testing of alternative models of visual memory (e.g., how capacity is distributed across multiple items). We demonstrate that a simple model developed on the basis of the ideal observer analysis-one that allows variability in the number of stored memory representations but does not assume the presence of a fixed item limit-provides an excellent account of the empirical data and further offers a principled reinterpretation of existing models of VWM. PsycINFO Database Record (c) 2012 APA, all rights reserved.
Bashivan, Pouya; Bidelman, Gavin M; Yeasin, Mohammed
2014-12-01
We investigated the effect of memory load on encoding and maintenance of information in working memory. Electroencephalography (EEG) signals were recorded while participants performed a modified Sternberg visual memory task. Independent component analysis (ICA) was used to factorise the EEG signals into distinct temporal activations to perform spectrotemporal analysis and localisation of source activities. We found 'encoding' and 'maintenance' operations were correlated with negative and positive changes in α-band power, respectively. Transient activities were observed during encoding of information in the bilateral cuneus, precuneus, inferior parietal gyrus and fusiform gyrus, and a sustained activity in the inferior frontal gyrus. Strong correlations were also observed between changes in α-power and behavioral performance during both encoding and maintenance. Furthermore, it was also found that individuals with higher working memory capacity experienced stronger neural oscillatory responses during the encoding of visual objects into working memory. Our results suggest an interplay between two distinct neural pathways and different spatiotemporal operations during the encoding and maintenance of information which predict individual differences in working memory capacity observed at the behavioral level. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Statistical modelling of networked human-automation performance using working memory capacity.
Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja
2014-01-01
This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.
The sensory strength of voluntary visual imagery predicts visual working memory capacity.
Keogh, Rebecca; Pearson, Joel
2014-10-09
How much we can actively hold in mind is severely limited and differs greatly from one person to the next. Why some individuals have greater capacities than others is largely unknown. Here, we investigated why such large variations in visual working memory (VWM) capacity might occur, by examining the relationship between visual working memory and visual mental imagery. To assess visual working memory capacity participants were required to remember the orientation of a number of Gabor patches and make subsequent judgments about relative changes in orientation. The sensory strength of voluntary imagery was measured using a previously documented binocular rivalry paradigm. Participants with greater imagery strength also had greater visual working memory capacity. However, they were no better on a verbal number working memory task. Introducing a uniform luminous background during the retention interval of the visual working memory task reduced memory capacity, but only for those with strong imagery. Likewise, for the good imagers increasing background luminance during imagery generation reduced its effect on subsequent binocular rivalry. Luminance increases did not affect any of the subgroups on the verbal number working memory task. Together, these results suggest that luminance was disrupting sensory mechanisms common to both visual working memory and imagery, and not a general working memory system. The disruptive selectivity of background luminance suggests that good imagers, unlike moderate or poor imagers, may use imagery as a mnemonic strategy to perform the visual working memory task. © 2014 ARVO.
Stevens, Alexander A.; Tappon, Sarah C.; Garg, Arun; Fair, Damien A.
2012-01-01
Background Cognitive abilities, such as working memory, differ among people; however, individuals also vary in their own day-to-day cognitive performance. One potential source of cognitive variability may be fluctuations in the functional organization of neural systems. The degree to which the organization of these functional networks is optimized may relate to the effective cognitive functioning of the individual. Here we specifically examine how changes in the organization of large-scale networks measured via resting state functional connectivity MRI and graph theory track changes in working memory capacity. Methodology/Principal Findings Twenty-two participants performed a test of working memory capacity and then underwent resting-state fMRI. Seventeen subjects repeated the protocol three weeks later. We applied graph theoretic techniques to measure network organization on 34 brain regions of interest (ROI). Network modularity, which measures the level of integration and segregation across sub-networks, and small-worldness, which measures global network connection efficiency, both predicted individual differences in memory capacity; however, only modularity predicted intra-individual variation across the two sessions. Partial correlations controlling for the component of working memory that was stable across sessions revealed that modularity was almost entirely associated with the variability of working memory at each session. Analyses of specific sub-networks and individual circuits were unable to consistently account for working memory capacity variability. Conclusions/Significance The results suggest that the intrinsic functional organization of an a priori defined cognitive control network measured at rest provides substantial information about actual cognitive performance. The association of network modularity to the variability in an individual's working memory capacity suggests that the organization of this network into high connectivity within modules and sparse connections between modules may reflect effective signaling across brain regions, perhaps through the modulation of signal or the suppression of the propagation of noise. PMID:22276205
Individual Differences in Working Memory Capacity Predict Sleep-Dependent Memory Consolidation
ERIC Educational Resources Information Center
Fenn, Kimberly M.; Hambrick, David Z.
2012-01-01
Decades of research have established that "online" cognitive processes, which operate during conscious encoding and retrieval of information, contribute substantially to individual differences in memory. Furthermore, it is widely accepted that "offline" processes during sleep also contribute to memory performance. However, the question of whether…
Aggregation server for grid-integrated vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kempton, Willett
2015-05-26
Methods, systems, and apparatus for aggregating electric power flow between an electric grid and electric vehicles are disclosed. An apparatus for aggregating power flow may include a memory and a processor coupled to the memory to receive electric vehicle equipment (EVE) attributes from a plurality of EVEs, aggregate EVE attributes, predict total available capacity based on the EVE attributes, and dispatch at least a portion of the total available capacity to the grid. Power flow may be aggregated by receiving EVE operational parameters from each EVE, aggregating the received EVE operational parameters, predicting total available capacity based on the aggregatedmore » EVE operational parameters, and dispatching at least a portion of the total available capacity to the grid.« less
Memory Self-Efficacy Predicts Responsiveness to Inductive Reasoning Training in Older Adults
Jackson, Joshua J.; Hill, Patrick L.; Gao, Xuefei; Roberts, Brent W.; Stine-Morrow, Elizabeth A. L.
2012-01-01
Objectives. In the current study, we assessed the relationship between memory self-efficacy at pretest and responsiveness to inductive reasoning training in a sample of older adults. Methods. Participants completed a measure of self-efficacy assessing beliefs about memory capacity. Participants were then randomly assigned to a waitlist control group or an inductive reasoning training intervention. Latent change score models were used to examine the moderators of change in inductive reasoning. Results. Inductive reasoning showed clear improvements in the training group compared with the control. Within the training group, initial memory capacity beliefs significantly predicted change in inductive reasoning such that those with higher levels of capacity beliefs showed greater responsiveness to the intervention. Further analyses revealed that self-efficacy had effects on how trainees allocated time to the training materials over the course of the intervention. Discussion. Results indicate that self-referential beliefs about cognitive potential may be an important factor contributing to plasticity in adulthood. PMID:21743037
ERIC Educational Resources Information Center
Kane, Michael J.; Poole, Bradley J.; Tuholski, Stephen W.; Engle, Randall W.
2006-01-01
The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual…
Does working memory capacity predict cross-modally induced failures of awareness?
Kreitz, Carina; Furley, Philip; Simons, Daniel J; Memmert, Daniel
2016-01-01
People often fail to notice unexpected stimuli when they are focusing attention on another task. Most studies of this phenomenon address visual failures induced by visual attention tasks (inattentional blindness). Yet, such failures also occur within audition (inattentional deafness), and people can even miss unexpected events in one sensory modality when focusing attention on tasks in another modality. Such cross-modal failures are revealing because they suggest the existence of a common, central resource limitation. And, such central limits might be predicted from individual differences in cognitive capacity. We replicated earlier evidence, establishing substantial rates of inattentional deafness during a visual task and inattentional blindness during an auditory task. However, neither individual working memory capacity nor the ability to perform the primary task predicted noticing in either modality. Thus, individual differences in cognitive capacity did not predict failures of awareness even though the failures presumably resulted from central resource limitations. Copyright © 2015 Elsevier Inc. All rights reserved.
Towler, John; Kelly, Maria; Eimer, Martin
2016-06-01
The capacity of visual working memory for faces is extremely limited, but the reasons for these limitations remain unknown. We employed event-related brain potential measures to demonstrate that individual faces have to be focally attended in order to be maintained in working memory, and that attention is allocated to only a single face at a time. When 2 faces have to be memorized simultaneously in a face identity-matching task, the focus of spatial attention during encoding predicts which of these faces can be successfully maintained in working memory and matched to a subsequent test face. We also show that memory representations of attended faces are maintained in a position-dependent fashion. These findings demonstrate that the limited capacity of face memory is directly linked to capacity limits of spatial attention during the encoding and maintenance of individual face representations. We suggest that the capacity and distribution of selective spatial attention is a dynamic resource that constrains the capacity and fidelity of working memory for faces. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Working Memory Delay Activity Predicts Individual Differences in Cognitive Abilities
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contra-lateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory. PMID:25436671
Working memory delay activity predicts individual differences in cognitive abilities.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2015-05-01
A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contralateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory.
Salemink, Elske; Wiers, Reinout W
2014-03-01
Although studies on explicit alcohol cognitions have identified positive and negative reinforcing drinking motives that are differentially related to drinking indices, such a distinction has received less attention in studies on implicit cognitions. An alcohol-related Word-Sentence Association Task was used to assess implicit alcohol-related memory associations in positive and negative affect situations in 92 participants. Results revealed that enhancement motives were specifically associated with the endorsement of alcohol words in positive affect situations and coping motives were associated with the endorsement of alcohol words in negative affect situations. Furthermore, alcohol associations in positive affect situations predicted prospective alcohol use and number of binges, depending on levels of working memory capacity. The current findings shed more light on the underpinnings of alcohol use and suggest that implicit memory processes and working memory capacity might be important targets for intervention.
Working Memory in L2 Reading: Does Capacity Predict Performance?
ERIC Educational Resources Information Center
Harrington, Michael; Sawyer, Mark
A study was conducted at the International University of Japan to see if second language (L2) working capacity correlates with L2 reading ability in advanced English-as-a-Second-Language (ESL) learners. The study consisted of a set of memory tests (Simple Digit, Simple Word, and Complex Span Test) and a set of measures of reading skills given to…
ERIC Educational Resources Information Center
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…
ERIC Educational Resources Information Center
McVay, Jennifer C.
2010-01-01
The primary goal of this study was to investigate the mediating role of mind wandering in the relationship between working memory capacity (WMC) and reading comprehension as predicted by the executive-attention theory of WMC (e.g., Kane & Engle, 2003). I used a latent-variable, structural-equation-model approach with three WMC span tasks, seven…
Vocabulary learning in primary school children: working memory and long-term memory components.
Morra, Sergio; Camba, Roberta
2009-10-01
The goal of this study was to investigate which working memory and long-term memory components predict vocabulary learning. We used a nonword learning paradigm in which 8- to 10-year-olds learned picture-nonword pairs. The nonwords varied in length (two vs. four syllables) and phonology (native sounding vs. including one Russian phoneme). Short, phonologically native nonwords were learned best, whereas learning long nonwords leveled off after a few presentation cycles. Linear structural equation analyses showed an influence of three constructs-phonological sensitivity, vocabulary knowledge, and central attentional resources (M capacity)-on nonword learning, but the extent of their contributions depended on specific characteristics of the nonwords to be learned. Phonological sensitivity predicted learning of all nonword types except short native nonwords, vocabulary predicted learning of only short native nonwords, and M capacity predicted learning of short nonwords but not long nonwords. The discussion considers three learning processes-effortful activation of phonological representations, lexical mediation, and passive associative learning-that use different cognitive resources and could be involved in learning different nonword types.
Individual differences in working memory capacity predict visual attention allocation.
Bleckley, M Kathryn; Durso, Francis T; Crutchfield, Jerry M; Engle, Randall W; Khanna, Maya M
2003-12-01
To the extent that individual differences in working memory capacity (WMC) reflect differences in attention (Baddeley, 1993; Engle, Kane, & Tuholski, 1999), differences in WMC should predict performance on visual attention tasks. Individuals who scored in the upper and lower quartiles on the OSPAN working memory test performed a modification of Egly and Homa's (1984) selective attention task. In this task, the participants identified a central letter and localized a displaced letter flashed somewhere on one of three concentric rings. When the displaced letter occurred closer to fixation than the cue implied, high-WMC, but not low-WMC, individuals showed a cost in the letter localization task. This suggests that low-WMC participants allocated attention as a spotlight, whereas those with high WMC showed flexible allocation.
The scope and control of attention: Sources of variance in working memory capacity.
Chow, Michael; Conway, Andrew R A
2015-04-01
Working memory capacity is a strong positive predictor of many cognitive abilities, across various domains. The pattern of positive correlations across domains has been interpreted as evidence for a unitary source of inter-individual differences in behavior. However, recent work suggests that there are multiple sources of variance contributing to working memory capacity. The current study (N = 71) investigates individual differences in the scope and control of attention, in addition to the number and resolution of items maintained in working memory. Latent variable analyses indicate that the scope and control of attention reflect independent sources of variance and each account for unique variance in general intelligence. Also, estimates of the number of items maintained in working memory are consistent across tasks and related to general intelligence whereas estimates of resolution are task-dependent and not predictive of intelligence. These results provide insight into the structure of working memory, as well as intelligence, and raise new questions about the distinction between number and resolution in visual short-term memory.
Path Analysis Tests of Theoretical Models of Children's Memory Performance
ERIC Educational Resources Information Center
DeMarie, Darlene; Miller, Patricia H.; Ferron, John; Cunningham, Walter R.
2004-01-01
Path analysis was used to test theoretical models of relations among variables known to predict differences in children's memory--strategies, capacity, and metamemory. Children in kindergarten to fourth grade (chronological ages 5 to 11) performed different memory tasks. Several strategies (i.e., sorting, clustering, rehearsal, and self-testing)…
Drawing a dog: The role of working memory and executive function.
Panesi, Sabrina; Morra, Sergio
2016-12-01
Previous research suggests that young children draw animals by adapting their scheme for the human figure. This can be considered an early form of drawing flexibility. This study investigated preschoolers' ability to draw a dog that is different from the human figure. The role of working memory capacity and executive function was examined. The participants were 123 children (36-73 months old) who were required to draw both a person and a dog. The dog figure was scored on a list of features that could render it different from the human figure. Regression analyses showed that both working memory capacity and executive function predicted development in the dog drawing; the dog drawing score correlated with working memory capacity and executive function, even partialling out age, motor coordination, and drawing ability (measured with Goodenough's Draw-a-Man test). These results suggest that both working memory capacity and executive function play an important role in the early development of drawing flexibility. The implications regarding executive functions and working memory are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
V4 activity predicts the strength of visual short-term memory representations.
Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F
2009-06-10
Recent studies have shown the existence of a form of visual memory that lies intermediate of iconic memory and visual short-term memory (VSTM), in terms of both capacity (up to 15 items) and the duration of the memory trace (up to 4 s). Because new visual objects readily overwrite this intermediate visual store, we believe that it reflects a weak form of VSTM with high capacity that exists alongside a strong but capacity-limited form of VSTM. In the present study, we isolated brain activity related to weak and strong VSTM representations using functional magnetic resonance imaging. We found that activity in visual cortical area V4 predicted the strength of VSTM representations; activity was low when there was no VSTM, medium when there was a weak VSTM representation regardless of whether this weak representation was available for report or not, and high when there was a strong VSTM representation. Altogether, this study suggests that the high capacity yet weak VSTM store is represented in visual parts of the brain. Allegedly, only some of these VSTM traces are amplified by parietal and frontal regions and as a consequence reside in traditional or strong VSTM. The additional weak VSTM representations remain available for conscious access and report when attention is redirected to them yet are overwritten as soon as new visual stimuli hit the eyes.
Working memory capacity as controlled attention in tactical decision making.
Furley, Philip A; Memmert, Daniel
2012-06-01
The controlled attention theory of working memory capacity (WMC, Engle 2002) suggests that WMC represents a domain free limitation in the ability to control attention and is predictive of an individual's capability of staying focused, avoiding distraction and impulsive errors. In the present paper we test the predictive power of WMC in computer-based sport decision-making tasks. Experiment 1 demonstrated that high-WMC athletes were better able at focusing their attention on tactical decision making while blocking out irrelevant auditory distraction. Experiment 2 showed that high-WMC athletes were more successful at adapting their tactical decision making according to the situation instead of relying on prepotent inappropriate decisions. The present results provide additional but also unique support for the controlled attention theory of WMC by demonstrating that WMC is predictive of controlling attention in complex settings among different modalities and highlight the importance of working memory in tactical decision making.
Qualitative similarities in the visual short-term memory of pigeons and people.
Gibson, Brett; Wasserman, Edward; Luck, Steven J
2011-10-01
Visual short-term memory plays a key role in guiding behavior, and individual differences in visual short-term memory capacity are strongly predictive of higher cognitive abilities. To provide a broader evolutionary context for understanding this memory system, we directly compared the behavior of pigeons and humans on a change detection task. Although pigeons had a lower storage capacity and a higher lapse rate than humans, both species stored multiple items in short-term memory and conformed to the same basic performance model. Thus, despite their very different evolutionary histories and neural architectures, pigeons and humans have functionally similar visual short-term memory systems, suggesting that the functional properties of visual short-term memory are subject to similar selective pressures across these distant species.
Modeling individual differences in working memory performance: a source activation account
Daily, Larry Z.; Lovett, Marsha C.; Reder, Lynne M.
2008-01-01
Working memory resources are needed for processing and maintenance of information during cognitive tasks. Many models have been developed to capture the effects of limited working memory resources on performance. However, most of these models do not account for the finding that different individuals show different sensitivities to working memory demands, and none of the models predicts individual subjects' patterns of performance. We propose a computational model that accounts for differences in working memory capacity in terms of a quantity called source activation, which is used to maintain goal-relevant information in an available state. We apply this model to capture the working memory effects of individual subjects at a fine level of detail across two experiments. This, we argue, strengthens the interpretation of source activation as working memory capacity. PMID:19079561
Semantic and Syntactic Interference in Sentence Comprehension: A Comparison of Working Memory Models
Tan, Yingying; Martin, Randi C.; Van Dyke, Julie A.
2017-01-01
This study investigated the nature of the underlying working memory system supporting sentence processing through examining individual differences in sensitivity to retrieval interference effects during sentence comprehension. Interference effects occur when readers incorrectly retrieve sentence constituents which are similar to those required during integrative processes. We examined interference arising from a partial match between distracting constituents and syntactic and semantic cues, and related these interference effects to performance on working memory, short-term memory (STM), vocabulary, and executive function tasks. For online sentence comprehension, as measured by self-paced reading, the magnitude of individuals' syntactic interference effects was predicted by general WM capacity and the relation remained significant when partialling out vocabulary, indicating that the effects were not due to verbal knowledge. For offline sentence comprehension, as measured by responses to comprehension questions, both general WM capacity and vocabulary knowledge interacted with semantic interference for comprehension accuracy, suggesting that both general WM capacity and the quality of semantic representations played a role in determining how well interference was resolved offline. For comprehension question reaction times, a measure of semantic STM capacity interacted with semantic but not syntactic interference. However, a measure of phonological capacity (digit span) and a general measure of resistance to response interference (Stroop effect) did not predict individuals' interference resolution abilities in either online or offline sentence comprehension. The results are discussed in relation to the multiple capacities account of working memory (e.g., Martin and Romani, 1994; Martin and He, 2004), and the cue-based retrieval parsing approach (e.g., Lewis et al., 2006; Van Dyke et al., 2014). While neither approach was fully supported, a possible means of reconciling the two approaches and directions for future research are proposed. PMID:28261133
Working memory differences in long-distance dependency resolution
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component. PMID:25852623
Working memory differences in long-distance dependency resolution.
Nicenboim, Bruno; Vasishth, Shravan; Gattei, Carolina; Sigman, Mariano; Kliegl, Reinhold
2015-01-01
There is a wealth of evidence showing that increasing the distance between an argument and its head leads to more processing effort, namely, locality effects; these are usually associated with constraints in working memory (DLT: Gibson, 2000; activation-based model: Lewis and Vasishth, 2005). In SOV languages, however, the opposite effect has been found: antilocality (see discussion in Levy et al., 2013). Antilocality effects can be explained by the expectation-based approach as proposed by Levy (2008) or by the activation-based model of sentence processing as proposed by Lewis and Vasishth (2005). We report an eye-tracking and a self-paced reading study with sentences in Spanish together with measures of individual differences to examine the distinction between expectation- and memory-based accounts, and within memory-based accounts the further distinction between DLT and the activation-based model. The experiments show that (i) antilocality effects as predicted by the expectation account appear only for high-capacity readers; (ii) increasing dependency length by interposing material that modifies the head of the dependency (the verb) produces stronger facilitation than increasing dependency length with material that does not modify the head; this is in agreement with the activation-based model but not with the expectation account; and (iii) a possible outcome of memory load on low-capacity readers is the increase in regressive saccades (locality effects as predicted by memory-based accounts) or, surprisingly, a speedup in the self-paced reading task; the latter consistent with good-enough parsing (Ferreira et al., 2002). In sum, the study suggests that individual differences in working memory capacity play a role in dependency resolution, and that some of the aspects of dependency resolution can be best explained with the activation-based model together with a prediction component.
Statistical Learning Induces Discrete Shifts in the Allocation of Working Memory Resources
ERIC Educational Resources Information Center
Umemoto, Akina; Scolari, Miranda; Vogel, Edward K.; Awh, Edward
2010-01-01
Observers can voluntarily select which items are encoded into working memory, and the efficiency of this process strongly predicts memory capacity. Nevertheless, the present work suggests that voluntary intentions do not exclusively determine what is encoded into this online workspace. Observers indicated whether any items from a briefly stored…
Störmer, Viola S; Li, Shu-Chen; Heekeren, Hauke R; Lindenberger, Ulman
2013-06-01
The capacity of visual-spatial working memory (WM) declines from early to late adulthood. Recent attempts at identifying neural correlates of WM capacity decline have focused on the maintenance phase of WM. Here, we investigate neural mechanisms during the encoding phase as another potential mechanism contributing to adult age differences in WM capacity. We used electroencephalography to track neural activity during encoding and maintenance on a millisecond timescale in 35 younger and 35 older adults performing a visual-spatial WM task. As predicted, we observed pronounced age differences in ERP indicators of WM encoding: Younger adults showed attentional selection during item encoding (N2pc component), but this selection mechanism was greatly attenuated in older adults. Conversely, older adults showed more pronounced signs of early perceptual stimulus processing (N1 component) than younger adults. The amplitude modulation of the N1 component predicted WM capacity in older adults, whereas the attentional amplitude modulation of the N2pc component predicted WM capacity in younger adults. Our findings suggest that adult age differences in mechanisms of WM encoding contribute to adult age differences in limits of visual-spatial WM capacity. Copyright © 2013 Elsevier Inc. All rights reserved.
Sligte, Ilja G; Wokke, Martijn E; Tesselaar, Johannes P; Scholte, H Steven; Lamme, Victor A F
2011-05-01
To guide our behavior in successful ways, we often need to rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). While VSTM is usually broken down into iconic memory (brief and high-capacity store) and visual working memory (sustained, yet limited-capacity store), recent studies have suggested the existence of an additional and intermediate form of VSTM that depends on activity in extrastriate cortex. In previous work, we have shown that this fragile form of VSTM can be dissociated from iconic memory. In the present study, we provide evidence that fragile VSTM is different from visual working memory as magnetic stimulation of the right dorsolateral prefrontal cortex (DLPFC) disrupts visual working memory, while leaving fragile VSTM intact. In addition, we observed that people with high DLPFC activity had superior working memory capacity compared to people with low DLPFC activity, and only people with high DLPFC activity really showed a reduction in working memory capacity in response to magnetic stimulation. Altogether, this study shows that VSTM consists of three stages that have clearly different characteristics and rely on different neural structures. On the methodological side, we show that it is possible to predict individual susceptibility to magnetic stimulation based on functional MRI activity. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Past makes future: role of pFC in prediction.
Fuster, Joaquín M; Bressler, Steven L
2015-04-01
The pFC enables the essential human capacities for predicting future events and preadapting to them. These capacities rest on both the structure and dynamics of the human pFC. Structurally, pFC, together with posterior association cortex, is at the highest hierarchical level of cortical organization, harboring neural networks that represent complex goal-directed actions. Dynamically, pFC is at the highest level of the perception-action cycle, the circular processing loop through the cortex that interfaces the organism with the environment in the pursuit of goals. In its predictive and preadaptive roles, pFC supports cognitive functions that are critical for the temporal organization of future behavior, including planning, attentional set, working memory, decision-making, and error monitoring. These functions have a common future perspective and are dynamically intertwined in goal-directed action. They all utilize the same neural infrastructure: a vast array of widely distributed, overlapping, and interactive cortical networks of personal memory and semantic knowledge, named cognits, which are formed by synaptic reinforcement in learning and memory acquisition. From this cortex-wide reservoir of memory and knowledge, pFC generates purposeful, goal-directed actions that are preadapted to predicted future events.
Hoffmann, Janina A; von Helversen, Bettina; Rieskamp, Jörg
2014-12-01
Making accurate judgments is an essential skill in everyday life. Although how different memory abilities relate to categorization and judgment processes has been hotly debated, the question is far from resolved. We contribute to the solution by investigating how individual differences in memory abilities affect judgment performance in 2 tasks that induced rule-based or exemplar-based judgment strategies. In a study with 279 participants, we investigated how working memory and episodic memory affect judgment accuracy and strategy use. As predicted, participants switched strategies between tasks. Furthermore, structural equation modeling showed that the ability to solve rule-based tasks was predicted by working memory, whereas episodic memory predicted judgment accuracy in the exemplar-based task. Last, the probability of choosing an exemplar-based strategy was related to better episodic memory, but strategy selection was unrelated to working memory capacity. In sum, our results suggest that different memory abilities are essential for successfully adopting different judgment strategies. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Lee, Gregory P; Park, Yong D; Hempel, Ann; Westerveld, Michael; Loring, David W
2002-09-01
Because the capacity of intracarotid amobarbital (Wada) memory assessment to predict seizure-onset laterality in children has not been thoroughly investigated, three comprehensive epilepsy surgery centers pooled their data and examined Wada memory asymmetries to predict side of seizure onset in children being considered for epilepsy surgery. One hundred fifty-two children with intractable epilepsy underwent Wada testing. Although the type and number of memory stimuli and methods varied at each institution, all children were presented with six to 10 items soon after amobarbital injection. After return to neurologic baseline, recognition memory for the stimuli was assessed. Seizure onset was determined by simultaneous video-EEG recordings of multiple seizures. In children with unilateral temporal lobe seizures (n = 87), Wada memory asymmetries accurately predicted seizure laterality to a statistically significant degree. Wada memory asymmetries also correctly predicted side of seizure onset in children with extra-temporal lobe seizures (n = 65). Although individual patient prediction accuracy was statistically significant in temporal lobe cases, onset laterality was incorrectly predicted in < or =52% of children with left temporal lobe seizure onset, depending on the methods and asymmetry criterion used. There also were significant differences between Wada prediction accuracy across the three epilepsy centers. Results suggest that Wada memory assessment is useful in predicting side of seizure onset in many children. However, Wada memory asymmetries should be interpreted more cautiously in children than in adults.
Working memory and the memory distortion component of hindsight bias.
Calvillo, Dustin P
2012-01-01
One component of hindsight bias is memory distortion: Individuals' recollections of their predictions are biased towards known outcomes. The present study examined the role of working memory in the memory distortion component of hindsight bias. Participants answered almanac-like questions, completed a measure of working memory capacity, were provided with the correct answers, and attempted to recollect their original judgements in two conditions: with and without a concurrent working memory load. Participants' recalled judgements were more biased by feedback when they recalled these judgements with a concurrent memory load and working memory capacity was negatively correlated with memory distortion. These findings are consistent with reconstruction accounts of the memory distortion component of hindsight bias and, more generally, with dual process theories of cognition. These results also relate the memory distortion component of hindsight bias with other cognitive errors, such as source monitoring errors, the belief bias in syllogistic reasoning and anchoring effects. Implications for the separate components view of hindsight bias are discussed.
Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin
2013-01-01
Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495
Task Experience and Children's Working Memory Performance: A Perspective from Recall Timing
ERIC Educational Resources Information Center
Towse, John N.; Cowan, Nelson; Horton, Neil J.; Whytock, Shealagh
2008-01-01
Working memory is an important theoretical construct among children, and measures of its capacity predict a range of cognitive skills and abilities. Data from 9- and 11-year-old children illustrate how a chronometric analysis of recall can complement and elaborate recall accuracy in advancing our understanding of working memory. A reading span…
Spatial Working Memory Capacity Predicts Bias in Estimates of Location
ERIC Educational Resources Information Center
Crawford, L. Elizabeth; Landy, David; Salthouse, Timothy A.
2016-01-01
Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on…
Obradović, Jelena; Portilla, Ximena A; Tirado-Strayer, Nicole; Siyal, Saima; Rasheed, Muneera A; Yousafzai, Aisha K
2017-03-01
The current study focuses on maternal cognitive capacities as determinants of parenting in a highly disadvantaged global context, where children's experiences at home are often the 1st and only opportunity for learning and intellectual growth. In a large sample of 1,291 biological mothers of preschool-aged children in rural Pakistan, we examined the unique association of maternal working memory skills (independent of related cognitive capacities) with cognitively stimulating parenting behaviors. Path analysis revealed that directly assessed working memory, short-term memory, and verbal intelligence independently predicted greater levels of observed maternal scaffolding behaviors. Mothers from poorer families demonstrated lower levels of working memory, short-term memory, and verbal intelligence. However, mothers' participation in an early childhood parenting intervention that ended 2 years prior to this study contributed to greater levels of working memory skills and verbal intelligence. Further, all 3 domains of maternal cognitive capacity mediated the effect of family economic resources on maternal scaffolding, and verbal intelligence also mediated the effect of early parenting intervention exposure on maternal scaffolding. The study demonstrates the unique relevance of maternal working memory for scaffolding behaviors that required continuously monitoring the child's engagement, providing assistance, and minimizing external distractions. These results highlight the importance of directly targeting maternal cognitive capacities in poor women with little or no formal education, using a 2-generation intervention approach that includes activities known to promote parental executive functioning and literacy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Giuliano, Ryan J; Karns, Christina M; Neville, Helen J; Hillyard, Steven A
2014-12-01
A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual's capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70-90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals.
von Allmen, David Yoh; Wurmitzer, Karoline; Klaver, Peter
2014-10-01
Developmental increases in visual short-term memory (VSTM) capacity have been associated with changes in attention processing limitations and changes in neural activity within neural networks including the posterior parietal cortex (PPC). A growing body of evidence suggests that the hippocampus plays a role in VSTM, but it is unknown whether the hippocampus contributes to the capacity increase across development. We investigated the functional development of the hippocampus and PPC in 57 children, adolescents and adults (age 8-27 years) who performed a visuo-spatial change detection task. A negative relationship between age and VSTM related activity was found in the right posterior hippocampus that was paralleled by a positive age-activity relationship in the right PPC. In the posterior hippocampus, VSTM related activity predicted individual capacity in children, whereas neural activity in the right anterior hippocampus predicted individual capacity in adults. The findings provide first evidence that VSTM development is supported by an integrated neural network that involves hippocampal and posterior parietal regions.
Short-term memory capacity in networks via the restricted isometry property.
Charles, Adam S; Yap, Han Lun; Rozell, Christopher J
2014-06-01
Cortical networks are hypothesized to rely on transient network activity to support short-term memory (STM). In this letter, we study the capacity of randomly connected recurrent linear networks for performing STM when the input signals are approximately sparse in some basis. We leverage results from compressed sensing to provide rigorous nonasymptotic recovery guarantees, quantifying the impact of the input sparsity level, the input sparsity basis, and the network characteristics on the system capacity. Our analysis demonstrates that network memory capacities can scale superlinearly with the number of nodes and in some situations can achieve STM capacities that are much larger than the network size. We provide perfect recovery guarantees for finite sequences and recovery bounds for infinite sequences. The latter analysis predicts that network STM systems may have an optimal recovery length that balances errors due to omission and recall mistakes. Furthermore, we show that the conditions yielding optimal STM capacity can be embodied in several network topologies, including networks with sparse or dense connectivities.
Working memory training improves visual short-term memory capacity.
Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H
2016-01-01
Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.
Working memory and inattentional blindness.
Bredemeier, Keith; Simons, Daniel J
2012-04-01
Individual differences in working memory predict many aspects of cognitive performance, especially for tasks that demand focused attention. One negative consequence of focused attention is inattentional blindness, the failure to notice unexpected objects when attention is engaged elsewhere. Yet, the relationship between individual differences in working memory and inattentional blindness is unclear; some studies have found that higher working memory capacity is associated with greater noticing, but others have found no direct association. Given the theoretical and practical significance of such individual differences, more definitive tests are needed. In two studies with large samples, we tested the relationship between multiple working memory measures and inattentional blindness. Individual differences in working memory predicted the ability to perform an attention-demanding tracking task, but did not predict the likelihood of noticing an unexpected object present during the task. We discuss the reasons why we might not expect such individual differences in noticing and why other studies may have found them.
Storage Capacity Explains Fluid Intelligence but Executive Control Does Not
ERIC Educational Resources Information Center
Chuderski, Adam; Taraday, Maciej; Necka, Edward; Smolen, Tomasz
2012-01-01
We examined whether fluid intelligence (Gf) is better predicted by the storage capacity of active memory or by the effectiveness of executive control. In two psychometric studies, we measured storage capacity with three kinds of task which required the maintenance of a visual array, the monitoring of simple relations among perceptually available…
Individual Differences in Working Memory Capacity Predict Retrieval-Induced Forgetting
ERIC Educational Resources Information Center
Aslan, Alp; Bauml, Karl-Heinz T.
2011-01-01
Selectively retrieving a subset of previously studied information enhances memory for the retrieved information but causes forgetting of related, nonretrieved information. Such retrieval-induced forgetting (RIF) has often been attributed to inhibitory executive-control processes that supposedly suppress the nonretrieved items' memory…
Individual differences in working memory capacity predict learned control over attentional capture.
Robison, Matthew K; Unsworth, Nash
2017-11-01
Although individual differences in working memory capacity (WMC) typically predict susceptibility to attentional capture in various paradigms (e.g., Stroop, antisaccade, flankers), it sometimes fails to correlate with the magnitude of attentional capture effects in visual search (e.g., Stokes, 2016), which is 1 of the most frequently studied tasks to study capture (Theeuwes, 2010). But some studies have shown that search modes can mitigate the effects of attentional capture (Leber & Egeth, 2006). Therefore, the present study examined whether or not the relationship between WMC and attentional capture changes as a function of the search modes available. In Experiment 1, WMC was unrelated to attentional capture, but only 1 search mode (singleton-detection) could be employed. In Experiment 2, greater WMC predicted smaller attentional capture effects, but only when multiple search modes (feature-search and singleton-detection) could be employed. Importantly this relationship was entirely independent of variation in attention control, which suggests that this effect is driven by WMC-related long-term memory differences (Cosman & Vecera, 2013a, 2013b). The present set of findings help to further our understanding of the nuanced ways in which memory and attention interact. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Neurocognitive predictors of financial capacity in traumatic brain injury.
Martin, Roy C; Triebel, Kristen; Dreer, Laura E; Novack, Thomas A; Turner, Crystal; Marson, Daniel C
2012-01-01
To develop cognitive models of financial capacity (FC) in patients with traumatic brain injury (TBI). Longitudinal design. Inpatient brain injury rehabilitation unit. Twenty healthy controls, and 24 adults with moderate-to-severe TBI were assessed at baseline (30 days postinjury) and 6 months postinjury. The FC instrument (FCI) and a neuropsychological test battery. Univariate correlation and multiple regression procedures were employed to develop cognitive models of FCI performance in the TBI group, at baseline and 6-month time follow-up. Three cognitive predictor models of FC were developed. At baseline, measures of mental arithmetic/working memory and immediate verbal memory predicted baseline FCI performance (R = 0.72). At 6-month follow-up, measures of executive function and mental arithmetic/working memory predicted 6-month FCI performance (R = 0.79), and a third model found that these 2 measures at baseline predicted 6-month FCI performance (R = 0.71). Multiple cognitive functions are associated with initial impairment and partial recovery of FC in moderate-to-severe TBI patients. In particular, arithmetic, working memory, and executive function skills appear critical to recovery of FC in TBI. The study results represent an initial step toward developing a neurocognitive model of FC in patients with TBI.
Developmental gains in visuospatial memory predict gains in mathematics achievement.
Li, Yaoran; Geary, David C
2013-01-01
Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning.
Developmental Gains in Visuospatial Memory Predict Gains in Mathematics Achievement
Li, Yaoran; Geary, David C.
2013-01-01
Visuospatial competencies are related to performance in mathematical domains in adulthood, but are not consistently related to mathematics achievement in children. We confirmed the latter for first graders and demonstrated that children who show above average first-to-fifth grade gains in visuospatial memory have an advantage over other children in mathematics. The study involved the assessment of the mathematics and reading achievement of 177 children in kindergarten to fifth grade, inclusive, and their working memory capacity and processing speed in first and fifth grade. Intelligence was assessed in first grade and their second to fourth grade teachers reported on their in-class attentive behavior. Developmental gains in visuospatial memory span (d = 2.4) were larger than gains in the capacity of the central executive (d = 1.6) that in turn were larger than gains in phonological memory span (d = 1.1). First to fifth grade gains in visuospatial memory and in speed of numeral processing predicted end of fifth grade mathematics achievement, as did first grade central executive scores, intelligence, and in-class attentive behavior. The results suggest there are important individual differences in the rate of growth of visuospatial memory during childhood and that these differences become increasingly important for mathematics learning. PMID:23936154
Rummel, Jan; Boywitt, C Dennis
2014-10-01
Although engaging in task-unrelated thoughts can be enjoyable and functional under certain circumstances, allowing one's mind to wander off-task will come at a cost to performance in many situations. Given that task-unrelated thoughts need to be blocked out when the current task requires full attention, it has been argued that cognitive control is necessary to prevent mind-wandering from becoming maladaptive. Extending this idea, we exposed participants to tasks of different demands and assessed mind-wandering via thought probes. Employing a latent-change model, we found mind-wandering to be adjusted to current task demands. As hypothesized, the degree of adjustment was predicted by working memory capacity, indicating that participants with higher working memory capacity were more flexible in their coordination of on- and off-task thoughts. Notably, the better the adjustment, the smaller performance decrements due to increased task demands were. On the basis of these findings, we argue that cognitive control does not simply allow blocking out task-unrelated thoughts but, rather, allows one to flexibly adjust mind-wandering to situational demands.
Focus of Attention in Children's Motor Learning: Examining the Role of Age and Working Memory.
Brocken, J E A; Kal, E C; van der Kamp, J
2016-01-01
The authors investigated the relative effectiveness of different attentional focus instructions on motor learning in primary school children. In addition, we explored whether the effect of attentional focus on motor learning was influenced by children's age and verbal working memory capacity. Novice 8-9-year old children (n = 30) and 11-12-year-old children (n = 30) practiced a golf putting task. For each age group, half the participants received instructions to focus (internally) on the swing of their arm, while the other half was instructed to focus (externally) on the swing of the club. Children's verbal working memory capacity was assessed with the Automated Working Memory Assessment. Consistent with many reports on adult's motor learning, children in the external groups demonstrated greater improvements in putting accuracy than children who practiced with an internal focus. This effect was similar across age groups. Verbal working memory capacity was not found to be predictive of motor learning, neither for children in the internal focus groups nor for children in the external focus groups. In conclusion, primary school children's motor learning is enhanced by external focus instructions compared to internal focus instructions. The purported modulatory roles of children's working memory, attentional capacity, or focus preferences require further investigation.
The effects of working memory resource depletion and training on sensorimotor adaptation
Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.
2011-01-01
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489
Taboo: Working memory and mental control in an interactive task
Hansen, Whitney A.; Goldinger, Stephen D.
2014-01-01
Individual differences in working memory (WM) predict principled variation in tasks of reasoning, response time, memory, and other abilities. Theoretically, a central function of WM is keeping task-relevant information easily accessible while suppressing irrelevant information. The present experiment was a novel study of mental control, using performance in the game Taboo as a measure. We tested effects of WM capacity on several indices, including perseveration errors (repeating previous guesses or clues) and taboo errors (saying at least part of a taboo or target word). By most measures, high-span participants were superior to low-span participants: High-spans were better at guessing answers, better at encouraging correct guesses from teammates, and less likely to either repeat themselves or produce taboo clues. Differences in taboo errors occurred only in an easy control condition. The results suggest that WM capacity predicts behavior in tasks requiring mental control, extending this finding to an interactive group setting. PMID:19827699
Failure of self-consistency in the discrete resource model of visual working memory.
Bays, Paul M
2018-06-03
The discrete resource model of working memory proposes that each individual has a fixed upper limit on the number of items they can store at one time, due to division of memory into a few independent "slots". According to this model, responses on short-term memory tasks consist of a mixture of noisy recall (when the tested item is in memory) and random guessing (when the item is not in memory). This provides two opportunities to estimate capacity for each observer: first, based on their frequency of random guesses, and second, based on the set size at which the variability of stored items reaches a plateau. The discrete resource model makes the simple prediction that these two estimates will coincide. Data from eight published visual working memory experiments provide strong evidence against such a correspondence. These results present a challenge for discrete models of working memory that impose a fixed capacity limit. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.
Giuliano, Ryan J.; Karns, Christina M.; Neville, Helen J.; Hillyard, Steven A.
2015-01-01
A growing body of research suggests that the predictive power of working memory (WM) capacity for measures of intellectual aptitude is due to the ability to control attention and select relevant information. Crucially, attentional mechanisms implicated in controlling access to WM are assumed to be domain-general, yet reports of enhanced attentional abilities in individuals with larger WM capacities are primarily within the visual domain. Here, we directly test the link between WM capacity and early attentional gating across sensory domains, hypothesizing that measures of visual WM capacity should predict an individual’s capacity to allocate auditory selective attention. To address this question, auditory ERPs were recorded in a linguistic dichotic listening task, and individual differences in ERP modulations by attention were correlated with estimates of WM capacity obtained in a separate visual change detection task. Auditory selective attention enhanced ERP amplitudes at an early latency (ca. 70–90 msec), with larger P1 components elicited by linguistic probes embedded in an attended narrative. Moreover, this effect was associated with greater individual estimates of visual WM capacity. These findings support the view that domain-general attentional control mechanisms underlie the wide variation of WM capacity across individuals. PMID:25000526
Revisiting Problems with Foreign Language Aptitude
ERIC Educational Resources Information Center
Safar, Anna; Kormos, Judit
2008-01-01
This study investigated three of the issues recently raised in connection with the traditional concept of foreign language aptitude: the relationship between foreign language aptitude and working memory and phonological short-term memory capacity, the role of foreign language aptitude in predicting success in the framework of focus-on-form foreign…
The Role of Working Memory in Metaphor Production and Comprehension
ERIC Educational Resources Information Center
Chiappe, Dan L.; Chiappe, Penny
2007-01-01
The following tested Kintsch's [Kintsch, W. (2000). "Metaphor comprehension: a computational theory." "Psychonomic Bulletin & Review," 7, 257-266 and Kintsch, W. (2001). "Predication." "Cognitive Science," 25, 173-202] Predication Model, which predicts that working memory capacity is an important factor in metaphor processing. In support of his…
Impaired Contingent Attentional Capture Predicts Reduced Working Memory Capacity in Schizophrenia
Mayer, Jutta S.; Fukuda, Keisuke; Vogel, Edward K.; Park, Sohee
2012-01-01
Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding. PMID:23152783
Impaired contingent attentional capture predicts reduced working memory capacity in schizophrenia.
Mayer, Jutta S; Fukuda, Keisuke; Vogel, Edward K; Park, Sohee
2012-01-01
Although impairments in working memory (WM) are well documented in schizophrenia, the specific factors that cause these deficits are poorly understood. In this study, we hypothesized that a heightened susceptibility to attentional capture at an early stage of visual processing would result in working memory encoding problems. 30 patients with schizophrenia and 28 demographically matched healthy participants were presented with a search array and asked to report the orientation of the target stimulus. In some of the trials, a flanker stimulus preceded the search array that either matched the color of the target (relevant-flanker capture) or appeared in a different color (irrelevant-flanker capture). Working memory capacity was determined in each individual using the visual change detection paradigm. Patients needed considerably more time to find the target in the no-flanker condition. After adjusting the individual exposure time, both groups showed equivalent capture costs in the irrelevant-flanker condition. However, in the relevant-flanker condition, capture costs were increased in patients compared to controls when the stimulus onset asynchrony between the flanker and the search array was high. Moreover, the increase in relevant capture costs correlated negatively with working memory capacity. This study demonstrates preserved stimulus-driven attentional capture but impaired contingent attentional capture associated with low working memory capacity in schizophrenia. These findings suggest a selective impairment of top-down attentional control in schizophrenia, which may impair working memory encoding.
Cassidy, Clifford M; Van Snellenberg, Jared X; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa; Horga, Guillermo
2016-04-13
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during ann-back working-memory task) and positron emission tomography using the radiotracer [(11)C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. Copyright © 2016 the authors 0270-6474/16/364378-12$15.00/0.
