SONOS Nonvolatile Memory Cell Programming Characteristics
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2010-01-01
Silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory is gaining favor over conventional EEPROM FLASH memory technology. This paper characterizes the SONOS write operation using a nonquasi-static MOSFET model. This includes floating gate charge and voltage characteristics as well as tunneling current, voltage threshold and drain current characterization. The characterization of the SONOS memory cell predicted by the model closely agrees with experimental data obtained from actual SONOS memory cells. The tunnel current, drain current, threshold voltage and read drain current all closely agreed with empirical data.
Cancer immunotherapy and immunological memory.
Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko
2016-01-01
Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.
A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design
NASA Technical Reports Server (NTRS)
Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen
2004-01-01
The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.
Memory Applications Using Resonant Tunneling Diodes
NASA Astrophysics Data System (ADS)
Shieh, Ming-Huei
Resonant tunneling diodes (RTDs) producing unique folding current-voltage (I-V) characteristics have attracted considerable research attention due to their promising application in signal processing and multi-valued logic. The negative differential resistance of RTDs renders the operating points self-latching and stable. We have proposed a multiple -dimensional multiple-state RTD-based static random-access memory (SRAM) cell in which the number of stable states can significantly be increased to (N + 1)^ m or more for m number of N-peak RTDs connected in series. The proposed cells take advantage of the hysteresis and folding I-V characteristics of RTD. Several cell designs are presented and evaluated. A two-dimensional nine-state memory cell has been implemented and demonstrated by a breadboard circuit using two 2-peak RTDs. The hysteresis phenomenon in a series of RTDs is also further analyzed. The switch model provided in SPICE 3 can be utilized to simulate the hysteretic I-V characteristics of RTDs. A simple macro-circuit is described to model the hysteretic I-V characteristic of RTD for circuit simulation. A new scheme for storing word-wide multiple-bit information very efficiently in a single memory cell using RTDs is proposed. An efficient and inexpensive periphery circuit to read from and write into the cell is also described. Simulation results on the design of a 3-bit memory cell scheme using one-peak RTDs are also presented. Finally, a binary transistor-less memory cell which is only composed of a pair of RTDs and an ordinary rectifier diode is presented and investigated. A simple means for reading and writing information from or into the memory cell is also discussed.
NASA Astrophysics Data System (ADS)
Sasaki, Takeshi; Muraguchi, Masakazu; Seo, Moon-Sik; Park, Sung-kye; Endoh, Tetsuo
2014-01-01
The merits, concerns and design principle for the future nano dot (ND) type NAND flash memory cell are clarified, by considering the effect of storage layer structure on NAND flash memory characteristics. The characteristics of the ND cell for a NAND flash memory in comparison with the floating gate type (FG) is comprehensively studied through the read, erase, program operation, and the cell to cell interference with device simulation. Although the degradation of the read throughput (0.7% reduction of the cell current) and slower program time (26% smaller programmed threshold voltage shift) with high density (10 × 1012 cm-2) ND NAND are still concerned, the suppress of the cell to cell interference with high density (10 × 1012 cm-2) plays the most important part for scaling and multi-level cell (MLC) operation in comparison with the FG NAND. From these results, the design knowledge is shown to require the control of the number of nano dots rather than the higher nano dot density, from the viewpoint of increasing its memory capacity by MLC operation and suppressing threshold voltage variability caused by the number of dots in the storage layer. Moreover, in order to increase its memory capacity, it is shown the tunnel oxide thickness with ND should be designed thicker (>3 nm) than conventional designed ND cell for programming/erasing with direct tunneling mechanism.
Characteristics of a Nonvolatile SRAM Memory Cell Utilizing a Ferroelectric Transistor
NASA Technical Reports Server (NTRS)
Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.
2011-01-01
The SRAM cell circuit is a standard for volatile data storage. When utilizing one or more ferroelectric transistors, the hysteresis characteristics give unique properties to the SRAM circuit, providing for investigation into the development of a nonvolatile memory cell. This paper discusses various formations of the SRAM circuit, using ferroelectric transistors, n-channel and p-channel MOSFETs, and resistive loads. With varied source and supply voltages, the effects on the timing and retention characteristics are investigated, including retention times of up to 24 hours.
Tang, Vera A; Rosenthal, Kenneth L
2010-12-01
Although the female genital tract is the main portal of entry for sexually transmitted infections in women, we still have limited understanding of the generation, maintenance and characteristics of memory T cells in the local tissue. Here, we utilized a mouse model of intravaginal HSV-2 infection and tetramers against the immunodominant HSV glycoprotein B epitope recognized by CD8+ T cells to examine the generation, maintenance and characteristics of anti-HSV memory T cells in the genital tract following acute infection. Our results show that the highest percentage of HSVgB-specific CD8+ T cells was found in the genital tract compared to the spleen or iliac lymphnode. Indeed, although the actual number of CD8+ T cells contracted following viral clearance, approximately one quarter of the CD8+ population that remained in the genital tissue was HSVgB-specific. Memory gB-tetramer+CD8 T cells in the genital tract were positive for CD127 and KLRG1 and negative for CD62L and CCR7, thus confirming that HSV-specific CD8 cells were effector memory T cells that lack the capacity for homing to lymphoid tissues. Functionally, both memory CD8+ and CD4+ HSV-specific populations in the genital tract produced IFNγ when stimulated in vitro and CD4+ cells also produced TNFα. Genital HSVgB-specific memory T cells expressed tissue-homing integrins CD103 (αE integrin) and CD49a (VLA-1 or α1 integrin). Our findings suggest that HSV-specific memory T cells are retained in the genital tract, poised to act as an early line of defense against future virus encounter. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
NASA Astrophysics Data System (ADS)
Duan, W. J.; Wang, J. B.; Zhong, X. L.
2018-05-01
Resistive switching random access memory (RRAM) is considered as a promising candidate for the next generation memory due to its scalability, high integration density and non-volatile storage characteristics. Here, the multiple electrical characteristics in Pt/WOx/Pt cells are investigated. Both of the nonlinear switching and multi-level storage can be achieved by setting different compliance current in the same cell. The correlations among the current, time and temperature are analyzed by using contours and 3D surfaces. The switching mechanism is explained in terms of the formation and rupture of conductive filament which is related to oxygen vacancies. The experimental results show that the non-stoichiometric WOx film-based device offers a feasible way for the applications of oxide-based RRAMs.
NASA Astrophysics Data System (ADS)
Miyaji, Kousuke; Hung, Chinglin; Takeuchi, Ken
2012-04-01
The scaling trends and limitation in sub-20 nm a bulk and silicon-on-insulator (SOI) NAND flash memory is studied by the three-dimensional (3D) device simulation focusing on short channel effects (SCE), channel boost leakage and channel voltage boosting characteristics during the program-inhibit operation. Although increasing punch-through stopper doping concentration is effective for suppressing SCE in bulk NAND cells, the generation of junction leakage becomes serious. On the other hand, SCE can be suppressed by thinning the buried oxide (BOX) in SOI NAND cells. However, the boosted channel voltage decreases by the higher BOX capacitance. It is concluded that the scaling limitation is dominated by the junction leakage and channel boosting capability for bulk and SOI NAND flash cells, respectively, and the scaling limit is decreased to 9 nm using SOI NAND flash memory cells from 13 nm in bulk NAND flash memory cells.
Gordon, Claire Louse; Lee, Lian Ni; Swadling, Leo; Hutchings, Claire; Zinser, Madeleine; Highton, Andrew John; Capone, Stefania; Folgori, Antonella; Barnes, Eleanor; Klenerman, Paul
2018-04-17
The induction and maintenance of T cell memory is critical to the success of vaccines. A recently described subset of memory CD8 + T cells defined by intermediate expression of the chemokine receptor CX3CR1 was shown to have self-renewal, proliferative, and tissue-surveillance properties relevant to vaccine-induced memory. We tracked these cells when memory is sustained at high levels: memory inflation induced by cytomegalovirus (CMV) and adenovirus-vectored vaccines. In mice, both CMV and vaccine-induced inflationary T cells showed sustained high levels of CX3R1 int cells exhibiting an effector-memory phenotype, characteristic of inflationary pools, in early memory. In humans, CX3CR1 int CD8 + T cells were strongly induced following adenovirus-vectored vaccination for hepatitis C virus (HCV) (ChAd3-NSmut) and during natural CMV infection and were associated with a memory phenotype similar to that in mice. These data indicate that CX3CR1 int cells form an important component of the memory pool in response to persistent viruses and vaccines in both mice and humans. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Neely, Harold R; Mazo, Irina B; Gerlach, Carmen; von Andrian, Ulrich H
2017-12-18
Natural killer (NK) cells have historically been considered to be a part of the innate immune system, exerting a rapid response against pathogens and tumors in an antigen (Ag)-independent manner. However, over the past decade, evidence has accumulated suggesting that at least some NK cells display certain characteristics of adaptive immune cells. Indeed, NK cells can learn and remember encounters with a variety of Ags, including chemical haptens and viruses. Upon rechallenge, memory NK cells mount potent recall responses selectively to those Ags. This phenomenon, traditionally termed "immunological memory," has been reported in mice, nonhuman primates, and even humans and appears to be concentrated in discrete NK cell subsets. Because immunological memory protects against recurrent infections and is the central goal of active vaccination, it is crucial to define the mechanisms and consequences of NK cell memory. Here, we summarize the different kinds of memory responses that have been attributed to specific NK cell subsets and discuss the possibility to harness NK cell memory for vaccination purposes. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Memory T cells in organ transplantation: progress and challenges
Espinosa, Jaclyn R.; Samy, Kannan P.; Kirk, Allan D.
2017-01-01
Antigen-experienced T cells, also known as memory T cells, are functionally and phenotypically distinct from naive T cells. Their enhanced expression of adhesion molecules and reduced requirement for co-stimulation enables them to mount potent and rapid recall responses to subsequent antigen encounters. Memory T cells generated in response to prior antigen exposures can cross-react with other nonidentical, but similar, antigens. This heterologous cross-reactivity not only enhances protective immune responses, but also engenders de novo alloimmunity. This latter characteristic is increasingly recognized as a potential barrier to allograft acceptance that is worthy of immunotherapeutic intervention, and several approaches have been investigated. Calcineurin inhibition effectively controls memory T-cell responses to allografts, but this benefit comes at the expense of increased infectious morbidity. Lymphocyte depletion eliminates allospecific T cells but spares memory T cells to some extent, such that patients do not completely lose protective immunity. Co-stimulation blockade is associated with reduced adverse-effect profiles and improved graft function relative to calcineurin inhibition, but lacks efficacy in controlling memory T-cell responses. Targeting the adhesion molecules that are upregulated on memory T cells might offer additional means to control co-stimulation-blockade-resistant memory T-cell responses. PMID:26923209
A Reassessment of IgM Memory Subsets in Humans.
Bagnara, Davide; Squillario, Margherita; Kipling, David; Mora, Thierry; Walczak, Aleksandra M; Da Silva, Lucie; Weller, Sandra; Dunn-Walters, Deborah K; Weill, Jean-Claude; Reynaud, Claude-Agnès
2015-10-15
From paired blood and spleen samples from three adult donors, we performed high-throughput VH sequencing of human B cell subsets defined by IgD and CD27 expression: IgD(+)CD27(+) ("marginal zone [MZ]"), IgD(-)CD27(+) ("memory," including IgM ["IgM-only"], IgG and IgA) and IgD(-)CD27(-) cells ("double-negative," including IgM, IgG, and IgA). A total of 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for VH gene mutation, H-CDR3-length, and VH/JH usage, comparing these different characteristics with all sequences from their subset of origin for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency and lower VH4 and higher JH6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (among MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The "IgM-only" subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27(+) switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells and that IgM memory and MZ B cells constitute two distinct entities. Copyright © 2015 by The American Association of Immunologists, Inc.
Ji, Yongsung; Zeigler, David F; Lee, Dong Su; Choi, Hyejung; Jen, Alex K-Y; Ko, Heung Cho; Kim, Tae-Wook
2013-01-01
Flexible organic memory devices are one of the integral components for future flexible organic electronics. However, high-density all-organic memory cell arrays on malleable substrates without cross-talk have not been demonstrated because of difficulties in their fabrication and relatively poor performances to date. Here we demonstrate the first flexible all-organic 64-bit memory cell array possessing one diode-one resistor architectures. Our all-organic one diode-one resistor cell exhibits excellent rewritable switching characteristics, even during and after harsh physical stresses. The write-read-erase-read output sequence of the cells perfectly correspond to the external pulse signal regardless of substrate deformation. The one diode-one resistor cell array is clearly addressed at the specified cells and encoded letters based on the standard ASCII character code. Our study on integrated organic memory cell arrays suggests that the all-organic one diode-one resistor cell architecture is suitable for high-density flexible organic memory applications in the future.
The CD8+ memory T-cell state of readiness is actively maintained and reversible
Allam, Atef; Conze, Dietrich B.; Giardino Torchia, Maria Letizia; Munitic, Ivana; Yagita, Hideo; Sowell, Ryan T.; Marzo, Amanda L.
2009-01-01
The ability of the adaptive immune system to respond rapidly and robustly upon repeated antigen exposure is known as immunologic memory, and it is thought that acquisition of memory T-cell function is an irreversible differentiation event. In this study, we report that many phenotypic and functional characteristics of antigen-specific CD8 memory T cells are lost when they are deprived of contact with dendritic cells. Under these circumstances, memory T cells reverted from G1 to the G0 cell-cycle state and responded to stimulation like naive T cells, as assessed by proliferation, dependence upon costimulation, and interferon-γ production, without losing cell surface markers associated with memory. The memory state was maintained by signaling via members of the tumor necrosis factor receptor superfamily, CD27 and 4-1BB. Foxo1, a transcription factor involved in T-cell quiescence, was reduced in memory cells, and stimulation of naive CD8 cells via CD27 caused Foxo1 to be phosphorylated and emigrate from the nucleus in a phosphatidylinositol-3 kinase–dependent manner. Consistent with these results, maintenance of G1 in vivo was compromised in antigen-specific memory T cells in vesicular stomatitis virus-infected CD27-deficient mice. Therefore, sustaining the functional phenotype of T memory cells requires active signaling and maintenance. PMID:19617575
Disturbance characteristics of half-selected cells in a cross-point resistive switching memory array
NASA Astrophysics Data System (ADS)
Chen, Zhe; Li, Haitong; Chen, Hong-Yu; Chen, Bing; Liu, Rui; Huang, Peng; Zhang, Feifei; Jiang, Zizhen; Ye, Hongfei; Gao, Bin; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng; Wong, H.-S. Philip; Yu, Shimeng
2016-05-01
Disturbance characteristics of cross-point resistive random access memory (RRAM) arrays are comprehensively studied in this paper. An analytical model is developed to quantify the number of pulses (#Pulse) the cell can bear before disturbance occurs under various sub-switching voltage stresses based on physical understanding. An evaluation methodology is proposed to assess the disturb behavior of half-selected (HS) cells in cross-point RRAM arrays by combining the analytical model and SPICE simulation. The characteristics of cross-point RRAM arrays such as energy consumption, reliable operating cycles and total error bits are evaluated by the methodology. A possible solution to mitigate disturbance is proposed.
Fungal mediated innate immune memory, what have we learned?
Quintin, Jessica
2018-05-30
The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.
Kalia, Vandana; Penny, Laura Anne; Yuzefpolskiy, Yevgeniy; Baumann, Florian Martin; Sarkar, Surojit
2015-06-16
Immune memory cells are poised to rapidly expand and elaborate effector functions upon reinfection yet exist in a functionally quiescent state. The paradigm is that memory T cells remain inactive due to lack of T cell receptor (TCR) stimuli. Here, we report that regulatory T (Treg) cells orchestrate memory T cell quiescence by suppressing effector and proliferation programs through inhibitory receptor, cytotoxic-T-lymphocyte-associated protein-4 (CTLA-4). Loss of Treg cells resulted in activation of genome-wide transcriptional programs characteristic of effector T cells and drove transitioning as well as established memory CD8(+) T cells toward terminally differentiated KLRG-1(hi)IL-7Rα(lo)GzmB(hi) phenotype, with compromised metabolic fitness, longevity, polyfunctionality, and protective efficacy. CTLA-4 functionally replaced Treg cells in trans to rescue memory T cell defects and restore homeostasis. These studies present the CTLA-4-CD28-CD80/CD86 axis as a potential target to accelerate vaccine-induced immunity and improve T cell memory quality in current cancer immunotherapies proposing transient Treg cell ablation. Copyright © 2015 Elsevier Inc. All rights reserved.
A hybrid ferroelectric-flash memory cells
NASA Astrophysics Data System (ADS)
Park, Jae Hyo; Byun, Chang Woo; Seok, Ki Hwan; Kim, Hyung Yoon; Chae, Hee Jae; Lee, Sol Kyu; Son, Se Wan; Ahn, Donghwan; Joo, Seung Ki
2014-09-01
A ferroelectric-flash (F-flash) memory cells having a metal-ferroelectric-nitride-oxynitride-silicon structure are demonstrated, and the ferroelectric materials were perovskite-dominated Pb(Zr,Ti)O3 (PZT) crystallized by Pt gate electrode. The PZT thin-film as a blocking layer improves electrical and memorial performance where programming and erasing mechanism are different from the metal-ferroelectric-insulator-semiconductor device or the conventional silicon-oxide-nitride-oxide-silicon device. F-flash cells exhibit not only the excellent electrical transistor performance, having 442.7 cm2 V-1 s-1 of field-effect mobility, 190 mV dec-1 of substhreshold slope, and 8 × 105 on/off drain current ratio, but also a high reliable memory characteristics, having a large memory window (6.5 V), low-operating voltage (0 to -5 V), faster P/E switching speed (50/500 μs), long retention time (>10 years), and excellent fatigue P/E cycle (>105) due to the boosting effect, amplification effect, and energy band distortion of nitride from the large polarization. All these characteristics correspond to the best performances among conventional flash cells reported so far.
Performance Measurement of a Multi-Level/Analog Ferroelectric Memory Device Design
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2007-01-01
Increasing the memory density and utilizing the unique characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes the characterization of a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used a reference to determinethe amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. This paper presents measurements of an actual prototype memory cell. This prototype is not a complete implementation of a device, but instead, a prototype of the storage and retrieval portion of an actual device. The performance of this prototype is presented with the projected performance of the overall device. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.
Design of a Multi-Level/Analog Ferroelectric Memory Device
NASA Technical Reports Server (NTRS)
MacLeod, Todd C.; Phillips, Thomas A.; Ho, Fat D.
2006-01-01
Increasing the memory density and utilizing the dove1 characteristics of ferroelectric devices is important in making ferroelectric memory devices more desirable to the consumer. This paper describes a design that allows multiple levels to be stored in a ferroelectric based memory cell. It can be used to store multiple bits or analog values in a high speed nonvolatile memory. The design utilizes the hysteresis characteristic of ferroelectric transistors to store an analog value in the memory cell. The design also compensates for the decay of the polarization of the ferroelectric material over time. This is done by utilizing a pair of ferroelectric transistors to store the data. One transistor is used as a reference to determine the amount of decay that has occurred since the pair was programmed. The second transistor stores the analog value as a polarization value between zero and saturated. The design allows digital data to be stored as multiple bits in each memory cell. The number of bits per cell that can be stored will vary with the decay rate of the ferroelectric transistors and the repeatability of polarization between transistors. It is predicted that each memory cell may be able to store 8 bits or more. The design is based on data taken from actual ferroelectric transistors. Although the circuit has not been fabricated, a prototype circuit is now under construction. The design of this circuit is different than multi-level FLASH or silicon transistor circuits. The differences between these types of circuits are described in this paper. This memory design will be useful because it allows higher memory density, compensates for the environmental and ferroelectric aging processes, allows analog values to be directly stored in memory, compensates for the thermal and radiation environments associated with space operations, and relies only on existing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok
2014-03-07
The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells aremore » formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.« less
Chen, Xiaojun; Li, Wei; Zhang, Yang; Song, Xian; Xu, Lei; Xu, Zhipeng; Zhou, Sha; Zhu, Jifeng; Jin, Xin; Liu, Feng; Chen, Gengxin; Su, Chuan
2015-01-01
Background Schistosomiasis is a helminthic disease that affects more than 200 million people. An effective vaccine would be a major step towards eliminating the disease. Studies suggest that T follicular helper (Tfh) cells provide help to B cells to generate the long-term humoral immunity, which would be a crucial component of successful vaccines. Thus, understanding the biological characteristics of Tfh cells in patients with schistosomiasis, which has never been explored, is essential for vaccine design. Methodology/Principal Findings In this study, we investigated the biological characteristics of peripheral memory Tfh cells in schistosomiasis patients by flow cytometry. Our data showed that the frequencies of total and activated peripheral memory Tfh cells in patients were significantly increased during Schistosoma japonicum infection. Moreover, Tfh2 cells, which were reported to be a specific subpopulation to facilitate the generation of protective antibodies, were increased more greatly than other subpopulations of total peripheral memory Tfh cells in patients with schistosomiasis japonica. More importantly, our result showed significant correlations of the percentage of Tfh2 cells with both the frequency of plasma cells and the level of IgG antibody. In addition, our results showed that the percentage of T follicular regulatory (Tfr) cells was also increased in patients with schistosomiasis. Conclusions/Significance Our report is the first characterization of peripheral memory Tfh cells in schistosomasis patients, which not only provides potential targets to improve immune response to vaccination, but also is important for the development of vaccination strategies to control schistosomiasis. PMID:26284362
Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance.
Rogel, Anne; Willoughby, Jane E; Buchan, Sarah L; Leonard, Henry J; Thirdborough, Stephen M; Al-Shamkhani, Aymen
2017-02-14
Memory CD8 + T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8 + T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8 + T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8 + T cells from pdk1 K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3) lo CD43 lo effector-like memory cells. Consequently, antitumor immunity by CD8 + T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8 + T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8 + T-cell responses.
Akt signaling is critical for memory CD8+ T-cell development and tumor immune surveillance
Rogel, Anne; Willoughby, Jane E.; Buchan, Sarah L.; Leonard, Henry J.; Thirdborough, Stephen M.; Al-Shamkhani, Aymen
2017-01-01
Memory CD8+ T cells confer long-term immunity against tumors, and anticancer vaccines therefore should maximize their generation. Multiple memory CD8+ T-cell subsets with distinct functional and homing characteristics exist, but the signaling pathways that regulate their development are ill defined. Here we examined the role of the serine/threonine kinase Akt in the generation of protective immunity by CD8+ T cells. Akt is known to be activated by the T-cell antigen receptor and the cytokine IL-2, but its role in T-cell immunity in vivo has not been explored. Using CD8+ T cells from pdk1K465E/K465E knockin mice, we found that decreased Akt activity inhibited the survival of T cells during the effector-to-memory cell transition and abolished their differentiation into C-X-C chemokine receptor 3 (CXCR3)loCD43lo effector-like memory cells. Consequently, antitumor immunity by CD8+ T cells that display defective Akt signaling was substantially diminished during the memory phase. Reduced memory T-cell survival and altered memory cell differentiation were associated with up-regulation of the proapoptotic protein Bim and the T-box transcription factor eomesodermin, respectively. These findings suggest an important role for effector-like memory CD8+ T cells in tumor immune surveillance and identify Akt as a key signaling node in the development of protective memory CD8+ T-cell responses. PMID:28137869
Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath
2017-08-03
The success of cancer vaccines is limited as most of them induce corrupted CD8 + T cell memory populations. We reported earlier that a natural immunomodulator, neem leaf glycoprotein (NLGP), therapeutically restricts tumor growth in a CD8 + T cell-dependent manner. Here, our objective is to study whether memory CD8 + T cell population is generated in sarcoma hosts after therapeutic NLGP treatment and their role in prevention of post-surgery tumor recurrence, in comparison to the immunostimulatory metronomic cyclophosphamide (CTX) treatment. We found that therapeutic NLGP and CTX treatment generates central memory CD8 + T (TCM) cells with characteristic CD44 + CD62L high CCR7 high IL-2 high phenotypes. But these TCM cells are functionally impaired to prevent re-appearance of tumors along with compromised proliferative, IL-2 secretive and cytotoxic status. This might be due to the presence of tumor load, even a small one in the host, which serves as a persistent source of tumor antigens thereby corrupting the TCM cells so generated. Surgical removal of the persisting tumors from the host restored the functional characteristics of memory CD8 + T cells, preventing tumor recurrence after surgery till end of the experiment. Moreover, we observed that generation of superior TCM cells in NLGP treated surgically removed tumor hosts is related to the activation of Wnt signalling in memory CD8 + T cells with concomitant inhibition of GSK-3β and stabilisation of β-catenin, which ultimately activates transcription of Wnt target genes, like, eomesodermin, a signature molecule of CD8 + TCM cells. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk
Ortolani, Claudio; del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Artico, Marco; Papa, Stefano
2016-01-01
Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view. PMID:28078307
The Memories of NK Cells: Innate-Adaptive Immune Intrinsic Crosstalk.
Gabrielli, Sara; Ortolani, Claudio; Del Zotto, Genny; Luchetti, Francesca; Canonico, Barbara; Buccella, Flavia; Artico, Marco; Papa, Stefano; Zamai, Loris
2016-01-01
Although NK cells are considered part of the innate immune system, a series of evidences has demonstrated that they possess characteristics typical of the adaptive immune system. These NK adaptive features, in particular their memory-like functions, are discussed from an ontogenetic and evolutionary point of view.
Lin, Chia-Chun; Wu, Yung-Hsien; Chang, You-Tai; Sun, Cherng-En
2014-01-01
A simplified one-diode one-resistor (1D1R) resistive switching memory cell that uses only four layers of TaN/ZrTiO x /Ni/n(+)-Si was proposed to suppress sneak current where TaN/ZrTiO x /Ni can be regarded as a resistive-switching random access memory (RRAM) device while Ni/n(+)-Si acts as an Schottky diode. This is the first RRAM cell structure that employs metal/semiconductor Schottky diode for current rectifying. The 1D1R cell exhibits bipolar switching behavior with SET/RESET voltage close to 1 V without requiring a forming process. More importantly, the cell shows tight resistance distribution for different states, significantly rectifying characteristics with forward/reverse current ratio higher than 10(3) and a resistance ratio larger than 10(3) between two states. Furthermore, the cell also displays desirable reliability performance in terms of long data retention time of up to 10(4) s and robust endurance of 10(5) cycles. Based on the promising characteristics, the four-layer 1D1R structure holds the great potential for next-generation nonvolatile memory technology.
Frison, Héloïse; Giono, Gloria; Thébault, Paméla; Fournier, Marilaine; Labrecque, Nathalie; Bijl, Janet J
2013-01-01
Memory T cell populations allow a rapid immune response to pathogens that have been previously encountered and thus form the basis of success in vaccinations. However, the molecular pathways underlying the development and maintenance of these cells are only starting to be unveiled. Memory T cells have the capacity to self renew as do hematopoietic stem cells, and overlapping gene expression profiles suggested that these cells might use the same self-renewal pathways. The transcription factor Hoxb4 has been shown to promote self-renewal divisions of hematopoietic stem cells resulting in an expansion of these cells. In this study we investigated whether overexpression of Hoxb4 could provide an advantage to CD4 memory phenotype T cells in engrafting the niche of T cell deficient mice following adoptive transfer. Competitive transplantation experiments demonstrated that CD4 memory phenotype T cells derived from mice transgenic for Hoxb4 contributed overall less to the repopulation of the lymphoid organs than wild type CD4 memory phenotype T cells after two months. These proportions were relatively maintained following serial transplantation in secondary and tertiary mice. Interestingly, a significantly higher percentage of the Hoxb4 CD4 memory phenotype T cell population expressed the CD62L and Ly6C surface markers, characteristic for central memory T cells, after homeostatic proliferation. Thus Hoxb4 favours the maintenance and increase of the CD4 central memory phenotype T cell population. These cells are more stem cell like and might eventually lead to an advantage of Hoxb4 T cells after subjecting the cells to additional rounds of proliferation.
A reassessment of IgM memory subsets in humans
Bagnara, Davide; Squillario, Margherita; Kipling, David; Mora, Thierry; Walczak, Aleksandra M.; Da Silva, Lucie; Weller, Sandra; Dunn-Walters, Deborah K.; Weill, Jean-Claude; Reynaud, Claude-Agnès
2015-01-01
From paired blood and spleen samples from three adult donors we performed high-throughput V-h sequencing of human B-cell subsets defined by IgD and CD27 expression: IgD+CD27+ (“MZ”), IgD−CD27+(“memory”, including IgM (“IgM-only”), IgG and IgA) and IgD−CD27− cells (“double-negative”, including IgM, IgG and IgA). 91,294 unique sequences clustered in 42,670 clones, revealing major clonal expansions in each of these subsets. Among these clones, we further analyzed those shared sequences from different subsets or tissues for Vh-gene mutation, H-CDR3-length, and Vh/Jh usage, comparing these different characteristics with all sequences from their subset of origin, for which these parameters constitute a distinct signature. The IgM-only repertoire profile differed notably from that of MZ B cells by a higher mutation frequency, and lower Vh4 and higher Jh6 gene usage. Strikingly, IgM sequences from clones shared between the MZ and the memory IgG/IgA compartments showed a mutation and repertoire profile of IgM-only and not of MZ B cells. Similarly, all IgM clonal relationships (between MZ, IgM-only, and double-negative compartments) involved sequences with the characteristics of IgM-only B cells. Finally, clonal relationships between tissues suggested distinct recirculation characteristics between MZ and switched B cells. The “IgM-only” subset (including cells with its repertoire signature but higher IgD or lower CD27 expression levels) thus appear as the only subset showing precursor-product relationships with CD27+ switched memory B cells, indicating that they represent germinal center-derived IgM memory B cells, and that IgM memory and MZ B cells constitute two distinct entities. PMID:26355154
NASA Astrophysics Data System (ADS)
Lee, Jong-Sun; Kim, Dong-Won; Kim, Hea-Jee; Jin, Soo-Min; Song, Myung-Jin; Kwon, Ki-Hyun; Park, Jea-Gun; Jalalah, Mohammed; Al-Hajry, Ali
2018-01-01
The Conductive-bridge random-access memory (CBRAM) cell is a promising candidate for a terabit-level non-volatile memory due to its remarkable advantages. We present for the first time TiN as a diffusion barrier in CBRAM cells for enhancing their reliability. CuO solid-electrolyte-based CBRAM cells implemented with a 0.1-nm TiN liner demonstrated better non-volatile memory characteristics such as 106 AC write/erase endurance cycles with 100-μs AC pulse width and a long retention time of 7.4-years at 85 °C. In addition, the analysis of Ag diffusion in the CBRAM cell suggests that the morphology of the Ag filaments in the electrolyte can be effectively controlled by tuning the thickness of the TiN liner. These promising results pave the way for faster commercialization of terabit-level non-volatile memories.
Th1-like Plasmodium-Specific Memory CD4+ T Cells Support Humoral Immunity.
Zander, Ryan A; Vijay, Rahul; Pack, Angela D; Guthmiller, Jenna J; Graham, Amy C; Lindner, Scott E; Vaughan, Ashley M; Kappe, Stefan H I; Butler, Noah S
2017-11-14
Effector T cells exhibiting features of either T helper 1 (Th1) or T follicular helper (Tfh) populations are essential to control experimental Plasmodium infection and are believed to be critical for resistance to clinical malaria. To determine whether Plasmodium-specific Th1- and Tfh-like effector cells generate memory populations that contribute to protection, we developed transgenic parasites that enable high-resolution study of anti-malarial memory CD4 T cells in experimental models. We found that populations of both Th1- and Tfh-like Plasmodium-specific memory CD4 T cells persist. Unexpectedly, Th1-like memory cells exhibit phenotypic and functional features of Tfh cells during recall and provide potent B cell help and protection following transfer, characteristics that are enhanced following ligation of the T cell co-stimulatory receptor OX40. Our findings delineate critical functional attributes of Plasmodium-specific memory CD4 T cells and identify a host-specific factor that can be targeted to improve resolution of acute malaria and provide durable, long-term protection against Plasmodium parasite re-exposure. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Weinberg, Adriana; Huang, Sharon; Moscicki, Anna-Barbara; Saah, Afred; Levin, Myron J
2018-04-24
To determine the magnitude and persistence of quadrivalent human papillomavirus (HPV)16 and HPV18 B-cell and T-cell memory after three or four doses of quadrivalent HPV vaccine (QHPV) in HIV-infected children. Seventy-four HIV-infected children immunized with four doses and 23 with three doses of QHPV had HPV16 and HPV18 IgG B-cell and IFNγ and IL2 T-cell ELISPOT performed at 2, 3.5 and 4-5 years after the last dose. HPV16 and HPV18 T-cell responses were similar in both treatment groups, with higher responses to HPV16 vs. HPV18. These HPV T-cell responses correlated with HIV disease characteristics at the study visits. Global T-cell function declined over time as measured by nonspecific mitogenic stimulation. B-cell memory was similar across treatment groups and HPV genotypes. There was a decline in HPV-specific B-cell memory over time that reached statistical significance for HPV16 in the four-dose group. B-cell and T-cell memory did not significantly differ after either three or four doses of QHPV in HIV-infected children. The clinical consequences of decreasing global T-cell function and HPV B-cell memory over time in HIV-infected children requires further investigation.
Thermally efficient and highly scalable In2Se3 nanowire phase change memory
NASA Astrophysics Data System (ADS)
Jin, Bo; Kang, Daegun; Kim, Jungsik; Meyyappan, M.; Lee, Jeong-Soo
2013-04-01
The electrical characteristics of nonvolatile In2Se3 nanowire phase change memory are reported. Size-dependent memory switching behavior was observed in nanowires of varying diameters and the reduction in set/reset threshold voltage was as low as 3.45 V/6.25 V for a 60 nm nanowire, which is promising for highly scalable nanowire memory applications. Also, size-dependent thermal resistance of In2Se3 nanowire memory cells was estimated with values as high as 5.86×1013 and 1.04×106 K/W for a 60 nm nanowire memory cell in amorphous and crystalline phases, respectively. Such high thermal resistances are beneficial for improvement of thermal efficiency and thus reduction in programming power consumption based on Fourier's law. The evaluation of thermal resistance provides an avenue to develop thermally efficient memory cell architecture.
Modeling and simulation of floating gate nanocrystal FET devices and circuits
NASA Astrophysics Data System (ADS)
Hasaneen, El-Sayed A. M.
The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to nanocrystal charge has a strong effect on the memory characteristics. Also, the programming operation of the memory cell has been investigated. The tunneling rate from quantum well channel to quantum dot (nanocrystal) gate is calculated. The calculations include various memory parameters, wavefunctions, and energies of quantum well channel and quantum dot gate. The use of floating gate nanocrystal memory as a transistor with a programmable threshold voltage has been demonstrated. The incorporation of FG-NCFETs to design programmable integrated circuit building blocks has been discussed. This includes the design of programmable current and voltage reference circuits. Finally, we demonstrated the design of tunable gain op-amp incorporating FG-NCFETs. Programmable integrated circuit building blocks can be used in intelligent analog and digital systems.
Han, Su-Ting; Zhou, Ye; Yang, Qing Dan; Zhou, Li; Huang, Long-Biao; Yan, Yan; Lee, Chun-Sing; Roy, Vellaisamy A L
2014-02-25
Tunable memory characteristics are used in multioperational mode circuits where memory cells with various functionalities are needed in one combined device. It is always a challenge to obtain control over threshold voltage for multimode operation. On this regard, we use a strategy of shifting the work function of reduced graphene oxide (rGO) in a controlled manner through doping gold chloride (AuCl3) and obtained a gradient increase of rGO work function. By inserting doped rGO as floating gate, a controlled threshold voltage (Vth) shift has been achieved in both p- and n-type low voltage flexible memory devices with large memory window (up to 4 times for p-type and 8 times for n-type memory devices) in comparison with pristine rGO floating gate memory devices. By proper energy band engineering, we demonstrated a flexible floating gate memory device with larger memory window and controlled threshold voltage shifts.
Woda, Marcia; Mathew, Anuja
2015-01-01
Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at −80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV+ B cells from immune, but not naïve donors secreted antibodies that bound intact virions after in vitro stimulation. Overall, Alexa Fluor dye labeled -DENV are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. PMID:25497702
Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.; ...
2016-01-06
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziraldo, Cordelia; Gong, Chang; Kirschner, Denise E.
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. While many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likelymore » key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. As a result, given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.« less
NASA Astrophysics Data System (ADS)
Han, Runze; Shen, Wensheng; Huang, Peng; Zhou, Zheng; Liu, Lifeng; Liu, Xiaoyan; Kang, Jinfeng
2018-04-01
A novel ternary content addressable memory (TCAM) design based on resistive random access memory (RRAM) is presented. Each TCAM cell consists of two parallel RRAM to both store and search for ternary data. The cell size of the proposed design is 8F2, enable a ∼60× cell area reduction compared with the conventional static random access memory (SRAM) based implementation. Simulation results also show that the search delay and energy consumption of the proposed design at the 64-bit word search are 2 ps and 0.18 fJ/bit/search respectively at 22 nm technology node, where significant improvements are achieved compared to previous works. The desired characteristics of RRAM for implementation of the high performance TCAM search chip are also discussed.
Fuertes Marraco, Silvia A; Soneson, Charlotte; Delorenzi, Mauro; Speiser, Daniel E
2015-09-01
The live-attenuated Yellow Fever (YF) vaccine YF-17D induces a broad and polyfunctional CD8 T cell response in humans. Recently, we identified a population of stem cell-like memory CD8 T cells induced by YF-17D that persists at stable frequency for at least 25 years after vaccination. The YF-17D is thus a model system of human CD8 T cell biology that furthermore allows to track and study long-lasting and antigen-specific human memory CD8 T cells. Here, we describe in detail the sample characteristics and preparation of a microarray dataset acquired for genome-wide gene expression profiling of long-lasting YF-specific stem cell-like memory CD8 T cells, compared to the reference CD8 T cell differentiation subsets from total CD8 T cells. We also describe the quality controls, annotations and exploratory analyses of the dataset. The microarray data is available from the Gene Expression Omnibus (GEO) public repository with accession number GSE65804.
Lúcia, Marc; Crespo, Elena; Melilli, Edoardo; Cruzado, Josep M.; Luque, Sergi; Llaudó, Inés; Niubó, Jordi; Torras, Joan; Fernandez, Núria; Grinyó, Josep M.; Bestard, Oriol
2014-01-01
Background. Cytomegalovirus (CMV) infection remains a major complication after kidney transplantation. Baseline CMV risk is typically determined by the serological presence of preformed CMV-specific immunoglobulin (Ig) G antibodies, even though T-cell responses to major viral antigens are crucial when controlling viral replication. Some IgG-seronegative patients who receive an IgG-seropositive allograft do not develop CMV infection despite not receiving prophylaxis. We hypothesized that a more precise evaluation of pretransplant CMV-specific immune-sensitization using the B and T-cell enzyme-linked immunospot assays may identify CMV-sensitized individuals more accurately, regardless of serological evidence of CMV-specific IgG titers. Methods. We compared the presence of preformed CMV-specific memory B and T cells in kidney transplant recipients between 43 CMV IgG–seronegative (sR−) and 86 CMV IgG–seropositive (sR+) patients. Clinical outcome was evaluated in both groups. Results. All sR+ patients showed a wide range of CMV-specific memory T- and B-cell responses. High memory T- and B-cell frequencies were also clearly detected in 30% of sR− patients, and those with high CMV-specific T-cell frequencies had a significantly lower incidence of late CMV infection after prophylactic therapy. Receiver operating characteristic curve analysis for predicting CMV viremia and disease showed a high area under the receiver operating characteristic curve (>0.8), which translated into a high sensitivity and negative predictive value of the test. Conclusions. Assessment of CMV-specific memory T- and B-cell responses before kidney transplantation among sR− recipients may help identify immunized individuals more precisely, being ultimately at lower risk for CMV infection. PMID:25048845
Wang, Xiaolei; Das, Arpita; Lackner, Andrew A.; Veazey, Ronald S.
2008-01-01
Peripheral blood and thymic double-positive (DP) CD4+CD8+ T cells from neonates have been described earlier, but the function and immunophenotypic characteristics of other tissue-derived DP T cells are not clearly understood. Here, we demonstrate the functional and immunophenotypic characteristics of DP cells in 6 different tissues, including thymus from normal neonatal rhesus macaques (Macaca mulatta) between 0 and 21 days of age. In general, intestinal DP T cells of neonates have higher percentages of memory markers (CD28+CD95+CD45RAlowCD62Llow) and proliferation compared with single-positive (SP) CD4+ and CD8+ T cells. In addition, percentages of DP T cells increase and CD62L expression decreases as animals mature, suggesting that DP cells mature and proliferate with maturity and/or antigen exposure. Consistent with this, intestinal DP T cells in neonates express higher levels of CCR5 and are the primary targets in simian immunodeficiency virus (SIV) infection. Finally, DP T cells produce higher levels of cytokine in response to mitogen stimulation compared with SP CD4+ or CD8+ T cells. Collectively, these findings demonstrate that intestinal DP T cells of neonates are proliferating, activated memory cells and are likely involved in regulating immune responses, in contrast to immature DP T cells in the thymus. PMID:18820133
Schmueck-Henneresse, Michael; Omer, Bilal; Shum, Thomas; Tashiro, Haruko; Mamonkin, Maksim; Lapteva, Natalia; Sharma, Sandhya; Rollins, Lisa; Dotti, Gianpietro; Reinke, Petra; Volk, Hans-Dieter; Rooney, Cliona M
2017-07-01
The outcome of therapy with chimeric Ag receptor (CAR)-modified T cells is strongly influenced by the subset origin of the infused T cells. However, because polyclonally activated T cells acquire a largely CD45RO + CCR7 - effector memory phenotype after expansion, regardless of subset origin, it is impossible to know which subsets contribute to the final T cell product. To determine the contribution of naive T cell, memory stem T cell, central memory T cell, effector memory T cell, and terminally differentiated effector T cell populations to the CD3 and CD28-activated CAR-modified T cells that we use for therapy, we followed the fate and function of individually sorted CAR-modified T cell subsets after activation with CD3 and CD28 Abs (CD3/28), transduction and culture alone, or after reconstitution into the relevant subset-depleted population. We show that all subsets are sensitive to CAR transduction, and each developed a distinct T cell functional profile during culture. Naive-derived T cells showed the greatest rate of proliferation but had more limited effector functions and reduced killing compared with memory-derived populations. When cultured in the presence of memory T cells, naive-derived T cells show increased differentiation, reduced effector cytokine production, and a reduced reproliferative response to CAR stimulation. CD3/28-activated T cells expanded in IL-7 and IL-15 produced greater expansion of memory stem T cells and central memory T cell-derived T cells compared with IL-2. Our strategy provides a powerful tool to elucidate the characteristics of CAR-modified T cells, regardless of the protocol used for expansion, reveals the functional properties of each expanded T cell subset, and paves the way for a more detailed evaluation of the effects of manufacturing changes on the subset contribution to in vitro-expanded T cells. Copyright © 2017 by The American Association of Immunologists, Inc.
Woda, Marcia; Mathew, Anuja
2015-01-01
Low frequencies of memory B cells in the peripheral blood make it challenging to measure the functional and phenotypic characteristics of this antigen experienced subset of B cells without in vitro culture. To date, reagents are lacking to measure ex vivo frequencies of dengue virus (DENV)-specific memory B cells. We wanted to explore the possibility of using fluorescently labeled DENV as probes to detect antigen-specific memory B cells in the peripheral blood of DENV immune individuals. Alexa Fluor dye-labeled DENV yielded viable virus that could be stored at -80°C for long periods of time. Using a careful gating strategy and methods to decrease non-specific binding, we were able to identify a small frequency of B cells from dengue immune individuals that bound labeled DENV. Sorted DENV(+) B cells from immune, but not naïve donors secreted antibodies that bound DENV after in vitro stimulation. Overall, Alexa Fluor dye-labeled DENVs are useful reagents to enable the detection and characterization of memory B cells in DENV immune individuals. Copyright © 2014 Elsevier B.V. All rights reserved.
Quantum memory in warm rubidium vapor with buffer gas.
Bashkansky, Mark; Fatemi, Fredrik K; Vurgaftman, Igor
2012-01-15
The realization of quantum memory using warm atomic vapor cells is appealing because of their commercial availability and the perceived reduction in experimental complexity. In spite of the ambiguous results reported in the literature, we demonstrate that quantum memory can be implemented in a single cell with buffer gas using the geometry where the write and read beams are nearly copropagating. The emitted Stokes and anti-Stokes photons display cross-correlation values greater than 2, characteristic of quantum states, for delay times up to 4 μs.
Díaz-Montero, C Marcela; Naga, Osama; Zidan, Abdel-Aziz A; Salem, Mohamed L; Pallin, Maria; Parmigiani, Anita; Walker, Gail; Wieder, Eric; Komanduri, Krishna; Cole, David J; Montero, Alberto J; Lichtenheld, Mathias G
2011-01-01
Adoptive T-cell therapy holds great promise for the treatment of metastatic melanoma. However, prohibitive costs associated with current technology required for culture and expansion of tumor-reactive T-cells, the need for intense preconditioning regimens to induce lymphopenia, and the unpredictable anti-tumor effect of adoptively transferred T-cells remain significant impediments for its clinical implementation. Here we report a simplified combinatorial approach that involves short activation of CD8+ T cells in the presence of IL-12 followed by adoptive transfer into tumor bearing animals after a single injection of cyclophosphamide. This approach resulted in complete eradication of B16 melanoma, and the establishment of long term immunological memory capable of fully protecting mice after a second B16 melanoma challenge. The activated donor cells were unique because they simultaneously exhibited traits for cytotoxic effector function, central memory-like, homing, and senescence. After tumor eradication and within three months after transfer, CD8+ cells exhibited a conventional memory CTL phenotype. Moreover, these memory CTLs acquired functional attributes characteristic of memory stem cells, including the ability to resist chemotherapy-induced toxicity. Our results suggest that short-term T-cell receptor signaling in the presence of IL-12 promotes promiscuous qualities in naïve CTL which - upon transfer into lymphopenic hosts- are sufficient to eradicate tumors and generate life-long tumor-specific memory. PMID:21915391
Adaptive mesh refinement for characteristic grids
NASA Astrophysics Data System (ADS)
Thornburg, Jonathan
2011-05-01
I consider techniques for Berger-Oliger adaptive mesh refinement (AMR) when numerically solving partial differential equations with wave-like solutions, using characteristic (double-null) grids. Such AMR algorithms are naturally recursive, and the best-known past Berger-Oliger characteristic AMR algorithm, that of Pretorius and Lehner (J Comp Phys 198:10, 2004), recurses on individual "diamond" characteristic grid cells. This leads to the use of fine-grained memory management, with individual grid cells kept in two-dimensional linked lists at each refinement level. This complicates the implementation and adds overhead in both space and time. Here I describe a Berger-Oliger characteristic AMR algorithm which instead recurses on null slices. This algorithm is very similar to the usual Cauchy Berger-Oliger algorithm, and uses relatively coarse-grained memory management, allowing entire null slices to be stored in contiguous arrays in memory. The algorithm is very efficient in both space and time. I describe discretizations yielding both second and fourth order global accuracy. My code implementing the algorithm described here is included in the electronic supplementary materials accompanying this paper, and is freely available to other researchers under the terms of the GNU general public license.
Molecular regulation of effector and memory T cell differentiation
Chang, John T; Wherry, E John; Goldrath, Ananda W
2015-01-01
Immunological memory is a cardinal feature of adaptive immunity and an important goal of vaccination strategies. Here we highlight advances in the understanding of the diverse T lymphocyte subsets that provide acute and long-term protection from infection. These include new insights into the transcription factors, and the upstream ‘pioneering’ factors that regulate their accessibility to key sites of gene regulation, as well as metabolic regulators that contribute to the differentiation of effector and memory subsets; ontogeny and defining characteristics of tissue-resident memory lymphocytes; and origins of the remarkable heterogeneity exhibited by activated T cells. Collectively, these findings underscore progress in delineating the underlying pathways that control diversification in T cell responses but also reveal gaps in the knowledge, as well as the challenges that arise in the application of this knowledge to rationally elicit desired T cell responses through vaccination and immunotherapy. PMID:25396352
Seifert, Marc; Przekopowitz, Martina; Taudien, Sarah; Lollies, Anna; Ronge, Viola; Drees, Britta; Lindemann, Monika; Hillen, Uwe; Engler, Harald; Singer, Bernhard B; Küppers, Ralf
2015-02-10
The generation and functions of human peripheral blood (PB) IgM(+)IgD(+)CD27(+) B lymphocytes with somatically mutated IgV genes are controversially discussed. We determined their differential gene expression to naive B cells and to IgM-only and IgG(+) memory B cells. This analysis revealed a high similarity of IgM(+)(IgD(+))CD27(+) and IgG(+) memory B cells but also pointed at distinct functional capacities of both subsets. In vitro analyses revealed a tendency of activated IgM(+)IgD(+)CD27(+) B cells to migrate to B-cell follicles and undergo germinal center (GC) B-cell differentiation, whereas activated IgG(+) memory B cells preferentially showed a plasma cell (PC) fate. This observation was supported by reverse regulation of B-cell lymphoma 6 and PR domain containing 1 and differential BTB and CNC homology 1, basic leucine zipper transcription factor 2 expression. Moreover, IgM(+)IgD(+)CD27(+) B lymphocytes preferentially responded to neutrophil-derived cytokines. Costimulation with catecholamines, carcinoembryonic antigen cell adhesion molecule 8 (CEACAM8), and IFN-γ caused differentiation of IgM(+)IgD(+)CD27(+) B cells into PCs, induced class switching to IgG2, and was reproducible in cocultures with neutrophils. In conclusion, this study substantiates memory B-cell characteristics of human IgM(+)IgD(+)CD27(+) B cells in that they share typical memory B-cell transcription patterns with IgG(+) post-GC B cells and show a faster and more vigorous restimulation potential, a hallmark of immune memory. Moreover, this work reveals a functional plasticity of human IgM memory B cells by showing their propensity to undergo secondary GC reactions upon reactivation, but also by their special role in early inflammation via interaction with immunomodulatory neutrophils.
Scherer, Erin M; Smith, Robin A; Simonich, Cassandra A; Niyonzima, Nixon; Carter, Joseph J; Galloway, Denise A
2014-10-01
Licensed human papillomavirus (HPV) vaccines provide near complete protection against the types of HPV that most commonly cause anogenital and oropharyngeal cancers (HPV 16 and 18) when administered to individuals naive to these types. These vaccines, like most other prophylactic vaccines, appear to protect by generating antibodies. However, almost nothing is known about the immunological memory that forms following HPV vaccination, which is required for long-term immunity. Here, we have identified and isolated HPV 16-specific memory B cells from female adolescents and young women who received the quadrivalent HPV vaccine in the absence of pre-existing immunity, using fluorescently conjugated HPV 16 pseudoviruses to label antigen receptors on the surface of memory B cells. Antibodies cloned and expressed from these singly sorted HPV 16-pseudovirus labeled memory B cells were predominantly IgG (>IgA>IgM), utilized diverse variable genes, and potently neutralized HPV 16 pseudoviruses in vitro despite possessing only average levels of somatic mutation. These findings suggest that the quadrivalent HPV vaccine provides an excellent model for studying the development of B cell memory; and, in the context of what is known about memory B cells elicited by influenza vaccination/infection, HIV-1 infection, or tetanus toxoid vaccination, indicates that extensive somatic hypermutation is not required to achieve potent vaccine-specific neutralizing antibody responses.
Roberts, Mustimbo E P; Kaminski, Denise; Jenks, Scott A; Maguire, Craig; Ching, Kathryn; Burbelo, Peter D; Iadarola, Michael J; Rosenberg, Alexander; Coca, Andreea; Anolik, Jennifer; Sanz, Iñaki
2014-09-01
The significance of distinct B cell abnormalities in primary Sjögren's syndrome (SS) remains to be established. We undertook this study to analyze the phenotype and messenger RNA (mRNA) transcript profiles of B cell subsets in patients with primary SS and to compare them with those in sicca syndrome patients and healthy controls. CD19+ B cells from 26 patients with primary SS, 27 sicca syndrome patients, and 22 healthy controls were analyzed by flow cytometry. Gene expression profiles of purified B cell subsets (from 3-5 subjects per group per test) were analyzed using Affymetrix gene arrays. Patients with primary SS had lower frequencies of CD27+IgD- switched memory B cells and CD27+IgD+ unswitched memory B cells compared with healthy controls. Unswitched memory B cell frequencies were also lower in sicca syndrome patients and correlated inversely with serologic hyperactivity in both disease states. Further, unswitched memory B cells in primary SS had lower expression of CD1c and CD21. Gene expression analysis of CD27+ memory B cells separated patients with primary SS from healthy controls and identified a subgroup of sicca syndrome patients with a primary SS-like transcript profile. Moreover, unswitched memory B cell gene expression analysis identified 187 genes differentially expressed between patients with primary SS and healthy controls. A decrease in unswitched memory B cells with serologic hyperactivity is characteristic of both established primary SS and a subgroup of sicca syndrome, which suggests the value of these B cells both as biomarkers of future disease progression and for understanding disease pathogenesis. Overall, the mRNA transcript analysis of unswitched memory B cells suggests that their activation in primary SS takes place through innate immune pathways in the context of attenuated antigen-mediated adaptive signaling. Thus, our findings provide important insight into the mechanisms and potential consequences of decreased unswitched memory B cells in primary SS. Copyright © 2014 by the American College of Rheumatology.
2008-03-01
solution-gelation (sol- gel) technique, to form hybrids of these materials with high-Tg open-cell foams so as to enhance shape memory characteristics , and...did not demonstrate the shape memory properties of the original Morthane thermoplastic due to the suppression of crystallinity following sol-gel...method. The utilization of photolatent bases to allow for improved reaction control and the combination of this system with Basotect™ open-cell foam in
Blom, Kim; Braun, Monika; Ivarsson, Martin A; Gonzalez, Veronica D; Falconer, Karolin; Moll, Markus; Ljunggren, Hans-Gustaf; Michaëlsson, Jakob; Sandberg, Johan K
2013-03-01
The live attenuated yellow fever virus (YFV) 17D vaccine provides a good model to study immune responses to an acute viral infection in humans. We studied the temporal dynamics, composition, and character of the primary human T cell response to YFV. The acute YFV-specific effector CD8 T cell response was broad and complex; it was composed of dominant responses that persisted into the memory population, as well as of transient subdominant responses that were not detected at the memory stage. Furthermore, HLA-A2- and HLA-B7-restricted YFV epitope-specific effector cells predominantly displayed a CD45RA(-)CCR7(-)PD-1(+)CD27(high) phenotype, which transitioned into a CD45RA(+)CCR7(-)PD-1(-)CD27(low) memory population phenotype. The functional profile of the YFV-specific CD8 T cell response changed in composition as it matured from an effector- to a memory-type response, and it tended to become less polyfunctional during the course of this transition. Interestingly, activation of CD4 T cells, as well as FOXP3(+) T regulatory cells, in response to YFV vaccination preceded the kinetics of the CD8 T cell response. The present results contribute to our understanding of how immunodominance patterns develop, as well as the phenotypic and functional characteristics of the primary human T cell response to a viral infection as it evolves and matures into memory.
A room-temperature non-volatile CNT-based molecular memory cell
NASA Astrophysics Data System (ADS)
Ye, Senbin; Jing, Qingshen; Han, Ray P. S.
2013-04-01
Recent experiments with a carbon nanotube (CNT) system confirmed that the innertube can oscillate back-and-forth even under a room-temperature excitation. This demonstration of relative motion suggests that it is now feasible to build a CNT-based molecular memory cell (MC), and the key to bring the concept to reality is the precision control of the moving tube for sustained and reliable read/write (RW) operations. Here, we show that by using a 2-section outertube design, we are able to suitably recalibrate the system energetics and obtain the designed performance characteristics of a MC. Further, the resulting energy modification enables the MC to operate as a non-volatile memory element at room temperatures. Our paper explores a fundamental understanding of a MC and its response at the molecular level to roadmap a novel approach in memory technologies that can be harnessed to overcome the miniaturization limit and memory volatility in memory technologies.
NASA Astrophysics Data System (ADS)
Yu, Jie; Chen, Kun-ji; Ma, Zhong-yuan; Zhang, Xin-xin; Jiang, Xiao-fan; Wu, Yang-qing; Huang, Xin-fan; Oda, Shunri
2016-09-01
Based on the charge storage mode, it is important to investigate the scaling dependence of memory performance in silicon nanocrystal (Si-NC) nonvolatile memory (NVM) devices for its scaling down limit. In this work, we made eight kinds of test key cells with different gate widths and lengths by 0.13-μm node complementary metal oxide semiconductor (CMOS) technology. It is found that the memory windows of eight kinds of test key cells are almost the same of about 1.64 V @ ± 7 V/1 ms, which are independent of the gate area, but mainly determined by the average size (12 nm) and areal density (1.8 × 1011/cm2) of Si-NCs. The program/erase (P/E) speed characteristics are almost independent of gate widths and lengths. However, the erase speed is faster than the program speed of test key cells, which is due to the different charging behaviors between electrons and holes during the operation processes. Furthermore, the data retention characteristic is also independent of the gate area. Our findings are useful for further scaling down of Si-NC NVM devices to improve the performance and on-chip integration. Project supported by the State Key Development Program for Basic Research of China (Grant No. 2010CB934402) and the National Natural Science Foundation of China (Grant Nos. 11374153, 61571221, and 61071008).
NASA Astrophysics Data System (ADS)
Ryu, Seong-Wan; Han, Jin-Woo; Kim, Chung-Jin; Kim, Sungho; Choi, Yang-Kyu
2009-03-01
This paper describes a unified memory (URAM) that utilizes a nanocrystal SOI MOSFET for multi-functional applications of both nonvolatile memory (NVM) and capacitorless 1T-DRAM. By using a discrete storage node (Ag nanocrystal) as the floating gate of the NVM, high defect immunity and 2-bit/cell operation were achieved. The embedded nanocrystal NVM also showed 1T-DRAM operation (program/erase time = 100 ns) characteristics, which were realized by storing holes in the floating body of the SOI MOSFET, without requiring an external capacitor. Three-bit/cell operation was accomplished for different applications - 2-bits for nonvolatility and 1-bit for fast operation.
Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S
2018-05-01
Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.
Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films
NASA Astrophysics Data System (ADS)
Valentini, L.; Cardinali, M.; Fortunati, E.; Kenny, J. M.
2014-10-01
With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electric field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.
Longevity of T-cell memory following acute viral infection.
Walker, Joshua M; Slifka, Mark K
2010-01-01
Investigation of T-cell-mediated immunity following acute viral infection represents an area of research with broad implications for both fundamental immunology research as well as vaccine development. Here, we review techniques that are used to assess T-cell memory including limiting dilution analysis, enzyme-linked immunospot (ELISPOT) assays, intracellular cytokine staining (ICCS) and peptide-MHC Class I tetramer staining. The durability of T-cell memory is explored in the context of several acute viral infections including vaccinia virus (VV), measles virus (MV) and yellow fever virus (YFV). Following acute infection, different virus-specific T-cell subpopulations exhibit distinct cytokine profiles and these profiles change over the course of infection. Differential regulation of the cytotoxic proteins, granzyme A, granzyme B and perforin are also observed in virus-specific T cells following infection. As a result of this work, we have gained a broader understanding of the kinetics and magnitude of antiviral T-cell immunity as well as new insight into the patterns of immunodominance and differential regulation of cytokines and cytotoxicity-associated molecules. This information may eventually lead to the generation of more effective vaccines that elicit T-cell memory with the optimal combination of functional characteristics required for providing protective immunity against infectious disease.
Fang, Chenglong; Luo, Tingting; Lin, Ling
2017-12-01
We investigated whether serum CXC ligand 13 protein (CXCL13) levels correlate with the circulating plasmablasts and memory B-cells alteration in systemic lupus erythematosus (SLE) patients. The diagnostic use of CXCL13 concentrations in active lupus was also analyzed.A total of 36 SLE patients and 18 healthy controls were included. Serum CXCL13 levels were examined by enzyme-linked immunosorbent assay. The frequency and absolute count of circulating plasmablasts and memory B cells were analyzed by flow cytometry. Receiver operating characteristic curves (ROC curves) were generated to analyze the utility of serum CXCL13 level and plasmablasts frequency as tools for the recognition of active SLE.Elevation of serum CXCL13 levels, higher plasmablasts frequency, and reduction of memory B-cells count were observed in SLE patients, compared with healthy controls. Interestingly, correlational analyses showed not only significantly positive association between CXCL13 levels and SLE Disease Activity Index (SLEDAI) or plasmablasts frequency, but an inverse correlation between CXCL13 concentration and memory B-cell count. ROC curves showed that serum CXCL13 level and plasmablasts frequency were practical in identifying active disease from overall SLE patients, with considerable accuracy.Serum CXCL13 levels correlate with the alteration of plasmablasts and memory B cells in SLE. CXCL13 may be used as a practical tool in judgment of active SLE.
Takahara, Masahiro; Nemoto, Yasuhiro; Oshima, Shigeru; Matsuzawa, Yu; Kanai, Takanori; Okamoto, Ryuichi; Tsuchiya, Kiichiro; Nakamura, Tetsuya; Yamamoto, Kazuhide; Watanabe, Mamoru
2013-01-01
Colitogenic memory CD4(+) T cells are important in the pathogenesis of inflammatory bowel disease (IBD). Although memory stem cells with high survival and self-renewal capacity were recently identified in both mice and humans, it is unclear whether a similar subset is present in chronic colitis mice. We sought to identify and purify a long-lived subset of colitogenic memory CD4(+) T cells, which may be targets for treatment of IBD. A long-lived subset of colitogenic memory CD4(+) T cells was purified using a long-term culture system. The characteristics of these cells were assessed. Interleukin (IL)-7 promoted the in vitro survival for >8 weeks of lamina propria (LP) CD4(+) T cells from colitic SCID mice previously injected with CD4(+)CD45RB(high) T cells. These cells were in a quiescent state and divided a maximum of 5 times in 4 weeks. LP CD4(+) T cells expressed higher levels of Bcl-2, integrin-α4β7, CXCR3 and CD25 after than before culture, as well as secreting high concentrations of IL-2 and low concentrations of IFN-γ and IL-17 in response to intestinal bacterial antigens. LP CD4(+) T cells from colitic mice cultured with IL-7 for 8 weeks induced more severe colitis than LP CD4(+) T cells cultured for 4 weeks. We developed a novel culture system to purify a long-lived, highly pathogenic memory subset from activated LP CD4(+) T cells. IL-7 promoted long-term in vitro survival of this subset in a quiescent state. This subset will be a novel, effective target for the treatment of IBD. Copyright © 2013 Elsevier B.V. All rights reserved.
Nonvolatile memory behavior of nanocrystalline cellulose/graphene oxide composite films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valentini, L., E-mail: luca.valentini@unipg.it; Cardinali, M.; Fortunati, E.
2014-10-13
With the continuous advance of modern electronics, the demand for nonvolatile memory cells rapidly grows. In order to develop post-silicon electronic devices, it is necessary to find innovative solutions to the eco-sustainability problem of materials for nonvolatile memory cells. In this work, we realized a resistive memory device based on graphene oxide (GO) and GO/cellulose nanocrystals (CNC) thin films. Aqueous solutions of GO and GO with CNC have been prepared and drop cast between two metal electrodes. Such thin-film based devices showed a transition between low and high conductivity states upon the forward and backward sweeping of an external electricmore » field. This reversible current density transition behavior demonstrates a typical memory characteristic. The obtained results open an easy route for electronic information storage based on the integration of nanocrystalline cellulose onto graphene based devices.« less
Clute, Shalyn C.; Watkin, Levi B.; Cornberg, Markus; Naumov, Yuri N.; Sullivan, John L.; Luzuriaga, Katherine; Welsh, Raymond M.; Selin, Liisa K.
2005-01-01
The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M158–66–specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1280–288, which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM. PMID:16308574
Clute, Shalyn C; Watkin, Levi B; Cornberg, Markus; Naumov, Yuri N; Sullivan, John L; Luzuriaga, Katherine; Welsh, Raymond M; Selin, Liisa K
2005-12-01
The marked proliferation of activated CD8+ T cells is pathognomonic of EBV-associated infectious mononucleosis (IM), common in young adults. Since the diversity and size of the memory CD8+ T cell population increase with age, we questioned whether IM was mediated by the reactivation of memory CD8+ T cells specific to previously encountered pathogens but cross-reactive with EBV. Of 8 HLA-A2+ IM patients, 5 had activated T cells specific to another common virus, as evidenced by a significantly higher number of peripheral blood influenza A virus M1(58-66)-specific T cells compared with healthy immune donors. Two patients with an augmented M1 response had tetramer-defined cross-reactive cells recognizing influenza M1 and EBV-BMLF1(280-288), which accounted for up to one-third of their BMLF1-specific population and likely contributed to a skewed M1-specific T cell receptor repertoire. These epitopes, with only 33% sequence similarity, mediated differential effects on the function of the cross-reactive T cells, which may contribute to alterations in disease outcome. EBV could potentially encode an extensive pool of T cell epitopes that activate other cross-reactive memory T cells. Our results support the concept that cross-reactive memory CD8+ T cells activated by EBV contribute to the characteristic lymphoproliferation of IM.
Shape memory alloys: Properties and biomedical applications
NASA Astrophysics Data System (ADS)
Mantovani, Diego
2000-10-01
Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.
Liver-resident NK cells and their potential functions.
Peng, Hui; Sun, Rui
2017-09-18
Natural killer (NK) cells represent a heterogeneous population of innate lymphocytes with phenotypically and functionally distinct subsets. In particular, recent studies have identified a unique subset of NK cells residing within the liver that are maintained as tissue-resident cells, confer antigen-specific memory responses and exhibit different phenotypical and developmental characteristics compared with conventional NK (cNK) cells. These findings have encouraged researchers to uncover tissue-resident NK cells at other sites, and detailed analyses have revealed that these tissue-resident NK cells share many similarities with liver-resident NK cells and tissue-resident memory T cells. Here, we present a brief historical perspective on the discovery of liver-resident NK cells and discuss their relationship to cNK cells and other emerging NK cell subsets and their potential functions.Cellular &Molecular Immunology advance online publication, 18 September 2017; doi:10.1038/cmi.2017.72.
Piezotronic nanowire-based resistive switches as programmable electromechanical memories.
Wu, Wenzhuo; Wang, Zhong Lin
2011-07-13
We present the first piezoelectrically modulated resistive switching device based on piezotronic ZnO nanowire (NW), through which the write/read access of the memory cell is programmed via electromechanical modulation. Adjusted by the strain-induced polarization charges created at the semiconductor/metal interface under externally applied deformation by the piezoelectric effect, the resistive switching characteristics of the cell can be modulated in a controlled manner, and the logic levels of the strain stored in the cell can be recorded and read out, which has the potential for integrating with NEMS technology to achieve micro/nanosystems capable for intelligent and self-sufficient multidimensional operations.
Chen, Zhihong; Pan, Jue; Jia, Yi; Li, Dandan; Min, Zhihui; Su, Xiaoqiong; Yuan, Honglei; Shen, Geng; Cao, Shengxuan; Zhu, Lei; Wang, Xiangdong
2017-02-01
Recent data have demonstrated that long-lived memory T cells are present in the human lung and can play significant roles in the pathogenesis of specific allergic and autoimmune diseases. However, most evidence has been obtained from mouse studies, and the potential roles of memory T cells in human allergic diseases, such as asthma, remain largely unknown. Thirty-three asthmatics, 26 chronic obstructive pulmonary disease (COPD) patients, and 22 healthy volunteers were enrolled in this study. Peripheral blood mononuclear cells (PBMCs) were isolated from the peripheral blood, and cell surface staining (CD4, CD45RO, CRTH2, CD62L, and CCR7) was performed for the detection of memory CD4 + T cells in blood. After stimulation with interleukin-27 (IL-27) or IL-4 for 15 min, the STAT1/STAT6 phosphorylation of memory CD4 + T cells was measured separately by flow cytometric techniques. The cytokine-releasing profiles after 6 days of culture under neutralization, T H 2, T H 2 + lipopolysaccharide (LPS), and T H 2 + house dust mite (HDM) conditions were detected by intracellular protein (IL-5, IL-17, and interferon (IFN)-γ) staining. Correlation analyses between the profile of memory CD4 + T cells and clinical characteristics of asthma were performed. The number of circulating memory CD4 + T (CD4 + Tm) cells in asthmatics was increased compared with that in the healthy subjects (48 ± 5.7 % vs. 32 ± 4.1 %, p < 0.05). Compared with COPD and healthy subjects, the phosphorylation of signal transducer and activator of transcription 1 (STAT1-py) was impaired in asthmatics, whereas the phosphorylation of signal transducer and activator of transcription 6 (STAT6-py) was slightly enhanced. This imbalance of STAT1-py/STAT6-py was attributed to T H 2 memory cells but not non-T H 2 memory cells in blood. The cytokine-releasing profiles of asthmatics was unique, specifically IL-5 high , IL-17 high , and IFN-r low , compared with those of COPD patients and healthy subjects. The IL-17 production levels in CD4 + Tm cells are associated with disease severity and positively correlated with medication consumption in asthma. The long-lived, antigen-specific memory CD4 + T cells, rather than PBMCs or peripheral lymphocytes, might be the ideal T cell subset candidates for analyzing the endotype of asthma. Memory CD4 + T cells exhibiting a shift in STAT phosphorylation and specific cytokine-releasing profiles have the potential to facilitate the understanding of disease heterogeneity and severity, allowing the more personalized treatment of patients.
Role of nanorods insertion layer in ZnO-based electrochemical metallization memory cell
NASA Astrophysics Data System (ADS)
Mangasa Simanjuntak, Firman; Singh, Pragya; Chandrasekaran, Sridhar; Juanda Lumbantoruan, Franky; Yang, Chih-Chieh; Huang, Chu-Jie; Lin, Chun-Chieh; Tseng, Tseung-Yuen
2017-12-01
An engineering nanorod array in a ZnO-based electrochemical metallization device for nonvolatile memory applications was investigated. A hydrothermally synthesized nanorod layer was inserted into a Cu/ZnO/ITO device structure. Another device was fabricated without nanorods for comparison, and this device demonstrated a diode-like behavior with no switching behavior at a low current compliance (CC). The switching became clear only when the CC was increased to 75 mA. The insertion of a nanorods layer induced switching characteristics at a low operation current and improve the endurance and retention performances. The morphology of the nanorods may control the switching characteristics. A forming-free electrochemical metallization memory device having long switching cycles (>104 cycles) with a sufficient memory window (103 times) for data storage application, good switching stability and sufficient retention was successfully fabricated by adjusting the morphology and defect concentration of the inserted nanorod layer. The nanorod layer not only contributed to inducing resistive switching characteristics but also acted as both a switching layer and a cation diffusion control layer.
Zhao, Min; Chen, Junbo; Tan, Shuguang; Dong, Tao; Jiang, Hui; Zheng, Jiandong; Quan, Chuansong; Liao, Qiaohong; Zhang, Hangjie; Wang, Xiling; Wang, Qianli; Bi, Yuhai; Liu, Fengfeng; Feng, Luzhao; Horby, Peter W; Klenerman, Paul; Gao, George F; Liu, William J; Yu, Hongjie
2018-06-20
Since 2013, influenza A/H7N9 has emerged as the commonest avian influenza subtype causing human infection, and is associated with a high fatality risk. However, the characteristics of immune memory in patients who have recovered from H7N9 infection are not well understood. We assembled a cohort of forty-five H7N9 survivors followed for up to 15 months after infection. Humoral and cellular immune responses were analyzed in sequential samples obtained at 1.5-4 months, 6-8 months and 12-15 months post-infection. H7N9-specific antibody concentrations declined over time, and protective antibodies persisted longer in severely ill patients admitted to ICU and patients presenting with ARDS than that in patients with mild disease. Frequencies of virus-specific IFN-γ secreting T cells were lower in critically ill patients requiring ventilation than those in patients without ventilation within four months after infection. The percentages of H7N9-specific IFN-γ secreting T cells tended to increase over time in patients ≥60 years or critically ill patients requiring ventilation. Elevated levels of antigen-specific CD8 + T cells expressing lung-homing marker CD49a were observed at 6-8 months after H7N9 infection compared to samples obtained at 1.5-4 months. Our findings indicate the prolonged reconstruction and evolution of virus-specific T cell immunity in older or critically ill patients, and provide implications for T-cell directed immunization strategies. IMPORTANCE Avian influenza A H7N9 remains a major threat to public health. However, no previous studies have determined the characteristics and dynamics of virus specific T cell immune memory in patients who have recovered from H7N9 infection. Our findings showed that establishment of H7N9-specific T cell memory after H7N9 infection was prolonged in older and severely affected patients. Severely ill patients mounted lower T cell responses in the first 4 months after infection, while T cell responses tended to increase over time in older and severely ill patients. Higher levels of antigen-specific CD8 + T cells expressing the lung-homing marker CD49a were detected at 6-8 months after infection. Our results indicated a long term impact of H7N9 infection on virus-specific memory T cells. These findings advance our understanding of the dynamics of virus-specific memory T cell immunity after H7N9 infection, relevant to the development of T cell based universal influenza vaccines. Copyright © 2018 American Society for Microbiology.
An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
Sharifi, Shahriar; van Kooten, Theo G; Kranenburg, Hendrik-Jan C; Meij, Björn P; Behl, Marc; Lendlein, Andreas; Grijpma, Dirk W
2013-11-01
Injuries to the intervertebral disc caused by degeneration or trauma often lead to tearing of the annulus fibrosus (AF) and extrusion of the nucleus pulposus (NP). This can compress nerves and cause lower back pain. In this study, the characteristics of poly(D,L-lactide-co-trimethylene carbonate) networks with shape-memory properties have been evaluated in order to prepare biodegradable AF closure devices that can be implanted minimally invasively. Four different macromers with (D,L-lactide) to trimethylene carbonate (DLLA:TMC) molar ratios of 80:20, 70:30, 60:40 and 40:60 with terminal methacrylate groups and molecular weights of approximately 30 kg mol(-1) were used to prepare the networks by photo-crosslinking. The mechanical properties of the samples and their shape-memory properties were determined at temperatures of 0 °C and 40 °C by tensile tests- and cyclic, thermo-mechanical measurements. At 40 °C all networks showed rubber-like behavior and were flexible with elastic modulus values of 1.7-2.5 MPa, which is in the range of the modulus values of human annulus fibrosus tissue. The shape-memory characteristics of the networks were excellent with values of the shape-fixity and the shape-recovery ratio higher than 98 and 95%, respectively. The switching temperatures were between 10 and 39 °C. In vitro culture and qualitative immunocytochemistry of human annulus fibrosus cells on shape-memory films with DLLA:TMC molar ratios of 60:40 showed very good ability of the networks to support the adhesion and growth of human AF cells. When the polymer network films were coated by adsorption of fibronectin, cell attachment, cell spreading, and extracellular matrix production was further improved. Annulus fibrosus closure devices were prepared from these AF cell-compatible materials by photo-polymerizing the reactive precursors in a mold. Insertion of the multifunctional implant in the disc of a cadaveric canine spine showed that these shape-memory devices could be implanted through a small slit and to some extent deploy self-sufficiently within the disc cavity. © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Yogesh; Pavunny, Shojan P.; Katiyar, Ram S., E-mail: rkatiyar@hpcf.upr.edu
2015-09-07
We studied the resistive memory switching in pulsed laser deposited amorphous LaHoO{sub 3} (a-LHO) thin films for non-volatile resistive random access memory applications. Nonpolar resistive switching (RS) was achieved in Pt/a-LHO/Pt memory cells with all four possible RS modes (i.e., positive unipolar, positive bipolar, negative unipolar, and negative bipolar) having high R{sub ON}/R{sub OFF} ratios (in the range of ∼10{sup 4}–10{sup 5}) and non-overlapping switching voltages (set voltage, V{sub ON} ∼ ±3.6–4.2 V and reset voltage, V{sub OFF} ∼ ±1.3–1.6 V) with a small variation of about ±5–8%. Temperature dependent current-voltage (I–V) characteristics indicated the metallic conduction in low resistance states (LRS). We believe that themore » formation (set) and rupture (reset) of mixed conducting filaments formed out of oxygen vacancies and metallic Ho atoms could be responsible for the change in the resistance states of the memory cell. Detailed analysis of I–V characteristics further corroborated the formation of conductive nanofilaments based on metal-like (Ohmic) conduction in LRS. Simmons-Schottky emission was found to be the dominant charge transport mechanism in the high resistance state.« less
Pahar, Bapi; Lackner, Andrew A; Veazey, Ronald S
2006-03-01
Peripheral blood and intestinal CD4+CD8+ double-positive (DP) T cells have been described in several species including humans, but their function and immunophenotypic characteristics are still not clearly understood. Here we demonstrate that DP T cells are abundant in the intestinal lamina propria of normal rhesus macaques (Macaca mulatta). Moreover, DP T cells have a memory phenotype and are capable of producing different and/or higher levels of cytokines and chemokines in response to mitogen stimulation compared to CD4+ single-positive T cells. Intestinal DP T cells are also highly activated and have higher expression of CCR5, which makes them preferred targets for simian immunodeficiency virus/HIV infection. Increased levels of CD69, CD25 and HLA-DR, and lower CD62L expression were found on intestinal DP T cells populations compared to CD4+ single-positive T cells. Collectively, these findings demonstrate that intestinal and peripheral blood DP T cells are effector cells and may be important in regulating immune responses, which distinguishes them from the immature DP cells found in the thymus. Finally, these intestinal DP T cells may be important target cells for HIV infection and replication due to their activation, memory phenotype and high expression of CCR5.
Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility
NASA Astrophysics Data System (ADS)
Olejník, K.; Schuler, V.; Marti, X.; Novák, V.; Kašpar, Z.; Wadley, P.; Campion, R. P.; Edmonds, K. W.; Gallagher, B. L.; Garces, J.; Baumgartner, M.; Gambardella, P.; Jungwirth, T.
2017-05-01
Antiferromagnets offer a unique combination of properties including the radiation and magnetic field hardness, the absence of stray magnetic fields, and the spin-dynamics frequency scale in terahertz. Recent experiments have demonstrated that relativistic spin-orbit torques can provide the means for an efficient electric control of antiferromagnetic moments. Here we show that elementary-shape memory cells fabricated from a single-layer antiferromagnet CuMnAs deposited on a III-V or Si substrate have deterministic multi-level switching characteristics. They allow for counting and recording thousands of input pulses and responding to pulses of lengths downscaled to hundreds of picoseconds. To demonstrate the compatibility with common microelectronic circuitry, we implemented the antiferromagnetic bit cell in a standard printed circuit board managed and powered at ambient conditions by a computer via a USB interface. Our results open a path towards specialized embedded memory-logic applications and ultra-fast components based on antiferromagnets.
Patients with cystic fibrosis have inducible IL-17+IL-22+ memory cells in lung draining lymph nodes.
Chan, Yvonne R; Chen, Kong; Duncan, Steven R; Lathrop, Kira L; Latoche, Joseph D; Logar, Alison J; Pociask, Derek A; Wahlberg, Brendon J; Ray, Prabir; Ray, Anuradha; Pilewski, Joseph M; Kolls, Jay K
2013-04-01
IL-17 is an important cytokine signature of the TH differentiation pathway TH17. This T-cell subset is crucial in mediating autoimmune disease or antimicrobial immunity in animal models, but its presence and role in human disease remain to be completely characterized. We set out to determine the frequency of TH17 cells in patients with cystic fibrosis (CF), a disease in which there is recurrent infection with known pathogens. Explanted lungs from patients undergoing transplantation or organ donors (CF samples=18; non-CF, nonbronchiectatic samples=10) were collected. Hilar nodes and parenchymal lung tissue were processed and examined for TH17 signature by using immunofluorescence and quantitative real-time PCR. T cells were isolated and stimulated with antigens from Pseudomonas aeruginosa and Aspergillus species. Cytokine profiles and staining with flow cytometry were used to assess the reactivity of these cells to antigen stimulation. We found a strong IL-17 phenotype in patients with CF compared with that seen in control subjects without CF. Within this tissue, we found pathogenic antigen-responsive CD4+IL-17+ cells. There were double-positive IL-17+IL-22+ cells [TH17(22)], and the IL-22+ population had a higher proportion of memory characteristics. Antigen-specific TH17 responses were stronger in the draining lymph nodes compared with those seen in matched parenchymal lungs. Inducible proliferation of TH17(22) with memory cell characteristics is seen in the lungs of patients with CF. The function of these individual subpopulations will require further study regarding their development. T cells are likely not the exclusive producers of IL-17 and IL-22, and this will require further characterization. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Electrochemical metallization memories--fundamentals, applications, prospects.
Valov, Ilia; Waser, Rainer; Jameson, John R; Kozicki, Michael N
2011-06-24
This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, R(ON) to R(OFF) ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed.
[Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory].
Gaĭnutdinov, Kh L; Andrianov, V V; Gaĭnutdinova, T Kh
2011-01-01
In the presented review given literature and results of own studies of dynamics of electrical characteristics of neurons, which change are included in processes both an elaboration of learning, and retention of the long-term memory. Literary datas and our results allow to conclusion, that long-term retention of behavioural reactions during learning is accompanied not only by changing efficiency of synaptic transmission, as well as increasing of excitability of command neurons of the defensive reflex. This means, that in the process of learning are involved long-term changes of the characteristics a membrane of certain elements of neuronal network, dependent from the metabolism of the cells. see text). Thou phenomena possible mark as cellular (electrophysiological) correlates of long-term plastic modifications of the behaviour. The analyses of having results demonstrates an important role of membrane characteristics of neurons (their excitability) and parameters an synaptic transmission not only in initial stage of learning, as well as in long-term modifications of the behaviour (long-term memory).
Assing, K; Nielsen, C H; Poulsen, L K
2006-03-01
Asymptomatic skin sensitization (AS) has been shown to be a risk factor for respiratory allergic disease. We investigated allergen and recall antigen-driven T cell proliferation, cytokine production and T cell expression of the chemokine receptor CCR4, in cultures derived from symptomatic atopics (SA), subjects with AS and healthy controls (HC). Numbers of allergen-specific precursor T cells in all three groups were also estimated. Peripheral blood mononuclear cells from the three groups were isolated and stimulated with allergen and tetanus toxoid. Proliferation, cytokine production and CCR4 expression were measured by flow cytometry. A significantly increased proportion of CD4(+) memory T cells proliferated in response to allergen in SA as compared with subjects with AS (P<0.001) and HC (P<0.001). Only in SA was expansion of CD4(+)CCR4(+) T cells, after allergen stimulation observed. SA had higher frequencies of allergen-specific T cells than subjects with AS and HC (P=0.02, for both). With regard to allergen-induced production of T-helper type 1 (Th1) and Th2 cytokines, subjects with AS and HC resembled each other, while differing significantly from SA. We conclude, that subjects with AS, although clearly IgE sensitized, have significant diminished numbers of allergen-specific T cells as well as decreased allergen-induced CD4(+) memory T cell proliferation as compared with SA. To a large extent, our findings are capable of explaining the immunological characteristics associated with AS. Our findings may serve as better prognostic markers for subsequent allergic progression, than previously described clinical and paraclinical characteristics.
NASA Astrophysics Data System (ADS)
Chen, Ying-Chen; Lin, Chih-Yang; Huang, Hui-Chun; Kim, Sungjun; Fowler, Burt; Chang, Yao-Feng; Wu, Xiaohan; Xu, Gaobo; Chang, Ting-Chang; Lee, Jack C.
2018-02-01
Sneak path current is a severe hindrance for the application of high-density resistive random-access memory (RRAM) array designs. In this work, we demonstrate nonlinear (NL) resistive switching characteristics of a HfO x /SiO x -based stacking structure as a realization for selector-less RRAM devices. The NL characteristic was obtained and designed by optimizing the internal filament location with a low effective dielectric constant in the HfO x /SiO x structure. The stacking HfO x /SiO x -based RRAM device as the one-resistor-only memory cell is applicable without needing an additional selector device to solve the sneak path issue with a switching voltage of ~1 V, which is desirable for low-power operating in built-in nonlinearity crossbar array configurations.
CHARACTERISTICS OF IMMUNOLOGICAL MEMORY IN MICE
Black, S. J.; Inchley, C. J.
1974-01-01
The kinetics of the generation of primed IgM and IgG antibody-forming cell precursors, and of helper T-cell populations, were analyzed in mice whose primary responses to high and low doses of SRBC were arrested at intervals by the immunosuppressive agents cyclophosphamide monohydrate and specific antibody. The extent to which immunological memory was established in these animals before blockade of the primary response was assessed by the hemolytic plaque assay following challenge 12 wk after priming. The presence of IgG B-memory cells and T-memory cells in suppressed mice was further investigated by the transfer into these animals of syngeneic SRBC-stimulated thymocytes or anti-θ-treated spleen cells. It was found that the progenitors of secondary IgM-synthesizing cells were primed almost immediately after injection of antigen, and that early blockade of the primary response resulted in a raised IgM response after challenge. On the other hand, priming for a secondary IgG response took at least 4 days, and was dose-dependent, although helper T populations for a secondary IgG response appeared 3 days after antigen injection. It appeared that both IgM and IgG memory cells may be considered as Y cells in terms of the X-Y-Z scheme of lymphocyte activation, but that the two populations are generated at different times after exposure to antigen. The size of either Y-cell population at any given time is dependent upon the amount of antigen available to provoke differentiation to antibody-forming Z cells, and the IgM Y-cell population in particular is likely to be depleted during the course of a normal 1° response. When IgM Y cells were maintained for long periods as a result of immunosuppression, their secondary antibody response was independent of the primed T cells necessary for a secondary IgG response. PMID:4602981
Gnostic cells in the 21st century.
Quiroga, Rodrigo Quian
2013-01-01
In this short review, I revise the notion of gnostic cells posited by Konorski, together with similar arguments by James, Lettvin and Barlow--namely, the idea of pontifical, grandmother and cardinal cells, respectively. I then discuss whether the characteristics of the recently discovered concept cells, i.e. neurons in the human medial temporal lobe with a very high degree of specificity and invariance, fit the conjecture of gnostic or grandmother cells and then discuss the key role of concept cells in memory formation.
Felix Hoppe-Seyler Lecture 1997. Protective antibody responses against viruses.
Zinkernagel, R M
1997-08-01
Neutralizing antibody responses against the acute cytopathic vesicular stomatitis virus (VSV) have been studied in mice to evaluate their general characteristics including specificity, self-/non-self discrimination and memory. IgM responses are generated very early, by day 3 to 4, in a T helper cell-independent fashion and without VSV having polyclonal activating capacities. The order of the glycoprotein tips on the virus envelope (multiple, 8-10 nm distance, paracrystalline) exhibiting the neutralizing determinants are key to this prompt response. These paracrystalline identical multimeric antigens are characteristic of infectious agents and are always reacted against by B cells. Self-antigens that are accessible to B cells in the intact host are either monomeric in serum or mobile multimers on cell surfaces; these configurations need contact dependent or contact independent T help, respectively. Because T help is tolerant against self-antigens, no anti-self B cell responses are usually induced against monomeric self-antigens. If collagen or DNA (rigid multimeric self-antigens) become accessible, however, they may become targets of auto-antibody responses. The antibody repertoire against VSV is partially contained in the germline and partially is generated by somatic mutation; they seem not to undergo affinity-maturation. In any case protection against lethal infection is dependent upon strictly T helper cell dependent IgG generated by day 6 to 7 and reaches a protective level of about 1-10 micrograms/ml. Interesting affinity/avidity and onrate above a minimal threshold are of no apparent advantage for protection in vivo. Maintenance of these antibody levels by antigen depots, and not the presence of memory B cells alone, is key to providing protective immunological memory. Collectively these data suggest that studying biologically important protective antibody responses may modify some of the parameters that have been defined by studying hapten specific antibody responses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Juhee; Lee, Sungpyo; Lee, Moo Hyung
Quasi-unipolar non-volatile organic transistor memory (NOTM) can combine the best characteristics of conventional unipolar and ambipolar NOTMs and, as a result, exhibit improved device performance. Unipolar NOTMs typically exhibit a large signal ratio between the programmed and erased current signals but also require a large voltage to program and erase the memory cells. Meanwhile, an ambipolar NOTM can be programmed and erased at lower voltages, but the resulting signal ratio is small. By embedding a discontinuous n-type fullerene layer within a p-type pentacene film, quasi-unipolar NOTMs are fabricated, of which the signal storage utilizes both electrons and holes while themore » electrical signal relies on only hole conduction. These devices exhibit superior memory performance relative to both pristine unipolar pentacene devices and ambipolar fullerene/pentacene bilayer devices. The quasi-unipolar NOTM exhibited a larger signal ratio between the programmed and erased states while also reducing the voltage required to program and erase a memory cell. This simple approach should be readily applicable for various combinations of advanced organic semiconductors that have been recently developed and thereby should make a significant impact on organic memory research.« less
Jahn, Marie Louise; Steffensen, Maria Abildgaard; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup
2018-05-11
Defining correlates of T cell mediated protection is important in order to accelerate the development of efficient T cell based vaccines conferring long-term immunity. Extensive studies have provided important insight regarding the characteristics and functional properties of the effector and memory CD8 T cells induced by viral vector based vaccines. However, long-term protection has been difficult to achieve with T cell inducing vaccines, and the determinants underlying this loss in protection over time are still not fully defined. In this study we analyzed different parameters of the CD8 T cell response as a function of time after vaccination with a human serotype 5 adenovector expressing the glycoprotein (GP) of LCMV tethered to the MHC class II-associated invariant chain. Using this vector we have previously found that CD8 T cells mediate protection from challenge with GP-expressing Listeria monocytogenes at 60 days post vaccination, but only little protection after further 60 days, and we now confirm this observation. A comparison of vaccine-primed CD8 T cells early and late after vaccination revealed a minor decline in the overall numbers of antigen specific memory CD8 T cells during this interval. More importantly, we also observed phenotypic changes over time with a distinct decline in the frequency and number of KLRG1 + CD8 T cells, and, notably, adoptive transfer studies confirmed that memory CD8 T cells expressing KLRG1 are central to protection from systemic L. monocytogenes infection. Together these findings imply that multiple factors including changes in memory T cell numbers and phenotypic composition over time influence the longevity of CD8 T-cell mediated protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
I-V Characteristics of a Static Random Access Memory Cell Utilizing Ferroelectric Transistors
NASA Technical Reports Server (NTRS)
Laws, Crystal; Mitchell, Cody; Hunt, Mitchell; Ho, Fat D.; MacLeod, Todd C.
2012-01-01
I-V characteristics for FeFET different than that of MOSFET Ferroelectric layer features hysteresis trend whereas MOSFET behaves same for both increasing and decreasing VGS FeFET I-V characteristics doesn't show dependence on VDS A Transistor with different channel length and width as well as various resistance and input voltages give different results As resistance values increased, the magnitude of the drain current decreased.
A review of emerging non-volatile memory (NVM) technologies and applications
NASA Astrophysics Data System (ADS)
Chen, An
2016-11-01
This paper will review emerging non-volatile memory (NVM) technologies, with the focus on phase change memory (PCM), spin-transfer-torque random-access-memory (STTRAM), resistive random-access-memory (RRAM), and ferroelectric field-effect-transistor (FeFET) memory. These promising NVM devices are evaluated in terms of their advantages, challenges, and applications. Their performance is compared based on reported parameters of major industrial test chips. Memory selector devices and cell structures are discussed. Changing market trends toward low power (e.g., mobile, IoT) and data-centric applications create opportunities for emerging NVMs. High-performance and low-cost emerging NVMs may simplify memory hierarchy, introduce non-volatility in logic gates and circuits, reduce system power, and enable novel architectures. Storage-class memory (SCM) based on high-density NVMs could fill the performance and density gap between memory and storage. Some unique characteristics of emerging NVMs can be utilized for novel applications beyond the memory space, e.g., neuromorphic computing, hardware security, etc. In the beyond-CMOS era, emerging NVMs have the potential to fulfill more important functions and enable more efficient, intelligent, and secure computing systems.
Fatty acid metabolism in CD8+ T cell memory: Challenging current concepts.
Raud, Brenda; McGuire, Peter J; Jones, Russell G; Sparwasser, Tim; Berod, Luciana
2018-05-01
CD8 + T cells are key members of the adaptive immune response against infections and cancer. As we discuss in this review, these cells can present diverse metabolic requirements, which have been intensely studied during the past few years. Our current understanding suggests that aerobic glycolysis is a hallmark of activated CD8 + T cells, while naive and memory (T mem ) cells often rely on oxidative phosphorylation, and thus mitochondrial metabolism is a crucial determinant of CD8 + T mem cell development. Moreover, it has been proposed that CD8 + T mem cells have a specific requirement for the oxidation of long-chain fatty acids (LC-FAO), a process modulated in lymphocytes by the enzyme CPT1A. However, this notion relies heavily on the metabolic analysis of in vitro cultures and on chemical inhibition of CPT1A. Therefore, we introduce more recent studies using genetic models to demonstrate that CPT1A-mediated LC-FAO is dispensable for the development of CD8 + T cell memory and protective immunity, and question the use of chemical inhibitors to target this enzyme. We discuss insights obtained from those and other studies analyzing the metabolic characteristics of CD8 + T mem cells, and emphasize how T cells exhibit flexibility in their choice of metabolic fuel. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan
2014-01-01
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4+ T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis. PMID:24997565
Seumois, Grégory; Chavez, Lukas; Gerasimova, Anna; Lienhard, Matthias; Omran, Nada; Kalinke, Lukas; Vedanayagam, Maria; Ganesan, Asha Purnima V; Chawla, Ashu; Djukanović, Ratko; Ansel, K Mark; Peters, Bjoern; Rao, Anjana; Vijayanand, Pandurangan
2014-08-01
A characteristic feature of asthma is the aberrant accumulation, differentiation or function of memory CD4(+) T cells that produce type 2 cytokines (TH2 cells). By mapping genome-wide histone modification profiles for subsets of T cells isolated from peripheral blood of healthy and asthmatic individuals, we identified enhancers with known and potential roles in the normal differentiation of human TH1 cells and TH2 cells. We discovered disease-specific enhancers in T cells that differ between healthy and asthmatic individuals. Enhancers that gained the histone H3 Lys4 dimethyl (H3K4me2) mark during TH2 cell development showed the highest enrichment for asthma-associated single nucleotide polymorphisms (SNPs), which supported a pathogenic role for TH2 cells in asthma. In silico analysis of cell-specific enhancers revealed transcription factors, microRNAs and genes potentially linked to human TH2 cell differentiation. Our results establish the feasibility and utility of enhancer profiling in well-defined populations of specialized cell types involved in disease pathogenesis.
Characteristics of Near-Death Experiences Memories as Compared to Real and Imagined Events Memories
Brédart, Serge; Dehon, Hedwige; Ledoux, Didier; Laureys, Steven; Vanhaudenhuyse, Audrey
2013-01-01
Since the dawn of time, Near-Death Experiences (NDEs) have intrigued and, nowadays, are still not fully explained. Since reports of NDEs are proposed to be imagined events, and since memories of imagined events have, on average, fewer phenomenological characteristics than real events memories, we here compared phenomenological characteristics of NDEs reports with memories of imagined and real events. We included three groups of coma survivors (8 patients with NDE as defined by the Greyson NDE scale, 6 patients without NDE but with memories of their coma, 7 patients without memories of their coma) and a group of 18 age-matched healthy volunteers. Five types of memories were assessed using Memory Characteristics Questionnaire (MCQ – Johnson et al., 1988): target memories (NDE for NDE memory group, coma memory for coma memory group, and first childhood memory for no memory and control groups), old and recent real event memories and old and recent imagined event memories. Since NDEs are known to have high emotional content, participants were requested to choose the most emotionally salient memories for both real and imagined recent and old event memories. Results showed that, in NDE memories group, NDE memories have more characteristics than memories of imagined and real events (p<0.02). NDE memories contain more self-referential and emotional information and have better clarity than memories of coma (all ps<0.02). The present study showed that NDE memories contained more characteristics than real event memories and coma memories. Thus, this suggests that they cannot be considered as imagined event memories. On the contrary, their physiological origins could lead them to be really perceived although not lived in the reality. Further work is needed to better understand this phenomenon. PMID:23544039
The evolving roles of memory immune cells in transplantation
Chen, Wenhao; Ghobrial, Rafik M.; Li, Xian C.
2015-01-01
Memory cells are the products of immune responses but also exert significant impact on subsequent immunity and immune tolerance, thus placing them in a unique position in transplant research. Memory cells are heterogeneous, including not only memory T cells but also memory B cells and innate memory cells. Memory cells are a critical component of protective immunity against invading pathogens, especially in immunosuppressed patients, but they also mediate graft loss and tolerance resistance. Recent studies suggest that some memory cells unexpectedly act as regulatory cells, promoting rather than hindering transplant survival. This functional diversity makes therapeutic targeting of memory cells a challenging task in transplantation. In this article we highlight recent advances in our understanding of memory cells, focusing on diversity of memory cells and mechanisms involved in their induction and functions. We also provide a broad overview on the challenges and opportunities in targeting memory cells in the induction of transplant tolerance. PMID:26102615
Recovery Characteristics of Anomalous Stress-Induced Leakage Current of 5.6 nm Oxide Films
NASA Astrophysics Data System (ADS)
Inatsuka, Takuya; Kumagai, Yuki; Kuroda, Rihito; Teramoto, Akinobu; Sugawa, Shigetoshi; Ohmi, Tadahiro
2012-04-01
Anomalous stress-induced leakage current (SILC), which has a much larger current density than average SILC, causes severe bit error in flash memories. To suppress anomalous SILC, detailed evaluations are strongly required. We evaluate the characteristics of anomalous SILC of 5.6 nm oxide films using a fabricated array test pattern, and recovery characteristics are observed. Some characteristics of typical anomalous cells in the time domain are measured, and the recovery characteristics of average and anomalous SILCs are examined. Some of the anomalous cells have random telegraph signals (RTSs) of gate leakage current, which are characterized as discrete and random switching phenomena. The dependence of RTSs on the applied electric field is investigated, and the recovery tendency of anomalous SILC with and without RTSs are also discussed.
Simulation study on heat conduction of a nanoscale phase-change random access memory cell.
Kim, Junho; Song, Ki-Bong
2006-11-01
We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.
Static Behavior of Chalcogenide Based Programmable Metallization Cells
NASA Astrophysics Data System (ADS)
Rajabi, Saba
Nonvolatile memory (NVM) technologies have been an integral part of electronic systems for the past 30 years. The ideal non-volatile memory have minimal physical size, energy usage, and cost while having maximal speed, capacity, retention time, and radiation hardness. A promising candidate for next-generation memory is ion-conducting bridging RAM which is referred to as programmable metallization cell (PMC), conductive bridge RAM (CBRAM), or electrochemical metallization memory (ECM), which is likely to surpass flash memory in all the ideal memory characteristics. A comprehensive physics-based model is needed to completely understand PMC operation and assist in design optimization. To advance the PMC modeling effort, this thesis presents a precise physical model parameterizing materials associated with both ion-rich and ion-poor layers of the PMC's solid electrolyte, so that captures the static electrical behavior of the PMC in both its low-resistance on-state (LRS) and high resistance off-state (HRS). The experimental data is measured from a chalcogenide glass PMC designed and manufactured at ASU. The static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film is characterized and modeled using three dimensional simulation code written in Silvaco Atlas finite element analysis software. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfunctions, density of states, carrier mobilities, dielectric constants, and affinities. The sensitivity of our modeled PMC to the variation of its prominent achieved material parameters is examined on the HRS and LRS impedance behavior. The obtained accurate set of material parameters for both Ag-rich and Ag-poor ChG systems and process variation verification on electrical characteristics enables greater fidelity in PMC device simulation, which significantly enhances our ability to understand the underlying physics of ChG-based resistive switching memory.
Kaji, Tomohiro; Hijikata, Atsushi; Ishige, Akiko; Kitami, Toshimori; Watanabe, Takashi; Ohara, Osamu; Yanaka, Noriyuki; Okada, Mariko; Shimoda, Michiko; Taniguchi, Masaru
2016-01-01
Memory CD4+ T cells promote protective humoral immunity; however, how memory T cells acquire this activity remains unclear. This study demonstrates that CD4+ T cells develop into antigen-specific memory T cells that can promote the terminal differentiation of memory B cells far more effectively than their naive T-cell counterparts. Memory T cell development requires the transcription factor B-cell lymphoma 6 (Bcl6), which is known to direct T-follicular helper (Tfh) cell differentiation. However, unlike Tfh cells, memory T cell development did not require germinal center B cells. Curiously, memory T cells that develop in the absence of cognate B cells cannot promote memory B-cell recall responses and this defect was accompanied by down-regulation of genes associated with homeostasis and activation and up-regulation of genes inhibitory for T-cell responses. Although memory T cells display phenotypic and genetic signatures distinct from Tfh cells, both had in common the expression of a group of genes associated with metabolic pathways. This gene expression profile was not shared to any great extent with naive T cells and was not influenced by the absence of cognate B cells during memory T cell development. These results suggest that memory T cell development is programmed by stepwise expression of gatekeeper genes through serial interactions with different types of antigen-presenting cells, first licensing the memory lineage pathway and subsequently facilitating the functional development of memory T cells. Finally, we identified Gdpd3 as a candidate genetic marker for memory T cells. PMID:26714588
Woda, Marcia; Friberg, Heather; Currier, Jeffrey R.; Srikiatkhachorn, Anon; Macareo, Louis R.; Green, Sharone; Jarman, Richard G.; Rothman, Alan L.; Mathew, Anuja
2016-01-01
Background. The development of reagents to identify and characterize antigen-specific B cells has been challenging. Methods. We recently developed Alexa Fluor–labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. Results. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV+ class-switched memory B cells (IgD−CD27+ CD19+ cells) reached up to 8% during acute infection and early convalescence. AF DENV–labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38−CD27+) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. Conclusions. AF DENVs reveal changes in the phenotype of DENV serotype–specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. PMID:27443614
Interconnected subsets of memory follicular helper T cells have different effector functions.
Asrir, Assia; Aloulou, Meryem; Gador, Mylène; Pérals, Corine; Fazilleau, Nicolas
2017-10-10
Follicular helper T cells regulate high-affinity antibody production. Memory follicular helper T cells can be local in draining lymphoid organs and circulate in the blood, but the underlying mechanisms of this subdivision are unresolved. Here we show that both memory follicular helper T subsets sustain B-cell responses after reactivation. Local cells promote more plasma cell differentiation, whereas circulating cells promote more secondary germinal centers. In parallel, local memory B cells are homogeneous and programmed to become plasma cells, whereas circulating memory B cells are able to rediversify. Local memory follicular helper T cells have higher affinity T-cell receptors, which correlates with expression of peptide MHC-II at the surface of local memory B cells only. Blocking T-cell receptor-peptide MHC-II interactions induces the release of local memory follicular helper T cells in the circulating compartment. Our studies show that memory follicular helper T localization is highly intertwined with memory B cells, a finding that has important implications for vaccine design.Tfh cells can differentiate into memory cells. Here the authors describe distinct functional and phenotypic profiles of these memory Tfh cells dependent on their anatomical localization to the lymphoid organs or to the circulation.
Read margin analysis of crossbar arrays using the cell-variability-aware simulation method
NASA Astrophysics Data System (ADS)
Sun, Wookyung; Choi, Sujin; Shin, Hyungsoon
2018-02-01
This paper proposes a new concept of read margin analysis of crossbar arrays using cell-variability-aware simulation. The size of the crossbar array should be considered to predict the read margin characteristic of the crossbar array because the read margin depends on the number of word lines and bit lines. However, an excessively high-CPU time is required to simulate large arrays using a commercial circuit simulator. A variability-aware MATLAB simulator that considers independent variability sources is developed to analyze the characteristics of the read margin according to the array size. The developed MATLAB simulator provides an effective method for reducing the simulation time while maintaining the accuracy of the read margin estimation in the crossbar array. The simulation is also highly efficient in analyzing the characteristic of the crossbar memory array considering the statistical variations in the cell characteristics.
Therapeutic limitations in tumor-specific CD8+ memory T cell engraftment
Bathe, Oliver F; Dalyot-Herman, Nava; Malek, Thomas R
2003-01-01
Background Adoptive immunotherapy with cytotoxic T lymphocytes (CTL) represents an alternative approach to treating solid tumors. Ideally, this would confer long-term protection against tumor. We previously demonstrated that in vitro-generated tumor-specific CTL from the ovalbumin (OVA)-specific OT-I T cell receptor transgenic mouse persisted long after adoptive transfer as memory T cells. When recipient mice were challenged with the OVA-expressing E.G7 thymoma, tumor growth was delayed and sometimes prevented. The reasons for therapeutic failures were not clear. Methods OT-I CTL were adoptively transferred to C57BL/6 mice 21 – 28 days prior to tumor challenge. At this time, the donor cells had the phenotypical and functional characteristics of memory CD8+ T cells. Recipients which developed tumor despite adoptive immunotherapy were analyzed to evaluate the reason(s) for therapeutic failure. Results Dose-response studies demonstrated that the degree of tumor protection was directly proportional to the number of OT-I CTL adoptively transferred. At a low dose of OT-I CTL, therapeutic failure was attributed to insufficient numbers of OT-I T cells that persisted in vivo, rather than mechanisms that actively suppressed or anergized the OT-I T cells. In recipients of high numbers of OT-I CTL, the E.G7 tumor that developed was shown to be resistant to fresh OT-I CTL when examined ex vivo. Furthermore, these same tumor cells no longer secreted a detectable level of OVA. In this case, resistance to immunotherapy was secondary to selection of clones of E.G7 that expressed a lower level of tumor antigen. Conclusions Memory engraftment with tumor-specific CTL provides long-term protection against tumor. However, there are several limitations to this immunotherapeutic strategy, especially when targeting a single antigen. This study illustrates the importance of administering large numbers of effectors to engraft sufficiently efficacious immunologic memory. It also demonstrates the importance of targeting several antigens when developing vaccine strategies for cancer. PMID:12882650
Long-term memory, neurogenesis, and signal novelty.
Sokolov, E N; Nezlina, N I
2004-10-01
According to our suggested hypothesis, long-term memory is a collection of "gnostic units," selectively tuned to past events. The formation of long-term memory occurs with the involvement of constantly appearing new neurons which differentiate from stem cells during the process of neurogenesis, in particular in adults. Conversion of precursor neurons into "gnostic units" selective in relation to ongoing events, supplemented by the involvement of hippocampal "novelty neurons," which increase the flow of information needing to be fixed in long-term memory. "Gnostic units" form before the informational processes occurring in the ventral ("what?") and dorsal ("where?") systems. Formation of new "gnostic units" selectively tuned to a particular event results from the combination of excitation of the detector for stimulus characteristics and the novelty signal generated by "novelty neurons" in the hippocampus.
Suan, Dan; Kräutler, Nike J; Maag, Jesper L V; Butt, Danyal; Bourne, Katherine; Hermes, Jana R; Avery, Danielle T; Young, Clara; Statham, Aaron; Elliott, Michael; Dinger, Marcel E; Basten, Antony; Tangye, Stuart G; Brink, Robert
2017-12-19
Memory B cells (MBCs) and plasma cells (PCs) constitute the two cellular outputs of germinal center (GC) responses that together facilitate long-term humoral immunity. Although expression of the transcription factor BLIMP-1 identifies cells undergoing PC differentiation, no such marker exists for cells committed to the MBC lineage. Here, we report that the chemokine receptor CCR6 uniquely marks MBC precursors in both mouse and human GCs. CCR6 + GC B cells were highly enriched within the GC light zone (LZ), were the most quiescent of all GC B cells, exhibited a cell-surface phenotype and gene expression signature indicative of an MBC transition, and possessed the augmented response characteristics of MBCs. MBC precursors within the GC LZ predominantly possessed a low affinity for antigen but also included cells from within the high-affinity pool. These data indicate a fundamental dichotomy between the processes that drive MBC and PC differentiation during GC responses. Copyright © 2017 Elsevier Inc. All rights reserved.
Jubin, Virginie; Ventre, Erwan; Leverrier, Yann; Djebali, Sophia; Mayol, Katia; Tomkowiak, Martine; Mafille, Julien; Teixeira, Marie; Teoh, Denise Y-L; Lina, Bruno; Walzer, Thierry; Arpin, Christophe; Marvel, Jacqueline
2012-06-01
Besides the classically described subsets of memory CD8 T cells generated under infectious conditions, are T inflammatory memory cells generated under sterile priming conditions, such as sensitization to allergens. Although not fully differentiated as pathogen-induced memory cells, they display memory properties that distinguish them from naive CD8 T cells. Given these memory cells are generated in an antigen-specific context that is devoid of pathogen-derived danger signals and CD4 T cell help, we herein questioned whether they maintained their activation and differentiation potential, could be recruited in an immune response directed against a pathogen expressing their cognate antigen and further differentiate in fully competent secondary memory cells. We show that T inflammatory memory cells can indeed take part to the immune response triggered by a viral infection, differentiate into secondary effectors and further generate typical central memory CD8 T cells and effector memory CD8 T cells. Furthermore, the secondary memory cells they generate display a functional advantage over primary memory cells in their capacity to produce TNF-α and the XCL1 chemokine. These results suggest that cross-reactive stimulations and differentiation of cells directed against allergens or self into fully competent pathogen-induced memory cells might have incidences in inflammatory immuno-pathologies.
Memory. Engram cells retain memory under retrograde amnesia.
Ryan, Tomás J; Roy, Dheeraj S; Pignatelli, Michele; Arons, Autumn; Tonegawa, Susumu
2015-05-29
Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively through the stabilization of memory engrams. By using learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. Although these properties are lacking in engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process. Copyright © 2015, American Association for the Advancement of Science.
Colored noise and memory effects on formal spiking neuron models
NASA Astrophysics Data System (ADS)
da Silva, L. A.; Vilela, R. D.
2015-06-01
Simplified neuronal models capture the essence of the electrical activity of a generic neuron, besides being more interesting from the computational point of view when compared to higher-dimensional models such as the Hodgkin-Huxley one. In this work, we propose a generalized resonate-and-fire model described by a generalized Langevin equation that takes into account memory effects and colored noise. We perform a comprehensive numerical analysis to study the dynamics and the point process statistics of the proposed model, highlighting interesting new features such as (i) nonmonotonic behavior (emergence of peak structures, enhanced by the choice of colored noise characteristic time scale) of the coefficient of variation (CV) as a function of memory characteristic time scale, (ii) colored noise-induced shift in the CV, and (iii) emergence and suppression of multimodality in the interspike interval (ISI) distribution due to memory-induced subthreshold oscillations. Moreover, in the noise-induced spike regime, we study how memory and colored noise affect the coherence resonance (CR) phenomenon. We found that for sufficiently long memory, not only is CR suppressed but also the minimum of the CV-versus-noise intensity curve that characterizes the presence of CR may be replaced by a maximum. The aforementioned features allow to interpret the interplay between memory and colored noise as an effective control mechanism to neuronal variability. Since both variability and nontrivial temporal patterns in the ISI distribution are ubiquitous in biological cells, we hope the present model can be useful in modeling real aspects of neurons.
Saito, Hidehito; Okita, Keisuke; Chang, Alfred E.; Ito, Fumito
2016-01-01
Current approaches to adoptive T cell therapy are limited by the difficulty of obtaining sufficient numbers of T cells against targeted antigens with useful in vivo characteristics. Theoretically, this limitation could be overcome by using induced pluripotent stem cells (iPSCs) that could provide an unlimited source of autologous T cells. However, the therapeutic efficacy of iPSC-derived regenerated T cells remains to be demonstrated. Here we report the first successful reprogramming of T-cell receptor (TCR) transgenic CD8+ T cells into pluripotency. As part of the work, we established a syngeneic mouse model for evaluating in vitro and in vivo antitumor reactivity of regenerated T cells from iPSCs bearing a rearranged TCR of known antigen specificity. Stably TCR retained T cell-derived iPSCs differentiated into CD4+CD8+ T cells that expressed CD3 and the desired TCR in vitro. Stimulation of iPSC-derived CD4+CD8+ T cells with the cognate antigen in the presence of IL-7 and IL-15 followed by expansion with IL-2, IL-7 and IL-15 generated large numbers of less-differentiated CD8+ T cells with antigen-specific potent cytokine production and cytolytic capacity. Furthermore, adoptively transferred iPSC-derived CD8+ T cells escaped immune rejection, mediated effective regression of large tumors, improved survival, and established antigen-specific immunological memory. Our findings illustrate the translational potential of iPSCs to provide an unlimited number of phenotypically defined, functional, and expandable autologous antigen-specific T cells with the characteristics needed to enable in vivo effectiveness. PMID:27197199
Electrochemical metallization memories—fundamentals, applications, prospects
NASA Astrophysics Data System (ADS)
Valov, Ilia; Waser, Rainer; Jameson, John R.; Kozicki, Michael N.
2011-06-01
This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, RON to ROFF ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed.
Resistive switching characteristics and mechanisms in silicon oxide memory devices
NASA Astrophysics Data System (ADS)
Chang, Yao-Feng; Fowler, Burt; Chen, Ying-Chen; Zhou, Fei; Wu, Xiaohan; Chen, Yen-Ting; Wang, Yanzhen; Xue, Fei; Lee, Jack C.
2016-05-01
Intrinsic unipolar SiOx-based resistance random access memories (ReRAM) characterization, switching mechanisms, and applications have been investigated. Device structures, material compositions, and electrical characteristics are identified that enable ReRAM cells with high ON/OFF ratio, low static power consumption, low switching power, and high readout-margin using complementary metal-oxide semiconductor transistor (CMOS)-compatible SiOx-based materials. These ideas are combined with the use of horizontal and vertical device structure designs, composition optimization, electrical control, and external factors to help understand resistive switching (RS) mechanisms. Measured temperature effects, pulse response, and carrier transport behaviors lead to compact models of RS mechanisms and energy band diagrams in order to aid the development of computer-aided design for ultralarge-v scale integration. This chapter presents a comprehensive investigation of SiOx-based RS characteristics and mechanisms for the post-CMOS device era.
Liu, Yanling; McDaniel, Jonathan R; Khan, Srijit; Campisi, Paolo; Propst, Evan J; Holler, Theresa; Grunebaum, Eyal; Georgiou, George; Ippolito, Gregory C; Ehrhardt, Götz R A
2018-06-15
FCRL4, a low-affinity IgA Ab receptor with strong immunoregulatory potential, is an identifying feature of a tissue-based population of memory B cells (Bmem). We used two independent approaches to perform a comparative analysis of the Ag receptor repertoires of FCRL4 + and FCRL4 - Bmem in human tonsils. We determined that FCRL4 + Bmem displayed lower levels of somatic mutations in their Ag receptors compared with FCRL4 - Bmem but had similar frequencies of variable gene family usage. Importantly, Abs with reactivity to commensal microbiota were enriched in FCRL4 + cells, a phenotype not due to polyreactive binding characteristics. Our study links expression of the immunoregulatory FCRL4 molecule with increased recognition of commensal microbial Ags. Copyright © 2018 by The American Association of Immunologists, Inc.
Gilkey, Jeffrey C [Albuquerque, NM; Duesterhaus, Michelle A [Albuquerque, NM; Peter, Frank J [Albuquerque, NM; Renn, Rosemarie A [Alburquerque, NM; Baker, Michael S [Albuquerque, NM
2006-08-15
A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.
Gilkey, Jeffrey C [Albuquerque, NM; Duesterhaus, Michelle A [Albuquerque, NM; Peter, Frank J [Albuquerque, NM; Renn, Rosemarie A [Albuquerque, NM; Baker, Michael S [Albuquerque, NM
2006-05-16
A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.
Nano-cone resistive memory for ultralow power operation.
Kim, Sungjun; Jung, Sunghun; Kim, Min-Hwi; Kim, Tae-Hyeon; Bang, Suhyun; Cho, Seongjae; Park, Byung-Gook
2017-03-24
SiN x -based nano-structure resistive memory is fabricated by fully silicon CMOS compatible process integration including particularly designed anisotropic etching for the construction of a nano-cone silicon bottom electrode (BE). Bipolar resistive switching characteristics have significantly reduced switching current and voltage and are demonstrated in a nano-cone BE structure, as compared with those in a flat BE one. We have verified by systematic device simulations that the main cause of reduction in the performance parameters is the high electric field being more effectively concentrated at the tip of the cone-shaped BE. The greatly improved nonlinearity of the nano-cone resistive memory cell will be beneficial in the ultra-high-density crossbar array.
ImmunoScenarios: A Game for the Immune System.
ERIC Educational Resources Information Center
Taylor, Mark F.; Jackson, Sally W.
1996-01-01
Describes a board game, ImmunoScenarios, which was developed to reinforce the ideas about the immune system discussed in lecture classes. Emphasizes important characteristics of the body's specific defense system including specificity, cooperation among various cells, and memory. Includes directions for playing, student handouts, and scenarios.…
Engram Cells Retain Memory Under Retrograde Amnesia
Ryan, Tomás J.; Roy, Dheeraj S.; Pignatelli, Michele; Arons, Autumn; Tonegawa, Susumu
2017-01-01
Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively by the stabilization of memory engrams. By employing learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. While these properties are lacking in the engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with the retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process. PMID:26023136
Woda, Marcia; Friberg, Heather; Currier, Jeffrey R; Srikiatkhachorn, Anon; Macareo, Louis R; Green, Sharone; Jarman, Richard G; Rothman, Alan L; Mathew, Anuja
2016-10-01
The development of reagents to identify and characterize antigen-specific B cells has been challenging. We recently developed Alexa Fluor-labeled dengue viruses (AF DENVs) to characterize antigen-specific B cells in the peripheral blood of DENV-immune individuals. In this study, we used AF DENV serotype 1 (AF DENV-1) together with AF DENV-2 on peripheral blood mononuclear cells (PBMCs) from children in Thailand with acute primary or secondary DENV-1 infections to analyze the phenotypes of antigen-specific B cells that reflected their exposure or clinical diagnosis. DENV serotype-specific and cross-reactive B cells were identified in PBMCs from all subjects. Frequencies of AF DENV(+) class-switched memory B cells (IgD(-)CD27(+) CD19(+) cells) reached up to 8% during acute infection and early convalescence. AF DENV-labeled B cells expressed high levels of CD27 and CD38 during acute infection, characteristic of plasmablasts, and transitioned into memory B cells (CD38(-)CD27(+)) at the early convalescent time point. There was higher activation of memory B cells early during acute secondary infection, suggesting reactivation from a previous DENV infection. AF DENVs reveal changes in the phenotype of DENV serotype-specific and cross-reactive B cells during and after natural DENV infection and could be useful in analysis of the response to DENV vaccination. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Bolos, Marta; Antequera, Desireé; Aldudo, Jesús; Kristen, Henrike; Bullido, María Jesús; Carro, Eva
2014-08-01
The choroid plexuses (CP) release numerous biologically active enzymes and neurotrophic factors, and contain a subpopulation of neural progenitor cells providing the capacity to proliferate and differentiate into other types of cells. These characteristics make CP epithelial cells (CPECs) excellent candidates for cell therapy aiming at restoring brain tissue in neurodegenerative illnesses, including Alzheimer's disease (AD). In the present study, using in vitro approaches, we demonstrated that CP were able to diminish amyloid-β (Aβ) levels in cell cultures, reducing Aβ-induced neurotoxicity. For in vivo studies, CPECs were transplanted into the brain of the APP/PS1 murine model of AD that exhibits advanced Aβ accumulation and memory impairment. Brain examination after cell implantation revealed a significant reduction in brain Aβ deposits, hyperphosphorylation of tau, and astrocytic reactivity. Remarkably, the transplantation of CPECs was accompanied by a total behavioral recovery in APP/PS1 mice, improving spatial and non-spatial memory. These findings reinforce the neuroprotective potential of CPECs and the use of cell therapies as useful tools in AD.