Van Snellenberg, Jared X.; Benavides, Caridad; Slifstein, Mark; Wang, Zhishun; Moore, Holly; Abi-Dargham, Anissa
2016-01-01
Connectivity between brain networks may adapt flexibly to cognitive demand, a process that could underlie adaptive behaviors and cognitive deficits, such as those observed in neuropsychiatric conditions like schizophrenia. Dopamine signaling is critical for working memory but its influence on internetwork connectivity is relatively unknown. We addressed these questions in healthy humans using functional magnetic resonance imaging (during an n-back working-memory task) and positron emission tomography using the radiotracer [11C]FLB457 before and after amphetamine to measure the capacity for dopamine release in extrastriatal brain regions. Brain networks were defined by spatial independent component analysis (ICA) and working-memory-load-dependent connectivity between task-relevant pairs of networks was determined via a modified psychophysiological interaction analysis. For most pairs of task-relevant networks, connectivity significantly changed as a function of working-memory load. Moreover, load-dependent changes in connectivity between left and right frontoparietal networks (Δ connectivity lFPN-rFPN) predicted interindividual differences in task performance more accurately than other fMRI and PET imaging measures. Δ Connectivity lFPN-rFPN was not related to cortical dopamine release capacity. A second study in unmedicated patients with schizophrenia showed no abnormalities in load-dependent connectivity but showed a weaker relationship between Δ connectivity lFPN-rFPN and working memory performance in patients compared with matched healthy individuals. Poor working memory performance in patients was, in contrast, related to deficient cortical dopamine release. Our findings indicate that interactions between brain networks dynamically adapt to fluctuating environmental demands. These dynamic adaptations underlie successful working memory performance in healthy individuals and are not well predicted by amphetamine-induced dopamine release capacity. SIGNIFICANCE STATEMENT It is unclear how communication between brain networks responds to changing environmental demands during complex cognitive processes. Also, unknown in regard to these network dynamics is the role of neuromodulators, such as dopamine, and whether their dysregulation could underlie cognitive deficits in neuropsychiatric illness. We found that connectivity between brain networks changes with working-memory load and greater increases predict better working memory performance; however, it was not related to capacity for dopamine release in the cortex. Patients with schizophrenia did show dynamic internetwork connectivity; however, this was more weakly associated with successful performance in patients compared with healthy individuals. Our findings indicate that dynamic interactions between brain networks may support the type of flexible adaptations essential to goal-directed behavior. PMID:27076432
An information capacity limitation of visual short-term memory.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2014-12-01
Research suggests that visual short-term memory (VSTM) has both an item capacity, of around 4 items, and an information capacity. We characterize the information capacity limits of VSTM using a task in which observers discriminated the orientation of a single probed item in displays consisting of 1, 2, 3, or 4 orthogonally oriented Gabor patch stimuli that were presented in noise for 50 ms, 100 ms, 150 ms, or 200 ms. The observed capacity limitations are well described by a sample-size model, which predicts invariance of ∑(i)(d'(i))² for displays of different sizes and linearity of (d'(i))² for displays of different durations. Performance was the same for simultaneous and sequentially presented displays, which implicates VSTM as the locus of the observed invariance and rules out explanations that ascribe it to divided attention or stimulus encoding. The invariance of ∑(i)(d'(i))² is predicted by the competitive interaction theory of Smith and Sewell (2013), which attributes it to the normalization of VSTM traces strengths arising from competition among stimuli entering VSTM. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Lee, Eun-Ju; Kwon, Gusang; Lee, Aekyoung; Ghajar, Jamshid; Suh, Minah
2011-07-05
In this study, the interaction between individual differences in working memory capacity, which were assessed by the Korean version of the California Verbal Learning Test (K-CVLT), and the effects of oculomotor task load on word recall performance are examined in a dual-task experiment. We hypothesized that varying levels of oculomotor task load should result in different demands on cognitive resources. The verbal working memory task used in this study involved a brief exposure to seven words to be remembered, followed by a 30-second delay during which the subject carried out an oculomotor task. Then, memory performance was assessed by having the subjects recall as many words as possible. Forty healthy normal subjects with no vision-related problems carried out four separate dual-tasks over four consecutive days of participation, wherein word recall performances were tested under unpredictable random SPEM (smooth pursuit eye movement), predictive SPEM, fixation, and eyes-closed conditions. The word recall performance of subjects with low K-CVLT scores was significantly enhanced under predictive SPEM conditions as opposed to the fixation and eyes-closed conditions, but performance was reduced under the random SPEM condition, thus reflecting an inverted-U relationship between the oculomotor task load and word recall performance. Subjects with high K-CVLT scores evidenced steady word recall performances, regardless of the type of oculomotor task performed. The concurrent oculomotor performance measured by velocity error did not differ significantly among the K-CVLT groups. However, the high-scoring subjects evidenced smaller phase errors under predictive SPEM conditions than did the low-scoring subjects; this suggests that different resource allocation strategies may be adopted, depending on individuals' working memory capacity. Copyright © 2011 Elsevier B.V. All rights reserved.
Simmering, Vanessa R.; Miller, Hilary E.
2016-01-01
The nature of visual working memory (VWM) representations is currently a source of debate between characterizations as slot-like versus a flexibly-divided pool of resources. Recently, a dynamic neural field model has been proposed as an alternative account that focuses more on the processes by which VWM representations are formed, maintained, and used in service of behavior. This dynamic model has explained developmental increases in VWM capacity and resolution through strengthening excitatory and inhibitory connections. Simulations of developmental improvements in VWM resolution suggest that one important change is the accuracy of comparisons between items held in memory and new inputs. Thus, the ability to detect changes is a critical component of developmental improvements in VWM performance across tasks, leading to the prediction that capacity and resolution should correlate during childhood. Comparing 5- to 8-year-old children’s performance across color discrimination and change detection tasks revealed the predicted correlation between estimates of VWM capacity and resolution, supporting the hypothesis that increasing connectivity underlies improvements in VWM during childhood. These results demonstrate the importance of formalizing the processes that support the use of VWM, rather than focusing solely on the nature of representations. We conclude by considering our results in the broader context of VWM development. PMID:27329264
The Role of Mind-Wandering in Measurements of General Aptitude
ERIC Educational Resources Information Center
Mrazek, Michael D.; Smallwood, Jonathan; Franklin, Michael S.; Chin, Jason M.; Baird, Benjamin; Schooler, Jonathan W.
2012-01-01
Tests of working memory capacity (WMC) and fluid intelligence (gF) are thought to capture variability in a crucial cognitive capacity that is broadly predictive of success, yet pinpointing the exact nature of this capacity is an area of ongoing controversy. We propose that mind-wandering is associated with performance on tests of WMC and gF,…
Working memory capacity of biological movements predicts empathy traits.
Gao, Zaifeng; Ye, Tian; Shen, Mowei; Perry, Anat
2016-04-01
Working memory (WM) and empathy are core issues in cognitive and social science, respectively. However, no study so far has explored the relationship between these two constructs. Considering that empathy takes place based on the others' observed experiences, which requires extracting the observed dynamic scene into WM and forming a coherent representation, we hypothesized that a sub-type of WM capacity, i.e., WM for biological movements (BM), should predict one's empathy level. Therefore, WM capacity was measured for three distinct types of stimuli in a change detection task: BM of human beings (BM; Experiment 1), movements of rectangles (Experiment 2), and static colors (Experiment 3). The first two stimuli were dynamic and shared one WM buffer which differed from the WM buffer for colors; yet only the BM conveyed social information. We found that BM-WM capacity was positively correlated with both cognitive and emotional empathy, with no such correlations for WM capacity of movements of rectangles or of colors. Thus, the current study is the first to provide evidence linking a specific buffer of WM and empathy, and highlights the necessity for considering different WM capacities in future social and clinical research.
Poole, Bradley J; Kane, Michael J
2009-07-01
Variation in working-memory capacity (WMC) predicts individual differences in only some attention-control capabilities. Whereas higher WMC subjects outperform lower WMC subjects in tasks requiring the restraint of prepotent but inappropriate responses, and the constraint of attentional focus to target stimuli against distractors, they do not differ in prototypical visual-search tasks, even those that yield steep search slopes and engender top-down control. The present three experiments tested whether WMC, as measured by complex memory span tasks, would predict search latencies when the 1-8 target locations to be searched appeared alone, versus appearing among distractor locations to be ignored, with the latter requiring selective attentional focus. Subjects viewed target-location cues and then fixated on those locations over either long (1,500-1,550 ms) or short (300 ms) delays. Higher WMC subjects identified targets faster than did lower WMC subjects only in the presence of distractors and only over long fixation delays. WMC thus appears to affect subjects' ability to maintain a constrained attentional focus over time.
Määttä, Sira; Laakso, Marja-Leena; Tolvanen, Asko; Ahonen, Timo; Aro, Tuija
2014-06-01
In this article, the authors examine the developmental continuity from prelinguistic communication to kindergarten age in language and working memory capacity. Following work outlining 6 groups of children with different trajectories of early communication development (ECD; Määttä, Laakso, Tolvanen, Ahonen, & Aro, 2012), the authors examined their later development by psychometric assessment. Ninety-one children first assessed at ages 12-21 months completed a battery of language and working memory tests at age 5;3 (years;months). Two of the ECD groups previously identified as being at risk for language difficulties continued to show weaker performance at follow-up. Seventy-nine percent of the children with compromised language skills at follow-up were identified on the basis of the ECD groups, but the number of false positives was high. The 2 at-risk groups also differed significantly from the typically developing groups in the measures tapping working memory capacity. In line with the dimensional view of language impairment, the accumulation of early delays predicted the amount of later difficulties; however, at the individual level, the prediction had rather low specificity. The results imply a strong link between language and working memory and call for further studies examining the early developmental interaction between language and memory.
Kane, Michael J; Hambrick, David Z; Tuholski, Stephen W; Wilhelm, Oliver; Payne, Tabitha W; Engle, Randall W
2004-06-01
A latent-variable study examined whether verbal and visuospatial working memory (WM) capacity measures reflect a primarily domain-general construct by testing 236 participants in 3 span tests each of verbal WM. visuospatial WM, verbal short-term memory (STM), and visuospatial STM. as well as in tests of verbal and spatial reasoning and general fluid intelligence (Gf). Confirmatory' factor analyses and structural equation models indicated that the WM tasks largely reflected a domain-general factor, whereas STM tasks, based on the same stimuli as the WM tasks, were much more domain specific. The WM construct was a strong predictor of Gf and a weaker predictor of domain-specific reasoning, and the reverse was true for the STM construct. The findings support a domain-general view of WM capacity, in which executive-attention processes drive the broad predictive utility of WM span measures, and domain-specific storage and rehearsal processes relate more strongly to domain-specific aspects of complex cognition. ((c) 2004 APA, all rights reserved)
ERIC Educational Resources Information Center
Chuderski, Adam; Jastrzebski, Jan
2017-01-01
The "nothing-special" account of insight predicts positive correlations of insight problem solving and working memory capacity (WMC), whereas the "special-process" account expects no, or even negative, correlations. In the latter vein, DeCaro, Van Stockum Jr., and Wieth (2016) have recently reported weak negative WMC…
Order Short-Term Memory Capacity Predicts Nonword Reading and Spelling in First and Second Grade
ERIC Educational Resources Information Center
Binamé, Florence; Poncelet, Martine
2016-01-01
Recent theories of short-term memory (STM) distinguish between item information, which reflects the temporary activation of long-term representations stored in the language system, and serial-order information, which is encoded in a specific representational system that is independent of the language network. Some studies examining the…
Slot-like capacity and resource-like coding in a neural model of multiple-item working memory.
Standage, Dominic; Pare, Martin
2018-06-27
For the past decade, research on the storage limitations of working memory has been dominated by two fundamentally different hypotheses. On the one hand, the contents of working memory may be stored in a limited number of `slots', each with a fixed resolution. On the other hand, any number of items may be stored, but with decreasing resolution. These two hypotheses have been invaluable in characterizing the computational structure of working memory, but neither provides a complete account of the available experimental data, nor speaks to the neural basis of the limitations it characterizes. To address these shortcomings, we simulated a multiple-item working memory task with a cortical network model, the cellular resolution of which allowed us to quantify the coding fidelity of memoranda as a function of memory load, as measured by the discriminability, regularity and reliability of simulated neural spiking. Our simulations account for a wealth of neural and behavioural data from human and non-human primate studies, and they demonstrate that feedback inhibition lowers both capacity and coding fidelity. Because the strength of inhibition scales with the number of items stored by the network, increasing this number progressively lowers fidelity until capacity is reached. Crucially, the model makes specific, testable predictions for neural activity on multiple-item working memory tasks.
Working memory constraints on the processing of syntactic ambiguity.
MacDonald, M C; Just, M A; Carpenter, P A
1992-01-01
We propose a model that explains how the working-memory capacity of a comprehender can constrain syntactic parsing and thereby affect the processing of syntactic ambiguities. The model's predictions are examined in four experiments that measure the reading times for two constructions that contain a temporary syntactic ambiguity. An example of the syntactic ambiguity is The soldiers warned about the dangers . . . ; the verb warned may either be the main verb, in which case soldiers is the agent; or the verb warned may introduce a relative clause, in which case soldiers is the patient of warned rather than the agent, as in The soldiers warned about the dangers conducted the midnight raid. The model proposes that both alternative interpretations of warned are initially activated. However, the duration for which both interpretations are maintained depends, in part, on the reader's working-memory capacity, which can be assessed by the Reading Span task (Daneman & Carpenter, 1980). The word-by-word reading times indicate that all subjects do additional processing after encountering an ambiguity, suggesting that they generate both representations. Furthermore, readers with larger working-memory capacities maintain both representations for some period of time (several words), whereas readers with smaller working-memory capacities revert to maintaining only the more likely representation.
Mutter, Brigitte; Alcorn, Mark B; Welsh, Marilyn
2006-06-01
This study of the relationship between theory of mind and executive function examined whether on the false-belief task age differences between 3 and 5 ears of age are related to development of working-memory capacity and inhibitory processes. 72 children completed tasks measuring false belief, working memory, and inhibition. Significant age effects were observed for false-belief and working-memory performance, as well as for the false-alarm and perseveration measures of inhibition. A simultaneous multiple linear regression specified the contribution of age, inhibition, and working memory to the prediction of false-belief performance. This model was significant, explaining a total of 36% of the variance. To examine the independent contributions of the working-memory and inhibition variables, after controlling for age, two hierarchical multiple linear regressions were conducted. These multiple regression analyses indicate that working memory and inhibition make small, overlapping contributions to false-belief performance after accounting for age, but that working memory, as measured in this study, is a somewhat better predictor of false-belief understanding than is inhibition.
Köylü, Bülent; Walser, Gerald; Ischebeck, Anja; Ortler, Martin; Benke, Thomas
2008-08-05
Medial temporal (MTL) structures have crucial functions in episodic (EM), but also in semantic memory (SM) processing. Preoperative functional magnetic resonance imaging (fMRI) activity within the MTL is increasingly used to predict post-surgical memory capacities. Based on the hypothesis that EM and SM memory functions are both hosted by the MTL the present study wanted to explore the relationship between SM related activations in the MTL as assessed before and the capacity of EM functions after surgery. Patients with chronic unilateral left (n=14) and right (n=12) temporal lobe epilepsy (TLE) performed a standard word list learning test pre- and postoperatively, and a fMRI procedure before the operation using a semantic decision task. SM processing caused significant bilateral MTL activations in both patient groups. While right TLE patients showed asymmetry of fMRI activation with more activation in the left MTL, left TLE patients had almost equal activation in both MTL regions. Contrasting left TLE versus right TLE patients revealed greater activity within the right MTL, whereas no significant difference was observed for the reverse contrast. Greater effect size in the MTL region ipsilateral to the seizure focus was significantly and positively correlated with preoperative EM abilities. Greater effect size in the contralateral MTL was correlated with better postoperative verbal EM, especially in left TLE patients. These results suggest that functional imaging of SM tasks may be useful to predict postoperative verbal memory in TLE. They also advocate a common neuroanatomical basis for SM and EM processes in the MTL.
Relationship Among Signal Fidelity, Hearing Loss, and Working Memory for Digital Noise Suppression.
Arehart, Kathryn; Souza, Pamela; Kates, James; Lunner, Thomas; Pedersen, Michael Syskind
2015-01-01
This study considered speech modified by additive babble combined with noise-suppression processing. The purpose was to determine the relative importance of the signal modifications, individual peripheral hearing loss, and individual cognitive capacity on speech intelligibility and speech quality. The participant group consisted of 31 individuals with moderate high-frequency hearing loss ranging in age from 51 to 89 years (mean = 69.6 years). Speech intelligibility and speech quality were measured using low-context sentences presented in babble at several signal-to-noise ratios. Speech stimuli were processed with a binary mask noise-suppression strategy with systematic manipulations of two parameters (error rate and attenuation values). The cumulative effects of signal modification produced by babble and signal processing were quantified using an envelope-distortion metric. Working memory capacity was assessed with a reading span test. Analysis of variance was used to determine the effects of signal processing parameters on perceptual scores. Hierarchical linear modeling was used to determine the role of degree of hearing loss and working memory capacity in individual listener response to the processed noisy speech. The model also considered improvements in envelope fidelity caused by the binary mask and the degradations to envelope caused by error and noise. The participants showed significant benefits in terms of intelligibility scores and quality ratings for noisy speech processed by the ideal binary mask noise-suppression strategy. This benefit was observed across a range of signal-to-noise ratios and persisted when up to a 30% error rate was introduced into the processing. Average intelligibility scores and average quality ratings were well predicted by an objective metric of envelope fidelity. Degree of hearing loss and working memory capacity were significant factors in explaining individual listener's intelligibility scores for binary mask processing applied to speech in babble. Degree of hearing loss and working memory capacity did not predict listeners' quality ratings. The results indicate that envelope fidelity is a primary factor in determining the combined effects of noise and binary mask processing for intelligibility and quality of speech presented in babble noise. Degree of hearing loss and working memory capacity are significant factors in explaining variability in listeners' speech intelligibility scores but not in quality ratings.
Smith, Philip L; Lilburn, Simon D; Corbett, Elaine A; Sewell, David K; Kyllingsbæk, Søren
2016-09-01
We investigated the capacity of visual short-term memory (VSTM) in a phase discrimination task that required judgments about the configural relations between pairs of black and white features. Sewell et al. (2014) previously showed that VSTM capacity in an orientation discrimination task was well described by a sample-size model, which views VSTM as a resource comprised of a finite number of noisy stimulus samples. The model predicts the invariance of [Formula: see text] , the sum of squared sensitivities across items, for displays of different sizes. For phase discrimination, the set-size effect significantly exceeded that predicted by the sample-size model for both simultaneously and sequentially presented stimuli. Instead, the set-size effect and the serial position curves with sequential presentation were predicted by an attention-weighted version of the sample-size model, which assumes that one of the items in the display captures attention and receives a disproportionate share of resources. The choice probabilities and response time distributions from the task were well described by a diffusion decision model in which the drift rates embodied the assumptions of the attention-weighted sample-size model. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Brown, Louise A.
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18–40 years) and older (64–85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale – Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood. PMID:27757096
Brown, Louise A
2016-01-01
Working memory is vulnerable to age-related decline, but there is debate regarding the age-sensitivity of different forms of spatial-sequential working memory task, depending on their passive or active nature. The functional architecture of spatial working memory was therefore explored in younger (18-40 years) and older (64-85 years) adults, using passive and active recall tasks. Spatial working memory was assessed using a modified version of the Spatial Span subtest of the Wechsler Memory Scale - Third Edition (WMS-III; Wechsler, 1998). Across both age groups, the effects of interference (control, visual, or spatial), and recall type (forward and backward), were investigated. There was a clear effect of age group, with younger adults demonstrating a larger spatial working memory capacity than the older adults overall. There was also a specific effect of interference, with the spatial interference task (spatial tapping) reliably reducing performance relative to both the control and visual interference (dynamic visual noise) conditions in both age groups and both recall types. This suggests that younger and older adults have similar dependence upon active spatial rehearsal, and that both forward and backward recall require this processing capacity. Linear regression analyses were then carried out within each age group, to assess the predictors of performance in each recall format (forward and backward). Specifically the backward recall task was significantly predicted by age, within both the younger and older adult groups. This finding supports previous literature showing lifespan linear declines in spatial-sequential working memory, and in working memory tasks from other domains, but contrasts with previous evidence that backward spatial span is no more sensitive to aging than forward span. The study suggests that backward spatial span is indeed more processing-intensive than forward span, even when both tasks include a retention period, and that age predicts backward spatial span performance across the adult lifespan, within both younger and older adulthood.
Dynamic search and working memory in social recall.
Hills, Thomas T; Pachur, Thorsten
2012-01-01
What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to recall individuals from their personal social networks and measured each participant's working memory capacity. Additionally, participants provided social-category and contact-frequency information about the recalled individuals as well as information about the social proximity among the recalled individuals. On the basis of these data, we tested various computational models of memory search regarding their ability to account for the patterns in which participants recalled from social memory. Although recall patterns showed clustering based on social categories, models assuming dynamic transitions between representations cued by social proximity and frequency information predicted participants' recall patterns best-no additional explanatory power was gained from social-category information. Moreover, individual differences in the time between transitions were positively correlated with differences in working memory capacity. These results highlight the role of social proximity in structuring social memory and elucidate the role of working memory for maintaining search criteria during search within that structure.
ERIC Educational Resources Information Center
Kim, YouJin; Payant, Caroline; Pearson, Pamela
2015-01-01
The extent to which individual differences in cognitive abilities affect the relationship among task complexity, attention to form, and second language development has been addressed only minimally in the cognition hypothesis literature. The present study explores how reasoning demands in tasks and working memory (WM) capacity predict learners'…
ERIC Educational Resources Information Center
Conway, Andrew R. A.; Cowan, Nelsin; Bunting, Michael F.; Therriault, David J.; Minkoff, Scott R. B.
2002-01-01
Studied the interrelationships among general fluid intelligence, short-term memory capacity, working memory capacity, and processing speed in 120 young adults and used structural equation modeling to determine the best predictor of general fluid intelligence. Results suggest that working memory capacity, but not short-term memory capacity or…
Almeida, Rita; Barbosa, João; Compte, Albert
2015-09-01
The amount of information that can be retained in working memory (WM) is limited. Limitations of WM capacity have been the subject of intense research, especially in trying to specify algorithmic models for WM. Comparatively, neural circuit perspectives have barely been used to test WM limitations in behavioral experiments. Here we used a neuronal microcircuit model for visuo-spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a topographic organization of the circuit responsible for spatial memory retention. This assumption leads to specific predictions, which we tested in behavioral experiments. According to the model, nearby locations should be recalled with a bias, as if the two memory traces showed attraction or repulsion during the delay period depending on distance. Another prediction is that the previously reported loss of memory precision for an increasing number of memory items (memory load) should vanish when the distances between items are controlled for. Both predictions were confirmed experimentally. Taken together, our findings provide support for a topographic neural circuit organization of vsWM, they suggest that interference between similar memories underlies some WM limitations, and they put forward a circuit-based explanation that reconciles previous conflicting results on the dependence of WM precision with load. Copyright © 2015 the American Physiological Society.
Inhibition delay increases neural network capacity through Stirling transform.
Nogaret, Alain; King, Alastair
2018-03-01
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2)^{-N}-fold increase in capacity for an N-neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Inhibition delay increases neural network capacity through Stirling transform
NASA Astrophysics Data System (ADS)
Nogaret, Alain; King, Alastair
2018-03-01
Inhibitory neural networks are found to encode high volumes of information through delayed inhibition. We show that inhibition delay increases storage capacity through a Stirling transform of the minimum capacity which stabilizes locally coherent oscillations. We obtain both the exact and asymptotic formulas for the total number of dynamic attractors. Our results predict a (ln2) -N-fold increase in capacity for an N -neuron network and demonstrate high-density associative memories which host a maximum number of oscillations in analog neural devices.
Markers of preparatory attention predict visual short-term memory performance.
Murray, Alexandra M; Nobre, Anna C; Stokes, Mark G
2011-05-01
Visual short-term memory (VSTM) is limited in capacity. Therefore, it is important to encode only visual information that is most likely to be relevant to behaviour. Here we asked which aspects of selective biasing of VSTM encoding predict subsequent memory-based performance. We measured EEG during a selective VSTM encoding task, in which we varied parametrically the memory load and the precision of recall required to compare a remembered item to a subsequent probe item. On half the trials, a spatial cue indicated that participants only needed to encode items from one hemifield. We observed a typical sequence of markers of anticipatory spatial attention: early attention directing negativity (EDAN), anterior attention directing negativity (ADAN), late directing attention positivity (LDAP); as well as of VSTM maintenance: contralateral delay activity (CDA). We found that individual differences in preparatory brain activity (EDAN/ADAN) predicted cue-related changes in recall accuracy, indexed by memory-probe discrimination sensitivity (d'). Importantly, our parametric manipulation of memory-probe similarity also allowed us to model the behavioural data for each participant, providing estimates for the quality of the memory representation and the probability that an item could be retrieved. We found that selective encoding primarily increased the probability of accurate memory recall; that ERP markers of preparatory attention predicted the cue-related changes in recall probability. Copyright © 2011. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Peterson, Victor L.; Kim, John; Holst, Terry L.; Deiwert, George S.; Cooper, David M.; Watson, Andrew B.; Bailey, F. Ron
1992-01-01
Report evaluates supercomputer needs of five key disciplines: turbulence physics, aerodynamics, aerothermodynamics, chemistry, and mathematical modeling of human vision. Predicts these fields will require computer speed greater than 10(Sup 18) floating-point operations per second (FLOP's) and memory capacity greater than 10(Sup 15) words. Also, new parallel computer architectures and new structured numerical methods will make necessary speed and capacity available.
McCormick, Cornelia; Protzner, Andrea B.; Barnett, Alexander J.; Cohn, Melanie; Valiante, Taufik A.; McAndrews, Mary Pat
2014-01-01
Computational models predict that focal damage to the Default Mode Network (DMN) causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE) that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs) and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities. PMID:25068108
Kolata, Stefan; Light, Kenneth; Townsend, David A; Hale, Gregory; Grossman, Henya C; Matzel, Louis D
2005-11-01
Up to 50% of an individuals' performance across a wide variety of distinct cognitive tests can be accounted for by a single factor (i.e., "general intelligence"). Despite its ubiquity, the processes or mechanisms regulating this factor are a matter of considerable debate. Although it has been hypothesized that working memory may impact cognitive performance across various domains, tests have been inconclusive due to the difficulty in isolating working memory from its overlapping operations, such as verbal ability. We address this problem using genetically diverse mice, which exhibit a trait analogous to general intelligence. The general cognitive abilities of CD-1 mice were found to covary with individuals' working memory capacity, but not with variations in long-term retention. These results provide evidence that independent of verbal abilities, variations in working memory are associated with general cognitive abilities, and further, suggest a conservation across species of mechanisms and/or processes that regulate cognitive abilities.
Physical principles and current status of emerging non-volatile solid state memories
NASA Astrophysics Data System (ADS)
Wang, L.; Yang, C.-H.; Wen, J.
2015-07-01
Today the influence of non-volatile solid-state memories on persons' lives has become more prominent because of their non-volatility, low data latency, and high robustness. As a pioneering technology that is representative of non-volatile solidstate memories, flash memory has recently seen widespread application in many areas ranging from electronic appliances, such as cell phones and digital cameras, to external storage devices such as universal serial bus (USB) memory. Moreover, owing to its large storage capacity, it is expected that in the near future, flash memory will replace hard-disk drives as a dominant technology in the mass storage market, especially because of recently emerging solid-state drives. However, the rapid growth of the global digital data has led to the need for flash memories to have larger storage capacity, thus requiring a further downscaling of the cell size. Such a miniaturization is expected to be extremely difficult because of the well-known scaling limit of flash memories. It is therefore necessary to either explore innovative technologies that can extend the areal density of flash memories beyond the scaling limits, or to vigorously develop alternative non-volatile solid-state memories including ferroelectric random-access memory, magnetoresistive random-access memory, phase-change random-access memory, and resistive random-access memory. In this paper, we review the physical principles of flash memories and their technical challenges that affect our ability to enhance the storage capacity. We then present a detailed discussion of novel technologies that can extend the storage density of flash memories beyond the commonly accepted limits. In each case, we subsequently discuss the physical principles of these new types of non-volatile solid-state memories as well as their respective merits and weakness when utilized for data storage applications. Finally, we predict the future prospects for the aforementioned solid-state memories for the next generation of data-storage devices based on a comparison of their performance. [Figure not available: see fulltext.
Mall, Jonathan T; Morey, Candice C; Wolff, Michael J; Lehnert, Franziska
2014-10-01
Selective attention and working memory capacity (WMC) are related constructs, but debate about the manner in which they are related remains active. One elegant explanation of variance in WMC is that the efficiency of filtering irrelevant information is the crucial determining factor, rather than differences in capacity per se. We examined this hypothesis by relating WMC (as measured by complex span tasks) to accuracy and eye movements during visual change detection tasks with different degrees of attentional filtering and allocation requirements. Our results did not indicate strong filtering differences between high- and low-WMC groups, and where differences were observed, they were counter to those predicted by the strongest attentional filtering hypothesis. Bayes factors indicated evidence favoring positive or null relationships between WMC and correct responses to unemphasized information, as well as between WMC and the time spent looking at unemphasized information. These findings are consistent with the hypothesis that individual differences in storage capacity, not only filtering efficiency, underlie individual differences in working memory.
An ASIC memory buffer controller for a high speed disk system
NASA Technical Reports Server (NTRS)
Hodson, Robert F.; Campbell, Steve
1993-01-01
The need for large capacity, high speed mass memory storage devices has become increasingly evident at NASA during the past decade. High performance mass storage systems are crucial to present and future NASA systems. Spaceborne data storage system requirements have grown in response to the increasing amounts of data generated and processed by orbiting scientific experiments. Predictions indicate increases in the volume of data by orders of magnitude during the next decade. Current predictions are for storage capacities on the order of terabits (Tb), with data rates exceeding one gigabit per second (Gbps). As part of the design effort for a state of the art mass storage system, NASA Langley has designed a 144 CMOS ASIC to support high speed data transfers. This paper discusses the system architecture, ASIC design and some of the lessons learned in the development process.
For Whom the Mind Wanders, and When, Varies Across Laboratory and Daily-Life Settings.
Kane, Michael J; Gross, Georgina M; Chun, Charlotte A; Smeekens, Bridget A; Meier, Matt E; Silvia, Paul J; Kwapil, Thomas R
2017-09-01
Undergraduates ( N = 274) participated in a weeklong daily-life experience-sampling study of mind wandering after being assessed in the lab for executive-control abilities (working memory capacity; attention-restraint ability; attention-constraint ability; and propensity for task-unrelated thoughts, or TUTs) and personality traits. Eight times a day, electronic devices prompted subjects to report on their current thoughts and context. Working memory capacity and attention abilities predicted subjects' TUT rates in the lab, but predicted the frequency of daily-life mind wandering only as a function of subjects' momentary attempts to concentrate. This pattern replicates prior daily-life findings but conflicts with laboratory findings. Results for personality factors also revealed different associations in the lab and daily life: Only neuroticism predicted TUT rate in the lab, but only openness predicted mind-wandering rate in daily life (both predicted the content of daily-life mind wandering). Cognitive and personality factors also predicted dimensions of everyday thought other than mind wandering, such as subjective judgments of controllability of thought. Mind wandering in people's daily environments and TUTs during controlled and artificial laboratory tasks have different correlates (and perhaps causes). Thus, mind-wandering theories based solely on lab phenomena may be incomplete.
Attentional bias for nondrug reward is magnified in addiction.
Anderson, Brian A; Faulkner, Monica L; Rilee, Jessica J; Yantis, Steven; Marvel, Cherie L
2013-12-01
Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcomes. Attentional biases also develop for stimuli that have been paired with nondrug rewards in adults without a history of addiction, the magnitude of which is predicted by visual working-memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for nondrug (monetary) reward relative to that of healthy controls, and that this bias is related to working-memory impairments and increased impulsiveness. Seventeen patients receiving methadone-maintenance treatment for opioid dependence and 17 healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11; Patton, Stanford, & Barratt, 1995), visual working-memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual-search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. It is important to note, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working-memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with nondrug reward. This nonspecific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction.
Attentional Bias for Non-drug Reward is Magnified in Addiction
Anderson, Brian A.; Faulkner, Monica L.; Rilee, Jessica J.; Yantis, Steven; Marvel, Cherie L.
2014-01-01
Attentional biases for drug-related stimuli play a prominent role in addiction, predicting treatment outcome. Attentional biases also develop for stimuli that have been paired with non-drug reward in adults without a history of addiction, the magnitude of which is predicted by visual working memory capacity and impulsiveness. We tested the hypothesis that addiction is associated with an increased attentional bias for non-drug (monetary) reward relative to that of healthy controls, and that this bias is related to working memory impairments and increased impulsiveness. Seventeen patients receiving methadone maintenance treatment for opioid dependence and seventeen healthy controls participated. Impulsiveness was measured using the Barratt Impulsiveness Scale (BIS-11), visual working memory capacity was measured as the ability to recognize briefly presented color stimuli, and attentional bias was measured as the magnitude of response time slowing caused by irrelevant but previously reward-associated distractors in a visual search task. The results showed that attention was biased toward the distractors across all participants, replicating previous findings. Importantly, this bias was significantly greater in the patients than in the controls and was negatively correlated with visual working memory capacity. Patients were also significantly more impulsive than controls as a group. Our findings demonstrate that patients in treatment for addiction experience greater difficulty ignoring stimuli associated with non-drug reward. This non-specific reward-related bias could mediate the distracting quality of drug-related stimuli previously observed in addiction. PMID:24128148
Beyond perceptual load and dilution: a review of the role of working memory in selective attention
de Fockert, Jan W.
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139
Beyond perceptual load and dilution: a review of the role of working memory in selective attention.
de Fockert, Jan W
2013-01-01
The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.
ERIC Educational Resources Information Center
Unsworth, Nash; Engle, Randall W.
2007-01-01
Studies examining individual differences in working memory capacity have suggested that individuals with low working memory capacities demonstrate impaired performance on a variety of attention and memory tasks compared with individuals with high working memory capacities. This working memory limitation can be conceived of as arising from 2…
Memory Updating and Mental Arithmetic
Han, Cheng-Ching; Yang, Tsung-Han; Lin, Chia-Yuan; Yen, Nai-Shing
2016-01-01
Is domain-general memory updating ability predictive of calculation skills or are such skills better predicted by the capacity for updating specifically numerical information? Here, we used multidigit mental multiplication (MMM) as a measure for calculating skill as this operation requires the accurate maintenance and updating of information in addition to skills needed for arithmetic more generally. In Experiment 1, we found that only individual differences with regard to a task updating numerical information following addition (MUcalc) could predict the performance of MMM, perhaps owing to common elements between the task and MMM. In Experiment 2, new updating tasks were designed to clarify this: a spatial updating task with no numbers, a numerical task with no calculation, and a word task. The results showed that both MUcalc and the spatial task were able to predict the performance of MMM but only with the more difficult problems, while other updating tasks did not predict performance. It is concluded that relevant processes involved in updating the contents of working memory support mental arithmetic in adults. PMID:26869971
Smulders, Tom V; Gould, Kristy L; Leaver, Lisa A
2010-03-27
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too simplistic to predict that all scatter-hoarding animals will outperform non-hoarding animals on all tests of spatial memory. Instead, we argue that we should look at the detailed ecology and natural history of each species. This understanding of natural history then allows us to make predictions about which aspects of spatial memory should be better in which species. We use the natural hoarding behaviour of the three best-studied groups of scatter-hoarding animals to make predictions about three aspects of their spatial memory: duration, capacity and spatial resolution, and we test these predictions against the existing literature. Having laid out how ecology and natural history can be used to predict detailed cognitive abilities, we then suggest using this approach to guide the study of the neural basis of these abilities. We believe that this complementary approach will reveal aspects of memory processing that would otherwise be difficult to discover.
Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T
2012-01-01
A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene–brain–behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ∼6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development. PMID:22832821
Ziermans, T; Dumontheil, I; Roggeman, C; Peyrard-Janvid, M; Matsson, H; Kere, J; Klingberg, T
2012-02-28
A developmental increase in working memory capacity is an important part of cognitive development, and low working memory (WM) capacity is a risk factor for developing psychopathology. Brain activity represents a promising endophenotype for linking genes to behavior and for improving our understanding of the neurobiology of WM development. We investigated gene-brain-behavior relationships by focusing on 18 single-nucleotide polymorphisms (SNPs) located in six dopaminergic candidate genes (COMT, SLC6A3/DAT1, DBH, DRD4, DRD5, MAOA). Visuospatial WM (VSWM) brain activity, measured with functional magnetic resonance imaging, and VSWM capacity were assessed in a longitudinal study of typically developing children and adolescents. Behavioral problems were evaluated using the Child Behavior Checklist (CBCL). One SNP (rs6609257), located ~6.6 kb downstream of the monoamine oxidase A gene (MAOA) on human chromosome X, significantly affected brain activity in a network of frontal, parietal and occipital regions. Increased activity in this network, but not in caudate nucleus or anterior prefrontal regions, was correlated with VSWM capacity, which in turn predicted externalizing (aggressive/oppositional) symptoms, with higher WM capacity associated with fewer externalizing symptoms. There were no direct significant correlations between rs6609257 and behavioral symptoms. These results suggest a mediating role of WM brain activity and capacity in linking the MAOA gene to aggressive behavior during development.
Time estimation predicts mathematical intelligence.
Kramer, Peter; Bressan, Paola; Grassi, Massimo
2011-01-01
Performing mental subtractions affects time (duration) estimates, and making time estimates disrupts mental subtractions. This interaction has been attributed to the concurrent involvement of time estimation and arithmetic with general intelligence and working memory. Given the extant evidence of a relationship between time and number, here we test the stronger hypothesis that time estimation correlates specifically with mathematical intelligence, and not with general intelligence or working-memory capacity. Participants performed a (prospective) time estimation experiment, completed several subtests of the WAIS intelligence test, and self-rated their mathematical skill. For five different durations, we found that time estimation correlated with both arithmetic ability and self-rated mathematical skill. Controlling for non-mathematical intelligence (including working memory capacity) did not change the results. Conversely, correlations between time estimation and non-mathematical intelligence either were nonsignificant, or disappeared after controlling for mathematical intelligence. We conclude that time estimation specifically predicts mathematical intelligence. On the basis of the relevant literature, we furthermore conclude that the relationship between time estimation and mathematical intelligence is likely due to a common reliance on spatial ability.
Object perception is selectively slowed by a visually similar working memory load.
Robinson, Alan; Manzi, Alberto; Triesch, Jochen
2008-12-22
The capacity of visual working memory has been extensively characterized, but little work has investigated how occupying visual memory influences other aspects of cognition and perception. Here we show a novel effect: maintaining an item in visual working memory slows processing of similar visual stimuli during the maintenance period. Subjects judged the gender of computer rendered faces or the naturalness of body postures while maintaining different visual memory loads. We found that when stimuli of the same class (faces or bodies) were maintained in memory, perceptual judgments were slowed. Interestingly, this is the opposite of what would be predicted from traditional priming. Our results suggest there is interference between visual working memory and perception, caused by visual similarity between new perceptual input and items already encoded in memory.
Working memory predicts children's analogical reasoning.
Simms, Nina K; Frausel, Rebecca R; Richland, Lindsey E
2018-02-01
Analogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences. We assessed 5- to 11-year-old children's working memory, inhibitory control, and cognitive flexibility using measures from the National Institutes of Health Toolbox Cognition battery. Individual differences in children's working memory best predicted performance on an analogical mapping task, even when controlling for age, suggesting a fundamental interrelationship between analogical reasoning and working memory development. These findings underscore the need to consider cognitive capacities in comprehensive theories of children's reasoning development. Copyright © 2017 Elsevier Inc. All rights reserved.
Working memory capacity predicts the beneficial effect of selective memory retrieval.
Schlichting, Andreas; Aslan, Alp; Holterman, Christoph; Bäuml, Karl-Heinz T
2015-01-01
Selective retrieval of some studied items can both impair and improve recall of the other items. This study examined the role of working memory capacity (WMC) for the two effects of memory retrieval. Participants studied an item list consisting of predefined target and nontarget items. After study of the list, half of the participants performed an imagination task supposed to induce a change in mental context, whereas the other half performed a counting task which does not induce such context change. Following presentation of a second list, memory for the original list's target items was tested, either with or without preceding retrieval of the list's nontarget items. Consistent with previous work, preceding nontarget retrieval impaired target recall in the absence of the context change, but improved target recall in its presence. In particular, there was a positive relationship between WMC and the beneficial, but not the detrimental effect of memory retrieval. On the basis of the view that the beneficial effect of memory retrieval reflects context-reactivation processes, the results indicate that individuals with higher WMC are better able to capitalise on retrieval-induced context reactivation than individuals with lower WMC.
Jannati, Ali; McDonald, John J; Di Lollo, Vincent
2015-06-01
The capacity of visual short-term memory (VSTM) is commonly estimated by K scores obtained with a change-detection task. Contrary to common belief, K may be influenced not only by capacity but also by the rate at which stimuli are encoded into VSTM. Experiment 1 showed that, contrary to earlier conclusions, estimates of VSTM capacity obtained with a change-detection task are constrained by temporal limitations. In Experiment 2, we used change-detection and backward-masking tasks to obtain separate within-subject estimates of K and of rate of encoding, respectively. A median split based on rate of encoding revealed significantly higher K estimates for fast encoders. Moreover, a significant correlation was found between K and the estimated rate of encoding. The present findings raise the prospect that the reported relationships between K and such cognitive concepts as fluid intelligence may be mediated not only by VSTM capacity but also by rate of encoding. (c) 2015 APA, all rights reserved).
Bisagno, Elisa; Morra, Sergio
2018-03-01
This study examines young volleyball players' learning of increasingly complex attack gestures. The main purpose of the study was to examine the predictive role of a cognitive variable, working memory capacity (or "M capacity"), in the acquisition and development of motor skills in a structured sport. Pascual-Leone's theory of constructive operators (TCO) was used as a framework; it defines working memory capacity as the maximum number of schemes that can be simultaneously activated by attentional resources. The role of expertise in motor learning was also considered. The expertise of each athlete was assessed in terms of years of practice and number of training sessions per week. The participants were 120 volleyball players, aged between 6 and 26 years, who performed both working memory tests and practical tests of volleyball involving the execution of the "third touch" by means of technical gestures of varying difficulty. We proposed a task analysis of these different gestures framed within the TCO. The results pointed to a very clear dissociation. On the one hand, M capacity was the best predictor of correct motor performance, and a specific capacity threshold was found for learning each attack gesture. On the other hand, experience was the key for the precision of the athletic gestures. This evidence could underline the existence of two different cognitive mechanisms in motor learning. The first one, relying on attentional resources, is required to learn a gesture. The second one, based on repeated experience, leads to its automatization. Copyright © 2017 Elsevier Inc. All rights reserved.
Attentional networks and visuospatial working memory capacity in social anxiety.
Moriya, Jun
2018-02-01
Social anxiety is associated with attentional bias and working memory for emotional stimuli; however, the ways in which social anxiety affects cognitive functions involving non-emotional stimuli remains unclear. The present study focused on the role of attentional networks (i.e. alerting, orienting, and executive control networks) and visuospatial working memory capacity (WMC) for non-emotional stimuli in the context of social anxiety. One hundred and seventeen undergraduates completed questionnaires on social anxiety. They then performed an attentional network test and a change detection task to measure visuospatial WMC. Orienting network and visuospatial WMC were positively correlated with social anxiety. A multiple regression analysis showed significant positive associations of alerting, orienting, and visuospatial WMC with social anxiety. Alerting, orienting networks, and high visuospatial WMC for non-emotional stimuli may predict degree of social anxiety.
Hu, Xiaochen; Kleinschmidt, Helena; Martin, Jason A.; Han, Ying; Thelen, Manuela; Meiberth, Dix; Jessen, Frank; Weber, Bernd
2017-01-01
Delay discounting (DD) refers to the phenomenon that individuals discount future consequences. Previous studies showed that future imagination reduces DD, which was mediated by functional connectivity between medial prefrontal valuation areas and a key region for episodic memory (hippocampus). Future imagination involves an initial period of construction and a later period of elaboration, with the more elaborative latter period recruiting more cortical regions. This study examined whether elaborative future imagination modulated DD, and if so, what are the underlying neural substrates. It was assumed that cortical areas contribute to the modulation effect during the later period of imagination. Since future imagination is supported by episodic memory capacity, we additionally hypothesize that the neural network underlying the modulation effect is related to individual episodic memory capacity. Twenty-two subjects received an extensive interview on personal future events, followed by an fMRI DD experiment with and without the need to perform elaborative future imagination simultaneously. Subjects' episodic memory capacity was also assessed. Behavioral results replicate previous findings of a reduced discount rate in the DD plus imagination condition compared to the DD only condition. The behavioral effect positively correlated with: (i) subjective value signal changes in midline brain structures during the initial imagination period; and (ii) signal changes in left prefrontoparietal areas during the later imagination period. Generalized psychophysiological interaction (gPPI) analyses reveal positive correlations between the behavioral effect and functional connectivity among the following areas: right anterior cingulate cortex (ACC) and left hippocampus; left inferior parietal cortex (IPC) and left hippocampus; and left IPC and bilateral occipital cortices. These changes in functional connectivity are also associated with episodic memory capacity. A hierarchical multiple regression indicates that the model with both the valuation related signal changes in the right ACC and the imagination related signal changes in the left IPC best predicts the reduction in DD. This study illustrates interactions between the left hippocampus and multiple cortical regions underlying the modulation effect of elaborative episodic future imagination, demonstrating, for the first time, empirical support for a relation to individual episodic memory capacity. PMID:28105009
Hu, Xiaochen; Kleinschmidt, Helena; Martin, Jason A; Han, Ying; Thelen, Manuela; Meiberth, Dix; Jessen, Frank; Weber, Bernd
2016-01-01
Delay discounting (DD) refers to the phenomenon that individuals discount future consequences. Previous studies showed that future imagination reduces DD, which was mediated by functional connectivity between medial prefrontal valuation areas and a key region for episodic memory (hippocampus). Future imagination involves an initial period of construction and a later period of elaboration, with the more elaborative latter period recruiting more cortical regions. This study examined whether elaborative future imagination modulated DD, and if so, what are the underlying neural substrates. It was assumed that cortical areas contribute to the modulation effect during the later period of imagination. Since future imagination is supported by episodic memory capacity, we additionally hypothesize that the neural network underlying the modulation effect is related to individual episodic memory capacity. Twenty-two subjects received an extensive interview on personal future events, followed by an fMRI DD experiment with and without the need to perform elaborative future imagination simultaneously. Subjects' episodic memory capacity was also assessed. Behavioral results replicate previous findings of a reduced discount rate in the DD plus imagination condition compared to the DD only condition. The behavioral effect positively correlated with: (i) subjective value signal changes in midline brain structures during the initial imagination period; and (ii) signal changes in left prefrontoparietal areas during the later imagination period. Generalized psychophysiological interaction (gPPI) analyses reveal positive correlations between the behavioral effect and functional connectivity among the following areas: right anterior cingulate cortex (ACC) and left hippocampus; left inferior parietal cortex (IPC) and left hippocampus; and left IPC and bilateral occipital cortices. These changes in functional connectivity are also associated with episodic memory capacity. A hierarchical multiple regression indicates that the model with both the valuation related signal changes in the right ACC and the imagination related signal changes in the left IPC best predicts the reduction in DD. This study illustrates interactions between the left hippocampus and multiple cortical regions underlying the modulation effect of elaborative episodic future imagination, demonstrating, for the first time, empirical support for a relation to individual episodic memory capacity.
Cognitive performance predicts treatment decisional abilities in mild to moderate dementia.
Gurrera, R J; Moye, J; Karel, M J; Azar, A R; Armesto, J C
2006-05-09
To examine the contribution of neuropsychological test performance to treatment decision-making capacity in community volunteers with mild to moderate dementia. The authors recruited volunteers (44 men, 44 women) with mild to moderate dementia from the community. Subjects completed a battery of 11 neuropsychological tests that assessed auditory and visual attention, logical memory, language, and executive function. To measure decision making capacity, the authors administered the Capacity to Consent to Treatment Interview, the Hopemont Capacity Assessment Interview, and the MacCarthur Competence Assessment Tool--Treatment. Each of these instruments individually scores four decisional abilities serving capacity: understanding, appreciation, reasoning, and expression of choice. The authors used principal components analysis to generate component scores for each ability across instruments, and to extract principal components for neuropsychological performance. Multiple linear regression analyses demonstrated that neuropsychological performance significantly predicted all four abilities. Specifically, it predicted 77.8% of the common variance for understanding, 39.4% for reasoning, 24.6% for appreciation, and 10.2% for expression of choice. Except for reasoning and appreciation, neuropsychological predictor (beta) profiles were unique for each ability. Neuropsychological performance substantially and differentially predicted capacity for treatment decisions in individuals with mild to moderate dementia. Relationships between elemental cognitive function and decisional capacity may differ in individuals whose decisional capacity is impaired by other disorders, such as mental illness.