Characteristics of positive autobiographical memories in adulthood.
Bluck, Susan; Alea, Nicole
2009-01-01
The characteristics of positive autobiographical memory narratives were examined in younger and older adults. Narratives were content-coded for the extent to which they contained indicators of affect, sensory imagery, and cognition. Affect was additionally assessed through self-report. Young adults expressed more positive affect and less sensory imagery in their memory narratives than did older adults. Age differences in cognitive characteristics also appeared: younger adults showed greater causation-insight, and greater tentativeness in retelling their autobiographical memories. Controlling for episodic memory ability eliminated age differences in positive affect but did not affect age differences on other memory characteristics. Results are discussed in terms of the role that positive autobiographical memories play in daily emotional life across adulthood.
Yoon, Jung Ho; Yoo, Sijung; Song, Seul Ji; Yoon, Kyung Jean; Kwon, Dae Eun; Kwon, Young Jae; Park, Tae Hyung; Kim, Hye Jin; Shao, Xing Long; Kim, Yumin; Hwang, Cheol Seong
2016-07-20
To replace or succeed the present NAND flash memory, resistive switching random access memory (ReRAM) should be implemented in the vertical-type crossbar array configuration. The ReRAM cell must have a highly reproducible resistive switching (RS) performance and an electroforming-free, self-rectifying, low-power-consumption, multilevel-switching, and easy fabrication process with a deep sub-μm(2) cell area. In this work, a Pt/Ta2O5/HfO2-x/TiN RS memory cell fabricated in the form of a vertical-type structure was presented as a feasible contender to meet the above requirements. While the fundamental RS characteristics of this material based on the electron trapping/detrapping mechanisms have been reported elsewhere, the influence of the cell scaling size to 0.34 μm(2) on the RS performance by adopting the vertical integration scheme was carefully examined in this work. The smaller cell area provided much better switching uniformity while all the other benefits of this specific material system were preserved. Using the overstressing technique, the nature of RS through the localized conducting path was further examined, which elucidated the fundamental difference between the present material system and the general ionic-motion-related bipolar RS mechanism.
Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells.
Weniger, Marc A; Tiacci, Enrico; Schneider, Stefanie; Arnolds, Judith; Rüschenbaum, Sabrina; Duppach, Janine; Seifert, Marc; Döring, Claudia; Hansmann, Martin-Leo; Küppers, Ralf
2018-06-11
Very few B cells in germinal centers (GCs) and extrafollicular (EF) regions of lymph nodes express CD30. Their specific features and relationship to CD30-expressing Hodgkin and Reed/Sternberg (HRS) cells of Hodgkin lymphoma are unclear but highly relevant, because numerous patients with lymphoma are currently treated with an anti-CD30 immunotoxin. We performed a comprehensive analysis of human CD30+ B cells. Phenotypic and IgV gene analyses indicated that CD30+ GC B lymphocytes represent typical GC B cells, and that CD30+ EF B cells are mostly post-GC B cells. The transcriptomes of CD30+ GC and EF B cells largely overlapped, sharing a strong MYC signature, but were strikingly different from conventional GC B cells and memory B and plasma cells, respectively. CD30+ GC B cells represent MYC+ centrocytes redifferentiating into centroblasts; CD30+ EF B cells represent active, proliferating memory B cells. HRS cells shared typical transcriptome patterns with CD30+ B cells, suggesting that they originate from these lymphocytes or acquire their characteristic features during lymphomagenesis. By comparing HRS to normal CD30+ B cells we redefined aberrant and disease-specific features of HRS cells. A remarkable downregulation of genes regulating genomic stability and cytokinesis in HRS cells may explain their genomic instability and multinuclearity.
The memory of the accreting plate boundary and the continuity of fracture zones
Schouten, Hans; Klitgord, Kim D.
1982-01-01
A detailed aeromagnetic anomaly map of the Mesozoic seafloor-spreading lineations southwest of Bermuda reveals the dominant magnetic grain of the oceanic crust and the character of the accreting boundary at the time of crustal formation. The magnetic anomaly pattern is that of a series of elongate lobes perpendicular to the fracture zone (flowline) trends. The linear sets of magnetic anomaly peaks and troughs have narrow regions of reduced amplitude anomalies associated with the fracture zones. During the period of Mesozoic geomagnetic polarity reversals (when 1200 km of central North Atlantic seafloor formed), the Atlantic accreting boundary consisted of stationary, elongate, spreading center cells that maintained their independence even though sometimes only minor spatial offsets existed between cells. Normal oceanic crustal structure was formed in the spreading center cells, but structural anomalies and discontinuities characteristic of fracture zones were formed at their boundaries, which parallel flowlines of Mesozoic relative plate motion in the central North Atlantic. We suggest that the memory for a stationary pattern of independent spreading center cells resides in the young brittle lithosphere at the accreting boundary where the lithosphere is weakest; here, each spreading center cell independently goes through its cylce of stress buildup, stress release, and crustal accretion, after which its memory is refreshed. The temporal offset between the peaks of the accretionary activity that takes place within each cell may provide the mechanism for maintaining the independence of adjacent spreading center cells through times when no spatial offset between the cells exists.
Analysis of antigen-specific B-cell memory directly ex vivo.
McHeyzer-Williams, Louise J; McHeyzer-Williams, Michael G
2004-01-01
Helper T-cell-regulated B-cell memory develops in response to initial antigen priming as a cellular product of the germinal center (GC) reaction. On antigen recall, memory response precursors expand rapidly with exaggerated differentiation into plasma cells to produce the high-titer, high-affinity antibody(Ab) that typifies the memory B-cell response in vivo. We have devised a high-resolution flow cytometric strategy to quantify the emergence and maintenance of antigen-specific memory B cells directly ex vivo. Extended cell surface phenotype establishes a level of cellular diversity not previously appreciated for the memory B-cell compartment. Using an "exclusion transfer" strategy, we ascertain the capacity of two distinct memory B-cell populations to transfer antigen-specific memory into naive adoptive hosts. Finally, we sequence expressed messenger ribonucleic acid (mRNA) from single cells within the population to estimate the level of somatic hypermutation as the best molecular indicator of B-cell memory. In this chapter, we describe the methods used in each of these four sections that serve to provide high-resolution quantification of antigen-specific B-cell memory responses directly ex vivo.
Strong homeostatic TCR signals induce formation of self-tolerant virtual memory CD8 T cells.
Drobek, Ales; Moudra, Alena; Mueller, Daniel; Huranova, Martina; Horkova, Veronika; Pribikova, Michaela; Ivanek, Robert; Oberle, Susanne; Zehn, Dietmar; McCoy, Kathy D; Draber, Peter; Stepanek, Ondrej
2018-05-11
Virtual memory T cells are foreign antigen-inexperienced T cells that have acquired memory-like phenotype and constitute 10-20% of all peripheral CD8 + T cells in mice. Their origin, biological roles, and relationship to naïve and foreign antigen-experienced memory T cells are incompletely understood. By analyzing T-cell receptor repertoires and using retrogenic monoclonal T-cell populations, we demonstrate that the virtual memory T-cell formation is a so far unappreciated cell fate decision checkpoint. We describe two molecular mechanisms driving the formation of virtual memory T cells. First, virtual memory T cells originate exclusively from strongly self-reactive T cells. Second, the stoichiometry of the CD8 interaction with Lck regulates the size of the virtual memory T-cell compartment via modulating the self-reactivity of individual T cells. Although virtual memory T cells descend from the highly self-reactive clones and acquire a partial memory program, they are not more potent in inducing experimental autoimmune diabetes than naïve T cells. These data underline the importance of the variable level of self-reactivity in polyclonal T cells for the generation of functional T-cell diversity. © 2018 The Authors. Published under the terms of the CC BY 4.0 license.
Pu, Y-F; Jiang, N; Chang, W; Yang, H-X; Li, C; Duan, L-M
2017-05-08
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology.
Effector CD8 T cells dedifferentiate into long-lived memory cells.
Youngblood, Ben; Hale, J Scott; Kissick, Haydn T; Ahn, Eunseon; Xu, Xiaojin; Wieland, Andreas; Araki, Koichi; West, Erin E; Ghoneim, Hazem E; Fan, Yiping; Dogra, Pranay; Davis, Carl W; Konieczny, Bogumila T; Antia, Rustom; Cheng, Xiaodong; Ahmed, Rafi
2017-12-21
Memory CD8 T cells that circulate in the blood and are present in lymphoid organs are an essential component of long-lived T cell immunity. These memory CD8 T cells remain poised to rapidly elaborate effector functions upon re-exposure to pathogens, but also have many properties in common with naive cells, including pluripotency and the ability to migrate to the lymph nodes and spleen. Thus, memory cells embody features of both naive and effector cells, fuelling a long-standing debate centred on whether memory T cells develop from effector cells or directly from naive cells. Here we show that long-lived memory CD8 T cells are derived from a subset of effector T cells through a process of dedifferentiation. To assess the developmental origin of memory CD8 T cells, we investigated changes in DNA methylation programming at naive and effector cell-associated genes in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection in mice. Methylation profiling of terminal effector versus memory-precursor CD8 T cell subsets showed that, rather than retaining a naive epigenetic state, the subset of cells that gives rise to memory cells acquired de novo DNA methylation programs at naive-associated genes and became demethylated at the loci of classically defined effector molecules. Conditional deletion of the de novo methyltransferase Dnmt3a at an early stage of effector differentiation resulted in reduced methylation and faster re-expression of naive-associated genes, thereby accelerating the development of memory cells. Longitudinal phenotypic and epigenetic characterization of the memory-precursor effector subset of virus-specific CD8 T cells transferred into antigen-free mice revealed that differentiation to memory cells was coupled to erasure of de novo methylation programs and re-expression of naive-associated genes. Thus, epigenetic repression of naive-associated genes in effector CD8 T cells can be reversed in cells that develop into long-lived memory CD8 T cells while key effector genes remain demethylated, demonstrating that memory T cells arise from a subset of fate-permissive effector T cells.
NASA Astrophysics Data System (ADS)
Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang
2018-03-01
To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.
Distinct T helper cell dependence of memory B-cell proliferation versus plasma cell differentiation.
Zabel, Franziska; Fettelschoss, Antonia; Vogel, Monique; Johansen, Pål; Kündig, Thomas M; Bachmann, Martin F
2017-03-01
Several memory B-cell subclasses with distinct functions have been described, of which the most effective is the class-switched (CS) memory B-cell population. We have previously shown, using virus-like particles (VLPs), that the proliferative potential of these CS memory B cells is limited and they fail to re-enter germinal centres (GCs). However, VLP-specific memory B cells quickly differentiated into secondary plasma cells (PCs) with the virtue of elevated antibody production compared with primary PCs. Whereas the induction of VLP + memory B cells was strongly dependent on T helper cells, we were wondering whether re-stimulation of VLP + memory B cells and their differentiation into secondary PCs would also require T helper cells. Global absence of T helper cells led to strongly impaired memory B cell proliferation and PC differentiation. In contrast, lack of interleukin-21 receptor-dependent follicular T helper cells or CD40 ligand signalling strongly affected proliferation of memory B cells, but differentiation into mature secondary PCs exhibiting increased antibody production was essentially normal. This contrasts with primary B-cell responses, where a strong dependence on CD40 ligand but limited importance of interleukin-21 receptor was seen. Hence, T helper cell dependence differs between primary and secondary B-cell responses as well as between memory B-cell proliferation and PC differentiation. © 2016 John Wiley & Sons Ltd.
Erickson, L D; Vogel, L A; Cascalho, M; Wong, J; Wabl, M; Durell, B G; Noelle, R J
2000-11-01
This study tracks the fate of antigen-reactive B cells through follicular and extrafollicular responses and addresses the function of CD40 in these processes. The unique feature of this system is the use of transgenic B cells in which the heavy chain locus has been altered by site-directed insertion of a rearranged V(H) DJ(H) exon such that they are able to clonally expand, isotype-switch and follow a normal course of differentiation upon immunization. These Ig transgenic B cells when adoptively transferred into non-transgenic (Tg) mice in measured amounts expanded and differentiated distinctively in response to T cell-independent (TI) or T cell-dependent (TD) antigens. The capacity of these Tg B cells to faithfully recapitulate the humoral immune response to TI and TD antigens provides the means to track clonal B cell behavior in vivo. Challenge with TI antigen in the presence of agonistic anti-CD40 mAb resulted in well-defined alterations of the TI response. In vivo triggering of Tg B cells with TI antigen and CD40 caused an increase in the levels IgG produced and a broadening of the Ig isotype profile, characteristics which partially mimic TD responses. Although some TD characteristics were induced by TI antigen and CD40 triggering, the Tg B cells failed to acquire a germinal center phenotype and failed to generate a memory response. Therefore, TD-like immunity can be only partially reconstituted with CD40 agonists and TI antigens, suggesting that there are additional signals required for germinal center formation and development of memory.
Brocca-Cofano, Egidio; McKinnon, Katherine; Demberg, Thorsten; Venzon, David; Hidajat, Rachmat; Xiao, Peng; Daltabuit-Test, Mara; Patterson, L. Jean; Robert-Guroff, Marjorie
2011-01-01
An effective HIV vaccine requires strong systemic and mucosal, cellular and humoral immunity. Numerous non-human primate studies have investigated memory T cells, but not memory B cells. Humoral immunologic memory is mediated by long-lived antibody-secreting plasma cells and differentiation of memory B cells into short-lived plasma blasts following re-exposure to immunizing antigen. Here we studied memory B cells in vaccinated rhesus macaques. PBMC were stimulated polyclonally using CD40 Ligand, IL-21 and CpG to induce B cell proliferation and differentiation into antibody secreting cells (ASC). Flow cytometry was used for phenotyping and evaluating proliferation by CFSE dilution. B cell responses were quantified by ELISPOT. Methodology was established using PBMC of vaccinated elite-controller macaques that exhibited strong, multi-functional antibody activities. Subsequently, memory B cells elicited by two replicating Ad-recombinant prime/envelope boost regimens were retrospectively evaluated pre- and post- SIV and SHIV challenges. The vaccine regimens induced SIV and HIV Env-specific IgG and IgA memory B cells. Prior to challenge, IgA memory B cells were more numerous than IgG memory B cells, reflecting the mucosal priming immunizations. Pre- and post-challenge memory B cells were correlated with functional antibody responses including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell-mediated viral inhibition (ADCVI) and transcytosis inhibition. Post-challenge, Env-specific IgG and IgA memory B cells were correlated with reduced chronic viremia. We conclude that functional antibody responses elicited by our prime/boost regimen were effectively incorporated into the memory B cell pool where they contributed to control of viremia following re-exposure to the immunizing antigen. PMID:21382487
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins
Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A
2015-01-01
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.
Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A
2015-01-01
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Wieten, Rosanne W; Jonker, Emile F F; van Leeuwen, Ester M M; Remmerswaal, Ester B M; Ten Berge, Ineke J M; de Visser, Adriëtte W; van Genderen, Perry J J; Goorhuis, Abraham; Visser, Leo G; Grobusch, Martin P; de Bree, Godelieve J
2016-01-01
Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07-3.1%). On day 180, these cells were still present (median 0.06%, range 0.02-0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. The presence of a functionally competent YF-specific memory T-cell pool 18 years and sufficient titers of neutralizing antibodies 35-40 years after first vaccination suggest that single vaccination may be sufficient to provide long-term immunity.
CD8 T cell memory: it takes all kinds
Hamilton, Sara E.; Jameson, Stephen C.
2012-01-01
Understanding the mechanisms that regulate the differentiation and maintenance of CD8+ memory T cells is fundamental to the development of effective T cell-based vaccines. Memory cell differentiation is influenced by the cytokines that accompany T cell priming, the history of previous antigen encounters, and the tissue sites into which memory cells migrate. These cues combine to influence the developing CD8+ memory pool, and recent work has revealed the importance of multiple transcription factors, metabolic molecules, and surface receptors in revealing the type of memory cell that is generated. Paired with increasingly meticulous subsetting and sorting of memory populations, we now know the CD8+ memory pool to be phenotypically and functionally heterogeneous in nature. This includes both recirculating and tissue-resident memory populations, and cells with varying degrees of inherent longevity and protective function. These data point to the importance of tailored vaccine design. Here we discuss how the diversity of the memory CD8+ T cell pool challenges the notion that “one size fits all” for pathogen control, and how distinct memory subsets may be suited for distinct aspects of protective immunity. PMID:23230436
Pu, Y-F; Jiang, N.; Chang, W.; Yang, H-X; Li, C.; Duan, L-M
2017-01-01
To realize long-distance quantum communication and quantum network, it is required to have multiplexed quantum memory with many memory cells. Each memory cell needs to be individually addressable and independently accessible. Here we report an experiment that realizes a multiplexed DLCZ-type quantum memory with 225 individually accessible memory cells in a macroscopic atomic ensemble. As a key element for quantum repeaters, we demonstrate that entanglement with flying optical qubits can be stored into any neighboring memory cells and read out after a programmable time with high fidelity. Experimental realization of a multiplexed quantum memory with many individually accessible memory cells and programmable control of its addressing and readout makes an important step for its application in quantum information technology. PMID:28480891
Cutsuridis, Vassilis; Hasselmo, Michael
2012-07-01
Successful spatial exploration requires gating, storage, and retrieval of spatial memories in the correct order. The hippocampus is known to play an important role in the temporal organization of spatial information. Temporally ordered spatial memories are encoded and retrieved by the firing rate and phase of hippocampal pyramidal cells and inhibitory interneurons with respect to ongoing network theta oscillations paced by intra- and extrahippocampal areas. Much is known about the anatomical, physiological, and molecular characteristics as well as the connectivity and synaptic properties of various cell types in the hippocampal microcircuits, but how these detailed properties of individual neurons give rise to temporal organization of spatial memories remains unclear. We present a model of the hippocampal CA1 microcircuit based on observed biophysical properties of pyramidal cells and six types of inhibitory interneurons: axo-axonic, basket, bistratistified, neurogliaform, ivy, and oriens lacunosum-moleculare cells. The model simulates a virtual rat running on a linear track. Excitatory transient inputs come from the entorhinal cortex (EC) and the CA3 Schaffer collaterals and impinge on both the pyramidal cells and inhibitory interneurons, whereas inhibitory inputs from the medial septum impinge only on the inhibitory interneurons. Dopamine operates as a gate-keeper modulating the spatial memory flow to the PC distal dendrites in a frequency-dependent manner. A mechanism for spike-timing-dependent plasticity in distal and proximal PC dendrites consisting of three calcium detectors, which responds to the instantaneous calcium level and its time course in the dendrite, is used to model the plasticity effects. The model simulates the timing of firing of different hippocampal cell types relative to theta oscillations, and proposes functional roles for the different classes of the hippocampal and septal inhibitory interneurons in the correct ordering of spatial memories as well as in the generation and maintenance of theta phase precession of pyramidal cells (place cells) in CA1. The model leads to a number of experimentally testable predictions that may lead to a better understanding of the biophysical computations in the hippocampus and medial septum. Copyright © 2011 Wiley Periodicals, Inc.
The 1973 GSFC battery workshop, second day. [technology transfer
NASA Technical Reports Server (NTRS)
1973-01-01
Technological progress in the development, testing, and manufacturing of nickel-cadmium battery cells as well as hydrogen cells is presented. The following major topics were discussed: (1) carbonate analysis; (2) nickel-cadmium memory effect; (3) use of batteries in an automatic acquisition and control system; (4) accelerated testing; (5) formulation of a mathematical odel for a nickel-cadmium cell; (6) development of a light weight nickel-cadmium battery capable of delivering 20 watt hours per pound; (7) magnetic testing of nickel-cadmium cells; (8) design and performance characteristics of nickel-hydrogen and silver-hydrogen cells; and (9) development of a semiprismatic cell design. For Vol. 1, see N75-15152.
NASA Astrophysics Data System (ADS)
Kim, Seung-Tae; Cho, Won-Ju
2018-01-01
We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.
Monolayer optical memory cells based on artificial trap-mediated charge storage and release
NASA Astrophysics Data System (ADS)
Lee, Juwon; Pak, Sangyeon; Lee, Young-Woo; Cho, Yuljae; Hong, John; Giraud, Paul; Shin, Hyeon Suk; Morris, Stephen M.; Sohn, Jung Inn; Cha, Seungnam; Kim, Jong Min
2017-03-01
Monolayer transition metal dichalcogenides are considered to be promising candidates for flexible and transparent optoelectronics applications due to their direct bandgap and strong light-matter interactions. Although several monolayer-based photodetectors have been demonstrated, single-layered optical memory devices suitable for high-quality image sensing have received little attention. Here we report a concept for monolayer MoS2 optoelectronic memory devices using artificially-structured charge trap layers through the functionalization of the monolayer/dielectric interfaces, leading to localized electronic states that serve as a basis for electrically-induced charge trapping and optically-mediated charge release. Our devices exhibit excellent photo-responsive memory characteristics with a large linear dynamic range of ~4,700 (73.4 dB) coupled with a low OFF-state current (<4 pA), and a long storage lifetime of over 104 s. In addition, the multi-level detection of up to 8 optical states is successfully demonstrated. These results represent a significant step toward the development of future monolayer optoelectronic memory devices.
NASA Astrophysics Data System (ADS)
Kavehei, Omid; Linn, Eike; Nielen, Lutz; Tappertzhofen, Stefan; Skafidas, Efstratios; Valov, Ilia; Waser, Rainer
2013-05-01
We report on the implementation of an Associative Capacitive Network (ACN) based on the nondestructive capacitive readout of two Complementary Resistive Switches (2-CRSs). ACNs are capable of performing a fully parallel search for Hamming distances (i.e. similarity) between input and stored templates. Unlike conventional associative memories where charge retention is a key function and hence, they require frequent refresh cycles, in ACNs, information is retained in a nonvolatile resistive state and normal tasks are carried out through capacitive coupling between input and output nodes. Each device consists of two CRS cells and no selective element is needed, therefore, CMOS circuitry is only required in the periphery, for addressing and read-out. Highly parallel processing, nonvolatility, wide interconnectivity and low-energy consumption are significant advantages of ACNs over conventional and emerging associative memories. These characteristics make ACNs one of the promising candidates for applications in memory-intensive and cognitive computing, switches and routers as binary and ternary Content Addressable Memories (CAMs) and intelligent data processing.
Vantage perspective during encoding: The effects on phenomenological memory characteristics.
Mooren, Nora; Krans, Julie; Näring, Gérard W B; Moulds, Michelle L; van Minnen, Agnes
2016-05-01
The vantage perspective from which a memory is retrieved influences the memory's emotional impact, intrusiveness, and phenomenological characteristics. This study tested whether similar effects are observed when participants were instructed to imagine the events from a specific perspective. Fifty student participants listened to a verbal report of car-accidents and visualized the scenery from either a field or observer perspective. There were no between-condition differences in emotionality of memories and the number of intrusions, but imagery experienced from a relative observer perspective was rated as less self-relevant. In contrast to earlier studies on memory retrieval, vantage perspective influenced phenomenological memory characteristics of the memory representation such as sensory details, and ratings of vividness and distancing of the memory. However, vantage perspective is most likely not a stable phenomenological characteristic itself. Implications and suggestions for future research are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Germinal-center development of memory B cells driven by IL-9 from follicular helper T cells.
Wang, Yifeng; Shi, Jingwen; Yan, Jiacong; Xiao, Zhengtao; Hou, Xiaoxiao; Lu, Peiwen; Hou, Shiyue; Mao, Tianyang; Liu, Wanli; Ma, Yuanwu; Zhang, Lianfeng; Yang, Xuerui; Qi, Hai
2017-08-01
Germinal centers (GCs) support high-affinity, long-lived humoral immunity. How memory B cells develop in GCs is not clear. Through the use of a cell-cycle-reporting system, we identified GC-derived memory precursor cells (GC-MP cells) that had quit cycling and reached G0 phase while in the GC, exhibited memory-associated phenotypes with signs of affinity maturation and localized toward the GC border. After being transferred into adoptive hosts, GC-MP cells reconstituted a secondary response like genuine memory B cells. GC-MP cells expressed the interleukin 9 (IL-9) receptor and responded to IL-9. Acute treatment with IL-9 or antibody to IL-9 accelerated or retarded the positioning of GC-MP cells toward the GC edge and exit from the GC, and enhanced or inhibited the development of memory B cells, which required B cell-intrinsic responsiveness to IL-9. Follicular helper T cells (T FH cells) produced IL-9, and deletion of IL-9 from T cells or, more specifically, from GC T FH cells led to impaired memory formation of B cells. Therefore, the GC development of memory B cells is promoted by T FH cell-derived IL-9.
Finley, Jahahreeh
2017-07-01
Although promising treatments are currently in development to slow disease progression and increase patient survival, cancer remains the second leading cause of death in the United States. Cancer treatment modalities commonly include chemoradiation and therapies that target components of aberrantly activated signaling pathways. However, treatment resistance is a common occurrence and recent evidence indicates that the existence of cancer stem cells (CSCs) may underlie the limited efficacy and inability of current treatments to effectuate a cure. CSCs, which are largely resistant to chemoradiation therapy, are a subpopulation of cancer cells that exhibit characteristics similar to embryonic stem cells (ESCs), including self-renewal, multi-lineage differentiation, and the ability to initiate tumorigenesis. Interestingly, intracellular mechanisms that sustain quiescence and promote self-renewal in adult stem cells (ASCs) and CSCs likely also function to maintain latency of HIV-1 in CD4 + memory T cells. Although antiretroviral therapy is highly effective in controlling HIV-1 replication, the persistence of latent but replication-competent proviruses necessitates the development of compounds that are capable of selectively reactivating the latent virus, a method known as the "shock and kill" approach. Homeostatic proliferation in central CD4 + memory T (T CM ) cells, a memory T cell subset that exhibits limited self-renewal and differentiation and is a primary reservoir for latent HIV-1, has been shown to reinforce and stabilize the latent reservoir in the absence of T cell activation and differentiation. HIV-1 has also been found to establish durable and long-lasting latency in a recently discovered subset of CD4 + T cells known as T memory stem (T SCM ) cells. T SCM cells, compared to T CM cells, exhibit stem cell properties that more closely match those of ESCs and ASCs, including self-renewal and differentiation into all memory T cell subsets. It is our hypothesis that activation of AMPK, a master regulator of cellular metabolism that plays a critical role in T cell activation and differentiation of ESCs and ASCs, will lead to both T cell activation-induced latent HIV-1 reactivation, facilitating virus destruction, as well as "activation", differentiation, and/or apoptosis of CSCs, thus inhibiting tumorigenesis. We also propose the novel observation that compounds that have been shown to both facilitate latent HIV-1 reactivation and promote CSC differentiation/apoptosis (e.g. bryostatin-1, JQ1, metformin, butyrate, etc.) likely do so through a common mechanism of AMPK activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Operation mode switchable charge-trap memory based on few-layer MoS2
NASA Astrophysics Data System (ADS)
Hou, Xiang; Yan, Xiao; Liu, Chunsen; Ding, Shijin; Zhang, David Wei; Zhou, Peng
2018-03-01
Ultrathin layered two-dimensional (2D) semiconductors like MoS2 and WSe2 have received a lot of attention because of their excellent electrical properties and potential applications in electronic devices. We demonstrate a charge-trap memory with two different tunable operation modes based on a few-layer MoS2 channel and an Al2O3/HfO2/Al2O3 charge storage stack. Our device shows excellent memory properties under the traditional three-terminal operation mode. More importantly, unlike conventional charge-trap devices, this device can also realize the memory performance with just two terminals (drain and source) because of the unique atomic crystal electrical characteristics. Under the two-terminal operation mode, the erase/program current ratio can reach up to 104 with a stable retention property. Our study indicates that the conventional charge-trap memory cell can also realize the memory performance without the gate terminal based on novel two dimensional materials, which is meaningful for low power consumption and high integration density applications.
Jiao, Yanmei; Hua, Wei; Zhang, Tong; Zhang, Yonghong; Ji, Yunxia; Zhang, Hongwei; Wu, Hao
2011-03-25
CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART.
2011-01-01
Background CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Methods Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. Results The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. Conclusion The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART. PMID:21435275
Martin, Matthew D; Kim, Marie T; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T; Badovinac, Vladimir P
2015-10-01
Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory CD8 T cells using single or prime-boost immunizations depends upon the timing between antigen encounters.
Luckey, Chance John; Bhattacharya, Deepta; Goldrath, Ananda W.; Weissman, Irving L.; Benoist, Christophe; Mathis, Diane
2006-01-01
The only cells of the hematopoietic system that undergo self-renewal for the lifetime of the organism are long-term hematopoietic stem cells and memory T and B cells. To determine whether there is a shared transcriptional program among these self-renewing populations, we first compared the gene-expression profiles of naïve, effector and memory CD8+ T cells with those of long-term hematopoietic stem cells, short-term hematopoietic stem cells, and lineage-committed progenitors. Transcripts augmented in memory CD8+ T cells relative to naïve and effector T cells were selectively enriched in long-term hematopoietic stem cells and were progressively lost in their short-term and lineage-committed counterparts. Furthermore, transcripts selectively decreased in memory CD8+ T cells were selectively down-regulated in long-term hematopoietic stem cells and progressively increased with differentiation. To confirm that this pattern was a general property of immunologic memory, we turned to independently generated gene expression profiles of memory, naïve, germinal center, and plasma B cells. Once again, memory-enriched and -depleted transcripts were also appropriately augmented and diminished in long-term hematopoietic stem cells, and their expression correlated with progressive loss of self-renewal function. Thus, there appears to be a common signature of both up- and down-regulated transcripts shared between memory T cells, memory B cells, and long-term hematopoietic stem cells. This signature was not consistently enriched in neural or embryonic stem cell populations and, therefore, appears to be restricted to the hematopoeitic system. These observations provide evidence that the shared phenotype of self-renewal in the hematopoietic system is linked at the molecular level. PMID:16492737
NASA Astrophysics Data System (ADS)
Jones, R. E., Jr.; Maniar, P. D.; Olowolafe, J. O.; Campbell, A. C.; Mogab, C. J.
1992-02-01
Paraelectric lead lanthanum zirconium titanate (PLZT) films, 150 nm thick, were deposited using a spin-coat, sol-gel process followed by a 650 °C oxygen anneal. X-ray diffraction indicated complete conversion to the perovskite phase. Sputter-deposited platinum electrodes were employed with the PLZT films to form thin-film capacitors with the best combination of high charge storage density (26.1 μC/cm2 at 3 V and 36.4 μC/cm2 at 5 V) and leakage current density (0.2 μA/cm2 at 3 V and 0.5 μA/cm2 at 5 V ) reported to date. The electrical characteristics of these thin-film capacitors meet the requirements for a planar bit cell capacitor for 64-Mbit dynamic random access memories.
Tunneling Electroresistance Effect with Diode Characteristic for Cross-Point Memory.
Lee, Hong-Sub; Park, Hyung-Ho
2016-06-22
Cross-point memory architecture (CPMA) by using memristors has attracted considerable attention because of its high-density integration. However, a common and significant drawback of the CPMA is related to crosstalk issues between cells by sneak currents. This study demonstrated the sneak current free resistive switching characteristic of a ferroelectric tunnel diode (FTD) memristor for a CPMA by utilizing a novel concept of a ferroelectric quadrangle and triangle barrier switch. A FTD of Au/BaTiO3 (5 nm)/Nb-doped SrTiO3 (100) was used to obtain a desirable memristive effect for the CPMA. The FTD could reversibly change the shape of the ferroelectric potential from a quadrangle to a triangle. The effect included high nonlinearity and diode characteristics. It was derived from utilizing different sequences of carrier transport mechanisms such as the direct tunneling current, Fowler-Nordheim tunneling, and thermionic emission. The FTD memristor demonstrated the feasibility of sneak current-free high-density CPMA.
Zhang, Jifeng; Barefoot, Brice E.; Mo, Wenjian; Deoliveira, Divino; Son, Jessica; Cui, Xiuyu; Ramsburg, Elizabeth
2012-01-01
A major challenge in allogeneic hematopoietic cell transplantation is how to transfer T-cell immunity without causing graft-versus-host disease (GVHD). Effector memory T cells (CD62L−) are a cell subset that can potentially address this challenge because they do not induce GVHD. Here, we investigated how CD62L− T cells contributed to phenotypic and functional T-cell reconstitution after transplantation. On transfer into allogeneic recipients, CD62L− T cells were activated and expressed multiple cytokines and cytotoxic molecules. CD62L− T cells were able to deplete host radioresistant T cells and facilitate hematopoietic engraftment, resulting in enhanced de novo T-cell regeneration. Enhanced functional immune reconstitution was demonstrated in CD62L− T-cell recipients using a tumor and an influenza virus challenge model. Even though CD62L− T cells are able to respond to alloantigens and deplete host radioresistant immune cells in GVHD recipients, alloreactive CD62L− T cells lost the reactivity over time and were eventually tolerant to alloantigens as a result of prolonged antigen exposure, suggesting a mechanism by which CD62L− T cells were able to eliminate host resistance without causing GVHD. These data further highlight the unique characteristics of CD62L− T cells and their potential applications in clinical hematopoietic cell transplantation. PMID:22596261
The Birth Memories and Recall Questionnaire (BirthMARQ): development and evaluation
2014-01-01
Background Childbirth is a challenging and emotive experience that is accompanied by strong positive and/or negative emotions. Memories of birth may be associated with how women cognitively process birth events postpartum and potentially their adaptation to parenthood. Characteristics of memories for birth may also be associated with postnatal psychological wellbeing. This paper reports the development and evaluation of a questionnaire to measure characteristics of memories of childbirth and to examine the relationship between memories for birth and mental health. Methods The Birth Memories and Recall Questionnaire (BirthMARQ) was developed by generating items from literature reviews and general measures of memory characteristics to cover dimensions relevant to childbirth. Fifty nine items were administered to 523 women in the first year after childbirth (M = 23.7 weeks) as part of an online study of childbirth. Validity of the final scale was checked by examining differences between women with and without probable depression and PTSD. Results Principal components analysis identified 23 items representing six aspects of memory accounting for 64% of the variance. These were: Emotional memory, Centrality of memory to identity, Coherence, Reliving, Involuntary recall, and Sensory memory. Reliability was good (M alpha = .80). Women with probable depression or PTSD reported more emotional memory, centrality of memories and involuntary recall. Women with probable depression also reported more reliving, and those with probable PTSD reported less coherence and sensory memory. Conclusion The results suggest the BirthMARQ is a coherent and valid measure of the characteristics of memory for childbirth which may be important in postnatal mood and psychopathology. While further testing of its reliability and validity is needed, it is a measure capable of becoming a valuable tool for examining memory characteristics in the important context of childbirth. PMID:24950589
The Birth Memories and Recall Questionnaire (BirthMARQ): development and evaluation.
Foley, Suzanne; Crawley, Rosalind; Wilkie, Stephanie; Ayers, Susan
2014-06-20
Childbirth is a challenging and emotive experience that is accompanied by strong positive and/or negative emotions. Memories of birth may be associated with how women cognitively process birth events postpartum and potentially their adaptation to parenthood. Characteristics of memories for birth may also be associated with postnatal psychological wellbeing. This paper reports the development and evaluation of a questionnaire to measure characteristics of memories of childbirth and to examine the relationship between memories for birth and mental health. The Birth Memories and Recall Questionnaire (BirthMARQ) was developed by generating items from literature reviews and general measures of memory characteristics to cover dimensions relevant to childbirth. Fifty nine items were administered to 523 women in the first year after childbirth (M = 23.7 weeks) as part of an online study of childbirth. Validity of the final scale was checked by examining differences between women with and without probable depression and PTSD. Principal components analysis identified 23 items representing six aspects of memory accounting for 64% of the variance. These were: Emotional memory, Centrality of memory to identity, Coherence, Reliving, Involuntary recall, and Sensory memory. Reliability was good (M alpha = .80). Women with probable depression or PTSD reported more emotional memory, centrality of memories and involuntary recall. Women with probable depression also reported more reliving, and those with probable PTSD reported less coherence and sensory memory. The results suggest the BirthMARQ is a coherent and valid measure of the characteristics of memory for childbirth which may be important in postnatal mood and psychopathology. While further testing of its reliability and validity is needed, it is a measure capable of becoming a valuable tool for examining memory characteristics in the important context of childbirth.
Joshi, Nikhil S; Cui, Weiguo; Dominguez, Claudia X; Chen, Jonathan H; Hand, Timothy W; Kaech, Susan M
2011-10-15
Memory CD8 T cells acquire effector memory cell properties after reinfection and may reach terminally differentiated, senescent states ("Hayflick limit") after multiple infections. The signals controlling this process are not well understood, but we found that the degree of secondary effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and preexisting memory CD8 T cell number (i.e., primary memory CD8 T cell precursor frequency) present during secondary infection. Compared with naive cells, memory CD8 T cells were predisposed toward terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of Ag. TE cell formation after secondary (2°) or tertiary infections was dependent on increased T-bet expression because T-bet(+/-) cells were resistant to these phenotypic changes. Larger numbers of preexisting memory CD8 T cells limited the duration of 2° infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2° TE CD8 T cells that formed. Together, these data show that over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with Ag or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by preexisting memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies.
NASA Astrophysics Data System (ADS)
Bhatnagar, Promod K.; Gupta, Poonam; Singh, Laxman
2001-06-01
Chalcogenide based alloys find applications in a number of devices like optical memories, IR detectors, optical switches, photovoltaics, compound semiconductor heterosrtuctures etc. We have modified the Gurman's statistical thermodynamic model (STM) of binary covalent alloys. In the Gurman's model, entropy calculations are based on the number of structural units present. The need to modify this model arose due to the fact that it gives equal probability for all the tetrahedra present in the alloy. We have modified the Gurman's model by introducing the concept that the entropy is based on the bond arrangement rather than that on the structural units present. In the present work calculation based on this modification have been presented for optical properties, which find application in optical switching/memories, solar cells and other optical devices. It has been shown that the calculated optical parameters (for a typical case of GaxSe1-x) based on modified model are closer to the available experimental results. These parameters include refractive index, extinction coefficient, dielectric functions, optical band gap etc. GaxSe1-x has been found to be suitable for reversible optical memories also, where phase change (a yields c and vice versa) takes place at specified physical conditions. DTA/DSC studies also suggest the suitability of this material for optical switching/memory applications. We have also suggested possible use of GaxSe1-x (x = 0.4) in place of oxide layer in a Metal - Oxide - Semiconductor type solar cells. The new structure is Metal - Ga2Se3 - GaAs. The I-V characteristics and other parameters calculated for this structure are found to be much better than that for Si based solar cells. Maximum output power is obtained at the intermediate layer thickness approximately 40 angstroms for this typical solar cell.
Tier identification (TID) for tiered memory characteristics
Chang, Jichuan; Lim, Kevin T; Ranganathan, Parthasarathy
2014-03-25
A tier identification (TID) is to indicate a characteristic of a memory region associated with a virtual address in a tiered memory system. A thread may be serviced according to a first path based on the TID indicating a first characteristic. The thread may be serviced according to a second path based on the TID indicating a second characteristic.
Mutation in the Fas Pathway Impairs CD8+ T Cell Memory1
Dudani, Renu; Russell, Marsha; van Faassen, Henk; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Fas death pathway is important for lymphocyte homeostasis, but the role of Fas pathway in T cell memory development is not clear. We show that whereas the expansion and contraction of CD8+ T cell response against Listeria monocytogenes were similar for wild-type (WT) and Fas ligand (FasL) mutant mice, the majority of memory CD8+ T cells in FasL mutant mice displayed an effector memory phenotype in the long-term in comparison with the mainly central memory phenotype displayed by memory CD8+ T cells in WT mice. Memory CD8+ T cells in FasL mutant mice expressed reduced levels of IFN-γ and displayed poor homeostatic and Ag-induced proliferation. Impairment in CD8+ T cell memory in FasL mutant hosts was not due to defective programming or the expression of mutant FasL on CD8+ T cells, but was caused by perturbed cytokine environment in FasL mutant mice. Although adoptively transferred WT memory CD8+ T cells mediated protection against L. monocytogenes in either the WT or FasL mutant hosts, FasL mutant memory CD8+ T cells failed to mediate protection even in WT hosts. Thus, in individuals with mutation in Fas pathway, impairment in the function of the memory CD8+ T cells may increase their susceptibility to recurrent/latent infections. PMID:18292515
IgG1 memory B cells keep the memory of IgE responses.
He, Jin-Shu; Subramaniam, Sharrada; Narang, Vipin; Srinivasan, Kandhadayar; Saunders, Sean P; Carbajo, Daniel; Wen-Shan, Tsao; Hidayah Hamadee, Nur; Lum, Josephine; Lee, Andrea; Chen, Jinmiao; Poidinger, Michael; Zolezzi, Francesca; Lafaille, Juan J; Curotto de Lafaille, Maria A
2017-09-21
The unique differentiation of IgE cells suggests unconventional mechanisms of IgE memory. IgE germinal centre cells are transient, most IgE cells are plasma cells, and high affinity IgE is produced by the switching of IgG1 cells to IgE. Here we investigate the function of subsets of IgG1 memory B cells in IgE production and find that two subsets of IgG1 memory B cells, CD80 + CD73 + and CD80 - CD73 - , contribute distinctively to the repertoires of high affinity pathogenic IgE and low affinity non-pathogenic IgE. Furthermore, repertoire analysis indicates that high affinity IgE and IgG1 plasma cells differentiate from rare CD80 + CD73 + high affinity memory clones without undergoing further mutagenesis. By identifying the cellular origin of high affinity IgE and the clonal selection of high affinity memory B cells into the plasma cell fate, our findings provide fundamental insights into the pathogenesis of allergies, and on the mechanisms of antibody production in memory B cell responses.IgE is an important mediator of protective immunity as well as allergic reaction, but how high affinity IgE antibodies are produced in memory responses is not clear. Here the authors show that IgE can be generated via class-switch recombination in IgG1 memory B cells without additional somatic hypermutation.
AKAPS Act in a Two-Step Mechanism of Memory Acquisition
Scheunemann, Lisa; Skroblin, Philipp; Hundsrucker, Christian; Klussmann, Enno; Efetova, Marina
2013-01-01
Defining the molecular and neuronal basis of associative memories is based upon behavioral preparations that yield high performance due to selection of salient stimuli, strong reinforcement, and repeated conditioning trials. One of those preparations is the Drosophila aversive olfactory conditioning procedure where animals initiate multiple memory components after experience of a single cycle training procedure. Here, we explored the analysis of acquisition dynamics as a means to define memory components and revealed strong correlations between particular chronologies of shock impact and number experienced during the associative training situation and subsequent performance of conditioned avoidance. Analyzing acquisition dynamics in Drosophila memory mutants revealed that rutabaga (rut)-dependent cAMP signals couple in a divergent fashion for support of different memory components. In case of anesthesia-sensitive memory (ASM) we identified a characteristic two-step mechanism that links rut-AC1 to A-kinase anchoring proteins (AKAP)-sequestered protein kinase A at the level of Kenyon cells, a recognized center of olfactory learning within the fly brain. We propose that integration of rut-derived cAMP signals at level of AKAPs might serve as counting register that accounts for the two-step mechanism of ASM acquisition. PMID:24174675
Intensity and memory characteristics of near-death experiences.
Martial, Charlotte; Charland-Verville, Vanessa; Cassol, Héléna; Didone, Vincent; Van Der Linden, Martial; Laureys, Steven
2017-11-01
Memories of Near-Death Experiences (NDEs) seem to be very detailed and stable over time. At present, there is still no satisfactory explanation for the NDEs' rich phenomenology. Here we compared phenomenological characteristics of NDE memories with the reported experience's intensity. We included 152 individuals with a self-reported "classical" NDE (i.e. occurring in life-threatening conditions). All participants completed a mailed questionnaire that included a measure of phenomenological characteristics of memories (the Memory Characteristics Questionnaire; MCQ) and a measure of NDE's intensity (the Greyson NDE scale). Greyson NDE scale total score was positively correlated with MCQ total score, suggesting that participants who described more intense NDEs also reported more phenomenological memory characteristics of NDE. Using MCQ items, our study also showed that NDE's intensity is associated in particular with sensory details, personal importance and reactivation frequency variables. Copyright © 2017 Elsevier Inc. All rights reserved.
Jeon, Ji Hoon; Joo, Ho-Young; Kim, Young-Min; Lee, Duk Hyun; Kim, Jin-Soo; Kim, Yeon Soo; Choi, Taekjib; Park, Bae Ho
2016-01-01
Highly nonlinear bistable current-voltage (I–V) characteristics are necessary in order to realize high density resistive random access memory (ReRAM) devices that are compatible with cross-point stack structures. Up to now, such I–V characteristics have been achieved by introducing complex device structures consisting of selection elements (selectors) and memory elements which are connected in series. In this study, we report bipolar resistive switching (RS) behaviours of nano-crystalline BiFeO3 (BFO) nano-islands grown on Nb-doped SrTiO3 substrates, with large ON/OFF ratio of 4,420. In addition, the BFO nano-islands exhibit asymmetric I–V characteristics with high nonlinearity factor of 1,100 in a low resistance state. Such selector-free RS behaviours are enabled by the mosaic structures and pinned downward ferroelectric polarization in the BFO nano-islands. The high resistance ratio and nonlinearity factor suggest that our BFO nano-islands can be extended to an N × N array of N = 3,740 corresponding to ~107 bits. Therefore, our BFO nano-island showing both high resistance ratio and nonlinearity factor offers a simple and promising building block of high density ReRAM. PMID:27001415
The role of cytokines in T-cell memory in health and disease.
Raeber, Miro E; Zurbuchen, Yves; Impellizzieri, Daniela; Boyman, Onur
2018-05-01
Upon stimulation with their cognate antigen, naive T cells undergo proliferation and differentiation into effector cells, followed by apoptosis or survival as precursors of long-lived memory cells. These phases of a T-cell response and the ensuing maintenance of memory T cells are shaped by cytokines, most notably interleukin-2 (IL-2), IL-7, and IL-15 that share the common γ chain (γ c ) cytokine receptor. Steady-state production of IL-7 and IL-15 is necessary for background proliferation and homeostatic survival of CD4 + and CD8 + memory T cells. During immune responses, augmented levels of IL-2, IL-15, IL-21, IL-12, IL-18, and type-I interferons determine the memory potential of antigen-specific effector CD8 + cells, while increased IL-2 and IL-15 cause bystander proliferation of heterologous CD4 + and CD8 + memory T cells. Limiting availability of γ c cytokines, reduction in regulatory T cells or IL-10, and persistence of inflammation or cognate antigen can result in memory T cells, which fail to become cytokine-dependent long-lived cells. Conversely, increased IL-7 and IL-15 can expand memory T cells, including pathogenic tissue-resident memory T cells, as seen in lymphopenia and certain chronic-inflammatory disorders and malignancies. These abovementioned factors impact immunotherapy and vaccines directed at memory T cells in cancer and chronic infection. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Memory vs memory-like: The different facets of CD8+ T-cell memory in HCV infection.
Hofmann, Maike; Wieland, Dominik; Pircher, Hanspeter; Thimme, Robert
2018-05-01
Memory CD8 + T cells are essential in orchestrating protection from re-infection. Hallmarks of virus-specific memory CD8 + T cells are the capacity to mount recall responses with rapid induction of effector cell function and antigen-independent survival. Growing evidence reveals that even chronic infection does not preclude virus-specific CD8 + T-cell memory formation. However, whether this kind of CD8 + T-cell memory that is established during chronic infection is indeed functional and provides protection from re-infection is still unclear. Human chronic hepatitis C virus infection represents a unique model system to study virus-specific CD8 + T-cell memory formation during and after cessation of persisting antigen stimulation. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Human memory CD8 T cell effector potential is epigenetically preserved during in vivo homeostasis.
Abdelsamed, Hossam A; Moustaki, Ardiana; Fan, Yiping; Dogra, Pranay; Ghoneim, Hazem E; Zebley, Caitlin C; Triplett, Brandon M; Sekaly, Rafick-Pierre; Youngblood, Ben
2017-06-05
Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell-mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (T EM ), and longer-lived central memory (T CM ) and stem cell memory (T SCM ) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7- and IL-15-mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of T CM and T SCM memory cells resulted in phenotypic conversion into T EM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired T EM -associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells. © 2017 Abdelsamed et al.
CD4 T-Cell Memory Generation and Maintenance
Gasper, David J.; Tejera, Melba Marie; Suresh, M.
2014-01-01
Immunologic memory is the adaptive immune system's powerful ability to remember a previous antigen encounter and react with accelerated vigor upon antigen re-exposure. It provides durable protection against reinfection with pathogens and is the foundation for vaccine-induced immunity. Unlike the relatively restricted immunologic purview of memory B cells and CD8 T cells, the field of CD4 T-cell memory must account for multiple distinct lineages with diverse effector functions, the issue of lineage commitment and plasticity, and the variable distribution of memory cells within each lineage. Here, we discuss the evidence for lineage-specific CD4 T-cell memory and summarize the known factors contributing to memory-cell generation, plasticity, and long-term maintenance. PMID:24940912
IL-15 regulates memory CD8+ T cell O-glycan synthesis and affects trafficking
Nolz, Jeffrey C.; Harty, John T.
2014-01-01
Memory and naive CD8+ T cells exhibit distinct trafficking patterns. Specifically, memory but not naive CD8+ T cells are recruited to inflamed tissues in an antigen-independent manner. However, the molecular mechanisms that regulate memory CD8+ T cell trafficking are largely unknown. Here, using murine models of infection and T cell transfer, we found that memory but not naive CD8+ T cells dynamically regulate expression of core 2 O-glycans, which interact with P- and E-selectins to modulate trafficking to inflamed tissues. Following infection, antigen-specific effector CD8+ T cells strongly expressed core 2 O-glycans, but this glycosylation pattern was lost by most memory CD8+ T cells. After unrelated infection or inflammatory challenge, memory CD8+ T cells synthesized core 2 O-glycans independently of antigen restimulation. The presence of core 2 O-glycans subsequently directed these cells to inflamed tissue. Memory and naive CD8+ T cells exhibited the opposite pattern of epigenetic modifications at the Gcnt1 locus, which encodes the enzyme that initiates core 2 O-glycan synthesis. The open chromatin configuration in memory CD8+ T cells permitted de novo generation of core 2 O-glycans in a TCR-independent, but IL-15–dependent, manner. Thus, IL-15 stimulation promotes antigen-experienced memory CD8+ T cells to generate core 2 O-glycans, which subsequently localize them to inflamed tissues. These findings suggest that CD8+ memory T cell trafficking potentially can be manipulated to improve host defense and immunotherapy. PMID:24509081
Enhancement of Immune Memory Responses to Respiratory Infection
2017-08-01
induction of highly specific B and T cell responses against viral infections. Despite recent progress in vaccine development, the molecular mechanisms...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long-term memory B cells needed to protect against influenza...infection. Human influenza-specific memory B cells also have high levels of autophagy, but whether autophagy protects memory B cell survival in humans
Allograft dendritic cell p40 homodimers activate donor-reactive memory CD8+ T cells
Tsuda, Hidetoshi; Su, Charles A.; Tanaka, Toshiaki; Ayasoufi, Katayoun; Min, Booki; Valujskikh, Anna; Fairchild, Robert L.
2018-01-01
Recipient endogenous memory T cells with donor reactivity pose an important barrier to successful transplantation and costimulatory blockade–induced graft tolerance. Longer ischemic storage times prior to organ transplantation increase early posttransplant inflammation and negatively impact early graft function and long-term graft outcome. Little is known about the mechanisms enhancing endogenous memory T cell activation to mediate tissue injury within the increased inflammatory environment of allografts subjected to prolonged cold ischemic storage (CIS). Endogenous memory CD4+ and CD8+ T cell activation is markedly increased within complete MHC-mismatched cardiac allografts subjected to prolonged versus minimal CIS, and the memory CD8+ T cells directly mediate CTLA-4Ig–resistant allograft rejection. Memory CD8+ T cell activation within allografts subjected to prolonged CIS requires memory CD4+ T cell stimulation of graft DCs to produce p40 homodimers, but not IL-12 p40/p35 heterodimers. Targeting p40 abrogates memory CD8+ T cell proliferation within the allografts and their ability to mediate CTLA-4Ig–resistant allograft rejection. These findings indicate a critical role for memory CD4+ T cell–graft DC interactions to increase the intensity of endogenous memory CD8+ T cell activation needed to mediate rejection of higher-risk allografts subjected to increased CIS. PMID:29467328
Pregnancy persistently affects memory T cell populations.
Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R
2017-02-01
Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Miyakoda, Mana; Kimura, Daisuke; Honma, Kiri; Kimura, Kazumi; Yuda, Masao; Yui, Katsuyuki
2012-11-01
Conditions required for establishing protective immune memory vary depending on the infecting microbe. Although the memory immune response against malaria infection is generally thought to be relatively slow to develop and can be lost rapidly, experimental evidence is insufficient. In this report, we investigated the generation, maintenance, and recall responses of Ag-specific memory CD8(+) T cells using Plasmodium berghei ANKA expressing OVA (PbA-OVA) as a model system. Mice were transferred with OVA-specific CD8(+) T (OT-I) cells and infected with PbA-OVA or control Listeria monocytogenes expressing OVA (LM-OVA). Central memory type OT-I cells were maintained for >2 mo postinfection and recovery from PbA-OVA. Memory OT-I cells produced IFN-γ as well as TNF-α upon activation and were protective against challenge with a tumor expressing OVA, indicating that functional memory CD8(+) T cells can be generated and maintained postinfection with P. berghei ANKA. Cotransfer of memory OT-I cells with naive OT-I cells to mice followed by infection with PbA-OVA or LM-OVA revealed that clonal expansion of memory OT-I cells was limited during PbA-OVA infection compared with expansion of naive OT-I cells, whereas it was more rapid during LM-OVA infection. The expression of inhibitory receptors programmed cell death-1 and LAG-3 was higher in memory-derived OT-I cells than naive-derived OT-I cells during infection with PbA-OVA. These results suggest that memory CD8(+) T cells can be established postinfection with P. berghei ANKA, but their recall responses during reinfection are more profoundly inhibited than responses of naive CD8(+) T cells.
Silent memory engrams as the basis for retrograde amnesia
Roy, Dheeraj S.; Muralidhar, Shruti; Smith, Lillian M.
2017-01-01
Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams “silent engrams” and the cells bearing them “silent engram cells.” The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21–activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells. PMID:29078397
Silent memory engrams as the basis for retrograde amnesia.
Roy, Dheeraj S; Muralidhar, Shruti; Smith, Lillian M; Tonegawa, Susumu
2017-11-14
Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.
Badell, IR; Kitchens, WH; Wagener, ME; Lukacher, AE; Larsen, CP; Ford, ML
2017-01-01
Recent studies have shown that the quantity of donor-reactive memory T cells is an important factor in determining the relative heterologous immunity barrier posed during transplantation. Here, we hypothesized that the quality of T cell memory also potently influences the response to costimulation blockade-based immunosuppression. Using a murine skin graft model of CD8+ memory T cell-mediated costimulation blockade resistance, we elicited donor-reactive memory T cells using three distinct types of pathogen infections. Strikingly, we observed differential efficacy of a costimulation and integrin blockade regimen based on the type of pathogen used to elicit the donor-reactive memory T cell response. Intriguingly, the most immunosuppression-sensitive memory T cell populations were composed primarily of central memory cells that possessed greater recall potential, exhibited a less differentiated phenotype, and contained more multi-cytokine producers. These data therefore demonstrate that the memory T cell barrier is dependent on the specific type of pathogen infection via which the donor-reactive memory T cells are elicited, and suggest that the immune stimulation history of a given transplant patient may profoundly influence the relative barrier posed by heterologous immunity during transplantation. PMID:26228897
Karahan, G E; de Vaal, Y J H; Krop, J; Wehmeier, C; Roelen, D L; Claas, F H J; Heidt, S
2017-10-01
Humoral responses against mismatched donor HLA are routinely measured as serum HLA antibodies, which are mainly produced by bone marrow-residing plasma cells. Individuals with a history of alloimmunization but lacking serum antibodies may harbor circulating dormant memory B cells, which may rapidly become plasma cells on antigen reencounter. Currently available methods to detect HLA-specific memory B cells are scarce and insufficient in quantifying the complete donor-specific memory B cell response due to their dependence on synthetic HLA molecules. We present a highly sensitive and specific tool for quantifying donor-specific memory B cells in peripheral blood of individuals using cell lysates covering the complete HLA class I and class II repertoire of an individual. Using this enzyme-linked immunospot (ELISpot) assay, we found a median frequency of 31 HLA class I and 89 HLA class II-specific memory B cells per million IgG-producing cells directed at paternal HLA in peripheral blood samples from women (n = 22) with a history of pregnancy, using cell lysates from spouses. The donor-specific memory B cell ELISpot can be used in HLA diagnostic laboratories as a cross-match assay to quantify donor-specific memory B cells in patients with a history of sensitizing events. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
Nolz, Jeffrey C.; Harty, John T.
2011-01-01
SUMMARY Infection or vaccination confers heightened resistance to pathogen re-challenge due to quantitative and qualitative differences between naïve and primary memory T cells. Herein, we show that secondary (boosted) memory CD8+ T cells were better than primary memory CD8+ T cells in controlling some, but not all acute infections with diverse pathogens. However, secondary memory CD8+ T cells were less efficient than an equal number of primary memory cells at preventing chronic LCMV infection and are more susceptible to functional exhaustion. Importantly, localization of memory CD8+ T cells within lymph nodes, which is reduced by antigen re-stimulation, was critical for both viral control in lymph nodes and for the sustained CD8+ T cell response required to prevent chronic LCMV infection. Thus, repeated antigen-stimulation shapes memory CD8+ T cell populations to either enhance or decrease per cell protective immunity in a pathogen-specific manner, a concept of importance in vaccine design against specific diseases. PMID:21549619
NASA Astrophysics Data System (ADS)
Kim, Heesang; Oh, Byoungchan; Kim, Kyungdo; Cha, Seon-Yong; Jeong, Jae-Goan; Hong, Sung-Joo; Lee, Jong-Ho; Park, Byung-Gook; Shin, Hyungcheol
2010-09-01
We generated traps inside gate oxide in gate-drain overlap region of recess channel type dynamic random access memory (DRAM) cell transistor through Fowler-Nordheim (FN) stress, and observed gate induced drain leakage (GIDL) current both in time domain and in frequency domain. It was found that the trap inside gate oxide could generate random telegraph signal (RTS)-like fluctuation in GIDL current. The characteristics of that fluctuation were similar to those of RTS-like fluctuation in GIDL current observed in the non-stressed device. This result shows the possibility that the trap causing variable retention time (VRT) in DRAM data retention time can be located inside gate oxide like channel RTS of metal-oxide-semiconductor field-effect transistors (MOSFETs).
Electrically erasable non-volatile memory via electrochemical deposition of multifractal aggregates
NASA Astrophysics Data System (ADS)
West, William Clark
An electrically erasable non-volatile memory system based on the electrochemical deposition of Ag or Cu from a solid electrolyte is presented. This memory system, referred to as Metal Dendrite Memory, is characterized by its simplicity of design and operation, low power consumption, and potentially high cell density. By applying a small DC voltage (2.5-5V) across a Cu or Ag doped As-S amorphous chalcogenide film sandwiched between two metal electrodes, a metal filament can be electrodeposited, shorting the large impedance solid electrolyte ("on" state). Application of smaller amplitude voltage pulses (1-1.5V) across the metal filament ruptures the short, returning the cell to the high impedance state ("off" state). The state of the cell is read by applying very small amplitude voltage pulses (0.25V). These "read" voltage pulses do not disturb the state of the cell even after 10sp7 pulses. Due to difficulties in characterizing this solid electrolyte system via conventional techniques, the MDM cells have been examined using low excitation characterization methods such as Impedance Spectroscopy (IS) and polarization measurements. These studies have yielded a self-consistent equivalent circuit model as well as parameters such as ionic diffusivity and conductivity, double layer and geometric capacitances. In addition to materials characterization, the speed at which the MDM cells operate has been systematically studied using a series of statistically designed experiments, demonstrating the importance of photodoping time and applied voltage on device speed. These results were further examined using IS and Rutherford Backscattering Spectrometry (RBS). The morphology of the growing electrodeposit was studied in several different electrode arrangements and excitation conditions. Under migrationally limited conditions, the electrodeposit grew in multifractal patterns, as measured using lacunarity analysis. If a conducting film was deposited parallel to the growth direction, the electrodeposition could be driven from Diffusion Limited Aggregation (DLA) to Densely Branched Morphology (DBM) modes by changing the voltage applied to the cell. In summary, this study has laid the groundwork for future research and development of MDM memory systems by identifying many important characteristics of the MDM cell. These findings include quantitative measurement of ionic transport values, identification of the electrochemical mechanisms involved in MDM data storage, determination of parameters that are statistically significant in affecting data storage speed, and determination of the effect of cell geometry and bias on electrodeposit morphology.
Identification of Nascent Memory CD8 T Cells and Modeling of Their Ontogeny.
Crauste, Fabien; Mafille, Julien; Boucinha, Lilia; Djebali, Sophia; Gandrillon, Olivier; Marvel, Jacqueline; Arpin, Christophe
2017-03-22
Primary immune responses generate short-term effectors and long-term protective memory cells. The delineation of the genealogy linking naive, effector, and memory cells has been complicated by the lack of phenotypes discriminating effector from memory differentiation stages. Using transcriptomics and phenotypic analyses, we identify Bcl2 and Mki67 as a marker combination that enables the tracking of nascent memory cells within the effector phase. We then use a formal approach based on mathematical models describing the dynamics of population size evolution to test potential progeny links and demonstrate that most cells follow a linear naive→early effector→late effector→memory pathway. Moreover, our mathematical model allows long-term prediction of memory cell numbers from a few early experimental measurements. Our work thus provides a phenotypic means to identify effector and memory cells, as well as a mathematical framework to investigate their genealogy and to predict the outcome of immunization regimens in terms of memory cell numbers generated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Hosokawa, T; Tanaka, Y; Aoike, A; Kawai, K; Muramatsu, S
1984-09-01
The time course of B-cell memory development to a dinitrophenyl (DNP) T-independent type-2 (TI-2) antigen was investigated by adoptive cell transfer. Strong IgM and IgG memory developed in BALB/c mice after immunization with DNP-dextran, to be recalled by challenge with either T-dependent (TD) antigen or TI-2 antigen. However, only weak IgM memory and very feeble IgG memory were detected in athymic nude mice receiving the same immunization as euthymic mice. Once memory was established under probable T cell influence, its recall by TI-2 antigen challenge seemed independent of T cell help and did not require sharing of carriers between priming and challenge antigens. The following may be concluded. (i) Long-term IgM and IgG memory is induced by TI-2 antigen priming in the presence of functional T cells. (ii) The class switch from IgM to IgG in the memory B cell pool is driven effectively by TI-2 antigen and is probably T cell-dependent.
McKinnon, A; Brewer, N; Meiser-Stedman, R; Nixon, R D V
2017-03-01
The present study addresses gaps in knowledge regarding the association between trauma memory processes and posttraumatic stress responses in youth. Our primary goal was to explore the relative contribution of perceptions of trauma memory quality versus narrative trauma memory characteristics to explain overall adjustment. Children (N = 67) were interviewed within four weeks (T1) of an injury leading to hospital treatment and then again eight weeks later (T2). In each interview, the child told a trauma narrative (which were later coded), and answered the Trauma Memory Quality Questionnaire (Meiser-Stedman, Smith, Yule, & Dalgleish, 2007a), a self-report measure indexing the sensory, fragmented, and disorganised characteristics of trauma memory. They then completed measures of Acute Stress Disorder (ASD) symptoms and associated psychopathology at T1 and measures of Posttraumatic Stress (PTS) symptoms and associated psychopathology at T2. Self-reported trauma memory characteristics predicted ASD symptoms cross-sectionally at T1 and PTS symptoms prospectively over time. At both time points, self-reported trauma memory characteristics accounted for all of the unique variance in symptoms initially explained by narrative characteristics. A reduction in self-report ratings, but not the hypothesised narrative features (e.g., disorganised or lexical elements of the narrative), significantly predicted a reduction in PTS symptoms over time. The small sample size and the absence of a within-subjects narrative control were the main limitations of the study. These findings underscore the importance of self-reported trauma memory characteristics to the aetiology of PTSD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kaji, Tomohiro; Ishige, Akiko; Hikida, Masaki; Taka, Junko; Hijikata, Atsushi; Kubo, Masato; Nagashima, Takeshi; Takahashi, Yoshimasa; Kurosaki, Tomohiro; Okada, Mariko; Ohara, Osamu
2012-01-01
One component of memory in the antibody system is long-lived memory B cells selected for the expression of somatically mutated, high-affinity antibodies in the T cell–dependent germinal center (GC) reaction. A puzzling observation has been that the memory B cell compartment also contains cells expressing unmutated, low-affinity antibodies. Using conditional Bcl6 ablation, we demonstrate that these cells are generated through proliferative expansion early after immunization in a T cell–dependent but GC-independent manner. They soon become resting and long-lived and display a novel distinct gene expression signature which distinguishes memory B cells from other classes of B cells. GC-independent memory B cells are later joined by somatically mutated GC descendants at roughly equal proportions and these two types of memory cells efficiently generate adoptive secondary antibody responses. Deletion of T follicular helper (Tfh) cells significantly reduces the generation of mutated, but not unmutated, memory cells early on in the response. Thus, B cell memory is generated along two fundamentally distinct cellular differentiation pathways. One pathway is dedicated to the generation of high-affinity somatic antibody mutants, whereas the other preserves germ line antibody specificities and may prepare the organism for rapid responses to antigenic variants of the invading pathogen. PMID:23027924
Cooper, Megan A; Fehniger, Todd A; Colonna, Marco
2017-12-18
Studies over the last decade have decisively shown that innate immune natural killer (NK) cells exhibit enhanced long-lasting functional responses following a single activation event. With the increased recognition of memory and memory-like properties of NK cells, questions have arisen with regard to their ability to effectively mediate vaccination responses in humans. Moreover, recently discovered innate lymphoid cells (ILCs) could also potentially exhibit memory-like functions. Here, we review different forms of NK cell memory, and speculate about the ability of these cells and ILCs to meaningfully contribute to vaccination responses. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
An engram found? Evaluating the evidence from fruit flies.
Gerber, Bertram; Tanimoto, Hiromu; Heisenberg, Martin
2004-12-01
Is it possible to localize a memory trace to a subset of cells in the brain? If so, it should be possible to show: first, that neuronal plasticity occurs in these cells. Second, that neuronal plasticity in these cells is sufficient for memory. Third, that neuronal plasticity in these cells is necessary for memory. Fourth, that memory is abolished if these cells cannot provide output during testing. And fifth, that memory is abolished if these cells cannot receive input during training. With regard to olfactory learning in flies, we argue that the notion of the olfactory memory trace being localized to the Kenyon cells of the mushroom bodies is a reasonable working hypothesis.
Van den Oever, Michel C; Rotaru, Diana C; Heinsbroek, Jasper A; Gouwenberg, Yvonne; Deisseroth, Karl; Stuber, Garret D; Mansvelder, Huibert D; Smit, August B
2013-11-13
In addicts, associative memories related to the rewarding effects of drugs of abuse can evoke powerful craving and drug seeking urges, but effective treatment to suppress these memories is not available. Detailed insight into the neural circuitry that mediates expression of drug-associated memory is therefore of crucial importance. Substantial evidence from rodent models of addictive behavior points to the involvement of the ventromedial prefrontal cortex (vmPFC) in conditioned drug seeking, but specific knowledge of the temporal role of vmPFC pyramidal cells is lacking. To this end, we used an optogenetics approach to probe the involvement of vmPFC pyramidal cells in expression of a recent and remote conditioned cocaine memory. In mice, we expressed Channelrhodopsin-2 (ChR2) or Halorhodopsin (eNpHR3.0) in pyramidal cells of the vmPFC and studied the effect of activation or inhibition of these cells during expression of a cocaine-contextual memory on days 1-2 (recent) and ∼3 weeks (remote) after conditioning. Whereas optical activation of pyramidal cells facilitated extinction of remote memory, without affecting recent memory, inhibition of pyramidal cells acutely impaired recall of recent cocaine memory, without affecting recall of remote memory. In addition, we found that silencing pyramidal cells blocked extinction learning at the remote memory time-point. We provide causal evidence of a critical time-dependent switch in the contribution of vmPFC pyramidal cells to recall and extinction of cocaine-associated memory, indicating that the circuitry that controls expression of cocaine memories reorganizes over time.
Interfacial interactions and their impact on redox-based resistive switching memories (ReRAMs)
NASA Astrophysics Data System (ADS)
Valov, Ilia
2017-09-01
Redox-based resistive switching memories are nowadays one of the most studied systems in both academia and industrial communities. These devices are scalable down to an almost atomic level and are supposed to be applicable not only for next-generation nonvolatile memories, but also for neuromorphic computing, alternative logic operations and selector devices. The main characteristic feature of these cells is their nano- to sub-nano dimension. This makes the control and especially prediction of their properties very challenging. One of the ways to achieve better understanding and to improve the control of these systems is to study and modify their interfaces. In this review, first the fundamentals will be discussed, as these are essential for understanding which factors control the nanoscale interface properties. Further, different types of interactions at the electrode/solid electrolyte interface reported for ECM- and VCM-type cells will be exemplarily shown. Finally, the strategies and different solutions used to modify the interfaces and overcome the existing problems on the way to more stable and reliable devices will be highlighted.
Gossel, Graeme; Hogan, Thea; Cownden, Daniel
2017-01-01
Characterising the longevity of immunological memory requires establishing the rules underlying the renewal and death of peripheral T cells. However, we lack knowledge of the population structure and how self-renewal and de novo influx contribute to the maintenance of memory compartments. Here, we characterise the kinetics and structure of murine CD4 T cell memory subsets by measuring the rates of influx of new cells and using detailed timecourses of DNA labelling that also distinguish the behaviour of recently divided and quiescent cells. We find that both effector and central memory CD4 T cells comprise subpopulations with highly divergent rates of turnover, and show that inflows of new cells sourced from the naive pool strongly impact estimates of memory cell lifetimes and division rates. We also demonstrate that the maintenance of CD4 T cell memory subsets in healthy mice is unexpectedly and strikingly reliant on this replenishment. DOI: http://dx.doi.org/10.7554/eLife.23013.001 PMID:28282024
Grau, Morgan; Valsesia, Séverine; Mafille, Julien; Djebali, Sophia; Tomkowiak, Martine; Mathieu, Anne-Laure; Laubreton, Daphné; de Bernard, Simon; Jouve, Pierre-Emmanuel; Ventre, Erwan; Buffat, Laurent; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline
2018-05-15
The pool of memory-phenotype CD8 T cells is composed of Ag-induced (AI) and cytokine-induced innate (IN) cells. IN cells have been described as having properties similar to those of AI memory cells. However, we found that pathogen-induced AI memory cells can be distinguished in mice from naturally generated IN memory cells by surface expression of NKG2D. Using this marker, we described the increased functionalities of AI and IN memory CD8 T cells compared with naive cells, as shown by comprehensive analysis of cytokine secretion and gene expression. However, AI differed from IN memory CD8 T cells by their capacity to migrate to the lung parenchyma upon inflammation or infection, a process dependent on their expression of ITGA1/CD49a and ITGA4/CD49d integrins. Copyright © 2018 by The American Association of Immunologists, Inc.
Gossel, Graeme; Hogan, Thea; Cownden, Daniel; Seddon, Benedict; Yates, Andrew J
2017-03-10
Characterising the longevity of immunological memory requires establishing the rules underlying the renewal and death of peripheral T cells. However, we lack knowledge of the population structure and how self-renewal and de novo influx contribute to the maintenance of memory compartments. Here, we characterise the kinetics and structure of murine CD4 T cell memory subsets by measuring the rates of influx of new cells and using detailed timecourses of DNA labelling that also distinguish the behaviour of recently divided and quiescent cells. We find that both effector and central memory CD4 T cells comprise subpopulations with highly divergent rates of turnover, and show that inflows of new cells sourced from the naive pool strongly impact estimates of memory cell lifetimes and division rates. We also demonstrate that the maintenance of CD4 T cell memory subsets in healthy mice is unexpectedly and strikingly reliant on this replenishment.
Dudani, Renu; Murali-Krishna, Kaja; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Memory T cells are critical for the control of intracellular pathogens and require few signals for maintenance; however, erosion of established preexisting memory CD8+ T cells has been shown to occur during infection with heterologous viral infections. We evaluated whether this also occurs during infection with various intracellular bacteria and what mechanisms may be involved. We demonstrate that erosion of established memory is also induced during infection of mice with various intracellular bacteria, such as Listeria monocytogenes, Salmonella typhimurium, and Mycobacterium bovis (bacillus Calmette-Guérin). The extent of erosion of established CD8+ T cell memory was dependent on the virulence of the heterologous pathogen, not persistence. Furthermore, when antibiotics were used to comprehensively eliminate the heterologous pathogen, the numbers of memory CD8+ T cells were not restored, indicating that erosion of preexisting memory CD8+ T cells was irreversible. Irrespective of the initial numbers of memory CD8+ T cells, challenge with the heterologous pathogen resulted in a similar extent of erosion of memory CD8+ T cells, suggesting that cellular competition was not responsible for erosion. After challenge with the heterologous pathogen, effector memory CD8+ T cells were rapidly eliminated. More importantly, erosion of preexisting memory CD8+ T cells was abrogated in the absence of IFN-γ. These studies help reveal the paradoxical role of IFN-γ. Although IFN-γ promotes the control of intracellular bacterial replication during primary infection, this comes at the expense of erosion of preexisting memory CD8+ T cells in the wake of infection with heterologous pathogens. PMID:18641306
Choi, Sungjin; Lee, Junhyuk; Kim, Donghyoun; Oh, Seulki; Song, Wangyu; Choi, Seonjun; Choi, Eunsuk; Lee, Seung-Beck
2011-12-01
We report on the fabrication and capacitance-voltage characteristics of double layer nickel-silicide nanocrystals with Si3N4 interlayer tunnel barrier for nano-floating gate memory applications. Compared with devices using SiO2 interlayer, the use of Si3N4 interlayer separation reduced the average size (4 nm) and distribution (+/- 2.5 nm) of NiSi2 nanocrystal (NC) charge traps by more than 50% and giving a two fold increase in NC density to 2.3 x 10(12) cm(-2). The increased density and reduced NC size distribution resulted in a significantly decrease in the distribution of the device C-V characteristics. For each program voltage, the distribution of the shift in the threshold voltage was reduced by more than 50% on average to less than 0.7 V demonstrating possible multi-level-cell operation.
miR-150 Regulates Memory CD8 T Cell Differentiation via c-Myb.
Chen, Zeyu; Stelekati, Erietta; Kurachi, Makoto; Yu, Sixiang; Cai, Zhangying; Manne, Sasikanth; Khan, Omar; Yang, Xiaolu; Wherry, E John
2017-09-12
MicroRNAs play an important role in T cell responses. However, how microRNAs regulate CD8 T cell memory remains poorly defined. Here, we found that miR-150 negatively regulates CD8 T cell memory in vivo. Genetic deletion of miR-150 disrupted the balance between memory precursor and terminal effector CD8 T cells following acute viral infection. Moreover, miR-150-deficient memory CD8 T cells were more protective upon rechallenge. A key circuit whereby miR-150 repressed memory CD8 T cell development through the transcription factor c-Myb was identified. Without miR-150, c-Myb was upregulated and anti-apoptotic targets of c-Myb, such as Bcl-2 and Bcl-xL, were also increased, suggesting a miR-150-c-Myb survival circuit during memory CD8 T cell development. Indeed, overexpression of non-repressible c-Myb rescued the memory CD8 T cell defects caused by overexpression of miR-150. Overall, these results identify a key role for miR-150 in memory CD8 T cells through a c-Myb-controlled enhanced survival circuit. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Scarcity of autoreactive human blood IgA+ memory B cells
Prigent, Julie; Lorin, Valérie; Kök, Ayrin; Hieu, Thierry; Bourgeau, Salomé
2016-01-01
Class‐switched memory B cells are key components of the “reactive” humoral immunity, which ensures a fast and massive secretion of high‐affinity antigen‐specific antibodies upon antigenic challenge. In humans, IgA class‐switched (IgA+) memory B cells and IgA antibodies are abundant in the blood. Although circulating IgA+ memory B cells and their corresponding secreted immunoglobulins likely possess major protective and/or regulatory immune roles, little is known about their specificity and function. Here, we show that IgA+ and IgG+ memory B‐cell antibodies cloned from the same healthy humans share common immunoglobulin gene features. IgA and IgG memory antibodies have comparable lack of reactivity to vaccines, common mucosa‐tropic viruses and commensal bacteria. However, the IgA+ memory B‐cell compartment contains fewer polyreactive clones and importantly, only rare self‐reactive clones compared to IgG+ memory B cells. Self‐reactivity of IgAs is acquired following B‐cell affinity maturation but not antibody class switching. Together, our data suggest the existence of different regulatory mechanisms for removing autoreactive clones from the IgG+ and IgA+ memory B‐cell repertoires, and/or different maturation pathways potentially reflecting the distinct nature and localization of the cognate antigens recognized by individual B‐cell populations. PMID:27469325
Secondary immunization generates clonally related antigen-specific plasma cells and memory B cells.
Frölich, Daniela; Giesecke, Claudia; Mei, Henrik E; Reiter, Karin; Daridon, Capucine; Lipsky, Peter E; Dörner, Thomas
2010-09-01
Rechallenge with T cell-dependent Ags induces memory B cells to re-enter germinal centers (GCs) and undergo further expansion and differentiation into plasma cells (PCs) and secondary memory B cells. It is currently not known whether the expanded population of memory B cells and PCs generated in secondary GCs are clonally related, nor has the extent of proliferation and somatic hypermutation of their precursors been delineated. In this study, after secondary tetanus toxoid (TT) immunization, TT-specific PCs increased 17- to 80-fold on days 6-7, whereas TT-specific memory B cells peaked (delayed) on day 14 with a 2- to 22-fold increase. Molecular analyses of V(H)DJ(H) rearrangements of individual cells revealed no major differences of gene usage and CDR3 length between TT-specific PCs and memory B cells, and both contained extensive evidence of somatic hypermutation with a pattern consistent with GC reactions. This analysis identified clonally related TT-specific memory B cells and PCs. Within clusters of clonally related cells, sequences shared a number of mutations but also could contain additional base pair changes. The data indicate that although following secondary immunization PCs can derive from memory B cells without further somatic hypermutation, in some circumstances, likely within GC reactions, asymmetric mutation can occur. These results suggest that after the fate decision to differentiate into secondary memory B cells or PCs, some committed precursors continue to proliferate and mutate their V(H) genes.
van Leeuwen, Ester M. M.; Remmerswaal, Ester B. M.; ten Berge, Ineke J. M.; de Visser, Adriëtte W.; van Genderen, Perry J. J.; Goorhuis, Abraham; Visser, Leo G.; Grobusch, Martin P.; de Bree, Godelieve J.
2016-01-01
Introduction Prompted by recent amendments of Yellow Fever (YF) vaccination guidelines from boost to single vaccination strategy and the paucity of clinical data to support this adjustment, we used the profile of the YF-specific CD8+ T-cell subset profiles after primary vaccination and neutralizing antibodies as a proxy for potentially longer lasting immunity. Methods and Findings PBMCs and serum were collected in six individuals on days 0, 3, 5, 12, 28 and 180, and in 99 individuals >10 years after YF-vaccination. Phenotypic characteristics of YF- tetramer+ CD8+ T-cells were determined using class I tetramers. Antibody responses were measured using a standardized plaque reduction neutralization test (PRNT). Also, characteristics of YF-tetramer positive CD8+ T-cells were compared between individuals who had received a primary- and a booster vaccination. YF-tetramer+ CD8+ T-cells were detectable on day 12 (median tetramer+ cells as percentage of CD8+ T-cells 0.2%, range 0.07–3.1%). On day 180, these cells were still present (median 0.06%, range 0.02–0.78%). The phenotype of YF-tetramer positive CD8+ T-cells shifted from acute phase effector cells on day 12, to late differentiated or effector memory phenotype (CD45RA-/+CD27-) on day 28. Two subsets of YF-tetramer positive T-cells (CD45RA+CD27- and CD45RA+CD27+) persisted until day 180. Within all phenotypic subsets, the T-bet: Eomes ratio tended to be high on day 28 after vaccination and shifted towards predominant Eomes expression on day 180 (median 6.0 (day 28) vs. 2.2 (day 180) p = 0.0625), suggestive of imprinting compatible with long-lived memory properties. YF-tetramer positive CD8+ T-cells were detectable up to 18 years post vaccination, YF-specific antibodies were detectable up to 40 years after single vaccination. Booster vaccination did not increase titers of YF-specific antibodies (mean 12.5 vs. 13.1, p = 0.583), nor induce frequencies or alter phenotypes of YF-tetramer+ CD8+ T-cells. Conclusion The presence of a functionally competent YF-specific memory T-cell pool 18 years and sufficient titers of neutralizing antibodies 35–40 years after first vaccination suggest that single vaccination may be sufficient to provide long-term immunity. PMID:26977808
Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.
2013-01-01
Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells. PMID:23346085
Cui, Weiguo; Joshi, Nikhil S; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M
2014-05-01
Vaccines formulated with nonreplicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in Ab production has been well studied, but how they influence memory CD8(+) T cell differentiation remains poorly defined. In this study we implemented dendritic cell-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8(+) T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8(+) T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8(+) T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8(+) T cells, but it also promoted their terminal differentiation and contraction; thus, fewer memory CD8(+) T cells formed, and MPLA-primed animals were less protected against secondary infection compared with those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8(+) T cells. Lastly, we demonstrated that the LPS-TLR4-derived "pro-memory" signals were MyD88, but not Toll/IL-1R domain-containing adapter inducing IFN-β, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8(+) T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection.
Characteristics of a lithium-thionyl chloride battery as a memory back-up power source
NASA Astrophysics Data System (ADS)
Iwamaru, T.; Uetani, Y.
An Li/SOCl 2 battery of R6 size (ER6C) has been evaluated as a memory back-up power source for CMOS RAM. The working voltage is 3.6 V and the discharge capacity is 1900 mA h on a 1OK-ohm load. The cell exhibits satisfactory working voltage and discharge capacity over the temperature range -40 °C to 85 °C. The discharge reaction mechanism has been elucidated. Cumulative self discharge during 10 years discharge at 20 μA is estimated to be 3.5%. No serious problems have been observed during abuse tests.
Engrams and Circuits Crucial for Systems Consolidation of a Memory
Kitamura, Takashi; Ogawa, Sachie K.; Roy, Dheeraj S.; Okuyama, Teruhiro; Morrissey, Mark D.; Smith, Lillian M.; Redondo, Roger L.; Tonegawa, Susumu
2017-01-01
Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation remain unknown. We found that neocortical prefrontal memory engram cells, critical for remote contextual fear memory, were rapidly generated during initial learning via inputs from both hippocampal-entorhinal cortex and basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, are maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory. PMID:28386011
Biocompatibility of austenite and martensite phases in NiTi-based alloys
NASA Astrophysics Data System (ADS)
Danilov, A.; Kapanen, A.; Kujala, S.; Saaranen, J.; Ryhänen, J.; Pramila, A.; Jämsä, T.; Tuukkanen, J.
2003-10-01
The effect of surface phase composition on the biocompatibility of NiTi-based shape memory alloys was studied. The biocompatibility characteristics of parent β-phase (austenite) in binary NiTi and of martensite in ternary NiTiCu alloys after similar surface mechanical treatment were compared. The martensitic phase as a result of surface mechanical treatment (strain-induced martensite) was shown to decrease the biocompatibility of material in comparison to fully austenite state. The cytotoxicity (amount of dead cells / 1000 cells) and cell attachent (paxillin count / frame) were found to be linear functions of structural stresses in austenite.
Generation of effector CD8+ T cells and their conversion to memory T cells
Cui, Weiguo; Kaech, Susan M.
2015-01-01
Summary Immunological memory is a cardinal feature of adaptive immunity. We are now beginning to elucidate the mechanisms that govern the formation of memory T cells and their ability to acquire longevity, survive the effector-to-memory transition, and mature into multipotent, functional memory T cells that self-renew. Here, we discuss the recent findings in this area and highlight extrinsic and intrinsic factors that regulate the cellular fate of activated CD8+ T cells. PMID:20636815
Vaccine-elicited memory CD4+ T cell expansion is impaired in the lungs during tuberculosis.
Carpenter, Stephen M; Yang, Jason D; Lee, Jinhee; Barreira-Silva, Palmira; Behar, Samuel M
2017-11-01
Immunological memory is the key biological process that makes vaccines possible. Although tuberculosis vaccines elicit protective immunity in animals, few provide durable protection. To understand why protection is transient, we evaluated the ability of memory CD4+ T cells to expand, differentiate, and control Mycobacterium tuberculosis. Both naïve and memory CD4+ T cells initially proliferated exponentially, and the accumulation of memory T cells in the lung correlated with early bacterial control. However, later during infection, memory CD4+ T cell proliferation was curtailed and no protection was observed. We show that memory CD4+ T cells are first activated in the LN and their recruitment to the lung attenuates bacterial growth. However, their interaction with Mtb-infected macrophages does not promote continued proliferation. We conclude that a lack of sustained expansion by memory-derived T cells in the lung limits the durability of their protection, linking their slower expansion with transient protection in vaccinated mice.
Allen, Kevin; Fuchs, Elke C.; Jaschonek, Hannah; Bannerman, David M.; Monyer, Hannah
2011-01-01
Gap junctions containing connexin-36 (Cx36) electrically couple interneurons in many brain regions and synchronize their activity. We used Cx36 knockout mice (Cx36−/−) to study the importance of electrical coupling between interneurons for spatial coding in the hippocampus and for different forms of hippocampus-dependent spatial memory. Recordings in behaving mice revealed that the spatial selectivity of hippocampal pyramidal neurons was reduced and less stable in Cx36−/− mice. Altered network activity was reflected in slower theta oscillations in the mutants. Temporal coding, assessed by determining the presence and characteristics of theta phase precession, had different dynamics in Cx36−/− mice compared to controls. At the behavioral level, Cx36−/− mice displayed impaired short-term spatial memory but normal spatial reference memory. These results highlight the functional role of electrically coupled interneurons for spatial coding and cognition. Moreover, they suggest that the precise spatial selectivity of place cells is not essential for normal performance on spatial tasks assessing associative long-term memory. PMID:21525295
Tolerance and Exhaustion: Defining Mechanisms of T cell Dysfunction
Schietinger, Andrea; Greenberg, Philip D.
2013-01-01
CD8 T cell activation and differentiation is tightly controlled, and dependent on the context in which naïve T cells encounter antigen, can either result in functional memory or T cell dysfunction, including exhaustion, tolerance, anergy, or senescence. With the identification of phenotypic and functional traits shared in different settings of T cell dysfunction, distinctions between such dysfunctional `states' have become blurred. Here, we discuss distinct states of CD8 T cell dysfunction, with emphasis on (i) T cell tolerance to self-antigens (self-tolerance), (ii) T cell exhaustion during chronic infections, and (iii) tumor-induced T cell dysfunction. We highlight recent findings on cellular and molecular characteristics defining these states, cell-intrinsic regulatory mechanisms that induce and maintain them, and strategies that can lead to their reversal. PMID:24210163
Marriott, Clare L; Dutton, Emma E; Tomura, Michio; Withers, David R
2017-05-01
Several different memory T-cell populations have now been described based upon surface receptor expression and migratory capabilities. Here we have assessed murine endogenous memory CD4 + T cells generated within a draining lymph node and their subsequent migration to other secondary lymphoid tissues. Having established a model response targeting a specific peripheral lymph node, we temporally labelled all the cells within draining lymph node using photoconversion. Tracking of photoconverted and non-photoconverted Ag-specific CD4 + T cells revealed the rapid establishment of a circulating memory population in all lymph nodes within days of immunisation. Strikingly, a resident memory CD4 + T cell population became established in the draining lymph node and persisted for several months in the absence of detectable migration to other lymphoid tissue. These cells most closely resembled effector memory T cells, usually associated with circulation through non-lymphoid tissue, but here, these cells were retained in the draining lymph node. These data indicate that lymphoid tissue resident memory CD4 + T-cell populations are generated in peripheral lymph nodes following immunisation. © 2017 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characteristics of memories for near-death experiences.
Moore, Lauren E; Greyson, Bruce
2017-05-01
Near-death experiences are vivid, life-changing experiences occurring to people who come close to death. Because some of their features, such as enhanced cognition despite compromised brain function, challenge our understanding of the mind-brain relationship, the question arises whether near-death experiences are imagined rather than real events. We administered the Memory Characteristics Questionnaire to 122 survivors of a close brush with death who reported near-death experiences. Participants completed Memory Characteristics Questionnaires for three different memories: that of their near-death experience, that of a real event around the same time, and that of an event they had imagined around the same time. The Memory Characteristics Questionnaire score was higher for the memory of the near-death experience than for that of the real event, which in turn was higher than that of the imagined event. These data suggest that memories of near-death experiences are recalled as "realer" than real events or imagined events. Copyright © 2017 Elsevier Inc. All rights reserved.
A transcriptome-based model of central memory CD4 T cell death in HIV infection.
Olvera-García, Gustavo; Aguilar-García, Tania; Gutiérrez-Jasso, Fany; Imaz-Rosshandler, Iván; Rangel-Escareño, Claudia; Orozco, Lorena; Aguilar-Delfín, Irma; Vázquez-Pérez, Joel A; Zúñiga, Joaquín; Pérez-Patrigeon, Santiago; Espinosa, Enrique
2016-11-22
Human central memory CD4 T cells are characterized by their capacity of proliferation and differentiation into effector memory CD4 T cells. Homeostasis of central memory CD4 T cells is considered a key factor sustaining the asymptomatic stage of Human Immunodeficiency Virus type 1 (HIV-1) infection, while progression to acquired immunodeficiency syndrome is imputed to central memory CD4 T cells homeostatic failure. We investigated if central memory CD4 T cells from patients with HIV-1 infection have a gene expression profile impeding proliferation and survival, despite their activated state. Using gene expression microarrays, we analyzed mRNA expression patterns in naive, central memory, and effector memory CD4 T cells from healthy controls, and naive and central memory CD4 T cells from patients with HIV-1 infection. Differentially expressed genes, defined by Log 2 Fold Change (FC) ≥ |0.5| and Log (odds) > 0, were used in pathway enrichment analyses. Central memory CD4 T cells from patients and controls showed comparable expression of differentiation-related genes, ruling out an effector-like differentiation of central memory CD4 T cells in HIV infection. However, 210 genes were differentially expressed in central memory CD4 T cells from patients compared with those from controls. Expression of 75 of these genes was validated by semi quantitative RT-PCR, and independently reproduced enrichment results from this gene expression signature. The results of functional enrichment analysis indicated movement to cell cycle phases G1 and S (increased CCNE1, MKI67, IL12RB2, ADAM9, decreased FGF9, etc.), but also arrest in G2/M (increased CHK1, RBBP8, KIF11, etc.). Unexpectedly, the results also suggested decreased apoptosis (increased CSTA, NFKBIA, decreased RNASEL, etc.). Results also suggested increased IL-1β, IFN-γ, TNF, and RANTES (CCR5) activity upstream of the central memory CD4 T cells signature, consistent with the demonstrated milieu in HIV infection. Our findings support a model where progressive loss of central memory CD4 T cells in chronic HIV-1 infection is driven by increased cell cycle entry followed by mitotic arrest, leading to a non-apoptotic death pathway without actual proliferation, possibly contributing to increased turnover.
Increased memory T cell populations in Pb-exposed children from an e-waste-recycling area.
Cao, Junjun; Xu, Xijin; Zhang, Yu; Zeng, Zhijun; Hylkema, Machteld N; Huo, Xia
2018-03-01
Chronic exposure to heavy metals could affect cell-mediated immunity. The aim of this study was to explore the status of memory T cell development in preschool children from an e-waste recycling area. Blood lead (Pb) levels, peripheral T cell subpopulations, and serum levels of cytokines (IL-2/IL-7/IL-15), relevant to generation and homeostasis of memory T cells were evaluated in preschool children from Guiyu (e-waste-exposed group) and Haojiang (reference group). The correlations between blood Pb levels and percentages of memory T cell subpopulations were also evaluated. Guiyu children had higher blood Pb levels and increased percentages of CD4 + central memory T cells and CD8 + central memory T cells than in the Haojiang group. Moreover, blood Pb levels were positively associated with the percentages of CD4 + central memory T cells. In contrast, Pb exposure contributed marginally in the change of percentages of CD8 + central memory T cells in children. There was no significant difference in the serum cytokine levels between the e-waste-exposed and reference children. Taken together, preschool children from an e-waste recycling area suffer from relatively higher levels of Pb exposure, which might facilitate the development of CD4 + central memory T cells in these children. Copyright © 2017. Published by Elsevier B.V.
Stroma: the forgotten cells of innate immune memory.
Crowley, Thomas; Buckley, Christopher D; Clark, Andrew R
2018-05-05
All organisms are constantly exposed to a variety of infectious and injurious stimuli. These induce inflammatory responses tailored to the threat posed. Whilst the innate immune system is the front line of response to each stimulant, it has been traditionally considered to lack memory, acting in a generic fashion until the adaptive immune arm can take over. This outmoded simplification of the roles of innate and acquired arms of the immune system has been challenged by evidence of myeloid cells altering their response to subsequent encounters based on earlier exposure. This concept of "innate immune memory" has been known for nearly a century, and is accepted amongst myeloid biologists. In recent years, other innate immune cells, such as natural killer cells, have been shown to display memory, suggesting innate immune memory is a trait common to several cell types. Over the last thirty years, evidence has slowly accumulated in favour of not only haematopoietic cells, but also stromal cells, being imbued with memory following inflammatory episodes. A recent publication showing this also to be true in epithelial cells suggests innate immune memory to be widespread, if underappreciated, in non-haematopoietic cells. In this review, we will examine the evidence supporting the existence of innate immune memory in stromal cells. We will also discuss the ramifications of memory in long-lived tissue-resident cells. Finally, we will pose questions we feel to be important in the understanding of these forgotten cells in the field of innate memory. This article is protected by copyright. All rights reserved. © 2018 British Society for Immunology.
NASA Astrophysics Data System (ADS)
Rok Kim, Kyeong; You, Joo Hyung; Dal Kwack, Kae; Kim, Tae Whan
2010-10-01
Unique multibit NAND polycrystalline silicon-oxide-silicon nitride-oxide-silicon (SONOS) memory cells utilizing a separated control gate (SCG) were designed to increase memory density. The proposed NAND SONOS memory device based on a SCG structure was operated as two bits, resulting in an increase in the storage density of the NVM devices in comparison with conventional single-bit memories. The electrical properties of the SONOS memory cells with a SCG were investigated to clarify the charging effects in the SONOS memory cells. When the program voltage was supplied to each gate of the NAND SONOS flash memory cells, the electrons were trapped in the nitride region of the oxide-nitride-oxide layer under the gate to supply the program voltage. The electrons were accumulated without affecting the other gate during the programming operation, indicating the absence of cross-talk between two trap charge regions. It is expected that the inference effect will be suppressed by the lower program voltage than the program voltage of the conventional NAND flash memory. The simulation results indicate that the proposed unique NAND SONOS memory cells with a SCG can be used to increase memory density.
Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M
2016-06-01
The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, H. X.; Zhang, T.; Wang, R. X.
A nano-floating gate memory structure based on Ni nanocrystals (NCs) embedded HfO{sub x} film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfO{sub x} matrix. Pt/Ni-NCs embedded HfO{sub x}/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 10{sup 12} electrons/cm{sup 2}, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 10{sup 4} cycles and excellent retention performance of 10{sup 5} s, fulfilling themore » requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.« less
Charge storage and tunneling mechanism of Ni nanocrystals embedded HfOx film
NASA Astrophysics Data System (ADS)
Zhu, H. X.; Zhang, T.; Wang, R. X.; Zhang, Y. Y.; Li, L. T.; Qiu, X. Y.
2016-05-01
A nano-floating gate memory structure based on Ni nanocrystals (NCs) embedded HfOx film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfOx matrix. Pt/Ni-NCs embedded HfOx/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 1012 electrons/cm2, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 104 cycles and excellent retention performance of 105 s, fulfilling the requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.
D'Souza, Lucas; Gupta, Sneh Lata; Bal, Vineeta; Rath, Satyajit; George, Anna
2017-12-01
B-cell memory was long characterized as isotype-switched, somatically mutated and germinal centre (GC)-derived. However, it is now clear that the memory pool is a complex mixture that includes unswitched and unmutated cells. Further, expression of CD73, CD80 and CD273 has allowed the categorization of B-cell memory into multiple subsets, with combinatorial expression of the markers increasing with GC progression, isotype-switching and acquisition of somatic mutations. We have extended these findings to determine whether these markers can be used to identify IgM memory phenotypically as arising from T-dependent versus T-independent responses. We report that CD73 expression identifies a subset of antigen-experienced IgM + cells that share attributes of functional B-cell memory. This subset is reduced in the spleens of T-cell-deficient and CD40-deficient mice and in mixed marrow chimeras made with mutant and wild-type marrow, the proportion of CD73 + IgM memory is restored in the T-cell-deficient donor compartment but not in the CD40-deficient donor compartment, indicating that CD40 ligation is involved in its generation. We also report that CD40 signalling supports optimal expression of CD73 on splenic T cells and age-associated B cells (ABCs), but not on other immune cells such as neutrophils, marginal zone B cells, peritoneal cavity B-1 B cells and regulatory T and B cells. Our data indicate that in addition to promoting GC-associated memory generation during B-cell differentiation, CD40-signalling can influence the composition of the unswitched memory B-cell pool. They also raise the possibility that a fraction of ABCs may represent T-cell-dependent IgM memory. © 2017 John Wiley & Sons Ltd.
Enamorado, Michel; Iborra, Salvador; Priego, Elena; Cueto, Francisco J.; Quintana, Juan A.; Martínez-Cano, Sarai; Mejías-Pérez, Ernesto; Esteban, Mariano; Melero, Ignacio; Hidalgo, Andrés; Sancho, David
2017-01-01
The goal of successful anti-tumoural immunity is the development of long-term protective immunity to prevent relapse. Infiltration of tumours with CD8+ T cells with a resident memory (Trm) phenotype correlates with improved survival. However, the interplay of circulating CD8+ T cells and Trm cells remains poorly explored in tumour immunity. Using different vaccination strategies that fine-tune the generation of Trm cells or circulating memory T cells, here we show that, while both subsets are sufficient for anti-tumour immunity, the presence of Trm cells improves anti-tumour efficacy. Transferred central memory T cells (Tcm) generate Trm cells following viral infection or tumour challenge. Anti-PD-1 treatment promotes infiltration of transferred Tcm cells within tumours, improving anti-tumour immunity. Moreover, Batf3-dependent dendritic cells are essential for reactivation of circulating memory anti-tumour response. Our findings show the plasticity, collaboration and requirements for reactivation of memory CD8+ T cells subsets needed for optimal tumour vaccination and immunotherapy. PMID:28714465
Promoting Thiol Expression Increases The Durability of Antitumor T cell Functions
Scurti, Gina; Thyagarajan, Krishnamurthy; Kaur, Navtej; Husain, Shahid; Fang, Quan; Naga, Osama S.; Simms, Patricia; Beeson, Gyda; Voelkel-Johnson, Christina; Garrett-Mayer, Elizabeth; Beeson, Craig C.; Nishimura, Michael I.; Mehrotra, Shikhar
2014-01-01
Ex vivo-expanded CD8+ T cells used for adoptive immunotherapy generally acquire an effector memory-like phenotype (TEM cells). With regard to therapeutic applications, two undesired features of this phenotype in vivo are limited persistence and reduced anti-tumor efficacy, relative to CD8+ T cells with a central memory-like phenotype (TCM cells). Further, there is incomplete knowledge about all the differences between TEM and TCM cells that may influence tumor treatment outcomes. Given that TCM cells survive relatively longer in oxidative tumor microenvironments, we investigated the hypothesis that TCM possess relatively greater anti-oxidative capacity than TEM cells. Here we report that TCM cells exhibit a relative increase compared to TEM cells in expression of cell surface thiols, a key target of cellular redox controls, along with other antioxidant molecules. Increased expression of redox regulators in TCM cells inversely correlated with the generation of reactive oxygen and nitrogen species, proliferative capacity and glycolytic enzyme levels. Notably, TCR-transduced T cells pretreated with thiol donors, such as N-acetyl cysteine or rapamycin, up-regulated thiol levels and antioxidant genes. A comparison of anti-tumor CD8+ T cell populations on the basis of surface thiol expression showed that thiol-high cells persisted longer in vivo and exerted superior tumor control. Our results suggest that higher levels of reduced cell surface thiols are a key characteristic of T cells that can control tumor growth, and that profiling this biomarker may have benefits to T cell adoptive immunotherapy protocols. PMID:25164014
Ga-doped indium oxide nanowire phase change random access memory cells
NASA Astrophysics Data System (ADS)
Jin, Bo; Lim, Taekyung; Ju, Sanghyun; Latypov, Marat I.; Kim, Hyoung Seop; Meyyappan, M.; Lee, Jeong-Soo
2014-02-01
Phase change random access memory (PCRAM) devices are usually constructed using tellurium based compounds, but efforts to seek other materials providing desirable memory characteristics have continued. We have fabricated PCRAM devices using Ga-doped In2O3 nanowires with three different Ga compositions (Ga/(In+Ga) atomic ratio: 2.1%, 11.5% and 13.0%), and investigated their phase switching properties. The nanowires (˜40 nm in diameter) can be repeatedly switched between crystalline and amorphous phases, and Ga concentration-dependent memory switching behavior in the nanowires was observed with ultra-fast set/reset rates of 80 ns/20 ns, which are faster than for other competitive phase change materials. The observations of fast set/reset rates and two distinct states with a difference in resistance of two to three orders of magnitude appear promising for nonvolatile information storage. Moreover, we found that increasing the Ga concentration can reduce the power consumption and resistance drift; however, too high a level of Ga doping may cause difficulty in achieving the phase transition.
Functional Performances of CuZnAl Shape Memory Alloy Open-Cell Foams
NASA Astrophysics Data System (ADS)
Biffi, C. A.; Casati, R.; Bassani, P.; Tuissi, A.
2018-01-01
Shape memory alloys (SMAs) with cellular structure offer a unique mixture of thermo-physical-mechanical properties. These characteristics can be tuned by changing the pore size and make the shape memory metallic foams very attractive for developing new devices for structural and functional applications. In this work, CuZnAl SMA foams were produced through the liquid infiltration of space holder method. In comparison, a conventional CuZn brass alloy was foamed trough the same method. Functional performances were studied on both bulk and foamed SMA specimens. Calorimetric response shows similar martensitic transformation (MT) below 0 °C. Compressive response of CuZnAl revealed that mechanical behavior is strongly affected by sample morphology and that damping capacity of metallic foam is increased above the MT temperatures. The shape memory effect was detected in the CuZnAl foams. The conventional brass shows a compressive response similar to that of the martensitic CuZnAl, in which plastic deformation accumulation occurs up to the cellular structure densification after few thermal cycles.
NASA Astrophysics Data System (ADS)
Choi, Shinhyun; Tan, Scott H.; Li, Zefan; Kim, Yunjo; Choi, Chanyeol; Chen, Pai-Yu; Yeon, Hanwool; Yu, Shimeng; Kim, Jeehwan
2018-01-01
Although several types of architecture combining memory cells and transistors have been used to demonstrate artificial synaptic arrays, they usually present limited scalability and high power consumption. Transistor-free analog switching devices may overcome these limitations, yet the typical switching process they rely on—formation of filaments in an amorphous medium—is not easily controlled and hence hampers the spatial and temporal reproducibility of the performance. Here, we demonstrate analog resistive switching devices that possess desired characteristics for neuromorphic computing networks with minimal performance variations using a single-crystalline SiGe layer epitaxially grown on Si as a switching medium. Such epitaxial random access memories utilize threading dislocations in SiGe to confine metal filaments in a defined, one-dimensional channel. This confinement results in drastically enhanced switching uniformity and long retention/high endurance with a high analog on/off ratio. Simulations using the MNIST handwritten recognition data set prove that epitaxial random access memories can operate with an online learning accuracy of 95.1%.
Effect of oxide insertion layer on resistance switching properties of copper phthalocyanine
NASA Astrophysics Data System (ADS)
Joshi, Nikhil G.; Pandya, Nirav C.; Joshi, U. S.
2013-02-01
Organic memory device showing resistance switching properties is a next-generation of the electrical memory unit. We have investigated the bistable resistance switching in current-voltage (I-V) characteristics of organic diode based on copper phthalocyanine (CuPc) film sandwiched between aluminum (Al) electrodes. Pronounced hysteresis in the I-V curves revealed a resistance switching with on-off ratio of the order of 85%. In order to control the charge injection in the CuPc, nanoscale indium oxide buffer layer was inserted to form Al/CuPc/In2O3/Al device. Analysis of I-V measurements revealed space charge limited switching conduction at the Al/CuPc interface. The traps in the organic layer and charge blocking by oxide insertion layer have been used to explain the absence of resistance switching in the oxide buffer layered memory device cell. Present study offer potential applications for CuPc organic semiconductor in low power non volatile resistive switching memory and logic circuits.
Santich, Brian H.; Kim, Jin Young; Posada, Jacqueline G.; Ho, Jason; Buckner, Clarisa M.; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E.; Manischewitz, Jody; King, Lisa R.; Khurana, Surender; Chun, Tae-Wook; Golding, Hana; Fauci, Anthony S.; Malech, Harry L.
2012-01-01
CD27+ memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27+ but also IgG+ B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG+ B cells, the ratio of CD27− to CD27+ was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27−IgG+ B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27+ counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27−IgG+ B-cell compartment. Together, these findings show that, despite reduced circulating CD27+ memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27− B cells. PMID:23074274
Moir, Susan; De Ravin, Suk See; Santich, Brian H; Kim, Jin Young; Posada, Jacqueline G; Ho, Jason; Buckner, Clarisa M; Wang, Wei; Kardava, Lela; Garofalo, Mary; Marciano, Beatriz E; Manischewitz, Jody; King, Lisa R; Khurana, Surender; Chun, Tae-Wook; Golding, Hana; Fauci, Anthony S; Malech, Harry L
2012-12-06
CD27(+) memory B cells are reduced in the blood of patients with chronic granulomatous disease (CGD) for reasons and consequences that remain unclear. Here we confirm not only decreased CD27(+) but also IgG(+) B cells in the blood of CGD patients compared with healthy donors (HDs). However, among IgG(+) B cells, the ratio of CD27(-) to CD27(+) was significantly higher in CGD patients compared with HDs. Similar to conventional memory B cells, CD27(-)IgG(+) B cells of CGD patients expressed activation markers and had undergone somatic hypermutation, albeit at levels lower than their CD27(+) counterparts. Functional analyses revealed slight reductions in frequencies of total IgG but not influenza-specific memory B-cell responses, as measured by Elispot in CGD patients compared with HDs. Serum IgG levels and influenza-specific antibodies were also normal in these CGD patients. Finally, we provide evidence that influenza-specific memory B cells can be present within the CD27(-)IgG(+) B-cell compartment. Together, these findings show that, despite reduced circulating CD27(+) memory B cells, CGD patients maintain an intact humoral immunologic memory, with potential contribution from CD27(-) B cells.
Charlton, Joanna J.; Tsoukatou, Debbie; Mamalaki, Clio; Chatzidakis, Ioannis
2015-01-01
Memory phenotype CD4 T cells are found in normal mice and arise through response to environmental antigens or homeostatic mechanisms. The factors that regulate the homeostasis of memory phenotype CD4 cells are not clear. In the present study we demonstrate that there is a marked accumulation of memory phenotype CD4 cells, specifically of the effector memory (TEM) phenotype, in lymphoid organs and tissues of mice deficient for the negative co-stimulatory receptor programmed death 1 (PD-1). This can be correlated with decreased apoptosis but not with enhanced homeostatic turnover potential of these cells. PD-1 ablation increased the frequency of memory phenotype CD4 IFN-γ producers but decreased the respective frequency of IL-17A-producing cells. In particular, IFN-γ producers were more abundant but IL-17A producing cells were more scarce among PD-1 KO TEM-phenotype cells relative to WT. Transfer of peripheral naïve CD4 T cells suggested that accumulated PD-1 KO TEM-phenotype cells are of peripheral and not of thymic origin. This accumulation effect was mediated by CD4 cell-intrinsic mechanisms as shown by mixed bone marrow chimera experiments. Naïve PD-1 KO CD4 T cells gave rise to higher numbers of TEM-phenotype lymphopenia-induced proliferation memory cells. In conclusion, we provide evidence that PD-1 has an important role in determining the composition and functional aspects of memory phenotype CD4 T cell pool. PMID:25803808
Kaartinen, Tanja; Luostarinen, Annu; Maliniemi, Pilvi; Keto, Joni; Arvas, Mikko; Belt, Heini; Koponen, Jonna; Loskog, Angelica; Mustjoki, Satu; Porkka, Kimmo; Ylä-Herttuala, Seppo; Korhonen, Matti
2017-06-01
Adoptive T-cell therapy offers new options for cancer treatment. Clinical results suggest that T-cell persistence, depending on T-cell memory, improves efficacy. The use of interleukin (IL)-2 for in vitro T-cell expansion is not straightforward because it drives effector T-cell differentiation but does not promote the formation of T-cell memory. We have developed a cost-effective expansion protocol for chimeric antigen receptor (CAR) T cells with an early memory phenotype. Lymphocytes were transduced with third-generation lentiviral vectors and expanded using CD3/CD28 microbeads. The effects of altering the IL-2 supplementation (0-300 IU/mL) and length of expansion (10-20 days) on the phenotype of the T-cell products were analyzed. High IL-2 levels led to a decrease in overall generation of early memory T cells by both decreasing central memory T cells and augmenting effectors. T memory stem cells (T SCM , CD95 + CD45RO - CD45RA + CD27 + ) were present variably during T-cell expansion. However, their presence was not IL-2 dependent but was linked to expansion kinetics. CD19-CAR T cells generated in these conditions displayed in vitro antileukemic activity. In summary, production of CAR T cells without any cytokine supplementation yielded the highest proportion of early memory T cells, provided a 10-fold cell expansion and the cells were functionally potent. The number of early memory T cells in a T-cell preparation can be increased by simply reducing the amount of IL-2 and limiting the length of T-cell expansion, providing cells with potentially higher in vivo performance. These findings are significant for robust and cost-effective T-cell manufacturing. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Joshi, Nikhil S.; Cui, Weiguo; Dominguez, Claudia; Chen, Jonathan H.; Hand, Timothy W.; Kaech, Susan M.
2011-01-01
Memory CD8 T cells acquire TEM properties following reinfection, and may reach terminally differentiated, senescent states (“Hayflick limit”) after multiple infections. The signals controlling this process are not well understood, but we found that the degree of 2o effector and memory CD8 T cell differentiation was intimately linked to the amount of T-bet expressed upon reactivation and pre-existing memory CD8 T cell number (i.e., 1o memory CD8 T cell precursor frequency) present during secondary infection. Compared to naïve cells, memory CD8 T cells were predisposed towards terminal effector (TE) cell differentiation because they could immediately respond to IL-12 and induce T-bet, even in the absence of antigen. TE cell formation following 2o or 3o infections was dependent on increased T-bet expression because T-bet+/− cells were resistant to these phenotypic changes. Larger numbers of pre-existing memory CD8 T cells limited the duration of 2o infection and the amount of IL-12 produced, and consequently, this reduced T-bet expression and the proportion of 2o TE CD8 T cells that formed. Together, these data show that, over repeated infections, memory CD8 T cell quality and proliferative fitness is not strictly determined by the number of serial encounters with antigen or cell divisions, but is a function of the CD8 T cell differentiation state, which is genetically controlled in a T-bet-dependent manner. This differentiation state can be modulated by pre-existing memory CD8 T cell number and the intensity of inflammation during reinfection. These results have important implications for vaccinations involving prime-boost strategies. PMID:21930973
Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S; Tellides, George; Lakkis, Fadi G
2004-01-01
CD4(+)CD25(+) regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8(+) T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8(+) T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8(+) T cells was observed when Treg cells lacked CD30 or when CD30 ligand-CD30 interaction was blocked with anti-CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses.
Dai, Zhenhua; Li, Qi; Wang, Yinong; Gao, Ge; Diggs, Lonnette S.; Tellides, George; Lakkis, Fadi G.
2004-01-01
CD4+CD25+ regulatory T (Treg) cells suppress naive T cell responses, prevent autoimmunity, and delay allograft rejection. It is not known, however, whether Treg cells suppress allograft rejection mediated by memory T cells, as the latter mount faster and stronger immune responses than their naive counterparts. Here we show that antigen-induced, but not naive, Treg cells suppress allograft rejection mediated by memory CD8+ T cells. Suppression was allospecific, as Treg cells induced by third-party antigens did not delay allograft rejection. In vivo and in vitro analyses revealed that the apoptosis of allospecific memory CD8+ T cells is significantly increased in the presence of antigen-induced Treg cells, while their proliferation remains unaffected. Importantly, neither suppression of allograft rejection nor enhanced apoptosis of memory CD8+ T cells was observed when Treg cells lacked CD30 or when CD30 ligand–CD30 interaction was blocked with anti–CD30 ligand Ab. This study therefore provides direct evidence that pathogenic memory T cells are amenable to suppression in an antigen-specific manner and identifies CD30 as a molecule that is critical for the regulation of memory T cell responses. PMID:14722622
Engrampigenetics: Epigenetics of engram memory cells.
Ripoli, Cristian
2017-05-15
For long time, the epidemiology of late-onset sporadic Alzheimer's disease (AD) risk factors has centered on adult life-style. Recent studies have, instead, focused on the role of early life experiences in progression of such disease especially in the context of prenatal and postnatal life. Although no single unfavorable environmental event has been shown to be neither necessary nor sufficient for AD development, it is possible that the sum of several environmentally induced effects, over time, contribute to its pathophysiology through epigenetic mechanisms. Indeed, epigenetic changes are influenced by environmental factors and have been proposed to play a role in multifactorial pathologies such as AD. At the same time, recent findings suggest that epigenetic mechanisms are one method that neurons use to translate transient stimuli into stable memories. Thus, the characteristics of epigenetics being a critical link between the environment and genes and playing a crucial role in memory formation make candidate epigenetic mechanisms a natural substrate for AD research. Indeed, independent groups have reported several epigenetically dysregulated genes in AD models; however, the role of epigenetic mechanisms in AD has remained elusive owing to contradictory results. Here, I propose that restricting the analysis of epigenetic changes specifically to subpopulations of neurons (namely, engram memory cells) might be helpful in understanding the role of the epigenetic process in the memory-related specific epigenetic code and might constitute a new template for therapeutic interventions against AD. Copyright © 2016. Published by Elsevier B.V.
Selective effects of emotion on the phenomenal characteristics of autobiographical memories.
Schaefer, Alexandre; Philippot, Pierre
2005-02-01
The present study investigates the emotional determinants of the phenomenal characteristics of autobiographical memories. A total of 84 participants completed the Memory Characteristics Questionnaire (MCQ, Johnson, Foley, Suengas, & Raye, 1988) after retrieving and orally describing a negative, a positive, and a neutral autobiographical memory. In addition, self-report and physiological measures of emotional state at retrieval were recorded. Results suggest that recall of perceptual, sensory, and semantic elements is better for emotional memories than for neutral ones. This difference is not significant for contextual and temporal aspects, suggesting that emotional memories are more vivid but no more specific than are neutral ones. In addition, positive memories yielded higher MCQ ratings than did negative memories for sensory, temporal, and contextual aspects. Finally, correlations suggest a positive relation between emotional state at retrieval and level of phenomenal detail of retrieved memories. Results are interpreted in terms of multilevel models of emotion and of Conway and Pleydell-Pearce's (2000) model.
Böttcher, Jan P; Schanz, Oliver; Wohlleber, Dirk; Abdullah, Zeinab; Debey-Pascher, Svenja; Staratschek-Jox, Andrea; Höchst, Bastian; Hegenbarth, Silke; Grell, Jessica; Limmer, Andreas; Atreya, Imke; Neurath, Markus F; Busch, Dirk H; Schmitt, Edgar; van Endert, Peter; Kolanus, Waldemar; Kurts, Christian; Schultze, Joachim L; Diehl, Linda; Knolle, Percy A
2013-03-28
Development of CD8(+) T cell (CTL) immunity or tolerance is linked to the conditions during T cell priming. Dendritic cells (DCs) matured during inflammation generate effector/memory T cells, whereas immature DCs cause T cell deletion/anergy. We identify a third outcome of T cell priming in absence of inflammation enabled by cross-presenting liver sinusoidal endothelial cells. Such priming generated memory T cells that were spared from deletion by immature DCs. Similar to central memory T cells, liver-primed T cells differentiated into effector CTLs upon antigen re-encounter on matured DCs even after prolonged absence of antigen. Their reactivation required combinatorial signaling through the TCR, CD28, and IL-12R and controlled bacterial and viral infections. Gene expression profiling identified liver-primed T cells as a distinct Neuropilin-1(+) memory population. Generation of liver-primed memory T cells may prevent pathogens that avoid DC maturation by innate immune escape from also escaping adaptive immunity through attrition of the T cell repertoire. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Souza, Tatyana A.; Stollar, B. David; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2005-01-01
Epstein–Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells. PMID:16330748
Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection.
Titanji, Kehmia; De Milito, Angelo; Cagigi, Alberto; Thorstensson, Rigmor; Grützmeier, Sven; Atlas, Ann; Hejdeman, Bo; Kroon, Frank P; Lopalco, Lucia; Nilsson, Anna; Chiodi, Francesca
2006-09-01
Circulating memory B cells are severely reduced in the peripheral blood of HIV-1-infected patients. We investigated whether dysfunctional serologic memory to non-HIV antigens is related to disease progression by evaluating the frequency of memory B cells, plasma IgG, plasma levels of antibodies to measles, and Streptococcus pneumoniae, and enumerating measles-specific antibody-secreting cells in patients with primary, chronic, and long-term nonprogressive HIV-1 infection. We also evaluated the in vitro production of IgM and IgG antibodies against measles and S pneumoniae antigens following polyclonal activation of peripheral blood mononuclear cells (PBMCs) from patients. The percentage of memory B cells correlated with CD4+ T-cell counts in patients, thus representing a marker of disease progression. While patients with primary and chronic infection had severe defects in serologic memory, long-term nonprogressors had memory B-cell frequency and levels of antigen-specific antibodies comparable with controls. We also evaluated the effect of antiretroviral therapy on these serologic memory defects and found that antiretroviral therapy did not restore serologic memory in primary or in chronic infection. We suggest that HIV infection impairs maintenance of long-term serologic immunity to HIV-1-unrelated antigens and this defect is initiated early in infection. This may have important consequences for the response of HIV-infected patients to immunizations.