Thalamic Activation in the Kleine-Levin Syndrome
Engström, Maria; Karlsson, Thomas; Landtblom, Anne-Marie
2014-01-01
Study Objectives: The objective of this study was to investigate if combined measures of activation in the thalamus and working memory capacity could guide the diagnosis of Kleine-Levin Syndrome (KLS). A second objective was to obtain more insight into the neurobiological causes of KLS. Design: Matched group and consecutive recruitment. Setting: University hospital neurology department and imaging center. Patients or Participants: Eighteen patients with KLS diagnosed according to the International Classification of Sleep Disorders and 26 healthy controls were included. Interventions: N/A. Measurements and Results: Working memory capacity was assessed by the listening span task. A version of this task (reading span) was presented to the participants during functional magnetic resonance imaging (fMRI). Activation in the thalamus was measured in a region of interest analysis. A combination of the working memory capacity and the thalamic activation measures resulted in 80% prediction accuracy, 81% sensitivity, and 78% specificity regarding the ability to separate KLS patients from healthy controls. The controls had an inverse relation between working memory capacity and thalamic activation; higher performing participants had lower thalamic activation (r = -0.41). KLS patients showed the opposite relationship; higher performing participants had a tendency to higher thalamic activation (r = -0.35). Conclusions: This study shows that functional neuroimaging of the thalamus combined with neuropsychological assessment of working memory function provides a means to guide diagnosis of Kleine-Levin Syndrome. Results in this study also indicate that imaging of brain function and evaluation of cognitive capacity can give insights into the neurobiological mechanisms of Kleine-Levin Syndrome. Citation: Engström M; Karlsson T; Landtblom AM. Thalamic activation in the Kleine-Levin Syndrome. SLEEP 2014;37(2):379-386. PMID:24497666
Task experience and children’s working memory performance: A perspective from recall timing
Towse, John N.; Cowan, Nelson; Horton, Neil J.; Whytock, Shealagh
2008-01-01
Working memory is an important theoretical construct among children, and measures of its capacity predict a range of cognitive skills and abilities. Data from 9-and 11-year-old children illustrate how a chronometric analysis of recall can complement and elaborate recall accuracy in advancing our understanding of working memory. A reading span task was completed by 130 children, 75 of whom were tested on two occasions, with sequence length either increasing or decreasing during test administration. Substantial pauses occur during participants’ recall sequences and they represent consistent performance traits over time, whilst also varying with recall circumstances and task history. Recall pauses help to predict reading and number skills, alongside as well as separate from levels of recall accuracy. The task demands of working memory change as a function of task experience, with a combination of accuracy and response timing in novel task situations being the strongest predictor of cognitive attainment. PMID:18473637
Serial consolidation of orientation information into visual short-term memory.
Liu, Taosheng; Becker, Mark W
2013-06-01
Previous research suggests that there is a limit to the rate at which items can be consolidated in visual short-term memory (VSTM). This limit could be due to either a serial or a limited-capacity parallel process. Historically, it has proven difficult to distinguish between these two types of processes. In the present experiment, we took a novel approach that allowed us to do so. Participants viewed two oriented gratings either sequentially or simultaneously and reported one of the gratings' orientation via method of adjustment. Performance was worse for the simultaneous than for the sequential condition. We fit the data with a mixture model that assumes performance is limited by a noisy memory representation plus random guessing. Critically, the serial and limited-capacity parallel processes made distinct predictions regarding the model's guessing and memory-precision parameters. We found strong support for a serial process, which implies that one can consolidate only a single orientation into VSTM at a time.
The scope and control of attention as separate aspects of working memory.
Shipstead, Zach; Redick, Thomas S; Hicks, Kenny L; Engle, Randall W
2012-01-01
The present study examines two varieties of working memory (WM) capacity task: visual arrays (i.e., a measure of the amount of information that can be maintained in working memory) and complex span (i.e., a task that taps WM-related attentional control). Using previously collected data sets we employ confirmatory factor analysis to demonstrate that visual arrays and complex span tasks load on separate, but correlated, factors. A subsequent series of structural equation models and regression analyses demonstrate that these factors contribute both common and unique variance to the prediction of general fluid intelligence (Gf). However, while visual arrays does contribute uniquely to higher cognition, its overall correlation to Gf is largely mediated by variance associated with the complex span factor. Thus we argue that visual arrays performance is not strictly driven by a limited-capacity storage system (e.g., the focus of attention; Cowan, 2001), but may also rely on control processes such as selective attention and controlled memory search.
Discourse accessibility constraints in children’s processing of object relative clauses
Haendler, Yair; Kliegl, Reinhold; Adani, Flavia
2015-01-01
Children’s poor performance on object relative clauses has been explained in terms of intervention locality. This approach predicts that object relatives with a full DP head and an embedded pronominal subject are easier than object relatives in which both the head noun and the embedded subject are full DPs. This prediction is shared by other accounts formulated to explain processing mechanisms. We conducted a visual-world study designed to test the off-line comprehension and on-line processing of object relatives in German-speaking 5-year-olds. Children were tested on three types of object relatives, all having a full DP head noun and differing with respect to the type of nominal phrase that appeared in the embedded subject position: another full DP, a 1st- or a 3rd-person pronoun. Grammatical skills and memory capacity were also assessed in order to see whether and how they affect children’s performance. Most accurately processed were object relatives with 1st-person pronoun, independently of children’s language and memory skills. Performance on object relatives with two full DPs was overall more accurate than on object relatives with 3rd-person pronoun. In the former condition, children with stronger grammatical skills accurately processed the structure and their memory abilities determined how fast they were; in the latter condition, children only processed accurately the structure if they were strong both in their grammatical skills and in their memory capacity. The results are discussed in the light of accounts that predict different pronoun effects like the ones we find, which depend on the referential properties of the pronouns. We then discuss which role language and memory abilities might have in processing object relatives with various embedded nominal phrases. PMID:26157410
Gómez Taibo, María Luisa; Vieiro Iglesias, Pilar; González Raposo, María del Salvador; Sotillo Méndez, María
2010-11-01
Twelve cerebral palsied adolescents and young adults with complex communicative needs who used augmentative and alternative communication were studied. They were classified according to their working memory capacity (high vs. low) into two groups of 6 participants. They were also divided into two groups of 6 participants according to their high vs. low phonological skills. These groups were compared on their performance in reading tests -orthographic knowledge, a word test and a pseudoword reading test- and in the spelling of words, pseudowords and pictures' names. Statistical differences were found between high vs. low phonological skills groups, and between high and low working memory groups. High working memory capacity group scored significantly higher than low working memory group in the orthographic and word reading tests. The high phonological skills group outperformed the low phonological skills group in the word reading test and in the spelling of pseudowords and pictures' names. From a descriptive point of view, phonological skills and working memory, factors known to be highly predictive of literacy skills in people without disabilities, also hold as factors for the participants that used AAC in our study. Implications of the results are discussed.
van Duijn, Tina; Buszard, Tim; Hoskens, Merel C J; Masters, Rich S W
2017-01-01
This study explored the relationship between working memory (WM) capacity, corticocortical communication (EEG coherence), and propensity for conscious control of movement during the performance of a complex far-aiming task. We were specifically interested in the role of these variables in predicting motor performance by novices. Forty-eight participants completed (a) an assessment of WM capacity (an adapted Rotation Span task), (b) a questionnaire that assessed the propensity to consciously control movement (the Movement Specific Reinvestment Scale), and (c) a hockey push-pass task. The hockey push-pass task was performed in a single task (movement only) condition and a combined task (movement plus decision) condition. Electroencephalography (EEG) was used to examine brain activity during the single task. WM capacity best predicted single task performance. WM capacity in combination with T8-Fz coherence (between the visuospatial and motor regions of the brain) best predicted combined task performance. We discuss the implied roles of visuospatial information processing capacity, neural coactivation, and propensity for conscious processing during performance of complex motor tasks. © 2017 Elsevier B.V. All rights reserved.
Episodic autobiographical memory is associated with variation in the size of hippocampal subregions.
Palombo, Daniela J; Bacopulos, Agnes; Amaral, Robert S C; Olsen, Rosanna K; Todd, Rebecca M; Anderson, Adam K; Levine, Brian
2018-02-01
Striking individual differences exist in the human capacity to recollect past events, yet, little is known about the neural correlates of such individual differences. Studies investigating hippocampal volume in relation to individual differences in laboratory measures of episodic memory in young adults suggest that whole hippocampal volume is unrelated (or even negatively associated) with episodic memory. However, anatomical and functional specialization across hippocampal subregions suggests that individual differences in episodic memory may be linked to particular hippocampal subregions, as opposed to whole hippocampal volume. Given that the DG/CA 2/3 circuitry is thought to be especially critical for supporting episodic memory in humans, we predicted that the volume of this region would be associated with individual variability in episodic memory. This prediction was supported using high-resolution MRI of the hippocampal subfields and measures of real-world (autobiographical) episodic memory. In addition to the association with DG/CA 2/3 , we further observed a relationship between episodic autobiographical memory and subiculum volume, whereas no association was observed with CA 1 or with whole hippocampal volume. These findings provide insight into the possible neural substrates that mediate individual differences in real-world episodic remembering in humans. © 2017 Wiley Periodicals, Inc.
Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A
2012-01-01
In two experiments, the locus of individual differences in working memory capacity and long-term memory recall was examined. Participants performed categorical cued and free recall tasks, and individual differences in the dynamics of recall were interpreted in terms of a hierarchical-search framework. The results from this study are in accordance with recent theorizing suggesting a strong relation between working memory capacity and retrieval from long-term memory. Furthermore, the results also indicate that individual differences in categorical recall are partially due to differences in accessibility. In terms of accessibility of target information, two important factors drive the difference between high- and low-working-memory-capacity participants. Low-working-memory-capacity participants fail to utilize appropriate retrieval strategies to access cues, and they also have difficulty resolving cue overload. Thus, when low-working-memory-capacity participants were given specific cues that activated a smaller set of potential targets, their recall performance was the same as that of high-working-memory-capacity participants.
Working memory affects false memory production for emotional events.
Mirandola, Chiara; Toffalini, Enrico; Ciriello, Alfonso; Cornoldi, Cesare
2017-01-01
Whereas a link between working memory (WM) and memory distortions has been demonstrated, its influence on emotional false memories is unclear. In two experiments, a verbal WM task and a false memory paradigm for negative, positive or neutral events were employed. In Experiment 1, we investigated individual differences in verbal WM and found that the interaction between valence and WM predicted false recognition, with negative and positive material protecting high WM individuals against false remembering; the beneficial effect of negative material disappeared in low WM participants. In Experiment 2, we lowered the WM capacity of half of the participants with a double task request, which led to an overall increase in false memories; furthermore, consistent with Experiment 1, the increase in negative false memories was larger than that of neutral or positive ones. It is concluded that WM plays a critical role in determining false memory production, specifically influencing the processing of negative material.
High Working Memory Capacity Predicts Less Retrieval Induced Forgetting
Mall, Jonathan T.; Morey, Candice C.
2013-01-01
Background Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval induced forgetting (RIFO) because inhibition of competing memory traces during retrieval renders them temporarily less accessible. According to this suggestion, superior executive control should increase RIFO. Alternatively, superior focused search abilities could diminish RIFO, because delimiting the search set reduces the amount of competition between traces and thus the need for inhibition. Some evidence suggests that high WMC is related to more RIFO, which is inconsistent with the focused search hypothesis. Methodology/Principal Findings Using the RIFO paradigm, we created distinct and overlapping categories to manipulate the amount of competition between them. This overlap increased competition between some categories while exclusive use of weak exemplars ensured negligible effects of output interference and integration. Low WMC individuals exhibited RIFO within and between overlapping categories, indicating the effect of resolving competition during retrieval. High WMC individuals only exhibited between-category RIFO, suggesting they experienced reduced competition resolution demands. Low WMC Individuals exhibited the strongest RIFO and no retrieval benefits when interference resolution demands were high. Conclusions/Significance Our findings qualify the inhibitory explanation for RIFO by incorporating the focused search hypothesis for materials that are likely to pose extraordinary challenges at retrieval. The results highlight the importance of considering individual differences in retrieval-induced effects and qualify existing models of these effects. PMID:23326359
High working memory capacity predicts less retrieval induced forgetting.
Mall, Jonathan T; Morey, Candice C
2013-01-01
Working Memory Capacity (WMC) is thought to be related to executive control and focused memory search abilities. These two hypotheses make contrasting predictions regarding the effects of retrieval on forgetting. Executive control during memory retrieval is believed to lead to retrieval induced forgetting (RIFO) because inhibition of competing memory traces during retrieval renders them temporarily less accessible. According to this suggestion, superior executive control should increase RIFO. Alternatively, superior focused search abilities could diminish RIFO, because delimiting the search set reduces the amount of competition between traces and thus the need for inhibition. Some evidence suggests that high WMC is related to more RIFO, which is inconsistent with the focused search hypothesis. Using the RIFO paradigm, we created distinct and overlapping categories to manipulate the amount of competition between them. This overlap increased competition between some categories while exclusive use of weak exemplars ensured negligible effects of output interference and integration. Low WMC individuals exhibited RIFO within and between overlapping categories, indicating the effect of resolving competition during retrieval. High WMC individuals only exhibited between-category RIFO, suggesting they experienced reduced competition resolution demands. Low WMC Individuals exhibited the strongest RIFO and no retrieval benefits when interference resolution demands were high. Our findings qualify the inhibitory explanation for RIFO by incorporating the focused search hypothesis for materials that are likely to pose extraordinary challenges at retrieval. The results highlight the importance of considering individual differences in retrieval-induced effects and qualify existing models of these effects.
Working Memory and Impulsivity Predict Marijuana-Related Problems Among Frequent Users
Day, Anne M.; Metrik, Jane; Spillane, Nichea S.; Kahler, Christopher W.
2012-01-01
Background Although marijuana is the most commonly used illicit substance in the US, only a small portion of users go on to develop dependence, suggesting that there are substantial individual differences in vulnerability to marijuana-related problems among users. Deficits in working memory and high trait impulsivity are two factors that may place marijuana users at increased risk for experiencing related problems. Methods Using baseline data from an experimental study that recruited 104 frequent marijuana users (M=71.86% of prior 60 days, SD=22%), we examined the associations of working memory and trait impulsivity with marijuana-related problems. Results Lower working memory, as measured by Trail Making Test B, but not short-term memory capacity, predicted more marijuana-related problems. Higher trait impulsivity scores were independently associated with greater number of problems. Conclusions Results suggest that marijuana users with reduced executive cognitive ability are more susceptible to developing problems related to their use. Trait impulsivity and executive working memory appear to be independent risk factors for experiencing marijuana-related problems. PMID:23312340
Shipstead, Zach; Engle, Randall W
2013-01-01
One approach to understanding working memory (WM) holds that individual differences in WM capacity arise from the amount of information a person can store in WM over short periods of time. This view is especially prevalent in WM research conducted with the visual arrays task. Within this tradition, many researchers have concluded that the average person can maintain approximately 4 items in WM. The present study challenges this interpretation by demonstrating that performance on the visual arrays task is subject to time-related factors that are associated with retrieval from long-term memory. Experiment 1 demonstrates that memory for an array does not decay as a product of absolute time, which is consistent with both maintenance- and retrieval-based explanations of visual arrays performance. Experiment 2 introduced a manipulation of temporal discriminability by varying the relative spacing of trials in time. We found that memory for a target array was significantly influenced by its temporal compression with, or isolation from, a preceding trial. Subsequent experiments extend these effects to sub-capacity set sizes and demonstrate that changes in the size of k are meaningful to prediction of performance on other measures of WM capacity as well as general fluid intelligence. We conclude that performance on the visual arrays task does not reflect a multi-item storage system but instead measures a person's ability to accurately retrieve information in the face of proactive interference.
McVay, Jennifer C; Kane, Michael J
2012-05-01
Some people are better readers than others, and this variation in comprehension ability is predicted by measures of working memory capacity (WMC). The primary goal of this study was to investigate the mediating role of mind-wandering experiences in the association between WMC and normal individual differences in reading comprehension, as predicted by the executive-attention theory of WMC (e.g., Engle & Kane, 2004). We used a latent-variable, structural-equation-model approach, testing skilled adult readers on 3 WMC span tasks, 7 varied reading-comprehension tasks, and 3 attention-control tasks. Mind wandering was assessed using experimenter-scheduled thought probes during 4 different tasks (2 reading, 2 attention-control). The results support the executive-attention theory of WMC. Mind wandering across the 4 tasks loaded onto a single latent factor, reflecting a stable individual difference. Most important, mind wandering was a significant mediator in the relationship between WMC and reading comprehension, suggesting that the WMC-comprehension correlation is driven, in part, by attention control over intruding thoughts. We discuss implications for theories of WMC, attention control, and reading comprehension.
The architecture of dynamic reservoir in the echo state network
NASA Astrophysics Data System (ADS)
Cui, Hongyan; Liu, Xiang; Li, Lixiang
2012-09-01
Echo state network (ESN) has recently attracted increasing interests because of its superior capability in modeling nonlinear dynamic systems. In the conventional echo state network model, its dynamic reservoir (DR) has a random and sparse topology, which is far from the real biological neural networks from both structural and functional perspectives. We hereby propose three novel types of echo state networks with new dynamic reservoir topologies based on complex network theory, i.e., with a small-world topology, a scale-free topology, and a mixture of small-world and scale-free topologies, respectively. We then analyze the relationship between the dynamic reservoir structure and its prediction capability. We utilize two commonly used time series to evaluate the prediction performance of the three proposed echo state networks and compare them to the conventional model. We also use independent and identically distributed time series to analyze the short-term memory and prediction precision of these echo state networks. Furthermore, we study the ratio of scale-free topology and the small-world topology in the mixed-topology network, and examine its influence on the performance of the echo state networks. Our simulation results show that the proposed echo state network models have better prediction capabilities, a wider spectral radius, but retain almost the same short-term memory capacity as compared to the conventional echo state network model. We also find that the smaller the ratio of the scale-free topology over the small-world topology, the better the memory capacities.
Brady, Timothy F; Konkle, Talia; Alvarez, George A
2009-11-01
The information that individuals can hold in working memory is quite limited, but researchers have typically studied this capacity using simple objects or letter strings with no associations between them. However, in the real world there are strong associations and regularities in the input. In an information theoretic sense, regularities introduce redundancies that make the input more compressible. The current study shows that observers can take advantage of these redundancies, enabling them to remember more items in working memory. In 2 experiments, covariance was introduced between colors in a display so that over trials some color pairs were more likely to appear than other color pairs. Observers remembered more items from these displays than from displays where the colors were paired randomly. The improved memory performance cannot be explained by simply guessing the high-probability color pair, suggesting that observers formed more efficient representations to remember more items. Further, as observers learned the regularities, their working memory performance improved in a way that is quantitatively predicted by a Bayesian learning model and optimal encoding scheme. These results suggest that the underlying capacity of the individuals' working memory is unchanged, but the information they have to remember can be encoded in a more compressed fashion. Copyright 2009 APA
Working memory training promotes general cognitive abilities in genetically heterogeneous mice.
Light, Kenneth R; Kolata, Stefan; Wass, Christopher; Denman-Brice, Alexander; Zagalsky, Ryan; Matzel, Louis D
2010-04-27
In both humans and mice, the efficacy of working memory capacity and its related process, selective attention, are each strongly predictive of individuals' aggregate performance in cognitive test batteries [1-9]. Because working memory is taxed during most cognitive tasks, the efficacy of working memory may have a causal influence on individuals' performance on tests of "intelligence" [10, 11]. Despite the attention this has received, supporting evidence has been largely correlational in nature (but see [12]). Here, genetically heterogeneous mice were assessed on a battery of five learning tasks. Animals' aggregate performance across the tasks was used to estimate their general cognitive abilities, a trait that is in some respects analogous to intelligence [13, 14]. Working memory training promoted an increase in animals' selective attention and their aggregate performance on these tasks. This enhancement of general cognitive performance by working memory training was attenuated if its selective attention demands were reduced. These results provide evidence that the efficacy of working memory capacity and selective attention may be causally related to an animal's general cognitive performance and provide a framework for behavioral strategies to promote those abilities. Furthermore, the pattern of behavior reported here reflects a conservation of the processes that regulate general cognitive performance in humans and infrahuman animals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Concurrent working memory load can facilitate selective attention: evidence for specialized load.
Park, Soojin; Kim, Min-Shik; Chun, Marvin M
2007-10-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA
Smeekens, Bridget A; Kane, Michael J
2016-11-01
Should executive control, as indicated by working memory capacity (WMC) and mind-wandering propensity, help or hinder creativity? Sustained and focused attention should help guide a selective search of solution-relevant information in memory and help inhibit uncreative, yet accessible, ideas. However, unfocused attention and daydreaming should allow mental access to more loosely relevant concepts, remotely linked to commonplace solutions. Three individual-differences studies inserted incubation periods into one or two divergent thinking tasks and tested whether WMC (assessed by complex span tasks) and incubation-period mind wandering (assessed as probed reports of task-unrelated thought [TUT]) predicted post-incubation performance. Retrospective self-reports of Openness (Experiment 2) and mind-wandering and daydreaming propensity (Experiment 3) complemented our thought-probe assessments of TUT. WMC did not correlate with creativity in divergent thinking, whereas only the questionnaire measure of daydreaming, but not probed thought reports, weakly predicted creativity; the fact that in-the-moment TUTs did not correlate divergent creativity is especially problematic for claims that mind-wandering processes contribute to creative cognition. Moreover, the fact that WMC tends to strongly predict analytical problem solving and reasoning, but may not correlate with divergent thinking, provides a useful boundary condition for defining WMC's nomological net. On balance, our data provide no support for either benefits or costs of executive control for at least one component of creativity.
Visual Working Memory Capacity and Proactive Interference
Hartshorne, Joshua K.
2008-01-01
Background Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Methodology/Principal Findings Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. Conclusions/Significance This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals. PMID:18648493
Visual working memory capacity and proactive interference.
Hartshorne, Joshua K
2008-07-23
Visual working memory capacity is extremely limited and appears to be relatively immune to practice effects or the use of explicit strategies. The recent discovery that visual working memory tasks, like verbal working memory tasks, are subject to proactive interference, coupled with the fact that typical visual working memory tasks are particularly conducive to proactive interference, suggests that visual working memory capacity may be systematically under-estimated. Working memory capacity was probed behaviorally in adult humans both in laboratory settings and via the Internet. Several experiments show that although the effect of proactive interference on visual working memory is significant and can last over several trials, it only changes the capacity estimate by about 15%. This study further confirms the sharp limitations on visual working memory capacity, both in absolute terms and relative to verbal working memory. It is suggested that future research take these limitations into account in understanding differences across a variety of tasks between human adults, prelinguistic infants and nonlinguistic animals.
Cognitive performance predicts treatment decisional abilities in mild to moderate dementia
Gurrera, R.J.; Moye, J.; Karel, M.J.; Azar, A.R.; Armesto, J.C.
2016-01-01
Objective To examine the contribution of neuropsychological test performance to treatment decision-making capacity in community volunteers with mild to moderate dementia. Methods The authors recruited volunteers (44 men, 44 women) with mild to moderate dementia from the community. Subjects completed a battery of 11 neuropsychological tests that assessed auditory and visual attention, logical memory, language, and executive function. To measure decision making capacity, the authors administered the Capacity to Consent to Treatment Interview, the Hopemont Capacity Assessment Interview, and the MacCarthur Competence Assessment Tool—Treatment. Each of these instruments individually scores four decisional abilities serving capacity: understanding, appreciation, reasoning, and expression of choice. The authors used principal components analysis to generate component scores for each ability across instruments, and to extract principal components for neuropsychological performance. Results Multiple linear regression analyses demonstrated that neuropsychological performance significantly predicted all four abilities. Specifically, it predicted 77.8% of the common variance for understanding, 39.4% for reasoning, 24.6% for appreciation, and 10.2% for expression of choice. Except for reasoning and appreciation, neuropsychological predictor (β) profiles were unique for each ability. Conclusions Neuropsychological performance substantially and differentially predicted capacity for treatment decisions in individuals with mild to moderate dementia. Relationships between elemental cognitive function and decisional capacity may differ in individuals whose decisional capacity is impaired by other disorders, such as mental illness. PMID:16682669
Contralateral Delay Activity Tracks Fluctuations in Working Memory Performance.
Adam, Kirsten C S; Robison, Matthew K; Vogel, Edward K
2018-01-08
Neural measures of working memory storage, such as the contralateral delay activity (CDA), are powerful tools in working memory research. CDA amplitude is sensitive to working memory load, reaches an asymptote at known behavioral limits, and predicts individual differences in capacity. An open question, however, is whether neural measures of load also track trial-by-trial fluctuations in performance. Here, we used a whole-report working memory task to test the relationship between CDA amplitude and working memory performance. If working memory failures are due to decision-based errors and retrieval failures, CDA amplitude would not differentiate good and poor performance trials when load is held constant. If failures arise during storage, then CDA amplitude should track both working memory load and trial-by-trial performance. As expected, CDA amplitude tracked load (Experiment 1), reaching an asymptote at three items. In Experiment 2, we tracked fluctuations in trial-by-trial performance. CDA amplitude was larger (more negative) for high-performance trials compared with low-performance trials, suggesting that fluctuations in performance were related to the successful storage of items. During working memory failures, participants oriented their attention to the correct side of the screen (lateralized P1) and maintained covert attention to the correct side during the delay period (lateralized alpha power suppression). Despite the preservation of attentional orienting, we found impairments consistent with an executive attention theory of individual differences in working memory capacity; fluctuations in executive control (indexed by pretrial frontal theta power) may be to blame for storage failures.
Working memory capacity and mind-wandering during low-demand cognitive tasks.
Robison, Matthew K; Unsworth, Nash
2017-07-01
Individual differences in working memory capacity (WMC) typically predict reduced rates of mind-wandering during laboratory tasks (Randall, Oswald, & Beier, 2014). However, some studies have shown a positive relationship between WMC and mind-wandering during particularly low-demand tasks (Levinson, Smallwood, & Davidson, 2012; Rummel & Boywitt, 2014; Zavagnin, Borella, & De Beni, 2014). More specifically, Baird, Smallwood, and Schooler (2011) found that when individuals with greater WMC do mind-wander, they tend entertain more future-oriented thoughts. This piece of evidence is frequently used to support the context-regulation hypothesis, which states that using spare capacity to think productively (e.g. plan) during relatively simple tasks is indicative of a cognitive system that is functioning in an adaptive manner (Smallwood & Andrews-Hanna, 2013). The present investigation failed to replicate the finding that WMC is positively related to future-oriented off-task thought, which has implications for several theoretical viewpoints. Copyright © 2017 Elsevier Inc. All rights reserved.
Deliberative and spontaneous cognitive processes associated with HIV risk behavior
Ames, Susan L.; Stacy, Alan W.
2012-01-01
Dual process models of decision-making suggest that behavior is mediated by a spontaneous behavior selection process or by a more deliberative evaluation of behavioral options. We examined whether the deliberative system moderates the influence of spontaneous cognition on HIV-risk behaviors. A measure of spontaneous sex-related associations (word association), a measure of deliberative working memory capacity (operation span), and two measures of sexual behavior (condom use and multiple partners) were assessed in a cross-sectional study among 490 adult drug offenders. Significant effects were observed among men but not among women in two latent interaction models. In a novel finding, the accessibility of spontaneous safe sex-related associations was significantly more predictive of condom use among men with higher working memory capacity than among men with lower capacity. These results have implications for the design of interventions to promote safe sex practices. PMID:22331437
Working memory capacity and task goals modulate error-related ERPs.
Coleman, James R; Watson, Jason M; Strayer, David L
2018-03-01
The present study investigated individual differences in information processing following errant behavior. Participants were initially classified as high or as low working memory capacity using the Operation Span Task. In a subsequent session, they then performed a high congruency version of the flanker task under both speed and accuracy stress. We recorded ERPs and behavioral measures of accuracy and response time in the flanker task with a primary focus on processing following an error. The error-related negativity was larger for the high working memory capacity group than for the low working memory capacity group. The positivity following an error (Pe) was modulated to a greater extent by speed-accuracy instruction for the high working memory capacity group than for the low working memory capacity group. These data help to explicate the neural bases of individual differences in working memory capacity and cognitive control. © 2017 Society for Psychophysiological Research.
Le Berre, Anne-Pascale; Pinon, Karine; Vabret, François; Pitel, Anne-Lise; Allain, Philippe; Eustache, Francis; Beaunieux, Hélène
2010-11-01
Alcoholism affects various cognitive processes, including components of memory. Metamemory, though of particular interest for patient treatment, has not yet been extensively investigated. A feeling-of-knowing (FOK) measure of metamemory was administered to 28 alcoholic patients and 28 healthy controls during an episodic memory task including the learning of 20 pairs of items, followed by a 20-minute delayed recall and a recognition task. Prior to recognition, participants rated their ability to recognize each nonrecalled word among 4 items. This episodic FOK measure served to compare predictions of future recognition performance and actual recognition performance. Furthermore, a subjective measure of metamemory, the Metamemory In Adulthood (MIA) questionnaire, was completed by patients and controls. This assessment of alcoholic patients' metamemory profile was accompanied by an evaluation of episodic memory and executive functioning. FOK results revealed deficits in accuracy, with the alcoholic patients providing overestimations. There were also links between FOK inaccuracy, executive decline, and episodic memory impairment in patients. MIA results showed that although alcoholics did display memory difficulties, they did not differ from controls on questions about memory capacity. Chronic alcoholism affects both episodic memory and metamemory for novel information. Patients were relatively unaware of their memory deficits and believed that their memory was as good as that of the healthy controls. The monitoring measure (FOK) and the subjective measure of metamemory (MIA) showed that patients with chronic alcoholism overestimated their memory capacities. Episodic memory deficit and executive dysfunction would explain metamemory decline in this clinical population. Copyright © 2010 by the Research Society on Alcoholism.
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety
Shi, Zhan; Liu, Peiru
2016-01-01
Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed. PMID:27788235
Worrying Thoughts Limit Working Memory Capacity in Math Anxiety.
Shi, Zhan; Liu, Peiru
2016-01-01
Sixty-one high-math-anxious persons and sixty-one low-math-anxious persons completed a modified working memory capacity task, designed to measure working memory capacity under a dysfunctional math-related context and working memory capacity under a valence-neutral context. Participants were required to perform simple tasks with emotionally benign material (i.e., lists of letters) over short intervals while simultaneously reading and making judgments about sentences describing dysfunctional math-related thoughts or sentences describing emotionally-neutral facts about the world. Working memory capacity for letters under the dysfunctional math-related context, relative to working memory capacity performance under the valence-neutral context, was poorer overall in the high-math-anxious group compared with the low-math-anxious group. The findings show a particular difficulty employing working memory in math-related contexts in high-math-anxious participants. Theories that can provide reasonable interpretations for these findings and interventions that can reduce anxiety-induced worrying intrusive thoughts or improve working memory capacity for math anxiety are discussed.
Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard
2014-08-01
Research has shown that negative affect reduces working memory capacity. Commonly, this effect has been attributed to an allocation of resources to task-irrelevant thoughts, suggesting that negative affect has detrimental consequences for working memory performance. However, rather than simply being a detrimental effect, the affect-induced capacity reduction may reflect a trading of capacity for precision of stored representations. To test this hypothesis, we induced neutral or negative affect and concurrently measured the number and precision of representations stored in sensory and working memory. Compared with neutral affect, negative affect reduced the capacity of both sensory and working memory. However, in both memory systems, this decrease in capacity was accompanied by an increase in precision. These findings demonstrate that observers unintentionally trade capacity for precision as a function of affective state and indicate that negative affect can be beneficial for the quality of memories. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Cognitive niches: an ecological model of strategy selection.
Marewski, Julian N; Schooler, Lael J
2011-07-01
How do people select among different strategies to accomplish a given task? Across disciplines, the strategy selection problem represents a major challenge. We propose a quantitative model that predicts how selection emerges through the interplay among strategies, cognitive capacities, and the environment. This interplay carves out for each strategy a cognitive niche, that is, a limited number of situations in which the strategy can be applied, simplifying strategy selection. To illustrate our proposal, we consider selection in the context of 2 theories: the simple heuristics framework and the ACT-R (adaptive control of thought-rational) architecture of cognition. From the heuristics framework, we adopt the thesis that people make decisions by selecting from a repertoire of simple decision strategies that exploit regularities in the environment and draw on cognitive capacities, such as memory and time perception. ACT-R provides a quantitative theory of how these capacities adapt to the environment. In 14 simulations and 10 experiments, we consider the choice between strategies that operate on the accessibility of memories and those that depend on elaborate knowledge about the world. Based on Internet statistics, our model quantitatively predicts people's familiarity with and knowledge of real-world objects, the distributional characteristics of the associated speed of memory retrieval, and the cognitive niches of classic decision strategies, including those of the fluency, recognition, integration, lexicographic, and sequential-sampling heuristics. In doing so, the model specifies when people will be able to apply different strategies and how accurate, fast, and effortless people's decisions will be.
Modeling Coevolution between Language and Memory Capacity during Language Origin
Gong, Tao; Shuai, Lan
2015-01-01
Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language. PMID:26544876
Modeling Coevolution between Language and Memory Capacity during Language Origin.
Gong, Tao; Shuai, Lan
2015-01-01
Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language.
A Putative Biochemical Engram of Long-term Memory
Li, Liying; Sanchez, Consuelo Perez; Slaughter, Brian D.; Zhao, Yubai; Khan, Mohammed Repon; Unruh, Jay R.; Rubinstein, Boris; Si, Kausik
2016-01-01
Summary How a transient experience creates an enduring yet dynamic memory remains an unresolved issue in studies of memory. Experience-dependent aggregation of the RNA-binding protein CPEB/Orb2 is one of the candidate mechanisms of memory maintenance. Here, using tools that allow rapid and reversible inactivation of Orb2 protein in neurons we find that Orb2 activity is required for encoding and recall of memory. From a screen we have identified a DNA-J family chaperone, JJJ2, which facilitates Orb2 aggregation, and ectopic expression of JJJ2 enhances the animal’s capacity to form long-term memory. Finally, we have developed tools to visualize training-dependent aggregation of Orb2. We find that aggregated Orb2 in a subset of mushroom body neurons can serve as a “molecular signature” of memory and predict memory strength. Our data indicates that self-sustaining aggregates of Orb2 may serve as a physical substrate of memory and provide a molecular basis for the perduring yet malleable nature of memory. PMID:27818176
The influence of working memory capacity on experimental heat pain.
Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko
2013-10-01
Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.
Neural activity reveals perceptual grouping in working memory.
Rabbitt, Laura R; Roberts, Daniel M; McDonald, Craig G; Peterson, Matthew S
2017-03-01
There is extensive evidence that the contralateral delay activity (CDA), a scalp recorded event-related brain potential, provides a reliable index of the number of objects held in visual working memory. Here we present evidence that the CDA not only indexes visual object working memory, but also the number of locations held in spatial working memory. In addition, we demonstrate that the CDA can be predictably modulated by the type of encoding strategy employed. When individual locations were held in working memory, the pattern of CDA modulation mimicked previous findings for visual object working memory. Specifically, CDA amplitude increased monotonically until working memory capacity was reached. However, when participants were instructed to group individual locations to form a constellation, the CDA was prolonged and reached an asymptote at two locations. This result provides neural evidence for the formation of a unitary representation of multiple spatial locations. Published by Elsevier B.V.
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
Episodic memory, semantic memory, and amnesia.
Squire, L R; Zola, S M
1998-01-01
Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.
Working Memory Capacity Predicts Effects of Methylphenidate on Reversal Learning
van der Schaaf, Marieke E; Fallon, Sean J; ter Huurne, Niels; Buitelaar, Jan; Cools, Roshan
2013-01-01
Increased use of stimulant medication, such as methylphenidate, by healthy college students has raised questions about its cognitive-enhancing effects. Methylphenidate acts by increasing extracellular catecholamine levels and is generally accepted to remediate cognitive and reward deficits in patients with attention deficit hyperactivity disorder. However, the cognitive-enhancing effects of such ‘smart drugs' in the healthy population are still unclear. Here, we investigated effects of methylphenidate (Ritalin, 20 mg) on reward and punishment learning in healthy students (N=19) in a within-subject, double-blind, placebo-controlled cross-over design. Results revealed that methylphenidate effects varied both as a function of task demands and as a function of baseline working memory capacity. Specifically, methylphenidate improved reward vs punishment learning in high-working memory subjects, whereas it impaired reward vs punishment learning in low-working memory subjects. These results contribute to our understanding of individual differences in the cognitive-enhancing effects of methylphenidate in the healthy population. Moreover, they highlight the importance of taking into account both inter- and intra-individual differences in dopaminergic drug research. PMID:23612436
Working memory capacity does not always support future-oriented mind-wandering.
McVay, Jennifer C; Unsworth, Nash; McMillan, Brittany D; Kane, Michael J
2013-03-01
To evaluate the claim that mind-wandering demands executive resources, and more specifically that people with better executive control will have the resources to engage in more future-oriented thought than will those with poorer executive control, we reanalyzed thought-report data from 2 independently conducted studies (J. C. McVay & M. J. Kane, 2012, Why does working memory capacity predict variation in reading comprehension? On the influence of mind wandering and executive attention, Journal of Experimental Psychology: General, Vol. 141, pp. 302-320; N. Unsworth & B. D. McMillan, in press, Mind-wandering and reading comprehension: Examining the roles of working memory capacity, interest, motivation, and topic experience, Journal of Experimental Psychology: Learning, Memory, and Cognition) on working memory capacity (WMC), mind-wandering, and reading comprehension. Both of these individual-differences studies assessed large samples of university subjects' WMC abilities via multiple tasks and probed their immediate thought content while reading; in reporting any task-unrelated thoughts (TUTs), subjects indicated whether those thoughts were about the future or the past, if applicable. In contrast to previously published findings indicating that higher WMC subjects mind-wandered about the future more than did lower WMC subjects (B. Baird, J. Smallwood, & J. W. Schooler, 2011, Back to the future: Autobiographical planning and the functionality of mind-wandering, Consciousness and Cognition, Vol. 20, pp. 1604-1611), we found only weak to modest negative correlations between WMC and future-oriented TUTs. If anything, our findings suggest that higher WMC subjects' TUTs were somewhat less often future-oriented than were lower WMC subjects'. Either WMC is not truly associated with mind-wandering about the future, or we have identified some important boundary conditions around that association.
Dempere-Marco, Laura; Melcher, David P; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions.
Dempere-Marco, Laura; Melcher, David P.; Deco, Gustavo
2012-01-01
The study of working memory capacity is of outmost importance in cognitive psychology as working memory is at the basis of general cognitive function. Although the working memory capacity limit has been thoroughly studied, its origin still remains a matter of strong debate. Only recently has the role of visual saliency in modulating working memory storage capacity been assessed experimentally and proved to provide valuable insights into working memory function. In the computational arena, attractor networks have successfully accounted for psychophysical and neurophysiological data in numerous working memory tasks given their ability to produce a sustained elevated firing rate during a delay period. Here we investigate the mechanisms underlying working memory capacity by means of a biophysically-realistic attractor network with spiking neurons while accounting for two recent experimental observations: 1) the presence of a visually salient item reduces the number of items that can be held in working memory, and 2) visually salient items are commonly kept in memory at the cost of not keeping as many non-salient items. Our model suggests that working memory capacity is determined by two fundamental processes: encoding of visual items into working memory and maintenance of the encoded items upon their removal from the visual display. While maintenance critically depends on the constraints that lateral inhibition imposes to the mnemonic activity, encoding is limited by the ability of the stimulated neural assemblies to reach a sufficiently high level of excitation, a process governed by the dynamics of competition and cooperation among neuronal pools. Encoding is therefore contingent upon the visual working memory task and has led us to introduce the concept of effective working memory capacity (eWMC) in contrast to the maximal upper capacity limit only reached under ideal conditions. PMID:22952608
Large capacity temporary visual memory.
Endress, Ansgar D; Potter, Mary C
2014-04-01
Visual working memory (WM) capacity is thought to be limited to 3 or 4 items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor--proactive interference--is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation of 5-21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited, as in WM experiments, or has the much larger capacity found in the present experiments.
Brady, Timothy F.; Störmer, Viola S.; Alvarez, George A.
2016-01-01
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli—colors and orientations—is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up,” revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge. PMID:27325767
Brady, Timothy F; Störmer, Viola S; Alvarez, George A
2016-07-05
Visual working memory is the cognitive system that holds visual information active to make it resistant to interference from new perceptual input. Information about simple stimuli-colors and orientations-is encoded into working memory rapidly: In under 100 ms, working memory ‟fills up," revealing a stark capacity limit. However, for real-world objects, the same behavioral limits do not hold: With increasing encoding time, people store more real-world objects and do so with more detail. This boost in performance for real-world objects is generally assumed to reflect the use of a separate episodic long-term memory system, rather than working memory. Here we show that this behavioral increase in capacity with real-world objects is not solely due to the use of separate episodic long-term memory systems. In particular, we show that this increase is a result of active storage in working memory, as shown by directly measuring neural activity during the delay period of a working memory task using EEG. These data challenge fixed-capacity working memory models and demonstrate that working memory and its capacity limitations are dependent upon our existing knowledge.
Working memory and the strategic control of attention in older and younger adults.
Hayes, Melissa G; Kelly, Andrew J; Smith, Anderson D
2013-03-01
The objective of this study was to investigate the effects of aging on the strategic control of attention and the extent to which this relationship is mediated by working memory capacity (WMC). This study also sought to investigate boundary conditions wherein age differences in selectivity may occur. Across 2 studies, the value-directed remembering task used by Castel and colleagues (Castel, A. D., Balota, D. A., & McCabe, D. P. (2009). Memory efficiency and the strategic control of attention at encoding: Impairments of value-directed remembering in Alzheimer's Disease. Neuropsychology, 23, 297-306) was modified to include value-directed forgetting. Study 2 incorporated valence as an additional task demand, and age differences were predicted in both studies due to increased demands of controlled processing. Automated operation span and Stroop span were included as working memory measures, and working memory was predicted to mediate performance. Results confirmed these predictions, as older adults were less efficient in maximizing selectivity scores when high demands were placed on selectivity processes, and working memory was found to mediate performance on this task. When list length was increased from previous studies and participants were required to actively forget negative-value words, older adults were not able to selectively encode high-value information to the same degree as younger adults. Furthermore, WMC appears to support the ability to selectively encode information.
The generalizability of working-memory capacity in the sport domain.
Buszard, Tim; Masters, Rich Sw; Farrow, Damian
2017-08-01
Working-memory capacity has been implicated as an influential variable when performing and learning sport-related skills. In this review, we critically evaluate evidence linking working-memory capacity with performing under pressure, tactical decision making, motor skill acquisition, and sport expertise. Laboratory experiments link low working-memory capacity with poorer performance under pressure and poorer decision making when required to inhibit distractions or resolve conflict. However, the generalizability of these findings remains unknown. While working-memory capacity is associated with the acquisition of simple motor skills, there is no such evidence from the available data for complex motor skills. Likewise, currently there is no evidence to suggest that a larger working-memory capacity facilitates the attainment of sport expertise. Copyright © 2017 Elsevier Ltd. All rights reserved.
Constantinidou, Fofi; Zaganas, Ioannis; Papastefanakis, Emmanouil; Kasselimis, Dimitrios; Nidos, Andreas; Simos, Panagiotis G
2014-09-01
Age-related memory changes are highly varied and heterogeneous. The study examined the rate of decline in verbal episodic memory as a function of education level, auditory attention span and verbal working memory capacity, and diagnosis of amnestic mild cognitive impairment (a-MCI). Data were available on a community sample of 653 adults aged 17-86 years and 70 patients with a-MCI recruited from eight broad geographic areas in Greece and Cyprus. Measures of auditory attention span and working memory capacity (digits forward and backward) and verbal episodic memory (Auditory Verbal Learning Test [AVLT]) were used. Moderated mediation regressions on data from the community sample did not reveal significant effects of education level on the rate of age-related decline in AVLT indices. The presence of a-MCI was a significant moderator of the direct effect of Age on both immediate and delayed episodic memory indices. The rate of age-related decline in verbal episodic memory is normally mediated by working memory capacity. Moreover, in persons who display poor episodic memory capacity (a-MCI group), age-related memory decline is expected to advance more rapidly for those who also display relatively poor verbal working memory capacity.
Chronic stress effects on working memory: association with prefrontal cortical tyrosine hydroxylase.
Lee, Young-A; Goto, Yukiori
2015-06-01
Chronic stress causes deficits in cognitive function including working memory, for which transmission of such catecholamines as dopamine and noradrenaline transmission in the prefrontal cortex (PFC) are crucial. Since catecholamine synthesis depends on the rate-limiting enzyme, tyrosine hydroxylase (TH), TH is thought to play an important role in PFC function. In this study, we found that two distinct population existed in Sprague-Dawley rats in terms of working memory capacity, one with higher working memory capacity, and the other with low capacity. This distinction of working memory capacity became apparent after rats were exposed to chronic stress. In addition, such working memory capacity and alterations of working memory function by chronic stress were associated with TH expression in the PFC. Copyright © 2015 Elsevier B.V. All rights reserved.
Working Memory Load Strengthens Reward Prediction Errors.
Collins, Anne G E; Ciullo, Brittany; Frank, Michael J; Badre, David
2017-04-19
Reinforcement learning (RL) in simple instrumental tasks is usually modeled as a monolithic process in which reward prediction errors (RPEs) are used to update expected values of choice options. This modeling ignores the different contributions of different memory and decision-making systems thought to contribute even to simple learning. In an fMRI experiment, we investigated how working memory (WM) and incremental RL processes interact to guide human learning. WM load was manipulated by varying the number of stimuli to be learned across blocks. Behavioral results and computational modeling confirmed that learning was best explained as a mixture of two mechanisms: a fast, capacity-limited, and delay-sensitive WM process together with slower RL. Model-based analysis of fMRI data showed that striatum and lateral prefrontal cortex were sensitive to RPE, as shown previously, but, critically, these signals were reduced when the learning problem was within capacity of WM. The degree of this neural interaction related to individual differences in the use of WM to guide behavioral learning. These results indicate that the two systems do not process information independently, but rather interact during learning. SIGNIFICANCE STATEMENT Reinforcement learning (RL) theory has been remarkably productive at improving our understanding of instrumental learning as well as dopaminergic and striatal network function across many mammalian species. However, this neural network is only one contributor to human learning and other mechanisms such as prefrontal cortex working memory also play a key role. Our results also show that these other players interact with the dopaminergic RL system, interfering with its key computation of reward prediction errors. Copyright © 2017 the authors 0270-6474/17/374332-11$15.00/0.