NFκB–Pim-1–Eomesodermin axis is critical for maintaining CD8 T-cell memory quality
Knudson, Karin M.; Saxena, Vikas; Altman, Amnon; Daniels, Mark A.; Teixeiro, Emma
2017-01-01
T-cell memory is critical for long-term immunity. However, the factors involved in maintaining the persistence, function, and phenotype of the memory pool are undefined. Eomesodermin (Eomes) is required for the establishment of the memory pool. Here, we show that in T cells transitioning to memory, the expression of high levels of Eomes is not constitutive but rather requires a continuum of cell-intrinsic NFκB signaling. Failure to maintain NFκB signals after the peak of the response led to impaired Eomes expression and a defect in the maintenance of CD8 T-cell memory. Strikingly, we found that antigen receptor [T-cell receptor (TCR)] signaling regulates this process through expression of the NFκB-dependent kinase proviral integration site for Moloney murine leukemia virus-1 (PIM-1), which in turn regulates NFκB and Eomes. T cells defective in TCR-dependent NFκB signaling were impaired in late expression of Pim-1, Eomes, and CD8 memory. These defects were rescued when TCR-dependent NFκB signaling was restored. We also found that NFκB–Pim-1 signals were required at memory to maintain memory CD8 T-cell longevity, effector function, and Eomes expression. Hence, an NFκB–Pim-1–Eomes axis regulates Eomes levels to maintain memory fitness. PMID:28193872
Carpenter, Stephen M; Nunes-Alves, Cláudio; Booty, Matthew G; Way, Sing Sing; Behar, Samuel M
2016-01-01
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection.
Carpenter, Stephen M.; Nunes-Alves, Cláudio; Booty, Matthew G.; Way, Sing Sing; Behar, Samuel M.
2016-01-01
T cell vaccines against Mycobacterium tuberculosis (Mtb) and other pathogens are based on the principle that memory T cells rapidly generate effector responses upon challenge, leading to pathogen clearance. Despite eliciting a robust memory CD8+ T cell response to the immunodominant Mtb antigen TB10.4 (EsxH), we find the increased frequency of TB10.4-specific CD8+ T cells conferred by vaccination to be short-lived after Mtb challenge. To compare memory and naïve CD8+ T cell function during their response to Mtb, we track their expansions using TB10.4-specific retrogenic CD8+ T cells. We find that the primary (naïve) response outnumbers the secondary (memory) response during Mtb challenge, an effect moderated by increased TCR affinity. To determine whether the expansion of polyclonal memory T cells is restrained following Mtb challenge, we used TCRβ deep sequencing to track TB10.4-specific CD8+ T cells after vaccination and subsequent challenge in intact mice. Successful memory T cells, defined by their clonal expansion after Mtb challenge, express similar CDR3β sequences suggesting TCR selection by antigen. Thus, both TCR-dependent and -independent factors affect the fitness of memory CD8+ responses. The impaired expansion of the majority of memory T cell clonotypes may explain why some TB vaccines have not provided better protection. PMID:26745507
Diversity in T cell memory: An embarrassment of riches
Jameson, Stephen C.; Masopust, David
2010-01-01
The adaptive immune response meets the needs of the organism to generate effector cells capable of controlling pathogens, but also leads to production of memory cells, which mediate more effective protection during rechallenge. In this review we focus on the generation, maintenance and function of memory T cells, with a special emphasis on the increasing evidence for great diversity among functional memory T cell subsets. PMID:20064446
Endogenous Memory CD8 T Cells Directly Mediate Cardiac Allograft Rejection
Su, C. A.; Iida, S.; Abe, T.; Fairchild, R. L.
2014-01-01
Differences in levels of environmentally induced memory T cells that cross-react with donor MHC molecules are postulated to account for the efficacy of allograft tolerance inducing strategies in rodents versus their failure in nonhuman primates and human transplant patients. Strategies to study the impact of donor-reactive memory T cells on allografts in rodents have relied on the pre-transplant induction of memory T cells cross-reactive with donor allogeneic MHC molecules through recipient viral infection, priming directly with donor antigen, or adoptive transfer of donor-antigen primed memory T cells. Each approach accelerates allograft rejection and confers resistance to tolerance induction, but also biases the T cell repertoire to strong donor-reactivity. The ability of endogenous memory T cells within unprimed mice to directly reject an allograft is unknown. Here we show a direct association between increased duration of cold ischemic allograft storage and numbers and enhanced functions of early graft infiltrating endogenous CD8 memory T cells. These T cells directly mediate rejection of allografts subjected to prolonged ischemia and this rejection is resistant to costimulatory blockade. These findings recapitulate the clinically significant impact of endogenous memory T cells with donor reactivity in a mouse transplant model in the absence of prior recipient priming. PMID:24502272
Cell-autonomous CCL5 transcription by memory CD8 T cells is regulated by IL-4.
Marçais, Antoine; Coupet, Charles-Antoine; Walzer, Thierry; Tomkowiak, Martine; Ghittoni, Raffaella; Marvel, Jacqueline
2006-10-01
Immunological memory is associated with the display of improved effector functions. The maintenance by CD8 memory cells of high levels of untranslated CCL5 mRNA allows these cells to immediately secrete this chemokine upon Ag stimulation. Untranslated mRNA storage is a newly described process supporting the immediate display of an effector function by memory lymphocytes. We have tested the capacity of different cytokines to regulate the memorization of CCL5 by memory CD8 T cells. We found that IL-4 treatment of murine CD8 T cells impairs immediate CCL5 secretion capacity by inhibiting CCL5 mRNA transcription through a STAT6-dependent pathway. The inhibition by IL-4 is reversible, as memory CD8 T cells reconstitute their CCL5 mRNA stores and reacquire their immediate CCL5 secretion capacity when IL-4 is withdrawn. This recovery is cell autonomous because it proceeds in culture medium in the absence of exogenous growth factors, suggesting that CCL5 expression by memory CD8 T cells is a default process. Overall, these results indicate that the expression of CCL5 is an intrinsic property acquired by memory CD8 T cells that is regulated by environmental factors.
Memory T cells maintain protracted protection against malaria.
Krzych, Urszula; Zarling, Stasya; Pichugin, Alexander
2014-10-01
Immunologic memory is one of the cardinal features of antigen-specific immune responses, and the persistence of memory cells contributes to prophylactic immunizations against infectious agents. Adequately maintained memory T and B cell pools assure a fast, effective and specific response against re-infections. However, many aspects of immunologic memory are still poorly understood, particularly immunologic memory inducible by parasites, for example, Plasmodium spp., the causative agents of malaria. For example, memory responses to Plasmodium antigens amongst residents of malaria endemic areas appear to be either inadequately developed or maintained, because persons who survive episodes of childhood malaria remain vulnerable to intermittent malaria infections. By contrast, multiple exposures of humans and laboratory rodents to radiation-attenuated Plasmodium sporozoites (γ-spz) induce sterile and long-lasting protection against experimental sporozoite challenge. Multifactorial immune mechanisms maintain this protracted and sterile protection. While the presence of memory CD4 T cell subsets has been associated with lasting protection in humans exposed to multiple bites from Anopheles mosquitoes infected with attenuated Plasmodium falciparum, memory CD8 T cells maintain protection induced with Plasmodium yoelii and Plasmodium berghei γ-spz in murine models. In this review, we discuss our observations that show memory CD8 T cells specific for antigens expressed by P. berghei liver stage parasites as an indispensable component for the maintenance of protracted protective immunity against experimental malaria infection; moreover, the provision of an Ag-depot assures a quick recall of memory T cells as IFN-γ-producing effector CD8 T cells and IL-4- producing CD4 T cells that collaborate with B cells for an effective antibody response. Published by Elsevier B.V.
TLR4 ligands LPS and MPLA differentially regulate effector and memory CD8+ T cell differentiation
Cui, Weiguo; Joshi, Nikhil S.; Liu, Ying; Meng, Hailong; Kleinstein, Steven H; Kaech, Susan M.
2014-01-01
Vaccines formulated with non-replicating pathogens require adjuvants to help bolster immunogenicity. The role of adjuvants in antibody production has been well studied, but how they influence memory CD8+ T cell differentiation remains poorly defined. Here we implemented dendritic cell (DC)-mediated immunization to study the effects of commonly used adjuvants, TLR ligands, on effector and memory CD8+ T cell differentiation in mice. Intriguingly, we found that the TLR4 ligand LPS was far more superior to other TLR ligands in generating memory CD8+ T cells upon immunization. LPS boosted clonal expansion similar to the other adjuvants, but fewer of the activated CD8+ T cells died during contraction, generating a larger pool of memory cells. Surprisingly, monophosphoryl lipid A (MPLA), another TLR4 ligand, enhanced clonal expansion of effector CD8+ T cells, but also promoted their terminal differentiation and contraction; thus, fewer memory CD8+ T cells formed and MPLA-primed animals were less protected against secondary infection compared to those primed with LPS. Furthermore, gene expression profiling revealed that LPS-primed effector cells displayed a stronger pro-memory gene expression signature, whereas the gene expression profile of MPLA-primed effector cells aligned closer with terminal effector CD8+ T cells. Lastly, we demonstrated that the LPS-TLR4-derived “pro-memory” signals were MyD88, but not Trif, dependent. This study reveals the influential power of adjuvants on the quantity and quality of CD8+ T cell memory, and that attention to adjuvant selection is crucial because boosting effector cell expansion may not always equate with more memory T cells or greater protection. PMID:24659688
Resistive switching phenomena of tungsten nitride thin films with excellent CMOS compatibility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seok Man; Kim, Hee-Dong; An, Ho-Myoung
2013-12-15
Graphical abstract: - Highlights: • The resistive switching characteristics of WN{sub x} thin films. • Excellent CMOS compatibility WN{sub x} films as a resistive switching material. • Resistive switching mechanism revealed trap-controlled space charge limited conduction. • Good endurance and retention properties over 10{sup 5} cycles, and 10{sup 5} s, respectively - Abstract: We report the resistive switching (RS) characteristics of tungsten nitride (WN{sub x}) thin films with excellent complementary metal-oxide-semiconductor (CMOS) compatibility. A Ti/WN{sub x}/Pt memory cell clearly shows bipolar RS behaviors at a low voltage of approximately ±2.2 V. The dominant conduction mechanisms at low and high resistancemore » states were verified by Ohmic behavior and trap-controlled space-charge-limited conduction, respectively. A conducting filament model by a redox reaction explains the RS behavior in WN{sub x} films. We also demonstrate the memory characteristics during pulse operation, including a high endurance over >10{sup 5} cycles and a long retention time of >10{sup 5} s.« less
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu
2016-11-01
Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.
Self-Rectifying Effect in Resistive Switching Memory Using Amorphous InGaZnO
NASA Astrophysics Data System (ADS)
Lee, Jin-Woo; Kwon, Hyeon-Min; Kim, Myeong-Ho; Lee, Seung-Ryul; Kim, Young-Bae; Choi, Duck-Kyun
2014-05-01
Resistance random access memory (ReRAM) has received attention as next-generation memory because of its excellent operating properties and high density integration capability as a crossbar array. However, the application of the existing ReRAM as a crossbar array may lead to crosstalk between adjacent cells due to its symmetric I- V characteristics. In this study, the self-rectifying effect of contact between amorphous In-Ga-Zn-O (a-IGZO) and TaO x was examined in a Pt/a-IGZO/TaO x /Al2O3/W structure. The experimental results show not only self-rectifying behavior but also forming-free characteristics. During the deposition of a-IGZO on the TaO x , an oxygen-rich TaO x interfacial layer was formed. The rectifying effect was observed regardless of the interface formation and is believed to be associated with Schottky contact formation between a-IGZO and TaO x . The current level remained unchanged despite repeated DC sweep cycles. The low resistance state/high resistance state ratio was about 101 at a read voltage of -0.5 V, and the rectifying ratio was about 103 at ±2 V.
Hu, Guangan; Chen, Jianzhu
2014-01-01
Memory CD8+ T cell development is defined by the expression of a specific set of memory signature genes (MSGs). Despite recent progress, many components of the transcriptional control of memory CD8+ T cell development are still unknown. To identify transcription factors (TFs) and their interactions in memory CD8+ T cell development, we construct a genome-wide regulatory network and apply it to identify key TFs that regulate MSGs. Most of the known TFs in memory CD8+ T cell development are rediscovered and about a dozen new TFs are also identified. Sox4, Bhlhe40, Bach2 and Runx2 are experimentally verified and Bach2 is further shown to promote both development and recall proliferation of memory CD8+ T cells through Prdm1 and Id3. Gene perturbation study identifies the mode of interactions among the TFs with Sox4 as a hub. The identified TFs and insights into their interactions should facilitate further dissection of molecular mechanisms underlying memory CD8+ T cell development. PMID:24335726
Memory-like Responses of Natural Killer Cells
Cooper, Megan A.; Yokoyama, Wayne M.
2010-01-01
Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571
Interregional synaptic maps among engram cells underlie memory formation.
Choi, Jun-Hyeok; Sim, Su-Eon; Kim, Ji-Il; Choi, Dong Il; Oh, Jihae; Ye, Sanghyun; Lee, Jaehyun; Kim, TaeHyun; Ko, Hyoung-Gon; Lim, Chae-Seok; Kaang, Bong-Kiun
2018-04-27
Memory resides in engram cells distributed across the brain. However, the site-specific substrate within these engram cells remains theoretical, even though it is generally accepted that synaptic plasticity encodes memories. We developed the dual-eGRASP (green fluorescent protein reconstitution across synaptic partners) technique to examine synapses between engram cells to identify the specific neuronal site for memory storage. We found an increased number and size of spines on CA1 engram cells receiving input from CA3 engram cells. In contextual fear conditioning, this enhanced connectivity between engram cells encoded memory strength. CA3 engram to CA1 engram projections strongly occluded long-term potentiation. These results indicate that enhanced structural and functional connectivity between engram cells across two directly connected brain regions forms the synaptic correlate for memory formation. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Engrams and circuits crucial for systems consolidation of a memory.
Kitamura, Takashi; Ogawa, Sachie K; Roy, Dheeraj S; Okuyama, Teruhiro; Morrissey, Mark D; Smith, Lillian M; Redondo, Roger L; Tonegawa, Susumu
2017-04-07
Episodic memories initially require rapid synaptic plasticity within the hippocampus for their formation and are gradually consolidated in neocortical networks for permanent storage. However, the engrams and circuits that support neocortical memory consolidation have thus far been unknown. We found that neocortical prefrontal memory engram cells, which are critical for remote contextual fear memory, were rapidly generated during initial learning through inputs from both the hippocampal-entorhinal cortex network and the basolateral amygdala. After their generation, the prefrontal engram cells, with support from hippocampal memory engram cells, became functionally mature with time. Whereas hippocampal engram cells gradually became silent with time, engram cells in the basolateral amygdala, which were necessary for fear memory, were maintained. Our data provide new insights into the functional reorganization of engrams and circuits underlying systems consolidation of memory. Copyright © 2017, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun
2017-08-01
Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.
Glennie, Nelson D.; Volk, Susan W.
2017-01-01
Tissue-resident memory T cells are required for establishing protective immunity against a variety of different pathogens, although the mechanisms mediating protection by CD4+ resident memory T cells are still being defined. In this study we addressed this issue with a population of protective skin-resident, IFNγ-producing CD4+ memory T cells generated following Leishmania major infection. We previously found that resident memory T cells recruit circulating effector T cells to enhance immunity. Here we show that resident memory CD4+ T cells mediate the delayed-hypersensitivity response observed in immune mice and provide protection without circulating T cells. This protection occurs rapidly after challenge, and requires the recruitment and activation of inflammatory monocytes, which limit parasites by production of both reactive oxygen species and nitric oxide. Overall, these data highlight a novel role for tissue-resident memory cells in recruiting and activating inflammatory monocytes, and underscore the central role that skin-resident T cells play in immunity to cutaneous leishmaniasis. PMID:28419151
γδ T cells exhibit multifunctional and protective memory in intestinal tissues
Sheridan, Brian S.; Romagnoli, Pablo A.; Pham, Quynh-Mai; Fu, Han-Hsuan; Alonzo, Francis; Schubert, Wolf-Dieter; Freitag, Nancy E.; Lefrançois, Leo
2013-01-01
Summary The study of T cell memory and the target of vaccine design has focused on memory subsumed by T cells bearing the αβ T cell receptor. Alternatively, γδ T cells are thought to provide rapid immunity particularly at mucosal borders. Here we have shown that a distinct subset of mucosal γδ T cells mounts an immune response to oral Listeria monocytogenes (Lm) infection leading to the development of multifunctional memory T cells in the murine intestinal mucosa that is capable of simultaneously producing interferon-γ and interleukin-17A. Challenge infection with oral Lm, but not oral Salmonella or intravenous Lm, induced rapid expansion of memory γδ T cells suggesting contextual specificity to the priming pathogen. Importantly, memory γδ T cells were able to provide enhanced protection against infection. These findings illustrate a previously unrecognized role for γδ T cells with hallmarks of adaptive immunity in the intestinal mucosa. PMID:23890071
Development and characterization of a ferroelectric non-volatile memory for flexible electronics
NASA Astrophysics Data System (ADS)
Mao, Duo
Flexible electronics have received significant attention recently because of the potential applications in displays, sensors, radio frequency identification (RFID) tags and other integrated circuits. Electrically addressable non-volatile memory is a key component for these applications. The major challenges are to fabricate the memory at a low temperature compatible with plastic substrates while maintaining good device reliability, by being compatible with process as needed to integrate with other electronic components for system-on-chip applications. In this work, ferroelectric capacitors fabricated at low temperature were developed. Based on that, a ferroelectric random access memory (FRAM) for flexible electronics was developed and characterized. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer was used as a ferroelectric material and a photolithographic process was developed to fabricate ferroelectric capacitors. Different characterization methods including atomic force microscopy, x-ray diffraction and Fourier-transform infrared reflection-absorption spectroscopy were used to study the material properties of the P(VDF-TrFE) film. The material properties were correlated with the electrical characteristics of the ferroelectric capacitors. To understand the polarization switching behavior of the P(VDF-TrFE) ferroelectric capacitors, a Nucleation-Limited-Switching (NLS) model was used to study the switching kinetics. The switching kinetics were characterized over the temperature range from -60 °C to 100 °C. Fatigue characteristics were studied at different electrical stress voltages and frequencies to evaluate the reliability of the ferroelectric capacitor. The degradation mechanism is attributed to the increase of the activation field and the suppression of the switchable polarization. To develop a FRAM circuit for flexible electronics, an n-channel thin film transistor (TFT) based on CdS as the semiconductor was integrated with a P(VDF-TrFE) ferroelectric capacitor for a one-transistor-one-capacitor (1T1C) memory cell. The 1T1C devices were fabricated at low temperature and demonstrated a memory window (DeltaVBL) of 2.3 V and 3.5 V, depending on the device dimensions. Next, FRAM arrays (4-bit, 16-bit and 64-bit) based on the two-transistor-two-capacitor (2T2C) memory cell architecture were designed and fabricated using a photolithographic process with 9 masks. The fabricated FRAM arrays were packaged in 28-pin ceramic packages. The read/write schemes were developed and the FRAM arrays show successful program and erase with a memory window of approximately 1 V at the output of the sense amplifier.
He, Shan; Liu, Yongnian; Meng, Lijun; Sun, Hongxing; Wang, Ying; Ji, Yun; Purushe, Janaki; Chen, Pan; Li, Changhong; Madzo, Jozef; Issa, Jean-Pierre; Soboloff, Jonathan; Reshef, Ran; Moore, Bethany; Gattinoni, Luca; Zhang, Yi
2017-12-14
Memory T cells sustain effector T-cell production while self-renewing in reaction to persistent antigen; yet, excessive expansion reduces memory potential and impairs antitumor immunity. Epigenetic mechanisms are thought to be important for balancing effector and memory differentiation; however, the epigenetic regulator(s) underpinning this process remains unknown. Herein, we show that the histone methyltransferase Ezh2 controls CD8 + T memory precursor formation and antitumor activity. Ezh2 activates Id3 while silencing Id2, Prdm1 and Eomes, promoting the expansion of memory precursor cells and their differentiation into functional memory cells. Akt activation phosphorylates Ezh2 and decreases its control of these transcriptional programs, causing enhanced effector differentiation at the expense of T memory precursors. Engineering T cells with an Akt-insensitive Ezh2 mutant markedly improves their memory potential and capability of controlling tumor growth compared to transiently inhibiting Akt. These findings establish Akt-mediated phosphorylation of Ezh2 as a critical target to potentiate antitumor immunotherapeutic strategies.
Transcriptional Profiling of Antigen-Dependent Murine B Cell Differentiation and Memory Formation1
Bhattacharya, Deepta; Cheah, Ming T.; Franco, Christopher B.; Hosen, Naoki; Pin, Christopher L.; Sha, William C.; Weissman, Irving L.
2015-01-01
Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure. PMID:17982071
Delpoux, Arnaud; Lai, Chen-Yen; Hedrick, Stephen M; Doedens, Andrew L
2017-10-17
The factors and steps controlling postinfection CD8 + T cell terminal effector versus memory differentiation are incompletely understood. Whereas we found that naive TCF7 (alias "Tcf-1") expression is FOXO1 independent, early postinfection we report bimodal, FOXO1-dependent expression of the memory-essential transcription factor TCF7 in pathogen-specific CD8 + T cells. We determined the early postinfection TCF7 high population is marked by low TIM3 expression and bears memory signature hallmarks before the appearance of established memory precursor marker CD127 (IL-7R). These cells exhibit diminished TBET, GZMB, mTOR signaling, and cell cycle progression. Day 5 postinfection, TCF7 high cells express higher memory-associated BCL2 and EOMES, as well as increased accumulation potential and capacity to differentiate into memory phenotype cells. TCF7 retroviral transduction opposes GZMB expression and the formation of KLRG1 pos phenotype cells, demonstrating an active role for TCF7 in extinguishing the effector program and forestalling terminal differentiation. Past the peak of the cellular immune response, we report a gradient of FOXO1 and TCF7 expression, which functions to oppose TBET and orchestrate a continuum of effector-to-memory phenotypes.
Bushar, Nicholas D; Corbo, Evann; Schmidt, Michelle; Maltzman, Jonathan S; Farber, Donna L
2010-01-12
The intracellular signaling mechanisms regulating the generation and long-term persistence of memory T cells in vivo remain unclear. In this study, we used mouse models with conditional deletion of the key T cell receptor (TCR)-coupled adaptor molecule SH2-domain-containing phosphoprotein of 76 kDa (SLP-76), to analyze signaling mechanisms for memory CD4 T cell generation, maintenance, and homeostasis. We found that ablation of SLP-76 expression after T cell priming did not inhibit generation of phenotypic effector or memory CD4 T cells; however, the resultant SLP-76-deficient memory CD4 T cells could not produce recall cytokines in response to TCR-mediated stimulation and showed decreased persistence in vivo. In addition, SLP-76-deficient memory CD4 T cells exhibited reduced steady-state homeostasis and were impaired in their ability to homeostatically expand in vivo in response to the gamma(c) cytokine IL-7, despite intact proximal signaling through the IL-7R-coupled JAK3/STAT5 pathway. Direct in vivo deletion of SLP-76 in polyclonal memory CD4 T cells likewise led to impaired steady-state homeostasis as well as impaired homeostatic responses to IL-7. Our findings demonstrate a dominant role for SLP-76-dependent TCR signals in regulating turnover and perpetuation of memory CD4 T cells and their responses to homeostatic cytokines, with implications for the selective survival of memory CD4 T cells following pathogen exposure, vaccination, and aging.
Jackola, D R; Hallgren, H M
1998-11-16
In healthy humans, phenotypic restructuring occurs with age within the CD3+ T-lymphocyte complement. This is characterized by a non-linear decrease of the percentage of 'naive' (CD45RA+) cells and a corresponding non-linear increase of the percentage of 'memory' (CD45R0+) cells among both the CD4+ and CD8+ T-cell subsets. We devised a simple compartmental model to study the age-dependent kinetics of phenotypic restructuring. We also derived differential equations whose parameters determined yearly gains minus losses of the percentage and absolute numbers of circulating naive cells, yearly gains minus losses of the percentage and absolute numbers of circulating memory cells, and the yearly rate of conversion of naive to memory cells. Solutions of these evaluative differential equations demonstrate the following: (1) the memory cell complement 'resides' within its compartment for a longer time than the naive cell complement within its compartment for both CD4 and CD8 cells; (2) the average, annual 'turnover rate' is the same for CD4 and CD8 naive cells. In contrast, the average, annual 'turnover rate' for memory CD8 cells is 1.5 times that of memory CD4 cells; (3) the average, annual conversion rate of CD4 naive cells to memory cells is twice that of the CD8 conversion rate; (4) a transition in dynamic restructuring occurs during the third decade of life that is due to these differences in turnover and conversion rates, between and from naive to memory cells.
The contribution of epigenetic memory to immunologic memory.
Zediak, Valerie P; Wherry, E John; Berger, Shelley L
2011-04-01
Memory T lymphocytes are distinct from antigen-inexperienced naïve T cells in that memory T cells can respond more rapidly when they re-encounter a pathogen. Work over the past decade has begun to define the epigenetic underpinnings of the transcriptional component of the memory T cell response. An emerging theme is the persistence of an active chromatin signature at relevant gene loci in resting memory T cells, even when those genes are transcriptionally inactive. This gives strength to the concept of gene poising, and has shown that memory T lymphocytes are an ideal model in which to further define various mechanisms of epigenetic poising. Copyright © 2011 Elsevier Ltd. All rights reserved.
Functional classification of memory CD8(+) T cells by CX3CR1 expression.
Böttcher, Jan P; Beyer, Marc; Meissner, Felix; Abdullah, Zeinab; Sander, Jil; Höchst, Bastian; Eickhoff, Sarah; Rieckmann, Jan C; Russo, Caroline; Bauer, Tanja; Flecken, Tobias; Giesen, Dominik; Engel, Daniel; Jung, Steffen; Busch, Dirk H; Protzer, Ulrike; Thimme, Robert; Mann, Matthias; Kurts, Christian; Schultze, Joachim L; Kastenmüller, Wolfgang; Knolle, Percy A
2015-09-25
Localization of memory CD8(+) T cells to lymphoid or peripheral tissues is believed to correlate with proliferative capacity or effector function. Here we demonstrate that the fractalkine-receptor/CX3CR1 distinguishes memory CD8(+) T cells with cytotoxic effector function from those with proliferative capacity, independent of tissue-homing properties. CX3CR1-based transcriptome and proteome-profiling defines a core signature of memory CD8(+) T cells with effector function. We find CD62L(hi)CX3CR1(+) memory T cells that reside within lymph nodes. This population shows distinct migration patterns and positioning in proximity to pathogen entry sites. Virus-specific CX3CR1(+) memory CD8(+) T cells are scarce during chronic infection in humans and mice but increase when infection is controlled spontaneously or by therapeutic intervention. This CX3CR1-based functional classification will help to resolve the principles of protective CD8(+) T-cell memory.
Wang, Xiaolei; Rasmussen, Terri; Pahar, Bapi; Poonia, Bhawna; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S
2007-02-01
Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)-infected adult macaques and human immunodeficiency virus (HIV)-infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that "activated" central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques.
Wang, Xiaolei; Rasmussen, Terri; Pahar, Bapi; Poonia, Bhawna; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.
2007-01-01
Rapid, profound, and selective depletion of memory CD4+ T cells has now been confirmed to occur in simian immunodeficiency virus (SIV)–infected adult macaques and human immunodeficiency virus (HIV)–infected humans. Within days of infection, marked depletion of memory CD4+ T cells occurs primarily in mucosal tissues, the major reservoir for memory CD4+ T cells in adults. However, HIV infection in neonates often results in higher viral loads and rapid disease progression, despite the paucity of memory CD4+ T cells in the peripheral blood. Here, we examined the immunophenotype of CD4+ T cells in normal and SIV-infected neonatal macaques to determine the distribution of naive and memory T-cell subsets in tissues. We demonstrate that, similar to adults, neonates have abundant memory CD4+ T cells in the intestinal tract and spleen and that these are selectively infected and depleted in primary SIV infection. Within 12 days of SIV infection, activated (CD69+), central memory (CD95+CD28+) CD4+ T cells are marked and persistently depleted in the intestine and other tissues of neonates compared with controls. The results in dicate that “activated” central memory CD4+ T cells are the major target for early SIV infection and CD4+ T cell depletion in neonatal macaques. PMID:17047153
Neutron imaging integrated circuit and method for detecting neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagarkar, Vivek V.; More, Mitali J.
The present disclosure provides a neutron imaging detector and a method for detecting neutrons. In one example, a method includes providing a neutron imaging detector including plurality of memory cells and a conversion layer on the memory cells, setting one or more of the memory cells to a first charge state, positioning the neutron imaging detector in a neutron environment for a predetermined time period, and reading a state change at one of the memory cells, and measuring a charge state change at one of the plurality of memory cells from the first charge state to a second charge statemore » less than the first charge state, where the charge state change indicates detection of neutrons at said one of the memory cells.« less
Memory B cells in Guillain-Barré syndrome.
Wang, Qian; Xing, Chunye; Hao, Yanlei; Shi, Qiguang; Qi, Ziyou; Lv, Zhanyun; Song, Yan; Xu, Peng; Feng, Xungang; Zhang, Lili; Zhang, Yong; Wang, Yuzhong; Yuki, Nobuhiro
2017-04-15
IgG autoantibodies against gangliosides show the highest titers at the disease onset of axonal Guillain-Barré syndrome (GBS), in which there are no IgM anti-ganglioside antibodies. We hypothesized that memory B cells take part in the development of producing IgG autoantibodies. In this study, we analyzed the memory B cells in patients with GBS using flow cytometry. There was significantly higher percentage of memory B cells in patients with GBS than the healthy controls. The Spearman correlation analysis demonstrated that increased percentage of memory B cells was positively correlated with the clinical severity of the patients with GBS. Our study provides the evidences that memory B cells may be involved in mechanism of GBS. Copyright © 2017 Elsevier B.V. All rights reserved.
Hart-Matyas, M; Gareau, A J; Hirsch, G M; Lee, T D G
2015-01-01
Allospecific memory T cells are a recognized threat to the maintenance of solid-organ transplants. Limited information exists regarding the development of alloreactive memory T cells when post-transplant immunosuppression is present. The clinical practice of delaying calcineurin inhibitor (CNI) initiation post-transplant may permit the development of a de novo allospecific memory population. We investigated the development of de novo allospecific memory CD8+ T cells following the introduction of CNI immunosuppression in a murine model using allogeneic cell priming. Recipient mice alloprimed with splenocytes from fully mismatched donors received cyclosporine (CyA), initiated at 0, 2, 6, or 10days post-prime. Splenocytes from recipients were analyzed by flow cytometry or enzyme-linked immunosorbent assay for evidence of memory cell formation. Memory and effector CD8+ T cell development was prevented when CyA was initiated at 0day or 2days post-prime (p<0.001), but not 6days post-prime. Following a boost challenge, these memory CD8+ T cells were capable of producing a similarly sized population of secondary effectors as recipients not treated with CyA (p>0.05). Delaying CyA up to 6days or later post-prime permits the development of functional de novo allospecific memory CD8+ T cells. The development of this potentially detrimental T cell population in patients could be prevented by starting CNI immunosuppression early post-transplant. Copyright © 2014 Elsevier B.V. All rights reserved.
McMichael, A. J.; Williamson, A. R.
1974-01-01
A single clone of B cells producing anti-DNP antibody recognizable by the isoelectric-focusing spectrum has been used, in a double transfer system, to study clonal memory. Trasnsferable B memory develops between 4 and 7 days after the first transfer with antigen. B-memory cells thus proliferate before or concomitantly with antibody-forming cells. PMID:4545165
Kraft, Anke R. M.; Wlodarczyk, Myriam F.; Kenney, Laurie L.
2013-01-01
Prior immunity to influenza A virus (IAV) in mice changes the outcome to a subsequent lymphocytic choriomeningitis virus (LCMV) infection and can result in severe lung pathology, similar to that observed in patients that died of the 1918 H1N1 pandemic. This pathology is induced by IAV-specific memory CD8+ T cells cross-reactive with LCMV. Here, we discovered that IAV-immune mice have enhanced CD4+ Foxp3+ T-regulatory (Treg) cells in their lungs, leading us to question whether a modulation in the normal balance of Treg and effector T-cell responses also contributes to enhancing lung pathology upon LCMV infection of IAV-immune mice. Treg cell and interleukin-10 (IL-10) levels remained elevated in the lungs and mediastinal lymph nodes (mLNs) throughout the acute LCMV response of IAV-immune mice. PC61 treatment, used to decrease Treg cell levels, did not change LCMV titers but resulted in a surprising decrease in lung pathology upon LCMV infection in IAV-immune but not in naive mice. Associated with this decrease in pathology was a retention of Treg in the mLN and an unexpected partial clonal exhaustion of LCMV-specific CD8+ T-cell responses only in IAV-immune mice. PC61 treatment did not affect cross-reactive memory CD8+ T-cell proliferation. These results suggest that in the absence of IAV-expanded Treg cells and in the presence of cross-reactive memory, the LCMV-specific response was overstimulated and became partially exhausted, resulting in a decreased effector response. These studies suggest that Treg cells generated during past infections can influence the characteristics of effector T-cell responses and immunopathology during subsequent heterologous infections. Thus, in humans with complex infection histories, PC61 treatment may lead to unexpected results. PMID:24049180
Telomerase Is Involved in IL-7-Mediated Differential Survival of Naive and Memory CD4+ T Cells1
Yang, Yinhua; An, Jie; Weng, Nan-ping
2008-01-01
IL-7 plays an essential role in T cell maintenance and survival. The survival effect of IL-7 is thought to be mediated through regulation of Bcl2 family proteins. After a comparative analysis of IL-7-induced growth and cell death of human naive and memory CD4+ T cells, we observed that more memory CD4+ T cells underwent cell division and proceeded to apoptosis than naive cells in response to IL-7. However, IL-7-induced expressions of Bcl2 family members (Bcl2, Bcl-xL, Bax, and Bad) were similar between naive and memory cells. Instead, we found that IL-7 induced higher levels of telomerase activity in naive cells than in memory cells, and the levels of IL-7-induced telomerase activity had a significant inverse correlation with cell death in CD4+ T cells. Furthermore, we showed that reducing expression of telomerase reverse transcriptase and telomerase activity significantly increased cell death of IL-7-cultured CD4+ T cells. Together, these findings demonstrate that telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. PMID:18322183
Vanderveren, Elien; Bijttebier, Patricia; Hermans, Dirk
2017-01-01
Autobiographical memory forms a network of memories about personal experiences that defines and supports well-being and effective functioning of the self in various ways. During the last three decades, there have been two characteristics of autobiographical memory that have received special interest regarding their role in psychological well-being and psychopathology, namely memory specificity and memory coherence. Memory specificity refers to the extent to which retrieved autobiographical memories are specific (i.e., memories about a particular experience that happened on a particular day). Difficulty retrieving specific memories interferes with effective functioning of the self and is related to depression and post-traumatic stress disorder. Memory coherence refers to the narrative expression of the overall structure of autobiographical memories. It has likewise been related to psychological well-being and the occurrence of psychopathology. Research on memory specificity and memory coherence has developed as two largely independent research domains, even though they show much overlap. This raises some important theoretical questions. How do these two characteristics of autobiographical memory relate to each other, both theoretically and empirically? Additionally, how can the integration of these two facilitate our understanding of the importance of autobiographical memory for the self? In this article, we give a critical overview of memory specificity and memory coherence and their relation to the self. We link both features of autobiographical memory by describing some important similarities and by formulating hypotheses about how they might relate to each other. By situating both memory specificity and memory coherence within Conway and Pleydell-Pearce’s Self-Memory System, we make a first attempt at a theoretical integration. Finally, we suggest some new and exciting research possibilities and explain how both research fields could benefit from integration in future research. PMID:29312089
Phenomenological characteristics of autobiographical memory in Korsakoff's syndrome.
El Haj, Mohamad; Nandrino, Jean-Louis
2017-10-01
A body of research suggests compromise of autobiographical memory in Korsakoff's syndrome (KS). The present paper extends this literature by investigating the subjective experience of autobiographical recall in the syndrome. Patients with KS and controls were asked to retrieve autobiographical memories. After memory retrieval, participants were asked to rate phenomenological characteristics of their memories (i.e., reliving, back in time, remembering, realness, visual imagery, auditory imagery, language, emotion, rehearsal, importance, spatial recall and temporal recall). Analysis showed lower "Mean Phenomenological Experience" in the Korsakoff patients than in controls. However, the Korsakoff patients attributed relatively high emotional value and importance to their memories. Although our findings suggest compromised phenomenological reliving of autobiographical memory in patients with KS, affective characteristics such as emotion and importance are likely to play a main role in the subjective experience of the past in these patients. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.
2017-09-01
A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.
Pedicord, Virginia A; Cross, Justin R; Montalvo-Ortiz, Welby; Miller, Martin L; Allison, James P
2015-03-01
During primary Ag encounter, T cells receive numerous positive and negative signals that control their proliferation, function, and differentiation, but how these signals are integrated to modulate T cell memory has not been fully characterized. In these studies, we demonstrate that combining seemingly opposite signals, CTLA-4 blockade and rapamycin-mediated mammalian target of rapamycin inhibition, during in vivo T cell priming leads to both an increase in the frequency of memory CD8(+) T cells and improved memory responses to tumors and bacterial challenges. This enhanced efficacy corresponds to increased early expansion and memory precursor differentiation of CD8(+) T cells and increased mitochondrial biogenesis and spare respiratory capacity in memory CD8(+) T cells in mice treated with anti-CTLA-4 and rapamycin during immunization. Collectively, these results reveal that mammalian target of rapamycin inhibition cooperates with rather than antagonizes blockade of CTLA-4, promoting unrestrained effector function and proliferation, and an optimal metabolic program for CD8(+) T cell memory. Copyright © 2015 by The American Association of Immunologists, Inc.
Sahin-Acar, Basak; Bakir, Tugce; Kus, Elif Gizem
2017-09-01
This study aimed to examine how daughters, mothers, and grandmothers from the same families resembled each other and how these three generations differed from each other in narrating their earliest childhood memories. Fifty-nine triads from the same families filled out a memory questionnaire and were asked to narrate their earliest childhood memories. Results revealed both intrafamilial similarities and cross-generational difference on characteristics of triads' earliest childhood memories. After earliest childhood memories were coded for memory characteristics, we measured intrafamilial similarities using intra-class correlation coefficients across three generations for each memory characteristic. Results revealed that the earliest childhood memories of members of the same family were significantly similar in terms of level of detail and volume. Although similar patterns among members of the same families were observed in self-related and other-related words, the other/self ratio did not display an intrafamilial similarity. We also measured cross-generational differences and found that daughters' reported age of their earliest childhood memories was dated significantly earlier compared to their grandmothers. Results revealed predominant intrafamilial similarities among the members of the same family and cross-generational differences in terms of the age of the earliest childhood memory.
Boyacioglu, Inci; Akfirat, Serap
2015-01-01
The purpose of this study is to develop a valid and reliable measure for the phenomenology of autobiographical memories. The psychometric properties of the Autobiographical Memory Characteristics Questionnaire (AMCQ) were tested in three studies: the factor structure of the AMCQ was examined for childhood memories in Study 1 (N = 305); for autobiographical memories related to romantic relationships in Study 2 (N = 197); and for self-defining memories in Study 3 (N = 262). The explanatory factor analyses performed for each memory type demonstrated the consistency of the AMCQ factor structure across all memory types; while a confirmatory factor analysis on the data garnered from all three studies supported the constructs for the autobiographical memory characteristics defined by the researchers. The AMCQ consists of 63 items and 14 factors, and the internal consistency values of all 14 scales were ranged between .66 and .97. The relationships between the AMCQ scales related to gender and individual emotions, as well as the intercorrelations among the scales, were consistent with both theoretical expectations and previous findings. The results of all the three studies indicated that this new instrument is a reliable and robust measure for memory phenomenology.
Philippe, Frederick L; Bouizegarene, Nabil; Guilbault, Valérie; Rajotte, Guillaume; Houle, Iliane
2015-01-01
Narrative research claims that episodic/autobiographical memory characteristics and themes represent stable individual differences that relate to well-being. However, the effects of the order of administration of memory descriptions and well-being scales have never been investigated. Of importance, social cognitive research has shown that trivial contextual factors, such as completing a self-report measure, can influence the type of memories recollected afterwards and that memory recollection can transiently affect subsequent self-report ratings--both of which underscore that transient contextual effects, rather than stable individual differences in memory could be responsible for the correlation between memory characteristics and well-being. The present study examined if the order in which (positive or negative) memory and well-being scales are completed affects the characteristics and themes of the memory described, the scores of well-being reported and the relationship between the two. The results revealed some effects of order of administration when memories were described before completing well-being scales, but only on a situational measure of well-being, not on a trait measure. In sum, we recommend assessing memory-related material at the end of questionnaires to avoid potential mood-priming effects.
Abdel-Azim, Hisham; Elshoury, Amro; Mahadeo, Kris M; Parkman, Robertson; Kapoor, Neena
2017-09-01
Although T cell immune reconstitution after allogeneic hematopoietic stem cell transplantation (allo-HSCT) has been well studied, long-term B cell immune reconstitution remains less characterized. We evaluated humoral immune reconstitution among 71 pediatric allo-HSCT recipients. Although tetanus toxoid antibody levels were normal at 1 year after allo-HSCT, antipolysaccharide carbohydrate antibodies remained persistently low for up to 5 years. While naive B cell counts normalized by 6 months, IgM memory B cell deficiency persisted for up to 2 years (P = .01); switched memory B cell deficiency normalized by 1 year after allo-HSCT. CD4 + T cell immune reconstitution correlated with that of switched memory B cells as early as 6 months after allo-HSCT (r = .55, P = .002) but did not correlate with IgM memory B cells at any time point after allo-HSCT. Taken together, this suggests that allo-HSCT recipients have impaired antibody immune reconstitution, mainly due to IgM memory B cell maturation block, compared with more prompt T cell-dependent switched memory cell immune reconstitution. We further explored other factors that might affect humoral immune reconstitution. The use of total body irradiation was associated with lower naive B cells counts at 6 months after HSCT (P = .04) and lower IgM (P = .008) and switched (P = .003) memory B cells up to 2 years. Allo-HSCT recipients with extensive chronic graft-versus-host disease had lower IgM memory B cell counts (P = .03) up to 2 years after allo-HSCT. The use of cord blood was associated with better naive (P = .01), IgM (P = .0005), and switched memory (P = .006) B cells immune reconstitution. These findings may inform future prophylaxis and treatment strategies regarding risk of overwhelming infection, graft-versus-host disease, and post-allogeneic HSCT revaccination. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Immune memory: the basics and how to trigger an efficient long-term immune memory.
Beverley, P C L
2010-01-01
Immunological memory consists of expanded clones of T and B lymphocytes that show an increased rate of cell division and shortened telomeres compared with naïve cells. However, exhaustion of clones is delayed by kinetic heterogeneity within clones and altered survival and up-regulation of telomerase. Prolonged maintenance of protective B-cell immunity is T-cell dependent and requires a balance between plasma cells and memory B cells. Protective T-cell immunity also requires correct quality of T cells and that they are located appropriately. Copyright 2009 Elsevier Ltd. All rights reserved.
Flores-Santibáñez, Felipe; Cuadra, Bárbara; Fernández, Dominique; Rosemblatt, Mariana V.; Núñez, Sarah; Cruz, Pablo; Gálvez-Cancino, Felipe; Cárdenas, J. César; Lladser, Alvaro; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela
2018-01-01
Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies. PMID:29472932
NASA Astrophysics Data System (ADS)
Hu, Kai; Yang, Xianjin; Cai, Yanli; Cui, Zhenduo; Wei, Qiang
2007-07-01
A hydroxyapatite (HA)/collagen (COL) composite coating on NiTi shape memory alloy (SMA) was prepared by eletrochemical deposition (ELD) in modified simulated body fluid (MSBF). To draw comparisons of physical characteristics and bioactivity of the composite coating, the HA/COL composite coating was also prepared by chemically biomimetic growth (BG) and the ELD coating was re-soaked in MSBF again for further biomimetic growth (called EBG method in this paper). It was indicated that the c-axis of HA crystals was oriented parallel to the longitudinal direction of the COL fibril in BG and EBG coating, which could not found in ELD coating. The EBG method could induce a denser, thicker and better crystallized HA/COL coating. The cell culture test indicated that the BG coating presented better cell biocompatibility.
CXCR4 is critical for CD8+ memory T cell homeostatic self-renewal but not rechallenge self-renewal1
Chaix, Julie; Nish, Simone A.; Lin, Wen-Hsuan W.; Rothman, Nyanza J.; Ding, Lei; Wherry, E. John; Reiner, Steven L.
2014-01-01
Central memory (CM) CD8+ T cells “remember” prior encounters because they maintain themselves through cell division in the absence of ongoing challenge (homeostatic self-renewal) as well as reproduce the central memory fate while manufacturing effector cells during secondary antigen encounters (rechallenge self-renewal). We tested the consequence of conditional deletion of the bone marrow (BM) homing receptor CXCR4 on antiviral T cell responses. CXCR4-deficient CD8+ T cells have impaired memory cell maintenance due to defective homeostatic proliferation. Upon rechallenge, however, CXCR4-deficient T cells can re-expand and renew the central memory pool while producing secondary effector cells. The critical BM-derived signals essential for CD8+ T cell homeostatic self-renewal appear to be dispensable to yield self-renewing, functionally asymmetric cell fates during rechallenge. PMID:24973450
CD4+CD62L+ Central Memory T Cells Can Be Converted to Foxp3+ T Cells
Zhang, Xiaolong; Chang Li, Xian; Xiao, Xiang; Sun, Rui; Tian, Zhigang; Wei, Haiming
2013-01-01
The peripheral Foxp3+ Treg pool consists of naturally arising Treg (nTreg) and adaptive Treg cells (iTreg). It is well known that naive CD4+ T cells can be readily converted to Foxp3+ iTreg in vitro, and memory CD4+ T cells are resistant to conversion. In this study, we investigated the induction of Foxp3+ T cells from various CD4+ T-cell subsets in human peripheral blood. Though naive CD4+ T cells were readily converted to Foxp3+ T cells with TGF-β and IL-2 treatment in vitro, such Foxp3+ T cells did not express the memory marker CD45RO as do Foxp3+ T cells induced in the peripheral blood of Hepatitis B Virus (HBV) patients. Interestingly, a subset of human memory CD4+ T cells, defined as CD62L+ central memory T cells, could be induced by TGF-β to differentiate into Foxp3+ T cells. It is well known that Foxp3+ T cells derived from human CD4+CD25- T cells in vitro are lack suppressive functions. Our data about the suppressive functions of CD4+CD62L+ central memory T cell-derived Foxp3+ T cells support this conception, and an epigenetic analysis of these cells showed a similar methylation pattern in the FOXP3 Treg-specific demethylated region as the naive CD4+ T cell-derived Foxp3+ T cells. But further research showed that mouse CD4+ central memory T cells also could be induced to differentiate into Foxp3+ T cells, such Foxp3+ T cells could suppress the proliferation of effector T cells. Thus, our study identified CD4+CD62L+ central memory T cells as a novel potential source of iTreg. PMID:24155942
Hippocampal awake replay in fear memory retrieval
Wu, Chun-Ting; Haggerty, Daniel; Kemere, Caleb; Ji, Daoyun
2017-01-01
Hippocampal place cells are key to episodic memories. How these cells participate in memory retrieval remains unclear. Here, after rats acquired a fear memory by receiving mild foot-shocks at a shock zone of a track, we analyzed place cells when the animals were placed back to the track and displayed an apparent memory retrieval behavior: avoidance of the shock zone. We found that place cells representing the shock zone were reactivated, despite the fact that the animals did not enter the shock zone. This reactivation occurred in ripple-associated awake replay of place cell sequences encoding the paths from the animal’s current positions to the shock zone, but not in place cell sequences within individual cycles of theta oscillation. The result reveals a specific place cell pattern underlying the inhibitory avoidance behavior and provides strong evidence for the involvement of awake replay in fear memory retrieval. PMID:28218916
Origin and Function of Circulating Plasmablasts during Acute Viral Infections.
Fink, Katja
2012-01-01
Activated B cells proliferate and differentiate into antibody-producing cells, long-lived plasma cells, and memory B cells after immunization or infection. Repeated encounter of the same antigen triggers the rapid re-activation of pre-existing specific memory B cells, which then potentially enter new germinal center reactions and differentiate into short-lived plasmablasts or remain in the system as memory B cells. Short-lived class-switched IgG and IgA plasmablasts appear in the circulation transiently and the frequency of these cells can be remarkably high. The specificities and affinities of single plasmablasts in humans have been reported for several viral infections, so far most extensively for influenza and HIV. In general, the immunoglobulin variable regions of plasmablasts are highly mutated and diverse, suggesting that plasmablasts are derived from memory B cells, yet it is unclear which memory B cell subsets are activated and whether activated memory B cells adapt or mature before differentiation. This review summarizes what is known about the phenotype and the origin of human plasmablasts in the context of viral infections and whether these cells can be predictors of long-lived immunity.
Bcl-2 Allows Effector and Memory CD8+ T Cells To Tolerate Higher Expression of Bim
Kurtulus, Sema; Tripathi, Pulak; Moreno-Fernandez, Maria E.; Sholl, Allyson; Katz, Jonathan D.; Grimes, H. Leighton; Hildeman, David A.
2014-01-01
As acute infections resolve, most effector CD8+ T cells die, whereas some persist and become memory T cells. Recent work showed that subsets of effector CD8+ T cells, identified by reciprocal expression of killer cell lectin-like receptor G1 (KLRG1) and CD127, have different lifespans. Similar to previous reports, we found that effector CD8+ T cells reported to have a longer lifespan (i.e., KLRG1lowCD127high) have increased levels of Bcl-2 compared with their shorter-lived KLRG1highCD127low counterparts. Surprisingly, we found that these effector KLRG1lowCD127high CD8+ T cells also had increased levels of Bim compared with KLRG1highCD127low cells. Similar effects were observed in memory cells, in which CD8+ central memory T cells expressed higher levels of Bim and Bcl-2 than did CD8+ effector memory T cells. Using both pharmacologic and genetic approaches, we found that survival of both subsets of effector and memory CD8+ T cells required Bcl-2 to combat the proapoptotic activity of Bim. Interestingly, inhibition or absence of Bcl-2 led to significantly decreased expression of Bim in surviving effector and memory T cells. In addition, manipulation of Bcl-2 levels by IL-7 or IL-15 also affected expression of Bim in effector CD8+ T cells. Finally, we found that Bim levels were significantly increased in effector CD8+ T cells lacking Bax and Bak. Together, these data indicate that cells having the highest levels of Bim are selected against during contraction of the response and that Bcl-2 determines the level of Bim that effector and memory T cells can tolerate. PMID:21451108
Ruiseñor-Escudero, Horacio; Familiar-Lopez, Itziar; Sikorskii, Alla; Jambulingam, Nikita; Nakasujja, Noelline; Opoka, Robert; Bass, Judith; Boivin, Michael
2016-04-15
To identify the nutritional and immunological correlates of memory and neurocognitive development as measured by the Mullen Scales of Early Learning (MSEL) and by the Color Object Association Test (COAT) among children in Uganda. This analysis uses baseline data collected between 2008 and 2010 from 119 HIV-infected children aged 1-6 years, participating in a randomized controlled trial of an interventional parenting program in Kayunga, Uganda. Peripheral blood draws were performed to determine immunological biomarkers. Unadjusted and adjusted linear regression models were used to relate MSEL and COAT scores to sociodemographic characteristics, weight-for-age Z scores (WAZs), antiretroviral therapy status, and immunological biomarkers. In the final analysis, 111 children were included. Lower levels of CD4 CD38 T cells (P = 0.04) were associated to higher immediate and total recall scores (P = 0.04). Higher levels of CD8 HLA-DR T cells were associated with higher total recall score (P = 0.04) of the COAT. Higher CD4 CD38 HLA-DR T cells levels were associated with higher gross motor scores of the MSEL (P = 0.02). WAZ was positively correlated to visual reception, fine motor, expressive language, and composite score of the MSEL. Overall, WAZ was a stronger predictor of neurocognitive outcomes assessed by the MSEL. CD4 CD38 T cells were more specifically associated with memory-related outcomes. Future research should include immunological markers and standardized neurocognitive tests to further understand this relationship.
Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A
2017-03-01
Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Ghosh, Sarbari; Sarkar, Madhurima; Ghosh, Tithi; Guha, Ipsita; Bhuniya, Avishek; Saha, Akata; Dasgupta, Shayani; Barik, Subhasis; Bose, Anamika; Baral, Rathindranath
2016-03-01
We have previously shown that Neem Leaf Glycoprotein (NLGP) mediates sustained tumor protection by activating host immune response. Now we report that adjuvant help from NLGP predominantly generates CD44(+)CD62L(high)CCR7(high) central memory (TCM; in lymph node) and CD44(+)CD62L(low)CCR7(low) effector memory (TEM; in spleen) CD8(+) T cells of Swiss mice after vaccination with sarcoma antigen (SarAg). Generated TCM and TEM participated either to replenish memory cell pool for sustained disease free states or in rapid tumor eradication respectively. TCM generated after SarAg+NLGP vaccination underwent significant proliferation and IL-2 secretion following SarAg re-stimulation. Furthermore, SarAg+NLGP vaccination helps in greater survival of the memory precursor effector cells at the peak of the effector response and their maintenance as mature memory cells, in comparison to single modality treatment. Such response is corroborated with the reduced phosphorylation of FOXO in the cytosol and increased KLF2 in the nucleus associated with enhanced CD62L, CCR7 expression of lymph node-resident CD8(+) T cells. However, spleen-resident CD8(+) T memory cells show superior efficacy for immediate memory-to-effector cell conversion. The data support in all aspects that SarAg+NLGP demonstrate superiority than SarAg vaccination alone that benefits the host by rapid effector functions whenever required, whereas, central-memory cells are thought to replenish the memory cell pool for ultimate sustained disease free survival till 60 days following post-vaccination tumor inoculation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Generation of memory B cells and their reactivation.
Inoue, Takeshi; Moran, Imogen; Shinnakasu, Ryo; Phan, Tri Giang; Kurosaki, Tomohiro
2018-05-01
The successful establishment of humoral memory response depends on at least two layers of defense. Pre-existing protective antibodies secreted by long-lived plasma cells act as a first line of defense against reinfection ("constitutive humoral memory"). Previously, a second line of defense in which pathogen-experienced memory B cells are rapidly reactivated to produce antibodies ("reactive humoral memory"), was considered as simply a back-up system for the first line (particularly for re-infection with homologous viruses). However, in the case of re-infection with similar but different strains of viruses, or in response to viral escape mutants, the reactive humoral memory plays a crucial role. Here, we review recent progress in our understanding of how memory B cells are generated in the pre-GC stage and during the GC reaction, and how these memory B cells are robustly reactivated with the help of memory Tfh cells to generate the secondary antibody response. In addition, we discuss how these advances may be relevant to the quest for a vaccine that can induce broadly reactive antibodies against influenza and HIV. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Induction of CD4 T cell memory by local cellular collectivity.
Polonsky, Michal; Rimer, Jacob; Kern-Perets, Amos; Zaretsky, Irina; Miller, Stav; Bornstein, Chamutal; David, Eyal; Kopelman, Naama Meira; Stelzer, Gil; Porat, Ziv; Chain, Benjamin; Friedman, Nir
2018-06-15
Cell differentiation is directed by signals driving progenitors into specialized cell types. This process can involve collective decision-making, when differentiating cells determine their lineage choice by interacting with each other. We used live-cell imaging in microwell arrays to study collective processes affecting differentiation of naïve CD4 + T cells into memory precursors. We found that differentiation of precursor memory T cells sharply increases above a threshold number of locally interacting cells. These homotypic interactions involve the cytokines interleukin-2 (IL-2) and IL-6, which affect memory differentiation orthogonal to their effect on proliferation and survival. Mathematical modeling suggests that the differentiation rate is continuously modulated by the instantaneous number of locally interacting cells. This cellular collectivity can prioritize allocation of immune memory to stronger responses. Copyright © 2018, American Association for the Advancement of Science.
Requirement for CD4 T Cell Help in Generating Functional CD8 T Cell Memory
NASA Astrophysics Data System (ADS)
Shedlock, Devon J.; Shen, Hao
2003-04-01
Although primary CD8 responses to acute infections are independent of CD4 help, it is unknown whether a similar situation applies to secondary responses. We show that depletion of CD4 cells during the recall response has minimal effect, whereas depletion during the priming phase leads to reduced responses by memory CD8 cells to reinfection. Memory CD8 cells generated in CD4+/+ mice responded normally when transferred into CD4-/- hosts, whereas memory CD8 cells generated in CD4-/- mice mounted defective recall responses in CD4+/+ adoptive hosts. These results demonstrate a previously undescribed role for CD4 help in the development of functional CD8 memory.
Inflamm-ageing and lifelong antigenic load as major determinants of ageing rate and longevity.
De Martinis, Massimo; Franceschi, Claudio; Monti, Daniela; Ginaldi, Lia
2005-04-11
Immunosenescence is the consequence of the continuous attrition caused by chronic antigenic stress. The most important characteristics of immunosenescence (accumulation of memory and effector T cells, reduction of naive T cells, shrinkage of T cell repertoire, reduction of the immunological space) are compatible with this assumption. Immunosenescence can be taken as proof that the beneficial effects of the immune system, devoted to the neutralization of harmful agents early in life, become detrimental late in life, in a period not foreseen by evolution. This perspective could explain the mechanisms of the ageing process as well as the pathogenesis of age-related diseases.
Shinoda, Kenta; Hirahara, Kiyoshi; Iinuma, Tomohisa; Ichikawa, Tomomi; Suzuki, Akane S.; Sugaya, Kaoru; Tumes, Damon J.; Yamamoto, Heizaburo; Hara, Takahiro; Tani-ichi, Shizue; Ikuta, Koichi; Okamoto, Yoshitaka; Nakayama, Toshinori
2016-01-01
Memory CD4+ T helper (Th) cells are central to long-term protection against pathogens, but they can also be pathogenic and drive chronic inflammatory disorders. How these pathogenic memory Th cells are maintained, particularly at sites of local inflammation, remains unclear. We found that ectopic lymphoid-like structures called inducible bronchus-associated lymphoid tissue (iBALT) are formed during chronic allergic inflammation in the lung, and that memory-type pathogenic Th2 (Tpath2) cells capable of driving allergic inflammation are maintained within the iBALT structures. The maintenance of memory Th2 cells within iBALT is supported by Thy1+IL-7–producing lymphatic endothelial cells (LECs). The Thy1+IL-7–producing LECs express IL-33 and T-cell–attracting chemokines CCL21 and CCL19. Moreover, ectopic lymphoid structures consisting of memory CD4+ T cells and IL-7+IL-33+ LECs were found in nasal polyps of patients with eosinophilic chronic rhinosinusitis. Thus, Thy1+IL-7–producing LECs control chronic allergic airway inflammation by providing a survival niche for memory-type Tpath2 cells. PMID:27140620
Hierarchically clustered adaptive quantization CMAC and its learning convergence.
Teddy, S D; Lai, E M K; Quek, C
2007-11-01
The cerebellar model articulation controller (CMAC) neural network (NN) is a well-established computational model of the human cerebellum. Nevertheless, there are two major drawbacks associated with the uniform quantization scheme of the CMAC network. They are the following: (1) a constant output resolution associated with the entire input space and (2) the generalization-accuracy dilemma. Moreover, the size of the CMAC network is an exponential function of the number of inputs. Depending on the characteristics of the training data, only a small percentage of the entire set of CMAC memory cells is utilized. Therefore, the efficient utilization of the CMAC memory is a crucial issue. One approach is to quantize the input space nonuniformly. For existing nonuniformly quantized CMAC systems, there is a tradeoff between memory efficiency and computational complexity. Inspired by the underlying organizational mechanism of the human brain, this paper presents a novel CMAC architecture named hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC). HCAQ-CMAC employs hierarchical clustering for the nonuniform quantization of the input space to identify significant input segments and subsequently allocating more memory cells to these regions. The stability of the HCAQ-CMAC network is theoretically guaranteed by the proof of its learning convergence. The performance of the proposed network is subsequently benchmarked against the original CMAC network, as well as two other existing CMAC variants on two real-life applications, namely, automated control of car maneuver and modeling of the human blood glucose dynamics. The experimental results have demonstrated that the HCAQ-CMAC network offers an efficient memory allocation scheme and improves the generalization and accuracy of the network output to achieve better or comparable performances with smaller memory usages. Index Terms-Cerebellar model articulation controller (CMAC), hierarchical clustering, hierarchically clustered adaptive quantization CMAC (HCAQ-CMAC), learning convergence, nonuniform quantization.
Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.
Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu
2016-03-24
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD.
Diet-induced obesity does not impact the generation and maintenance of primary memory CD8 T cells.
Khan, Shaniya H; Hemann, Emily A; Legge, Kevin L; Norian, Lyse A; Badovinac, Vladimir P
2014-12-15
The extent to which obesity compromises the differentiation and maintenance of protective memory CD8 T cell responses and renders obese individuals susceptible to infection remains unknown. In this study, we show that diet-induced obesity did not impact the maintenance of pre-existing memory CD8 T cells, including acquisition of a long-term memory phenotype (i.e., CD27(hi), CD62L(hi), KLRG1(lo)) and function (i.e., cytokine production, secondary expansion, and memory CD8 T cell-mediated protection). Additionally, obesity did not influence the differentiation and maintenance of newly evoked memory CD8 T cell responses in inbred and outbred hosts generated in response to different types of systemic (LCMV, L. monocytogenes) and/or localized (influenza virus) infections. Interestingly, the rate of naive-to-memory CD8 T cell differentiation after a peptide-coated dendritic cell immunization was similar in lean and obese hosts, suggesting that obesity-associated inflammation, unlike pathogen- or adjuvant-induced inflammation, did not influence the development of endogenous memory CD8 T cell responses. Therefore, our studies reveal that the obese environment does not influence the development or maintenance of memory CD8 T cell responses that are either primed before or after obesity is established, a surprising notion with important implications for future studies aiming to elucidate the role obesity plays in host susceptibility to infections. Copyright © 2014 by The American Association of Immunologists, Inc.
How intention and monitoring your thoughts influence characteristics of autobiographical memories.
Barzykowski, Krystian; Staugaard, Søren Risløv
2018-05-01
Involuntary autobiographical memories come to mind effortlessly and unintended, but the mechanisms of their retrieval are not fully understood. We hypothesize that involuntary retrieval depends on memories that are highly accessible (e.g., intense, unusual, recent, rehearsed), while the elaborate search that characterizes voluntary retrieval also produces memories that are mundane, repeated or distant - memories with low accessibility. Previous research provides some evidence for this 'threshold hypothesis'. However, in almost every prior study, participants have been instructed to report only memories while ignoring other thoughts. It is possible that such an instruction can modify the phenomenological characteristics of involuntary memories. This study aimed to investigate the effects of retrieval intentionality (i.e., wanting to retrieve a memory) and selective monitoring (i.e., instructions to report only memories) on the phenomenology of autobiographical memories. Participants were instructed to (1) intentionally retrieve autobiographical memories, (2) intentionally retrieve any type of thought (3) wait for an autobiographical memory to spontaneously appear, or (4) wait for any type of thought to spontaneously appear. They rated the mental content on a number of phenomenological characteristics both during retrieval and retrospectively following retrieval. The results support the prediction that highly accessible memories mostly enter awareness unintended and without selective monitoring, while memories with low accessibility rely on intention and selective monitoring. We discuss the implications of these effects. © 2017 The British Psychological Society.
Tolerance induction of IgG+ memory B cells by T cell-independent type II antigens.
Haniuda, Kei; Nojima, Takuya; Ohyama, Kyosuke; Kitamura, Daisuke
2011-05-15
Memory B cells generated during a T cell-dependent immune response rapidly respond to a secondary immunization by producing abundant IgG Abs that bind cognate Ag with high affinity. It is currently unclear whether this heightened recall response by memory B cells is due to augmented IgG-BCR signaling, which has only been demonstrated in the context of naive transgenic B cells. To address this question, we examined whether memory B cells can respond in vivo to Ags that stimulate only through BCR, namely T cell-independent type II (TI-II) Ags. In this study, we show that the TI-II Ag (4-hydroxy-3-nitrophenyl) acetyl (NP)-Ficoll cannot elicit the recall response in mice first immunized with the T cell-dependent Ag NP-chicken γ-globulin. Moreover, the NP-Ficoll challenge in vivo as well as in vitro significantly inhibits a subsequent recall response to NP-chicken γ-globulin in a B cell-intrinsic manner. This NP-Ficoll-mediated tolerance is caused by the preferential elimination of IgG(+) memory B cells binding to NP with high affinity. These data indicate that BCR cross-linking with a TI-II Ag does not activate IgG(+) memory B cells, but rather tolerizes them, identifying a terminal checkpoint of memory B cell differentiation that may prevent autoimmunity.
Memory CD8+ T Cells Protect Dendritic Cells from CTL Killing1
Watchmaker, Payal B.; Urban, Julie A.; Berk, Erik; Nakamura, Yutaro; Mailliard, Robbie B.; Watkins, Simon C.; van Ham, S. Marieke; Kalinski, Pawel
2010-01-01
CD8+ T cells have been shown to be capable of either suppressing or promoting immune responses. To reconcile these contrasting regulatory functions, we compared the ability of human effector and memory CD8+ T cells to regulate survival and functions of dendritic cells (DC). We report that, in sharp contrast to the effector cells (CTLs) that kill DCs in a granzyme B- and perforin-dependent mechanism, memory CD8+ T cells enhance the ability of DCs to produce IL-12 and to induce functional Th1 and CTL responses in naive CD4+ and CD8+ T cell populations. Moreover, memory CD8+ T cells that release the DC-activating factor TNF-α before the release of cytotoxic granules induce DC expression of an endogenous granzyme B inhibitor PI-9 and protect DCs from CTL killing with similar efficacy as CD4+ Th cells. The currently identified DC-protective function of memory CD8+ T cells helps to explain the phenomenon of CD8+ T cell memory, reduced dependence of recall responses on CD4+ T cell help, and the importance of delayed administration of booster doses of vaccines for the optimal outcome of immunization. PMID:18322193
Marusina, Alina I; Ono, Yoko; Merleev, Alexander A; Shimoda, Michiko; Ogawa, Hiromi; Wang, Elizabeth A; Kondo, Kayo; Olney, Laura; Luxardi, Guillaume; Miyamura, Yoshinori; Yilma, Tilahun D; Villalobos, Itzel Bustos; Bergstrom, Jennifer W; Kronenberg, Daniel G; Soulika, Athena M; Adamopoulos, Iannis E; Maverakis, Emanual
2017-02-01
It is widely accepted that central and effector memory CD4 + T cells originate from naïve T cells after they have encountered their cognate antigen in the setting of appropriate co-stimulation. However, if this were true the diversity of T cell receptor (TCR) sequences within the naïve T cell compartment should be far greater than that of the memory T cell compartment, which is not supported by TCR sequencing data. Here we demonstrate that aged mice with far fewer naïve T cells, respond to the model antigen, hen eggwhite lysozyme (HEL), by utilizing the same TCR sequence as their younger counterparts. CD4 + T cell repertoire analysis of highly purified T cell populations from naive animals revealed that the HEL-specific clones displayed effector and central "memory" cell surface phenotypes even prior to having encountered their cognate antigen. Furthermore, HEL-inexperienced CD4 + T cells were found to reside within the naïve, regulatory, central memory, and effector memory T cell populations at similar frequencies and the majority of the CD4 + T cells within the regulatory and memory populations were unexpanded. These findings support a new paradigm for CD4 + T cell maturation in which a specific clone can undergo a differentiation process to exhibit a "memory" or regulatory phenotype without having undergone a clonal expansion event. It also demonstrates that a foreign-specific T cell is just as likely to reside within the regulatory T cell compartment as it would the naïve compartment, arguing against the specificity of the regulatory T cell compartment being skewed towards self-reactive T cell clones. Finally, we demonstrate that the same set of foreign and autoreactive CD4 + T cell clones are repetitively generated throughout adulthood. The latter observation argues against T cell-depleting strategies or autologous stem cell transplantation as therapies for autoimmunity-as the immune system has the ability to regenerate pathogenic clones. Published by Elsevier Ltd.
Immune signatures of protective spleen memory CD8 T cells.
Brinza, Lilia; Djebali, Sophia; Tomkowiak, Martine; Mafille, Julien; Loiseau, Céline; Jouve, Pierre-Emmanuel; de Bernard, Simon; Buffat, Laurent; Lina, Bruno; Ottmann, Michèle; Rosa-Calatrava, Manuel; Schicklin, Stéphane; Bonnefoy, Nathalie; Lauvau, Grégoire; Grau, Morgan; Wencker, Mélanie; Arpin, Christophe; Walzer, Thierry; Leverrier, Yann; Marvel, Jacqueline
2016-11-24
Memory CD8 T lymphocyte populations are remarkably heterogeneous and differ in their ability to protect the host. In order to identify the whole range of qualities uniquely associated with protective memory cells we compared the gene expression signatures of two qualities of memory CD8 T cells sharing the same antigenic-specificity: protective (Influenza-induced, Flu-TM) and non-protective (peptide-induced, TIM) spleen memory CD8 T cells. Although Flu-TM and TIM express classical phenotypic memory markers and are polyfunctional, only Flu-TM protects against a lethal viral challenge. Protective memory CD8 T cells express a unique set of genes involved in migration and survival that correlate with their unique capacity to rapidly migrate within the infected lung parenchyma in response to influenza infection. We also enlighten a new set of poised genes expressed by protective cells that is strongly enriched in cytokines and chemokines such as Ccl1, Ccl9 and Gm-csf. CCL1 and GM-CSF genes are also poised in human memory CD8 T cells. These immune signatures are also induced by two other pathogens (vaccinia virus and Listeria monocytogenes). The immune signatures associated with immune protection were identified on circulating cells, i.e. those that are easily accessible for immuno-monitoring and could help predict vaccines efficacy.
Mbitikon-Kobo, Florentin-Martial; Vocanson, Marc; Michallet, Marie-Cécile; Tomkowiak, Martine; Cottalorda, Anne; Angelov, Georgi S; Coupet, Charles-Antoine; Djebali, Sophia; Marçais, Antoine; Dubois, Bertrand; Bonnefoy-Bérard, Nathalie; Nicolas, Jean-François; Arpin, Christophe; Marvel, Jacqueline
2009-03-15
Most memory CD8 T cell subsets that have been hitherto defined are generated in response to infectious pathogens. In this study, we have characterized the CD8 T cells that survive priming conditions, devoid of pathogen-derived danger signals. In both a TCR-transgenic model and a model of contact hypersensitivity, we show that the priming of naive CD8 T cells under sterile inflammatory conditions generates memory. The corresponding memory CD8 T cells can be identified by their intermediate expression levels of CD44 and CD122. We also show that CD44/122(int) memory CD8 T cells spontaneously develop in wild type mice and that they display intermediate levels of several other memory traits including functional (IFN-gamma secretion capacity, CCL5 messenger stores), phenotypic, and molecular (T-bet and eomesodermin expression levels) features. We finally show that they correspond to an early differentiation stage and can further differentiate in CD44/122(high) memory T cells. Altogether, our results identify a new memory CD8 T cell subset that is generated under sterile inflammatory conditions and involved in the recall contact hypersensitivity reactions that are responsible for allergic contact dermatitis.
Damouche, Abderaouf; Pourcher, Guillaume; Pourcher, Valérie; Benoist, Stéphane; Busson, Elodie; Lataillade, Jean-Jacques; Le Van, Mélanie; Lazure, Thierry; Adam, Julien; Favier, Benoit; Vaslin, Bruno; Müller-Trutwin, Michaela; Lambotte, Olivier; Bourgeois, Christine
2017-12-01
We and others have demonstrated that adipose tissue is a reservoir for HIV. Evaluation of the mechanisms responsible for viral persistence may lead to ways of reducing these reservoirs. Here, we evaluated the immune characteristics of adipose tissue in HIV-infected patients receiving antiretroviral therapy (ART) and in non-HIV-infected patients. We notably sought to determine whether adipose tissue's intrinsic properties and/or HIV induced alteration of the tissue environment may favour viral persistence. ART-controlled HIV infection was associated with a difference in the CD4/CD8 T-cell ratio and an elevated proportion of Treg cells in subcutaneous adipose tissue. No changes in Th1, Th2 and Th17 cell proportions or activation markers expression on T cell (Ki-67, HLA-DR) could be detected, and the percentage of CD69-expressing resident memory CD4 + T cells was not affected. Overall, our results indicate that adipose-tissue-resident CD4 + T cells are not extensively activated during HIV infection. PD-1 was expressed by a high proportion of tissue-resident memory CD4 + T cells in both HIV-infected patients and non-HIV-infected patients. Our findings suggest that adipose tissue's intrinsic immunomodulatory properties may limit immune activation and thus may strongly contribute to viral persistence. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kinetic Inductance Memory Cell and Architecture for Superconducting Computers
NASA Astrophysics Data System (ADS)
Chen, George J.
Josephson memory devices typically use a superconducting loop containing one or more Josephson junctions to store information. The magnetic inductance of the loop in conjunction with the Josephson junctions provides multiple states to store data. This thesis shows that replacing the magnetic inductor in a memory cell with a kinetic inductor can lead to a smaller cell size. However, magnetic control of the cells is lost. Thus, a current-injection based architecture for a memory array has been designed to work around this problem. The isolation between memory cells that magnetic control provides is provided through resistors in this new architecture. However, these resistors allow leakage current to flow which ultimately limits the size of the array due to power considerations. A kinetic inductance memory array will be limited to 4K bits with a read access time of 320 ps for a 1 um linewidth technology. If a power decoder could be developed, the memory architecture could serve as the blueprint for a fast (<1 ns), large scale (>1 Mbit) superconducting memory array.
Han, Seong-Ji; Glatman Zaretsky, Arielle; Andrade-Oliveira, Vinicius; Collins, Nicholas; Dzutsev, Amiran; Shaik, Jahangheer; Morais da Fonseca, Denise; Harrison, Oliver J; Tamoutounour, Samira; Byrd, Allyson L; Smelkinson, Margery; Bouladoux, Nicolas; Bliska, James B; Brenchley, Jason M; Brodsky, Igor E; Belkaid, Yasmine
2017-12-19
White adipose tissue bridges body organs and plays a fundamental role in host metabolism. To what extent adipose tissue also contributes to immune surveillance and long-term protective defense remains largely unknown. Here, we have shown that at steady state, white adipose tissue contained abundant memory lymphocyte populations. After infection, white adipose tissue accumulated large numbers of pathogen-specific memory T cells, including tissue-resident cells. Memory T cells in white adipose tissue expressed a distinct metabolic profile, and white adipose tissue from previously infected mice was sufficient to protect uninfected mice from lethal pathogen challenge. Induction of recall responses within white adipose tissue was associated with the collapse of lipid metabolism in favor of antimicrobial responses. Our results suggest that white adipose tissue represents a memory T cell reservoir that provides potent and rapid effector memory responses, positioning this compartment as a potential major contributor to immunological memory. Published by Elsevier Inc.
Booster dose after 10 years is recommended following 17DD-YF primary vaccination.
Campi-Azevedo, Ana Carolina; Costa-Pereira, Christiane; Antonelli, Lis R; Fonseca, Cristina T; Teixeira-Carvalho, Andréa; Villela-Rezende, Gabriela; Santos, Raiany A; Batista, Maurício A; Campos, Fernanda M; Pacheco-Porto, Luiza; Melo Júnior, Otoni A; Hossell, Débora M S H; Coelho-dos-Reis, Jordana G; Peruhype-Magalhães, Vanessa; Costa-Silva, Matheus F; de Oliveira, Jaquelline G; Farias, Roberto H; Noronha, Tatiana G; Lemos, Jandira A; von Doellinger, Vanessa dos R; Simões, Marisol; de Souza, Mirian M; Malaquias, Luiz C; Persi, Harold R; Pereira, Jorge M; Martins, José A; Dornelas-Ribeiro, Marcos; Vinhas, Aline de A; Alves, Tatiane R; Maia, Maria de L; Freire, Marcos da S; Martins, Reinaldo de M; Homma, Akira; Romano, Alessandro P M; Domingues, Carla M; Tauil, Pedro L; Vasconcelos, Pedro F; Rios, Maria; Caldas, Iramaya R; Camacho, Luiz A; Martins-Filho, Olindo Assis
2016-01-01
A single vaccination of Yellow Fever vaccines is believed to confer life-long protection. In this study, results of vaccinees who received a single dose of 17DD-YF immunization followed over 10 y challenge this premise. YF-neutralizing antibodies, subsets of memory T and B cells as well as cytokine-producing lymphocytes were evaluated in groups of adults before (NVday0) and after (PVday30-45, PVyear1-4, PVyear5-9, PVyear10-11, PVyear12-13) 17DD-YF primary vaccination. YF-neutralizing antibodies decrease significantly from PVyear1-4 to PVyear12-13 as compared to PVday30-45, and the seropositivity rates (PRNT≥2.9Log10mIU/mL) become critical (lower than 90%) beyond PVyear5-9. YF-specific memory phenotypes (effector T-cells and classical B-cells) significantly increase at PVday30-45 as compared to naïve baseline. Moreover, these phenotypes tend to decrease at PVyear10-11 as compared to PVday30-45. Decreasing levels of TNF-α(+) and IFN-γ(+) produced by CD4(+) and CD8(+) T-cells along with increasing levels of IL-10(+)CD4(+)T-cells were characteristic of anti-YF response over time. Systems biology profiling represented by hierarchic networks revealed that while the naïve baseline is characterized by independent micro-nets, primary vaccinees displayed an imbricate network with essential role of central and effector CD8(+) memory T-cell responses. Any putative limitations of this cross-sectional study will certainly be answered by the ongoing longitudinal population-based investigation. Overall, our data support the current Brazilian national immunization policy guidelines that recommend one booster dose 10 y after primary 17DD-YF vaccination.
Deets, Katherine A.; Berkley, Amy M.; Bergsbaken, Tessa; Fink, Pamela J.
2016-01-01
The youngest peripheral T cells (recent thymic emigrants or RTEs) are functionally distinct from naïve T cells that have completed post-thymic maturation. We now assess the RTE memory response, and find that RTEs produced less granzyme B than their mature counterparts during infection, but proliferated more and therefore generated equivalent target killing in vivo. After infection, RTE numbers contracted less dramatically than those of mature T cells, but RTEs were delayed in their transition to central memory, displaying impaired expression of CD62L, IL-2, Eomesodermin, and CXCR4, which resulted in impaired bone marrow localization. RTE-derived and mature memory cells expanded equivalently during rechallenge, indicating the robust proliferative capacity of RTEs was maintained independently of central memory phenotype. Thus, the diminished effector function and delayed central memory differentiation of RTE-derived memory cells are counterbalanced by their increased proliferative capacity, driving the efficacy of the RTE response to that of mature T cells. PMID:26873989
Deets, Katherine A; Berkley, Amy M; Bergsbaken, Tessa; Fink, Pamela J
2016-03-15
The youngest peripheral T cells (recent thymic emigrants [RTEs]) are functionally distinct from naive T cells that have completed postthymic maturation. We assessed the RTE memory response and found that RTEs produced less granzyme B than their mature counterparts during infection but proliferated more and, therefore, generated equivalent target killing in vivo. Postinfection, RTE numbers contracted less dramatically than those of mature T cells, but RTEs were delayed in their transition to central memory, displaying impaired expression of CD62L, IL-2, Eomesodermin, and CXCR4, which resulted in impaired bone marrow localization. RTE-derived and mature memory cells expanded equivalently during rechallenge, indicating that the robust proliferative capacity of RTEs was maintained independently of central memory phenotype. Thus, the diminished effector function and delayed central memory differentiation of RTE-derived memory cells are counterbalanced by their increased proliferative capacity, driving the efficacy of the RTE response to that of mature T cells. Copyright © 2016 by The American Association of Immunologists, Inc.
Associative memory cells and their working principle in the brain
Wang, Jin-Hui; Cui, Shan
2018-01-01
The acquisition, integration and storage of exogenous associated signals are termed as associative learning and memory. The consequences and processes of associative thinking and logical reasoning based on these stored exogenous signals can be memorized as endogenous signals, which are essential for decision making, intention, and planning. Associative memory cells recruited in these primary and secondary associative memories are presumably the foundation for the brain to fulfill cognition events and emotional reactions in life, though the plasticity of synaptic connectivity and neuronal activity has been believed to be involved in learning and memory. Current reports indicate that associative memory cells are recruited by their mutual synapse innervations among co-activated brain regions to fulfill the integration, storage and retrieval of associated signals. The activation of these associative memory cells initiates information recall in the mind, and the successful activation of their downstream neurons endorses memory presentations through behaviors and emotion reactions. In this review, we aim to draw a comprehensive diagram for associative memory cells, working principle and modulation, as well as propose their roles in cognition, emotion and behaviors. PMID:29487741
Laksono, Brigitta M; Grosserichter-Wagener, Christina; de Vries, Rory D; Langeveld, Simone A G; Brem, Maarten D; van Dongen, Jacques J M; Katsikis, Peter D; Koopmans, Marion P G; van Zelm, Menno C; de Swart, Rik L
2018-04-15
Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (T H ) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that T H 1T H 17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. Copyright © 2018 Laksono et al.
Laksono, Brigitta M.; Grosserichter-Wagener, Christina; de Vries, Rory D.; Langeveld, Simone A. G.; Brem, Maarten D.; van Dongen, Jacques J. M.; Koopmans, Marion P. G.
2018-01-01
ABSTRACT Measles is characterized by a transient immune suppression, leading to an increased risk of opportunistic infections. Measles virus (MV) infection of immune cells is mediated by the cellular receptor CD150, expressed by subsets of lymphocytes, dendritic cells, macrophages, and thymocytes. Previous studies showed that human and nonhuman primate memory T cells express higher levels of CD150 than naive cells and are more susceptible to MV infection. However, limited information is available about the CD150 expression and relative susceptibility to MV infection of B-cell subsets. In this study, we assessed the susceptibility and permissiveness of naive and memory T- and B-cell subsets from human peripheral blood or tonsils to in vitro MV infection. Our study demonstrates that naive and memory B cells express CD150, but at lower frequencies than memory T cells. Nevertheless, both naive and memory B cells proved to be highly permissive to MV infection. Furthermore, we assessed the susceptibility and permissiveness of various functionally distinct T and B cells, such as helper T (TH) cell subsets and IgG- and IgA-positive memory B cells, in peripheral blood and tonsils. We demonstrated that TH1TH17 cells and plasma and germinal center B cells were the subsets most susceptible and permissive to MV infection. Our study suggests that both naive and memory B cells, along with several other antigen-experienced lymphocytes, are important target cells of MV infection. Depletion of these cells potentially contributes to the pathogenesis of measles immune suppression. IMPORTANCE Measles is associated with immune suppression and is often complicated by bacterial pneumonia, otitis media, or gastroenteritis. Measles virus infects antigen-presenting cells and T and B cells, and depletion of these cells may contribute to lymphopenia and immune suppression. Measles has been associated with follicular exhaustion in lymphoid tissues in humans and nonhuman primates, emphasizing the importance of MV infection of B cells in vivo. However, information on the relative susceptibility of B-cell subsets is scarce. Here, we compared the susceptibility and permissiveness to in vitro MV infection of human naive and memory T- and B-cell subsets isolated from peripheral blood or tonsils. Our results demonstrate that both naive and memory B cells are more permissive to MV infection than T cells. The highest infection levels were detected in plasma cells and germinal center B cells, suggesting that infection and depletion of these populations contribute to reduced host resistance. PMID:29437964
Human Infant Memory B Cell and CD4+ T Cell Responses to HibMenCY-TT Glyco-Conjugate Vaccine
Fuery, Angela; Richmond, Peter C.; Currie, Andrew J.
2015-01-01
Carrier-specific T cell and polysaccharide-specific B cell memory responses are not well characterised in infants following glyco-conjugate vaccination. We aimed to determine if the number of Meningococcal (Men) C- and Y- specific memory B cells and; number and quality of Tetanus Toxoid (TT) carrier-specific memory CD4+ T cells are associated with polysaccharide-specific IgG post HibMenCY-TT vaccination. Healthy infants received HibMenCY-TT vaccine at 2, 4 and 6 months with a booster at 12 months. Peripheral blood mononuclear cells were isolated and polysaccharide-specific memory B cells enumerated using ELISpot. TT-specific memory CD4+ T cells were detected and phenotyped based on CD154 expression and intracellular TNF-α, IL-2 and IFN-γ expression following stimulation. Functional polysaccharide-specific IgG titres were measured using the serum bactericidal activity (SBA) assay. Polysaccharide-specific Men C- but not Men Y- specific memory B cell frequencies pre-boost (12 months) were significantly associated with post-boost (13 months) SBA titres. Regression analysis showed no association between memory B cell frequencies post-priming (at 6 or 7 months) and SBA at 12 months or 13 months. TT-specific CD4+ T cells were detected at frequencies between 0.001 and 0.112 as a percentage of CD3+ T cells, but their numbers were not associated with SBA titres. There were significant negative associations between SBA titres at M13 and cytokine expression at M7 and M12. Conclusion: Induction of persistent polysaccharide-specific memory B cells prior to boosting is an important determinant of secondary IgG responses in infants. However, polysaccharide-specific functional IgG responses appear to be independent of the number and quality of circulating carrier-specific CD4+ T cells after priming. PMID:26191794
Stoof, Susanne P.; Buisman, Anne-Marie; van Rooijen, Debbie M.; Boonacker, Rianne; van der Klis, Fiona R. M.; Sanders, Elisabeth A. M.; Berbers, Guy A. M.
2015-01-01
Background Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Methods Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. Results The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Conclusions Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC. PMID:26458006
Stoof, Susanne P; Buisman, Anne-Marie; van Rooijen, Debbie M; Boonacker, Rianne; van der Klis, Fiona R M; Sanders, Elisabeth A M; Berbers, Guy A M
2015-01-01
Antibody levels wane rapidly after Meningococcal serogroup C conjugate (MenCC) vaccination in young children, rendering the need for an adolescent booster dose. It is not clear whether circulating memory B cells are associated with persistence of MenC-specific antibody levels. Measurement of MenC-specific IgG and IgA memory B cells and levels of serum and salivary MenC-specific IgG and IgA in healthy 10-, 12- and 15-year-olds prior to and one month and one year after a MenCC booster vaccination. All participants had received a primary MenCC vaccination nine years earlier. The number of circulating MenC-specific IgG memory B cells prior to booster was low and not predictive for MenC-specific IgG responses in serum or saliva post-booster, whereas the number of MenC-specific IgA memory B cells pre-booster positively correlated with MenC-specific IgA levels in saliva post-booster (R = 0.5, P<0.05). The booster induced a clear increase in the number of MenC-specific IgG and IgA memory B cells. The number of MenC-PS-specific IgG memory B cells at 1 month post-booster was highest in the 12-year-olds. The number of MenC-specific memory B cells at one month post-booster showed no correlation with the rate of MenC-specific antibody decay throughout the first year post-booster. Circulating MenC-specific IgA memory B cells correlate with IgA responses in saliva, whereas circulating MenC-specific IgG memory B cells are not predictive for MenC-specific IgG responses in serum or saliva. Our results are suggestive for age-dependent differences in pre-existing memory against MenC.
Fann, Monchou; Godlove, Jason M.; Catalfamo, Marta; Wood, William H.; Chrest, Francis J.; Chun, Nicholas; Granger, Larry; Wersto, Robert; Madara, Karen; Becker, Kevin; Henkart, Pierre A.; Weng, Nan-ping
2006-01-01
To understand the molecular basis for the rapid and robust memory T-cell responses, we examined gene expression and chromatin modification by histone H3 lysine 9 (H3K9) acetylation in resting and activated human naive and memory CD8+ T cells. We found that, although overall gene expression patterns were similar, a number of genes are differentially expressed in either memory or naive cells in their resting and activated states. To further elucidate the basis for differential gene expression, we assessed the role of histone H3K9 acetylation in differential gene expression. Strikingly, higher H3K9 acetylation levels were detected in resting memory cells, prior to their activation, for those genes that were differentially expressed following activation, indicating that hyperacetylation of histone H3K9 may play a role in selective and rapid gene expression of memory CD8+ T cells. Consistent with this model, we showed that inducing high levels of H3K9 acetylation resulted in an increased expression in naive cells of those genes that are normally expressed differentially in memory cells. Together, these findings suggest that differential gene expression mediated at least in part by histone H3K9 hyperacetylation may be responsible for the rapid and robust memory CD8+ T-cell response. PMID:16868257
Circuit mechanisms of hippocampal reactivation during sleep.
Malerba, Paola; Bazhenov, Maxim
2018-05-01
The hippocampus is important for memory and learning, being a brain site where initial memories are formed and where sharp wave - ripples (SWR) are found, which are responsible for mapping recent memories to long-term storage during sleep-related memory replay. While this conceptual schema is well established, specific intrinsic and network-level mechanisms driving spatio-temporal patterns of hippocampal activity during sleep, and specifically controlling off-line memory reactivation are unknown. In this study, we discuss a model of hippocampal CA1-CA3 network generating spontaneous characteristic SWR activity. Our study predicts the properties of CA3 input which are necessary for successful CA1 ripple generation and the role of synaptic interactions and intrinsic excitability in spike sequence replay during SWRs. Specifically, we found that excitatory synaptic connections promote reactivation in both CA3 and CA1, but the different dynamics of sharp waves in CA3 and ripples in CA1 result in a differential role for synaptic inhibition in modulating replay: promoting spike sequence specificity in CA3 but not in CA1 areas. Finally, we describe how awake learning of spatial trajectories leads to synaptic changes sufficient to drive hippocampal cells' reactivation during sleep, as required for sleep-related memory consolidation. Copyright © 2018 Elsevier Inc. All rights reserved.
Charge Carrier Transport Mechanism Based on Stable Low Voltage Organic Bistable Memory Device.
Ramana, V V; Moodley, M K; Kumar, A B V Kiran; Kannan, V
2015-05-01
A solution processed two terminal organic bistable memory device was fabricated utilizing films of polymethyl methacrylate PMMA/ZnO/PMMA on top of ITO coated glass. Electrical characterization of the device structure showed that the two terminal device exhibited favorable switching characteristics with an ON/OFF ratio greater than 1 x 10(4) when the voltage was swept between - 2 V and +3 V. The device maintained its state after removal of the bias voltage. The device did not show degradation after a 1-h retention test at 120 degrees C. The memory functionality was consistent even after fifty cycles of operation. The charge transport switching mechanism is discussed on the basis of carrier transport mechanism and our analysis of the data shows that the charge carrier trans- port mechanism of the device during the writing process can be explained by thermionic emission (TE) and space-charge-limited-current (SCLC) mechanism models while erasing process could be explained by the FN tunneling mechanism. This demonstration provides a class of memory devices with the potential for low-cost, low-power consumption applications, such as a digital memory cell.
NASA Astrophysics Data System (ADS)
Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min
2018-03-01
For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J.; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L.; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D.; Weninger, Wolfgang
2015-01-01
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8+ T cells. During influenza virus infection in vivo, naive T cells enter a CD62Lintermediate state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62Lhi central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62Lhi memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways. PMID:25709008
Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell differentiation.
Kinjyo, Ichiko; Qin, Jim; Tan, Sioh-Yang; Wellard, Cameron J; Mrass, Paulus; Ritchie, William; Doi, Atsushi; Cavanagh, Lois L; Tomura, Michio; Sakaue-Sawano, Asako; Kanagawa, Osami; Miyawaki, Atsushi; Hodgkin, Philip D; Weninger, Wolfgang
2015-02-24
The precise pathways of memory T-cell differentiation are incompletely understood. Here we exploit transgenic mice expressing fluorescent cell cycle indicators to longitudinally track the division dynamics of individual CD8(+) T cells. During influenza virus infection in vivo, naive T cells enter a CD62L(intermediate) state of fast proliferation, which continues for at least nine generations. At the peak of the anti-viral immune response, a subpopulation of these cells markedly reduces their cycling speed and acquires a CD62L(hi) central memory cell phenotype. Construction of T-cell family division trees in vitro reveals two patterns of proliferation dynamics. While cells initially divide rapidly with moderate stochastic variations of cycling times after each generation, a slow-cycling subpopulation displaying a CD62L(hi) memory phenotype appears after eight divisions. Phenotype and cell cycle duration are inherited by the progeny of slow cyclers. We propose that memory precursors cell-intrinsically modulate their proliferative activity to diversify differentiation pathways.
Poirier, Nicolas; Chevalier, Melanie; Mary, Caroline; Hervouet, Jeremy; Minault, David; Baker, Paul; Ville, Simon; Le Bas-Bernardet, Stephanie; Dilek, Nahzli; Belarif, Lyssia; Cassagnau, Elisabeth; Scobie, Linda; Blancho, Gilles; Vanhove, Bernard
2016-01-01
Novel therapies that specifically target activation and expansion of pathogenic immune cell subsets responsible for autoimmune attacks are needed to confer long-term remission. Pathogenic cells in autoimmunity include memory T lymphocytes that are long-lived and present rapid recall effector functions with reduced activation requirements. Whereas the CD28 costimulation pathway predominantly controls priming of naive T cells and hence generation of adaptive memory cells, the roles of CD28 costimulation on established memory T lymphocytes and the recall of memory responses remain controversial. In contrast to CD80/86 antagonists (CTLA4-Ig), selective CD28 antagonists blunt T cell costimulation while sparing CTLA-4 and PD-L1-dependent coinhibitory signals. Using a new selective CD28 antagonist, we showed that Ag-specific reactivation of human memory T lymphocytes was prevented. Selective CD28 blockade controlled both cellular and humoral memory recall in nonhuman primates and induced long-term Ag-specific unresponsiveness in a memory T cell-mediated inflammatory skin model. No modification of memory T lymphocytes subsets or numbers was observed in the periphery, and importantly no significant reactivation of quiescent viruses was noticed. These findings indicate that pathogenic memory T cell responses are controlled by both CD28 and CTLA-4/PD-L1 cosignals in vivo and that selectively targeting CD28 would help to promote remission of autoimmune diseases and control chronic inflammation. Copyright © 2015 by The American Association of Immunologists, Inc.
Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Hur, Eun Mi; Schafer, Peter H; Ringheim, Garth E
2017-10-01
BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27 + memory and memory-like CD27 - IgD - double-negative (DN) B cells, but not CD27 - IgD + naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27 + memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. Copyright © 2017 by The American Association of Immunologists, Inc.
The Respiratory Environment Diverts the Development of Antiviral Memory CD8 T Cells.
Shane, Hillary L; Reagin, Katie L; Klonowski, Kimberly D
2018-06-01
Our understanding of memory CD8 + T cells has been largely derived from acute, systemic infection models. However, memory CD8 + T cells generated from mucosal infection exhibit unique properties and, following respiratory infection, are not maintained in the lung long term. To better understand how infection route modifies memory differentiation, we compared murine CD8 + T cell responses to a vesicular stomatitis virus (VSV) challenge generated intranasally (i.n.) or i.v. The i.n. infection resulted in greater peak expansion of VSV-specific CD8 + T cells. However, this numerical advantage was rapidly lost during the contraction phase of the immune response, resulting in memory CD8 + T cell numerical deficiencies when compared with i.v. infection. Interestingly, the antiviral CD8 + T cells generated in response to i.n. VSV exhibited a biased and sustained proportion of early effector cells (CD127 lo KLRG1 lo ) akin to the developmental program favored after i.n. influenza infection, suggesting that respiratory infection broadly favors an incomplete memory differentiation program. Correspondingly, i.n. VSV infection resulted in lower CD122 expression and eomesodermin levels by VSV-specific CD8 + T cells, further indicative of an inferior transition to bona fide memory. These results may be due to distinct (CD103 + CD11b + ) dendritic cell subsets in the i.n. versus i.v. T cell priming environments, which express molecules that regulate T cell signaling and the balance between tolerance and immunity. Therefore, we propose that distinct immunization routes modulate both the quality and quantity of antiviral effector and memory CD8 + T cells in response to an identical pathogen and should be considered in CD8 + T cell-based vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.
Nakayama, Yumi; Kosek, Jolanta; Capone, Lori; Schafer, Peter H.
2017-01-01
BAFF is a B cell survival and maturation factor implicated in the pathogenesis of systemic lupus erythematosus (SLE). In this in vitro study, we describe that soluble BAFF in combination with IL-2 and IL-21 is a T cell contact-independent inducer of human B cell proliferation, plasmablast differentiation, and IgG secretion from circulating CD27+ memory and memory-like CD27−IgD− double-negative (DN) B cells, but not CD27−IgD+ naive B cells. In contrast, soluble CD40L in combination with IL-2 and IL-21 induces these activities in both memory and naive B cells. Blood from healthy donors and SLE patients have similar circulating levels of IL-2, whereas SLE patients exhibit elevated BAFF and DN B cells and reduced IL-21. B cell differentiation transcription factors in memory, DN, and naive B cells in SLE show elevated levels of Aiolos, whereas Ikaros levels are unchanged. Treatment with CC-220, a modulator of the cullin ring ligase 4-cereblon E3 ubiquitin ligase complex, reduces Aiolos and Ikaros protein levels and BAFF- and CD40L-induced proliferation, plasmablast differentiation, and IgG secretion. The observation that the soluble factors BAFF, IL-2, and IL-21 induce memory and DN B cell activation and differentiation has implications for extrafollicular plasmablast development within inflamed tissue. Inhibition of B cell plasmablast differentiation by reduction of Aiolos and Ikaros may have utility in the treatment of SLE, where elevated levels of BAFF and Aiolos may prime CD27+ memory and DN memory-like B cells to become Ab-producing plasmablasts in the presence of BAFF and proinflammatory cytokines. PMID:28848067
Marasco, Emiliano; Farroni, Chiara; Cascioli, Simona; Marcellini, Valentina; Scarsella, Marco; Giorda, Ezio; Piano Mortari, Eva; Leonardi, Lucia; Scarselli, Alessia; Valentini, Diletta; Cancrini, Caterina; Duse, Marzia; Grimsholm, Ola; Carsetti, Rita
2017-01-01
Around 65% of primary immunodeficiencies are antibody deficiencies. Functional tests are useful tools to study B-cell functions in vitro. However, no accepted guidelines for performing and evaluating functional tests have been issued yet. Here, we report our experience on the study of B-cell functions in infancy and throughout childhood. We show that T-independent stimulation with CpG measures proliferation and differentiation potential of memory B cells. Switched memory B cells respond better than IgM memory B cells. On the other hand, CD40L, a T-dependent stimulus, does not induce plasma cell differentiation, but causes proliferation of naïve and memory B cells. During childhood, the production of plasmablasts in response to CpG increases with age mirroring the development of memory B cells. The response to CD40L does not change with age. In patients with selective IgA deficiency (SIgAD), we observed that switched memory B cells are reduced due to the absence of IgA memory B cells. In agreement, IgA plasma cells are not generated in response to CpG. Unexpectedly, B cells from SIgAD patients show a reduced proliferative response to CD40L. Our results demonstrate that functional tests are an important tool to assess the functions of the humoral immune system. © 2016 The Authors. European Journal of Immunology published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Choe, Byeong-In; Park, Byung-Gook; Lee, Jong-Ho
2013-06-01
The program disturbance characteristic in the three-dimensional (3D) stack NAND flash was analyzed for the first time in terms of string select line (SSL) threshold voltage (Vth) and p-type body doping profile. From the edge word line (W/L) program disturbance, we can observe the boosted channel potential loss as a function of SSL Vth and body doping profile for SSL device. According to simulation work, a high Vth of the SSL device is required to suppress channel leakage during programming. When the body doping of the SSL device is high in the channel, there is a large band bending near the gate edge of the SSL adjacent to the edge W/L cell of boosted cell strings, which generates significantly electron-hole pairs. The generated electrons decreases the boosted channel potential, resulting in increase of program disturbance of the inhibit strings. Through optimization of the body doping profile of the SSL device, both channel leakage and the program disturbance are successfully suppressed for a highly reliable 3D stack NAND flash memory cell operation.
2013-01-01
Background Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. Results VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. Conclusions TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory. PMID:23971624
O'Bryan, Joel M; Woda, Marcia; Co, Mary; Mathew, Anuja; Rothman, Alan L
2013-08-26
Declining telomere length (TL) is associated with T cell senescence. While TL in naïve and memory T cells declines with increasing age, there is limited data on TL dynamics in virus-specific memory CD4+ T cells in healthy adults. We combined BrdU-labeling of virus-stimulated T cells followed with flow cytometry-fluorescent in situ hybridization for TL determination. We analyzed TL in T cells specific for several virus infections: non-recurring acute (vaccinia virus, VACV), recurring-acute (influenza A virus, IAV), and reactivating viruses (varicella-zoster virus, VZV, and cytomegalovirus, CMV) in 10 healthy subjects. Additionally, five subjects provided multiple blood samples separated by up to 10 years. VACV- and CMV-specific T cells had longer average TL than IAV-specific CD4+ T cells. Although most virus-specific cells were CD45RA-, we observed a minor population of BrdU+ CD45RA+ T cells characterized by long telomeres. Longitudinal analysis demonstrated a slow decline in average TL in virus-specific T cells. However, in one subject, VZV reactivation led to an increase in average TL in VZV-specific memory T cells, suggesting a conversion of longer TL cells from the naïve T cell repertoire. TLs in memory CD4+ T cells in otherwise healthy adults are heterogeneous and follow distinct virus-specific kinetics. These findings suggests that the distribution of TL and the creation and maintenance of long TL memory T cells could be important for the persistence of long-lived T cell memory.
Verhoeven, D; Sankaran, S; Dandekar, S
2007-08-01
Simian immunodeficiency virus (SIV) infection leads to severe loss of intestinal CD4(+) T cells and, as compared to peripheral blood, restoration of these cells is slow during antiretroviral therapy (ART). Mechanisms for this delay have not been examined in context of which specific CD4(+) memory subsets or lost and fail to regenerate during ART. Fifteen rhesus macaques were infected with SIV, five of which received ART (FTC/PMPA) for 30 weeks. Viral loads were measured by real-time PCR. Flow cytometric analysis determined changes in T-cell subsets and their proliferative state. Changes in proliferative CD4(+) memory subsets during infection accelerated their depletion. This reduced the central memory CD4(+) T-cell pool and contributed to slow CD4(+) T-cell restoration during ART. There was a lack of restoration of the CD4(+) central memory and effector memory T-cell subsets in gut-associated lymphoid tissue during ART, which may contribute to the altered intestinal T-cell homeostasis in SIV infection.
Oh, Hyun-Mee; Yu, Cheng-Rong; Lee, YongJun; Chan, Chi-Chao; Maminishkis, Arvydas; Egwuagu, Charles E.
2011-01-01
Organ-specific autoimmune diseases are usually characterized by repeated cycles of remission and recurrent inflammation. However, where the autoreactive memory T-cells reside in-between episodes of recurrent inflammation is largely unknown. In this study, we have established a mouse model of chronic uveitis characterized by progressive photoreceptor-cell loss, retinal-degeneration, focal retinitis, retinal vasculitis, multifocal-choroiditis and choroidal neovascularization, providing for the first time a useful model for studying long-term pathological consequences of chronic inflammation of the neuroretina. We show that several months after inception of acute uveitis that autoreactive memory T-cells specific to retinal autoantigen, IRBP, relocated to bone marrow (BM). The IRBP-specific memory T-cells (IL-7RαHiLy6CHiCD4+) resided in BM in resting state but upon re-stimulation converted to IL-17-/IFN-γ-expressing effectors (IL-7RαLowLy6CLowCD4+) that mediated uveitis. We further show that T-cells from STAT3-deficient (CD4-STAT3KO) mice are defective in α4β1 and osteopontin expression; defects that correlated with inability of IRBP-specific memory CD4-STAT3KO T-cells to traffic into BM. We adoptively transferred uveitis to naïve mice using BM cells from WT mice with chronic uveitis but not BM cells from CD4-STAT3KO, providing direct evidence that memory T-cells that mediate uveitis reside in BM and that STAT3-dependent mechanism may be required for migration into and retention of memory T-cells in BM. Identifying BM as survival-niche for T-cells that cause uveitis, suggests that BM stromal cells that provide survival signals to autoreactive memory T-cells and STAT3-dependent mechanisms that mediate their relocation into BM, are attractive therapeutic targets that can be exploited to selectively deplete memory T-cells that drive chronic inflammation. PMID:21832158
Ancelet, Lindsay; Kirman, Joanna
2012-02-01
Abstract Effective vaccination against intracellular pathogens, such as tuberculosis (TB), relies on the generation and maintenance of CD4 memory T cells. An incomplete understanding of the memory immune response has hindered the rational design of a new, more effective TB vaccine. This review discusses how the persistence of antigen, the location of memory cells, and their multifunctional ability shape the CD4 memory T cell response against TB.
Yang, Peng; Ma, Junhong; Yang, Xin; Li, Wei
2017-01-01
Background To investigate the clinical significance of naïve T cells, memory T cells, CD45RA+CD45RO+ T cells, and naïve/memory ratio in non-small cell lung cancer (NSCLC) patients. Methods Pretreatment peripheral blood samples from 76 NSCLC patients and 28 age- and sex-matched healthy volunteers were collected and tested for immune cells by flow cytometry. We compared the expression of these immune cells between patients and healthy controls and evaluated their predictive roles for survival in NSCLC by cox proportional hazards model. Results Decreased naïve CD4+ T cells, naïve CD8+ T cells, CD4+ naïve/memory ratios and CD4+CD45RA+CD45RO+ T cells, and increased memory CD4+ T cells, were observed in 76 NSCLC patients compared to healthy volunteers. Univariate analysis revealed that elevated CD4+ naïve/memory ratio correlated with prolonged progression-free survival (P=0.013). Multivariate analysis confirmed its predictive role with a hazard ratio of 0.35 (95% confidence interval, 0.19-0.75, P=0.012). Conclusions Peripheral CD4+ naïve/memory ratio can be used as a predictive biomarker in NSCLC patients and used to optimize personalized treatment strategies. PMID:29137371
A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector1
Bolinger, Beatrice; Sims, Stuart; O’Hara, Geraldine; de Lara, Catherine; Tchilian, Elma; Firner, Sonja; Engeler, Daniel; Ludewig, Burkhard; Klenerman, Paul
2013-01-01
CD8+ T cell memory inflation, first described in murine cytomegalovirus (MCMV) infection, is characterized by the accumulation of high-frequency, functional antigen-specific CD8+ T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of antigen is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus’s low-level persistence, and stochastic reactivation. We developed a new model of memory inflation based upon a βgal-recombinant adenovirus vector (Ad-LacZ). After i.v. administration in C57BL/6 mice we observe marked memory inflation in the βgal96 epitope, while a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC Class II. As in MCMV, only the inflating epitope showed immunoproteasome-independence. These data define a new model for memory inflation, which is fully replication-independent, internally controlled and reproduces the key immunologic features of the CD8+ T cell response. This model provides insight into the mechanisms responsible for memory inflation, and since it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans. PMID:23509359
Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease
Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu
2016-01-01
Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728
Xu, Aizhang; Bhanumathy, Kalpana Kalyanasundaram; Wu, Jie; Ye, Zhenmin; Freywald, Andrew; Leary, Scot C; Li, Rongxiu; Xiang, Jim
2016-01-01
Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8(+) effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL-15 activation of the forkhead-box family of transcription factor (FOXO)/eomesodermin (Eomes) memory and ULK1/autophagy-related gene-7 (ATG7) autophagy pathways, and via IL-15 activation of the mitochondrial remodeling. Our data thus identify some important targets to consider when designing potent adoptive T-cell immunotherapies of cancer.
Laidlaw, Brian J; Cui, Weiguo; Amezquita, Robert A; Gray, Simon M; Guan, Tianxia; Lu, Yisi; Kobayashi, Yasushi; Flavell, Richard A; Kleinstein, Steven H; Craft, Joe; Kaech, Susan M
2016-01-01
Memory CD8+ T cells are critical for host defense upon reexposure to intracellular pathogens. We found that interleukin 10 (IL-10) derived from CD4+ regulatory T cells (Treg cells) was necessary for the maturation of memory CD8+ T cells following acute infection with lymphocytic choriomeningitis virus (LCMV). Treg cell–derived IL-10 was most important during the resolution phase, calming inflammation and the activation state of dendritic cells. Adoptive transfer of IL-10-sufficient Treg cells during the resolution phase ‘restored’ the maturation of memory CD8+ T cells in IL-10-deficient mice. Our data indicate that Treg cell–derived IL-10 is needed to insulate CD8+ T cells from inflammatory signals, and reveal that the resolution phase of infection is a critical period that influences the quality and function of developing memory CD8+ T cells. PMID:26147684
Alvarez-Fernández, C; Escribà-Garcia, L; Vidal, S; Sierra, J; Briones, J
2016-07-19
Immunotherapy based on the adoptive transfer of gene modified T cells is an emerging approach for the induction of tumor-specific immune responses. Memory stem T cells, due to their enhanced antitumor and self-renewal capacity, have become potential candidate for adoptive T cell therapy of cancer. Methods to generate memory stem T cells ex vivo rely on CD3/CD28 costimulation and the use of cytokines such as IL-7 and IL-15 during the entire culture period. However, a strong costimulation may induce differentiation of memory stem T cells to effector memory T cells. Here we show that manipulation of the length of the costimulation and addition of IL-21 enhance the ex vivo expansion of memory stem T cells. Purified naïve T cells from healthy donors were cultured in the presence of anti-CD3/CD28 coated beads, IL-7, IL-15 and/or IL-21 (25 ng/ml). T cells phenotype from the different memory and effector subpopulations were analyzed by multiparametric flow cytometry. A short anti-CD3/CD28 costimulation of naïve T cells, combined with IL-7 and IL-15 significantly increased the frequencies of CD4(+) and CD8(+) memory stem T cells ex vivo, compared to a prolonged costimulation (34.6 ± 4.4 % vs 15.6 ± 4.24 % in CD4(+); p = 0.008, and 20.5 ± 4.00 % vs 7.7 ± 2.53 % in CD8(+); p = 0.02). Moreover, the addition of IL-21 to this condition further enhanced the enrichment and expansion of CD4(+) and CD8(+) memory stem T cells with an increase in the absolute numbers (0.7 × 10(6) ± 0.1 vs 0.26 × 10(6) ± 0.1 cells for CD4(+); p = 0.002 and 1.1 × 10(6) ± 0.1 vs 0.27 × 10(6) ± 0.1 cells for CD8(+); p = 0.0002; short + IL-21 vs long). These new in vitro conditions increase the frequencies and expansion of memory stem T cells and may have relevant clinical implications for the generation of this memory T cell subset for adoptive cell therapy of patients with cancer.
Esser, Mark T; Marchese, Rocio D; Kierstead, Lisa S; Tussey, Lynda G; Wang, Fubao; Chirmule, Narendra; Washabaugh, Michael W
2003-01-17
T lymphocytes play a central role in the generation of a protective immune response in many microbial infections. After immunization, dendritic cells take up microbial antigens and traffic to draining lymph nodes where they present processed antigens to naïve T cells. These naïve T cells are stimulated to proliferate and differentiate into effector and memory T cells. Activated, effector and memory T cells provide B cell help in the lymph nodes and traffic to sites of infection where they secrete anti-microbial cytokines and kill infected cells. At least two types of memory cells have been defined in humans based on their functional and migratory properties. T central-memory (T(CM)) cells are found predominantly in lymphoid organs and can not be immediately activated, whereas T effector-memory (T(EM)) cells are found predominantly in peripheral tissue and sites of inflammation and exhibit rapid effector function. Most currently licensed vaccines induce antibody responses capable of mediating long-term protection against lytic viruses such as influenza and small pox. In contrast, vaccines against chronic pathogens that require cell-mediated immune responses to control, such as malaria, Mycobacterium tuberculosis (TB), human immunodeficiency virus (HIV) and hepatitis C virus (HCV), are currently not available or are ineffective. Understanding the mechanisms by which long-lived cellular immune responses are generated following vaccination should facilitate the development of safe and effective vaccines against these emerging diseases. Here, we review the current literature with respect to memory T cells and their implications to vaccine development.
Coras, Roland; Pauli, Elisabeth; Li, Jinmei; Schwarz, Michael; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo; Stefan, Hermann; Blumcke, Ingmar
2014-07-01
To clarify the anatomical organization of human memory remains a major challenge in clinical neuroscience. Experimental data suggest dentate gyrus granule cells play a major role in memory acquisition, i.e. pattern separation and rapid pattern completion, whereas hippocampal CA1 neurons are implicated in place memory and autobiographical memory retrieval. Patients with temporal lobe epilepsy present with a broad spectrum of memory impairment, which can be assessed during clinical examination. Although long seizure histories may contribute to a pathophysiological reorganization of functional connectivity, surgical resection of the epileptic hippocampus offers a unique possibility to anatomically study the differential contribution of hippocampal subfields to compromised learning and memory in humans. Herein, we tested the hypothesis of hippocampal subfield specialization in a series of 100 consecutive patients with temporal lobe epilepsy submitted to epilepsy surgery. Memory profiles were obtained from intracarotid amobarbital testing and non-invasive verbal memory assessment before surgery, and correlated with histopathologically quantified cell loss pattern in hippocampal subfields obtained from the same patients using the new international consensus classification for hippocampal sclerosis proposed by the International League against Epilepsy (HS ILAE). Interestingly, patients with CA1 predominant cell loss (HS ILAE Type 2; n = 13) did not show declarative memory impairment and were indistinguishable from patients without any hippocampal cell loss (n = 19). In contrast, 63 patients with neuronal loss affecting all hippocampal subfields including CA1, CA4 and dentate gyrus (HS ILAE Type 1), or predominant cell loss in CA4 and partially affecting also CA3 and dentate gyrus (HS ILAE Type 3, n = 5) showed significantly reduced declarative memory capacities (intracarotid amobarbital testing: P < 0.001; verbal memory: P < 0.05). Our results suggested an alternative model of how memory processing can be organized amongst hippocampal subfields, and that CA1 pyramidal cells are less critically involved in declarative human memory acquisition compared to dentate gyrus granule cells or CA4/CA3 pyramidal cells. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
gp49B-mediated negative regulation of antibody production by memory and marginal zone B cells.
Fukao, Saori; Haniuda, Kei; Nojima, Takuya; Takai, Toshiyuki; Kitamura, Daisuke
2014-07-15
The rapid Ab responses observed after primary and secondary immunizations are mainly derived from marginal zone (MZ) and memory B cells, respectively, but it is largely unknown how these responses are negatively regulated. Several inhibitory receptors have been identified and their roles have been studied, but mainly on follicular B cells and much less so on MZ B, and never on memory B cells. gp49B is an Ig superfamily member that contains two ITIMs in its cytoplasmic tail, and it has been shown to negatively regulate mast cell, macrophage, and NK cell responses. In this study, we demonstrate that gp49B is preferentially expressed on memory and MZ B cells. We show that gp49B(-/-) mice produce more IgM after a primary immunization and more IgM and IgG1 after a secondary immunization than gp49B(+/+) mice in T cell-dependent immune responses. Memory and MZ B cells from gp49B(-/-) mice also produce more Abs upon in vitro stimulation with CD40 than those from gp49B(+/+) mice. The in vitro IgM production by MZ B cells from gp49B(+/+), but not gp49B(-/-), mice is suppressed by interaction with a putative gp49B ligand, the integrin αvβ3 heterodimer. In addition, gp49B(-/-) mice exhibited exaggerated IgE production in the memory recall response. These results suggest that plasma cell development from memory and MZ B cells, as well as subsequent Ab production, are suppressed via gp49B. In memory B cells, this suppression also prevents excessive IgE production, thus curtailing allergic diseases. Copyright © 2014 by The American Association of Immunologists, Inc.
CD4+ T-Cell-Independent Secondary Immune Responses to Pneumocystis Pneumonia
de la Rua, Nicholas M.; Samuelson, Derrick R.; Charles, Tysheena P.; Welsh, David A.; Shellito, Judd E.
2016-01-01
Pneumocystis pneumonia is a major cause of morbidity and mortality among immunocompromised patients, especially in the context of HIV/AIDS. In the murine model of Pneumocystis pneumonia, CD4+ T-cells are required for clearance of a primary infection of Pneumocystis, but not the memory recall response. We hypothesized that the memory recall response in the absence of CD4+ T-cells is mediated by a robust memory humoral response, CD8+ T-cells, and IgG-mediated phagocytosis by alveolar macrophages. To investigate the role of CD8+ T-cells and alveolar macrophages in the immune memory response to Pneumocystis, mice previously challenged with Pneumocystis were depleted of CD8+ T-cells or alveolar macrophages prior to re-infection. Mice depleted of CD4+ T-cells prior to secondary challenge cleared Pneumocystis infection within 48 h identical to immunocompetent mice during a secondary memory recall response. However, loss of CD8+ T-cells or macrophages prior to the memory recall response significantly impaired Pneumocystis clearance. Specifically, mice depleted of CD8+ T-cells or alveolar macrophages had significantly higher fungal burden in the lungs. Furthermore, loss of alveolar macrophages significantly skewed the lung CD8+ T-cell response toward a terminally differentiated effector memory population and increased the percentage of IFN-γ+ CD8+ T-cells. Finally, Pneumocystis-infected animals produced significantly more bone marrow plasma cells and Pneumocystis-specific IgG significantly increased macrophage-mediated killing of Pneumocystis in vitro. These data suggest that secondary immune memory responses to Pneumocystis are mediated, in part, by CD8+ T-cells, alveolar macrophages, and the production of Pneumocystis-specific IgG. PMID:27242785
Kinetics and clonality of immunological memory in humans.
Beverley, Peter C L
2004-10-01
T-cell immunological memory consists largely of clones of proliferating lymphocytes maintained by antigenic stimulation and the survival and proliferative effects of cytokines. The duration of survival of memory clones in humans is determine by the Hayflick limit on the number of cell divisions, the rate of cycling of memory cells and factors that control erosion of telomeres, including mechanisms that control telomerase.
Material Engineering for Phase Change Memory
NASA Astrophysics Data System (ADS)
Cabrera, David M.
As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory. Subsequently, these are incorporated into PCM cells with structure designed as shown in Fig.1. A photolithographic lift-off process is developed to realize these devices. Electrical parameters such as the voltage needed to switch the device between memory states, the difference in resistance between these memory states, and the amount of time to switch are studied using HP4145 equipped with a pulsed generator. The results show that incorporating aluminum oxide dopant into G2S2T 5 raises its threshold field from 60 V/mum to 96 V/mum, while for GeTe, nitrogen doping raises its threshold field from 143 V/mum to 248 V/mum. It is found that GaSb at comparable volume devices has a threshold field of 130 V/mum. It was also observed that nitrogen and silicon doping made G 2S2T5 more resistant to drift, raising time to drift from 2 to 16.6 minutes while titanium and aluminum oxide doping made GeTe drift time rise from 3 to 20 minutes. It was also found that shrinking the cell area in GaSb from 1 mum2 to 0.5 mum2 lengthened drift time from 45s to over 24 hours. The PCM process developed in this study is extended to GeTe/Sb2 Te3 multilayers called the superlattice (SL) structure that opens opportunities for future work. Recent studies have shown that the superlattice structure exhibits low switching energies, therefore has potential for low power operation.