Sandry, Joshua; Chiou, Kathy S; DeLuca, John; Chiaravalloti, Nancy D
2016-06-01
To explore how individual differences affect rehabilitation outcomes by specifically investigating whether working memory capacity (WMC) can be used as a cognitive marker to identify who will and will not improve from memory rehabilitation. Post hoc analysis of a randomized controlled clinical trial designed to treat learning and memory impairment after traumatic brain injury (TBI): 2 × 2 between-subjects quasiexperimental design (2 [group: treatment vs control] × 2 [WMC: high vs low]). Nonprofit medical rehabilitation research center. Participants (N=65) with moderate to severe TBI with pre- and posttreatment data. The treatment group completed 10 cognitive rehabilitation sessions in which subjects were taught a memory strategy focusing on learning to use context and imagery to remember information. The placebo control group engaged in active therapy sessions that did not involve learning the memory strategy. Long-term memory percent retention change scores for an unorganized list of words from the California Verbal Learning Test-II. Group and WMC interacted (P=.008, ηp(2)=.12). High WMC participants showed a benefit from treatment compared with low WMC participants. Individual differences in WMC accounted for 45% of the variance in whether participants with TBI in the treatment group benefited from applying the compensatory treatment strategy to learn unorganized information. Individuals with higher WMC showed a significantly greater rehabilitation benefit when applying the compensatory strategy to learn unorganized information. WMC is a useful cognitive marker for identifying participants with TBI who respond to memory rehabilitation with the modified Story Memory Technique. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Manipulations of attention dissociate fragile visual short-term memory from visual working memory.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; Lamme, Victor A F
2011-05-01
People often rely on information that is no longer in view, but maintained in visual short-term memory (VSTM). Traditionally, VSTM is thought to operate on either a short time-scale with high capacity - iconic memory - or a long time scale with small capacity - visual working memory. Recent research suggests that in addition, an intermediate stage of memory in between iconic memory and visual working memory exists. This intermediate stage has a large capacity and a lifetime of several seconds, but is easily overwritten by new stimulation. We therefore termed it fragile VSTM. In previous studies, fragile VSTM has been dissociated from iconic memory by the characteristics of the memory trace. In the present study, we dissociated fragile VSTM from visual working memory by showing a differentiation in their dependency on attention. A decrease in attention during presentation of the stimulus array greatly reduced the capacity of visual working memory, while this had only a small effect on the capacity of fragile VSTM. We conclude that fragile VSTM is a separate memory store from visual working memory. Thus, a tripartite division of VSTM appears to be in place, comprising iconic memory, fragile VSTM and visual working memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
A Psychometric Measure of Working Memory Capacity for Configured Body Movement
Wu, Ying Choon; Coulson, Seana
2014-01-01
Working memory (WM) models have traditionally assumed at least two domain-specific storage systems for verbal and visuo-spatial information. We review data that suggest the existence of an additional slave system devoted to the temporary storage of body movements, and present a novel instrument for its assessment: the movement span task. The movement span task assesses individuals' ability to remember and reproduce meaningless configurations of the body. During the encoding phase of a trial, participants watch short videos of meaningless movements presented in sets varying in size from one to five items. Immediately after encoding, they are prompted to reenact as many items as possible. The movement span task was administered to 90 participants along with standard tests of verbal WM, visuo-spatial WM, and a gesture classification test in which participants judged whether a speaker's gestures were congruent or incongruent with his accompanying speech. Performance on the gesture classification task was not related to standard measures of verbal or visuo-spatial working memory capacity, but was predicted by scores on the movement span task. Results suggest the movement span task can serve as an assessment of individual differences in WM capacity for body-centric information. PMID:24465437
Stenbäck, Victoria; Hällgren, Mathias; Lyxell, Björn; Larsby, Birgitta
2015-06-01
Cognitive functions and speech-recognition-in-noise were evaluated with a cognitive test battery, assessing response inhibition using the Hayling task, working memory capacity (WMC) and verbal information processing, and an auditory test of speech recognition. The cognitive tests were performed in silence whereas the speech recognition task was presented in noise. Thirty young normally-hearing individuals participated in the study. The aim of the study was to investigate one executive function, response inhibition, and whether it is related to individual working memory capacity (WMC), and how speech-recognition-in-noise relates to WMC and inhibitory control. The results showed a significant difference between initiation and response inhibition, suggesting that the Hayling task taps cognitive activity responsible for executive control. Our findings also suggest that high verbal ability was associated with better performance in the Hayling task. We also present findings suggesting that individuals who perform well on tasks involving response inhibition, and WMC, also perform well on a speech-in-noise task. Our findings indicate that capacity to resist semantic interference can be used to predict performance on speech-in-noise tasks. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
McVay, Jennifer C.; Kane, Michael J.
2012-01-01
Some people are better readers than others, and this variation in comprehension ability is predicted by measures of working memory capacity (WMC). The primary goal of this study was to investigate the mediating role of mind wandering experiences in the association between WMC and normal individual differences in reading comprehension, as predicted by the executive-attention theory of WMC (e.g., Engle & Kane, 2004). We used a latent-variable, structural-equation-model approach, testing skilled adult readers on three WMC span tasks, seven varied reading comprehension tasks, and three attention-control tasks. Mind wandering was assessed using experimenter-scheduled thought probes during four different tasks (two reading, two attention-control tasks). The results support the executive-attention theory of WMC. Mind wandering across the four tasks loaded onto a single latent factor, reflecting a stable individual difference. Most importantly, mind wandering was a significant mediator in the relationship between WMC and reading comprehension, suggesting that the WMC-comprehension correlation is driven, in part, by attention control over intruding thoughts. We discuss implications for theories of WMC, attention control, and reading comprehension. PMID:21875246
Prospective memory, level of disability, and return to work in severe mental illness.
Burton, Cynthia Z; Vella, Lea; Twamley, Elizabeth W
2018-02-25
Prospective memory (the ability to remember to do things) has clear implications for everyday functioning, including employment, in people with severe mental illnesses (SMI). This study aimed to evaluate prospective memory performance and its relationship to real-world functional variables in an employment-seeking sample of people with SMI (Clinical Trial registration number NCT00895258). 153 individuals with DSM-IV diagnosis of depression (n = 58), bipolar disorder (n = 37), or schizophrenia (n = 58) who were receiving outpatient psychiatric care at a university clinic enrolled in a trial of supported employment and completed a baseline assessment. Prospective memory was measured with the Memory for Intentions Test (MIST); real-world functional status included work history variables, clinical history variables, baseline functional capacity (UCSD Performance-based Skills Assessment-Brief), and work outcomes (weeks worked and wages earned during two years of supported employment). Participants with schizophrenia performed worse on the MIST than did those with affective disorders. Independent of diagnosis, education, and estimated intellectual functioning, prospective memory significantly predicted variance in measures of disability and illness burden (disability benefits, hospitalization history, current functional capacity), and work outcomes over two years of supported employment (weeks worked). Worse prospective memory appears to be associated with greater illness burden and functional disability in SMI. Mental health clinicians and employment specialists may counsel clients to use compensatory prospective memory strategies to improve work performance and decrease functional disability associated with SMI.
A review of visual memory capacity: Beyond individual items and towards structured representations
Brady, Timothy F.; Konkle, Talia; Alvarez, George A.
2012-01-01
Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025
Iconic Memories Die a Sudden Death.
Pratte, Michael S
2018-06-01
Iconic memory is characterized by its large storage capacity and brief storage duration, whereas visual working memory is characterized by its small storage capacity. The limited information stored in working memory is often modeled as an all-or-none process in which studied information is either successfully stored or lost completely. This view raises a simple question: If almost all viewed information is stored in iconic memory, yet one second later most of it is completely absent from working memory, what happened to it? Here, I characterized how the precision and capacity of iconic memory changed over time and observed a clear dissociation: Iconic memory suffered from a complete loss of visual items, while the precision of items retained in memory was only marginally affected by the passage of time. These results provide new evidence for the discrete-capacity view of working memory and a new characterization of iconic memory decay.
Large capacity temporary visual memory
Endress, Ansgar D.; Potter, Mary C.
2014-01-01
Visual working memory (WM) capacity is thought to be limited to three or four items. However, many cognitive activities seem to require larger temporary memory stores. Here, we provide evidence for a temporary memory store with much larger capacity than past WM capacity estimates. Further, based on previous WM research, we show that a single factor — proactive interference — is sufficient to bring capacity estimates down to the range of previous WM capacity estimates. Participants saw a rapid serial visual presentation (RSVP) of 5 to 21 pictures of familiar objects or words presented at rates of 4/s or 8/s, respectively, and thus too fast for strategies such as rehearsal. Recognition memory was tested with a single probe item. When new items were used on all trials, no fixed memory capacities were observed, with estimates of up to 9.1 retained pictures for 21-item lists, and up to 30.0 retained pictures for 100-item lists, and no clear upper bound to how many items could be retained. Further, memory items were not stored in a temporally stable form of memory, but decayed almost completely after a few minutes. In contrast, when, as in most WM experiments, a small set of items was reused across all trials, thus creating proactive interference among items, capacity remained in the range reported in previous WM experiments. These results show that humans have a large-capacity temporary memory store in the absence of proactive interference, and raise the question of whether temporary memory in everyday cognitive processing is severely limited as in WM experiments, or has the much larger capacity found in the present experiments. PMID:23937181
Feature bindings endure without attention: evidence from an explicit recall task.
Gajewski, Daniel A; Brockmole, James R
2006-08-01
Are integrated objects the unit of capacity of visual working memory, or is continued attention needed to maintain bindings between independently stored features? In a delayed recall task, participants reported the color and shape of a probed item from a memory array. During the delay, attention was manipulated with an exogenous cue. Recall was elevated at validly cued positions, indicating that the cue affected item memory. On invalid trials, participants most frequently recalled either both features (perfect object memory) or neither of the two features (no object memory); the frequency with which only one feature was recalled was significantly lower than predicted by feature independence as determined in a single-feature recall task. These data do not support the view that features are remembered independently when attention is withdrawn. Instead, integrated objects are stored in visual working memory without need for continued attention.
Working memory and attentional bias on reinforcing efficacy of food.
Carr, Katelyn A; Epstein, Leonard H
2017-09-01
Reinforcing efficacy of food, or the relationship between food prices and purchasing, is related to obesity status and energy intake in adults. Determining how to allocate resources for food is a decision making process influenced by executive functions. Attention to appetitive cues, as well as working memory capacity, or the ability to flexibly control attention while mentally retaining information, may be important executive functions involved in food purchasing decisions. In two studies, we examined how attention bias to food and working memory capacity are related to reinforcing efficacy of both high energy-dense and low energy-dense foods. The first study examined 48 women of varying body mass index (BMI) and found that the relationship between attentional processes and reinforcing efficacy was moderated by working memory capacity. Those who avoid food cues and had high working memory capacity had the lowest reinforcing efficacy, as compared to those with low working memory capacity. Study 2 systematically replicated the methods of study 1 with assessment of maintained attention in a sample of 48 overweight/obese adults. Results showed the relationship between maintained attention to food cues and reinforcing efficacy was moderated by working memory capacity. Those with a maintained attention to food and high working memory capacity had higher reinforcing efficacy than low working memory capacity individuals. These studies suggest working memory capacity moderated the relationship between different aspects of attention and food reinforcement. Understanding how decision making process are involved in reinforcing efficacy may help to identify future intervention targets. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effects of long-term representations on free recall of unrelated words
Katkov, Mikhail; Romani, Sandro
2015-01-01
Human memory stores vast amounts of information. Yet recalling this information is often challenging when specific cues are lacking. Here we consider an associative model of retrieval where each recalled item triggers the recall of the next item based on the similarity between their long-term neuronal representations. The model predicts that different items stored in memory have different probability to be recalled depending on the size of their representation. Moreover, items with high recall probability tend to be recalled earlier and suppress other items. We performed an analysis of a large data set on free recall and found a highly specific pattern of statistical dependencies predicted by the model, in particular negative correlations between the number of words recalled and their average recall probability. Taken together, experimental and modeling results presented here reveal complex interactions between memory items during recall that severely constrain recall capacity. PMID:25593296
McVay, Jennifer C; Kane, Michael J
2012-05-01
A combined experimental, individual-differences, and thought-sampling study tested the predictions of executive attention (e.g., Engle & Kane, 2004) and coordinative binding (e.g., Oberauer, Süβ, Wilhelm, & Sander, 2007) theories of working memory capacity (WMC). We assessed 288 subjects' WMC and their performance and mind-wandering rates during a sustained-attention task; subjects completed either a go/no-go version requiring executive control over habit or a vigilance version that did not. We further combined the data with those from McVay and Kane (2009) to (1) gauge the contributions of WMC and attentional lapses to the worst performance rule and the tail, or τ parameter, of reaction time (RT) distributions; (2) assess which parameters from a quantitative evidence-accumulation RT model were predicted by WMC and mind-wandering reports; and (3) consider intrasubject RT patterns--particularly, speeding--as potential objective markers of mind wandering. We found that WMC predicted action and thought control in only some conditions, that attentional lapses (indicated by task-unrelated-thought reports and drift-rate variability in evidence accumulation) contributed to τ, performance accuracy, and WMC's association with them and that mind-wandering experiences were not predicted by trial-to-trial RT changes, and so they cannot always be inferred from objective performance measures. (c) 2012 APA, all rights reserved.
McVay, Jennifer C.; Kane, Michael J.
2012-01-01
A combined experimental, individual-differences, and thought-sampling study tested the predictions of executive attention (e.g., Engle & Kane, 2004) and coordinative binding (e.g., Oberauer, Süß, Wilhelm, & Sander, 2007) theories of working memory capacity (WMC). We assessed 288 subjects’ WMC and their performance and mind-wandering rates during a sustained-attention task; subjects completed either a go/no-go version requiring executive control over habit, or a vigilance version that did not. We further combined the data with those from McVay and Kane (2009) to: (1) gauge the contributions of WMC and attentional lapses to the worst-performance rule and the tail, or τ parameter, of response time (RT) distributions; (2) assess which parameters from a quantitative evidence-accumulation RT model were predicted by WMC and mind-wandering reports, and (3) consider intra-subject RT patterns – particularly, speeding – as potential objective markers of mind wandering. We found that WMC predicted action and thought control in only some conditions, that attentional lapses (indicated by TUT reports and drift-rate variability in evidence accumulation) contributed to τ, performance accuracy, and WMC’s association with them, and that mind-wandering experiences were not predicted by trial-to-trial RT changes, and so they cannot always be inferred from objective performance measures. PMID:22004270
Smeekens, Bridget A.; Kane, Michael J.
2015-01-01
Should executive control, as indicated by working memory capacity (WMC) and mind-wandering propensity, help or hinder creativity? Sustained and focused attention should help guide a selective search of solution-relevant information in memory and help inhibit uncreative, yet accessible, ideas. However, unfocused attention and daydreaming should allow mental access to more loosely relevant concepts, remotely linked to commonplace solutions. Three individual-differences studies inserted incubation periods into one or two divergent thinking tasks and tested whether WMC (assessed by complex span tasks) and incubation-period mind wandering (assessed as probed reports of task-unrelated thought [TUT]) predicted post-incubation performance. Retrospective self-reports of Openness (Experiment 2) and mind-wandering and daydreaming propensity (Experiment 3) complemented our thought-probe assessments of TUT. WMC did not correlate with creativity in divergent thinking, whereas only the questionnaire measure of daydreaming, but not probed thought reports, weakly predicted creativity; the fact that in-the-moment TUTs did not correlate divergent creativity is especially problematic for claims that mind-wandering processes contribute to creative cognition. Moreover, the fact that WMC tends to strongly predict analytical problem solving and reasoning, but may not correlate with divergent thinking, provides a useful boundary condition for defining WMC’s nomological net. On balance, our data provide no support for either benefits or costs of executive control for at least one component of creativity. PMID:28458764
Interference and memory capacity limitations.
Endress, Ansgar D; Szabó, Szilárd
2017-10-01
Working memory (WM) is thought to have a fixed and limited capacity. However, the origins of these capacity limitations are debated, and generally attributed to active, attentional processes. Here, we show that the existence of interference among items in memory mathematically guarantees fixed and limited capacity limits under very general conditions, irrespective of any processing assumptions. Assuming that interference (a) increases with the number of interfering items and (b) brings memory performance to chance levels for large numbers of interfering items, capacity limits are a simple function of the relative influence of memorization and interference. In contrast, we show that time-based memory limitations do not lead to fixed memory capacity limitations that are independent of the timing properties of an experiment. We show that interference can mimic both slot-like and continuous resource-like memory limitations, suggesting that these types of memory performance might not be as different as commonly believed. We speculate that slot-like WM limitations might arise from crowding-like phenomena in memory when participants have to retrieve items. Further, based on earlier research on parallel attention and enumeration, we suggest that crowding-like phenomena might be a common reason for the 3 major cognitive capacity limitations. As suggested by Miller (1956) and Cowan (2001), these capacity limitations might arise because of a common reason, even though they likely rely on distinct processes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Dopaminergic neurons write and update memories with cell-type-specific rules
Aso, Yoshinori; Rubin, Gerald M
2016-01-01
Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388
Expertise for upright faces improves the precision but not the capacity of visual working memory.
Lorenc, Elizabeth S; Pratte, Michael S; Angeloni, Christopher F; Tong, Frank
2014-10-01
Considerable research has focused on how basic visual features are maintained in working memory, but little is currently known about the precision or capacity of visual working memory for complex objects. How precisely can an object be remembered, and to what extent might familiarity or perceptual expertise contribute to working memory performance? To address these questions, we developed a set of computer-generated face stimuli that varied continuously along the dimensions of age and gender, and we probed participants' memories using a method-of-adjustment reporting procedure. This paradigm allowed us to separately estimate the precision and capacity of working memory for individual faces, on the basis of the assumptions of a discrete capacity model, and to assess the impact of face inversion on memory performance. We found that observers could maintain up to four to five items on average, with equally good memory capacity for upright and upside-down faces. In contrast, memory precision was significantly impaired by face inversion at every set size tested. Our results demonstrate that the precision of visual working memory for a complex stimulus is not strictly fixed but, instead, can be modified by learning and experience. We find that perceptual expertise for upright faces leads to significant improvements in visual precision, without modifying the capacity of working memory.
Muir, Kate; Madill, Anna; Brown, Charity
2017-11-01
The capacity to perceive internal bodily states is linked to emotional awareness and effective emotional regulation. We explore individual differences in emotional awareness in relation to the fading affect bias (FAB), which refers to the greater dwindling of unpleasant compared to pleasant emotions in autobiographical memory. We consider interoceptive awareness and alexithymia in relation to the FAB, and private event rehearsal as a mediating process. With increasing interoceptive awareness, there was an enhanced FAB, but with increasing alexithymia, there was a decreased FAB. Further, the effects of interoceptive awareness were partially mediated by private rehearsal of pleasant events. We provide novel evidence that capacity for emotional awareness and thus effective processing is an important factor predictive of the FAB. Moreover, our results imply an important role for maintaining positive affect in the FAB. Our findings offer new insights into the effects of interoception and alexithymia on autobiographical memory, and support concepts of the FAB emerging as a result of adaptive emotional regulation processes.
Working memory capacity affects the interference control of distractors at auditory gating.
Tsuchida, Yukio; Katayama, Jun'ichi; Murohashi, Harumitsu
2012-05-10
It is important to understand the role of individual differences in working memory capacity (WMC). We investigated the relation between differences in WMC and N1 in event-related brain potentials as a measure of early selective attention for an auditory distractor in three-stimulus oddball tasks that required minimum memory. A high-WMC group (n=13) showed a smaller N1 in response to a distractor and target than did a low-WMC group (n=13) in the novel condition with high distraction. However, in the simple condition with low distraction, there was no difference in N1 between the groups. For all participants (n=52), the correlation between the scores for WMC and N1 peak amplitude was strong for distractors in the novel condition, whereas there was no relation in the simple condition. These results suggest that WMC can predict the interference control for a salient distractor at auditory gating even during a selective attention task. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hannon, Emily M; Richards, Anne
2010-01-01
Inattentional blindness (IB) research deals with situations where, under focused attention tasks, salient stimuli that are irrelevant to that task do not reach conscious awareness. Although such research has captured popular imagination, to date very little research has been conducted on whether some are more likely to experience this phenomenon than others. Here we provide evidence that working memory capacity (WMC) contributed to this experience, with lower WMC being predictive of IB. We also investigated whether IB could be more readily explained in terms of domain-specific visual WMC. No group differences in visual WMC were found, nor any differences in the ability to perform the primary IB task. These findings suggest that differences in higher-order executive control of attention contributes to the experience of IB.
Gladwin, Thomas E; Peeters, Margot; Prins, Pier J M; Wiers, Reinout W
2018-01-01
Background Working memory capacity has been found to be impaired in adolescents with various psychological problems, such as addictive behaviors. Training of working memory capacity can lead to significant behavioral improvements, but it is usually long and tedious, taxing participants’ motivation to train. Objective This study aimed to evaluate whether adding game elements to the training could help improve adolescents’ motivation to train while improving cognition. Methods A total of 84 high school students were allocated to a working memory capacity training, a gamified working memory capacity training, or a placebo condition. Working memory capacity, motivation to train, and drinking habits were assessed before and after training. Results Self-reported evaluations did not show a self-reported preference for the game, but participants in the gamified working memory capacity training condition did train significantly longer. The game successfully increased motivation to train, but this effect faded over time. Working memory capacity increased equally in all conditions but did not lead to significantly lower drinking, which may be due to low drinking levels at baseline. Conclusions We recommend that future studies attempt to prolong this motivational effect, as it appeared to fade over time. PMID:29792294
Oudman, Erik; Postma, Albert; Nijboer, Tanja C W; Wijnia, Jan W; Van der Stigchel, Stefan
2017-03-20
Korsakoff's syndrome (KS) is a neuropsychiatric disorder characterised by severe amnesia. Although the presence of impairments in memory has long been acknowledged, there is a lack of knowledge about the precise characteristics of declarative memory capacities in order to implement memory rehabilitation. In this study, we investigated the extent to which patients diagnosed with KS have preserved declarative memory capacities in working memory, long-term memory encoding or long-term memory recall operations, and whether these capacities are most preserved for verbal or visuospatial content. The results of this study demonstrate that patients with KS have compromised declarative memory functioning on all memory indices. Performance was lowest for the encoding operation compared to the working memory and delayed recall operation. With respect to the content, visuospatial memory was relatively better preserved than verbal memory. All memory operations functioned suboptimally, although the most pronounced disturbance was found in verbal memory encoding. Based on the preserved declarative memory capacities in patients, visuospatial memory can form a more promising target for compensatory memory rehabilitation than verbal memory. It is therefore relevant to increase the number of spatial cues in memory rehabilitation for KS patients.
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-01-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608
A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.
Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo
2015-08-01
Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.
ERIC Educational Resources Information Center
Naumann, Johannes; Richter, Tobias; Christmann, Ursula; Groeben, Norbert
2008-01-01
Cognitive and metacognitive strategies are particularly important for learning with hypertext. The effectiveness of strategy training, however, depends on available working memory resources. Thus, especially learners high on working memory capacity can profit from strategy training, while learners low on working memory capacity might easily be…
Bennett, Ilana J.; Rivera, Hannah G.; Rypma, Bart
2013-01-01
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. PMID:23357076
Gerstenecker, Adam; Meneses, Karen; Duff, Kevin; Fiveash, John B; Marson, Daniel C; Triebel, Kristen L
2015-06-15
Medical decision-making capacity is a higher-order functional skill that refers to a patient's ability to make informed, sound decisions related to care and treatment. In a medical context, understanding is the most cognitively demanding consent standard and refers to a patient's ability to comprehend information to the extent that informed decisions can be made. The association between reasoning and cognition was examined using data from 41 patients with diagnosed brain metastasis. All diagnoses were made by a board-certified radiation oncologist and were verified histologically. In total, 41 demographically matched, cognitively healthy controls were also included to aid in classifying patients with brain metastasis according to reasoning status (ie, intact or impaired). Results indicate that measures of simple attention, verbal fluency, verbal memory, processing speed, and executive functioning were all associated with understanding, and that verbal memory and phonemic fluency were the primary cognitive predictors. Using these two primary predictors, equations can be constructed to predict the ability to understand treatment decisions in patients with brain metastasis. Although preliminary, these data demonstrate how cognitive measures can estimate understanding as it relates to medical decision-making capacities in these patients. Clinically, these findings suggest that poor verbal memory and expressive language function could serve as "red flags" for reduced consent capacity in this patient population, thus signaling that a more comprehensive medical decision-making capacity evaluation is warranted. © 2015 American Cancer Society.
Role of learning potential in cognitive remediation: Construct and predictive validity.
Davidson, Charlie A; Johannesen, Jason K; Fiszdon, Joanna M
2016-03-01
The construct, convergent, discriminant, and predictive validity of Learning Potential (LP) was evaluated in a trial of cognitive remediation for adults with schizophrenia-spectrum disorders. LP utilizes a dynamic assessment approach to prospectively estimate an individual's learning capacity if provided the opportunity for specific related learning. LP was assessed in 75 participants at study entry, of whom 41 completed an eight-week cognitive remediation (CR) intervention, and 22 received treatment-as-usual (TAU). LP was assessed in a "test-train-test" verbal learning paradigm. Incremental predictive validity was assessed as the degree to which LP predicted memory skill acquisition above and beyond prediction by static verbal learning ability. Examination of construct validity confirmed that LP scores reflected use of trained semantic clustering strategy. LP scores correlated with executive functioning and education history, but not other demographics or symptom severity. Following the eight-week active phase, TAU evidenced little substantial change in skill acquisition outcomes, which related to static baseline verbal learning ability but not LP. For the CR group, LP significantly predicted skill acquisition in domains of verbal and visuospatial memory, but not auditory working memory. Furthermore, LP predicted skill acquisition incrementally beyond relevant background characteristics, symptoms, and neurocognitive abilities. Results suggest that LP assessment can significantly improve prediction of specific skill acquisition with cognitive training, particularly for the domain assessed, and thereby may prove useful in individualization of treatment. Published by Elsevier B.V.
Mental Imagery and Visual Working Memory
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory - but not iconic visual memory - can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage. PMID:22195024
Mental imagery and visual working memory.
Keogh, Rebecca; Pearson, Joel
2011-01-01
Visual working memory provides an essential link between past and future events. Despite recent efforts, capacity limits, their genesis and the underlying neural structures of visual working memory remain unclear. Here we show that performance in visual working memory--but not iconic visual memory--can be predicted by the strength of mental imagery as assessed with binocular rivalry in a given individual. In addition, for individuals with strong imagery, modulating the background luminance diminished performance on visual working memory and imagery tasks, but not working memory for number strings. This suggests that luminance signals were disrupting sensory-based imagery mechanisms and not a general working memory system. Individuals with poor imagery still performed above chance in the visual working memory task, but their performance was not affected by the background luminance, suggesting a dichotomy in strategies for visual working memory: individuals with strong mental imagery rely on sensory-based imagery to support mnemonic performance, while those with poor imagery rely on different strategies. These findings could help reconcile current controversy regarding the mechanism and location of visual mnemonic storage.
A Putative Biochemical Engram of Long-Term Memory.
Li, Liying; Sanchez, Consuelo Perez; Slaughter, Brian D; Zhao, Yubai; Khan, Mohammed Repon; Unruh, Jay R; Rubinstein, Boris; Si, Kausik
2016-12-05
How a transient experience creates an enduring yet dynamic memory remains an unresolved issue in studies of memory. Experience-dependent aggregation of the RNA-binding protein CPEB/Orb2 is one of the candidate mechanisms of memory maintenance. Here, using tools that allow rapid and reversible inactivation of Orb2 protein in neurons, we find that Orb2 activity is required for encoding and recall of memory. From a screen, we have identified a DNA-J family chaperone, JJJ2, which facilitates Orb2 aggregation, and ectopic expression of JJJ2 enhances the animal's capacity to form long-term memory. Finally, we have developed tools to visualize training-dependent aggregation of Orb2. We find that aggregated Orb2 in a subset of mushroom body neurons can serve as a "molecular signature" of memory and predict memory strength. Our data indicate that self-sustaining aggregates of Orb2 may serve as a physical substrate of memory and provide a molecular basis for the perduring yet malleable nature of memory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chee, Michael W L; Chuah, Y M Lisa
2007-05-29
Sleep deprivation (SD) impairs short-term memory, but it is unclear whether this is because of reduced storage capacity or processes contributing to appropriate information encoding. We evaluated 30 individuals twice, once after a night of normal sleep and again after 24 h of SD. In each session, we evaluated visual memory capacity by presenting arrays of one to eight colored squares. Additionally, we measured cortical responses to varying visual array sizes without engaging memory. The magnitude of intraparietal sulcus activation and memory capacity after normal sleep were highly correlated. SD elicited a pattern of activation in both tasks, indicating that deficits in visual processing and visual attention accompany and could account for loss of short-term memory capacity. Additionally, a comparison between better and poorer performers showed that preservation of precuneus and temporoparietal junction deactivation with increasing memory load corresponds to less performance decline when one is sleep-deprived.
Moberly, Aaron C; Harris, Michael S; Boyce, Lauren; Nittrouer, Susan
2017-04-14
Models of speech recognition suggest that "top-down" linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users.
Harris, Michael S.; Boyce, Lauren; Nittrouer, Susan
2017-01-01
Purpose Models of speech recognition suggest that “top-down” linguistic and cognitive functions, such as use of phonotactic constraints and working memory, facilitate recognition under conditions of degradation, such as in noise. The question addressed in this study was what happens to these functions when a listener who has experienced years of hearing loss obtains a cochlear implant. Method Thirty adults with cochlear implants and 30 age-matched controls with age-normal hearing underwent testing of verbal working memory using digit span and serial recall of words. Phonological capacities were assessed using a lexical decision task and nonword repetition. Recognition of words in sentences in speech-shaped noise was measured. Results Implant users had only slightly poorer working memory accuracy than did controls and only on serial recall of words; however, phonological sensitivity was highly impaired. Working memory did not facilitate speech recognition in noise for either group. Phonological sensitivity predicted sentence recognition for implant users but not for listeners with normal hearing. Conclusion Clinical speech recognition outcomes for adult implant users relate to the ability of these users to process phonological information. Results suggest that phonological capacities may serve as potential clinical targets through rehabilitative training. Such novel interventions may be particularly helpful for older adult implant users. PMID:28384805
Visual Short-Term Memory Capacity for Simple and Complex Objects
ERIC Educational Resources Information Center
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-01-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…
Visual working memory capacity and the medial temporal lobe.
Jeneson, Annette; Wixted, John T; Hopkins, Ramona O; Squire, Larry R
2012-03-07
Patients with medial temporal lobe (MTL) damage are sometimes impaired at remembering visual information across delays as short as a few seconds. Such impairments could reflect either impaired visual working memory capacity or impaired long-term memory (because attention has been diverted or because working memory capacity has been exceeded). Using a standard change-detection task, we asked whether visual working memory capacity is intact or impaired after MTL damage. Five patients with hippocampal lesions and one patient with large MTL lesions saw an array of 1, 2, 3, 4, or 6 colored squares, followed after 3, 4, or 8 s by a second array where one of the colored squares was cued. The task was to decide whether the cued square had the same color as the corresponding square in the first array or a different color. At the 1 s delay typically used to assess working memory capacity, patients performed as well as controls at all array sizes. At the longer delays, patients performed as well as controls at small array sizes, thought to be within the capacity limit, and worse than controls at large array sizes, thought to exceed the capacity limit. The findings suggest that visual working memory capacity in humans is intact after damage to the MTL structures and that damage to these structures impairs performance only when visual working memory is insufficient to support performance.
Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed
2016-03-01
This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9-11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information.
Gosseries, Olivia; Yu, Qing; LaRocque, Joshua J; Starrett, Michael J; Rose, Nathan S; Cowan, Nelson; Postle, Bradley R
2018-05-02
Although the manipulation of load is popular in visual working memory research, many studies confound general attentional demands with context binding by drawing memoranda from the same stimulus category. In this fMRI study of human observers (both sexes), we created high- versus low-binding conditions, while holding load constant, by comparing trials requiring memory for the direction of motion of one random dot kinematogram (RDK; 1M trials) versus for three RDKs (3M), or versus one RDK and two color patches (1M2C). Memory precision was highest for 1M trials and comparable for 3M and 1M2C trials. And although delay-period activity in occipital cortex did not differ between the three conditions, returning to baseline for all three, multivariate pattern analysis decoding of a remembered RDK from occipital cortex was also highest for 1M trials and comparable for 3M and 1M2C trials. Delay-period activity in intraparietal sulcus (IPS), although elevated for all three conditions, displayed more sensitivity to demands on context binding than to load per se. The 1M-to-3M increase in IPS signal predicted the 1M-to-3M declines in both behavioral and neural estimates of working memory precision. These effects strengthened along a caudal-to-rostral gradient, from IPS0 to IPS5. Context binding-independent load sensitivity was observed when analyses were lateralized and extended into PFC, with trend-level effects evident in left IPS and strong effects in left lateral PFC. These findings illustrate how visual working memory capacity limitations arise from multiple factors that each recruit dissociable brain systems. SIGNIFICANCE STATEMENT Visual working memory capacity predicts performance on a wide array of cognitive and real-world outcomes. At least two theoretically distinct factors are proposed to influence visual working memory capacity limitations: an amodal attentional resource that must be shared across remembered items; and the demands on context binding. We unconfounded these two factors by varying load with items drawn from the same stimulus category ("high demands on context binding") versus items drawn from different stimulus categories ("low demands on context binding"). The results provide evidence for the dissociability, and the neural bases, of these two theorized factors, and they specify that the functions of intraparietal sulcus may relate more strongly to the control of representations than to the general allocation of attention. Copyright © 2018 the authors 0270-6474/18/384357-10$15.00/0.
Investigating the Modality and Redundancy Effects for Learners with Persistent Pain
ERIC Educational Resources Information Center
Smith, Alexander; Ayres, Paul
2016-01-01
Two experiments were conducted to investigate how individuals with persistent pain would respond to instructional materials designed to promote the modality and redundancy effects. It was predicted that persistent pain would reduce the positive impact of narrated text due to reduced working memory capacity. One hundred thirty-seven full-time…
ERIC Educational Resources Information Center
Miller, A. Eve; Watson, Jason M.; Strayer, David L.
2012-01-01
Neuroscience suggests that the anterior cingulate cortex (ACC) is responsible for conflict monitoring and the detection of errors in cognitive tasks, thereby contributing to the implementation of attentional control. Though individual differences in frontally mediated goal maintenance have clearly been shown to influence outward behavior in…
Visual Cues and Listening Effort: Individual Variability
ERIC Educational Resources Information Center
Picou, Erin M.; Ricketts, Todd A; Hornsby, Benjamin W. Y.
2011-01-01
Purpose: To investigate the effect of visual cues on listening effort as well as whether predictive variables such as working memory capacity (WMC) and lipreading ability affect the magnitude of listening effort. Method: Twenty participants with normal hearing were tested using a paired-associates recall task in 2 conditions (quiet and noise) and…
The sensory components of high-capacity iconic memory and visual working memory.
Bradley, Claire; Pearson, Joel
2012-01-01
EARLY VISUAL MEMORY CAN BE SPLIT INTO TWO PRIMARY COMPONENTS: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more "high-level" alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful "lower-capacity" visual working memory.
Gautestad, Arild O; Mysterud, Atle
2013-01-01
The Lévy flight foraging hypothesis predicts a transition from scale-free Lévy walk (LW) to scale-specific Brownian motion (BM) as an animal moves from resource-poor towards resource-rich environment. However, the LW-BM continuum implies a premise of memory-less search, which contradicts the cognitive capacity of vertebrates. We describe methods to test if apparent support for LW-BM transitions may rather be a statistical artifact from movement under varying intensity of site fidelity. A higher frequency of returns to previously visited patches (stronger site fidelity) may erroneously be interpreted as a switch from LW towards BM. Simulations of scale-free, memory-enhanced space use illustrate how the ratio between return events and scale-free exploratory movement translates to varying strength of site fidelity. An expanded analysis of GPS data of 18 female red deer, Cervus elaphus, strengthens previous empirical support of memory-enhanced and scale-free space use in a northern forest ecosystem. A statistical mechanical model architecture that describes foraging under environment-dependent variation of site fidelity may allow for higher realism of optimal search models and movement ecology in general, in particular for vertebrates with high cognitive capacity.
Estmacott, Robyn W; Moscovitch, Morris
2002-03-01
The consolidation theory of long-term memory (e.g., Squire, 1992) predicts that damage to the medial temporal lobes will result in temporally graded retrograde memory loss, with a disproportionate impairment of recent relative to remote knowledge; in contrast, severe atrophy of the temporal neocortex is predicted to result in the reverse temporally graded pattern, with a selective sparing of recent memory (K.S. Graham & Hodges, 1997). Previously, we reported evidence that autobiographical episodic memory does not follow this temporal pattern (Westmacott, Leach, Freedman, & Moscovitch, 2001). In the present study, we found evidence suggesting that semantic memory loss does follow the predicted temporal pattern. We used a set of tasks that tap implicit and explicit memory for famous names and English vocabulary terms from across the 20th century. KC, a person with medial temporal amnesia, consistently demonstrated across tasks a selective deficit for famous names and vocabulary terms from the 5-year period just prior to injury; this deficit was particularly profound for elaborated semantic knowledge (e.g., word definitions, occupation of famous person). However, when asked to guess on unfamiliar items, KC's performance for names and words from this 5-year time period increased substantially, suggesting that he retains some of this knowledge at an implicit or rudimentary level. Conversely, EL, a semantic dementia patient with temporal neocortical atrophy and relative sparing of the medial temporal lobe, demonstrated a selective sparing of names and words from the most recent time period. However, this selective sparing of recent semantic memory was demonstrated in the implicit tasks only; performance on explicit tasks suggested an equally severe impairment of semantics across all time periods. Unlike the data from our previous study of autobiographical episodic memory, these findings are consistent with the predictions both of consolidation theory (Hodges & Graham, 1998; Squire, 1992) and multiple trace theory (Nadel & Moscovitch, 1999) that the hippocampus plays a timelimited role in the acquisition and representation of long-term semantic memories. Moreover, our findings suggest that tasks requiring minimal verbal production and explicit recall may provide a more sensitive and comprehensive assessment of intact memory capacity in brain-damaged individuals.
Qadri, Muhammad A J; Leonard, Kevin; Cook, Robert G; Kelly, Debbie M
2018-02-15
Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities. The nutcrackers were incrementally tested with an ever-expanding pool of pictorial stimuli in a two-alternative discrimination task. Each picture was randomly assigned to either a right or a left choice response, forcing the nutcrackers to memorize each picture-response association. The nutcrackers' visual memorization capacity was estimated at a little over 500 pictures, and the testing suggested effects of primacy, recency, and memory decay over time. The size of this long-term visual memory was less than the approximately 800-picture capacity established for pigeons. These results support the hypothesis that nutcrackers' spatial memory is a specialized adaptation tied to their natural history of food-caching and recovery, and not to a larger long-term, general memory capacity. Furthermore, despite millennia of separate and divergent evolution, the mechanisms of visual information retention seem to reflect common memory systems of differing capacities across the different species tested in this design.
Bennett, Ilana J; Rivera, Hannah G; Rypma, Bart
2013-05-15
Previous studies examining age-group differences in working memory load-related neural activity have yielded mixed results. When present, age-group differences in working memory capacity are frequently proposed to underlie these neural effects. However, direct relationships between working memory capacity and working memory load-related activity have only been observed in younger adults. These relationships remain untested in healthy aging. Therefore, the present study examined patterns of working memory load-related activity in 22 younger and 20 older adults and assessed the contribution of working memory capacity to these load-related effects. Participants performed a partial-trial delayed response item recognition task during functional magnetic resonance imaging. In this task, participants encoded either 2 or 6 letters, maintained them during a delay, and then indicated whether a probe was present in the memory set. Behavioral results revealed faster and more accurate responses to load 2 versus 6, with age-group differences in this load condition effect for the accuracy measure. Neuroimaging results revealed one region (medial superior frontal gyrus) that showed age-group differences in load-related activity during the retrieval period, with less (greater) neural activity for the low versus high load condition in younger (older) adults. Furthermore, for older adults, load-related activity did not vary as a function of working memory capacity. Thus, working memory-related activity varies with healthy aging, but these patterns are not due solely to working memory capacity. Neurocognitive aging theories that feature capacity will need to account for these results. Copyright © 2013 Elsevier Inc. All rights reserved.
Working memory predicts the rejection of false memories.
Leding, Juliana K
2012-01-01
The relationship between working memory capacity (WMC) and false memories in the memory conjunction paradigm was explored. Previous research using other paradigms has shown that individuals high in WMC are not as likely to experience false memories as low-WMC individuals, the explanation being that high-WMC individuals are better able to engage in source monitoring. In the memory conjunction paradigm participants are presented at study with parent words (e.g., eyeglasses, whiplash). At test, in addition to being presented with targets and foils, participants are presented with lures that are composed of previously studied features (e.g., eyelash). It was found that high-WMC individuals had lower levels of false recognition than low-WMC individuals. Furthermore, recall-to-reject responses were analysed (e.g., "I know I didn't see eyelash because I remember seeing eyeglasses") and it was found that high-WMC individuals were more likely to utilise this memory editing strategy, providing direct evidence that one reason that high-WMC individuals are not as prone to false memories is because they are better able to engage in source monitoring.
Hernaus, Dennis; Casales Santa, Marta Ma; Offermann, Jan Stefan; Van Amelsvoort, Thérèse
2017-04-01
Experimental animal work has demonstrated that dopamine and noradrenaline play an essential role in modulating prefrontal cortex-mediated networks underlying working memory performance. Studies of functional connectivity have been instrumental in extending such notions to humans but, so far, have almost exclusively focussed on pharmacological agents with a predominant dopaminergic mechanism of action. Here, we investigate the effect of a single dose of atomoxetine 60mg, a noradrenaline transporter inhibitor, on working memory performance and associated functional connectivity during an n-back task in 19 healthy male volunteers. Atomoxetine increased functional connectivity between right anterior insula and dorsolateral prefrontal cortex, precentral gyrus, posterior parietal cortex and precuneus during the high-working memory load condition of the n-back task. Increased atomoxetine-induced insula-dorsolateral prefrontal cortex functional connectivity during this condition correlated with decreased reaction time variability and was furthermore predicted by working memory capacity. These results show for the first time that noradrenaline transporter blockade-induced increases in cortical catecholamines accentuate fronto-parietal working memory-related network integrity. The observation of significant inter-subject variability in response to atomoxetine has implications for inverted-U frameworks of dopamine and noradrenaline function, which could be useful to predict drug effects in clinical disorders with variable treatment response. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances
Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary
2013-01-01
Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273
Effects of noise and working memory capacity on memory processing of speech for hearing-aid users.
Ng, Elaine Hoi Ning; Rudner, Mary; Lunner, Thomas; Pedersen, Michael Syskind; Rönnberg, Jerker
2013-07-01
It has been shown that noise reduction algorithms can reduce the negative effects of noise on memory processing in persons with normal hearing. The objective of the present study was to investigate whether a similar effect can be obtained for persons with hearing impairment and whether such an effect is dependent on individual differences in working memory capacity. A sentence-final word identification and recall (SWIR) test was conducted in two noise backgrounds with and without noise reduction as well as in quiet. Working memory capacity was measured using a reading span (RS) test. Twenty-six experienced hearing-aid users with moderate to moderately severe sensorineural hearing loss. Noise impaired recall performance. Competing speech disrupted memory performance more than speech-shaped noise. For late list items the disruptive effect of the competing speech background was virtually cancelled out by noise reduction for persons with high working memory capacity. Noise reduction can reduce the adverse effect of noise on memory for speech for persons with good working memory capacity. We argue that the mechanism behind this is faster word identification that enhances encoding into working memory.
Working memory capacity differentially influences responses to tDCS and HD-tDCS in a retro-cue task.
Gözenman, Filiz; Berryhill, Marian E
2016-08-26
There is growing interest in non-invasive brain stimulation techniques. A drawback is that the relationship between stimulation and cognitive outcomes for various tasks are unknown. Transcranial direct current stimulation (tDCS) provides diffuse current spread, whereas high-definition tDCS (HD-tDCS) provides more targeted current. The direction of behavioral effects after tDCS can be difficult to predict in cognitive realms such as attention and working memory (WM). Previously, we showed that in low and high WM capacity groups tDCS modulates performance in nearly equal and opposite directions on a change detection task, with improvement for the high capacity participants alone. Here, we used the retro-cue paradigm to test attentional shifting among items in WM to investigate whether WM capacity (WMC) predicted different behavioral consequences during anodal tDCS or HD-tDCS to posterior parietal cortex (PPC). In two experiments, with 24 participants each, we used different stimulus categories (colored circles, letters) and stimulation sites (right, left PPC). The results showed a significant (Experiment 1) or trending (Experiment 2) WMC x stimulation interaction. Compared to tDCS, after HD-tDCS the retro-cueing benefit was significantly greater for the low WMC group but numerically worse for the high WMC group. These data highlight the importance of considering group differences when using non-invasive neurostimulation techniques. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
White matter integrity as a marker for cognitive plasticity in aging.
de Lange, Ann-Marie Glasø; Bråthen, Anne Cecilie Sjøli; Grydeland, Håkon; Sexton, Claire; Johansen-Berg, Heidi; Andersson, Jesper L R; Rohani, Darius A; Nyberg, Lars; Fjell, Anders M; Walhovd, Kristine B
2016-11-01
Age-related differences in white matter (WM) integrity are substantial, but it is unknown whether between-subject variability in WM integrity influences the capacity for cognitive improvement. We investigated the effects of memory training related to active and passive control conditions in older adults and tested whether WM integrity at baseline was predictive of training benefits. We hypothesized that (1) memory improvement would be restricted to the training group, (2) widespread areas would show greater mean diffusivity (MD) and lower fractional anisotropy in older adults relative to young adults, and (3) within these areas, variability in WM microstructure in the older group would be predictive of training gains. The results showed that only the group receiving training improved their memory. Significant age differences in MD and fractional anisotropy were found in widespread areas. Within these areas, voxelwise analyses showed a negative relationship between MD and memory improvement in 3 clusters, indicating that WM integrity could serve as a marker for the ability to adapt in response to cognitive challenges in aging. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
McVay, Jennifer C; Kane, Michael J
2009-01-01
On the basis of the executive-attention theory of working memory capacity (WMC; e.g., M. J. Kane, A. R. A. Conway, D. Z. Hambrick, & R. W. Engle, 2007), the authors tested the relations among WMC, mind wandering, and goal neglect in a sustained attention to response task (SART; a go/no-go task). In 3 SART versions, making conceptual versus perceptual processing demands, subjects periodically indicated their thought content when probed following rare no-go targets. SART processing demands did not affect mind-wandering rates, but mind-wandering rates varied with WMC and predicted goal-neglect errors in the task; furthermore, mind-wandering rates partially mediated the WMC-SART relation, indicating that WMC-related differences in goal neglect were due, in part, to variation in the control of conscious thought.