Carrette, Florent; Henriquez, Monique L.; Fujita, Yu
2018-01-01
T cells mediating influenza viral control are instructed in lymphoid and nonlymphoid tissues to differentiate into memory T cells that confer protective immunity. The mechanisms by which influenza virus–specific memory CD4+ T cells arise have been attributed to changes in transcription factors, cytokines and cytokine receptors, and metabolic programming. The molecules involved in these biosynthetic pathways, including proteins and lipids, are modified to varying degrees of glycosylation, fucosylation, sialation, and sulfation, which can alter their function. It is currently unknown how the glycome enzymatic machinery regulates CD4+ T cell effector and memory differentiation. In a murine model of influenza virus infection, we found that fucosyltransferase enzymatic activity was induced in effector and memory CD4+ T cells. Using CD4+ T cells deficient in the Fut4/7 enzymes that are expressed only in hematopoietic cells, we found decreased frequencies of effector cells with reduced expression of T-bet and NKG2A/C/E in the lungs during primary infection. Furthermore, Fut4/7−/− effector CD4+ T cells had reduced survival with no difference in proliferation or capacity for effector function. Although Fut4/7−/− CD4+ T cells seeded the memory pool after primary infection, they failed to form tissue-resident cells, were dysfunctional, and were unable to re-expand after secondary infection. Our findings highlight an important regulatory axis mediated by cell-intrinsic fucosyltransferase activity in CD4+ T cell effectors that ensure the development of functional memory CD4+ T cells. PMID:29491007
Yang, Jinghui; Chen, Jianjun; Young, James S; Wang, Qiang; Yin, Dengping; Sciammas, Roger; Chong, Anita S
2016-08-01
The dual role of B cells as drivers and suppressors of the immune responses have underscored the need to trace the fate of B cells recognizing donor major histocompatibility complex class I and class II after allograft transplantation. In this study, we used donor class II tetramers to trace the fate of I-E-specific B cells after immunization with BALB/c spleen cells or cardiac transplantation, in naive or sensitized C57BL/6 recipients. We combined this approach with genetic lineage tracing of memory B cells in activation-induced cytidine deaminase regulated Cre transgenic mice crossed to the ROSA26-enhanced yellow fluorescent protein reporter mice to track endogenous I-E-specific memory B cell generation. Immunization with BALB/c splenocytes or heart transplantation induced an expansion and differentiation of I-E-specific B cells into germinal center B cells, whereas BALB/c heart transplantation into sensitized recipients induced the preferential differentiation into antibody-secreting cells. A 10.8-fold increase in the frequency of I-E-specific memory B cells was observed by day 42 postimmunization. Treatment with CTLA4-Ig starting on day 0 or day 7 postimmunization abrogated I-E-specific memory B cell generation and sensitized humoral responses, but not if treatment commenced on day 14. The majority of donor-specific memory B cells are generated between days 7 and 14 postimmunization, thus revealing a flexible timeframe whereby delayed CTLA4-Ig administration can inhibit sensitization and the generation of memory graft-reactive B cells.
NASA Astrophysics Data System (ADS)
Sorkin, V.; Elliott, R. S.; Tadmor, E. B.
2014-07-01
The quasicontinuum (QC) method, in its local (continuum) limit, is applied to materials with a multilattice crystal structure. Cauchy-Born (CB) kinematics, which accounts for the shifts of the crystal motif, is used to relate atomic motions to continuum deformation gradients. To avoid failures of CB kinematics, QC is augmented with a phonon stability analysis that detects lattice period extensions and identifies the minimum required periodic cell size. This approach is referred to as Cascading Cauchy-Born kinematics (CCB). In this paper, the method is described and developed. It is then used, along with an effective interaction potential (EIP) model for shape-memory alloys, to simulate the shape-memory effect and pseudoelasticity in a finite specimen. The results of these simulations show that (i) the CCB methodology is an essential tool that is required in order for QC-type simulations to correctly capture the first-order phase transitions responsible for these material behaviors, and (ii) that the EIP model adopted in this work coupled with the QC/CCB methodology is capable of predicting the characteristic behavior found in shape-memory alloys.
USDA-ARS?s Scientific Manuscript database
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled, up to 95% of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a l...
Cytokine activation induces human memory-like NK cells.
Romee, Rizwan; Schneider, Stephanie E; Leong, Jeffrey W; Chase, Julie M; Keppel, Catherine R; Sullivan, Ryan P; Cooper, Megan A; Fehniger, Todd A
2012-12-06
Natural killer (NK) cells are lymphocytes that play an important role in the immune response to infection and malignancy. Recent studies in mice have shown that stimulation of NK cells with cytokines or in the context of a viral infection results in memory-like properties. We hypothesized that human NK cells exhibit such memory-like properties with an enhanced recall response after cytokine preactivation. In the present study, we show that human NK cells preactivated briefly with cytokine combinations including IL-12, IL-15, and IL-18 followed by a 7- to 21-day rest have enhanced IFN-γ production after restimulation with IL-12 + IL-15, IL-12 + IL-18, or K562 leukemia cells. This memory-like phenotype was retained in proliferating NK cells. In CD56(dim) NK cells, the memory-like IFN-γ response was correlated with the expression of CD94, NKG2A, NKG2C, and CD69 and a lack of CD57 and KIR. Therefore, human NK cells have functional memory-like properties after cytokine activation, which provides a novel rationale for integrating preactivation with combinations of IL-12, IL-15, and IL-18 into NK cell immunotherapy strategies.
NASA Astrophysics Data System (ADS)
Lee, Won-Ho; Yoon, Sung-Min
2017-05-01
The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.
Head-Directional Tuning and Theta Modulation of Anatomically Identified Neurons in the Presubiculum.
Tukker, John J; Tang, Qiusong; Burgalossi, Andrea; Brecht, Michael
2015-11-18
The presubiculum provides a major input to the medial entorhinal cortex (MEC) and contains cells that encode for the animal's head direction (HD), as well as other cells likely to be important for navigation and memory, including grid cells. To understand the mechanisms underlying HD cell firing and its effects on other parts of the circuit, it is important to determine the anatomical identity of these functionally defined cells. Therefore, we juxtacellularly recorded single cells in the presubiculum in freely moving rats, finding two classes of cells based on firing patterns and juxtacellular labeling (of a subset). Regular-firing cells had the anatomical characteristics of pyramidal cells and included most recorded HD cells. Therefore, HD cells are likely to be excitatory pyramidal cells. For one HD cell, we could follow an axon projecting directly to the MEC. Fast-spiking (FS) cells had the anatomical characteristics of interneurons and displayed weak HD tuning. Furthermore, FS cells displayed a surprising lack of theta-rhythmic firing, in strong contrast to the FS cells that we recorded in the MEC. Overall, we show that HD cells in the presubiculum are pyramidal cells, with FS interneurons only showing weak HD tuning; therefore, MEC may receive an excitatory HD input, as previously assumed by many models. The lack of theta rhythmicity in FS interneurons suggests that different mechanisms may underlie theta in different parts of the hippocampal formation. In freely moving rats, we recorded and labeled single neurons in the presubiculum, an area providing one of the major inputs to the medial entorhinal cortex and part of a network involved in spatial navigation and memory. Post hoc identification of labeled cells showed that (fast-spiking, FS) interneurons and pyramidal cells in the presubiculum can be distinguished based on physiological criteria. We found that both moderately and strongly tuned head-direction (HD) cells are pyramidal cells and therefore likely to provide an excitatory HD input to the entorhinal cortex. FS interneurons were weakly head directional and, surprisingly, showed no theta-rhythmic firing. Therefore, the presubiculum appears to encode HD information via excitatory pyramidal cells, possibly also involving FS interneurons, without using a theta-rhythmic temporal code. Copyright © 2015 the authors 0270-6474/15/3515391-05$15.00/0.
Witt, Juri-Alexander; Coras, Roland; Schramm, Johannes; Becker, Albert J; Elger, Christian E; Blümcke, Ingmar; Helmstaedter, Christoph
2014-04-01
Studies on hippocampal cell loss in epilepsy have produced diverging evidence as to which subfields are specifically related to memory. This may be due to rather small and often heterogeneous samples, or to different memory measures. Therefore, the current study examined hippocampal cell densities and memory in a large sample of patients with solely mesial temporal lobe epilepsy (mTLE), employing measures with proven sensitivity to mesiotemporal pathology. In 104 patients who had undergone epilepsy surgery for mTLE, we evaluated the role of segmental hippocampal cell loss and its underlying factor structure with regard to presurgical verbal and figural memory while controlling for side-of-surgery and hemispheric dominance. First of all, patients showed material-specific memory impairment concordant with the lateralization of epilepsy. Factor analysis of segmental cell loss revealed a single factor reflecting the overall integrity of the hippocampus. The overall pathological status of the left hippocampus correlated with verbal memory parameters (r = 0.33-0.34, P < 0.05), especially when controlling for atypical hemispheric dominance (r = 0.50-0.57, P < 0.01), and explained up to 33% of the observed variance. Further analyses revealed no superior role of a single subfield or cell loss pattern for memory performance. No systematic relations between neuronal cell densities of the right hippocampus and memory function were found, nor did left or right hippocampal pathology explain figural memory parameters. The results suggest that the overall pathological status of the left hippocampus - rather than a specific subfield pathology - is predictive for verbal memory in mTLE. The finding that figural memory parameters, although sensitive to right mTLE, were not related to neuronal cell densities of the right hippocampus, puts the left/right hippocampus verbal/nonverbal memory dichotomy into perspective. Copyright © 2013 Wiley Periodicals, Inc.
Alsuliman, Abdullah; Muftuoglu, Muharrem; Khoder, Ahmad; Ahn, Yong-Oon; Basar, Rafet; Verneris, Michael R.; Muranski, Pawel; Barrett, A. John; Liu, Enli; Li, Li; Stringaris, Kate; Armstrong-James, Darius; Shaim, Hila; Kondo, Kayo; Imahashi, Nobuhiko; Andersson, Borje; Marin, David; Champlin, Richard E.; Shpall, Elizabeth J.
2017-01-01
The establishment of long-lived pathogen-specific T cells is a fundamental property of the adaptive immune response. However, the mechanisms underlying long-term persistence of antigen-specific CD4+ T cells are not well-defined. Here we identify a subset of memory CD4+ T cells capable of effluxing cellular toxins, including rhodamine (Rho), through the multidrug efflux protein MDR1 (also known as P-glycoprotein and ABCB1). Drug-effluxing CD4+ T cells were characterized as CD161+CD95+CD45RA−CD127hiCD28+CD25int cells with a distinct chemokine profile and a Th1-polarized pro-inflammatory phenotype. CD4+CD161+Rho-effluxing T cells proliferated vigorously in response to stimulation with anti-CD3/CD28 beads and gave rise to CD161− progeny in vitro. These cells were also capable of self-renewal and maintained their phenotypic and functional characteristics when cultured with homeostatic cytokines. Multidrug-effluxing CD4+CD161+ T cells were enriched within the viral-specific Th1 repertoire of healthy donors and patients with acute myeloid leukemia (AML) and survived exposure to daunorubicin chemotherapy in vitro. Multidrug-effluxing CD4+CD161+ T cells also resisted chemotherapy-induced cytotoxicity in vivo and underwent significant expansion in AML patients rendered lymphopenic after chemotherapy, contributing to the repopulation of anti-CMV immunity. Finally, after influenza vaccination, the proportion of influenza-specific CD4+ T cells coexpressing CD161 was significantly higher after 2 years compared with 4 weeks after immunization, suggesting CD161 is a marker for long-lived antigen-specific memory T cells. These findings suggest that CD4+CD161+ T cells with rapid efflux capacity contribute to the maintenance of viral-specific memory T cells. These data provide novel insights into mechanisms that preserve antiviral immunity in patients undergoing chemotherapy and have implications for the development of novel immunotherapeutic approaches. PMID:27821506
El Haj, Mohamad; Daoudi, Mohamed; Gallouj, Karim; Moustafa, Ahmed A; Nandrino, Jean-Louis
2018-05-11
Thanks to the current advances in the software analysis of facial expressions, there is a burgeoning interest in understanding emotional facial expressions observed during the retrieval of autobiographical memories. This review describes the research on facial expressions during autobiographical retrieval showing distinct emotional facial expressions according to the characteristics of retrieved memoires. More specifically, this research demonstrates that the retrieval of emotional memories can trigger corresponding emotional facial expressions (e.g. positive memories may trigger positive facial expressions). Also, this study demonstrates the variations of facial expressions according to specificity, self-relevance, or past versus future direction of memory construction. Besides linking research on facial expressions during autobiographical retrieval to cognitive and affective characteristics of autobiographical memory in general, this review positions this research within the broader context research on the physiologic characteristics of autobiographical retrieval. We also provide several perspectives for clinical studies to investigate facial expressions in populations with deficits in autobiographical memory (e.g. whether autobiographical overgenerality in neurologic and psychiatric populations may trigger few emotional facial expressions). In sum, this review paper demonstrates how the evaluation of facial expressions during autobiographical retrieval may help understand the functioning and dysfunctioning of autobiographical memory.
Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A.; Lozza, Laura; Saikali, Philippe; Sander, Leif E.; Vogelzang, Alexis; Kupz, Andreas
2016-01-01
ABSTRACT Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (TRM) cells have been implicated in protective immune responses against viral infections, but the role of TRM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and TRM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4+ T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8+ T cells displayed prototypical TRM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. PMID:27879332
Distinct Effects of Saracatinib on Memory CD8+ T-cell Differentiation
Takai, Shinji; Sabzevari, Helen; Farsaci, Benedetto; Schlom, Jeffrey; Greiner, John W.
2012-01-01
Immunologic memory involving CD8+ T-cells is a hallmark of an adaptive antigen-specific immune response and comprises a critical component of protective immunity. Designing approaches that enhance long-term T-cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the antigen-specific T-cell response has led to new approaches that target the magnitude and quality of the memory T-cell response. Here we show that T-cells from T-cell receptor transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases priming, expansion, contraction, memory - of an antigen-specific T-cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62Lhigh/CD44high central memory CD8+ T-cells and IFN-γ production, while suppressing immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases, but were accompanied by Akt-mTOR suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T-cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8+ T-cells by a low dose of saracatinib might afford better protection from pathogen or cancer when combined with vaccine. PMID:22450814
Capuano, Cristina; Battella, Simone; Pighi, Chiara; Franchitti, Lavinia; Turriziani, Ombretta; Morrone, Stefania; Santoni, Angela; Galandrini, Ricciarda; Palmieri, Gabriella
2018-01-01
Natural killer (NK) cells represent a pivotal player of innate anti-tumor immune responses. The impact of environmental factors in shaping the representativity of different NK cell subsets is increasingly appreciated. Human cytomegalovirus (HCMV) infection profoundly affects NK cell compartment, as documented by the presence of a CD94/NKG2C + FcεRIγ - long-lived "memory" NK cell subset, endowed with enhanced CD16-dependent functional capabilities, in a fraction of HCMV-seropositive subjects. However, the requirements for memory NK cell pool establishment/maintenance and activation have not been fully characterized yet. Here, we describe the capability of anti-CD20 tumor-targeting therapeutic monoclonal antibodies (mAbs) to drive the selective in vitro expansion of memory NK cells and we show the impact of donor' HCMV serostatus and CD16 affinity ligation conditions on this event. In vitro expanded memory NK cells maintain the phenotypic and functional signature of their freshly isolated counterpart; furthermore, our data demonstrate that CD16 affinity ligation conditions differently affect memory NK cell proliferation and functional activation, as rituximab-mediated low-affinity ligation represents a superior proliferative stimulus, while high-affinity aggregation mediated by glycoengineered obinutuzumab results in improved multifunctional responses. Our work also expands the molecular and functional characterization of memory NK cells, and investigates the possible impact of CD16 functional allelic variants on their in vivo and in vitro expansions. These results reveal new insights in Ab-driven memory NK cell responses in a therapeutic setting and may ultimately inspire new NK cell-based intervention strategies against cancer, in which the enhanced responsiveness to mAb-bound target could significantly impact therapeutic efficacy.
Siegel, Andrea M; Heimall, Jennifer; Freeman, Alexandra F; Hsu, Amy P; Brittain, Erica; Brenchley, Jason M; Douek, Daniel C; Fahle, Gary H; Cohen, Jeffrey I; Holland, Steven M; Milner, Joshua D
2011-11-23
STAT3 transcription factor signaling in specific T helper cell differentiation has been well described, although the broader roles for STAT3 in lymphocyte memory are less clear. Patients with autosomal-dominant hyper-IgE syndrome (AD-HIES) carry dominant-negative STAT3 mutations and are susceptible to a variety of bacterial and fungal infections. We found that AD-HIES patients have a cell-intrinsic defect in the number of central memory CD4(+) and CD8(+) T cells compared to healthy controls. Naive T cells from AD-HIES patients had lower expression of memory-related transcription factors BCL6 and SOCS3, a primary proliferation defect, and they failed to acquire central memory-like surface phenotypes in vitro. AD-HIES patients showed a decreased ability to control varicella zoster virus (VZV) and Epstein-Barr virus (EBV) latency, and T cell memory to both of these viruses was compromised. These data point to a specific role for STAT3 in human central memory T cell formation and in control of certain chronic viruses. Copyright © 2011 Elsevier Inc. All rights reserved.
Cue generation and memory construction in direct and generative autobiographical memory retrieval.
Harris, Celia B; O'Connor, Akira R; Sutton, John
2015-05-01
Theories of autobiographical memory emphasise effortful, generative search processes in memory retrieval. However recent research suggests that memories are often retrieved directly, without effortful search. We investigated whether direct and generative retrieval differed in the characteristics of memories recalled, or only in terms of retrieval latency. Participants recalled autobiographical memories in response to cue words. For each memory, they reported whether it was retrieved directly or generatively, rated its visuo-spatial perspective, and judged its accompanying recollective experience. Our results indicated that direct retrieval was commonly reported and was faster than generative retrieval, replicating recent findings. The characteristics of directly retrieved memories differed from generatively retrieved memories: directly retrieved memories had higher field perspective ratings and lower observer perspective ratings. However, retrieval mode did not influence recollective experience. We discuss our findings in terms of cue generation and content construction, and the implication for reconstructive models of autobiographical memory. Copyright © 2015 Elsevier Inc. All rights reserved.
Advances in rechargeable lithium molybdenum disulfide batteries
NASA Technical Reports Server (NTRS)
Brandt, K.; Stiles, J. A. R.
1985-01-01
The lithium molybdenum disulfide system as demonstrated in a C size cell, offers performance characteristics for applications where light weight and low volume are important. A gravimetric energy density of 90 watt hours per kilogram can be achieved in a C size cell package. The combination of charge retention capabilities, high energy density and a state of charge indicator in a rechargeable cell provides power package for a wide range of devices. The system overcomes the memory effect in Nicads where the full capacity of the battery cannot be utilized unless it was utilized on previous cycles. The development of cells with an advanced electrolyte formulation led to an improved rate capability especially at low temperatures and to a significantly improved life cycle.
Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.
Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue
2016-01-05
Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Barcelos, Filipe; Martins, Catarina; Papoila, Ana; Geraldes, Carlos; Cardigos, Joana; Nunes, Glória; Lopes, Teresa; Alves, Nuno; Vaz-Patto, José; Branco, Jaime; Borrego, Luís-Miguel
2018-06-01
B-cells play a pivotal role in primary Sjögren's syndrome (pSS) pathogenesis. We aim to (1) evaluate the distribution of B-lymphocyte subpopulations in pSS and Sicca patients, (2) establish cut-off points that discriminate pSS from controls, (3) evaluate the association between memory B-cells and phenotypic features in pSS. We included 57 pSS patients, 68 Sicca and 24 healthy controls. Circulating B-cells were characterized by flow cytometry as naïve and memory subsets and classified from Bm1 to Bm5. Compared to controls, pSS patients had lower percentages (29.5 vs 44.4%) and absolute numbers (47 vs 106 cells/µl) of memory B-cells. Through ROC curves, a cut-off of ≤ 58 total memory B-cells/µl yielded a specificity of 0.88 and a sensitivity of 0.60 for pSS, and was met by 59.6% of pSS patients, 38.8% of Sicca and 12.5% of controls. A cut-off of < 23.5 Switched-memory B-cells/µl yielded a specificity of 0.88 and a sensitivity of 0.54 and was met by 54.4% of pSS patients, 37.3% of Sicca and 12.5% of controls. In pSS, lower total memory B-cells count was associated with longer disease duration (14.3 vs 8.1 years, p = 0.006) and more active disease profile, as evaluated by the European League Against Rheumatism (EULAR) Sjögren's Syndrome Disease Activity Index (ESSDAI) (3.1 vs 1.4, p = 0.043). Decreased numbers of memory B-cells clearly discriminated pSS from controls and can also have prognostic value. It remains to be clarified whether Sicca patients with decreased memory B-cells represent pSS and if B-cell profiling could help in the diagnosis of pSS.
Pandey, Manisha; Wykes, Michelle N; Hartas, Jon; Good, Michael F; Batzloff, Michael R
2013-01-01
Streptococcus pyogenes (group A streptococcus; GAS) is a leading human pathogen associated with a diverse array of mucosal and systemic infections. Vaccination with J8, a conserved region synthetic peptide derived from the M-protein of GAS and containing only 12 amino acids from GAS, when conjugated to DT, has been shown to protect mice against a lethal GAS challenge. Protection has been previously shown to be antibody-mediated. J8 does not contain a dominant GAS-specific T-cell epitope. The current study examined long-term antibody memory and dissected the role of B and T-cells. Our results demonstrated that vaccination generates specific memory B-cells and long-lasting antibody responses. The memory B-cell response can be activated following boost with antigen or limiting numbers of whole bacteria. We further show that these memory responses protect against systemic infection with GAS. T-cell help is required for activation of memory B-cells but can be provided by naïve T-cells responding directly to GAS at the time of infection. Thus, individuals whose T-cells do not recognize the short synthetic peptide in the vaccine will be able to generate a protective and rapid memory antibody response at the time of infection. These studies significantly strengthen previous findings, which showed that protection by the J8-DT vaccine is antibody-mediated and suggest that in vaccine design for other organisms the source of T-cell help for antibody responses need not be limited to sequences from the organism itself. PMID:23401589
Hirahara, Kiyoshi; Shinoda, Kenta; Endo, Yusuke; Ichikawa, Tomomi; Nakayama, Toshinori
2018-01-01
Immunological memory is critical for long-standing protection against microorganisms; however, certain antigen-specific memory CD4 + T helper (Th) cells drive immune-related pathology, including chronic allergic inflammation such as asthma. The IL-5-producing memory-type Tpath2 subset is important for the pathogenesis of chronic allergic inflammation. This memory-type pathogenic Th2 cell population (Tpath2) can be detected in various allergic inflammatory lesions. However, how these pathogenic populations are maintained at the local inflammatory site has remained unclear. We performed a series of experiments using mice model for chronic airway inflammation. We also investigated the human samples from patients with eosinophilic chronic rhinosinusitis. We recently reported that inducible bronchus-associated lymphoid tissue (iBALT) was shaped during chronic inflammation in the lung. We also found that memory-type Tpath2 cells are maintained within iBALT. The maintenance of the Tpath2 cells within iBALT is supported by specific cell subpopulations within the lung. Furthermore, ectopic lymphoid structures consisting of memory CD4 + T cells were found in nasal polyps of eosinophilic chronic rhinosinusitis patients, indicating that the persistence of inflammation is controlled by these structures. Thus, the cell components that organize iBALT formation may be therapeutic targets for chronic allergic airway inflammation.
Inducible nitric oxide synthase in T cells regulates T cell death and immune memory
Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit
2004-01-01
The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408
O’Sullivan, Timothy E.; Sun, Joseph C.; Lanier, Lewis L.
2015-01-01
Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner, and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity, and can acquire immunological memory in a similar manner to T and B cells. In this review, we discuss evidence for NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes. PMID:26488815
Naive T-cell receptor transgenic T cells help memory B cells produce antibody
Duffy, Darragh; Yang, Chun-Ping; Heath, Andrew; Garside, Paul; Bell, Eric B
2006-01-01
Injection of the same antigen following primary immunization induces a classic secondary response characterized by a large quantity of high-affinity antibody of an immunoglobulin G class produced more rapidly than in the initial response – the products of memory B cells are qualitatively distinct from that of the original naive B lymphocytes. Very little is known of the help provided by the CD4 T cells that stimulate memory B cells. Using antigen-specific T-cell receptor transgenic CD4 T cells (DO11.10) as a source of help, we found that naive transgenic T cells stimulated memory B cells almost as well (in terms of quantity and speed) as transgenic T cells that had been recently primed. There was a direct correlation between serum antibody levels and the number of naive transgenic T cells transferred. Using T cells from transgenic interleukin-2-deficient mice we showed that interleukin-2 was not required for a secondary response, although it was necessary for a primary response. The results suggested that the signals delivered by CD4 T cells and required by memory B cells for their activation were common to both antigen-primed and naive CD4 T cells. PMID:17067314
Sosinowski, Tomasz; White, Jason T.; Cross, Eric; Haluszczak, Catherine; Marrack, Philippa; Gapin, Laurent; Kedl, Ross M.
2013-01-01
Various populations of memory phenotype CD8+ T cells have been described over the last 15–20 years, all of which possess elevated effector functions relative to naïve phenotype cells. Using a technique for isolating antigen specific cells from unprimed hosts, we recently identified a new subset of cells, specific for nominal antigen, but phenotypically and functionally similar to memory cells arising as a result of homeostatic proliferation (HP). We show here that these “Virtual Memory” cells are independent of previously identified “innate memory” cells, arising as a result of their response to IL-15 trans-presentation by lymphoid tissue-resident CD8α+ DCs in the periphery. The absence of IL-15, CD8+ T cell expression of either CD122 or Eomes, or of CD8a+ DCs all lead to the loss of Virtual Memory cells in the host. Our results show that CD8+ T cell homeostatic expansion is an active process within the non-lymphopenic environment, is mediated by IL-15, and produces antigen inexperienced memory cells which retain the capacity to respond to nominal antigen with memory-like function. Preferential engagement of these “Virtual Memory” T cells into a vaccine response could dramatically enhance the rate by which immune protection develops. PMID:23355737
Differences in Mouse and Human Non-Memory B Cell Pools1
Benitez, Abigail; Weldon, Abby J.; Tatosyan, Lynnette; Velkuru, Vani; Lee, Steve; Milford, Terry-Ann; Francis, Olivia L.; Hsu, Sheri; Nazeri, Kavoos; Casiano, Carlos M.; Schneider, Rebekah; Gonzalez, Jennifer; Su, Rui-Jun; Baez, Ineavely; Colburn, Keith; Moldovan, Ioana; Payne, Kimberly J.
2014-01-01
Identifying cross-species similarities and differences in immune development and function is critical for maximizing the translational potential of animal models. Co-expression of CD21 and CD24 distinguishes transitional and mature B cell subsets in mice. Here, we validate these markers for identifying analogous subsets in humans and use them to compare the non-memory B cell pools in mice and humans, across tissues, during fetal/neonatal and adult life. Among human CD19+IgM+ B cells, the CD21/CD24 schema identifies distinct populations that correspond to T1 (transitional 1), T2 (transitional 2), FM (follicular mature), and MZ (marginal zone) subsets identified in mice. Markers specific to human B cell development validate the identity of MZ cells and the maturation status of human CD21/CD24 non-memory B cell subsets. A comparison of the non-memory B cell pools in bone marrow (BM), blood, and spleen in mice and humans shows that transitional B cells comprise a much smaller fraction in adult humans than mice. T1 cells are a major contributor to the non-memory B cell pool in mouse BM where their frequency is more than twice that in humans. Conversely, in spleen the T1:T2 ratio shows that T2 cells are proportionally ∼8 fold higher in humans than mouse. Despite the relatively small contribution of transitional B cells to the human non-memory pool, the number of naïve FM cells produced per transitional B cell is 3-6 fold higher across tissues than in mouse. These data suggest differing dynamics or mechanisms produce the non-memory B cell compartments in mice and humans. PMID:24719464
Nagafuchi, Yasuo; Shoda, Hirofumi; Sumitomo, Shuji; Nakachi, Shinichiro; Kato, Rika; Tsuchida, Yumi; Tsuchiya, Haruka; Sakurai, Keiichi; Hanata, Norio; Tateishi, Shoko; Kanda, Hiroko; Ishigaki, Kazuyoshi; Okada, Yukinori; Suzuki, Akari; Kochi, Yuta; Fujio, Keishi; Yamamoto, Kazuhiko
2016-07-07
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease that leads to destructive arthritis. Although the HLA class II locus is the strongest genetic risk factor for rheumatoid arthritis, the relationship between HLA class II alleles and lymphocyte activation remains unclear. We performed immunophenotyping of peripheral blood mononuclear cells on 91 HLA-DRB1-genotyped RA patients and 110 healthy donors. The frequency of memory CXCR4(+)CD4(+) T cells, and not Th1 and Th17 cells, was significantly associated with disease severity by multiple linear regression analysis. RA patients with one or more susceptible HLA-DR haplotypes (shared epitope: SE) displayed a significantly higher frequency of memory CXCR4(+)CD4(+) T cells. Moreover, the frequency of memory CXCR4(+)CD4(+) T cells significantly correlated with the expression level of HLA-DR on B cells, which was elevated in RA patients with SE. In vitro analysis and transcriptomic pathway analysis suggested that the interaction between HLA-DR and T cell receptors is an important regulator of memory CXCR4(+)CD4(+) T cells. Clinically, a higher frequency of memory CXCR4(+)CD4(+) T cells predicted a better response to CTLA4-Ig. Memory CXCR4(+)CD4(+) T cells may serve as a powerful biomarker for unraveling the linkage between HLA-DRB1 genotype and disease activity in RA.
Heavy-ion induced single-event upset in integrated circuits
NASA Technical Reports Server (NTRS)
Zoutendyk, J. A.
1991-01-01
The cosmic ray environment in space can affect the operation of Integrated Circuit (IC) devices via the phenomenon of Single Event Upset (SEU). In particular, heavy ions passing through an IC can induce sufficient integrated current (charge) to alter the state of a bistable circuit, for example a memory cell. The SEU effect is studied in great detail in both static and dynamic memory devices, as well as microprocessors fabricated from bipolar, Complementary Metal Oxide Semiconductor (CMOS) and N channel Metal Oxide Semiconductor (NMOS) technologies. Each device/process reflects its individual characteristics (minimum scale geometry/process parameters) via a unique response to the direct ionization of electron hole pairs by heavy ion tracks. A summary of these analytical and experimental SEU investigations is presented.
Hochberg, Donna; Souza, Tatyana; Catalina, Michelle; Sullivan, John L.; Luzuriaga, Katherine; Thorley-Lawson, David A.
2004-01-01
In this paper we demonstrate that during acute infection with Epstein-Barr virus (EBV), the peripheral blood fills up with latently infected, resting memory B cells to the point where up to 50% of all the memory cells may carry EBV. Despite this massive invasion of the memory compartment, the virus remains tightly restricted to memory cells, such that, in one donor, fewer than 1 in 104 infected cells were found in the naive compartment. We conclude that, even during acute infection, EBV persistence is tightly regulated. This result confirms the prediction that during the early phase of infection, before cellular immunity is effective, there is nothing to prevent amplification of the viral cycle of infection, differentiation, and reactivation, causing the peripheral memory compartment to fill up with latently infected cells. Subsequently, there is a rapid decline in infected cells for the first few weeks that approximates the decay in the cytotoxic-T-cell responses to viral replicative antigens. This phase is followed by a slower decline that, even by 1 year, had not reached a steady state. Therefore, EBV may approach but never reach a stable equilibrium. PMID:15113901
Cladribine treatment of multiple sclerosis is associated with depletion of memory B cells.
Ceronie, Bryan; Jacobs, Benjamin M; Baker, David; Dubuisson, Nicolas; Mao, Zhifeng; Ammoscato, Francesca; Lock, Helen; Longhurst, Hilary J; Giovannoni, Gavin; Schmierer, Klaus
2018-05-01
The mechanism of action of oral cladribine, recently licensed for relapsing multiple sclerosis, is unknown. To determine whether cladribine depletes memory B cells consistent with our recent hypothesis that effective, disease-modifying treatments act by physical/functional depletion of memory B cells. A cross-sectional study examined 40 people with multiple sclerosis at the end of the first cycle of alemtuzumab or injectable cladribine. The relative proportions and absolute numbers of peripheral blood B lymphocyte subsets were measured using flow cytometry. Cell-subtype expression of genes involved in cladribine metabolism was examined from data in public repositories. Cladribine markedly depleted class-switched and unswitched memory B cells to levels comparable with alemtuzumab, but without the associated initial lymphopenia. CD3 + T cell depletion was modest. The mRNA expression of metabolism genes varied between lymphocyte subsets. A high ratio of deoxycytidine kinase to group I cytosolic 5' nucleotidase expression was present in B cells and was particularly high in mature, memory and notably germinal centre B cells, but not plasma cells. Selective B cell cytotoxicity coupled with slow repopulation kinetics results in long-term, memory B cell depletion by cladribine. These may offer a new target, possibly with potential biomarker activity, for future drug development.
Asymptomatic memory CD8+ T cells
Khan, Arif Azam; Srivastava, Ruchi; Lopes, Patricia Prado; Wang, Christine; Pham, Thanh T; Cochrane, Justin; Thai, Nhi Thi Uyen; Gutierrez, Lucas; BenMohamed, Lbachir
2014-01-01
Generation and maintenance of high quantity and quality memory CD8+ T cells determine the level of protection from viral, bacterial, and parasitic re-infections, and hence constitutes a primary goal for T cell epitope-based human vaccines and immunotherapeutics. Phenotypically and functionally characterizing memory CD8+ T cells that provide protection against herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) infections, which cause blinding ocular herpes, genital herpes, and oro-facial herpes, is critical for better vaccine design. We have recently categorized 2 new major sub-populations of memory symptomatic and asymptomatic CD8+ T cells based on their phenotype, protective vs. pathogenic function, and anatomical locations. In this report we are discussing a new direction in developing T cell-based human herpes vaccines and immunotherapeutics based on the emerging new concept of “symptomatic and asymptomatic memory CD8+ T cells.” PMID:24499824
Yong, Pierre L; Orange, Jordan S; Sullivan, Kathleen E
2010-08-01
Recent studies suggest that patients with common variable immunodeficiency (CVID) and low numbers of switched memory B cells have lower IgG levels and higher rates of autoimmune disease, splenomegaly, and granulomatous disease; however, no prior literature has focused exclusively on pediatric cases. We examined the relationship between switched memory B cells and clinical and immunologic manifestations of CVID in a pediatric population. Forty-five patients were evaluated. Patients were categorized as Group I (<5 switched memory B cells/ml, n = 24) or Group II (> or =5 switched memory B cells/mL, n = 21). CD3(+) T-cell counts and CD19(+) B-cell levels were lower among Group I patients. Only those in Group I had meningitis, sepsis, bronchiectasis, granulomatous lung disease, autoimmune cytopenias, or hematologic malignancies. Segregation of pediatric patients into high risk (Group I) and average risk (Group II) may assist in targeting surveillance appropriately.
Immunologic considerations for generating memory CD8 T cells through vaccination.
Butler, Noah S; Nolz, Jeffrey C; Harty, John T
2011-07-01
Following infection or vaccination, naïve CD8 T cells that receive the appropriate integration of antigenic, co-stimulatory and inflammatory signals undergo a programmed series of biological changes that ultimately results in the generation of memory cells. Memory CD8 T cells, in contrast to naïve cells, more effectively limit or prevent pathogen re-infection because of both qualitative and quantitative changes that occur following their induction. Unlike vaccination strategies aimed at generating antibody production, the ability to generate protective memory CD8 T cells has proven more complicated and problematic. However, recent experimental results have revealed important principles regarding the molecular and genetic basis for memory CD8 T cell formation, as well as identified ways to manipulate their development through vaccination, resulting in potential new avenues to enhance protective immunity. © 2011 Blackwell Publishing Ltd.
ERIC Educational Resources Information Center
Crowley, M. Sue
2008-01-01
Data from a clinical sample (N = 88) reporting childhood sexual abuse was compared by types of memory, abuse characteristics, and psychological symptoms. Three types of memory were identified from a questionnaire ("Always" n = 27 [31%], "Recovered" n = 41 [46%], and "Both" n = 20 [23%]). When compared with narrative…
Xu, Yin; Bailey, Michelle; Seddiki, Nabila; Suzuki, Kazuo; Murray, John M.; Gao, Yuan; Yan, Celine; Cooper, David A.; Kelleher, Anthony D.; Koelsch, Kersten K.; Zaunders, John
2013-01-01
Abstract Memory CD4+ T lymphocytes in peripheral blood that express integrins α4ß7 preferentially recirculate through gut-associated lymphoid tissue (GALT), a proposed site of significant HIV-1 replication. Tregs and activated CD4+ T cells in GALT could also be particularly susceptible to infection. We therefore hypothesized that infection of these subsets of memory CD4+ T cells may contribute disproportionately to the HIV-1 reservoir. A cross-sectional study of CD4+ T cell subsets of memory CD45RO+ cells in peripheral blood mononuclear cells (PBMCs) was conducted using leukapheresis from eight subjects with untreated chronic HIV-1 infection. Real-time polymerase chain reaction (PCR) was used to quantify total and integrated HIV-1 DNA levels from memory CD4+ T cells sorted into integrin β7+ vs. β7−, CD25+CD127low Treg vs. CD127high, and activated CD38+ vs. CD38−. More than 80% of total HIV-1 DNA was found to reside in the integrin β7-negative non-gut-homing subset of CD45RO+ memory CD4+ T cells. Less than 10% was found in highly purified Tregs or CD38+ activated memory cells. Similarly, integrated HIV-1 DNA copies were found to be more abundant in resting non-gut-homing memory CD4+ T cells (76%) than in their activated counterparts (23%). Our investigations showed that the majority of both total and integrated HIV-1 DNA was found within non-gut-homing resting CD4+ T cells. PMID:23971972
Horacio, Ruiseñor-Escudero; Itziar, Familiar-Lopez; Alla, Sikorskii; Nikita, Jambulingam; Noelline, Nakasujja; Robert, Opoka; Judith, Bass; Michael, Boivin
2015-01-01
Objective To identify the nutritional and immunological correlates of memory and neurocognitive development as measured by the Mullen Scales of Early Learning (MSEL) and by the Color Object Association Test (COAT) among children in Uganda. Design This analysis uses baseline data collected between 2008 and 2010 from 119 HIV-infected children ages 1–6 years participating in a randomized controlled trial of an interventional parenting program in Kayunga, Uganda. Methods Peripheral blood draws were performed to determine immunological biomarkers. Unadjusted and adjusted linear regression models were used to relate MSEL and COAT scores to sociodemographic characteristics, weight-for-age Z-scores (WAZ), antiretroviral therapy (ART) status and immunological biomarkers. Results 111 children were included in the final analysis. Lower levels of CD4+ CD38+ T-cells (p=0.04) were associated to higher Immediate and Total Recall scores (p=0.04). Higher levels of CD8+ HLA-DR+ T-cells were associated with higher Total Recall score (p=0.04) of the COAT. Higher CD4+ CD38+ HLA-DR+ T-cells levels were associated with higher Gross Motor scores of the MSEL (p=0.02). WAZ was positively correlated to Visual Reception, Fine Motor, Expressive Language and composite score of the MSEL. Conclusions Overall, WAZ was a stronger predictor of neurocognitive outcomes assessed by the MSEL. CD4+ CD38+ T-cells were more specifically associated with memory-related outcomes. Future research should include immunological markers and standardized neurocognitive tests to further understand this relationship. PMID:26605506
Pharmacologic Induction of CD8+ T Cell Memory: Better Living Through Chemistry
Gattinoni, Luca; Klebanoff, Christopher A.; Restifo, Nicholas P.
2011-01-01
The generation of a robust population of memory T cells is critical for effective vaccine and cell-based therapies to prevent and treat infectious diseases and cancer. A series of recent papers have established a new, cell-intrinsic approach in which small molecules target key metabolic and developmental pathways to enhance the formation and maintenance of highly functional CD8+ memory T cells. These findings raise the exciting new possibility of using small molecules, many of which are already approved for human use, for the pharmacologic induction of immunologic memory. PMID:20371454
Diet-induced obesity in mice reduces the maintenance of influenza-specific CD8+ memory T cells.
Karlsson, Erik A; Sheridan, Patricia A; Beck, Melinda A
2010-09-01
Obesity has been associated with increasing the risk for type 2 diabetes and heart disease, but its influence on the immune response to viral infection is understudied. Memory T cells generated during a primary influenza infection are important for protection against subsequent influenza exposures. Previously, we have demonstrated that diet-induced obese (DIO) mice have increased morbidity and mortality following secondary influenza infection compared with lean mice. To determine whether the problem resided in a failure to maintain functional, influenza-specific CD8(+) memory T cells, male DIO and lean mice were infected with influenza X-31. At 84 d postinfection, DIO mice had a 10% reduction in memory T cell numbers. This reduction may have resulted from significantly reduced memory T cell expression of interleukin 2 receptor beta (IL-2R beta, CD122), but not IL-7 receptor alpha (CD127), which are both required for memory cell maintenance. Peripheral leptin resistance in the DIO mice may be a contributing factor to the impairment. Indeed, leptin receptor mRNA expression was significantly reduced in the lungs of obese mice, whereas suppressor of cytokine signaling (Socs)1 and Socs3 mRNA expression were increased. It is imperative to understand how the obese state alters memory T cells, because impairment in maintenance of functional memory responses has important implications for vaccine efficacy in an obese population.
Jaleco, Sara; Swainson, Louise; Dardalhon, Valérie; Burjanadze, Maryam; Kinet, Sandrina; Taylor, Naomi
2003-07-01
Cytokines play a crucial role in the maintenance of polyclonal naive and memory T cell populations. It has previously been shown that ex vivo, the IL-7 cytokine induces the proliferation of naive recent thymic emigrants (RTE) isolated from umbilical cord blood but not mature adult-derived naive and memory human CD4(+) T cells. We find that the combination of IL-2 and IL-7 strongly promotes the proliferation of RTE, whereas adult CD4(+) T cells remain relatively unresponsive. Immunological activity is controlled by a balance between proliferation and apoptotic cell death. However, the relative contributions of IL-2 and IL-7 in regulating these processes in the absence of MHC/peptide signals are not known. Following exposure to either IL-2 or IL-7 alone, RTE, as well as mature naive and memory CD4(+) T cells, are rendered only minimally sensitive to Fas-mediated cell death. However, in the presence of the two cytokines, Fas engagement results in a high level of caspase-dependent apoptosis in both RTE as well as naive adult CD4(+) T cells. In contrast, equivalently treated memory CD4(+) T cells are significantly less sensitive to Fas-induced cell death. The increased susceptibility of RTE and naive CD4(+) T cells to Fas-induced apoptosis correlates with a significantly higher IL-2/IL-7-induced Fas expression on these T cell subsets than on memory CD4(+) T cells. Thus, IL-2 and IL-7 regulate homeostasis by modulating the equilibrium between proliferation and apoptotic cell death in RTE and mature naive and memory T cell subsets.
Human Stem Cell-like Memory T Cells Are Maintained in a State of Dynamic Flux.
Ahmed, Raya; Roger, Laureline; Costa Del Amo, Pedro; Miners, Kelly L; Jones, Rhiannon E; Boelen, Lies; Fali, Tinhinane; Elemans, Marjet; Zhang, Yan; Appay, Victor; Baird, Duncan M; Asquith, Becca; Price, David A; Macallan, Derek C; Ladell, Kristin
2016-12-13
Adaptive immunity requires the generation of memory T cells from naive precursors selected in the thymus. The key intermediaries in this process are stem cell-like memory T (T SCM ) cells, multipotent progenitors that can both self-renew and replenish more differentiated subsets of memory T cells. In theory, antigen specificity within the T SCM pool may be imprinted statically as a function of largely dormant cells and/or retained dynamically by more transitory subpopulations. To explore the origins of immunological memory, we measured the turnover of T SCM cells in vivo using stable isotope labeling with heavy water. The data indicate that T SCM cells in both young and elderly subjects are maintained by ongoing proliferation. In line with this finding, T SCM cells displayed limited telomere length erosion coupled with high expression levels of active telomerase and Ki67. Collectively, these observations show that T SCM cells exist in a state of perpetual flux throughout the human lifespan. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
B-cell activating factor detected on both naïve and memory B cells in bullous pemphigoid.
Qian, Hua; Kusuhara, Masahiro; Li, Xiaoguang; Tsuruta, Daisuke; Tsuchisaka, Atsunari; Ishii, Norito; Koga, Hiroshi; Hayakawa, Taihei; Ohara, Koji; Karashima, Tadashi; Ohyama, Bungo; Ohata, Chika; Furumura, Minao; Hashimoto, Takashi
2014-08-01
B-cell activating factor (BAFF), an important immune regulatory cytokine, is involved in development of autoimmune diseases. Although BAFF is expressed in various cells, including dendritic cells (DCs) and monocytes, BAFF expression on B cells has not been well documented. In the present study, BAFF molecules on DCs and naïve and memory B cells in autoimmune bullous diseases, including pemphigus vulgaris, pemphigus foliaceus and bullous pemphigoid (BP), were analysed by flow cytometry. Compared with healthy controls (HC), BAFF expression on naïve and memory B cells increased significantly in BP. No difference in BAFF receptor expression in naïve and memory B cells was shown among all study groups. Furthermore, BAFF expression in both naïve and memory B cells of BP, but not HC, was detected by confocal microscopic analysis. These results implied that BAFF expressed by B cells may play a pathogenic role in autoimmune bullous diseases, particularly BP. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Rosado, M Manuela; Scarsella, Marco; Pandolfi, Elisabetta; Cascioli, Simona; Giorda, Ezio; Chionne, Paola; Madonne, Elisabetta; Gesualdo, Francesco; Romano, Mariateresa; Ausiello, Clara M; Rapicetta, Maria; Zanetti, Alessandro R; Tozzi, Alberto; Carsetti, Rita
2011-06-01
The immunogenicity of a vaccine is conventionally measured through the level of serum Abs early after immunization, but to ensure protection specific Abs should be maintained long after primary vaccination. For hepatitis B, protective levels often decline over time, but breakthrough infections do not seem to occur. The aim of this study was to demonstrate whether, after hepatitis B vaccination, B-cell memory persists even when serum Abs decline. We compared the frequency of anti-hepatitis-specific memory B cells that remain in the blood of 99 children five years after priming with Infanrix -hexa (GlaxoSmithKline) (n=34) or with Hexavac (Sanofi Pasteur MSD) (n=65). These two vaccines differ in their ability to generate protective levels of IgG. Children with serum Abs under the protective level, <10 mIU/mL, received a booster dose of hepatitis B vaccine, and memory B cells and serum Abs were measured 2 wk later. We found that specific memory B cells had a similar frequency in all children independently of primary vaccine. Booster injection resulted in the increase of memory B cell frequencies (from 11.3 in 10(6) cells to 28.2 in 10(6) cells, p<0.01) and serum Abs (geometric mean concentration, GMC from 2.9 to 284 mIU/mL), demonstrating that circulating memory B cells effectively respond to Ag challenge even when specific Abs fall under the protective threshold. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Epigenetic Characteristics of the Mitotic Chromosome in 1D and 3D
Oomen, Marlies E.; Dekker, Job
2017-01-01
While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis chromatin undergoes dramatic changes: Transcription stalls, chromatin binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis chromosomes lose their cell type specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis cells are capable of quickly rearranging the chromosome conformation to form the cell type specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of the interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of the interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation. PMID:28228067
Spyrka, Jadwiga; Hess, Grzegorz
2018-05-21
The consequences of stress depend on characteristics of the stressor, including the duration of exposure, severity, and predictability. Exposure of mice to repeated neck restraint has been shown to bidirectionally modulate the potential for long-term potentiation (LTP) in the dentate gyrus (DG) in a manner dependent on the number of restraint repetitions, but the influence of repeated brief neck restraint on electrophysiology of single DG neurons has not yet been investigated. Here, we aimed at finding the effects of 1, 3, 7, 14, or 21 daily neck restraint sessions lasting 10 min on electrophysiological characteristics of DG granule cells as well as excitatory and inhibitory synaptic inputs to these neurons. While the excitability of DG granule cells and inhibitory synaptic transmission were unchanged, neck restraint decreased the frequency of spontaneous excitatory currents after three repetitions but enhanced it after 14 and 21 repetitions. The consequences of repeated neck restraint on hippocampus-dependent memory were investigated using the object location test (OLT). Neck restraint stress impaired cognitive performance in the OLT after three repetitions but improved it after 14 and 21 repetitions. Mice subjected to three neck restraint sessions displayed an increase in the measures of depressive and anxiety-like behaviors, however, prolongation of the exposure to neck restraint resulted in a gradual decline in the intensity of these measures. These data indicate that stress imposed by an increasing number of repeated neck restraint episodes bidirectionally modulates both excitatory synaptic transmission in the DG and cognitive performance in the object location memory task. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Paust, Silke; Gill, Harvinder S; Wang, Bao-Zhong; Flynn, Michael P; Moseman, E Ashley; Senman, Balimkiz; Szczepanik, Marian; Telenti, Amalio; Askenase, Philip W; Compans, Richard W; von Andrian, Ulrich H
2010-12-01
Hepatic natural killer (NK) cells mediate antigen-specific contact hypersensitivity (CHS) in mice deficient in T cells and B cells. We report here that hepatic NK cells, but not splenic or naive NK cells, also developed specific memory of vaccines containing antigens from influenza, vesicular stomatitis virus (VSV) or human immunodeficiency virus type 1 (HIV-1). Adoptive transfer of virus-sensitized NK cells into naive recipient mice enhanced the survival of the mice after lethal challenge with the sensitizing virus but not after lethal challenge with a different virus. NK cell memory of haptens and viruses depended on CXCR6, a chemokine receptor on hepatic NK cells that was required for the persistence of memory NK cells but not for antigen recognition. Thus, hepatic NK cells can develop adaptive immunity to structurally diverse antigens, an activity that requires NK cell-expressed CXCR6.
Keeping STATs on memory CD8+ T cells.
Olson, Janelle A; Jameson, Stephen C
2011-11-23
The CD8(+) T cell response is characterized by generation of a population of effector cells and establishment of a persistent memory pool. In this issue, Cui et al. (2011) and Siegel et al. (2011) show that cytokine receptor signaling through the transcription factor STAT3 establishes stable memory CD8(+) T cells. Copyright © 2011 Elsevier Inc. All rights reserved.
Marçais, Antoine; Tomkowiak, Martine; Walzer, Thierry; Coupet, Charles-Antoine; Ravel-Chapuis, Aymeric; Marvel, Jacqueline
2006-10-01
Immunological memory is associated with the display of improved effector functions by cells of the adaptive immune system. The storage of untranslated mRNA coding for the CCL5 chemokine by CD8 memory cells is a new process supporting the immediate display of an effector function. Here, we show that, after induction during the primary response, high CCL5 mRNA levels are specifically preserved in CD8 T cells. We have investigated the mechanisms involved in the long-term maintenance of CCL5 mRNA levels by memory CD8 T cells. We demonstrate that the CCL5 mRNA half-life is increased in memory CD8 T cells and that these cells constitutively transcribe ccl5 gene. By inhibiting ccl5 transcription using IL-4, we demonstrate the essential role of transcription in the maintenance of CCL5 mRNA stores. Finally, we show that these stores are spontaneously reconstituted when the inhibitory signal is removed, indicating that the transcription of ccl5 is a default feature of memory CD8 T cells imprinted in their genetic program.
de Jong, Britt G; IJspeert, Hanna; Marques, Lemelinda; van der Burg, Mirjam; van Dongen, Jacques Jm; Loos, Bruno G; van Zelm, Menno C
2017-10-01
The mechanisms involved in sequential immunoglobulin G (IgG) class switching are still largely unknown. Sequential IG class switching is linked to higher levels of somatic hypermutation (SHM) in vivo, but it remains unclear if these are generated temporally during an immune response or upon activation in a secondary response. We here aimed to uncouple these processes and to distinguish memory B cells from primary and secondary immune responses. SHM levels and IgG subclasses were studied with 454 pyrosequencing on blood mononuclear cells from young children and adults as models for primary and secondary immunological memory. Additional sequencing and detailed immunophenotyping with IgG subclass-specific antibodies was performed on purified IgG + memory B-cell subsets. In both children and adults, SHM levels were higher in transcripts involving more downstream-located IGHG genes (esp. IGHG2 and IGHG4). In adults, SHM levels were significantly higher than in children, and downstream IGHG genes were more frequently utilized. This was associated with increased frequencies of CD27 + IgG + memory B cells, which contained higher levels of SHM, more IGHG2 usage, and higher expression levels of activation markers than CD27 - IgG + memory B cells. We conclude that secondary immunological memory accumulates with age and these memory B cells express CD27, high levels of activation markers, and carry high SHM levels and frequent usage of IGHG2. These new insights contribute to our understanding of sequential IgG subclass switching and show a potential relevance of using serum IgG2 levels or numbers of IgG2-expressing B cells as markers for efficient generation of memory responses.
Krummey, Scott M.; Chen, Ching-Wen; Guasch, Sara A.; Liu, Danya; Wagener, Maylene; Larsen, Christian P; Ford, Mandy L.
2016-01-01
The affinity of a T cell receptor (TCR) binding to peptide:MHC profoundly impacts the phenotype and function of effector and memory cell differentiation. Little is known about the effect of low affinity priming on memory cell generation and function, which is particularly important in heterologous immunity, when microbe-specific T cells cross-react with allogeneic antigen and mediate graft rejection. We found that low affinity primed memory CD8+ T cells produced high levels of TNF ex vivo in response to heterologous rechallenge compared to high affinity primed memory T cells. Low affinity secondary effectors significantly upregulated TNFR2 on the cell surface and contained a higher frequency of TNFR2hi proliferating cells. Low affinity primed secondary effectors concurrently downregulated TNF production. Importantly, blockade of TNFR2 attenuated graft rejection in low but not high affinity primed animals. These data establish a functional connection between TNF signaling and TCR priming affinity and have implications for the immunomodulation of pathogenic T cell responses during transplantation. PMID:27481849
Judge, Chelsey J; Sandberg, Johan K; Funderburg, Nicholas T; Sherman, Kenneth E; Butt, Adeel A; Kang, Minhee; Landay, Alan L; Lederman, Michael M; Anthony, Donald D
2016-11-01
During HIV+ hepatitis C virus (HCV)+ coinfection CD14CD16 monocytes produce soluble immune-activation markers that predict disease progression and poor response to interferon (IFN)-α treatment. We evaluated relationships among immune activation, monocyte phenotype, CD4-memory T cells, and HCV-, cytomegalovirus-, and cytomegalovirus/Epstein-Barr virus/influenza-specific IFN-γ-response before and during IFN-α treatment. Effector-memory and central-memory CD4 T-cell frequencies were lower in HCV+ HIV+ donors than in uninfected donors and correlated negatively with HCV level, CD14CD16 monocytes, and plasma sCD14. sCD14 and CD14CD16 monocytes negatively correlated with IFN-α-dependent HCV decline. CD4 effector-memory T cells positively associated with cytomegalovirus/Epstein-Barr virus/influenza(CEF)-specific IFN-γ response, while sCD14 negatively associated with both CD4 effector-memory T cells and CEF-specific IFN-γ response. These data support a role for memory-CD4 T cells in HCV containment and link immune activation and CD14CD16-monocyte frequency to the failure of IFN-dependent HCV clearance.
Place Cells, Grid Cells, and Memory
Moser, May-Britt; Rowland, David C.; Moser, Edvard I.
2015-01-01
The hippocampal system is critical for storage and retrieval of declarative memories, including memories for locations and events that take place at those locations. Spatial memories place high demands on capacity. Memories must be distinct to be recalled without interference and encoding must be fast. Recent studies have indicated that hippocampal networks allow for fast storage of large quantities of uncorrelated spatial information. The aim of the this article is to review and discuss some of this work, taking as a starting point the discovery of multiple functionally specialized cell types of the hippocampal–entorhinal circuit, such as place, grid, and border cells. We will show that grid cells provide the hippocampus with a metric, as well as a putative mechanism for decorrelation of representations, that the formation of environment-specific place maps depends on mechanisms for long-term plasticity in the hippocampus, and that long-term spatiotemporal memory storage may depend on offline consolidation processes related to sharp-wave ripple activity in the hippocampus. The multitude of representations generated through interactions between a variety of functionally specialized cell types in the entorhinal–hippocampal circuit may be at the heart of the mechanism for declarative memory formation. PMID:25646382
Dissecting the human immunologic memory for pathogens.
Zielinski, Christina E; Corti, Davide; Mele, Federico; Pinto, Dora; Lanzavecchia, Antonio; Sallusto, Federica
2011-03-01
Studies on immunologic memory in animal models and especially in the human system are instrumental to identify mechanisms and correlates of protection necessary for vaccine development. In this article, we provide an overview of the cellular basis of immunologic memory. We also describe experimental approaches based on high throughput cell cultures, which we have developed to interrogate human memory T cells, B cells, and plasma cells. We discuss how these approaches can provide new tools and information for vaccine design, in a process that we define as 'analytic vaccinology'. © 2011 John Wiley & Sons A/S.
Single-poly EEPROM cell with lightly doped MOS capacitors
Riekels, James E [New Hope, MN; Lucking, Thomas B [Maple Grove, MN; Larsen, Bradley J [Mound, MN; Gardner, Gary R [Golden Valley, MN
2008-05-27
An Electrically Erasable Programmable Read Only Memory (EEPROM) memory cell and a method of operation are disclosed for creating an EEPROM memory cell in a standard CMOS process. A single polysilicon layer is used in combination with lightly doped MOS capacitors. The lightly doped capacitors employed in the EEPROM memory cell can be asymmetrical in design. Asymmetrical capacitors reduce area. Further capacitance variation caused by inversion can also be reduced by using multiple control capacitors. In addition, the use of multiple tunneling capacitors provides the benefit of customized tunneling paths.
Iborra, Salvador; Ramos, Manuel; Arana, David M.; Lázaro, Silvia; Aguilar, Francisco; Santos, Eugenio; López, Daniel
2013-01-01
Signals from the TCR that specifically contribute to effector versus memory CD8+ T cell differentiation are poorly understood. Using mice and adoptively transferred T lymphocytes lacking the small GTPase N-ras, we found that N-ras–deficient CD8+ T cells differentiate efficiently into antiviral primary effectors but have a severe defect in generating protective memory cells. This defect was rescued, although only partly, by rapamycin-mediated inhibition of mammalian target of rapamycin (mTOR) in vivo. The memory defect correlated with a marked impairment in vitro and in vivo of the antigen-mediated early induction of T-box transcription factor Eomesodermin (Eomes), whereas T-bet was unaffected. Besides N-ras, early Eomes induction in vitro required phosphoinositide 3-kinase (PI3K)–AKT but not extracellular signal-regulated kinase (ERK) activation, and it was largely insensitive to rapamycin. Consistent with N-ras coupling Eomes to T cell memory, retrovirally enforced expression of Eomes in N-ras–deficient CD8+ T cells effectively rescued their memory differentiation. Thus, our study identifies a critical role for N-ras as a TCR-proximal regulator of Eomes for early determination of the CD8+ T cell memory fate. PMID:23776078
Barzykowski, Krystian; Staugaard, Søren Risløv
2016-08-01
Theories of autobiographical memory distinguish between involuntary and voluntary retrieval as a consequence of conscious intention (i.e., wanting to remember). Another distinction can be made between direct and generative retrieval, which reflects the effort involved (i.e., trying to remember). However, it is unclear how intention and effort interacts. For example, involuntary memories and directly retrieved memories have been used interchangeably in the literature to refer to the same phenomenon of effortless, non-strategic retrieval. More recent theoretical advances suggest that they are separate types of retrieval, one unintentional (involuntary), another intentional and effortless (direct voluntary retrieval), and a third intentional and effortful (generative voluntary retrieval). Whether this also entails differing phenomenological characteristics, such as vividness, rehearsal, or emotional valence, has not been previously investigated. In the current study, participants reported memories in an experimental paradigm designed to elicit voluntary and involuntary memories and rated them on a number of characteristics. If intention affects the retrieval process, then we should expect differences between the characteristics of involuntary and directly retrieved memories. The results imply that retrieval intention seems to differentiate how a memory appears in a person's mind. Furthermore, we argue that these differences in part could result from differences in encoding and consolidation. © 2015 The British Psychological Society.