Kharitonova, Maria; Winter, Warren; Sheridan, Margaret A
2015-09-01
Working memory develops slowly: Even by age 8, children are able to maintain only half the number of items that adults can remember. Neural substrates that support performance on working memory tasks also have a slow developmental trajectory and typically activate to a lesser extent in children, relative to adults. Little is known about why younger participants elicit less neural activation. This may be due to maturational differences, differences in behavioral performance, or both. Here we investigate the neural correlates of working memory capacity in children (ages 5-8) and adults using a visual working memory task with parametrically increasing loads (from one to four items) using fMRI. This task allowed us to estimate working memory capacity limit for each group. We found that both age groups increased the activation of frontoparietal networks with increasing working memory loads, until working memory capacity was reached. Because children's working memory capacity limit was half of that for adults, the plateau occurred at lower loads for children. Had a parametric increase in load not been used, this would have given an impression of less activation overall and less load-dependent activation for children relative to adults. Our findings suggest that young children and adults recruit similar frontoparietal networks at working memory loads that do not exceed capacity and highlight the need to consider behavioral performance differences when interpreting developmental differences in neural activation.
Blackstone, Kaitlin; Tobin, Alexis; Posada, Carolina; Gouaux, Ben; Grant, Igor; Moore, David J; The Hiv Neurobehavioral Research Program Hnrp
2012-01-01
Episodic memory deficits are common in HIV infection and bipolar disorder, but patient insight into such deficits remains unclear. Thirty-four HIV-infected individuals without bipolar disorder (HIV+/BD-) and 47 HIV+ individuals with comorbid bipolar disorder (HIV+/BD+) were administered the Hopkins Verbal Learning Test-Revised and the Brief Visuospatial Memory Test-Revised to examine objective learning/memory functioning. Subjective memory complaints were assessed via the memory subscale of the Patient's Assessment of Own Functioning Inventory. HIV+/BD+ individuals performed poorer on tests of visual learning and visual/verbal recall than did HIV+/BD- participants (ps < .05). Memory complaints only predicted verbal learning (at a trend level, p = .10) and recall (p = .03) among the HIV+/BD- individuals. Memory complaints were not associated with memory performance within the HIV+/BD+ group (ps > .10). Memory complaints were associated with depressive symptoms in both groups (ps < 0.05). These complaints were also predictive of immunosuppression, higher unemployment, and greater dependence on activities of daily living among the HIV+/BD+ individuals (ps < .05). Awareness of memory abilities was particularly poor among HIV+/BD+ individuals (i.e., objective learning/memory did not correspond to reported complaints), which has important implications for the capacity of these individuals to engage in error-monitoring and compensatory strategies in daily life. Memory complaints are associated with depressed mood regardless of group membership. Among HIV+/BD+ individuals, these complaints may also signify worse HIV disease status and problems with everyday functioning. Clinicians and researchers should be cognizant of what these complaints indicate in order to lead treatment most effectively; use of objective neurocognitive assessments may still be warranted when working with these populations.
Lotfi, Yones; Mehrkian, Saiedeh; Moossavi, Abdollah; Zadeh, Soghrat Faghih; Sadjedi, Hamed
2016-01-01
Background: This study assessed the relationship between working memory capacity and auditory stream segregation by using the concurrent minimum audible angle in children with a diagnosed auditory processing disorder (APD). Methods: The participants in this cross-sectional, comparative study were 20 typically developing children and 15 children with a diagnosed APD (age, 9–11 years) according to the subtests of multiple-processing auditory assessment. Auditory stream segregation was investigated using the concurrent minimum audible angle. Working memory capacity was evaluated using the non-word repetition and forward and backward digit span tasks. Nonparametric statistics were utilized to compare the between-group differences. The Pearson correlation was employed to measure the degree of association between working memory capacity and the localization tests between the 2 groups. Results: The group with APD had significantly lower scores than did the typically developing subjects in auditory stream segregation and working memory capacity. There were significant negative correlations between working memory capacity and the concurrent minimum audible angle in the most frontal reference location (0° azimuth) and lower negative correlations in the most lateral reference location (60° azimuth) in the children with APD. Conclusion: The study revealed a relationship between working memory capacity and auditory stream segregation in children with APD. The research suggests that lower working memory capacity in children with APD may be the possible cause of the inability to segregate and group incoming information. PMID:26989281
Memory Binding Test Predicts Incident Amnestic Mild Cognitive Impairment.
Mowrey, Wenzhu B; Lipton, Richard B; Katz, Mindy J; Ramratan, Wendy S; Loewenstein, David A; Zimmerman, Molly E; Buschke, Herman
2016-07-14
The Memory Binding Test (MBT), previously known as Memory Capacity Test, has demonstrated discriminative validity for distinguishing persons with amnestic mild cognitive impairment (aMCI) and dementia from cognitively normal elderly. We aimed to assess the predictive validity of the MBT for incident aMCI. In a longitudinal, community-based study of adults aged 70+, we administered the MBT to 246 cognitively normal elderly adults at baseline and followed them annually. Based on previous work, a subtle reduction in memory binding at baseline was defined by a Total Items in the Paired (TIP) condition score of ≤22 on the MBT. Cox proportional hazards models were used to assess the predictive validity of the MBT for incident aMCI accounting for the effects of covariates. The hazard ratio of incident aMCI was also assessed for different prediction time windows ranging from 4 to 7 years of follow-up, separately. Among 246 controls who were cognitively normal at baseline, 48 developed incident aMCI during follow-up. A baseline MBT reduction was associated with an increased risk for developing incident aMCI (hazard ratio (HR) = 2.44, 95% confidence interval: 1.30-4.56, p = 0.005). When varying the prediction window from 4-7 years, the MBT reduction remained significant for predicting incident aMCI (HR range: 2.33-3.12, p: 0.0007-0.04). Persons with poor performance on the MBT are at significantly greater risk for developing incident aMCI. High hazard ratios up to seven years of follow-up suggest that the MBT is sensitive to early disease.
Predictors of Hearing-Aid Outcomes
Johannesen, Peter T.; Pérez-González, Patricia; Blanco, José L.; Kalluri, Sridhar; Edwards, Brent
2017-01-01
Over 360 million people worldwide suffer from disabling hearing loss. Most of them can be treated with hearing aids. Unfortunately, performance with hearing aids and the benefit obtained from using them vary widely across users. Here, we investigate the reasons for such variability. Sixty-eight hearing-aid users or candidates were fitted bilaterally with nonlinear hearing aids using standard procedures. Treatment outcome was assessed by measuring aided speech intelligibility in a time-reversed two-talker background and self-reported improvement in hearing ability. Statistical predictive models of these outcomes were obtained using linear combinations of 19 predictors, including demographic and audiological data, indicators of cochlear mechanical dysfunction and auditory temporal processing skills, hearing-aid settings, working memory capacity, and pretreatment self-perceived hearing ability. Aided intelligibility tended to be better for younger hearing-aid users with good unaided intelligibility in quiet and with good temporal processing abilities. Intelligibility tended to improve by increasing amplification for low-intensity sounds and by using more linear amplification for high-intensity sounds. Self-reported improvement in hearing ability was hard to predict but tended to be smaller for users with better working memory capacity. Indicators of cochlear mechanical dysfunction, alone or in combination with hearing settings, did not affect outcome predictions. The results may be useful for improving hearing aids and setting patients’ expectations. PMID:28929903
Hambrick, David Z; Engle, Randall W
2002-06-01
Domain knowledge facilitates performance in many cognitive tasks. However, very little is known about the interplay between domain knowledge and factors that are believed to reflect general, and relatively stable, characteristics of the individual. The primary goal of this study was to investigate the interplay between domain knowledge and one such factor: working memory capacity. Adults from wide ranges of working memory capacity, age, and knowledge about the game of baseball listened to, and then answered questions about, simulated radio broadcasts of baseball games. There was a strong facilitative effect of preexisting knowledge of baseball on memory performance, particularly for information judged to be directly relevant to the baseball games. However, there was a positive effect of working memory capacity on memory performance as well, and there was no indication that domain knowledge attenuated this effect. That is, working memory capacity contributed to memory performance even at high levels of domain knowledge. Similarly, there was no evidence that domain knowledge attenuated age-related differences (favoring young adults) in memory performance. We discuss implications of the results for understanding proficiency in cognitive domains from an individual-differences perspective. Copyright 2001 Elsevier Science (USA).
Aging and mind wandering during text comprehension.
Krawietz, Sabine A; Tamplin, Andrea K; Radvansky, Gabriel A
2012-12-01
Mind wandering occurs when a person's stream of thought moves from the primary task to task-unrelated matters. Some theories of mind wandering suggest that it is caused by decreased attentional control associated with lower working memory (WM) capacity. Others suggest that it is caused by attention being directed toward internally generated thoughts and that it is associated with higher WM capacity. These ideas were assessed testing older adults because they have been argued to have reduced attentional control and lower WM capacity. The first account predicts that mind wandering should increase in older adults, while the second account predicts the opposite. Two experiments show that older adults exhibited a lower rate of mind wandering than younger adults. However, when using text interest as a covariate, the age difference in mind wandering disappeared. These results are further addressed in light of participants' current concerns and preserved situation model processing in cognitive aging. 2013 APA, all rights reserved
Can Planning Time Compensate for Individual Differences in Working Memory Capacity?
ERIC Educational Resources Information Center
Nielson, Katharine B.
2014-01-01
Language learners with high working memory capacity have an advantage, all other factors being equal, during the second language acquisition (SLA) process; therefore, identifying a pedagogical intervention that can compensate for low working memory capacity would be advantageous to language learners and instructors. Extensive research on the…
Tone series and the nature of working memory capacity development.
Clark, Katherine M; Hardman, Kyle O; Schachtman, Todd R; Saults, J Scott; Glass, Bret A; Cowan, Nelson
2018-04-01
Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the number of objects retained, from the precision of the object representations. We adapt the technique to sequences of nonmusical tones, in an investigation including children (6-13 years, N = 84) and adults (26-50 years, N = 31). For each series of 1 to 4 tones, the participant responded by using an 80-choice scale to try to reproduce the tone at a queried serial position. Despite the much longer-lasting usefulness of sensory memory for tones compared with visual objects, the observed tone capacity was similar to previous findings for visual capacity. The results also constrain theories of childhood working memory development, indicating increases with age in both the capacity and the precision of the tone representations, similar to the visual studies, rather than age differences in time-based memory decay. The findings, including patterns of correlations between capacity, precision, and some auxiliary tasks and questionnaires, establish capacity and precision as dissociable processes and place important constraints on various hypotheses of working memory development. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Hamilton, Stephen T.; Freed, Erin M.; Long, Debra L.
2013-01-01
The goal of this study was to examine predictions derived from the Lexical Quality Hypothesis regarding relations among word decoding, working-memory capacity, and the ability to integrate new concepts into a developing discourse representation. Hierarchical Linear Modeling was used to quantify the effects of three text properties (length,…
Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine
2018-01-01
The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Casasent, David; Telfer, Brian
1988-02-01
The storage capacity, noise performance, and synthesis of associative memories for image analysis are considered. Associative memory synthesis is shown to be very similar to that of linear discriminant functions used in pattern recognition. These lead to new associative memories and new associative memory synthesis and recollection vector encodings. Heteroassociative memories are emphasized in this paper, rather than autoassociative memories, since heteroassociative memories provide scene analysis decisions, rather than merely enhanced output images. The analysis of heteroassociative memories has been given little attention. Heteroassociative memory performance and storage capacity are shown to be quite different from those of autoassociative memories, with much more dependence on the recollection vectors used and less dependence on M/N. This allows several different and preferable synthesis techniques to be considered for associative memories. These new associative memory synthesis techniques and new techniques to update associative memories are included. We also introduce a new SNR performance measure that is preferable to conventional noise standard deviation ratios.
ERIC Educational Resources Information Center
Cunningham, Corbin A.; Yassa, Michael A.; Egeth, Howard E.
2015-01-01
Previous work suggests that visual long-term memory (VLTM) is highly detailed and has a massive capacity. However, memory performance is subject to the effects of the type of testing procedure used. The current study examines detail memory performance by probing the same memories within the same subjects, but using divergent probing methods. The…
Caza, Nicole; Belleville, Sylvie
2008-05-01
Individuals with Alzheimer's disease (AD) are often reported to have reduced verbal short-term memory capacity, typically attributed to their attention/executive deficits. However, these individuals also tend to show progressive impairment of semantic, lexical, and phonological processing which may underlie their low short-term memory capacity. The goals of this study were to assess the contribution of each level of representation (phonological, lexical, and semantic) to immediate serial recall performance in 18 individuals with AD, and to examine how these linguistic effects on short-term memory were modulated by their reduced capacity to manipulate information in short-term memory associated with executive dysfunction. Results showed that individuals with AD had difficulty recalling items that relied on phonological representations, which led to increased lexicality effects relative to the control group. This finding suggests that patients have a greater reliance on lexical/semantic information than controls, possibly to make up for deficits in retention and processing of phonological material. This lexical/semantic effect was not found to be significantly correlated with patients' capacity to manipulate verbal material in short-term memory, indicating that language processing and executive deficits may independently contribute to reducing verbal short-term memory capacity in AD.
Furley, Philip; Memmert, Daniel
2015-01-01
The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete's domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account.
Furley, Philip; Memmert, Daniel
2015-01-01
The goal of the study was to investigate the relationship between domain-general working memory capacity and domain-specific creativity amongst experienced soccer players. We administered the automated operation span task in combination with a domain-specific soccer creativity task to a group of 61 experienced soccer players to address the question whether an athlete’s domain-specific creativity is restricted by their domain-general cognitive abilities (i.e., working memory capacity). Given that previous studies have either found a positive correlation, a negative correlation, or no correlation between working memory capacity and creativity, we analyzed the data in an exploratory manner by following recent recommendations to report effect-size estimations and their precision in form of 95% confidence intervals. The pattern of results provided evidence that domain-general working memory capacity is not associated with creativity in a soccer-specific creativity task. This pattern of results suggests that future research and theorizing on the role of working memory in everyday creative performance needs to distinguish between different types of creative performance while also taking the role of domain-specific experience into account. PMID:25713552
ERIC Educational Resources Information Center
Unsworth, Nash; Spillers, Gregory J.
2010-01-01
The current study examined the extent to which attention control abilities, secondary memory abilities, or both accounted for variation in working memory capacity (WMC) and its relation to fluid intelligence. Participants performed various attention control, secondary memory, WMC, and fluid intelligence measures. Confirmatory factor analyses…
The effect of warnings on false memories in young and older adults.
McCabe, David P; Smith, Anderson D
2002-10-01
In the present experiments, we examined adult age differences in the ability to suppress false memories, using the Deese-Roediger-McDermott (DRM) paradigm (Deese, 1959; Roediger & McDermott, 1995). Participants studied lists of words (e.g., bed, rest, awake, etc.), each related to a nonpresented critical lure word (e.g., sleep). Typically, recognition tests reveal false alarms to critical lures at rates comparable to those for hits for studied words. In two experiments, separate groups of young and older adults were unwarned about the false memory effect, warned before studying the lists, or warned after study and before test. Lists were presented at either a slow rate (4 sec/word) or a faster rate (2 sec/word). Young adults were better able to discriminate between studied words and critical lures when warned about the DRM effect either before study or after study but before retrieval, and their performance improved with a slower presentation rate. Older adults were able to discriminate between studied words and critical lures when given warnings before study, but not when given warnings after study but before retrieval. Performance on a working memory capacity measure predicted false recognition following study and retrieval warnings. The results suggest that effective use of warnings to reduce false memories is contingent on the quality and type of encoded information, as well as on whether that information is accessed at retrieval. Furthermore, discriminating between similar sources of activation is dependent on working memory capacity, which declines with advancing age.
Owens, Max; Koster, Ernst H W; Derakshan, Nazanin
2013-03-01
Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.
Lehmann, Martin; Hasselhorn, Marcus
2007-01-01
Variability in strategy use within single trials in free recall was analyzed longitudinally from second to fourth grades (ages 8-10 years). To control for practice effects another sample of fourth graders was included (age 10 years). Video analyses revealed that children employed different strategies when preparing for free recall. A gradual shift from labeling to cumulative rehearsal was present both with increasing age and across different list positions. Whereas cumulative rehearsal was frequent at early list positions, labeling was dominant at later list portions. Working memory capacity predicted the extent of cumulative rehearsal usage, which became more efficient with increasing age. Results are discussed in the context of the adaptive strategy choice model.
Effects of Steady-State Noise on Verbal Working Memory in Young Adults
Alt, Mary; DeDe, Gayle; Olson, Sarah; Shehorn, James
2015-01-01
Purpose We set out to examine the impact of perceptual, linguistic, and capacity demands on performance of verbal working-memory tasks. The Ease of Language Understanding model (Rönnberg et al., 2013) provides a framework for testing the dynamics of these interactions within the auditory-cognitive system. Methods Adult native speakers of English (n = 45) participated in verbal working-memory tasks requiring processing and storage of words involving different linguistic demands (closed/open set). Capacity demand ranged from 2 to 7 words per trial. Participants performed the tasks in quiet and in speech-spectrum-shaped noise. Separate groups of participants were tested at different signal-to-noise ratios. Word-recognition measures were obtained to determine effects of noise on intelligibility. Results Contrary to predictions, steady-state noise did not have an adverse effect on working-memory performance in every situation. Noise negatively influenced performance for the task with high linguistic demand. Of particular importance is the finding that the adverse effects of background noise were not confined to conditions involving declines in recognition. Conclusions Perceptual, linguistic, and cognitive demands can dynamically affect verbal working-memory performance even in a population of healthy young adults. Results suggest that researchers and clinicians need to carefully analyze task demands to understand the independent and combined auditory-cognitive factors governing performance in everyday listening situations. PMID:26384291
Boudewyn, Megan A.; Long, Debra L.; Traxler, Matthew J.; Lesh, Tyler A.; Dave, Shruti; Mangun, George R.; Carter, Cameron S.; Swaab, Tamara Y.
2016-01-01
The establishment of reference is essential to language comprehension. The goal of this study was to examine listeners’ sensitivity to referential ambiguity as a function of individual variation in attention, working memory capacity, and verbal ability. Participants listened to stories in which two entities were introduced that were either very similar (e.g., two oaks) or less similar (e.g., one oak and one elm). The manipulation rendered an anaphor in a subsequent sentence (e.g., oak) ambiguous or unambiguous. EEG was recorded as listeners comprehended the story, after which participants completed tasks to assess working memory, verbal ability, and the ability to use context in task performance. Power in the alpha and theta frequency bands when listeners received critical information about the discourse entities (e.g., oaks) was used to index attention and the involvement of the working memory system in processing the entities. These measures were then used to predict an ERP component that is sensitive to referential ambiguity, the Nref, which was recorded when listeners received the anaphor. Nref amplitude at the anaphor was predicted by alpha power during the earlier critical sentence: Individuals with increased alpha power in ambiguous compared with unambiguous stories were less sensitive to the anaphor's ambiguity. Verbal ability was also predictive of greater sensitivity to referential ambiguity. Finally, increased theta power in the ambiguous compared with unambiguous condition was associated with higher working-memory span. These results highlight the role of attention and working memory in referential processing during listening comprehension. PMID:26401815
Boudewyn, Megan A; Long, Debra L; Traxler, Matthew J; Lesh, Tyler A; Dave, Shruti; Mangun, George R; Carter, Cameron S; Swaab, Tamara Y
2015-12-01
The establishment of reference is essential to language comprehension. The goal of this study was to examine listeners' sensitivity to referential ambiguity as a function of individual variation in attention, working memory capacity, and verbal ability. Participants listened to stories in which two entities were introduced that were either very similar (e.g., two oaks) or less similar (e.g., one oak and one elm). The manipulation rendered an anaphor in a subsequent sentence (e.g., oak) ambiguous or unambiguous. EEG was recorded as listeners comprehended the story, after which participants completed tasks to assess working memory, verbal ability, and the ability to use context in task performance. Power in the alpha and theta frequency bands when listeners received critical information about the discourse entities (e.g., oaks) was used to index attention and the involvement of the working memory system in processing the entities. These measures were then used to predict an ERP component that is sensitive to referential ambiguity, the Nref, which was recorded when listeners received the anaphor. Nref amplitude at the anaphor was predicted by alpha power during the earlier critical sentence: Individuals with increased alpha power in ambiguous compared with unambiguous stories were less sensitive to the anaphor's ambiguity. Verbal ability was also predictive of greater sensitivity to referential ambiguity. Finally, increased theta power in the ambiguous compared with unambiguous condition was associated with higher working-memory span. These results highlight the role of attention and working memory in referential processing during listening comprehension.
The Contribution of Working Memory to Fluid Reasoning: Capacity, Control, or Both?
ERIC Educational Resources Information Center
Chuderski, Adam; Necka, Edward
2012-01-01
Fluid reasoning shares a large part of its variance with working memory capacity (WMC). The literature on working memory (WM) suggests that the capacity of the focus of attention responsible for simultaneous maintenance and integration of information within WM, as well as the effectiveness of executive control exerted over WM, determines…
Short-Term Memory Limitations in Children: Capacity or Processing Deficits?
ERIC Educational Resources Information Center
Chi, Michelene T. H.
1976-01-01
Evaluates the assertion that short-term memory (STM) capacity increases with age and concludes that the STM capacity limitation in children is due to the deficits in the processing strategies and speeds, which presumably improve with age through cumulative learning. (JM) Available from: Memory and Cognition, Psychonomic Society, 1018 West 34…
Working Memory Capacity, Confidence and Scientific Thinking
ERIC Educational Resources Information Center
Al-Ahmadi, Fatheya; Oraif, Fatima
2009-01-01
Working memory capacity is now well established as a rate determining factor in much learning and assessment, especially in the sciences. Most of the research has focussed on performance in tests and examinations in subject areas. This paper outlines some exploratory work in which other outcomes are related to working memory capacity. Confidence…
Mental Capacity and Working Memory in Chemistry: Algorithmic "versus" Open-Ended Problem Solving
ERIC Educational Resources Information Center
St Clair-Thompson, Helen; Overton, Tina; Bugler, Myfanwy
2012-01-01
Previous research has revealed that problem solving and attainment in chemistry are constrained by mental capacity and working memory. However, the terms mental capacity and working memory come from different theories of cognitive resources, and are assessed using different tasks. The current study examined the relationships between mental…
Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.
ERIC Educational Resources Information Center
Eysenck, Michael W.; Eysenck, M. Christine
1979-01-01
The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)
Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.
Shipstead, Zach; Harrison, Tyler L; Engle, Randall W
2016-11-01
Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.
Komori, Mie
2016-01-01
Monitoring is an executive function of working memory that serves to update novel information, focusing attention on task-relevant targets, and eliminating task-irrelevant noise. The present research used a verbal working memory task to examine how working memory capacity limits affect monitoring. Participants performed a Japanese listening span test that included maintenance of target words and listening comprehension. On each trial, participants responded to the target word and then immediately estimated confidence in recall performance for that word (metacognitive judgment). The results confirmed significant differences in monitoring accuracy between high and low capacity groups in a multi-task situation. That is, confidence judgments were superior in high vs. low capacity participants in terms of absolute accuracy and discrimination. The present research further investigated how memory load and interference affect underestimation of successful recall. The results indicated that the level of memory load that reduced word recall performance and led to an underconfidence bias varied according to participants' memory capacity. In addition, irrelevant information associated with incorrect true/ false decisions (secondary task) and word recall within the current trial impaired monitoring accuracy in both participant groups. These findings suggest that interference from unsuccessful decisions only influences low, but not high, capacity participants. Therefore, monitoring accuracy, which requires high working memory capacity, improves metacognitive abilities by inhibiting task-irrelevant noise and focusing attention on detecting task-relevant targets or useful retrieval cues, which could improve actual cognitive performance.
Astrand, Elaine
2018-06-01
Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, [Formula: see text]. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain-machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.
NASA Astrophysics Data System (ADS)
Astrand, Elaine
2018-06-01
Objective. Working memory (WM), crucial for successful behavioral performance in most of our everyday activities, holds a central role in goal-directed behavior. As task demands increase, inducing higher WM load, maintaining successful behavioral performance requires the brain to work at the higher end of its capacity. Because it is depending on both external and internal factors, individual WM load likely varies in a continuous fashion. The feasibility to extract such a continuous measure in time that correlates to behavioral performance during a working memory task remains unsolved. Approach. Multivariate pattern decoding was used to test whether a decoder constructed from two discrete levels of WM load can generalize to produce a continuous measure that predicts task performance. Specifically, a linear regression with L2-regularization was chosen with input features from EEG oscillatory activity recorded from healthy participants while performing the n-back task, n\\in [1,2] . Main results. The feasibility to extract a continuous time-resolved measure that correlates positively to trial-by-trial working memory task performance is demonstrated (r = 0.47, p < 0.05). It is furthermore shown that this measure allows to predict task performance before action (r = 0.49, p < 0.05). We show that the extracted continuous measure enables to study the temporal dynamics of the complex activation pattern of WM encoding during the n-back task. Specifically, temporally precise contributions of different spectral features are observed which extends previous findings of traditional univariate approaches. Significance. These results constitute an important contribution towards a wide range of applications in the field of cognitive brain–machine interfaces. Monitoring mental processes related to attention and WM load to reduce the risk of committing errors in high-risk environments could potentially prevent many devastating consequences or using the continuous measure as neurofeedback opens up new possibilities to develop novel rehabilitation techniques for individuals with degraded WM capacity.
Robust relationship between reading span and speech recognition in noise
Souza, Pamela; Arehart, Kathryn
2015-01-01
Objective Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. Design The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. Study sample The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Results Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Conclusions Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition. PMID:25975360
Robust relationship between reading span and speech recognition in noise.
Souza, Pamela; Arehart, Kathryn
2015-01-01
Working memory refers to a cognitive system that manages information processing and temporary storage. Recent work has demonstrated that individual differences in working memory capacity measured using a reading span task are related to ability to recognize speech in noise. In this project, we investigated whether the specific implementation of the reading span task influenced the strength of the relationship between working memory capacity and speech recognition. The relationship between speech recognition and working memory capacity was examined for two different working memory tests that varied in approach, using a within-subject design. Data consisted of audiometric results along with the two different working memory tests; one speech-in-noise test; and a reading comprehension test. The test group included 94 older adults with varying hearing loss and 30 younger adults with normal hearing. Listeners with poorer working memory capacity had more difficulty understanding speech in noise after accounting for age and degree of hearing loss. That relationship did not differ significantly between the two different implementations of reading span. Our findings suggest that different implementations of a verbal reading span task do not affect the strength of the relationship between working memory capacity and speech recognition.
Working memory and fluid intelligence: capacity, attention control, and secondary memory retrieval.
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K
2014-06-01
Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. Copyright © 2014 Elsevier Inc. All rights reserved.
Working Memory and Fluid Intelligence: Capacity, Attention Control, and Secondary Memory Retrieval
Unsworth, Nash; Fukuda, Keisuke; Awh, Edward; Vogel, Edward K.
2015-01-01
Several theories have been put forth to explain the relation between working memory (WM) and gF. Unfortunately, no single factor has been shown to fully account for the relation between these two important constructs. In the current study we tested whether multiple factors (capacity, attention control, and secondary memory) would collectively account for the relation. A large number of participants performed multiple measures of each construct and latent variable analyses were used to examine the data. The results demonstrated that capacity, attention control, and secondary memory were uniquely related to WM storage, WM processing, and gF. Importantly, the three factors completely accounted for the relation between WM (both processing and storage) and gF. Thus, although storage and processing make independent contributions to gF, both of these contributions are accounted for by variation in capacity, attention control and secondary memory. These results are consistent with the multifaceted view of WM, suggesting that individual differences in capacity, attention control, and secondary memory jointly account for individual differences in WM and its relation with gF. PMID:24531497
The Unintentional Memory Load in Tests for Young Children.
ERIC Educational Resources Information Center
Jones, Margaret Hubbard
The validity of certain standardized tests may be affected by the short-term memory load therein and its relation to a child's short-term memory capacity. Factors of testing which increase a test's memory load and consequently interfere with comprehension are discussed. It is hypothesized that a test which strains the short-term memory capacity of…
Does Active Memory Capacity Change with Age?
ERIC Educational Resources Information Center
Halford, Graeme S.; And Others
A series of experiments, which used the primary memory paradigm of Wickens et al. (1981, 1985) with university students, adults, and 8- and 9-year-old children, found an increase in primary memory capacity with age. Primary memory differs from secondary memory in that the latter is susceptible to proactive interference, whereas the former is not.…
Limited capacity for contour curvature in iconic memory.
Sakai, Koji
2006-06-01
We measured the difference threshold for contour curvature in iconic memory by using the cued discrimination method. The study stimulus consisting of 2 to 6 curved contours was briefly presented in the fovea, followed by two lines as cues. Subjects discriminated the curvature of two cued curves. The cue delays were 0 msec. and 300 msec. in Exps. 1 and 2, respectively, and 50 msec. before the study offset in Exp. 3. Analysis of data from Exps. 1 and 2 showed that the Weber fraction rose monotonically with the increase in set size. Clear set-size effects indicate that iconic memory has a limited capacity. Moreover, clear set-size effect in Exp. 3 indicates that perception itself has a limited capacity. Larger set-size effects in Exp. 1 than in Exp. 3 suggest that iconic memory after perceptual process has limited capacity. These properties of iconic memory at threshold level are contradictory to the traditional view that iconic memory has a high capacity both at suprathreshold and categorical levels.
Lin, Po-Han; Luck, Steven J.
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task – in which the to-be-remembered information consists of simple, briefly presented features – is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference. PMID:22403556
Lin, Po-Han; Luck, Steven J
2012-01-01
The change detection task has become a standard method for estimating the storage capacity of visual working memory. Most researchers assume that this task isolates the properties of an active short-term storage system that can be dissociated from long-term memory systems. However, long-term memory storage may influence performance on this task. In particular, memory traces from previous trials may create proactive interference that sometimes leads to errors, thereby reducing estimated capacity. Consequently, the capacity of visual working memory may be higher than is usually thought, and correlations between capacity and other measures of cognition may reflect individual differences in proactive interference rather than individual differences in the capacity of the short-term storage system. Indeed, previous research has shown that change detection performance can be influenced by proactive interference under some conditions. The purpose of the present study was to determine whether the canonical version of the change detection task - in which the to-be-remembered information consists of simple, briefly presented features - is influenced by proactive interference. Two experiments were conducted using methods that ordinarily produce substantial evidence of proactive interference, but no proactive interference was observed. Thus, the canonical version of the change detection task can be used to assess visual working memory capacity with no meaningful influence of proactive interference.
Effects of Working Memory Capacity and Domain Knowledge on Recall for Grocery Prices.
Bermingham, Douglas; Gardner, Michael K; Woltz, Dan J
2016-01-01
Hambrick and Engle (2002) proposed 3 models of how domain knowledge and working memory capacity may work together to influence episodic memory: a "rich-get-richer" model, a "building blocks" model, and a "compensatory" model. Their results supported the rich-get-richer model, although later work by Hambrick and Oswald (2005) found support for a building blocks model. We investigated the effects of domain knowledge and working memory on recall of studied grocery prices. Working memory was measured with 3 simple span tasks. A contrast of realistic versus fictitious foods in the episodic memory task served as our manipulation of domain knowledge, because participants could not have domain knowledge of fictitious food prices. There was a strong effect for domain knowledge (realistic food-price pairs were easier to remember) and a moderate effect for working memory capacity (higher working memory capacity produced better recall). Furthermore, the interaction between domain knowledge and working memory produced a small but significant interaction in 1 measure of price recall. This supported the compensatory model and stands in contrast to previous research.
Child first language and adult second language are both tied to general-purpose learning systems.
Hamrick, Phillip; Lum, Jarrad A G; Ullman, Michael T
2018-02-13
Do the mechanisms underlying language in fact serve general-purpose functions that preexist this uniquely human capacity? To address this contentious and empirically challenging issue, we systematically tested the predictions of a well-studied neurocognitive theory of language motivated by evolutionary principles. Multiple metaanalyses were performed to examine predicted links between language and two general-purpose learning systems, declarative and procedural memory. The results tied lexical abilities to learning only in declarative memory, while grammar was linked to learning in both systems in both child first language and adult second language, in specific ways. In second language learners, grammar was associated with only declarative memory at lower language experience, but with only procedural memory at higher experience. The findings yielded large effect sizes and held consistently across languages, language families, linguistic structures, and tasks, underscoring their reliability and validity. The results, which met the predicted pattern, provide comprehensive evidence that language is tied to general-purpose systems both in children acquiring their native language and adults learning an additional language. Crucially, if language learning relies on these systems, then our extensive knowledge of the systems from animal and human studies may also apply to this domain, leading to predictions that might be unwarranted in the more circumscribed study of language. Thus, by demonstrating a role for these systems in language, the findings simultaneously lay a foundation for potentially important advances in the study of this critical domain.
Gordon-Salant, Sandra; Cole, Stacey Samuels
2016-01-01
This study aimed to determine if younger and older listeners with normal hearing who differ on working memory span perform differently on speech recognition tests in noise. Older adults typically exhibit poorer speech recognition scores in noise than younger adults, which is attributed primarily to poorer hearing sensitivity and more limited working memory capacity in older than younger adults. Previous studies typically tested older listeners with poorer hearing sensitivity and shorter working memory spans than younger listeners, making it difficult to discern the importance of working memory capacity on speech recognition. This investigation controlled for hearing sensitivity and compared speech recognition performance in noise by younger and older listeners who were subdivided into high and low working memory groups. Performance patterns were compared for different speech materials to assess whether or not the effect of working memory capacity varies with the demands of the specific speech test. The authors hypothesized that (1) normal-hearing listeners with low working memory span would exhibit poorer speech recognition performance in noise than those with high working memory span; (2) older listeners with normal hearing would show poorer speech recognition scores than younger listeners with normal hearing, when the two age groups were matched for working memory span; and (3) an interaction between age and working memory would be observed for speech materials that provide contextual cues. Twenty-eight older (61 to 75 years) and 25 younger (18 to 25 years) normal-hearing listeners were assigned to groups based on age and working memory status. Northwestern University Auditory Test No. 6 words and Institute of Electrical and Electronics Engineers sentences were presented in noise using an adaptive procedure to measure the signal-to-noise ratio corresponding to 50% correct performance. Cognitive ability was evaluated with two tests of working memory (Listening Span Test and Reading Span Test) and two tests of processing speed (Paced Auditory Serial Addition Test and The Letter Digit Substitution Test). Significant effects of age and working memory capacity were observed on the speech recognition measures in noise, but these effects were mediated somewhat by the speech signal. Specifically, main effects of age and working memory were revealed for both words and sentences, but the interaction between the two was significant for sentences only. For these materials, effects of age were observed for listeners in the low working memory groups only. Although all cognitive measures were significantly correlated with speech recognition in noise, working memory span was the most important variable accounting for speech recognition performance. The results indicate that older adults with high working memory capacity are able to capitalize on contextual cues and perform as well as young listeners with high working memory capacity for sentence recognition. The data also suggest that listeners with normal hearing and low working memory capacity are less able to adapt to distortion of speech signals caused by background noise, which requires the allocation of more processing resources to earlier processing stages. These results indicate that both younger and older adults with low working memory capacity and normal hearing are at a disadvantage for recognizing speech in noise.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
ERIC Educational Resources Information Center
Lusk, Danielle L.; Evans, Amber D.; Jeffrey, Thomas R.; Palmer, Keith R.; Wikstrom, Chris S.; Doolittle, Peter E.
2009-01-01
Research in multimedia learning lacks an emphasis on individual difference variables, such as working memory capacity (WMC). The effects of WMC and the segmentation of multimedia instruction were examined by assessing the recall and application of low (n = 66) and high (n = 67) working memory capacity students randomly assigned to either a…
ERIC Educational Resources Information Center
Alptekin, Cem; Ercetin, Gulcan
2011-01-01
This study examines the effects of working memory capacity and content familiarity on literal and inferential comprehension in second language (L2) reading. Participants were 62 Turkish university students with an advanced English proficiency level. Working memory capacity was measured through a computerized version of a reading span test, whereas…
Inactivation of Medial Prefrontal Cortex or Acute Stress Impairs Odor Span in Rats
ERIC Educational Resources Information Center
Davies, Don A.; Molder, Joel J.; Greba, Quentin; Howland, John G.
2013-01-01
The capacity of working memory is limited and is altered in brain disorders including schizophrenia. In rodent working memory tasks, capacity is typically not measured (at least not explicitly). One task that does measure working memory capacity is the odor span task (OST) developed by Dudchenko and colleagues. In separate experiments, the effects…
The declarative/procedural model of lexicon and grammar.
Ullman, M T
2001-01-01
Our use of language depends upon two capacities: a mental lexicon of memorized words and a mental grammar of rules that underlie the sequential and hierarchical composition of lexical forms into predictably structured larger words, phrases, and sentences. The declarative/procedural model posits that the lexicon/grammar distinction in language is tied to the distinction between two well-studied brain memory systems. On this view, the memorization and use of at least simple words (those with noncompositional, that is, arbitrary form-meaning pairings) depends upon an associative memory of distributed representations that is subserved by temporal-lobe circuits previously implicated in the learning and use of fact and event knowledge. This "declarative memory" system appears to be specialized for learning arbitrarily related information (i.e., for associative binding). In contrast, the acquisition and use of grammatical rules that underlie symbol manipulation is subserved by frontal/basal-ganglia circuits previously implicated in the implicit (nonconscious) learning and expression of motor and cognitive "skills" and "habits" (e.g., from simple motor acts to skilled game playing). This "procedural" system may be specialized for computing sequences. This novel view of lexicon and grammar offers an alternative to the two main competing theoretical frameworks. It shares the perspective of traditional dual-mechanism theories in positing that the mental lexicon and a symbol-manipulating mental grammar are subserved by distinct computational components that may be linked to distinct brain structures. However, it diverges from these theories where they assume components dedicated to each of the two language capacities (that is, domain-specific) and in their common assumption that lexical memory is a rote list of items. Conversely, while it shares with single-mechanism theories the perspective that the two capacities are subserved by domain-independent computational mechanisms, it diverges from them where they link both capacities to a single associative memory system with broad anatomic distribution. The declarative/procedural model, but neither traditional dual- nor single-mechanism models, predicts double dissociations between lexicon and grammar, with associations among associative memory properties, memorized words and facts, and temporal-lobe structures, and among symbol-manipulation properties, grammatical rule products, motor skills, and frontal/basal-ganglia structures. In order to contrast lexicon and grammar while holding other factors constant, we have focused our investigations of the declarative/procedural model on morphologically complex word forms. Morphological transformations that are (largely) unproductive (e.g., in go-went, solemn-solemnity) are hypothesized to depend upon declarative memory. These have been contrasted with morphological transformations that are fully productive (e.g., in walk-walked, happy-happiness), whose computation is posited to be solely dependent upon grammatical rules subserved by the procedural system. Here evidence is presented from studies that use a range of psycholinguistic and neurolinguistic approaches with children and adults. It is argued that converging evidence from these studies supports the declarative/procedural model of lexicon and grammar.
Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.
Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin
2016-01-15
Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Pseudo-orthogonalization of memory patterns for associative memory.
Oku, Makito; Makino, Takaki; Aihara, Kazuyuki
2013-11-01
A new method for improving the storage capacity of associative memory models on a neural network is proposed. The storage capacity of the network increases in proportion to the network size in the case of random patterns, but, in general, the capacity suffers from correlation among memory patterns. Numerous solutions to this problem have been proposed so far, but their high computational cost limits their scalability. In this paper, we propose a novel and simple solution that is locally computable without any iteration. Our method involves XNOR masking of the original memory patterns with random patterns, and the masked patterns and masks are concatenated. The resulting decorrelated patterns allow higher storage capacity at the cost of the pattern length. Furthermore, the increase in the pattern length can be reduced through blockwise masking, which results in a small amount of capacity loss. Movie replay and image recognition are presented as examples to demonstrate the scalability of the proposed method.
Savin, Cristina; Dayan, Peter; Lengyel, Máté
2014-01-01
A venerable history of classical work on autoassociative memory has significantly shaped our understanding of several features of the hippocampus, and most prominently of its CA3 area, in relation to memory storage and retrieval. However, existing theories of hippocampal memory processing ignore a key biological constraint affecting memory storage in neural circuits: the bounded dynamical range of synapses. Recent treatments based on the notion of metaplasticity provide a powerful model for individual bounded synapses; however, their implications for the ability of the hippocampus to retrieve memories well and the dynamics of neurons associated with that retrieval are both unknown. Here, we develop a theoretical framework for memory storage and recall with bounded synapses. We formulate the recall of a previously stored pattern from a noisy recall cue and limited-capacity (and therefore lossy) synapses as a probabilistic inference problem, and derive neural dynamics that implement approximate inference algorithms to solve this problem efficiently. In particular, for binary synapses with metaplastic states, we demonstrate for the first time that memories can be efficiently read out with biologically plausible network dynamics that are completely constrained by the synaptic plasticity rule, and the statistics of the stored patterns and of the recall cue. Our theory organises into a coherent framework a wide range of existing data about the regulation of excitability, feedback inhibition, and network oscillations in area CA3, and makes novel and directly testable predictions that can guide future experiments. PMID:24586137
ERIC Educational Resources Information Center
Johnson, Mark D.; Mercado, Leonardo; Acevedo, Anthony
2012-01-01
This study contributes to L2 writing research which seeks to tie predictions of the Limited Attentional Capacity Model (Skehan, 1998; Skehan & Foster, 2001) and Cognition Hypothesis (Robinson, 2001, 2005, 2011a, 2011b) to models of working memory in L1 writing (Kellogg, 1996). The study uses a quasi-experimental research design to investigate…
ERIC Educational Resources Information Center
Díaz-Mataix, Lorenzo; Piper, Walter T.; Schiff, Hillary C.; Roberts, Clark H.; Campese, Vincent D.; Sears, Robert M.; LeDoux, Joseph E.
2017-01-01
The creation of auditory threat Pavlovian memory requires an initial learning stage in which a neutral conditioned stimulus (CS), such as a tone, is paired with an aversive one (US), such as a shock. In this phase, the CS acquires the capacity of predicting the occurrence of the US and therefore elicits conditioned defense responses.…
Gil, N; Josman, N
2001-08-01
The purpose of the present study was to examine the ability of the Contextual Memory Test (CMT) to differentiate between elderly people suffering from Alzheimer's disease (AD) in comparison to healthy elderly people. Specifically, the objectives were to compare for differences between and within the groups on components of memory, including immediate and delayed recall as well as recognition. In addition, parameters of metamemory skills, such as general awareness, self-prediction of memory capacity, self-estimation, strategy use and use of contextual information, as well as the correlation between self-awareness and actual performance in both groups, were investigated. The sample consisted of 60 elderly participants, including 30 people diagnosed with AD who were assigned to the research group and 30 people matched for age, gender and educational level who were assigned to the control group. The results provide support for the hypothesis positing differences in memory performance between healthy elderly participants and those suffering from AD, particularly in immediate and delayed recall as well as in recognition. Moreover, findings indicate an improvement in memory performance under the cued condition (contextual), whereas improvement in the AD group proved to be significant only for immediate recall. The findings point to a distinct overestimation of memory ability predicted by both the AD and control groups. Following the memory task, however, the participants accurately estimated the number of items they remembered. In addition, significant correlations between the use of contextual and association strategies and the number of items remembered by both groups were obtained, in immediate as well as in delayed recall. Therefore, these findings support the CMT as a valuable memory and metamemory assessment tool for use with the AD population.
Zippo, Antonio G.; Biella, Gabriele E. M.
2015-01-01
Current developments in neuronal physiology are unveiling novel roles for dendrites. Experiments have shown mechanisms of non-linear synaptic NMDA dependent activations, able to discriminate input patterns through the waveforms of the excitatory postsynaptic potentials. Contextually, the synaptic clustering of inputs is the principal cellular strategy to separate groups of common correlated inputs. Dendritic branches appear to work as independent discriminating units of inputs potentially reflecting an extraordinary repertoire of pattern memories. However, it is unclear how these observations could impact our comprehension of the structural correlates of memory at the cellular level. This work investigates the discrimination capabilities of neurons through computational biophysical models to extract a predicting law for the dendritic input discrimination capability (M). By this rule we compared neurons from a neuron reconstruction repository (neuromorpho.org). Comparisons showed that primate neurons were not supported by an equivalent M preeminence and that M is not uniformly distributed among neuron types. Remarkably, neocortical neurons had substantially less memory capacity in comparison to those from non-cortical regions. In conclusion, the proposed rule predicts the inherent neuronal spatial memory gathering potentially relevant anatomical and evolutionary considerations about the brain cytoarchitecture. PMID:26100354
Gibson, Bradley S; Gondoli, Dawn M
2018-04-01
The immediate free recall (IFR) task has been commonly used to estimate the capacities of the primary memory (PM) and secondary memory (SM) components of working memory (WM). Using this method, the correlation between estimates of the PM and SM components has hovered around zero, suggesting that PM and SM represent fully distinct and dissociable components of WM. However, this conclusion has conflicted with more recent studies that have observed moderately strong, positive correlations between PM and SM when separate attention and retrieval tasks are used to estimate these capacities, suggesting that PM and SM represent at least some related capacities. The present study attempted to resolve this empirical discrepancy by investigating the extent to which the relation between estimates of PM and SM might be suppressed by a third variable that operates during the recall portion of the IFR task. This third variable was termed "strength of recency" (SOR) in the present study as it reflected differences in the extent to which individuals used the same experimentally-induced recency recall initiation strategy. As predicted, the present findings showed that the positive correlation between estimates of PM and SM grew from small to medium when the indirect effect of SOR was controlled across two separate sets of studies. This finding is important because it provides stronger support for the distinction between "component-general" and "component-specific" aspects of PM and SM; furthermore, a proof is presented that demonstrates a limitation of using regression techniques to differentiate general and specific aspects of these components.
ERIC Educational Resources Information Center
Doolittle, Peter E.; Mariano, Gina J.
2008-01-01
The present study examined the effects of individual differences in working memory capacity (WMC) on learning from an historical inquiry multimedia tutorial in stationary versus mobile learning environments using a portable digital media player (i.e., iPod). Students with low (n = 44) and high (n = 40) working memory capacity, as measured by the…
Unsworth, Nash; Spillers, Gregory J; Brewer, Gene A
2012-01-01
Remembering previous experiences from one's personal past is a principal component of psychological well-being, personality, sense of self, decision making, and planning for the future. In the current study the ability to search for autobiographical information in memory was examined by having college students recall their Facebook friends. Individual differences in working memory capacity manifested itself in the search of autobiographical memory by way of the total number of friends remembered, the number of clusters of friends, size of clusters, and the speed with which participants could output their friends' names. Although working memory capacity was related to the ability to search autobiographical memory, participants did not differ in the manner in which they approached the search and used contextual cues to help query their memories. These results corroborate recent theorising, which suggests that working memory is a necessary component of self-generating contextual cues to strategically search memory for autobiographical information.
Phonological mismatch makes aided speech recognition in noise cognitively taxing.
Rudner, Mary; Foo, Catharina; Rönnberg, Jerker; Lunner, Thomas
2007-12-01
The working memory framework for Ease of Language Understanding predicts that speech processing becomes more effortful, thus requiring more explicit cognitive resources, when there is mismatch between speech input and phonological representations in long-term memory. To test this prediction, we changed the compression release settings in the hearing instruments of experienced users and allowed them to train for 9 weeks with the new settings. After training, aided speech recognition in noise was tested with both the trained settings and orthogonal settings. We postulated that training would lead to acclimatization to the trained setting, which in turn would involve establishment of new phonological representations in long-term memory. Further, we postulated that after training, testing with orthogonal settings would give rise to phonological mismatch, associated with more explicit cognitive processing. Thirty-two participants (mean=70.3 years, SD=7.7) with bilateral sensorineural hearing loss (pure-tone average=46.0 dB HL, SD=6.5), bilaterally fitted for more than 1 year with digital, two-channel, nonlinear signal processing hearing instruments and chosen from the patient population at the Linköping University Hospital were randomly assigned to 9 weeks training with new, fast (40 ms) or slow (640 ms), compression release settings in both channels. Aided speech recognition in noise performance was tested according to a design with three within-group factors: test occasion (T1, T2), test setting (fast, slow), and type of noise (unmodulated, modulated) and one between-group factor: experience setting (fast, slow) for two types of speech materials-the highly constrained Hagerman sentences and the less-predictable Hearing in Noise Test (HINT). Complex cognitive capacity was measured using the reading span and letter monitoring tests. PREDICTION: We predicted that speech recognition in noise at T2 with mismatched experience and test settings would be associated with more explicit cognitive processing and thus stronger correlations with complex cognitive measures, as well as poorer performance if complex cognitive capacity was exceeded. Under mismatch conditions, stronger correlations were found between performance on speech recognition with the Hagerman sentences and reading span, along with poorer speech recognition for participants with low reading span scores. No consistent mismatch effect was found with HINT. The mismatch prediction generated by the working memory framework for Ease of Language Understanding is supported for speech recognition in noise with the highly constrained Hagerman sentences but not the less-predictable HINT.
Schleepen, Tamara M J; Jonkman, Lisa M
2014-01-01
This two-cohort longitudinal study on the development of the semantic grouping strategy had three goals. First, the authors examined if 6-7-year-olds are nonstrategic before becoming strategic after prompting at 8-9 years of age, and if 8-9-year-olds are prompted strategic before spontaneous strategy use at 10-11 years of age. Children 6-7 and 8-9 years old performed two sort-recall tasks (one without and one with a grouping prompt) at two time points separated 1.5 years from each other. Second, the authors investigated whether short-term or working memory capacity at time point 1 predicted recall in children who did or did not use the semantic grouping strategy 1.5 years later. Third, the authors investigated whether prompted strategic children and children who used the strategy spontaneously differed in strategy transfer to a new task. Developmental results confirmed previous cross-sectional results, but in a longitudinal two-cohort study 6-7-year-olds were nonstrategic, and became prompted strategic around 8-9 years of age, followed by spontaneous strategy use at age 10-11 years. The authors found that memory capacity was not predictive of later use of the strategy. New findings were that prompted strategic children were as equally able as spontaneously strategic children to transfer the strategy to a new task, albeit with smaller recall benefits.
Working Memory Capacity and Resistance to Interference
ERIC Educational Resources Information Center
Oberauer, Klaus; Lange, Elke; Engle, Randall W.
2004-01-01
Single-task and dual-task versions of verbal and spatial serial order memory tasks were administered to 120 students tested for working memory capacity with four previously validated measures. In the dual-task versions, similarity between the memory material and the material of the secondary processing task was varied. With verbal material, three…
ERIC Educational Resources Information Center
Wong, Jason H.; Peterson, Matthew S.; Thompson, James C.
2008-01-01
The capacity of visual working memory was examined when complex objects from different categories were remembered. Previous studies have not examined how visual similarity affects object memory, though it has long been known that similar-sounding phonological information interferes with rehearsal in auditory working memory. Here, experiments…
Distinct Transfer Effects of Training Different Facets of Working Memory Capacity
ERIC Educational Resources Information Center
von Bastian, Claudia C.; Oberauer, Klaus
2013-01-01
The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…
A Formal Model of Capacity Limits in Working Memory
ERIC Educational Resources Information Center
Oberauer, Klaus; Kliegl, Reinhold
2006-01-01
A mathematical model of working-memory capacity limits is proposed on the key assumption of mutual interference between items in working memory. Interference is assumed to arise from overwriting of features shared by these items. The model was fit to time-accuracy data of memory-updating tasks from four experiments using nonlinear mixed effect…
Verbal working memory predicts co-speech gesture: evidence from individual differences.
Gillespie, Maureen; James, Ariel N; Federmeier, Kara D; Watson, Duane G
2014-08-01
Gesture facilitates language production, but there is debate surrounding its exact role. It has been argued that gestures lighten the load on verbal working memory (VWM; Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001), but gestures have also been argued to aid in lexical retrieval (Krauss, 1998). In the current study, 50 speakers completed an individual differences battery that included measures of VWM and lexical retrieval. To elicit gesture, each speaker described short cartoon clips immediately after viewing. Measures of lexical retrieval did not predict spontaneous gesture rates, but lower VWM was associated with higher gesture rates, suggesting that gestures can facilitate language production by supporting VWM when resources are taxed. These data also suggest that individual variability in the propensity to gesture is partly linked to cognitive capacities. Copyright © 2014 Elsevier B.V. All rights reserved.
The frontal eye fields limit the capacity of visual short-term memory in rhesus monkeys.
Lee, Kyoung-Min; Ahn, Kyung-Ha
2013-01-01
The frontal eye fields (FEF) in rhesus monkeys have been implicated in visual short-term memory (VSTM) as well as control of visual attention. Here we examined the importance of the area in the VSTM capacity and the relationship between VSTM and attention, using the chemical inactivation technique and multi-target saccade tasks with or without the need of target-location memory. During FEF inactivation, serial saccades to targets defined by color contrast were unaffected, but saccades relying on short-term memory were impaired when the target count was at the capacity limit of VSTM. The memory impairment was specific to the FEF-coded retinotopic locations, and subject to competition among targets distributed across visual fields. These results together suggest that the FEF plays a crucial role during the entry of information into VSTM, by enabling attention deployment on targets to be remembered. In this view, the memory capacity results from the limited availability of attentional resources provided by FEF: The FEF can concurrently maintain only a limited number of activations to register the targets into memory. When lesions render part of the area unavailable for activation, the number would decrease, further reducing the capacity of VSTM.
ERIC Educational Resources Information Center
Unsworth, Nash; Spillers, Gregory J.; Brewer, Gene A.
2010-01-01
The present study tested the dual-component model of working memory capacity (WMC) by examining estimates of primary memory and secondary memory from an immediate free recall task. Participants completed multiple measures of WMC and general intellectual ability as well as multiple trials of an immediate free recall task. It was demonstrated that…
Why is working memory capacity related to matrix reasoning tasks?
Harrison, Tyler L; Shipstead, Zach; Engle, Randall W
2015-04-01
One of the reasons why working memory capacity is so widely researched is its substantial relationship with fluid intelligence. Although this relationship has been found in numerous studies, researchers have been unable to provide a conclusive answer as to why the two constructs are related. In a recent study, researchers examined which attributes of Raven's Progressive Matrices were most strongly linked with working memory capacity (Wiley, Jarosz, Cushen, & Colflesh, Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 256-263, 2011). In that study, Raven's problems that required a novel combination of rules to solve were more strongly correlated with working memory capacity than were problems that did not. In the present study, we wanted to conceptually replicate the Wiley et al. results while controlling for a few potential confounds. Thus, we experimentally manipulated whether a problem required a novel combination of rules and found that repeated-rule-combination problems were more strongly related to working memory capacity than were novel-rule-combination problems. The relationship to other measures of fluid intelligence did not change based on whether the problem required a novel rule combination.
The Sensory Components of High-Capacity Iconic Memory and Visual Working Memory
Bradley, Claire; Pearson, Joel
2012-01-01
Early visual memory can be split into two primary components: a high-capacity, short-lived iconic memory followed by a limited-capacity visual working memory that can last many seconds. Whereas a large number of studies have investigated visual working memory for low-level sensory features, much research on iconic memory has used more “high-level” alphanumeric stimuli such as letters or numbers. These two forms of memory are typically examined separately, despite an intrinsic overlap in their characteristics. Here, we used a purely sensory paradigm to examine visual short-term memory for 10 homogeneous items of three different visual features (color, orientation and motion) across a range of durations from 0 to 6 s. We found that the amount of information stored in iconic memory is smaller for motion than for color or orientation. Performance declined exponentially with longer storage durations and reached chance levels after ∼2 s. Further experiments showed that performance for the 10 items at 1 s was contingent on unperturbed attentional resources. In addition, for orientation stimuli, performance was contingent on the location of stimuli in the visual field, especially for short cue delays. Overall, our results suggest a smooth transition between an automatic, high-capacity, feature-specific sensory-iconic memory, and an effortful “lower-capacity” visual working memory. PMID:23055993
ERIC Educational Resources Information Center
Davies, Don A.; Greba, Quentin; Selk, Jantz C.; Catton, Jillian K.; Baillie, Landon D.; Mulligan, Sean J.; Howland, John G.
2017-01-01
Working memory is involved in the maintenance and manipulation of information essential for complex cognition. While the neural substrates underlying working memory capacity have been studied in humans, considerably less is known about the circuitry mediating working memory capacity in rodents. Therefore, the present experiments tested the…
Changes in the Capacity of Visual Working Memory in 5- to 10-Year-Olds
ERIC Educational Resources Information Center
Riggs, Kevin J.; McTaggart, James; Simpson, Andrew; Freeman, Richard P. J.
2006-01-01
Using the Luck and Vogel change detection paradigm, we sought to investigate the capacity of visual working memory in 5-, 7-, and 10-year-olds. We found that performance on the task improved significantly with age and also obtained evidence that the capacity of visual working memory approximately doubles between 5 and 10 years of age, where it…
Blurring emotional memories using eye movements: individual differences and speed of eye movements.
van Schie, Kevin; van Veen, Suzanne C; Engelhard, Iris M; Klugkist, Irene; van den Hout, Marcel A
2016-01-01
In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM-regardless of WMC and EM speed-are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals-compared to high-WMC individuals-benefit more from making either type of EM, 4) the EM intervention is most effective when-as predicted by WM theory-EM are adjusted to WMC. Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful.
Blurring emotional memories using eye movements: individual differences and speed of eye movements
van Schie, Kevin; van Veen, Suzanne C.; Engelhard, Iris M.; Klugkist, Irene; van den Hout, Marcel A.
2016-01-01
Background In eye movement desensitization and reprocessing (EMDR), patients make eye movements (EM) while recalling traumatic memories. Making EM taxes working memory (WM), which leaves less resources available for imagery of the memory. This reduces memory vividness and emotionality during future recalls. WM theory predicts that individuals with small working memory capacities (WMCs) benefit more from low levels of taxing (i.e., slow EM) whereas individuals with large WMC benefit more from high levels of taxing (i.e., fast EM). Objective We experimentally examined and tested four prespecified hypotheses regarding the role of WMC and EM speed in reducing emotionality and vividness ratings: 1) EM—regardless of WMC and EM speed—are more effective compared to no dual task, 2) increasing EM speed only affects the decrease in memory ratings irrespective of WMC, 3) low-WMC individuals—compared to high-WMC individuals—benefit more from making either type of EM, 4) the EM intervention is most effective when—as predicted by WM theory—EM are adjusted to WMC. Method Undergraduates with low (n=31) or high (n=35) WMC recalled three emotional memories and rated vividness and emotionality before and after each condition (recall only, recall + slow EM, and recall + fast EM). Results Contrary to the theory, the data do not support the hypothesis that EM speed should be adjusted to WMC (hypothesis 4). However, the data show that a dual task in general is more effective in reducing memory ratings than no dual task (hypothesis 1), and that a more cognitively demanding dual task increases the intervention's effectiveness (hypothesis 2). Conclusions Although adjusting EM speed to an individual's WMC seems a straightforward clinical implication, the data do not show any indication that such a titration is helpful. PMID:27387843
Miura, Kayoko; Matsui, Mie; Takashima, Shutaro; Tanaka, Kortaro
2015-01-01
Background/Aims Little is known about the relationship between cognitive functions and higher-level functional capacity (e.g. intellectual activity, social role, and social participation) in Parkinson's disease (PD). The purpose of this study was to clarify neuropsychological characteristics and their association with higher-level functional capacity in PD patients. Methods Participants were 31 PD patients and 23 demographically matched healthy controls. Neuropsychological tests were conducted. One year later, a questionnaire survey evaluated higher-level functional capacity in daily living. Results The PD group scored significantly lower than the control group in all cognitive domains, particularly executive function and processing. Executive function, processing speed, language, and memory were significantly correlated with higher-level functional capacity in PD patients. Stepwise regression showed that only executive function (Trail Making Test-B), together with disease severity (HY stage), predicted the higher-level functional capacity. Conclusion Our findings provide evidence of a relationship between executive function and higher-level functional capacity in patients with PD. PMID:26273243
Visual Working Memory Capacity: From Psychophysics and Neurobiology to Individual Differences
Luck, Steven J.; Vogel, Edward K.
2013-01-01
Visual working memory capacity is of great interest because it is strongly correlated with overall cognitive ability, can be understood at the level of neural circuits, and is easily measured. Recent studies have shown that capacity influences tasks ranging from saccade targeting to analogical reasoning. A debate has arisen over whether capacity is constrained by a limited number of discrete representations or by an infinitely divisible resource, but the empirical evidence and neural network models currently favor a discrete item limit. Capacity differs markedly across individuals and groups, and recent research indicates that some of these differences reflect true differences in storage capacity whereas others reflect variations in the ability to use memory capacity efficiently. PMID:23850263
Moossavi, Abdollah; Mehrkian, Saiedeh; Lotfi, Yones; Faghihzadeh, Soghrat; sajedi, Hamed
2014-11-01
Auditory processing disorder (APD) describes a complex and heterogeneous disorder characterized by poor speech perception, especially in noisy environments. APD may be responsible for a range of sensory processing deficits associated with learning difficulties. There is no general consensus about the nature of APD and how the disorder should be assessed or managed. This study assessed the effect of cognition abilities (working memory capacity) on sound lateralization in children with auditory processing disorders, in order to determine how "auditory cognition" interacts with APD. The participants in this cross-sectional comparative study were 20 typically developing and 17 children with a diagnosed auditory processing disorder (9-11 years old). Sound lateralization abilities investigated using inter-aural time (ITD) differences and inter-aural intensity (IID) differences with two stimuli (high pass and low pass noise) in nine perceived positions. Working memory capacity was evaluated using the non-word repetition, and forward and backward digits span tasks. Linear regression was employed to measure the degree of association between working memory capacity and localization tests between the two groups. Children in the APD group had consistently lower scores than typically developing subjects in lateralization and working memory capacity measures. The results showed working memory capacity had significantly negative correlation with ITD errors especially with high pass noise stimulus but not with IID errors in APD children. The study highlights the impact of working memory capacity on auditory lateralization. The finding of this research indicates that the extent to which working memory influences auditory processing depend on the type of auditory processing and the nature of stimulus/listening situation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Variation in Working Memory Capacity and Temporal-Contextual Retrieval from Episodic Memory
ERIC Educational Resources Information Center
Spillers, Gregory J.; Unsworth, Nash
2011-01-01
Unsworth and Engle (2007) recently proposed a model of working memory capacity characterized by, among other things, the ability to conduct a strategic, cue-dependent search of long-term memory. Although this ability has been found to mediate individual variation in a number of higher order cognitive tasks, the component processes involved remain…
ERIC Educational Resources Information Center
Brady, Timothy F.; Tenenbaum, Joshua B.
2013-01-01
When remembering a real-world scene, people encode both detailed information about specific objects and higher order information like the overall gist of the scene. However, formal models of change detection, like those used to estimate visual working memory capacity, assume observers encode only a simple memory representation that includes no…
ERIC Educational Resources Information Center
Raine, Adrian; And Others
1991-01-01
Children with speech disorders had lower short-term memory capacity and smaller word length effect than control children. Children with speech disorders also had reduced speech-motor activity during rehearsal. Results suggest that speech rate may be a causal determinant of verbal short-term memory capacity. (BC)
Working memory management and predicted utility
Chatham, Christopher H.; Badre, David
2013-01-01
Given the limited capacity of working memory (WM), its resources should be allocated strategically. One strategy is filtering, whereby access to WM is granted preferentially to items with the greatest utility. However, reallocation of WM resources might be required if the utility of maintained information subsequently declines. Here, we present behavioral, computational, and neuroimaging evidence that human participants track changes in the predicted utility of information in WM. First, participants demonstrated behavioral costs when the utility of items already maintained in WM declined and resources should be reallocated. An adapted Q-learning model indicated that these costs scaled with the historical utility of individual items. Finally, model-based neuroimaging demonstrated that frontal cortex tracked the utility of items to be maintained in WM, whereas ventral striatum tracked changes in the utility of items maintained in WM to the degree that these items are no longer useful. Our findings suggest that frontostriatal mechanisms track the utility of information in WM, and that these dynamics may predict delays in the removal of information from WM. PMID:23882196
The neural bases of distracter-resistant working memory
Wager, Tor D.; Spicer, Julie; Insler, Rachel; Smith, Edward E.
2014-01-01
A major difference between humans and other animals is our capacity to maintain information in working memory (WM) while performing secondary tasks, which enables sustained, complex cognition. A common assumption is that the lateral prefrontal cortex (PFC) is critical for WM performance in the presence of distracters, but direct evidence is scarce. We assessed the relationship between fMRI activity and WM performance within-subjects, with performance matched across Distracter and No-distracter conditions. Activity in ventrolateral PFC during WM encoding and maintenance positively predicted performance in both conditions, whereas activity in the pre-supplementary motor area (pre-SMA) predicted performance only under distraction. Other parts of dorsolateral and ventrolateral PFC predicted performance only in the No-distracter condition. These findings challenge a lateral PFC-centered view of distracter-resistance, and suggest that the lateral PFC supports a type of WM representation that is efficient for dealing with task-irrelevant input but is nonetheless easily disrupted by dual-task demands. PMID:24366656
Attree, Elizabeth A; Dancey, Christine P; Pope, Alison L
2009-08-01
People with chronic fatigue syndrome (CFS) have increased rates of depression, anxiety, and illness intrusiveness; they may also suffer from cognitive problems such as retrospective memory (RM) deficits and concentration difficulties that can stem from diminished information-processing capability. We predicted that this diminished capacity may also lead to deficits in other cognitive functions, such as prospective memory (ProM). Event-, time-, and activity-based ProM was assessed in 11 women with CFS and 12 healthy women using a computer-generated virtual environment (VE). RM was assessed using a free-recall test, and subjective assessment of both ProM and RM was assessed by questionnaire. Groups were equivalent in age and measures of IQ. People with CFS performed slightly worse than healthy controls on both the event- and time-based ProM measures, although these were not statistically significant. However, the CFS group performed significantly worse than the healthy controls on both the free recall-task and on subjective assessment of both RM and ProM. Women with CFS do have some subtle decrements in memory, particularly RM. However, it is possible that the decrements found in the present sample would be greater in real life. Further studies utilizing both healthy controls and illness controls are now needed to ascertain how sensitive the VE measure is and to inform the development of tasks in the VE that place progressively increasing demands on working memory capacity.
Role of working memory and lexical knowledge in perceptual restoration of interrupted speech.
Nagaraj, Naveen K; Magimairaj, Beula M
2017-12-01
The role of working memory (WM) capacity and lexical knowledge in perceptual restoration (PR) of missing speech was investigated using the interrupted speech perception paradigm. Speech identification ability, which indexed PR, was measured using low-context sentences periodically interrupted at 1.5 Hz. PR was measured for silent gated, low-frequency speech noise filled, and low-frequency fine-structure and envelope filled interrupted conditions. WM capacity was measured using verbal and visuospatial span tasks. Lexical knowledge was assessed using both receptive vocabulary and meaning from context tests. Results showed that PR was better for speech noise filled condition than other conditions tested. Both receptive vocabulary and verbal WM capacity explained unique variance in PR for the speech noise filled condition, but were unrelated to performance in the silent gated condition. It was only receptive vocabulary that uniquely predicted PR for fine-structure and envelope filled conditions. These findings suggest that the contribution of lexical knowledge and verbal WM during PR depends crucially on the information content that replaced the silent intervals. When perceptual continuity was partially restored by filler speech noise, both lexical knowledge and verbal WM capacity facilitated PR. Importantly, for fine-structure and envelope filled interrupted conditions, lexical knowledge was crucial for PR.
The role of working memory in inferential sentence comprehension.
Pérez, Ana Isabel; Paolieri, Daniela; Macizo, Pedro; Bajo, Teresa
2014-08-01
Existing literature on inference making is large and varied. Trabasso and Magliano (Discourse Process 21(3):255-287, 1996) proposed the existence of three types of inferences: explicative, associative and predictive. In addition, the authors suggested that these inferences were related to working memory (WM). In the present experiment, we investigated whether WM capacity plays a role in our ability to answer comprehension sentences that require text information based on these types of inferences. Participants with high and low WM span read two narratives with four paragraphs each. After each paragraph was read, they were presented with four true/false comprehension sentences. One required verbatim information and the other three implied explicative, associative and predictive inferential information. Results demonstrated that only the explicative and predictive comprehension sentences required WM: participants with high verbal WM were more accurate in giving explanations and also faster at making predictions relative to participants with low verbal WM span; in contrast, no WM differences were found in the associative comprehension sentences. These results are interpreted in terms of the causal nature underlying these types of inferences.
The Development of Visual Working Memory Capacity during Early Childhood
ERIC Educational Resources Information Center
Simmering, Vanessa R.
2012-01-01
The change detection task has been used in dozens of studies with adults to measure visual working memory capacity. Two studies have recently tested children in this task, suggesting a gradual increase in capacity from 5 years to adulthood. These results contrast with findings from an infant looking paradigm suggesting that capacity reaches…
Visual short term memory related brain activity predicts mathematical abilities.
Boulet-Craig, Aubrée; Robaey, Philippe; Lacourse, Karine; Jerbi, Karim; Oswald, Victor; Krajinovic, Maja; Laverdière, Caroline; Sinnett, Daniel; Jolicoeur, Pierre; Lippé, Sarah
2017-07-01
Previous research suggests visual short-term memory (VSTM) capacity and mathematical abilities are significantly related. Moreover, both processes activate similar brain regions within the parietal cortex, in particular, the intraparietal sulcus; however, it is still unclear whether the neuronal underpinnings of VSTM directly correlate with mathematical operation and reasoning abilities. The main objective was to investigate the association between parieto-occipital brain activity during the retention period of a VSTM task and performance in mathematics. The authors measured mathematical abilities and VSTM capacity as well as brain activity during memory maintenance using magnetoencephalography (MEG) in 19 healthy adult participants. Event-related magnetic fields (ERFs) were computed on the MEG data. Linear regressions were used to estimate the strength of the relation between VSTM related brain activity and mathematical abilities. The amplitude of parieto-occipital cerebral activity during the retention of visual information was related to performance in 2 standardized mathematical tasks: mathematical reasoning and calculation fluency. The findings show that brain activity during retention period of a VSTM task is associated with mathematical abilities. Contributions of VSTM processes to numerical cognition should be considered in cognitive interventions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The effect of strategic memory training in older adults: who benefits most?
Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena
2017-12-07
Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.
Lehmann, Janina A M; Seufert, Tina
2017-01-01
This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner's working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners' working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption.
Lehmann, Janina A. M.; Seufert, Tina
2017-01-01
This study investigates how background music influences learning with respect to three different theoretical approaches. Both the Mozart effect as well as the arousal-mood-hypothesis indicate that background music can potentially benefit learning outcomes. While the Mozart effect assumes a direct influence of background music on cognitive abilities, the arousal-mood-hypothesis assumes a mediation effect over arousal and mood. However, the seductive detail effect indicates that seductive details such as background music worsen learning. Moreover, as working memory capacity has a crucial influence on learning with seductive details, we also included the learner’s working memory capacity as a factor in our study. We tested 81 college students using a between-subject design with half of the sample listening to two pop songs while learning a visual text and the other half learning in silence. We included working memory capacity in the design as a continuous organism variable. Arousal and mood scores before and after learning were collected as potential mediating variables. To measure learning outcomes we tested recall and comprehension. We did not find a mediation effect between background music and arousal or mood on learning outcomes. In addition, for recall performance there were no main effects of background music or working memory capacity, nor an interaction effect of these factors. However, when considering comprehension we did find an interaction between background music and working memory capacity: the higher the learners’ working memory capacity, the better they learned with background music. This is in line with the seductive detail assumption. PMID:29163283
Chunks in expert memory: evidence for the magical number four ... or is it two?
Gobet, Fernand; Clarkson, Gary
2004-11-01
This study aims to test the divergent predictions of the chunking theory (Chase & Simon, 1973) and template theory (Gobet & Simon, 1996a, 2000) with respect to the number of chunks held in visual short-term memory and the size of chunks used by experts. We presented game and random chessboards in both a copy and a recall task. In a within-subject design, the stimuli were displayed using two presentation media: (a) physical board and pieces, as in Chase and Simon's (1973) study; and (b) a computer display, as in Gobet and Simon's (1998) study. Results show that, in most cases, no more than three chunks were replaced in the recall task, as predicted by template theory. In addition, with game positions in the computer condition, chess Masters replaced very large chunks (up to 15 pieces), again in line with template theory. Overall, the results suggest that the original chunking theory overestimated short-term memory capacity and underestimated the size of chunks used, in particular with Masters. They also suggest that Cowan's (2001) proposal that STM holds four chunks may be an overestimate.
Visual information can hinder working memory processing of speech.
Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary
2013-08-01
The purpose of the present study was to evaluate the new Cognitive Spare Capacity Test (CSCT), which measures aspects of working memory capacity for heard speech in the audiovisual and auditory-only modalities of presentation. In Experiment 1, 20 young adults with normal hearing performed the CSCT and an independent battery of cognitive tests. In the CSCT, they listened to and recalled 2-digit numbers according to instructions inducing executive processing at 2 different memory loads. In Experiment 2, 10 participants performed a less executively demanding free recall task using the same stimuli. CSCT performance demonstrated an effect of memory load and was associated with independent measures of executive function and inference making but not with general working memory capacity. Audiovisual presentation was associated with lower CSCT scores but higher free recall performance scores. CSCT is an executively challenging test of the ability to process heard speech. It captures cognitive aspects of listening related to sentence comprehension that are quantitatively and qualitatively different from working memory capacity. Visual information provided in the audiovisual modality of presentation can hinder executive processing in working memory of nondegraded speech material.
Luna-Lario, P; Pena, J; Ojeda, N
2017-04-16
To perform an in-depth examination of the construct validity and the ecological validity of the Wechsler Memory Scale-III (WMS-III) and the Spain-Complutense Verbal Learning Test (TAVEC). The sample consists of 106 adults with acquired brain injury who were treated in the Area of Neuropsychology and Neuropsychiatry of the Complejo Hospitalario de Navarra and displayed memory deficit as the main sequela, measured by means of specific memory tests. The construct validity is determined by examining the tasks required in each test over the basic theoretical models, comparing the performance according to the parameters offered by the tests, contrasting the severity indices of each test and analysing their convergence. The external validity is explored through the correlation between the tests and by using regression models. According to the results obtained, both the WMS-III and the TAVEC have construct validity. The TAVEC is more sensitive and captures not only the deficits in mnemonic consolidation, but also in the executive functions involved in memory. The working memory index of the WMS-III is useful for predicting the return to work at two years after the acquired brain injury, but none of the instruments anticipates the disability and dependence at least six months after the injury. We reflect upon the construct validity of the tests and their insufficient capacity to predict functionality when the sequelae become chronic.
The Developmental Influence of Primary Memory Capacity on Working Memory and Academic Achievement
ERIC Educational Resources Information Center
Hall, Debbora; Jarrold, Christopher; Towse, John N.; Zarandi, Amy L.
2015-01-01
In this study, we investigate the development of primary memory capacity among children. Children between the ages of 5 and 8 completed 3 novel tasks (split span, interleaved lists, and a modified free-recall task) that measured primary memory by estimating the number of items in the focus of attention that could be spontaneously recalled in…
ERIC Educational Resources Information Center
Sorqvist, Patrik; Ronnberg, Jerker
2012-01-01
Purpose: To investigate whether working memory capacity (WMC) modulates the effects of to-be-ignored speech on the memory of materials conveyed by to-be-attended speech. Method: Two tasks (reading span, Daneman & Carpenter, 1980; Ronnberg et al., 2008; and size-comparison span, Sorqvist, Ljungberg, & Ljung, 2010) were used to measure individual…
Capacity of a quantum memory channel correlated by matrix product states
NASA Astrophysics Data System (ADS)
Mulherkar, Jaideep; Sunitha, V.
2018-04-01
We study the capacity of a quantum channel where channel acts like controlled phase gate with the control being provided by a one-dimensional quantum spin chain environment. Due to the correlations in the spin chain, we get a quantum channel with memory. We derive formulas for the quantum capacity of this channel when the spin state is a matrix product state. Particularly, we derive exact formulas for the capacity of the quantum memory channel when the environment state is the ground state of the AKLT model and the Majumdar-Ghosh model. We find that the behavior of the capacity for the range of the parameters is analytic.
Signed language working memory capacity of signed language interpreters and deaf signers.
Wang, Jihong; Napier, Jemina
2013-04-01
This study investigated the effects of hearing status and age of signed language acquisition on signed language working memory capacity. Professional Auslan (Australian sign language)/English interpreters (hearing native signers and hearing nonnative signers) and deaf Auslan signers (deaf native signers and deaf nonnative signers) completed an Auslan working memory (WM) span task. The results revealed that the hearing signers (i.e., the professional interpreters) significantly outperformed the deaf signers on the Auslan WM span task. However, the results showed no significant differences between the native signers and the nonnative signers in their Auslan working memory capacity. Furthermore, there was no significant interaction between hearing status and age of signed language acquisition. Additionally, the study found no significant differences between the deaf native signers (adults) and the deaf nonnative signers (adults) in their Auslan working memory capacity. The findings are discussed in relation to the participants' memory strategies and their early language experience. The findings present challenges for WM theories.
McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja
2014-05-01
Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.
Synaptic Correlates of Working Memory Capacity.
Mi, Yuanyuan; Katkov, Mikhail; Tsodyks, Misha
2017-01-18
Psychological studies indicate that human ability to keep information in readily accessible working memory is limited to four items for most people. This extremely low capacity severely limits execution of many cognitive tasks, but its neuronal underpinnings remain unclear. Here we show that in the framework of synaptic theory of working memory, capacity can be analytically estimated to scale with characteristic time of short-term synaptic depression relative to synaptic current time constant. The number of items in working memory can be regulated by external excitation, enabling the system to be tuned to the desired load and to clear the working memory of currently held items to make room for new ones. Copyright © 2017 Elsevier Inc. All rights reserved.
Does virtual reality have a future for the study of episodic memory in aging?
Abichou, Kouloud; La Corte, Valentina; Piolino, Pascale
2017-03-01
Episodic memory is the memory of personally lived events located in time and space, it shapes our identity and allows us to project ourselves into the past and the future. This form of memory is vulnerable to the effects of age and its alteration, hindering the autonomy of the subjects, can predict the evolution towards neurodegenerative disorders. Hence, a better understanding of this type of memory is a priority in the field of public health. Actually, traditional neuropsychological tools are often decontextualized, using simplistic situations that did not require the mobilization of all the characteristics of episodic memory, thus they just offer a partial measure of this complex mnemonic capacity. Nowadays, the virtual reality (VR) is a tool allowing the immersion of subjects in simulations of real situations, rich in spatial and temporal naturalistic contexts. Due to its many characteristics, the VR allows to solve several limitations of the traditional tests. The purpose of this review is to expose studies that investigated episodic memory in normal and Alzheimer's disease using VR in order to address its relevance as a new tool in the future practice of neuropsychology of aging.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Vandenbroucke, Annelinde R E; Sligte, Ilja G; de Vries, Jade G; Cohen, Michael X; Lamme, Victor A F
2015-12-01
Evidence is accumulating that the classic two-stage model of visual STM (VSTM), comprising iconic memory (IM) and visual working memory (WM), is incomplete. A third memory stage, termed fragile VSTM (FM), seems to exist in between IM and WM [Vandenbroucke, A. R. E., Sligte, I. G., & Lamme, V. A. F. Manipulations of attention dissociate fragile visual STM from visual working memory. Neuropsychologia, 49, 1559-1568, 2011; Sligte, I. G., Scholte, H. S., & Lamme, V. A. F. Are there multiple visual STM stores? PLoS One, 3, e1699, 2008]. Although FM can be distinguished from IM using behavioral and fMRI methods, the question remains whether FM is a weak expression of WM or a separate form of memory with its own neural signature. Here, we tested whether FM and WM in humans are supported by dissociable time-frequency features of EEG recordings. Participants performed a partial-report change detection task, from which individual differences in FM and WM capacity were estimated. These individual FM and WM capacities were correlated with time-frequency characteristics of the EEG signal before and during encoding and maintenance of the memory display. FM capacity showed negative alpha correlations over peri-occipital electrodes, whereas WM capacity was positively related, suggesting increased visual processing (lower alpha) to be related to FM capacity. Furthermore, FM capacity correlated with an increase in theta power over central electrodes during preparation and processing of the memory display, whereas WM did not. In addition to a difference in visual processing characteristics, a positive relation between gamma power and FM capacity was observed during both preparation and maintenance periods of the task. On the other hand, we observed that theta-gamma coupling was negatively correlated with FM capacity, whereas it was slightly positively correlated with WM. These data show clear differences in the neural substrates of FM versus WM and suggest that FM depends more on visual processing mechanisms compared with WM. This study thus provides novel evidence for a dissociation between different stages in VSTM.
Category Learning Strategies in Younger and Older Adults: Rule Abstraction and Memorization
Wahlheim, Christopher N.; McDaniel, Mark A.; Little, Jeri L.
2016-01-01
Despite the fundamental role of category learning in cognition, few studies have examined how this ability differs between younger and older adults. The present experiment examined possible age differences in category learning strategies and their effects on learning. Participants were trained on a category determined by a disjunctive rule applied to relational features. The utilization of rule- and exemplar-based strategies was indexed by self-reports and transfer performance. Based on self-reported strategies, both age groups had comparable frequencies of rule- and exemplar-based learners, but older adults had a higher frequency of intermediate learners (i.e., learners not identifying with a reliance on either rule- or exemplar-based strategies). Training performance was higher for younger than older adults regardless of the strategy utilized, showing that older adults were impaired in their ability to learn the correct rule or to remember exemplar-label associations. Transfer performance converged with strategy reports in showing higher fidelity category representations for younger adults. Younger adults with high working memory capacity were more likely to use an exemplar-based strategy, and older adults with high working memory capacity showed better training performance. Age groups did not differ in their self-reported memory beliefs, and these beliefs did not predict training strategies or performance. Overall, the present results contradict earlier findings that older adults prefer rule- to exemplar-based learning strategies, presumably to compensate for memory deficits. PMID:26950225
Working and strategic memory deficits in schizophrenia
NASA Technical Reports Server (NTRS)
Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.
1998-01-01
Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.
Visual short-term memory capacity for simple and complex objects.
Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto
2010-03-01
Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.
Retrospective attention enhances visual working memory in the young but not the old: an ERP study
Duarte, Audrey; Hearons, Patricia; Jiang, Yashu; Delvin, Mary Courtney; Newsome, Rachel N.; Verhaeghen, Paul
2013-01-01
Behavioral evidence from the young suggests spatial cues that orient attention toward task relevant items in visual working memory (VWM) enhance memory capacity. Whether older adults can also use retrospective cues (“retro-cues”) to enhance VWM capacity is unknown. In the current event-related potential (ERP) study, young and old adults performed a VWM task in which spatially informative retro-cues were presented during maintenance. Young but not older adults’ VWM capacity benefitted from retro-cueing. The contralateral delay activity (CDA) ERP index of VWM maintenance was attenuated after the retro-cue, which effectively reduced the impact of memory load. CDA amplitudes were reduced prior to retro-cue onset in the old only. Despite a preserved ability to delete items from VWM, older adults may be less able to use retrospective attention to enhance memory capacity when expectancy of impending spatial cues disrupts effective VWM maintenance. PMID:23445536
Stronger Neural Dynamics Capture Changes in Infants' Visual Working Memory Capacity over Development
ERIC Educational Resources Information Center
Perone, Sammy; Simmering, Vanessa R.; Spencer, John P.
2011-01-01
Visual working memory (VWM) capacity has been studied extensively in adults, and methodological advances have enabled researchers to probe capacity limits in infancy using a preferential looking paradigm. Evidence suggests that capacity increases rapidly between 6 and 10 months of age. To understand how the VWM system develops, we must understand…
ERIC Educational Resources Information Center
Jones, Gary; Gobet, Fernand; Pine, Julian M.
2008-01-01
Increasing working memory (WM) capacity is often cited as a major influence on children's development and yet WM capacity is difficult to examine independently of long-term knowledge. A computational model of children's nonword repetition (NWR) performance is presented that independently manipulates long-term knowledge and WM capacity to determine…
Developmental Dissociation Between the Maturation of Procedural Memory and Declarative Memory
Finn, Amy S.; Kalra, Priya B.; Goetz, Calvin; Leonard, Julia A.; Sheridan, Margaret A.; Gabrieli, John D. E.
2015-01-01
Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit versus implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory, working memory capacity, and four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than the adults, but exhibited learning equivalent to adults on all four measures of procedural memory. Declarative and procedural memory are, therefore, developmentally dissociable, with procedural memory being adult-like by age 10 and declarative memory continuing to mature into young adulthood. PMID:26560675
Interference and memory capacity effects in memristive systems
NASA Astrophysics Data System (ADS)
Hermiz, John; Chang, Ting; Du, Chao; Lu, Wei
2013-02-01
Short-term memory implies the existence of a capacity limit beyond which memory cannot be securely formed and retained. The underlying mechanisms are believed to be two primary factors: decay and interference. Here, we demonstrate through both simulation and experiment that the memory capacity effect can be implemented in a parallel memristor circuit, where decay and interference are achieved by the inherent ion diffusion in the device and the competition for current supply in the circuit, respectively. This study suggests it is possible to emulate high-level biological behaviors with memristor circuits and will stimulate continued studies on memristor-based neuromorphic circuits.
Stamovlasis, Dimitrios; Tsaparlis, Georgios
2003-07-01
The present study examines the role of limited human channel capacity from a science education perspective. A model of science problem solving has been previously validated by applying concepts and tools of complexity theory (the working memory, random walk method). The method correlated the subjects' rank-order achievement scores in organic-synthesis chemistry problems with the subjects' working memory capacity. In this work, we apply the same nonlinear approach to a different data set, taken from chemical-equilibrium problem solving. In contrast to the organic-synthesis problems, these problems are algorithmic, require numerical calculations, and have a complex logical structure. As a result, these problems cause deviations from the model, and affect the pattern observed with the nonlinear method. In addition to Baddeley's working memory capacity, the Pascual-Leone's mental (M-) capacity is examined by the same random-walk method. As the complexity of the problem increases, the fractal dimension of the working memory random walk demonstrates a sudden drop, while the fractal dimension of the M-capacity random walk decreases in a linear fashion. A review of the basic features of the two capacities and their relation is included. The method and findings have consequences for problem solving not only in chemistry and science education, but also in other disciplines.
Prioritizing Information during Working Memory: Beyond Sustained Internal Attention.
Myers, Nicholas E; Stokes, Mark G; Nobre, Anna C
2017-06-01
Working memory (WM) has limited capacity. This leaves attention with the important role of allowing into storage only the most relevant information. It is increasingly evident that attention is equally crucial for prioritizing representations within WM as the importance of individual items changes. Retrospective prioritization has been proposed to result from a focus of internal attention highlighting one of several representations. Here, we suggest an updated model, in which prioritization acts in multiple steps: first orienting towards and selecting a memory, and then reconfiguring its representational state in the service of upcoming task demands. Reconfiguration sets up an optimized perception-action mapping, obviating the need for sustained attention. This view is consistent with recent literature, makes testable predictions, and links WM with task switching and action preparation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Are There Multiple Visual Short-Term Memory Stores?
Sligte, Ilja G.; Scholte, H. Steven; Lamme, Victor A. F.
2008-01-01
Background Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. Methodology/Principal Findings We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. Conclusions/Significance We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will. PMID:18301775
Are there multiple visual short-term memory stores?
Sligte, Ilja G; Scholte, H Steven; Lamme, Victor A F
2008-02-27
Classic work on visual short-term memory (VSTM) suggests that people store a limited amount of items for subsequent report. However, when human observers are cued to shift attention to one item in VSTM during retention, it seems as if there is a much larger representation, which keeps additional items in a more fragile VSTM store. Thus far, it is not clear whether the capacity of this fragile VSTM store indeed exceeds the traditional capacity limits of VSTM. The current experiments address this issue and explore the capacity, stability, and duration of fragile VSTM representations. We presented cues in a change-detection task either just after off-set of the memory array (iconic-cue), 1,000 ms after off-set of the memory array (retro-cue) or after on-set of the probe array (post-cue). We observed three stages in visual information processing 1) iconic memory with unlimited capacity, 2) a four seconds lasting fragile VSTM store with a capacity that is at least a factor of two higher than 3) the robust and capacity-limited form of VSTM. Iconic memory seemed to depend on the strength of the positive after-image resulting from the memory display and was virtually absent under conditions of isoluminance or when intervening light masks were presented. This suggests that iconic memory is driven by prolonged retinal activation beyond stimulus duration. Fragile VSTM representations were not affected by light masks, but were completely overwritten by irrelevant pattern masks that spatially overlapped the memory array. We find that immediately after a stimulus has disappeared from view, subjects can still access information from iconic memory because they can see an after-image of the display. After that period, human observers can still access a substantial, but somewhat more limited amount of information from a high-capacity, but fragile VSTM that is overwritten when new items are presented to the eyes. What is left after that is the traditional VSTM store, with a limit of about four objects. We conclude that human observers store more sustained representations than is evident from standard change detection tasks and that these representations can be accessed at will.
ERIC Educational Resources Information Center
Brady, Timothy F.; Alvarez, George A.
2015-01-01
A central question for models of visual working memory is whether the number of objects people can remember depends on object complexity. Some influential "slot" models of working memory capacity suggest that people always represent 3-4 objects and that only the fidelity with which these objects are represented is affected by object…
ERIC Educational Resources Information Center
Unsworth, Nash
2016-01-01
The relation between working memory capacity (WMC) and recall from long-term memory (LTM) was examined in the current study. Participants performed multiple measures of delayed free recall varying in presentation duration and self-reported their strategy usage after each task. Participants also performed multiple measures of WMC. The results…
The cost of misremembering: Inferring the loss function in visual working memory.
Sims, Chris R
2015-03-04
Visual working memory (VWM) is a highly limited storage system. A basic consequence of this fact is that visual memories cannot perfectly encode or represent the veridical structure of the world. However, in natural tasks, some memory errors might be more costly than others. This raises the intriguing possibility that the nature of memory error reflects the costs of committing different kinds of errors. Many existing theories assume that visual memories are noise-corrupted versions of afferent perceptual signals. However, this additive noise assumption oversimplifies the problem. Implicit in the behavioral phenomena of visual working memory is the concept of a loss function: a mathematical entity that describes the relative cost to the organism of making different types of memory errors. An optimally efficient memory system is one that minimizes the expected loss according to a particular loss function, while subject to a constraint on memory capacity. This paper describes a novel theoretical framework for characterizing visual working memory in terms of its implicit loss function. Using inverse decision theory, the empirical loss function is estimated from the results of a standard delayed recall visual memory experiment. These results are compared to the predicted behavior of a visual working memory system that is optimally efficient for a previously identified natural task, gaze correction following saccadic error. Finally, the approach is compared to alternative models of visual working memory, and shown to offer a superior account of the empirical data across a range of experimental datasets. © 2015 ARVO.
Does visual short-term memory have a high-capacity stage?
Matsukura, Michi; Hollingworth, Andrew
2011-12-01
Visual short-term memory (VSTM) has long been considered a durable, limited-capacity system for the brief retention of visual information. However, a recent work by Sligte et al. (Plos One 3:e1699, 2008) reported that, relatively early after the removal of a memory array, a cue allowed participants to access a fragile, high-capacity stage of VSTM that is distinct from iconic memory. In the present study, we examined whether this stage division is warranted by attempting to corroborate the existence of an early, high-capacity form of VSTM. The results of four experiments did not support Sligte et al.'s claim, since we did not obtain evidence for VSTM retention that exceeded traditional estimates of capacity. However, performance approaching that observed in Sligte et al. can be achieved through extensive practice, providing a clear explanation for their findings. Our evidence favors the standard view of VSTM as a limited-capacity system that maintains a few object representations in a relatively durable form.
Opposite effects of capacity load and resolution load on distractor processing.
Zhang, Weiwei; Luck, Steven J
2015-02-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining 2 vs. 4 colors) or the precision of the representations (resolution load, detecting small vs. large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load.
Opposite Effects of Capacity Load and Resolution Load on Distractor Processing
Zhang, Weiwei; Luck, Steven J.
2014-01-01
According to the load theory of attention, an increased perceptual load reduces distractor processing whereas an increased working memory load facilitates distractor processing. Here we raise the possibility that the critical distinction may instead be between an emphasis on resolution and an emphasis on capacity. That is, perceptual load manipulations typically emphasize resolution (fine-grained discriminations), whereas working memory load manipulations typically emphasize capacity (simultaneous processing of multiple relevant stimuli). To test the plausibility of this hypothesis, we used a visual working memory task that emphasized either the number of items to be stored (capacity load, retaining two versus four colors) or the precision of the representations (resolution load, detecting small versus large color changes). We found that an increased capacity load led to increased flanker interference (a measure of distractor processing), whereas an increased resolution load led to reduced flanker interference. These opposite effects of capacity load and resolution load on distractor processing mirror the previously described opposite effects of perceptual load and working memory load. PMID:25365573
Colomer-Diago, Carla; Miranda-Casas, Ana; Herdoiza-Arroyo, Paulina; Presentación-Herrero, M Jesús
2012-02-29
The identification of possible factors that are influencing the course of attention-deficit hyperactivity disorder (ADHD) will allow the development of more effective early intervention strategies. AIMS. This research, which used a longitudinal and correlational design, set out to examine the temporal consistency of the primary symptoms and ADHD associated problems. In addition, the relationships and predictive power of working memory, inhibition and stressful characteristics of children with ADHD on the disorder symptoms and behavioral problems in adolescence was analyzed. This study included 65 families with children diagnosed with ADHD. In phase 1 children performed verbal working memory, visuo-spatial and inhibition tests, and information from parents about stressful characteristics of children was collected. In phase 1 and in the follow-up phase, which took place three years later, parents and teachers reported on the primary symptoms of ADHD and behavioral problems. Inattention symptoms as well as most behavioral problems were stable over time, while hyperactivity/impulsivity symptoms decreased. Moreover, neither working memory nor inhibition showed power to predict the central manifestations of ADHD or behavioral problems, while stressful characteristics of demandingness, low adaptability and negative mood had a moderate predictive capacity. These results confirm the role of stressful child characteristics as a risk factor in the course of ADHD.
Kronenberger, William G; Pisoni, David B; Harris, Michael S; Hoen, Helena M; Xu, Huiping; Miyamoto, Richard T
2013-06-01
Verbal short-term memory (STM) and working memory (WM) skills predict speech and language outcomes in children with cochlear implants (CIs) even after conventional demographic, device, and medical factors are taken into account. However, prior research has focused on single end point outcomes as opposed to the longitudinal process of development of verbal STM/WM and speech-language skills. In this study, the authors investigated relations between profiles of verbal STM/WM development and speech-language development over time. Profiles of verbal STM/WM development were identified through the use of group-based trajectory analysis of repeated digit span measures over at least a 2-year time period in a sample of 66 children (ages 6-16 years) with CIs. Subjects also completed repeated assessments of speech and language skills during the same time period. Clusters representing different patterns of development of verbal STM (digit span forward scores) were related to the growth rate of vocabulary and language comprehension skills over time. Clusters representing different patterns of development of verbal WM (digit span backward scores) were related to the growth rate of vocabulary and spoken word recognition skills over time. Different patterns of development of verbal STM/WM capacity predict the dynamic process of development of speech and language skills in this clinical population.
Working memory capacity predicts conflict-task performance.
Gulbinaite, Rasa; Johnson, Addie
2014-01-01
The relationship between the ability to maintain task goals and working memory capacity (WMC) is firmly established, but evidence for WMC-related differences in conflict processing is mixed. We investigated whether WMC (measured using two complex-span tasks) mediates differences in adjustments of cognitive control in response to conflict. Participants performed a Simon task in which congruent and incongruent trials were equiprobable, but in which the proportion of congruency repetitions (congruent trials followed by congruent trials or incongruent trials followed by incongruent trials) and thus the need for trial-by-trial adjustments in cognitive control varied by block. The overall Simon effect did not depend on WMC capacity. However, for the low-WMC participants the Simon effect decreased as the proportion of congruency repetitions decreased, whereas for the high- and average-WMC participants it was relatively constant across conditions. Distribution analysis of the Simon effect showed more evidence for the inhibition of stimulus location in the low- than in the high-WMC participants, especially when the proportion of congruency repetitions was low. We hypothesize that low-WMC individuals exhibit more interference from task-irrelevant information due to weaker preparatory control prior to stimulus presentation and, thus, stronger reliance on reactive recruitment of cognitive control.
Individual differences in working memory capacity and workload capacity.
Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta
2014-01-01
We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.
Unsworth, Nash; Robison, Matthew K
2017-08-01
Studies examining individual differences in working memory capacity (WMC) have suggested that low WMC individuals have particular deficits in attention control processes compared to high WMC individuals. In the current article we suggest that part of the WMC-attention control relation is due to variation in the functioning of the locus coeruleus-norepinephrine system (LC-NE). Specifically, we suggest that because of dysregulation of LC-NE functioning, the fronto-parietal control network for low WMC individuals is only weakly activated, resulting in greater default-mode network activity (and greater mind-wandering) for low WMC individuals compared to high WMC individuals. This results in disrupted attention control and overall more erratic performance (more lapses of attention) for low WMC individuals than for high WMC individuals. This framework is used to examine previous studies of individual differences in WMC and attention control, and new evidence is examined on the basis of predictions of the framework to pupillary responses as an indirect marker of LC-NE functioning.
Effects of strategy on visual working memory capacity
Bengson, Jesse J.; Luck, Steven J.
2015-01-01
Substantial evidence suggests that individual differences in estimates of working memory capacity reflect differences in how effectively people use their intrinsic storage capacity. This suggests that estimated capacity could be increased by instructions that encourage more effective encoding strategies. The present study tested this by giving different participants explicit strategy instructions in a change detection task. Compared to a condition in which participants were simply told to do their best, we found that estimated capacity was increased for participants who were instructed to remember the entire visual display, even at set sizes beyond their capacity. However, no increase in estimated capacity was found for a group that was told to focus on a subset of the items in supracapacity arrays. This finding confirms the hypothesis that encoding strategies may influence visual working memory performance, and it is contrary to the hypothesis that the optimal strategy is to filter out any items beyond the storage capacity. PMID:26139356
Effects of strategy on visual working memory capacity.
Bengson, Jesse J; Luck, Steven J
2016-02-01
Substantial evidence suggests that individual differences in estimates of working memory capacity reflect differences in how effectively people use their intrinsic storage capacity. This suggests that estimated capacity could be increased by instructions that encourage more effective encoding strategies. The present study tested this by giving different participants explicit strategy instructions in a change detection task. Compared to a condition in which participants were simply told to do their best, we found that estimated capacity was increased for participants who were instructed to remember the entire visual display, even at set sizes beyond their capacity. However, no increase in estimated capacity was found for a group that was told to focus on a subset of the items in supracapacity arrays. This finding confirms the hypothesis that encoding strategies may influence visual working memory performance, and it is contrary to the hypothesis that the optimal strategy is to filter out any items beyond the storage capacity.
Souza, Pamela; Arehart, Kathryn; Neher, Tobias
2015-01-01
Working memory—the ability to process and store information—has been identified as an important aspect of speech perception in difficult listening environments. Working memory can be envisioned as a limited-capacity system which is engaged when an input signal cannot be readily matched to a stored representation or template. This “mismatch” is expected to occur more frequently when the signal is degraded. Because working memory capacity varies among individuals, those with smaller capacity are expected to demonstrate poorer speech understanding when speech is degraded, such as in background noise. However, it is less clear whether (and how) working memory should influence practical decisions, such as hearing treatment. Here, we consider the relationship between working memory capacity and response to specific hearing aid processing strategies. Three types of signal processing are considered, each of which will alter the acoustic signal: fast-acting wide-dynamic range compression, which smooths the amplitude envelope of the input signal; digital noise reduction, which may inadvertently remove speech signal components as it suppresses noise; and frequency compression, which alters the relationship between spectral peaks. For fast-acting wide-dynamic range compression, a growing body of data suggests that individuals with smaller working memory capacity may be more susceptible to such signal alterations, and may receive greater amplification benefit with “low alteration” processing. While the evidence for a relationship between wide-dynamic range compression and working memory appears robust, the effects of working memory on perceptual response to other forms of hearing aid signal processing are less clear cut. We conclude our review with a discussion of the opportunities (and challenges) in translating information on individual working memory into clinical treatment, including clinically feasible measures of working memory. PMID:26733899
Retest effects in working memory capacity tests: A meta-analysis.
Scharfen, Jana; Jansen, Katrin; Holling, Heinz
2018-06-15
The repeated administration of working memory capacity tests is common in clinical and research settings. For cognitive ability tests and different neuropsychological tests, meta-analyses have shown that they are prone to retest effects, which have to be accounted for when interpreting retest scores. Using a multilevel approach, this meta-analysis aims at showing the reproducibility of retest effects in working memory capacity tests for up to seven test administrations, and examines the impact of the length of the test-retest interval, test modality, equivalence of test forms and participant age on the size of retest effects. Furthermore, it is assessed whether the size of retest effects depends on the test paradigm. An extensive literature search revealed 234 effect sizes from 95 samples and 68 studies, in which healthy participants between 12 and 70 years repeatedly performed a working memory capacity test. Results yield a weighted average of g = 0.28 for retest effects from the first to the second test administration, and a significant increase in effect sizes was observed up to the fourth test administration. The length of the test-retest interval and publication year were found to moderate the size of retest effects. Retest effects differed between the paradigms of working memory capacity tests. These findings call for the development and use of appropriate experimental or statistical methods to address retest effects in working memory capacity tests.
Edwards, Lindsey; Aitkenhead, Lynne; Langdon, Dawn
2016-11-01
This study aimed to establish the relationship between short-term memory capacity and reading skills in adolescents with cochlear implants. A between-groups design compared a group of young people with cochlear implants with a group of hearing peers on measures of reading, and auditory and visual short-term memory capacity. The groups were matched for non-verbal IQ and age. The adolescents with cochlear implants were recruited from the Cochlear Implant Programme at a specialist children's hospital. The hearing participants were recruited from the same schools as those attended by the implanted adolescents. Participants were 18 cochlear implant users and 14 hearing controls, aged between 12 and 18 years. All used English as their main language and had no significant learning disability or neuro-developmental disorder. Short-term memory capacity was assessed in the auditory modality using Forward and Reverse Digit Span from the WISC IV UK, and visually using Forward and Reverse Memory from the Leiter-R. Individual word reading, reading comprehension and pseudoword decoding were assessed using the WIAT II UK. A series of ANOVAs revealed that the adolescents with cochlear implants had significantly poorer auditory short-term memory capacity and reading skills (on all measures) compared with their hearing peers. However, when Forward Digit Span was entered into the analyses as a covariate, none of the differences remained statistically significant. Deficits in immediate auditory memory persist into adolescence in deaf children with cochlear implants. Short-term auditory memory capacity is an important neurocognitive process in the development of reading skills after cochlear implantation in childhood that remains evident in later adolescence. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Benefits from retrieval practice are greater for students with lower working memory capacity.
Agarwal, Pooja K; Finley, Jason R; Rose, Nathan S; Roediger, Henry L
2017-07-01
We examined the effects of retrieval practice for students who varied in working memory capacity as a function of the lag between study of material and its initial test, whether or not feedback was given after the test, and the retention interval of the final test. We sought to determine whether a blend of these conditions exists that maximises benefits from retrieval practice for lower and higher working memory capacity students. College students learned general knowledge facts and then restudied the facts or were tested on them (with or without feedback) at lags of 0-9 intervening items. Final cued recall performance was better for tested items than for restudied items after both 10 minutes and 2 days, particularly for longer study-test lags. Furthermore, on the 2-day delayed test the benefits from retrieval practice with feedback were significantly greater for students with lower working memory capacity than for students with higher working memory capacity (r = -.42). Retrieval practice may be an especially effective learning strategy for lower ability students.
Monitoring the capacity of working memory: Executive control and effects of listening effort
Amichetti, Nicole M.; Stanley, Raymond S.; White, Alison G.
2013-01-01
In two experiments, we used an interruption-and-recall (IAR) task to explore listeners’ ability to monitor the capacity of working memory as new information arrived in real time. In this task, listeners heard recorded word lists with instructions to interrupt the input at the maximum point that would still allow for perfect recall. Experiment 1 demonstrated that the most commonly selected segment size closely matched participants’ memory span, as measured in a baseline span test. Experiment 2 showed that reducing the sound level of presented word lists to a suprathreshold but effortful listening level disrupted the accuracy of matching selected segment sizes with participants’ memory spans. The results are discussed in terms of whether online capacity monitoring may be subsumed under other, already enumerated working memory executive functions (inhibition, set shifting, and memory updating). PMID:23400826
Keidser, Gitte; Best, Virginia; Freeston, Katrina; Boyce, Alexandra
2015-01-01
It is well-established that communication involves the working memory system, which becomes increasingly engaged in understanding speech as the input signal degrades. The more resources allocated to recovering a degraded input signal, the fewer resources, referred to as cognitive spare capacity (CSC), remain for higher-level processing of speech. Using simulated natural listening environments, the aims of this paper were to (1) evaluate an English version of a recently introduced auditory test to measure CSC that targets the updating process of the executive function, (2) investigate if the test predicts speech comprehension better than the reading span test (RST) commonly used to measure working memory capacity, and (3) determine if the test is sensitive to increasing the number of attended locations during listening. In Experiment I, the CSC test was presented using a male and a female talker, in quiet and in spatially separated babble- and cafeteria-noises, in an audio-only and in an audio-visual mode. Data collected on 21 listeners with normal and impaired hearing confirmed that the English version of the CSC test is sensitive to population group, noise condition, and clarity of speech, but not presentation modality. In Experiment II, performance by 27 normal-hearing listeners on a novel speech comprehension test presented in noise was significantly associated with working memory capacity, but not with CSC. Moreover, this group showed no significant difference in CSC as the number of talker locations in the test increased. There was no consistent association between the CSC test and the RST. It is recommended that future studies investigate the psychometric properties of the CSC test, and examine its sensitivity to the complexity of the listening environment in participants with both normal and impaired hearing. PMID:25999904
Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun
2017-10-25
Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory. Copyright © 2017 the authors 0270-6474/17/3710324-11$15.00/0.
Immune signatures of protective spleen memory CD8 T cells.
Brinza, Lilia; Djebali, Sophia; Tomkowiak, Martine; Mafille, Julien; Loiseau, Céline; Jouve, Pierre-Emmanuel; de Bernard, Simon; Buffat, Laurent; Lina, Bruno; Ottmann, Michèle; Rosa-Calatrava, Manuel; Schicklin, Stéphane; Bonnefoy, Nathalie; Lauvau, Grégoire; Grau, Morgan; Wencker, Mélanie; Arpin, Christophe; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline
2016-11-24
Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.
Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A
2017-04-01
The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.
Working Memory Maturation: Can We Get at the Essence of Cognitive Growth?
Cowan, Nelson
2016-03-01
The theoretical and practical understanding of cognitive development depends on working memory, the limited information temporarily accessible for such daily activities as language processing and problem solving. In this article, I assess many possible reasons that working memory performance improves with development. A first glance at the literature leads to the weird impression that working memory capacity reaches adult levels during infancy but then regresses during childhood. In place of that unlikely explanation, I consider how infant studies may lead to overestimates of capacity if one neglects supports that the tasks provide, compared with adult-level tasks. Further development of working memory during the school years is also considered. Many investigators have come to suspect that working memory capacity may be constant after infancy because of various factors such as developmental increases in knowledge, filtering out of irrelevant distractions, encoding and rehearsal strategies, and pattern formation. With each of these factors controlled, though, working memory still improves during the school years. Suggestions are made for research to bridge the gap between infant and child developmental research, to understand the focus and control of attention in working memory and how these skills develop, and to pinpoint the nature of capacity and its development from infancy forward. © The Author(s) 2016.
Working Memory Maturation: Can We Get At the Essence of Cognitive Growth?
Cowan, Nelson
2015-01-01
Our theoretical and practical understanding of cognitive development depends on working memory, the limited information temporarily accessible for such daily activities as language processing and problem-solving. Here I assess many possible reasons why working memory performance improves with development. A first glance at the literature leads to the weird impression that working memory capacity reaches adult-like levels during infancy but then regresses during childhood. In place of that unlikely surmise, I consider how infant studies may lead to overestimates of capacity if one neglects supports that the tasks provide, compared to adult-like tasks. Further development of working memory during the school years is also considered. Various confounding factors have led many investigators to suspect that working memory capacity may be constant after infancy; the factors include developmental increases in knowledge, filtering out of irrelevant distractions, encoding and rehearsal strategies, and pattern formation. With each of these factors controlled, though, working memory still improves during the school years. Suggestions are made for research to bridge the gap between infant and child developmental research, to understand the focus and control of attention in working memory and how they develop, and to pinpoint the nature of capacity and its development from infancy on. PMID:26993277
Saiki, Jun
2002-01-01
Research on change blindness and transsaccadic memory revealed that a limited amount of information is retained across visual disruptions in visual working memory. It has been proposed that visual working memory can hold four to five coherent object representations. To investigate their maintenance and transformation in dynamic situations, I devised an experimental paradigm called multiple-object permanence tracking (MOPT) that measures memory for multiple feature-location bindings in dynamic situations. Observers were asked to detect any color switch in the middle of a regular rotation of a pattern with multiple colored disks behind an occluder. The color-switch detection performance dramatically declined as the pattern rotation velocity increased, and this effect of object motion was independent of the number of targets. The MOPT task with various shapes and colors showed that color-shape conjunctions are not available in the MOPT task. These results suggest that even completely predictable motion severely reduces our capacity of object representations, from four to only one or two.
Short-Term Memory in Orthogonal Neural Networks
NASA Astrophysics Data System (ADS)
White, Olivia L.; Lee, Daniel D.; Sompolinsky, Haim
2004-04-01
We study the ability of linear recurrent networks obeying discrete time dynamics to store long temporal sequences that are retrievable from the instantaneous state of the network. We calculate this temporal memory capacity for both distributed shift register and random orthogonal connectivity matrices. We show that the memory capacity of these networks scales with system size.
ERIC Educational Resources Information Center
Jung, Eun Sook; Reid, Norman
2009-01-01
Working memory capacity has been shown to be an important factor in controlling understanding in the sciences. Attitudes related to studies in the sciences are also known to be important in relation to success in learning. It might be argued that if working memory capacity is a rate controlling feature of learning and success in understanding…
Tone Series and the Nature of Working Memory Capacity Development
ERIC Educational Resources Information Center
Clark, Katherine M.; Hardman, Kyle O.; Schachtman, Todd R.; Saults, J. Scott; Glass, Bret A.; Cowan, Nelson
2018-01-01
Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the "number" of objects retained, from the…
Short-term memory across eye blinks.
Irwin, David E
2014-01-01
The effect of eye blinks on short-term memory was examined in two experiments. On each trial, participants viewed an initial display of coloured, oriented lines, then after a retention interval they viewed a test display that was either identical or different by one feature. Participants kept their eyes open throughout the retention interval on some blocks of trials, whereas on others they made a single eye blink. Accuracy was measured as a function of the number of items in the display to determine the capacity of short-term memory on blink and no-blink trials. In separate blocks of trials participants were instructed to remember colour only, orientation only, or both colour and orientation. Eye blinks reduced short-term memory capacity by approximately 0.6-0.8 items for both feature and conjunction stimuli. A third, control, experiment showed that a button press during the retention interval had no effect on short-term memory capacity, indicating that the effect of an eye blink was not due to general motoric dual-task interference. Eye blinks might instead reduce short-term memory capacity by interfering with attention-based rehearsal processes.
Neural mechanisms of interference control in working memory capacity.
Bomyea, Jessica; Taylor, Charles T; Spadoni, Andrea D; Simmons, Alan N
2018-02-01
The extent to which one can use cognitive resources to keep information in working memory is known to rely on (1) active maintenance of target representations and (2) downregulation of interference from irrelevant representations. Neurobiologically, the global capacity of working memory is thought to depend on the prefrontal and parietal cortices; however, the neural mechanisms involved in controlling interference specifically in working memory capacity tasks remain understudied. In this study, 22 healthy participants completed a modified complex working memory capacity task (Reading Span) with trials of varying levels of interference control demands while undergoing functional MRI. Neural activity associated with interference control demands was examined separately during encoding and recall phases of the task. Results suggested a widespread network of regions in the prefrontal, parietal, and occipital cortices, and the cingulate and cerebellum associated with encoding, and parietal and occipital regions associated with recall. Results align with prior findings emphasizing the importance of frontoparietal circuits for working memory performance, including the role of the inferior frontal gyrus, cingulate, occipital cortex, and cerebellum in regulation of interference demands. © 2017 Wiley Periodicals, Inc.
Vera, Javier
2018-01-01
What is the influence of short-term memory enhancement on the emergence of grammatical agreement systems in multi-agent language games? Agreement systems suppose that at least two words share some features with each other, such as gender, number, or case. Previous work, within the multi-agent language-game framework, has recently proposed models stressing the hypothesis that the emergence of a grammatical agreement system arises from the minimization of semantic ambiguity. On the other hand, neurobiological evidence argues for the hypothesis that language evolution has mainly related to an increasing of short-term memory capacity, which has allowed the online manipulation of words and meanings participating particularly in grammatical agreement systems. Here, the main aim is to propose a multi-agent language game for the emergence of a grammatical agreement system, under measurable long-range relations depending on the short-term memory capacity. Computer simulations, based on a parameter that measures the amount of short-term memory capacity, suggest that agreement marker systems arise in a population of agents equipped at least with a critical short-term memory capacity.
Regular rehearsal helps in consolidation of long term memory.
Parle, Milind; Singh, Nirmal; Vasudevan, Mani
2006-01-01
Memory, one of the most complex functions of the brain comprises of multiple components such as perception, registration, consolidation, storage, retrieval and decay. The present study was undertaken to evaluate the impact of different training sessions on the retention capacity of rats. The capacity of retention of learnt task was measured using exteroceptive behavioral models such as Hexagonal swimming pool apparatus, Hebb-Williams maze and Elevated plus-maze. A total of 150 rats divided into fifteen groups were employed in the present study. The animals were subjected to different training sessions during first three days. The ability to retain the learned task was tested after single, sub-acute, acute, sub-chronic and chronic exposure to above exteroceptive memory models in separate groups of animals. The memory score of all animals was recorded after 72 h, 192 h and 432 h of their last training trial. Rats of single exposure group did not show any effect on memory. Sub-acute training group animals showed improved memory up to 72 h only, where as in acute and sub-chronic training groups this memory improvement was extended up to 192 h. The rats, which were subjected to chronic exposures showed a significant improvement in retention capacity that lasted up to a period of eighteen days. These observations suggest that repeated rehearsals at regular intervals are probably necessary for consolidation of long-term memory. It was observed that sub-acute, acute and sub-chronic exposures, improved the retrieval ability of rats but this memory improving effect was short lived. Thus, rehearsal or training plays a crucial role in enhancing one's capacity of retaining the learnt information. Key PointsThe present study underlines the importance of regular rehearsals in enhancing one's capacity of retaining the learnt information. " Sub-acute, acute & sub-chronic rehearsals result in storing of information for a limited period of time.Quick decay of information or forgetting is a natural continuously active process designed to wipe out unnecessary and useless information.The capacities of grasping, understanding and memory are all crucial for career growth.Single exposure to a new environment is not sufficient enough to form a permanent memory trace in brain.
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation.
Irish, Muireann; Lawlor, Brian A; Coen, Robert F; O'Mara, Shane M
2011-08-04
Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time.
Core verbal working-memory capacity: the limit in words retained without covert articulation.
Chen, Zhijian; Cowan, Nelson
2009-07-01
Verbal working memory may combine phonological and conceptual units. We disentangle their contributions by extending a prior procedure (Chen & Cowan, 2005) in which items recalled from lists of previously seen word singletons and of previously learned word pairs depended on the list length in chunks. Here we show that a constant capacity of about 3 chunks holds across list lengths and list types, provided that covert phonological rehearsal is prevented. What remains is a core verbal working-memory capacity.
Developmental dissociation between the maturation of procedural memory and declarative memory.
Finn, Amy S; Kalra, Priya B; Goetz, Calvin; Leonard, Julia A; Sheridan, Margaret A; Gabrieli, John D E
2016-02-01
Declarative memory and procedural memory are known to be two fundamentally different kinds of memory that are dissociable in their psychological characteristics and measurement (explicit vs. implicit) and in the neural systems that subserve each kind of memory. Declarative memory abilities are known to improve from childhood through young adulthood, but the developmental maturation of procedural memory is largely unknown. We compared 10-year-old children and young adults on measures of declarative memory and working memory capacity and on four measures of procedural memory that have been strongly dissociated from declarative memory (mirror tracing, rotary pursuit, probabilistic classification, and artificial grammar). Children had lesser declarative memory ability and lesser working memory capacity than adults, but children exhibited learning equivalent to adults on all four measures of procedural memory. Therefore, declarative memory and procedural memory are developmentally dissociable, with procedural memory being adult-like by age 10years and declarative memory continuing to mature into young adulthood. Copyright © 2015 Elsevier Inc. All rights reserved.
Sewell, David K; Lilburn, Simon D; Smith, Philip L
2016-11-01
A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can occur. The need to orient the focus of attention implies that single-object accounts typically predict response time costs associated with object selection even when working memory is not full (i.e., memory load is less than 4 items). For other theories that assume storage of multiple items in the focus of attention, predictions depend on specific assumptions about the way resources are allocated among items held in the focus, and how this affects the time course of retrieval of items from the focus. These broad theoretical accounts have been difficult to distinguish because conventional analyses fail to separate components of empirical response times related to decision-making from components related to selection and retrieval processes associated with accessing information in working memory. To better distinguish these response time components from one another, we analyze data from a probed visual working memory task using extensions of the diffusion decision model. Analysis of model parameters revealed that increases in memory load resulted in (a) reductions in the quality of the underlying stimulus representations in a manner consistent with a sample size model of visual working memory capacity and (b) systematic increases in the time needed to selectively access a probed representation in memory. The results are consistent with single-object theories of the focus of attention. The results are also consistent with a subset of theories that assume a multiobject focus of attention in which resource allocation diminishes both the quality and accessibility of the underlying representations. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Saji, Hisashi; Ueno, Takahiko; Nakamura, Hiroshige; Okumura, Norihito; Tsuchida, Masanori; Sonobe, Makoto; Miyazaki, Takuro; Aokage, Keiju; Nakao, Masayuki; Haruki, Tomohiro; Ito, Hiroyuki; Kataoka, Kazuhiko; Okabe, Kazunori; Tomizawa, Kenji; Yoshimoto, Kentaro; Horio, Hirotoshi; Sugio, Kenji; Ode, Yasuhisa; Takao, Motoshi; Okada, Morihito; Chida, Masayuki
2018-04-01
Although some retrospective studies have reported clinicopathological scoring systems for predicting postoperative complications and survival outcomes for elderly lung cancer patients, optimized scoring systems remain controversial. The Japanese Association for Chest Surgery (JACS) conducted a nationwide multicentre prospective cohort and enrolled a total of 1019 octogenarians with medically operable lung cancer. Details of the clinical factors, comorbidities and comprehensive geriatric assessment were recorded for 895 patients to develop a comprehensive risk scoring (RS) system capable of predicting severe complications. Operative (30 days) and hospital mortality rates were 1.0% and 1.6%, respectively. Complications were observed in 308 (34%) patients, of whom 81 (8.4%) had Grade 3-4 severe complications. Pneumonia was the most common severe complication, observed in 27 (3.0%) patients. Five predictive factors, gender, comprehensive geriatric assessment75: memory and Simplified Comorbidity Score (SCS): diabetes mellitus, albumin and percentage vital capacity, were identified as independent predictive factors for severe postoperative complications (odds ratio = 2.73, 1.86, 1.54, 1.66 and 1.61, respectively) through univariate and multivariate analyses. A 5-fold cross-validation was performed as an internal validation to reconfirm these 5 predictive factors (average area under the curve 0.70). We developed a simplified RS system as follows: RS = 3 (gender: male) + 2 (comprehensive geriatric assessment 75: memory: yes) + 2 (albumin: <3.8 ng/ml) + 1 (percentage vital capacity: ≤90) + 1 (SCS: diabetes mellitus: yes). The current series shows that octogenarians can be successfully treated for lung cancer with surgical resection with an acceptable rate of severe complications and mortality. We propose a simplified RS system to predict severe complications in octogenarian patients with medically operative lung cancer. JACS1303 (UMIN000016756).
The role of mind-wandering in measurements of general aptitude.
Mrazek, Michael D; Smallwood, Jonathan; Franklin, Michael S; Chin, Jason M; Baird, Benjamin; Schooler, Jonathan W
2012-11-01
Tests of working memory capacity (WMC) and fluid intelligence (gF) are thought to capture variability in a crucial cognitive capacity that is broadly predictive of success, yet pinpointing the exact nature of this capacity is an area of ongoing controversy. We propose that mind-wandering is associated with performance on tests of WMC and gF, thereby partially explaining both the reliable correlations between these tests and their broad predictive utility. Existing evidence indicates that both WMC and gF are correlated with performance on tasks of attention, yet more decisive evidence requires an assessment of the role of attention and, in particular, mind-wandering during performance of these tests. Four studies employing complementary methodological designs embedded thought sampling into tests of general aptitude and determined that mind-wandering was consistently associated with worse performance on these measures. Collectively, these studies implicate the capacity to avoid mind-wandering during demanding tasks as a potentially important source of success on measures of general aptitude, while also raising important questions about whether the previously documented relationship between WMC and mind-wandering can be exclusively attributed to executive failures preceding mind-wandering (McVay & Kane, 2010b). (PsycINFO Database Record (c) 2012 APA, all rights reserved).
Models of verbal working memory capacity: what does it take to make them work?
Cowan, Nelson; Rouder, Jeffrey N; Blume, Christopher L; Saults, J Scott
2012-07-01
Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in understanding verbal materials, especially when words are mentally combined to form multiword units or chunks. Toward a more comprehensive theory of capacity limits, we examined models of forced-choice recognition of words within printed lists, using materials designed to produce multiword chunks in memory (e.g., leather brief case). Several simple models were tested against data from a variety of list lengths and potential chunk sizes, with test conditions that only imperfectly elicited the interword associations. According to the most successful model, participants retained about 3 chunks on average in a capacity-limited region of WM, with some chunks being only subsets of the presented associative information (e.g., leather brief case retained with leather as one chunk and brief case as another). The addition to the model of an activated long-term memory component unlimited in capacity was needed. A fixed-capacity limit appears critical to account for immediate verbal recognition and other forms of WM. We advance a model-based approach that allows capacity to be assessed despite other important processing contributions. Starting with a psychological-process model of WM capacity developed to understand visual arrays, we arrive at a more unified and complete model. Copyright 2012 APA, all rights reserved.
Models of Verbal Working Memory Capacity: What Does It Take to Make Them Work?
Cowan, Nelson; Rouder, Jeffrey N.; Blume, Christopher L.; Saults, J. Scott
2013-01-01
Theories of working memory (WM) capacity limits will be more useful when we know what aspects of performance are governed by the limits and what aspects are governed by other memory mechanisms. Whereas considerable progress has been made on models of WM capacity limits for visual arrays of separate objects, less progress has been made in understanding verbal materials, especially when words are mentally combined to form multi-word units or chunks. Toward a more comprehensive theory of capacity limits, we examine models of forced-choice recognition of words within printed lists, using materials designed to produce multi-word chunks in memory (e.g., leather brief case). Several simple models were tested against data from a variety of list lengths and potential chunk sizes, with test conditions that only imperfectly elicited the inter-word associations. According to the most successful model, participants retained about 3 chunks on average in a capacity-limited region of WM, with some chunks being only subsets of the presented associative information (e.g., leather brief case retained with leather as one chunk and brief case as another). The addition to the model of an activated long-term memory (LTM) component unlimited in capacity was needed. A fixed capacity limit appears critical to account for immediate verbal recognition and other forms of WM. We advance a model-based approach that allows capacity to be assessed despite other important processing contributions. Starting with a psychological-process model of WM capacity developed to understand visual arrays, we arrive at a more unified and complete model. PMID:22486726
Depressive thoughts limit working memory capacity in dysphoria.
Hubbard, Nicholas A; Hutchison, Joanna L; Turner, Monroe; Montroy, Janelle; Bowles, Ryan P; Rypma, Bart
2016-01-01
Dysphoria is associated with persistence of attention on mood-congruent information. Longer time attending to mood-congruent information for dysphoric individuals (DIs) detracts from goal-relevant information processing and should reduce working memory (WM) capacity. Study 1 showed that DIs and non-DIs have similar WM capacities. Study 2 embedded depressive information into a WM task. Compared to non-DIs, DIs showed significantly reduced WM capacity for goal-relevant information in this task. Study 3 replicated results from Studies 1 and 2, and further showed that DIs had a significantly greater association between processing speed and recall on the depressively modified WM task compared to non-DIs. The presence of inter-task depressive information leads to DI-related decreased WM capacity. Results suggest dysphoria-related WM capacity deficits when depressive thoughts are present. WM capacity deficits in the presence of depressive thoughts are a plausible mechanism to explain day-to-day memory and concentration difficulties associated with depressed mood.
Drew, Trafton; Boettcher, Sage E P; Wolfe, Jeremy M
2016-02-01
In "hybrid search" tasks, such as finding items on a grocery list, one must search the scene for targets while also searching the list in memory. How is the representation of a visual item compared with the representations of items in the memory set? Predominant theories would propose a role for visual working memory (VWM) either as the site of the comparison or as a conduit between visual and memory systems. In seven experiments, we loaded VWM in different ways and found little or no effect on hybrid search performance. However, the presence of a hybrid search task did reduce the measured capacity of VWM by a constant amount regardless of the size of the memory or visual sets. These data are broadly consistent with an account in which VWM must dedicate a fixed amount of its capacity to passing visual representations to long-term memory for comparison to the items in the memory set. The data cast doubt on models in which the search template resides in VWM or where memory set item representations are moved from LTM through VWM to earlier areas for comparison to visual items.
Extending the Memory of Microcomputers
NASA Technical Reports Server (NTRS)
Wiker, G. A.
1984-01-01
Memory increased while retaining real-time capabilities. Extra memory capacity added to microprocessor without increasing memory address length and special transfer instructions by dedicating block of space in main memory to hold addresses of locations in extra memory.
Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker
2012-11-01
Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.
Lidestam, Björn; Hällgren, Mathias; Rönnberg, Jerker
2014-01-01
This study compared elderly hearing aid (EHA) users and elderly normal-hearing (ENH) individuals on identification of auditory speech stimuli (consonants, words, and final word in sentences) that were different when considering their linguistic properties. We measured the accuracy with which the target speech stimuli were identified, as well as the isolation points (IPs: the shortest duration, from onset, required to correctly identify the speech target). The relationships between working memory capacity, the IPs, and speech accuracy were also measured. Twenty-four EHA users (with mild to moderate hearing impairment) and 24 ENH individuals participated in the present study. Despite the use of their regular hearing aids, the EHA users had delayed IPs and were less accurate in identifying consonants and words compared with the ENH individuals. The EHA users also had delayed IPs for final word identification in sentences with lower predictability; however, no significant between-group difference in accuracy was observed. Finally, there were no significant between-group differences in terms of IPs or accuracy for final word identification in highly predictable sentences. Our results also showed that, among EHA users, greater working memory capacity was associated with earlier IPs and improved accuracy in consonant and word identification. Together, our findings demonstrate that the gated speech perception ability of EHA users was not at the level of ENH individuals, in terms of IPs and accuracy. In addition, gated speech perception was more cognitively demanding for EHA users than for ENH individuals in the absence of semantic context. PMID:25085610
Söderqvist, Stina; Nutley, Sissela B.; Ottersen, Jon; Grill, Katja M.; Klingberg, Torkel
2012-01-01
Children with intellectual disabilities show deficits in both reasoning ability and working memory (WM) that impact everyday functioning and academic achievement. In this study we investigated the feasibility of cognitive training for improving WM and non-verbal reasoning (NVR) ability in children with intellectual disability. Participants were randomized to a 5-week adaptive training program (intervention group) or non-adaptive version of the program (active control group). Cognitive assessments were conducted prior to and directly after training and 1 year later to examine effects of the training. Improvements during training varied largely and amount of progress during training predicted transfer to WM and comprehension of instructions, with higher training progress being associated with greater transfer improvements. The strongest predictors for training progress were found to be gender, co-morbidity, and baseline capacity on verbal WM. In particular, females without an additional diagnosis and with higher baseline performance showed greater progress. No significant effects of training were observed at the 1-year follow-up, suggesting that training should be more intense or repeated in order for effects to persist in children with intellectual disabilities. A major finding of this study is that cognitive training is feasible in this clinical sample and can help improve their cognitive performance. However, a minimum cognitive capacity or training ability seems necessary for the training to be beneficial, with some individuals showing little improvement in performance. Future studies of cognitive training should take into consideration how inter-individual differences in training progress influence transfer effects and further investigate how baseline capacities predict training outcome. PMID:23060775
Low-level light therapy improves cortical metabolic capacity and memory retention.
Rojas, Julio C; Bruchey, Aleksandra K; Gonzalez-Lima, Francisco
2012-01-01
Cerebral hypometabolism characterizes mild cognitive impairment and Alzheimer's disease. Low-level light therapy (LLLT) enhances the metabolic capacity of neurons in culture through photostimulation of cytochrome oxidase, the mitochondrial enzyme that catalyzes oxygen consumption in cellular respiration. Growing evidence supports that neuronal metabolic enhancement by LLLT positively impacts neuronal function in vitro and in vivo. Based on its effects on energy metabolism, it is proposed that LLLT will also affect the cerebral cortex in vivo and modulate higher-order cognitive functions such as memory. In vivo effects of LLLT on brain and behavior are poorly characterized. We tested the hypothesis that in vivo LLLT facilitates cortical oxygenation and metabolic energy capacity and thereby improves memory retention. Specifically, we tested this hypothesis in rats using fear extinction memory, a form of memory modulated by prefrontal cortex activation. Effects of LLLT on brain metabolism were determined through measurement of prefrontal cortex oxygen concentration with fluorescent quenching oximetry and by quantitative cytochrome oxidase histochemistry. Experiment 1 verified that LLLT increased the rate of oxygen consumption in the prefrontal cortex in vivo. Experiment 2 showed that LLLT-treated rats had an enhanced extinction memory as compared to controls. Experiment 3 showed that LLLT reduced fear renewal and prevented the reemergence of extinguished conditioned fear responses. Experiment 4 showed that LLLT induced hormetic dose-response effects on the metabolic capacity of the prefrontal cortex. These data suggest that LLLT can enhance cortical metabolic capacity and retention of extinction memories, and implicate LLLT as a novel intervention to improve memory.
ERIC Educational Resources Information Center
Simmering, Vanessa R.; Patterson, Rebecca
2012-01-01
Numerous studies have established that visual working memory has a limited capacity that increases during childhood. However, debate continues over the source of capacity limits and its developmental increase. Simmering (2008) adapted a computational model of spatial cognitive development, the Dynamic Field Theory, to explain not only the source…
Working Memory and Processing Efficiency in Children's Reasoning.
ERIC Educational Resources Information Center
Halford, Graeme S.; And Others
A series of studies was conducted to determine whether children's reasoning is capacity-limited and whether any such capacity, if it exists, is based on the working memory system. An N-term series (transitive inference) was used as the primary task in an interference paradigm. A concurrent short-term memory load was employed as the secondary task.…
L2 Working Memory Capacity and L2 Reading Skill.
ERIC Educational Resources Information Center
Harrington, Mike; Sawyer, Mark
1992-01-01
Examines the sensitivity of second-language (L2) working memory (ability to store and process information simultaneously) to differences in reading skills among advanced L2 learners. Subjects with larger L2 working memory capacities scored higher on measures of L2 reading skills, but no correlation was found between reading and passive short-term…
Discrete Resource Allocation in Visual Working Memory
ERIC Educational Resources Information Center
Barton, Brian; Ester, Edward F.; Awh, Edward
2009-01-01
Are resources in visual working memory allocated in a continuous or a discrete fashion? On one hand, flexible resource models suggest that capacity is determined by a central resource pool that can be flexibly divided such that items of greater complexity receive a larger share of resources. On the other hand, if capacity in working memory is…
Conceptual Distinctiveness Supports Detailed Visual Long-Term Memory for Real-World Objects
ERIC Educational Resources Information Center
Konkle, Talia; Brady, Timothy F.; Alvarez, George A.; Oliva, Aude
2010-01-01
Humans have a massive capacity to store detailed information in visual long-term memory. The present studies explored the fidelity of these visual long-term memory representations and examined how conceptual and perceptual features of object categories support this capacity. Observers viewed 2,800 object images with a different number of exemplars…
ERIC Educational Resources Information Center
Messer, Marielle H.; Leseman, Paul P. M.; Boom, Jan; Mayo, Aziza Y.
2010-01-01
The current study examined to what extent information in long-term memory concerning the distribution of phoneme clusters in a language, so-called long-term phonotactic knowledge, increased the capacity of verbal short-term memory in young language learners and, through increased verbal short-term memory capacity, supported these children's first…
ERIC Educational Resources Information Center
Ercetin, Gulcan; Alptekin, Cem
2013-01-01
Following an extensive overview of the subject, this study explores the relationships between second-language (L2) explicit/implicit knowledge sources, embedded in the declarative/procedural memory systems, and L2 working memory (WM) capacity. It further examines the relationships between L2 reading comprehension and L2 WM capacity as well as…
Cognitive flexibility in young children: General or task-specific capacity?
Deák, Gedeon O; Wiseheart, Melody
2015-10-01
Cognitive flexibility is the ability to adapt to changing tasks or problems. To test whether cognitive flexibility is a coherent cognitive capacity in young children, we tested 3- to 5-year-olds' performance on two forms of task switching, rule-based (Three Dimension Changes Card Sorting, 3DCCS) and inductive (Flexible Induction of Meaning-Animates and Objects, FIM-Ob and FIM-An), as well as tests of response speed, verbal working memory, inhibition, and reasoning. Results suggest that cognitive flexibility is not a globally coherent trait; only the two inductive word-meaning (FIM) tests showed high inter-test coherence. Task- and knowledge-specific factors also determine children's flexibility in a given test. Response speed, vocabulary size, and causal reasoning skills further predicted individual and age differences in flexibility, although they did not have the same predictive relation with all three flexibility tests. Copyright © 2015 Elsevier Inc. All rights reserved.
Guilt and Effortful Control: Two Mechanisms that Prevent Disruptive Developmental Trajectories
Kochanska, Grazyna; Barry, Robin A.; Jimenez, Natasha B.; Hollatz, Amanda L.; Woodard, Jarilyn
2009-01-01
Children's guilt associated with transgressions and their capacity for effortful control are both powerful forces that inhibit disruptive conduct. We examined how guilt and effortful control, repeatedly observed from toddler to preschool age, jointly predict children's disruptive outcomes in two multi-method multi-trait longitudinal studies (N's 57 and 99). Disruptive outcomes were rated by mothers at 73 months (Study 1) and mothers, fathers, and teachers at 52 and 67 months (Study 2). In both studies, guilt moderated effects of effortful control: For highly guilt-prone children, variations in effortful control were unrelated to future disruptive outcomes, but for children who were less guilt prone, effortful control predicted such outcomes. Guilt may inhibit transgressions through an automatic response due to negative arousal triggered by memories of past wrongdoing, regardless of child capacity for deliberate inhibition. Effortful control that engages a deliberate restraint may offset risk for disruptive conduct conferred by low guilt. PMID:19634978
Cognitive control in context: working memory capacity and proactive control.
Redick, Thomas S
2014-01-01
Working memory is important for maintaining critical information in an active state to guide future behavior. The executive-attention theory of working memory capacity (WMC; Engle & Kane, 2004) argues that goal maintenance is important for response selection when stimuli are associated with competing responses. Braver, Burgess, and Gray (2007) have labeled this type of preparatory activity proactive control. Previous WMC studies have not allowed individuals to use goal information to prepare a specific response in advance of the stimulus. The current experiment used different versions of a cue-probe task to examine the relationship between individual differences in WMC and proactive control. Across three versions of the AX version of the Continuous Performance Test, the proportion of targets was manipulated to affect both the predictive validity of the A cue and the prepotency of the target response to X probes. The results indicated that the high-WMC individuals used the cue information to prepare responses in advance only when a specific probe was likely to occur. In contrast, the performance of the low-WMC individuals was less dependent upon the cue and more contingent upon overall response frequencies. The results indicate that individual differences in WMC are related to proactive control and anticipation, and important for translating cognition into action. © 2013 Elsevier B.V. All rights reserved.
Capacity and precision in an animal model of visual short-term memory.
Lara, Antonio H; Wallis, Jonathan D
2012-03-14
Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys' VSTM capacity. Subjects' performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrades the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM.
The effects of autobiographical memory and visual perspective on working memory.
Cheng, Zenghu; She, Yugui
2018-08-01
The present research aims to explore whether recalling and writing about autobiographical memory from different perspectives (first-person perspective vs. third-person perspective) could affect cognitive function. The participants first performed a working memory task to evaluate their working memory capacity as a baseline and then were instructed to recall (Study 1) or write about (Study 2) personal events (failures vs. successes) from the first-person perspective or the third-person perspective. Finally, they performed the working memory task again. The results suggested that autobiographical memory and perspective influence working memory interactively. When recalling a success, the participants who recalled from the third-person perspective performed better than those who recalled from the first-person perspective on the working memory capacity task; when recalling a failure, the opposite was true.
The magical number 4 in short-term memory: a reconsideration of mental storage capacity.
Cowan, N
2001-02-01
Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. However, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide variety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recording of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity-limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.
The components of working memory updating: an experimental decomposition and individual differences.
Ecker, Ullrich K H; Lewandowsky, Stephan; Oberauer, Klaus; Chee, Abby E H
2010-01-01
Working memory updating (WMU) has been identified as a cognitive function of prime importance for everyday tasks and has also been found to be a significant predictor of higher mental abilities. Yet, little is known about the constituent processes of WMU. We suggest that operations required in a typical WMU task can be decomposed into 3 major component processes: retrieval, transformation, and substitution. We report a large-scale experiment that instantiated all possible combinations of those 3 component processes. Results show that the 3 components make independent contributions to updating performance. We additionally present structural equation models that link WMU task performance and working memory capacity (WMC) measures. These feature the methodological advancement of estimating interindividual covariation and experimental effects on mean updating measures simultaneously. The modeling results imply that WMC is a strong predictor of WMU skills in general, although some component processes-in particular, substitution skills-were independent of WMC. Hence, the reported predictive power of WMU measures may rely largely on common WM functions also measured in typical WMC tasks, although substitution skills may make an independent contribution to predicting higher mental abilities. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
Dissociable Roles of Different Types of Working Memory Load in Visual Detection
Konstantinou, Nikos; Lavie, Nilli
2013-01-01
We contrasted the effects of different types of working memory (WM) load on detection. Considering the sensory-recruitment hypothesis of visual short-term memory (VSTM) within load theory (e.g., Lavie, 2010) led us to predict that VSTM load would reduce visual-representation capacity, thus leading to reduced detection sensitivity during maintenance, whereas load on WM cognitive control processes would reduce priority-based control, thus leading to enhanced detection sensitivity for a low-priority stimulus. During the retention interval of a WM task, participants performed a visual-search task while also asked to detect a masked stimulus in the periphery. Loading WM cognitive control processes (with the demand to maintain a random digit order [vs. fixed in conditions of low load]) led to enhanced detection sensitivity. In contrast, loading VSTM (with the demand to maintain the color and positions of six squares [vs. one in conditions of low load]) reduced detection sensitivity, an effect comparable with that found for manipulating perceptual load in the search task. The results confirmed our predictions and established a new functional dissociation between the roles of different types of WM load in the fundamental visual perception process of detection. PMID:23713796
Static Memory Deduplication for Performance Optimization in Cloud Computing.
Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan
2017-04-27
In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible.
Raffa, R B
2013-08-01
Cancer chemotherapy-associated cognitive impairments (termed 'chemo-fog' or 'chemo-brain'), particularly in memory, have been self-reported or identified in cancer survivors previously treated with chemotherapy. Although a variety of deficits have been detected, a consistent theme is a detriment in visuospatial working memory. The parietal cortex, a major site of storage of such memory, is implicated in chemotherapy-induced damage. However, if the findings of two recent publications are combined, the (pre)frontal cortex might be an equally viable target. Two recent studies, one postulating a mechanism for 'top-down control' of working memory capacity and another visualizing chemotherapy-induced alterations in brain activation during working memory processing, are reviewed and integrated. A computational model and the proposal that the prefrontal cortex plays a role in working memory via top-down control of parietal working memory capacity is consistent with a recent demonstration of decreased frontal hyperactivation following chemotherapy. Chemotherapy-associated impairment of visuospatial working memory might include the (pre)frontal cortex in addition to the parietal cortex. This provides new opportunity for basic science and clinical investigation. © 2013 John Wiley & Sons Ltd.
Static Memory Deduplication for Performance Optimization in Cloud Computing
Jia, Gangyong; Han, Guangjie; Wang, Hao; Yang, Xuan
2017-01-01
In a cloud computing environment, the number of virtual machines (VMs) on a single physical server and the number of applications running on each VM are continuously growing. This has led to an enormous increase in the demand of memory capacity and subsequent increase in the energy consumption in the cloud. Lack of enough memory has become a major bottleneck for scalability and performance of virtualization interfaces in cloud computing. To address this problem, memory deduplication techniques which reduce memory demand through page sharing are being adopted. However, such techniques suffer from overheads in terms of number of online comparisons required for the memory deduplication. In this paper, we propose a static memory deduplication (SMD) technique which can reduce memory capacity requirement and provide performance optimization in cloud computing. The main innovation of SMD is that the process of page detection is performed offline, thus potentially reducing the performance cost, especially in terms of response time. In SMD, page comparisons are restricted to the code segment, which has the highest shared content. Our experimental results show that SMD efficiently reduces memory capacity requirement and improves performance. We demonstrate that, compared to other approaches, the cost in terms of the response time is negligible. PMID:28448434
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774
Meier, Matt E; Kane, Michael J
2015-11-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).
Knowledge Cannot Explain the Developmental Growth of Working Memory Capacity
ERIC Educational Resources Information Center
Cowan, Nelson; Ricker, Timothy J.; Clark, Katherine M.; Hinrichs, Garrett A.; Glass, Bret A.
2015-01-01
According to some views of cognitive growth, the development of working memory capacity can account for increases in the complexity of cognition. It has been difficult to ascertain, though, that there actually is developmental growth in capacity that cannot be attributed to other developing factors. Here we assess the role of item familiarity. We…
The Development of Visual Short-Term Memory for Multifeature Items during Middle childhood
ERIC Educational Resources Information Center
Riggs, Kevin J.; Simpson, Andrew; Potts, Thomas
2011-01-01
Visual short-term memory (VSTM) research suggests that the adult capacity is limited to three or four multifeature object representations. Despite evidence supporting a developmental increase in capacity, it remains unclear what the unit of capacity is in children. The current study employed the change detection paradigm to investigate both the…
ERIC Educational Resources Information Center
Chincotta, Dino; Underwood, Geoffrey
1998-01-01
Examined the view that the variation in bilingual short-term memory capacity is determined by differential rates of subvocal rehearsal between the languages. Auditory memory span and articulation time were measured for three bilingual groups who spoke Finnish at home and Swedish at school, and either Finnish of Swedish in both the home and the…
ERIC Educational Resources Information Center
Oztekin, Ilke; McElree, Brian
2010-01-01
The response-signal speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between measures of working memory capacity and the time course of short-term item recognition. High- and low-span participants studied sequentially presented 6-item lists, immediately followed by a recognition probe. Analyses of composite list…
ERIC Educational Resources Information Center
Alptekin, Cem; Ercetin, Gulcan
2009-01-01
Although an important role has been ascribed to working-memory capacity in reading comprehension, little consensus exists on its conceptualization, operationalization, and measurement except for its recognition as a limited-capacity processing and storage system. One specific problem in the measurement of working memory comes from researchers' use…
ERIC Educational Resources Information Center
Mainela-Arnold, Elina; Evans, Julia L.
2005-01-01
Reduced verbal working memory capacity has been proposed as a possible account of language impairments in specific language impairment (SLI). Studies have shown, however, that differences in strength of linguistic representations in the form of word frequency affect list recall and performance on verbal working memory tasks. This suggests that…
Auditory working memory predicts individual differences in absolute pitch learning.
Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C
2015-07-01
Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the phenomenon of AP are also discussed. Copyright © 2015. Published by Elsevier B.V.
Influence of Synaptic Depression on Memory Storage Capacity
NASA Astrophysics Data System (ADS)
Otsubo, Yosuke; Nagata, Kenji; Oizumi, Masafumi; Okada, Masato
2011-08-01
Synaptic efficacy between neurons is known to change within a short time scale dynamically. Neurophysiological experiments show that high-frequency presynaptic inputs decrease synaptic efficacy between neurons. This phenomenon is called synaptic depression, a short term synaptic plasticity. Many researchers have investigated how the synaptic depression affects the memory storage capacity. However, the noise has not been taken into consideration in their analysis. By introducing ``temperature'', which controls the level of the noise, into an update rule of neurons, we investigate the effects of synaptic depression on the memory storage capacity in the presence of the noise. We analytically compute the storage capacity by using a statistical mechanics technique called Self Consistent Signal to Noise Analysis (SCSNA). We find that the synaptic depression decreases the storage capacity in the case of finite temperature in contrast to the case of the low temperature limit, where the storage capacity does not change.
Everyday episodic memory in amnestic mild cognitive impairment: a preliminary investigation
2011-01-01
Background Decline in episodic memory is one of the hallmark features of Alzheimer's disease (AD) and is also a defining feature of amnestic Mild Cognitive Impairment (MCI), which is posited as a potential prodrome of AD. While deficits in episodic memory are well documented in MCI, the nature of this impairment remains relatively under-researched, particularly for those domains with direct relevance and meaning for the patient's daily life. In order to fully explore the impact of disruption to the episodic memory system on everyday memory in MCI, we examined participants' episodic memory capacity using a battery of experimental tasks with real-world relevance. We investigated episodic acquisition and delayed recall (story-memory), associative memory (face-name pairings), spatial memory (route learning and recall), and memory for everyday mundane events in 16 amnestic MCI and 18 control participants. Furthermore, we followed MCI participants longitudinally to gain preliminary evidence regarding the possible predictive efficacy of these real-world episodic memory tasks for subsequent conversion to AD. Results The most discriminating tests at baseline were measures of acquisition, delayed recall, and associative memory, followed by everyday memory, and spatial memory tasks, with MCI patients scoring significantly lower than controls. At follow-up (mean time elapsed: 22.4 months), 6 MCI cases had progressed to clinically probable AD. Exploratory logistic regression analyses revealed that delayed associative memory performance at baseline was a potential predictor of subsequent conversion to AD. Conclusions As a preliminary study, our findings suggest that simple associative memory paradigms with real-world relevance represent an important line of enquiry in future longitudinal studies charting MCI progression over time. PMID:21816065
Pigeon visual short-term memory directly compared to primates.
Wright, Anthony A; Elmore, L Caitlin
2016-02-01
Three pigeons were trained to remember arrays of 2-6 colored squares and detect which of two squares had changed color to test their visual short-term memory. Procedures (e.g., stimuli, displays, viewing times, delays) were similar to those used to test monkeys and humans. Following extensive training, pigeons performed slightly better than similarly trained monkeys, but both animal species were considerably less accurate than humans with the same array sizes (2, 4 and 6 items). Pigeons and monkeys showed calculated memory capacities of one item or less, whereas humans showed a memory capacity of 2.5 items. Despite the differences in calculated memory capacities, the pigeons' memory results, like those from monkeys and humans, were all well characterized by an inverse power-law function fit to d' values for the five display sizes. This characterization provides a simple, straightforward summary of the fundamental processing of visual short-term memory (how visual short-term memory declines with memory load) that emphasizes species similarities based upon similar functional relationships. By closely matching pigeon testing parameters to those of monkeys and humans, these similar functional relationships suggest similar underlying processes of visual short-term memory in pigeons, monkeys and humans. Copyright © 2015 Elsevier B.V. All rights reserved.
Sound Asleep: Processing and Retention of Slow Oscillation Phase-Targeted Stimuli
Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M.
2014-01-01
The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep. PMID:24999803
Sound asleep: processing and retention of slow oscillation phase-targeted stimuli.
Cox, Roy; Korjoukov, Ilia; de Boer, Marieke; Talamini, Lucia M
2014-01-01
The sleeping brain retains some residual information processing capacity. Although direct evidence is scarce, a substantial literature suggests the phase of slow oscillations during deep sleep to be an important determinant for stimulus processing. Here, we introduce an algorithm for predicting slow oscillations in real-time. Using this approach to present stimuli directed at both oscillatory up and down states, we show neural stimulus processing depends importantly on the slow oscillation phase. During ensuing wakefulness, however, we did not observe differential brain or behavioral responses to these stimulus categories, suggesting no enduring memories were formed. We speculate that while simpler forms of learning may occur during sleep, neocortically based memories are not readily established during deep sleep.
Kundu, Bornali; Chang, Jui-Yang; Postle, Bradley R; Van Veen, Barry D
2015-07-01
Although visual short-term memory (VSTM) performance has been hypothesized to rely on two distinct mechanisms, capacity and filtering, the two have not been dissociated using network-level causality measures. Here, we hypothesized that behavioral tasks challenging capacity or distraction filtering would both engage a common network of areas, namely dorsolateral prefrontal cortex (dlPFC), superior parietal lobule (SPL), and occipital cortex, but would do so according to dissociable patterns of effective connectivity. We tested this by estimating directed connectivity between areas using conditional Granger causality (cGC). Consistent with our prediction, the results indicated that increasing mnemonic load (capacity) increased the top-down drive from dlPFC to SPL, and cGC in the alpha (8-14Hz) frequency range was a predominant component of this effect. The presence of distraction during encoding (filtering), in contrast, was associated with increased top-down drive from dlPFC to occipital cortices directly and from SPL to occipital cortices directly, in both cases in the beta (15-25Hz) range. Thus, although a common anatomical network may serve VSTM in different contexts, it does so via specific functions that are carried out within distinct, dynamically configured frequency channels. Copyright © 2015 Elsevier Inc. All rights reserved.
The impact of modality and working memory capacity on achievement in a multimedia environment
NASA Astrophysics Data System (ADS)
Stromfors, Charlotte M.
This study explored the impact of working memory capacity and student learning in a dual modality, multimedia environment titled Visualizing Topography. This computer-based instructional program focused on the basic skills in reading and interpreting topographic maps. Two versions of the program presented the same instructional content but varied the modality of verbal information: the audio-visual condition coordinated topographic maps and narration; the visual-visual condition provided the same topographic maps with readable text. An analysis of covariance procedure was conducted to evaluate the effects due to the two conditions in relation to working memory capacity, controlling for individual differences in spatial visualization and prior knowledge. The scores on the Figural Intersection Test were used to separate subjects into three levels in terms of their measured working memory capacity: low, medium, and high. Subjects accessed Visualizing Topography by way of the Internet and proceeded independently through the program. The program architecture was linear in format. Subjects had a minimum amount of flexibility within each of five segments, but not between segments. One hundred and fifty-one subjects were randomly assigned to either the audio-visual or the visual-visual condition. The average time spent in the program was thirty-one minutes. The results of the ANCOVA revealed a small to moderate modality effect favoring an audio-visual condition. The results also showed that subjects with low and medium working capacity benefited more from the audio-visual condition than the visual-visual condition, while subjects with a high working memory capacity did not benefit from either condition. Although splitting the data reduced group sizes, ANCOVA results by gender suggested that the audio-visual condition favored females with low working memory capacities. The results have implications for designers of educational software, the teachers who select software, and the students themselves. Splitting information into two, non-redundant sources, one audio and one visual, may effectively extend working memory capacity. This is especially significant for the student population encountering difficult science concepts that require the formation and manipulation of mental representations. It is recommended that multimedia environments be designed or selected with attention to modality conditions that facilitate student learning.
BLACKCOMB2: Hardware-software co-design for non-volatile memory in exascale systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mudge, Trevor
This work was part of a larger project, Blackcomb2, centered at Oak Ridge National Labs (Jeff Vetter PI) to investigate the opportunities for replacing or supplementing DRAM main memory with nonvolatile memory (NVmemory) in Exascale memory systems. The goal was to reduce the energy consumed by in future supercomputer memory systems and to improve their resiliency. Building on the accomplishments of the original Blackcomb Project, funded in 2010, the goal for Blackcomb2 was to identify, evaluate, and optimize the most promising emerging memory technologies, architecture hardware and software technologies, which are essential to provide the necessary memory capacity, performance, resilience,more » and energy efficiency in Exascale systems. Capacity and energy are the key drivers.« less
Spatial working memory load affects counting but not subitizing in enumeration.
Shimomura, Tomonari; Kumada, Takatsune
2011-08-01
The present study investigated whether subitizing reflects capacity limitations associated with two types of working memory tasks. Under a dual-task situation, participants performed an enumeration task in conjunction with either a spatial (Experiment 1) or a nonspatial visual (Experiment 2) working memory task. Experiment 1 showed that spatial working memory load affected the slope of a counting function but did not affect subitizing performance or subitizing range. Experiment 2 showed that nonspatial visual working memory load affected neither enumeration efficiency nor subitizing range. Furthermore, in both spatial and nonspatial memory tasks, neither subitizing efficiency nor subitizing range was affected by amount of imposed memory load. In all the experiments, working memory load failed to influence slope, subitizing range, or overall reaction time. These findings suggest that subitizing is performed without either spatial or nonspatial working memory. A possible mechanism of subitizing with independent capacity of working memory is discussed.
Memory and pattern storage in neural networks with activity dependent synapses
NASA Astrophysics Data System (ADS)
Mejias, J. F.; Torres, J. J.
2009-01-01
We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.
A direct comparison of short-term audiomotor and visuomotor memory.
Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J
2014-04-01
Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.
Price, John M.; Colflesh, Gregory J. H.; Cerella, John; Verhaeghen, Paul
2014-01-01
We investigated the effects of 10 hours of practice on variations of the N-Back task to investigate the processes underlying possible expansion of the focus of attention within working memory. Using subtractive logic, we showed that random access (i.e., Sternberg-like search) yielded a modest effect (a 50% increase in speed) whereas the processes of forward access (i.e., retrieval in order, as in a standard N-Back task) and updating (i.e., changing the contents of working memory) were executed about 5 times faster after extended practice. We additionally found that extended practice increased working memory capacity as measured by the size of the focus of attention for the forward-access task, but not for variations where probing was in random order. This suggests that working memory capacity may depend on the type of search process engaged, and that certain working-memory-related cognitive processes are more amenable to practice than others. PMID:24486803
Detection of the Number of Changes in a Display in Working Memory
Cowan, Nelson; Hardman, Kyle; Saults, J. Scott; Blume, Christopher L.; Clark, Katherine M.; Sunday, Mackenzie A.
2015-01-01
Here we examine a new task to assess working memory for visual arrays in which the participant must judge how many items changed from a studied array to a test array. As a clue to processing, on some trials in the first two experiments, participants carried out a metamemory judgment in which they were to decide how many items were in working memory. Trial-to-trial fluctuations in these working memory storage judgments correlated with performance fluctuations within an individual, indicating a need to include trial-to-trial variation within capacity models (through either capacity fluctuation or some other attention parameter). Mathematical modeling of the results achieved a good fit to a complex pattern of results, suggesting that working memory capacity limits can apply even to judgments that involve an entire array rather than just a single item that may have changed, thus providing the expected conscious access to at least some of the contents of working memory. PMID:26375783
Morra, Sergio
2015-01-01
Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation. PMID:25798114
Morra, Sergio
2015-01-01
Whether rehearsal has a causal role in verbal STM has been controversial in the literature. Recent theories of working memory emphasize a role of attentional resources, but leave unclear how they contribute to verbal STM. Two experiments (with 49 and 102 adult participants, respectively) followed up previous studies with children, aiming to clarify the contributions of attentional capacity and rehearsal to verbal STM. Word length and presentation modality were manipulated. Experiment 1 focused on order errors, Experiment 2 on predicting individual differences in span from attentional capacity and articulation rate. Structural equation modeling showed clearly a major role of attentional capacity as a predictor of verbal STM span; but was inconclusive on whether rehearsal efficiency is an additional cause or a consequence of verbal STM. The effects of word length and modality on STM were replicated; a significant interaction was also found, showing a larger modality effect for long than short words, which replicates a previous finding on children. Item errors occurred more often with long words and correlated negatively with articulation rate. This set of findings seems to point to a role of rehearsal in maintaining item information. The probability of order errors per position increased linearly with list length. A revised version of a neo-Piagetian model was fit to the data of Experiment 2. That model was based on two parameters: attentional capacity (independently measured) and a free parameter representing loss of partly-activated information. The model could partly account for the results, but underestimated STM performance of the participants with smaller attentional capacity. It is concluded that modeling of verbal STM should consider individual and developmental differences in attentional capacity, rehearsal rate, and (perhaps) order representation.
Guinea-Hidalgo, A; Luna-Lario, P; Tirapu-Ustárroz, J
Learning processes and memory are frequently compromised in acquired brain injury (ABI), while at the same time such involvement is often heterogeneous and a source of deficits in other cognitive capacities and significant functional limitations. A good neuropsychological evaluation of memory is designed to study not only the type, intensity and nature of the problems, but also the way they manifest in daily life. This study examines the correlation between a traditional memory test, the Wechsler Memory Scale-III (WMS-III), and a memory test that is considered to be functional, the Rivermead Behavioural Memory Test (RBMT), in a sample of 60 patients with ABI. All the correlations that were observed were moderate. Greater correlations were found among the verbal memory subtests than among the visual memory tests. An important number of subjects with below-normal scalar scores on the WMS-III correctly performed (either fully or partially) the corresponding test in the RBMT. The joint use of the WMS-III and RBMT in evaluation can provide a more comprehensive analysis of the memory deficits and their rehabilitation. The lower scores obtained in the WMS-III compared to those of the RBMT indicate greater sensitivity of the former. Nevertheless, further testing needs to be carried out in the future to compare the performance in the tests after the patients and those around them have subjectively assessed their functional limitations. This would make it possible to determine which of the two tests offers the best balance between sensitivity and specificity, as well as a higher predictive value.
Castel, Alan D.; Humphreys, Kathryn L.; Lee, Steve S.; Galván, Adriana; Balota, David A.; McCabe, David P.
2012-01-01
Although attentional control and memory change considerably across the lifespan, no research has examined how the ability to strategically remember important information (i.e., value-directed remembering) changes from childhood to old age. The present study examined this in different age groups across the lifespan (N=320, 5 to 96 years old). We employed a selectivity task where participants were asked to study and recall items worth different point values in order to maximize their point score. This procedure allowed for measures of memory quantity/capacity (number of words recalled) and memory efficiency/selectivity (the recall of high-value items relative to low-value items). Age-related differences were found for memory capacity, as young adults recalled more words than the other groups. However, in terms of selectivity, younger and older adults were more selective than adolescents and children. The dissociation between these measures across the lifespan illustrates important age-related differences in terms of memory capacity and the ability to selectively remember high-value information. PMID:21942664
Estimated capacity of object files in visual short-term memory is not improved by retrieval cueing.
Saiki, Jun; Miyatsuji, Hirofumi
2009-03-23
Visual short-term memory (VSTM) has been claimed to maintain three to five feature-bound object representations. Some results showing smaller capacity estimates for feature binding memory have been interpreted as the effects of interference in memory retrieval. However, change-detection tasks may not properly evaluate complex feature-bound representations such as triple conjunctions in VSTM. To understand the general type of feature-bound object representation, evaluation of triple conjunctions is critical. To test whether interference occurs in memory retrieval for complete object file representations in a VSTM task, we cued retrieval in novel paradigms that directly evaluate the memory for triple conjunctions, in comparison with a simple change-detection task. In our multiple object permanence tracking displays, observers monitored for a switch in feature combination between objects during an occlusion period, and we found that a retrieval cue provided no benefit with the triple conjunction tasks, but significant facilitation with the change-detection task, suggesting that low capacity estimates of object file memory in VSTM reflect a limit on maintenance, not retrieval.
Castel, Alan D; Humphreys, Kathryn L; Lee, Steve S; Galván, Adriana; Balota, David A; McCabe, David P
2011-11-01
Although attentional control and memory change considerably across the life span, no research has examined how the ability to strategically remember important information (i.e., value-directed remembering) changes from childhood to old age. The present study examined this in different age groups across the life span (N = 320, 5-96 years old). A selectivity task was used in which participants were asked to study and recall items worth different point values in order to maximize their point score. This procedure allowed for measures of memory quantity/capacity (number of words recalled) and memory efficiency/selectivity (the recall of high-value items relative to low-value items). Age-related differences were found for memory capacity, as young adults recalled more words than the other groups. However, in terms of selectivity, younger and older adults were more selective than adolescents and children. The dissociation between these measures across the life span illustrates important age-related differences in terms of memory capacity and the ability to selectively remember high-value information.
Maddox, Geoffrey B.; Balota, David A.; Coane, Jennifer H.; Duchek, Janet M.
2011-01-01
The current study examined the effects of two manipulations on equal and expanded spaced retrieval schedules in young and older adults. First, we examined the role that the type of expansion (systematic vs. nonsystematic) has in producing a benefit of expanded retrieval. Second, we examined the influence of an immediate retrieval attempt to minimize forgetting after the original encoding event. It was predicted that including multiple retrieval attempts with minimal intervening spacing (best accomplished in a nonsystematic retrieval schedule) would be necessary to produce a benefit of expanded retrieval over equal spaced retrieval for older adults but not young adults due to age differences in working memory capacity. Results from two experiments revealed that the presence of an expanded over equal spaced retrieval benefit is modulated by the extent to which the spacing conditions minimize forgetting in the early retrieval attempts in the spaced conditions. As predicted, these conditions differ substantially across young and older adults. In particular, in older adults two intervening items between early retrieval attempts produce dramatic rates of forgetting compared to one intervening item, whereas younger adults can maintain performance up to five intervening events in comparable conditions. Discussion focuses on age differences in short term forgetting, working memory capacity, and the relation between forgetting rates and spaced retrieval schedules. PMID:21463056
ERIC Educational Resources Information Center
Gamlin, Peter J.
1971-01-01
Examines the effects of short term memory (STM) capacity, meaningfulness of stimuli, and age upon listeners' structuring of sentences. Results show that the interaction between STM capacity and meaningfulness (1) approached significance when data were collapsed over both age levels, and (2) was significant for one age level. Tables and references.…
ERIC Educational Resources Information Center
Sung, Jee Eun; Kim, Jin Hee; Jeong, Jee Hyang; Kang, Heejin
2012-01-01
Purpose: The purposes of the study were to investigate (a) the task-specific differences in short-term memory (STM) and working memory capacity (WMC) in individuals with mild cognitive impairment (MCI) and normal elderly adults (NEAs), (b) the Stroop interference and facilitation effects, and (c) the relationship of STM and WMC to the Stroop…
ERIC Educational Resources Information Center
Rodríguez-Villagra, Odir Antonio; Göthe, Katrin; Oberauer, Klaus; Kliegl, Reinhold
2013-01-01
We tested the limits of working-memory capacity (WMC) of young adults, old adults, and children with a memory-updating task. The task consisted of mentally shifting spatial positions within a grid according to arrows, their color signaling either only go (control) or go/no-go conditions. The interference model (IM) of Oberauer and Kliegl (2006)…
Boudewyn, Megan A.; Long, Debra L.; Swaab, Tamara Y.
2013-01-01
The goal of this study was to determine whether variability in working memory (WM) capacity and cognitive control affects the processing of global discourse congruence and local associations among words when participants listened to short discourse passages. The final, critical word of each passage was either associated or unassociated with a preceding prime word (e.g., “He was not prepared for the fame and fortune/praise”). These critical words were also either congruent or incongruent with respect to the preceding discourse context [e.g., a context in which a prestigious prize was won (congruent) or in which the protagonist had been arrested (incongruent)]. We used multiple regression to assess the unique contribution of suppression ability (our measure of cognitive control) and WM capacity on the amplitude of individual N400 effects of congruence and association. Our measure of suppression ability did not predict the size of the N400 effects of association or congruence. However, as expected, the results showed that high WM capacity individuals were less sensitive to the presence of lexical associations (showed smaller N400 association effects). Furthermore, differences in WM capacity were related to differences in the topographic distribution of the N400 effects of discourse congruence. The topographic differences in the global congruence effects indicate differences in the underlying neural generators of the N400 effects, as a function of WM. This suggests additional, or at a minimum, distinct, processing on the part of higher capacity individuals when tasked with integrating incoming words into the developing discourse representation. PMID:23407753
Boudewyn, Megan A; Long, Debra L; Swaab, Tamara Y
2013-01-01
The goal of this study was to determine whether variability in working memory (WM) capacity and cognitive control affects the processing of global discourse congruence and local associations among words when participants listened to short discourse passages. The final, critical word of each passage was either associated or unassociated with a preceding prime word (e.g., "He was not prepared for the fame and fortune/praise"). These critical words were also either congruent or incongruent with respect to the preceding discourse context [e.g., a context in which a prestigious prize was won (congruent) or in which the protagonist had been arrested (incongruent)]. We used multiple regression to assess the unique contribution of suppression ability (our measure of cognitive control) and WM capacity on the amplitude of individual N400 effects of congruence and association. Our measure of suppression ability did not predict the size of the N400 effects of association or congruence. However, as expected, the results showed that high WM capacity individuals were less sensitive to the presence of lexical associations (showed smaller N400 association effects). Furthermore, differences in WM capacity were related to differences in the topographic distribution of the N400 effects of discourse congruence. The topographic differences in the global congruence effects indicate differences in the underlying neural generators of the N400 effects, as a function of WM. This suggests additional, or at a minimum, distinct, processing on the part of higher capacity individuals when tasked with integrating incoming words into the developing discourse representation.
Cognitive rehabilitation of amnesia after virus encephalitis: a case report.
Miotto, Eliane Correa
2007-01-01
A number of memory rehabilitation techniques have targeted people with various degrees of memory impairments. However, few studies have shown the contribution of preserved non-declarative memory capacity and errorless learning in the treatment of amnesic patients. The current case report describes the memory rehabilitation of a 44-year-old man with amnesia following viral encephalitis. The patient's procedural memory capacity had an important role in the use of a motor imagery strategy to remember people's names. It was further demonstrated that the application of a verbal learning technique was helpful in recalling new verbal information. These different memory rehabilitation techniques are discussed in terms of alternative possibilities in the rehabilitation of amnesic patients.
Nocturnal sleep enhances working memory training in Parkinson's disease but not Lewy body dementia
Trotti, Lynn Marie; Wilson, Anthony G.; Greer, Sophia A.; Bliwise, Donald L.
2012-01-01
Working memory is essential to higher order cognition (e.g. fluid intelligence) and to performance of daily activities. Though working memory capacity was traditionally thought to be inflexible, recent studies report that working memory capacity can be trained and that offline processes occurring during sleep may facilitate improvements in working memory performance. We utilized a 48-h in-laboratory protocol consisting of repeated digit span forward (short-term attention measure) and digit span backward (working memory measure) tests and overnight polysomnography to investigate the specific sleep-dependent processes that may facilitate working memory performance improvements in the synucleinopathies. We found that digit span backward performance improved following a nocturnal sleep interval in patients with Parkinson's disease on dopaminergic medication, but not in those not taking dopaminergic medication and not in patients with dementia with Lewy bodies. Furthermore, the improvements in patients with Parkinson's disease on dopaminergic medication were positively correlated with the amount of slow-wave sleep that patients obtained between training sessions and negatively correlated with severity of nocturnal oxygen desaturation. The translational implication is that working memory capacity is potentially modifiable in patients with Parkinson's disease but that sleep disturbances may first need to be corrected. PMID:22907117
Nocturnal sleep enhances working memory training in Parkinson's disease but not Lewy body dementia.
Scullin, Michael K; Trotti, Lynn Marie; Wilson, Anthony G; Greer, Sophia A; Bliwise, Donald L
2012-09-01
Working memory is essential to higher order cognition (e.g. fluid intelligence) and to performance of daily activities. Though working memory capacity was traditionally thought to be inflexible, recent studies report that working memory capacity can be trained and that offline processes occurring during sleep may facilitate improvements in working memory performance. We utilized a 48-h in-laboratory protocol consisting of repeated digit span forward (short-term attention measure) and digit span backward (working memory measure) tests and overnight polysomnography to investigate the specific sleep-dependent processes that may facilitate working memory performance improvements in the synucleinopathies. We found that digit span backward performance improved following a nocturnal sleep interval in patients with Parkinson's disease on dopaminergic medication, but not in those not taking dopaminergic medication and not in patients with dementia with Lewy bodies. Furthermore, the improvements in patients with Parkinson's disease on dopaminergic medication were positively correlated with the amount of slow-wave sleep that patients obtained between training sessions and negatively correlated with severity of nocturnal oxygen desaturation. The translational implication is that working memory capacity is potentially modifiable in patients with Parkinson's disease but that sleep disturbances may first need to be corrected.
Effects of capacity limits, memory loss, and sound type in change deafness.
Gregg, Melissa K; Irsik, Vanessa C; Snyder, Joel S
2017-11-01
Change deafness, the inability to notice changes to auditory scenes, has the potential to provide insights about sound perception in busy situations typical of everyday life. We determined the extent to which change deafness to sounds is due to the capacity of processing multiple sounds and the loss of memory for sounds over time. We also determined whether these processing limitations work differently for varying types of sounds within a scene. Auditory scenes composed of naturalistic sounds, spectrally dynamic unrecognizable sounds, tones, and noise rhythms were presented in a change-detection task. On each trial, two scenes were presented that were same or different. We manipulated the number of sounds within each scene to measure memory capacity and the silent interval between scenes to measure memory loss. For all sounds, change detection was worse as scene size increased, demonstrating the importance of capacity limits. Change detection to the natural sounds did not deteriorate much as the interval between scenes increased up to 2,000 ms, but it did deteriorate substantially with longer intervals. For artificial sounds, in contrast, change-detection performance suffered even for very short intervals. The results suggest that change detection is generally limited by capacity, regardless of sound type, but that auditory memory is more enduring for sounds with naturalistic acoustic structures.
Simmering, Vanessa R.; Miller, Hilary E.; Bohache, Kevin
2015-01-01
Research on visual working memory has focused on characterizing the nature of capacity limits as “slots” or “resources” based almost exclusively on adults’ performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to “slot” or “resource” explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children’s (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less-familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model—purportedly arising through experience—can capture differences across feature types. PMID:25737253
Simmering, Vanessa R; Miller, Hilary E; Bohache, Kevin
2015-05-01
Research on visual working memory has focused on characterizing the nature of capacity limits as "slots" or "resources" based almost exclusively on adults' performance with little consideration for developmental change. Here we argue that understanding how visual working memory develops can shed new light onto the nature of representations. We present an alternative model, the Dynamic Field Theory (DFT), which can capture effects that have been previously attributed either to "slot" or "resource" explanations. The DFT includes a specific developmental mechanism to account for improvements in both resolution and capacity of visual working memory throughout childhood. Here we show how development in the DFT can account for different capacity estimates across feature types (i.e., color and shape). The current paper tests this account by comparing children's (3, 5, and 7 years of age) performance across different feature types. Results showed that capacity for colors increased faster over development than capacity for shapes. A second experiment confirmed this difference across feature types within subjects, but also showed that the difference can be attenuated by testing memory for less familiar colors. Model simulations demonstrate how developmental changes in connectivity within the model-purportedly arising through experience-can capture differences across feature types.
Capacity and precision in an animal model of visual short-term memory
Lara, Antonio H.; Wallis, Jonathan D.
2013-01-01
Temporary storage of information in visual short-term memory (VSTM) is a key component of many complex cognitive abilities. However, it is highly limited in capacity. Understanding the neurophysiological nature of this capacity limit will require a valid animal model of VSTM. We used a multiple-item color change detection task to measure macaque monkeys’ VSTM capacity. Subjects’ performance deteriorated and reaction times increased as a function of the number of items in memory. Additionally, we measured the precision of the memory representations by varying the distance between sample and test colors. In trials with similar sample and test colors, subjects made more errors compared to trials with highly discriminable colors. We modeled the error distribution as a Gaussian function and used this to estimate the precision of VSTM representations. We found that as the number of items in memory increases the precision of the representations decreases dramatically. Additionally, we found that focusing attention on one of the objects increases the precision with which that object is stored and degrading the precision of the remaining. These results are in line with recent findings in human psychophysics and provide a solid foundation for understanding the neurophysiological nature of the capacity limit of VSTM. PMID:22419756
Arousal, working memory capacity, and sexual decision-making in men.
Spokes, Tara; Hine, Donald W; Marks, Anthony D G; Quain, Peter; Lykins, Amy D
2014-08-01
This study investigated whether working memory capacity (WMC) moderated the relationship between physiological arousal and sexual decision making. A total of 59 men viewed 20 consensual and 20 non-consensual images of heterosexual interaction while their physiological arousal levels were recorded using skin conductance response. Participants also completed an assessment of WMC and a date-rape analogue task for which they had to identify the point at which an average Australian male would cease all sexual advances in response to verbal and/or physical resistance from a female partner. Participants who were more physiologically aroused by and spent more time viewing the non-consensual sexual imagery nominated significantly later stopping points on the date-rape analogue task. Consistent with our predictions, the relationship between physiological arousal and nominated stopping point was strongest for participants with lower levels of WMC. For participants with high WMC, physiological arousal was unrelated to nominated stopping point. Thus, executive functioning ability (and WMC in particular) appears to play an important role in moderating men's decision making with regard to sexually aggressive behavior.
Kane, Michael J; Poole, Bradley J; Tuholski, Stephen W; Engle, Randall W
2006-07-01
The executive attention theory of working memory capacity (WMC) proposes that measures of WMC broadly predict higher order cognitive abilities because they tap important and general attention capabilities (R. W. Engle & M. J. Kane, 2004). Previous research demonstrated WMC-related differences in attention tasks that required restraint of habitual responses or constraint of conscious focus. To further specify the executive attention construct, the present experiments sought boundary conditions of the WMC-attention relation. Three experiments correlated individual differences in WMC, as measured by complex span tasks, and executive control of visual search. In feature-absence search, conjunction search, and spatial configuration search, WMC was unrelated to search slopes, although they were large and reliably measured. Even in a search task designed to require the volitional movement of attention (J. M. Wolfe, G. A. Alvarez, & T. S. Horowitz, 2000), WMC was irrelevant to performance. Thus, WMC is not associated with all demanding or controlled attention processes, which poses problems for some general theories of WMC. Copyright 2006 APA, all rights reserved.
Alunni-Menichini, Kristelle; Guimond, Synthia; Bermudez, Patrick; Nolden, Sophie; Lefebvre, Christine; Jolicoeur, Pierre
2014-12-10
The maintenance of information in auditory short-term memory (ASTM) is accompanied by a sustained anterior negativity (SAN) in the event-related potential measured during the retention interval of simple auditory memory tasks. Previous work on ASTM showed that the amplitude of the SAN increased in negativity as the number of maintained items increases. The aim of the current study was to measure the SAN and observe its behavior beyond the point of saturation of auditory short-term memory. We used atonal pure tones in sequences of 2, 4, 6, or 8t. Our results showed that the amplitude of SAN increased in negativity from 2 to 4 items and then levelled off from 4 to 8 items. Behavioral results suggested that the average span in the task was slightly below 3, which was consistent with the observed plateau in the electrophysiological results. Furthermore, the amplitude of the SAN predicted individual differences in auditory memory capacity. The results support the hypothesis that the SAN is an electrophysiological index of brain activity specifically related to the maintenance of auditory information in ASTM. Copyright © 2014 Elsevier B.V. All rights reserved.
Hakun, Jonathan G; Johnson, Nathan F
2017-11-01
Older adults tend to over-activate regions throughout frontoparietal cortices and exhibit a reduced range of functional modulation during WM task performance compared to younger adults. While recent evidence suggests that reduced functional modulation is associated with poorer task performance, it remains unclear whether reduced range of modulation is indicative of general WM capacity-limitations. In the current study, we examined whether the range of functional modulation observed over multiple levels of WM task difficulty (N-Back) predicts in-scanner task performance and out-of-scanner psychometric estimates of WM capacity. Within our sample (60-77years of age), age was negatively associated with frontoparietal modulation range. Individuals with greater modulation range exhibited more accurate N-Back performance. In addition, despite a lack of significant relationships between N-Back and complex span task performance, range of frontoparietal modulation during the N-Back significantly predicted domain-general estimates of WM capacity. Consistent with previous cross-sectional findings, older individuals with less modulation range exhibited greater activation at the lowest level of task difficulty but less activation at the highest levels of task difficulty. Our results are largely consistent with existing theories of neurocognitive aging (e.g. CRUNCH) but focus attention on dynamic range of functional modulation asa novel marker of WM capacity-limitations in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
de Oliveira, Glaucia Martins; Cachioni, Meire; Falcão, Deusivania; Batistoni, Samila; Lopes, Andrea; Guimarães, Vanessa; Lima-Silva, Thais Bento; Neri, Anita Liberalesso; Yassuda, Mônica Sanches
2015-01-01
Previous studies have suggested that performance prediction, an aspect of metamemory, may be associated with objective performance on memory tasks. The objective of the study was to describe memory prediction before performing an episodic memory task, in community-dwelling older adults, stratified by sex, age group and educational level. Additionally, the association between predicted and objective performance on a memory task was investigated. The study was based on data from 359 participants in the FIBRA study carried out at Ermelino Matarazzo, São Paulo. Memory prediction was assessed by posing the question: "If someone showed you a sheet with drawings of 10 pictures to observe for 30 seconds, how many pictures do you think you could remember without seeing the sheet?". Memory performance was assessed by the memorization of 10 black and white pictures from the Brief Cognitive Screening Battery (BCSB). No differences were found between men and women, nor for age group and educational level, in memory performance prediction before carrying out the memory task. There was a modest association (rho=0.11, p=0.041) between memory prediction and performance in immediate memory. On multivariate linear regression analyses, memory performance prediction was moderately significantly associated with immediate memory (p=0.061). In this study, sociodemographic variables did not influence memory prediction, which was only modestly associated with immediate memory on the Brief Cognitive Screening Battery (BCSB).
The interaction of short-term and long-term memory in phonetic category formation
NASA Astrophysics Data System (ADS)
Harnsberger, James D.
2002-05-01
This study examined the role that short-term memory capacity plays in the relationship between novel stimuli (e.g., non-native speech sounds, native nonsense words) and phonetic categories in long-term memory. Thirty native speakers of American English were administered five tests: categorial AXB discrimination using nasal consonants from Malayalam; categorial identification, also using Malayalam nasals, which measured the influence of phonetic categories in long-term memory; digit span; nonword span, a short-term memory measure mediated by phonetic categories in long-term memory; and paired-associate word learning (word-word and word-nonword pairs). The results showed that almost all measures were significantly correlated with one another. The strongest predictor for the discrimination and word-nonword learning results was nonword (r=+0.62) and digit span (r=+0.51), respectively. When the identification test results were partialed out, only nonword span significantly correlated with discrimination. The results show a strong influence of short-term memory capacity on the encoding of phonetic detail within phonetic categories and suggest that long-term memory representations regulate the capacity of short-term memory to preserve information for subsequent encoding. The results of this study will also be discussed with regards to resolving the tension between episodic and abstract models of phonetic category structure.
Linking working memory and long-term memory: a computational model of the learning of new words.
Jones, Gary; Gobet, Fernand; Pine, Julian M
2007-11-01
The nonword repetition (NWR) test has been shown to be a good predictor of children's vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children's vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model's behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity.
List memory in young adults with language learning disability.
Sheng, Li; Byrd, Courtney T; McGregor, Karla K; Zimmerman, Hannah; Bludau, Kadee
2015-04-01
The purpose of this study was to characterize the verbal memory limitations of young adults with language learning disability (LLD). Sixteen young adults with LLD and 34 age- and education-matched controls with typical language participated in a Deese-Roediger-McDermott (DRM; Deese, 1959; Roediger & McDermott, 1995) list recall experiment. Participants listened to 12-item word lists that converged on a nonpresented critical item (e.g., rain) semantically (umbrella, drench, weather, hail), phonologically (train, main, ran, wren), or dually in a hybrid list (umbrella, train, drench, main) and recalled words in no particular order. Group comparisons were made on veridical recall (i.e., words that were presented) and false recall of nonpresented critical items. Recall performance was analyzed by list type and list position to examine potential differences in the quality of memorial processes. The LLD group produced fewer veridical recalls than the controls. Both groups demonstrated list type and list position effects in veridical recall. False recall of the critical items was comparable in the 2 groups and varied by list type in predictable ways. Young adults with LLD have verbal memory limitations characterized by quantitatively low levels of accurate recall. Qualitative patterns of recall are similar to those of unaffected peers. Therefore, the memory problem is characterized by limited capacity; memorial processes appear to be intact.
Visual Working Memory Cannot Trade Quantity for Quality.
Ramaty, Ayelet; Luria, Roy
2018-01-01
Two main models have been proposed to describe how visual working memory (WM) allocates its capacity: the slot-model and the continuous resource-model. The purpose of the current study was to test a direct prediction of the resource model suggesting that WM can trade-off between the quantity and quality of the encoded information. Previous research reported equivocal results, with studies that failed to find such a trade-off and other studies that reported a trade-off. Following the design of previous studies, in Experiment 1 we replicated this trade-off, by presenting the memory array for 1200 ms. Experiment 2 failed to observe a trade-off between quantity and quality using a memory array interval of 300 ms (a standard interval for visual WM). Experiment 3 again failed to find this trade-off, when reinstating the 1200 ms memory array interval but adding an articulatory suppression manipulation. We argue that while participants can trade quantity for quality, this pattern depends on verbal encoding and transfer to long-term memory processes that were possible to perform only during the long retention interval. When these processes were eliminated, the trade-off disappeared. Thus, we didn't find any evidence that the trade-off between quantity for quality can occur within visual WM.
Ng, Elaine H N; Classon, Elisabet; Larsby, Birgitta; Arlinger, Stig; Lunner, Thomas; Rudner, Mary; Rönnberg, Jerker
2014-11-23
The present study aimed to investigate the changing relationship between aided speech recognition and cognitive function during the first 6 months of hearing aid use. Twenty-seven first-time hearing aid users with symmetrical mild to moderate sensorineural hearing loss were recruited. Aided speech recognition thresholds in noise were obtained in the hearing aid fitting session as well as at 3 and 6 months postfitting. Cognitive abilities were assessed using a reading span test, which is a measure of working memory capacity, and a cognitive test battery. Results showed a significant correlation between reading span and speech reception threshold during the hearing aid fitting session. This relation was significantly weakened over the first 6 months of hearing aid use. Multiple regression analysis showed that reading span was the main predictor of speech recognition thresholds in noise when hearing aids were first fitted, but that the pure-tone average hearing threshold was the main predictor 6 months later. One way of explaining the results is that working memory capacity plays a more important role in speech recognition in noise initially rather than after 6 months of use. We propose that new hearing aid users engage working memory capacity to recognize unfamiliar processed speech signals because the phonological form of these signals cannot be automatically matched to phonological representations in long-term memory. As familiarization proceeds, the mismatch effect is alleviated, and the engagement of working memory capacity is reduced. © The Author(s) 2014.
Risko, Evan F; Dunn, Timothy L
2015-11-01
We often store to-be-remembered information externally (e.g., written down on a piece of paper) rather than internally. In the present investigation, we examine factors that influence the decision to store information in-the-world versus in-the-head using a variant of a traditional short term memory task. In Experiments 1a and 1b participants were presented with to-be-remembered items and either had to rely solely on internal memory or had the option to write down the presented information. In Experiments 2a and 2b participants were presented with the same stimuli but made metacognitive judgments about their predicted performance and effort expenditure. The spontaneous use of external storage was related both to the number of items to be remembered and an individual's actual and perceived short-term-memory capacity. Interestingly, individuals often used external storage despite its use affording no observable benefit. Implications for understanding how individuals integrate external resources in pursuing cognitive goals are discussed. Copyright © 2015 Elsevier Inc. All rights reserved.
Auchter, Allison M.; Shumake, Jason; Gonzalez-Lima, Francisco; Monfils, Marie H.
2017-01-01
Many factors account for how well individuals extinguish conditioned fears, such as genetic variability, learning capacity and conditions under which extinction training is administered. We predicted that memory-based interventions would be more effective to reduce the reinstatement of fear in subjects genetically predisposed to display more extinction learning. We tested this hypothesis in rats genetically selected for differences in fear extinction using two strategies: (1) attenuation of fear memory using post-retrieval extinction training, and (2) pharmacological enhancement of the extinction memory after extinction training by low-dose USP methylene blue (MB). Subjects selectively bred for divergent extinction phenotypes were fear conditioned to a tone stimulus and administered either standard extinction training or retrieval + extinction. Following extinction, subjects received injections of saline or MB. Both reconsolidation updating and MB administration showed beneficial effects in preventing fear reinstatement, but differed in the groups they targeted. Reconsolidation updating showed an overall effect in reducing fear reinstatement, whereas pharmacological memory enhancement using MB was an effective strategy, but only for individuals who were responsive to extinction. PMID:28397861
Differences in Attainment and Performance in a Foreign Language: The Role of Working Memory Capacity
ERIC Educational Resources Information Center
Gilabert, Roger; Munoz, Carmen
2010-01-01
The goal of this study is to investigate the role of working memory capacity in L2 attainment and performance. The study uses an L1 reading span task to measure working memory of a group of 59 high-intermediate/advanced learners of English, and a film retelling task to measure their oral production. The analysis first showed a moderate to high…