Artificial cognitive memory—changing from density driven to functionality driven
NASA Astrophysics Data System (ADS)
Shi, L. P.; Yi, K. J.; Ramanathan, K.; Zhao, R.; Ning, N.; Ding, D.; Chong, T. C.
2011-03-01
Increasing density based on bit size reduction is currently a main driving force for the development of data storage technologies. However, it is expected that all of the current available storage technologies might approach their physical limits in around 15 to 20 years due to miniaturization. To further advance the storage technologies, it is required to explore a new development trend that is different from density driven. One possible direction is to derive insights from biological counterparts. Unlike physical memories that have a single function of data storage, human memory is versatile. It contributes to functions of data storage, information processing, and most importantly, cognitive functions such as adaptation, learning, perception, knowledge generation, etc. In this paper, a brief review of current data storage technologies are presented, followed by discussions of future storage technology development trend. We expect that the driving force will evolve from density to functionality, and new memory modules associated with additional functions other than only data storage will appear. As an initial step toward building a future generation memory technology, we propose Artificial Cognitive Memory (ACM), a memory based intelligent system. We also present the characteristics of ACM, new technologies that can be used to develop ACM components such as bioinspired element cells (silicon, memristor, phase change, etc.), and possible methodologies to construct a biologically inspired hierarchical system.
Gillard, Geoffrey O.; Bivas-Benita, Maytal; Hovav, Avi-Hai; Grandpre, Lauren E.; Panas, Michael W.; Seaman, Michael S.; Haynes, Barton F.; Letvin, Norman L.
2011-01-01
While immunological memory has long been considered the province of T- and B- lymphocytes, it has recently been reported that innate cell populations are capable of mediating memory responses. We now show that an innate memory immune response is generated in mice following infection with vaccinia virus, a poxvirus for which no cognate germline-encoded receptor has been identified. This immune response results in viral clearance in the absence of classical adaptive T and B lymphocyte populations, and is mediated by a Thy1+ subset of natural killer (NK) cells. We demonstrate that immune protection against infection from a lethal dose of virus can be adoptively transferred with memory hepatic Thy1+ NK cells that were primed with live virus. Our results also indicate that, like classical immunological memory, stronger innate memory responses form in response to priming with live virus than a highly attenuated vector. These results demonstrate that a defined innate memory cell population alone can provide host protection against a lethal systemic infection through viral clearance. PMID:21829360
NASA Astrophysics Data System (ADS)
Chen, Ying-Chih; Su, Yan-Kuin; Yu, Hsin-Chieh; Huang, Chun-Yuan; Huang, Tsung-Syun
2011-10-01
A wide hysteresis width characteristic (memory window) was observed in the organic thin film transistors (OTFTs) using poly(2-hydroxyethyl methacrylate) (PHEMA)-based polymer multilayers. In this study, a strong memory effect was also found in the pentacene-based OTFTs and the electric characteristics were improved by introducing PHEMA/poly(methyl methacrylate) (PMMA)/PHEMA trilayer to replace the conventional PHEMA monolayer or PMMA/PHEMA and PHEMA/PMMA bilayer as the dielectric layers of OTFTs. The memory effect was originated from the electron trapping and slow polarization of the dielectrics. The hydroxyl (-OH) groups inside the polymer dielectric were the main charge storage sites of the electrons. This charge-storage phenomenon could lead to a wide flat-band voltage shift (memory window, △VFB = 22 V) which is essential for the OTFTs' memory-related applications. Moreover, the fabricated transistors also exhibited significant switchable channel current due to the charge-storage and slow charge relaxation.
Franceschi, Claudio; Salvioli, Stefano; Garagnani, Paolo; de Eguileor, Magda; Monti, Daniela; Capri, Miriam
2017-01-01
Owing to its memory and plasticity, the immune system (IS) is capable of recording all the immunological experiences and stimuli it was exposed to. The combination of type, dose, intensity, and temporal sequence of antigenic stimuli that each individual is exposed to has been named “immunobiography.” This immunological history induces a lifelong continuous adaptation of the IS, which is responsible for the capability to mount strong, weak or no response to specific antigens, thus determining the large heterogeneity of immunological responses. In the last years, it is becoming clear that memory is not solely a feature of adaptive immunity, as it has been observed that also innate immune cells are provided with a sort of memory, dubbed “trained immunity.” In this review, we discuss the main characteristics of trained immunity as a possible contributor to inflammaging within the perspective of immunobiography, with particular attention to the phenotypic changes of the cell populations known to be involved in trained immunity. In conclusion, immunobiography emerges as a pervasive and comprehensive concept that could help in understanding and interpret the individual heterogeneity of immune responses (to infections and vaccinations) that becomes particularly evident at old age and could affect immunosenescence and inflammaging. PMID:28861086
Liu, Rongrong; Zhang, Qian; Zhou, Qian; Zhang, Ping; Dai, Honglian
2018-06-01
In this study, nondegradable poly (carbonate urethane) (PCU) and poly (carbonate urethane) incorporated variable Fe 3 O 4 content microspheres (PCU/Fe 3 O 4 ) were synthesized using pre-polymerization and suspension polymerization. Synthesis was confirmed through Fourier transform infrared spectroscopy (FTIR). The effect of Fe 3 O 4 incorporation was investigated on crystalline, thermal, shape memory and degradation properties by X-Ray diffraction (XRD), Differential scanning calorimetery (DSC), compression test and degradation in vitro, respectively. Otherwise, the assessment of magnetic characteristics by vibrational sample magnetometry (VSM) disclosed superparamagnetic behavior. The tunable superparamagnetic behavior depends on the amount of magnetic particles incorporated within the networks. The biological study results of as-synthesized polymers from the platelet adhesion test and the cell proliferation inhibition test indicated they were biocompatible in vitro. Fe 3 O 4 incorporation was conductive to reducing platelet adhesion in blood contacting test and promotion of rat vascular smooth muscle cell proliferation and growth. These nondegradable, superparamagnetic, biocompatible polymers, combined with their good shape memory properties may allow for their future exploitation in the biomedical field, such as, in cardiovascular implants, targeted tumor treatment, tissue engineering and artificial organ's engineering. Copyright © 2018. Published by Elsevier Ltd.
Resistive switching characteristics of thermally oxidized TiN thin films
NASA Astrophysics Data System (ADS)
Biju, K. P.
2018-04-01
Resistive switching characteristics of thermally oxidized TiN thin films and mechanisms were investigated.XPS results indicates Ti-O content decreases with sputter etching and Ti 2p peak shift towards lower binding energy due to formation of Ti-O-N and Ti-N. Pt/TiO2/TiON/TiN stack exhibits both clockwise switching (CWS) and counter clockwise switching(CCWS) characteristic depending on polarity of the applied voltage. However the transition from CCWS to CWS is irreversible. Two stable switching modes with opposite switching polarity and different electrical characteristics are found to coexist in the same memory cell. Clockwise switching shows filamentary characteristics that lead to faster switching with excellent retention at high temperature. Counter-clockwise switching exhibits homogeneous conduction with slower switching and moderate retention. The field-induced switching in both CCWS and CWS might be due to inhomogeneous defect distribution due to thermal oxidation.
Maggioli, Mayara F.; Palmer, Mitchell V.; Thacker, Tyler C.; Vordermeier, H. Martin; Waters, W. Ray
2015-01-01
Cultured IFN-γ ELISPOT assays are primarily a measure of central memory T cell (Tcm) responses with humans; however, this important subset of lymphocytes is poorly characterized in cattle. Vaccine-elicited cultured IFN-γ ELISPOT responses correlate with protection against bovine tuberculosis in cattle. However, whether this assay measures cattle Tcm responses or not is uncertain. The objective of the present study was to characterize the relative contribution of Tcm (CCR7+, CD62Lhi, CD45RO+), T effector memory (Tem, defined as: CCR7-, CD62Llow/int, CD45RO+), and T effector cells (CCR7-, CD62L-/low, CD45RO-), in the immune response to Mycobacterium bovis. Peripheral blood mononuclear cells (PBMC) from infected cattle were stimulated with a cocktail of M. bovis purified protein derivative, rTb10.4 and rAg85A for 13 days with periodic addition of fresh media and rIL-2. On day 13, cultured PBMC were re-stimulated with medium alone, rESAT-6:CFP10 or PPDb with fresh autologous adherent cells for antigen presentation. Cultured cells (13 days) or fresh PBMCs (ex vivo response) from the same calves were analyzed for IFN-γ production, proliferation, and CD4, CD45RO, CD62L, CD44, and CCR7 expression via flow cytometry after overnight stimulation. In response to mycobacterial antigens, ~75% of CD4+ IFN-γ+ cells in long-term cultures expressed a Tcm phenotype while less than 10% of the ex vivo response consisted of Tcm cells. Upon re-exposure to antigen, long-term cultured cells were highly proliferative, a distinctive characteristic of Tcm, and the predominant phenotype within the long-term cultures switched from Tcm to Tem. These findings suggest that proliferative responses of Tcm cells to some extent occurs simultaneously with reversion to effector phenotypes (mostly Tem). The present study characterizes Tcm cells of cattle and their participation in the response to M. bovis infection. PMID:25879774
Identification and Manipulation of Memory Engram Cells.
Liu, Xu; Ramirez, Steve; Redondo, Roger L; Tonegawa, Susumu
2014-01-01
How memories are formed and stored in the brain remains a fascinating question in neuroscience. Here we discuss the memory engram theory, our recent attempt to identify and manipulate memory engram cells in the brain with optogenetics, and how these methods are used to address questions such as how false memory is formed and how the valence of a memory can be changed in the brain. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.
Negative regulation of NKG2D expression by IL-4 in memory CD8 T cells.
Ventre, Erwan; Brinza, Lilia; Schicklin, Stephane; Mafille, Julien; Coupet, Charles-Antoine; Marçais, Antoine; Djebali, Sophia; Jubin, Virginie; Walzer, Thierry; Marvel, Jacqueline
2012-10-01
IL-4 is one of the main cytokines produced during Th2-inducing pathologies. This cytokine has been shown to affect a number of immune processes such as Th differentiation and innate immune responses. However, the impact of IL-4 on CD8 T cell responses remains unclear. In this study, we analyzed the effects of IL-4 on global gene expression profiles of Ag-induced memory CD8 T cells in the mouse. Gene ontology analysis of this signature revealed that IL-4 regulated most importantly genes associated with immune responses. Moreover, this IL-4 signature overlapped with the set of genes preferentially expressed by memory CD8 T cells over naive CD8 T cells. In particular, IL-4 downregulated in vitro and in vivo in a STAT6-dependent manner the memory-specific expression of NKG2D, thereby increasing the activation threshold of memory CD8 T cells. Furthermore, IL-4 impaired activation of memory cells as well as their differentiation into effector cells. This phenomenon could have an important clinical relevance as patients affected by Th2 pathologies such as parasitic infections or atopic dermatitis often suffer from viral-induced complications possibly linked to inefficient CD8 T cell responses.
Memory CD4+ T cells: beyond “helper” functions
Boonnak, Kobporn; Subbarao, Kanta
2012-01-01
In influenza virus infection, antibodies, memory CD8+ T cells, and CD4+ T cells have all been shown to mediate immune protection, but how they operate and interact with one another to mediate efficient immune responses against virus infection is not well understood. In this issue of the JCI, McKinstry et al. have identified unique functions of memory CD4+ T cells beyond providing “help” for B cell and CD8+ T cell responses during influenza virus infection. PMID:22820285
Spring, Michele D.; Yongvanitchit, Kosol; Kum-Arb, Utaiwan; Limsalakpetch, Amporn; Im-Erbsin, Rawiwan; Ubalee, Ratawan; Vanachayangkul, Pattaraporn; Remarque, Edmond J.; Angov, Evelina; Smith, Philip L.; Saunders, David L.
2017-01-01
Whole malaria sporozoite vaccine regimens are promising new strategies, and some candidates have demonstrated high rates of durable clinical protection associated with memory T cell responses. Little is known about the anatomical distribution of memory T cells following whole sporozoite vaccines, and immunization of nonhuman primates can be used as a relevant model for humans. We conducted a chemoprophylaxis with sporozoite (CPS) immunization in P. knowlesi rhesus monkeys and challenged via mosquito bites. Half of CPS immunized animals developed complete protection, with a marked delay in parasitemia demonstrated in the other half. Antibody responses to whole sporozoites, CSP, and AMA1, but not CelTOS were detected. Peripheral blood T cell responses to whole sporozoites, but not CSP and AMA1 peptides were observed. Unlike peripheral blood, there was a high frequency of sporozoite-specific memory T cells observed in the liver and bone marrow. Interestingly, sporozoite-specific CD4+ and CD8+ memory T cells in the liver highly expressed chemokine receptors CCR5 and CXCR6, both of which are known for liver sinusoid homing. The majority of liver sporozoite-specific memory T cells expressed CD69, a phenotypic marker of tissue-resident memory (TRM) cells, which are well positioned to rapidly control liver-stage infection. Vaccine strategies that aim to elicit large number of liver TRM cells may efficiently increase the efficacy and durability of response against pre-erythrocytic parasites. PMID:28182750
Interfacial Redox Reactions Associated Ionic Transport in Oxide-Based Memories.
Younis, Adnan; Chu, Dewei; Shah, Abdul Hadi; Du, Haiwei; Li, Sean
2017-01-18
As an alternative to transistor-based flash memories, redox reactions mediated resistive switches are considered as the most promising next-generation nonvolatile memories that combine the advantages of a simple metal/solid electrolyte (insulator)/metal structure, high scalability, low power consumption, and fast processing. For cation-based memories, the unavailability of in-built mobile cations in many solid electrolytes/insulators (e.g., Ta 2 O 5 , SiO 2 , etc.) instigates the essential role of absorbed water in films to keep electroneutrality for redox reactions at counter electrodes. Herein, we demonstrate electrochemical characteristics (oxidation/reduction reactions) of active electrodes (Ag and Cu) at the electrode/electrolyte interface and their subsequent ions transportation in Fe 3 O 4 film by means of cyclic voltammetry measurements. By posing positive potentials on Ag/Cu active electrodes, Ag preferentially oxidized to Ag + , while Cu prefers to oxidize into Cu 2+ first, followed by Cu/Cu + oxidation. By sweeping the reverse potential, the oxidized ions can be subsequently reduced at the counter electrode. The results presented here provide a detailed understanding of the resistive switching phenomenon in Fe 3 O 4 -based memory cells. The results were further discussed on the basis of electrochemically assisted cations diffusions in the presence of absorbed surface water molecules in the film.
Skin vaccination with live virus vectored microneedle arrays induce long lived CD8(+) T cell memory.
Becker, Pablo D; Hervouet, Catherine; Mason, Gavin M; Kwon, Sung-Yun; Klavinskis, Linda S
2015-09-08
A simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection. We show that despite a slightly lower frequency of dividing T cell receptor transgenic CD8(+) T cells in secondary lymphoid tissue at an early time point, the absolute number of CD8(+) T cells expressing an effector memory (CD62L(-)CD127(+)) and central memory (CD62L(+)CD127(+)) phenotype during peak expansion were comparable after MA and ID vaccination with a recombinant human adenovirus type 5 vector (AdHu5) encoding HIV-1 gag. Similarly, both vaccination routes generated CD8(+) memory T cell subsets detected in draining LNs for at least two years post-vaccination capable of responding to secondary antigen. These data suggest that CD8(+) T cell effector/memory generation and long-term memory is largely unaffected by physical differences in vaccine delivery to the skin via dried MA or ID suspension. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ramakrishnan, Radha; Davidowitz, Andrew; Balu-Iyer, Sathy V
2015-08-01
A major complication of replacement therapy with Factor VIII (FVIII) for hemophilia A (HA) is the development of unwanted immune responses. Previous studies showed that administration of FVIII in the presence of phosphatidyl serine (PS) reduced the development of anti-FVIII antibodies in HA mice. However, the impact of PS-mediated effects on immunological memory, such as generation of memory B-cells, is not clear. The effect of PS on memory B-cells was therefore investigated using adoptive transfer approach in FVIII(-/-) HA mice. Adoptive transfer of memory B-cells from a PS-FVIII-treated group to naïve mice followed by challenge of the recipient mice with FVIII showed a significantly reduced anti-FVIII antibody response in the recipient mice, compared with animals that received memory B-cells from free FVIII and FVIII-charge matched phosphatidyl glycerol (PG) group. The decrease in memory B-cell response is accompanied by an increase in FoxP3 expressing regulatory T-cells (Tregs). Flow cytometry studies showed that the generation of Tregs is higher in PS-treated animals as compared with FVIII and FVIII-PG treated animals. The PS-mediated hyporesponsiveness was found to be antigen-specific. The PS-FVIII immunization showed hyporesponsiveness toward FVIII rechallenge but not against ovalbumin (OVA) rechallenge, an unrelated antigen. This demonstrates that PS reduces immunologic memory of FVIII and induces antigen-specific peripheral tolerance in HA mice. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
T-Cell Tropism of Simian Varicella Virus during Primary Infection
Ouwendijk, Werner J. D.; Mahalingam, Ravi; de Swart, Rik L.; Haagmans, Bart L.; van Amerongen, Geert; Getu, Sarah; Gilden, Don; Osterhaus, Albert D. M. E.; Verjans, Georges M. G. M.
2013-01-01
Varicella-zoster virus (VZV) causes varicella, establishes a life-long latent infection of ganglia and reactivates to cause herpes zoster. The cell types that transport VZV from the respiratory tract to skin and ganglia during primary infection are unknown. Clinical, pathological, virological and immunological features of simian varicella virus (SVV) infection of non-human primates parallel those of primary VZV infection in humans. To identify the host cell types involved in virus dissemination and pathology, we infected African green monkeys intratracheally with recombinant SVV expressing enhanced green fluorescent protein (SVV-EGFP) and with wild-type SVV (SVV-wt) as a control. The SVV-infected cell types and virus kinetics were determined by flow cytometry and immunohistochemistry, and virus culture and SVV-specific real-time PCR, respectively. All monkeys developed fever and skin rash. Except for pneumonitis, pathology produced by SVV-EGFP was less compared to SVV-wt. In lungs, SVV infected alveolar myeloid cells and T-cells. During viremia the virus preferentially infected memory T-cells, initially central memory T-cells and subsequently effector memory T-cells. In early non-vesicular stages of varicella, SVV was seen mainly in perivascular skin infiltrates composed of macrophages, dendritic cells, dendrocytes and memory T-cells, implicating hematogenous spread. In ganglia, SVV was found primarily in neurons and occasionally in memory T-cells adjacent to neurons. In conclusion, the data suggest the role of memory T-cells in disseminating SVV to its target organs during primary infection of its natural and immunocompetent host. PMID:23675304
Fecher, Philipp; Caspell, Richard; Naeem, Villian; Karulin, Alexey Y; Kuerten, Stefanie; Lehmann, Paul V
2018-05-31
In individuals who have once developed humoral immunity to an infectious/foreign antigen, the antibodies present in their body can mediate instant protection when the antigen re-enters. Such antigen-specific antibodies can be readily detected in the serum. Long term humoral immunity is, however, also critically dependent on the ability of memory B cells to engage in a secondary antibody response upon re-exposure to the antigen. Antibody molecules in the body are short lived, having a half-life of weeks, while memory B cells have a life span of decades. Therefore, the presence of serum antibodies is not always a reliable indicator of B cell memory and comprehensive monitoring of humoral immunity requires that both serum antibodies and memory B cells be assessed. The prevailing view is that resting memory B cells and B cell blasts in peripheral blood mononuclear cells (PBMC) cannot be cryopreserved without losing their antibody secreting function, and regulated high throughput immune monitoring of B cell immunity is therefore confined to-and largely limited by-the need to test freshly isolated PBMC. Using optimized protocols for freezing and thawing of PBMC, and four color ImmunoSpot ® analysis for the simultaneous detection of all immunoglobulin classes/subclasses we show here that both resting memory B cells and B cell blasts retain their ability to secrete antibody after thawing, and thus demonstrate the feasibility of B cell immune monitoring using cryopreserved PBMC.
Postthymic maturation influences the CD8 T cell response to antigen.
Makaroff, Lydia E; Hendricks, Deborah W; Niec, Rachel E; Fink, Pamela J
2009-03-24
Complete T cell development requires postthymic maturation, and we investigated the influence of this ontological period on the CD8 T cell response to infection by comparing responses of mature CD8 T cells with those of recent thymic emigrants (RTEs). When activated with a noninflammatory stimulus or a bacterial or viral pathogen, CD8 RTEs generated a lower proportion of cytokine-producing effector cells and long-lived memory precursors compared with their mature counterparts. Although peripheral T cell maturation is complete within several weeks after thymic egress, RTE-derived memory cells continued to express inappropriate levels of memory cell markers and display an altered pattern of cytokine production, even 8 weeks after infection. When rechallenged, RTE-derived memory cells generated secondary effector cells that were phenotypically and functionally equivalent to those generated by their mature counterparts. The defects at the effector and memory stages were not associated with differences in the expression of T cell receptor-, costimulation-, or activation-associated cell surface markers yet were associated with lower Ly6C expression levels at the effector stage. This work demonstrates that the stage of postthymic maturation influences cell fate decisions and cytokine profiles of stimulated CD8 T cells, with repercussions that are apparent long after cells have progressed from the RTE compartment.
NASA Astrophysics Data System (ADS)
Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won
2018-02-01
In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.
Loaiza, Vanessa M; Borovanska, Borislava M
2018-01-01
Much research has investigated the qualitative experience of retrieving events from episodic memory (EM). The present study investigated whether covert retrieval in WM increases the phenomenological characteristics that participants find memorable in EM using tasks that distract attention from the maintenance of memoranda (i.e., complex span; Experiment 1) relative to tasks that do not (i.e., short or long list lengths of simple span; Experiments 1 and 2). Participants rated the quality of the phonological, semantic, and temporal-contextual characteristics remembered during a delayed memory characteristics questionnaire (MCQ). Whereas an advantage of the complex over simple span items was observed for each characteristic (Experiment 1), no such difference was observed between short and long trials of simple span (Experiment 2). These results are consistent with the view that covert retrieval in WM promotes content-context bindings that are later accessible from EM for both objective performance and subjective details of the remembered information. Copyright © 2017 Elsevier Inc. All rights reserved.
The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response.
Akondy, Rama S; Monson, Nathan D; Miller, Joseph D; Edupuganti, Srilatha; Teuwen, Dirk; Wu, Hong; Quyyumi, Farah; Garg, Seema; Altman, John D; Del Rio, Carlos; Keyserling, Harry L; Ploss, Alexander; Rice, Charles M; Orenstein, Walter A; Mulligan, Mark J; Ahmed, Rafi
2009-12-15
The live yellow fever vaccine (YF-17D) offers a unique opportunity to study memory CD8(+) T cell differentiation in humans following an acute viral infection. We have performed a comprehensive analysis of the virus-specific CD8(+) T cell response using overlapping peptides spanning the entire viral genome. Our results showed that the YF-17D vaccine induces a broad CD8(+) T cell response targeting several epitopes within each viral protein. We identified a dominant HLA-A2-restricted epitope in the NS4B protein and used tetramers specific for this epitope to track the CD8(+) T cell response over a 2 year period. This longitudinal analysis showed the following. 1) Memory CD8(+) T cells appear to pass through an effector phase and then gradually down-regulate expression of activation markers and effector molecules. 2) This effector phase was characterized by down-regulation of CD127, Bcl-2, CCR7, and CD45RA and was followed by a substantial contraction resulting in a pool of memory T cells that re-expressed CD127, Bcl-2, and CD45RA. 3) These memory cells were polyfunctional in terms of degranulation and production of the cytokines IFN-gamma, TNF-alpha, IL-2, and MIP-1beta. 4) The YF-17D-specific memory CD8(+) T cells had a phenotype (CCR7(-)CD45RA(+)) that is typically associated with terminally differentiated cells with limited proliferative capacity (T(EMRA)). However, these cells exhibited robust proliferative potential showing that expression of CD45RA may not always associate with terminal differentiation and, in fact, may be an indicator of highly functional memory CD8(+) T cells generated after acute viral infections.
Central memory CD8+ T lymphocytes mediate lung allograft acceptance
Krupnick, Alexander Sasha; Lin, Xue; Li, Wenjun; Higashikubo, Ryuiji; Zinselmeyer, Bernd H.; Hartzler, Hollyce; Toth, Kelsey; Ritter, Jon H.; Berezin, Mikhail Y.; Wang, Steven T.; Miller, Mark J.; Gelman, Andrew E.; Kreisel, Daniel
2014-01-01
Memory T lymphocytes are commonly viewed as a major barrier for long-term survival of organ allografts and are thought to accelerate rejection responses due to their rapid infiltration into allografts, low threshold for activation, and ability to produce inflammatory mediators. Because memory T cells are usually associated with rejection, preclinical protocols have been developed to target this population in transplant recipients. Here, using a murine model, we found that costimulatory blockade–mediated lung allograft acceptance depended on the rapid infiltration of the graft by central memory CD8+ T cells (CD44hiCD62LhiCCR7+). Chemokine receptor signaling and alloantigen recognition were required for trafficking of these memory T cells to lung allografts. Intravital 2-photon imaging revealed that CCR7 expression on CD8+ T cells was critical for formation of stable synapses with antigen-presenting cells, resulting in IFN-γ production, which induced NO and downregulated alloimmune responses. Thus, we describe a critical role for CD8+ central memory T cells in lung allograft acceptance and highlight the need for tailored approaches for tolerance induction in the lung. PMID:24569377
Virus-specific CD4+ memory phenotype T cells are abundant in unexposed adults
Su, Laura F.; Kidd, Brian A.; Han, Arnold; Kotzin, Jonathan J.; Davis, Mark M.
2013-01-01
While T cell memory is generally thought to require direct antigen exposure, we find an abundance of memory phenotype cells (20–90%, averaging over 50%) of CD4+ T cells specific for viral antigens in adults that have never been infected. These cells express the appropriate memory markers and genes, rapidly produce cytokines, and have clonally expanded. This contrasts with newborns where the same T cell receptor (TCR) specificities are almost entirely naïve, which may explain the vulnerability of young children to infections. One mechanism for this phenomenon is TCR cross-reactivity to environmental antigens and in support of this we find extensive cross-recognition by HIV-1 and influenza-reactive T lymphocytes to other microbial peptides and the expansion of one of these following influenza vaccination. Thus the presence of these memory phenotype T cells has significant implications for immunity to novel pathogens, child and adult health, and the influence of pathogen-rich versus hygienic environments. PMID:23395677
Tracking KLRC2 (NKG2C)+ memory-like NK cells in SIV+ and rhCMV+ rhesus macaques.
Ram, Daniel R; Manickam, Cordelia; Hueber, Brady; Itell, Hannah L; Permar, Sallie R; Varner, Valerie; Reeves, R Keith
2018-05-01
Natural killer (NK) cells classically typify the nonspecific effector arm of the innate immune system, but have recently been shown to possess memory-like properties against multiple viral infections, most notably CMV. Expression of the activating receptor NKG2C is elevated on human NK cells in response to infection with CMV as well as HIV, and may delineate cells with memory and memory-like functions. A better understanding of how NKG2C+ NK cells specifically respond to these pathogens could be significantly advanced using nonhuman primate (NHP) models but, to date, it has not been possible to distinguish NKG2C from its inhibitory counterpart, NKG2A, in NHP because of unfaithful antibody cross-reactivity. Using novel RNA-based flow cytometry, we identify for the first time true memory NKG2C+ NK cells in NHP by gene expression (KLRC2), and show that these cells have elevated frequencies and diversify their functional repertoire specifically in response to rhCMV and SIV infections.
Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory.
Okada, Kana; Nishizawa, Kayo; Kobayashi, Tomoko; Sakata, Shogo; Kobayashi, Kazuto
2015-08-06
Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer's disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remains unclear how they contribute to it. We use a genetic cell targeting technique to selectively eliminate cholinergic cell groups and then test spatial and object recognition memory through different behavioural tasks. Eliminating MS/vDB neurons impairs spatial but not object recognition memory in the reference and working memory tasks, whereas NBM elimination undermines only object recognition memory in the working memory task. These impairments are restored by treatment with acetylcholinesterase inhibitors, anti-dementia drugs for AD. Our results highlight that MS/vDB and NBM cholinergic neurons are not only implicated in recognition memory but also have essential roles in different types of recognition memory.
USDA-ARS?s Scientific Manuscript database
Given the importance of memory cytotoxic T lymphocytes (CTLs) in eliminating altered self-cells, including virus-infected and tumor cells, devising effective vaccination strategies for generating memory CTLs is a priority in the field of immunology. Herein, we elaborate upon a novel boosting approac...
Hurt, Aeron C.; Oshansky, Christine M.; Oh, Ding Yuan; Reading, Patrick C.; Chua, Brendon Y.; Sun, Yilun; Tang, Li; Handel, Andreas; Jackson, David C.; Turner, Stephen J.; Thomas, Paul G.; Kedzierska, Katherine
2015-01-01
CD8+ T cells directed against conserved viral regions elicit broad immunity against distinct influenza viruses, promote rapid virus elimination and enhanced host recovery. The influenza neuraminidase inhibitor, oseltamivir, is prescribed for therapy and prophylaxis, although it remains unclear how the drug impacts disease severity and establishment of effector and memory CD8+ T cell immunity. We dissected the effects of oseltamivir on viral replication, inflammation, acute CD8+ T cell responses and the establishment of immunological CD8+ T cell memory. In mice, ferrets and humans, the effect of osteltamivir on viral titre was relatively modest. However, prophylactic oseltamivir treatment in mice markedly reduced morbidity, innate responses, inflammation and, ultimately, the magnitude of effector CD8+ T cell responses. Importantly, functional memory CD8+ T cells established during the drug-reduced effector phase were capable of mounting robust recall responses. Moreover, influenza-specific memory CD4+ T cells could be also recalled after the secondary challenge, while the antibody levels were unaffected. This provides evidence that long-term memory T cells can be generated during an oseltamivir-interrupted infection. The anti-inflammatory effect of oseltamivir was verified in H1N1-infected patients. Thus, in the case of an unpredicted influenza pandemic, while prophylactic oseltamivir treatment can reduce disease severity, the capacity to generate memory CD8+ T cells specific for the newly emerged virus is uncompromised. This could prove especially important for any new influenza pandemic which often occurs in separate waves. PMID:26086392
Lin, Tzu-Shun; Lou, Li-Ren; Lee, Ching-Ting; Tsai, Tai-Cheng
2012-03-01
The memory devices constructed from the Ge-nanoclusters embedded GeO(x) layer deposited by the laser-assisted chemical vapor deposition (LACVD) system were fabricated. The Ge nanoclusters were observed by a high-resolution transmission electron microscopy. Using the capacitance versus voltage (C-V) and the conductance versus voltage (G-V) characteristics measured under various frequencies, the memory effect observed in the C-V curves was dominantly attributed to the charge storage in the Ge nanoclusters. Furthermore, the defects existed in the deposited film and the interface states were insignificant to the memory performances. Capacitance versus time (C-t) measurement was also executed to evaluate the charge retention characteristics. The charge storage and retention behaviors of the devices demonstrated that the Ge nanoclusters grown by the LACVD system at low temperature are promising for memory device applications.
Hurton, Lenka V; Singh, Harjeet; Najjar, Amer M; Switzer, Kirsten C; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N
2016-11-29
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (T SCM ) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR + T cells with preserved T SCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19 + leukemia. Long-lived T cells were CD45RO neg CCR7 + CD95 + , phenotypically most similar to T SCM , and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR + T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials.
Hurton, Lenka V.; Singh, Harjeet; Najjar, Amer M.; Switzer, Kirsten C.; Mi, Tiejuan; Maiti, Sourindra; Olivares, Simon; Rabinovich, Brian; Huls, Helen; Forget, Marie-Andrée; Datar, Vrushali; Kebriaei, Partow; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.
2016-01-01
Adoptive immunotherapy retargeting T cells to CD19 via a chimeric antigen receptor (CAR) is an investigational treatment capable of inducing complete tumor regression of B-cell malignancies when there is sustained survival of infused cells. T-memory stem cells (TSCM) retain superior potential for long-lived persistence, but challenges exist in manufacturing this T-cell subset because they are rare among circulating lymphocytes. We report a clinically relevant approach to generating CAR+ T cells with preserved TSCM potential using the Sleeping Beauty platform. Because IL-15 is fundamental to T-cell memory, we incorporated its costimulatory properties by coexpressing CAR with a membrane-bound chimeric IL-15 (mbIL15). The mbIL15-CAR T cells signaled through signal transducer and activator of transcription 5 to yield improved T-cell persistence independent of CAR signaling, without apparent autonomous growth or transformation, and achieved potent rejection of CD19+ leukemia. Long-lived T cells were CD45ROnegCCR7+CD95+, phenotypically most similar to TSCM, and possessed a memory-like transcriptional profile. Overall, these results demonstrate that CAR+ T cells can develop long-term persistence with a memory stem-cell phenotype sustained by signaling through mbIL15. This observation warrants evaluation in clinical trials. PMID:27849617
Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals
Kardava, Lela; Moir, Susan; Shah, Naisha; Wang, Wei; Wilson, Richard; Buckner, Clarisa M.; Santich, Brian H.; Kim, Leo J.Y.; Spurlin, Emily E.; Nelson, Amy K.; Wheatley, Adam K.; Harvey, Christopher J.; McDermott, Adrian B.; Wucherpfennig, Kai W.; Chun, Tae-Wook; Tsang, John S.; Li, Yuxing; Fauci, Anthony S.
2014-01-01
Recently, several neutralizing anti-HIV antibodies have been isolated from memory B cells of HIV-infected individuals. Despite extensive evidence of B cell dysfunction in HIV disease, little is known about the cells from which these rare HIV-specific antibodies originate. Accordingly, we used HIV envelope gp140 and CD4 or coreceptor (CoR) binding site (bs) mutant probes to evaluate HIV-specific responses in peripheral blood B cells of HIV-infected individuals at various stages of infection. In contrast to non-HIV responses, HIV-specific responses against gp140 were enriched within abnormal B cells, namely activated and exhausted memory subsets, which are largely absent in the blood of uninfected individuals. Responses against the CoRbs, which is a poorly neutralizing epitope, arose early, whereas those against the well-characterized neutralizing epitope CD4bs were delayed and infrequent. Enrichment of the HIV-specific response within resting memory B cells, the predominant subset in uninfected individuals, did occur in certain infected individuals who maintained low levels of plasma viremia and immune activation with or without antiretroviral therapy. The distribution of HIV-specific responses among memory B cell subsets was corroborated by transcriptional analyses. Taken together, our findings provide valuable insight into virus-specific B cell responses in HIV infection and demonstrate that memory B cell abnormalities may contribute to the ineffectiveness of the antibody response in infected individuals. PMID:24892810
Enhancement of Immune Memory Responses to Respiratory Infection
2017-08-01
Unlimited Distribution 13. SUPPLEMENTARY NOTES 14. ABSTRACT Maintenance of long - term immunological memory against pathogens is crucial for the rapid...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long - term memory B cells needed to protect against influenza...AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD
NASA Astrophysics Data System (ADS)
Yang, Y. C.; Pan, F.; Zeng, F.; Liu, M.
2009-12-01
ZnO/Cu/ZnO trilayer films sandwiched between Cu and Pt electrodes were prepared for nonvolatile resistive memory applications. These structures show resistance switching under electrical bias both before and after a rapid thermal annealing (RTA) treatment, while it is found that the resistive switching effects in the two cases exhibit distinct characteristics. Compared with the as-fabricated device, the memory cell after RTA demonstrates remarkable device parameter improvements including lower threshold voltages, lower write current, and higher Roff/Ron ratio. A high-voltage forming process is avoided in the annealed device as well. Furthermore, the RTA treatment has triggered a switching mechanism transition from a carrier trapping/detrapping type to an electrochemical-redox-reaction-controlled conductive filament formation/rupture process, as indicated by different features in current-voltage characteristics. Both scanning electron microscopy observations and Auger electron spectroscopy depth profiles reveal that the Cu charge trapping layer in ZnO/Cu/ZnO disperses uniformly into the storage medium after RTA, while x-ray diffraction and x-ray photoelectron spectroscopy analyses demonstrate that the Cu atoms have lost electrons to become Cu2+ ions after dispersion. The above experimental facts indicate that the altered status of Cu in the ZnO/Cu/ZnO trilayer films during RTA treatment should be responsible for the switching mechanism transition. This study is envisioned to open the door for understanding the interrelation between different mechanisms that currently exist in the field of resistive memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Jaewon, E-mail: j1jang@knu.ac.kr
2016-07-15
In this study, Ag{sub 2}S nanoparticles are synthesized and used as the active material for two-terminal resistance switching memory devices. Sintered Ag{sub 2}S films are successfully crystallized on plastic substrates with synthesized Ag{sub 2}S nanoparticles, after a relatively low-temperature sintering process (200 °C). After the sintering process, the crystallite size is increased from 6.8 nm to 80.3 nm. The high ratio of surface atoms to inner atoms of nanoparticles reduces the melting point temperature, deciding the sintering process temperature. In order to investigate the resistance switching characteristics, metal/Ag{sub 2}S/metal structures are fabricated and tested. The effect of the electrode materialmore » on the non-volatile resistive memory characteristics is studied. The bottom electrochemically inert materials, such as Au and Pt, were critical for maintaining stable memory characteristics. By using Au and Pt inert bottom electrodes, we are able to significantly improve the memory endurance and retention to more than 10{sup 3} cycles and 10{sup 4} sec, respectively.« less
Epigenetic memory loss in aging oligodendrocytes in the corpus callosum
Siming, Shen; Aixiao, Liu; Jiadong, Li; Candy, Wolubah; Patrizia, Casaccia-Bonnefil
2008-01-01
In this study we address the hypothesis that aging modifies the intrinsic properties of oligodendrocytes, the myelin-forming cells of the brain. According to our model, an “epigenetic memory” is stored in the chromatin of the oligodendrocyte lineage cells and is responsible for the maintenance of a mature phenotype, characterized by low levels of expression of transcriptional inhibitors. We report here an age-related decline of histone deacetylation and methylation, the molecular mechanisms responsible for the establishment and maintenance of this “epigenetic memory” of the differentiated state. We further show that lack of histone methylation and increased acetylation in mature oligodendrocytes are associated with global changes in gene expression, that include the re-expression of bHLH inhibitors (i.e. Hes5 and Id4) and precursor markers (i.e. Sox2). These changes characteristic of the “aging” oligodendrocytes can be recapitulated in vitro, by treating primary oligodendrocyte cultures with histone deacetylase inhibitors. Thus, we conclude that the “epigenetic memory loss” detected in white matter tracts of older mice induces global changes of gene expression that modify the intrinsic properties of aged oligodendrocytes and may functionally modulate the responsiveness of these cells to external stimuli. PMID:17182153
Cartwright, Emily K; Palesch, David; Mavigner, Maud; Paiardini, Mirko; Chahroudi, Ann; Silvestri, Guido
2016-08-01
Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4(+) T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4(+) TSCM are preserved in number but show (i) a decrease in the frequency of CCR5(+) cells, (ii) an expansion of the fraction of proliferating Ki-67(+) cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4(+) TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4(+) CCR5(+) TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4(+) Ki-67(+) TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4(+) transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4(+) TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4(+) TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. Understanding the roles of various CD4(+) T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4(+) TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4(+) TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4(+) TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Cartwright, Emily K.; Palesch, David; Mavigner, Maud; Paiardini, Mirko; Chahroudi, Ann
2016-01-01
ABSTRACT Treatment of human immunodeficiency virus (HIV) infection with antiretroviral therapy (ART) has significantly improved prognosis. Unfortunately, interruption of ART almost invariably results in viral rebound, attributed to a pool of long-lived, latently infected cells. Based on their longevity and proliferative potential, CD4+ T memory stem cells (TSCM) have been proposed as an important site of HIV persistence. In a previous study, we found that in simian immunodeficiency virus (SIV)-infected rhesus macaques (RM), CD4+ TSCM are preserved in number but show (i) a decrease in the frequency of CCR5+ cells, (ii) an expansion of the fraction of proliferating Ki-67+ cells, and (iii) high levels of SIV DNA. To understand the impact of ART on both CD4+ TSCM homeostasis and virus persistence, we conducted a longitudinal analysis of these cells in the blood and lymph nodes of 25 SIV-infected RM. We found that ART induced a significant restoration of CD4+ CCR5+ TSCM both in blood and in lymph nodes and a reduction in the fraction of proliferating CD4+ Ki-67+ TSCM in blood (but not lymph nodes). Importantly, we found that the level of SIV DNA in CD4+ transitional memory (TTM) and effector memory (TEM) T cells declined ∼100-fold after ART in both blood and lymph nodes, while the level of SIV DNA in CD4+ TSCM and central memory T cells (TCM-) did not significantly change. These data suggest that ART is effective at partially restoring CD4+ TSCM homeostasis, and the observed stable level of virus in TSCM supports the hypothesis that these cells are a critical contributor to SIV persistence. IMPORTANCE Understanding the roles of various CD4+ T cell memory subsets in immune homeostasis and HIV/SIV persistence during antiretroviral therapy (ART) is critical to effectively treat and cure HIV infection. T memory stem cells (TSCM) are a unique memory T cell subset with enhanced self-renewal capacity and the ability to differentiate into other memory T cell subsets, such as central and transitional memory T cells (TCM and TTM, respectively). CD4+ TSCM are disrupted but not depleted during pathogenic SIV infection. We find that ART is partially effective at restoring CD4+ TSCM homeostasis and that SIV DNA harbored within this subset contracts more slowly than virus harbored in shorter-lived subsets, such as TTM and effector memory (TEM). Because of their ability to persist long-term in an individual, understanding the dynamics of virally infected CD4+ TSCM during suppressive ART is important for future therapeutic interventions aimed at modulating immune activation and purging the HIV reservoir. PMID:27170752
Autophagy is essential for effector CD8 T cell survival and memory formation
Xu, Xiaojin; Araki, Koichi; Li, Shuzhao; Han, Jin-Hwan; Ye, Lilin; Tan, Wendy G.; Konieczny, Bogumila T.; Bruinsma, Monique W.; Martinez, Jennifer; Pearce, Erika L; Green, Douglas R.; Jones, Dean P.; Virgin, Herbert W.; Ahmed, Rafi
2014-01-01
The importance of autophagy in memory CD8 T cell differentiation in vivo is not well defined. We show here that autophagy is dynamically regulated in virus-specific CD8 T cells during acute lymphocytic choriomeningitis virus infection. Autophagy decreased in activated proliferating T cells, and was then upregulated at the peak of the effector T cell response. Consistent with this model, deletion of the key autophagy genes Atg7 or Atg5 in virus-specific CD8 T cells had minimal effect on generating effector cells but greatly enhanced their death during the contraction phase resulting in compromised memory formation. These findings provide insight into when autophagy is needed during effector and memory T cell differentiation in vivo and also warrant a re-examination of our current concepts about the relationship between T cell activation and autophagy. PMID:25362489
Seneschal, Julien; Clark, Rachael A.; Gehad, Ahmed; Baecher-Allan, Clare M.; Kupper, Thomas S.
2013-01-01
Recent discoveries indicate that the skin of a normal individual contains 10-20 billion resident memory T cells ( which include various T helper, T cytotoxic, and T regulatory subsets, that are poised to respond to environmental antigens. Using only autologous human tissues, we report that both in vitro and in vivo, resting epidermal Langerhan cells (LC) selectively and specifically induced the activation and proliferation of skin resident regulatory T cells (Treg), a minor subset of skin resident memory T cells. In the presence of foreign pathogen, however, the same LC activated and induced proliferation of effector memory T (Tem) cells and limited Treg cells activation. These underappreciated properties of LC: namely maintenance of tolerance in normal skin, and activation of protective skin resident memory T cells upon infectious challenge, help clarify the role of LC in skin. PMID:22560445
Jung, Soon-Won; Na, Bock Soon; Park, Chan Woo; Koo, Jae Bon
2014-11-01
We demonstrate an organic one-time programmable memory cell formed entirely at plastic-compatible temperatures. All the processes are performed at below 130 degrees C. Our memory cell consists of a printed organic transistor and an organic capacitor. Inkjet-printed organic transistors are fabricated by using high-k polymer dielectric blends comprising poly(vinylidenefluoride-trifluoroethylene) [P(VDF-TrFE)] and poly(methyl methacrylate) (PMMA) for low-voltage operation. P(NDI2OD-T2) transistors have a high field-effect mobility of 0.2 cm2/Vs and a low operation gate voltage of less than 10 V. The operation voltage effectively decreases owing to the high permittivity of the P(VDF-TrFE):PMMA blended film. The data in the memory cell are programmed by electrically breaking the organic capacitor. The organic capacitor acts like an antifuse capacitor, because it is initially open, and it becomes permanently short-circuited by applying a high voltage. The organic memory cells are programmed with 4 V, and they are read out with 2 V. The memory data are read out by sensing the current in the memory cell. The printed organic one-time programmable memory is suitable for applications storing small amount of data, such as low-cost radio-frequency identification (RFID) tag.
Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.
Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark
2018-05-31
In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.
Regulation of Memory T Cells by Interleukin-23.
Li, Yanchun; Wang, Hongbo; Lu, Honghua; Hua, Shucheng
2016-01-01
Interleukin-23 (IL-23), a member of the IL-12 family of cytokines, is a heterodimeric cytokine. It is composed of subunits p40 (shared with IL-12) and p19 (an IL-12 p35-related subunit) and is secreted by several types of immune cells, such as natural killer cells and dendritic cells. The IL-23 receptor is composed of the subunit IL-12Rβ1 and the IL-23-specific subunit IL-23R. The binding of IL-23 to its specific cell surface receptor regulates a number of functions, including proliferation and differentiation of cells and secretion of cell factors. Memory T cells are a subset of T cells that secrete numerous important cell factors, and they function in the immune response to infection and diseases like cancer, autoimmune disease and bronchial asthma. IL-23R is expressed on the surface of memory T cells, which suggests that it can specifically regulate memory T cell function. IL-23 has been widely used as a clinical indicator in immune-related diseases and shows potential for use in disease treatment. Here we review the current progress in the study of the role of IL-23 in the regulation of memory T cells. © 2016 S. Karger AG, Basel.
Avettand-Fenoël, Véronique; Nembot, Georges; Mélard, Adeline; Blanc, Catherine; Lascoux-Combe, Caroline; Slama, Laurence; Allegre, Thierry; Allavena, Clotilde; Yazdanpanah, Yazdan; Duvivier, Claudine; Katlama, Christine; Goujard, Cécile; Seksik, Bao Chau Phung; Leplatois, Anne; Molina, Jean-Michel; Meyer, Laurence; Autran, Brigitte; Rouzioux, Christine
2013-01-01
Optimizing therapeutic strategies for an HIV cure requires better understanding the characteristics of early HIV-1 spread among resting CD4+ cells within the first month of primary HIV-1 infection (PHI). We studied the immune distribution, diversity, and inducibility of total HIV-DNA among the following cell subsets: monocytes, peripheral blood activated and resting CD4 T cells, long-lived (naive [TN] and central-memory [TCM]) and short-lived (transitional-memory [TTM] and effector-memory cells [TEM]) resting CD4+T cells from 12 acutely-infected individuals recruited at a median 36 days from infection. Cells were sorted for total HIV-DNA quantification, phylogenetic analysis and inducibility, all studied in relation to activation status and cell signaling. One month post-infection, a single CCR5-restricted viral cluster was massively distributed in all resting CD4+ subsets from 88% subjects, while one subject showed a slight diversity. High levels of total HIV-DNA were measured among TN (median 3.4 log copies/million cells), although 10-fold less (p = 0.0005) than in equally infected TCM (4.5), TTM (4.7) and TEM (4.6) cells. CD3−CD4+ monocytes harbored a low viral burden (median 2.3 log copies/million cells), unlike equally infected resting and activated CD4+ T cells (4.5 log copies/million cells). The skewed repartition of resting CD4 subsets influenced their contribution to the pool of resting infected CD4+T cells, two thirds of which consisted of short-lived TTM and TEM subsets, whereas long-lived TN and TCM subsets contributed the balance. Each resting CD4 subset produced HIV in vitro after stimulation with anti-CD3/anti-CD28+IL-2 with kinetics and magnitude varying according to subset differentiation, while IL-7 preferentially induced virus production from long-lived resting TN cells. In conclusion, within a month of infection, a clonal HIV-1 cluster is massively distributed among resting CD4 T-cell subsets with a flexible inducibility, suggesting that subset activation and skewed immune homeostasis determine the conditions of viral dissemination and early establishment of the HIV reservoir. PMID:23691172
Luce, Sandrine; Lemonnier, François; Briand, Jean-Paul; Coste, Joel; Lahlou, Najiba; Muller, Sylviane; Larger, Etienne; Rocha, Benedita; Mallone, Roberto; Boitard, Christian
2011-01-01
OBJECTIVE Both the early steps and the high recurrence of autoimmunity once the disease is established are unexplained in human type 1 diabetes. Because CD8+ T cells are central and insulin is a key autoantigen in the disease process, our objective was to characterize HLA class I–restricted autoreactive CD8+ T cells specific for preproinsulin (PPI) in recent-onset and long-standing type 1 diabetic patients and healthy control subjects. RESEARCH DESIGN AND METHODS We used HLA-A*02:01 tetramers complexed to PPI peptides to enumerate circulating PPI-specific CD8+ T cells in patients and characterize them using membrane markers and single-cell PCR. RESULTS Most autoreactive CD8+ T cells detected in recent-onset type 1 diabetic patients are specific for leader sequence peptides, notably PPI6–14, whereas CD8+ T cells in long-standing patients recognize the B-chain peptide PPI33–42 (B9–18). Both CD8+ T-cell specificities are predominantly naïve, central, and effector memory cells, and their gene expression profile differs from cytomegalovirus-specific CD8+ T cells. PPI6–14–specific CD8+ T cells detected in one healthy control displayed Il-10 mRNA expression, which was not observed in diabetic patients. CONCLUSIONS PPI-specific CD8+ T cells in type 1 diabetic patients include central memory and target different epitopes in new-onset versus long-standing disease. Our data support the hypothesis that insulin therapy may contribute to the expansion of autoreactive CD8+ T cells in the long term. PMID:21998398
Vaccinating for natural killer cell effector functions.
Wagstaffe, Helen R; Mooney, Jason P; Riley, Eleanor M; Goodier, Martin R
2018-01-01
Vaccination has proved to be highly effective in reducing global mortality and eliminating infectious diseases. Building on this success will depend on the development of new and improved vaccines, new methods to determine efficacy and optimum dosing and new or refined adjuvant systems. NK cells are innate lymphoid cells that respond rapidly during primary infection but also have adaptive characteristics enabling them to integrate innate and acquired immune responses. NK cells are activated after vaccination against pathogens including influenza, yellow fever and tuberculosis, and their subsequent maturation, proliferation and effector function is dependent on myeloid accessory cell-derived cytokines such as IL-12, IL-18 and type I interferons. Activation of antigen-presenting cells by live attenuated or whole inactivated vaccines, or by the use of adjuvants, leads to enhanced and sustained NK cell activity, which in turn contributes to T cell recruitment and memory cell formation. This review explores the role of cytokine-activated NK cells as vaccine-induced effector cells and in recall responses and their potential contribution to vaccine and adjuvant development.
Kulkarni, Shruti P; Thanapati, Subrat; Arankalle, Vidya A; Tripathy, Anuradha S
2016-11-21
Liposome encapsulated neutralizing epitope protein of Hepatitis E virus (HEV), rNEp, our Hepatitis E vaccine candidate, was shown to be immunogenic and safe in pregnant and non-pregnant mice and yielded sterilizing immunity in rhesus monkeys. The current study in Balb/c mice assessed the levels and persistence of anti-HEV IgG antibodies by ELISA, frequencies of B, memory B, T and memory T cells by flow cytometry and HEV-specific IgG secreting memory B cells by ELISPOT till 420days post immunization (PI) with 5?g rNEp encapsulated in liposome based adjuvant (2 doses, 4weeks apart). Mice immunized with a lower dose (1?g) were assessed only for anamnestic response post booster dose. Vaccine candidate immunized mice (5?g dose) elicited strong anti-HEV IgG response that was estimated to persist for lifetime. At day 120 PI, frequency of memory B cells was higher in immunized mice than those receiving adjuvant alone. Anti-HEV IgG titers were lower in mice immunized with 1?g dose. A booster dose yielded a heightened antibody response in mice with both high (>800GMT, 5?g) and low (?100GMT, 1?g) anti-HEV IgG titers. At day 6th post booster dose, HEV-specific antibody secreting plasma cells (ASCs) were detected in 100% and 50% of mice with high and low anti-HEV IgG titers, respectively, whereas the frequencies of CD4 + central and effector memory T cells were high in mice with high anti-HEV IgG titers only. Taken together, the vaccine candidate effectively generates persistent and anamnestic antibody response, elicits participation of CD4 + memory T cells and triggers memory B cells to differentiate into ASCs upon boosting. This approach of assessing the immunogenicity of vaccine candidate could be useful to explore the longevity of HEV-specific memory response in future HEV vaccine trials in human. Copyright © 2016. Published by Elsevier Ltd.
Jahnmatz, Maja; Kesa, Gun; Netterlid, Eva; Buisman, Anne-Marie; Thorstensson, Rigmor; Ahlborg, Niklas
2013-05-31
B-cell responses after infection or vaccination are often measured as serum titers of antigen-specific antibodies. Since this does not address the aspect of memory B-cell activity, it may not give a complete picture of the B-cell response. Analysis of memory B cells by ELISpot is therefore an important complement to conventional serology. B-cell ELISpot was developed more than 25 years ago and many assay protocols/reagents would benefit from optimization. We therefore aimed at developing an optimized B-cell ELISpot for the analysis of vaccine-induced human IgG-secreting memory B cells. A protocol was developed based on new monoclonal antibodies to human IgG and biotin-avidin amplification to increase the sensitivity. After comparison of various compounds commonly used to in vitro-activate memory B cells for ELISpot analysis, the TLR agonist R848 plus interleukin (IL)-2 was selected as the most efficient activator combination. The new protocol was subsequently compared to an established protocol, previously used in vaccine studies, based on polyclonal antibodies without biotin avidin amplification and activation of memory B-cells using a mix of antigen, CpG, IL-2 and IL-10. The new protocol displayed significantly better detection sensitivity, shortened the incubation time needed for the activation of memory B cells and reduced the amount of antigen required for the assay. The functionality of the new protocol was confirmed by analyzing specific memory B cells to five different antigens, induced in a limited number of subjects vaccinated against tetanus, diphtheria and pertussis. The limited number of subjects did not allow for a direct comparison with other vaccine studies. Optimization of the B-cell ELISpot will facilitate an improved analysis of IgG-secreting B cells in vaccine studies. Copyright © 2013 Elsevier B.V. All rights reserved.
Durward-Diioia, Marina; Harms, Jerome; Khan, Mike; Hall, Cherisse; Smith, Judith A.
2015-01-01
Brucella melitensis is a well-adapted zoonotic pathogen considered a scourge of mankind since recorded history. In some cases, initial infection leads to chronic and reactivating brucellosis, incurring significant morbidity and economic loss. The mechanism by which B. melitensis subverts adaptive immunological memory is poorly understood. Previous work has shown that Brucella-specific CD8+ T cells express gamma interferon (IFN-γ) and can transition to long-lived memory cells but are not polyfunctional. In this study, chronic infection of mice with B. melitensis led to CD8+ T cell exhaustion, manifested by programmed cell death 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) expression and a lack of IFN-γ production. The B. melitensis-specific CD8+ T cells that produced IFN-γ expressed less IFN-γ per cell than did CD8+ cells from uninfected mice. Both memory precursor (CD8+ LFA1HI CD127HI KLRG1LO) and long-lived memory (CD8+ CD27HI CD127HI KLRG1LO) cells were identified during chronic infection. Interestingly, after adoptive transfer, mice receiving cells from chronically infected animals were able to contain infection more rapidly than recipients of cells from acutely infected or uninfected donors, although the proportions of exhausted CD8+ T cells increased after adoptive transfer in both challenged and unchallenged recipients. CD8+ T cells of challenged recipients initially retained the stunted IFN-γ production found prior to transfer, and cells from acutely infected mice were never seen to transition to either memory subset at all time points tested, up to 30 days post-primary infection, suggesting a delay in the generation of memory. Here we have identified defects in Brucella-responsive CD8+ T cells that allow chronic persistence of infection. PMID:26416901
Origin and differentiation of human memory CD8 T cells after vaccination.
Akondy, Rama S; Fitch, Mark; Edupuganti, Srilatha; Yang, Shu; Kissick, Haydn T; Li, Kelvin W; Youngblood, Ben A; Abdelsamed, Hossam A; McGuire, Donald J; Cohen, Kristen W; Alexe, Gabriela; Nagar, Shashi; McCausland, Megan M; Gupta, Satish; Tata, Pramila; Haining, W Nicholas; McElrath, M Juliana; Zhang, David; Hu, Bin; Greenleaf, William J; Goronzy, Jorg J; Mulligan, Mark J; Hellerstein, Marc; Ahmed, Rafi
2017-12-21
The differentiation of human memory CD8 T cells is not well understood. Here we address this issue using the live yellow fever virus (YFV) vaccine, which induces long-term immunity in humans. We used in vivo deuterium labelling to mark CD8 T cells that proliferated in response to the virus and then assessed cellular turnover and longevity by quantifying deuterium dilution kinetics in YFV-specific CD8 T cells using mass spectrometry. This longitudinal analysis showed that the memory pool originates from CD8 T cells that divided extensively during the first two weeks after infection and is maintained by quiescent cells that divide less than once every year (doubling time of over 450 days). Although these long-lived YFV-specific memory CD8 T cells did not express effector molecules, their epigenetic landscape resembled that of effector CD8 T cells. This open chromatin profile at effector genes was maintained in memory CD8 T cells isolated even a decade after vaccination, indicating that these cells retain an epigenetic fingerprint of their effector history and remain poised to respond rapidly upon re-exposure to the pathogen.
Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells
Clear, Andrew; Owen, Andrew; Iqbal, Sameena; Lee, Abigail; Matthews, Janet; Wilson, Andrew; Calaminici, Maria; Gribben, John G.
2013-01-01
CD4+ T-helper cells (THs) dominate the classical Hodgkin lymphoma (CHL) microenvironment, but their role is poorly understood. Advances in flow cytometry and immunohistochemistry permit more detailed investigation of this aspect of CHL pathophysiology. To address the hypothesis that the TH-infiltrate, rather than being TH2-enriched, senescent and hypofunctional, is TH1 and activation marker-rich, cytokine-secretory and proliferative, we applied comprehensive flow cytometric immunophenotyping and functional assays of cytokine secretion/proliferation to TH cells from 18 CHL-derived single-cell suspensions (SCSs) compared to reactive lymph nodes (RLNs). CHL-derived TH cells express TH1-associated CXCR3/CCR5 and TNFα/IFNγ/interleukin-2 (IL-2) and less TH2-associated CCR3/CCR4, with no IL-4/IL-13. They lack exhaustion-/suppression-associated PD1, CD57 and terminally differentiated effector memory cells, with more central memory cells, activation-associated partners of Hodgkin Reed Sternberg (HRS) cell-expressed CD30/OX40-L/ICOS-L, and other activation markers. TH cell lines established from CHL and RLN-derived SCSs remain cytokine-secretory. We confirmed and extended these studies using tissue microarray immunohistochemistry (TMA-IHC) from a large CHL tissue bank (n = 122) and demonstrate TH1-associated TBET is abundant in CHL, and TH2-associated CMAF/GATA3 and exhaustion-associated PD1 expressed at significantly lower levels. These molecular insights into the CHL-associated TH offer potential diagnostic, prognostic and pharmacologically modifiable therapeutic targets and do not support the established view of a TH2-enriched, senescent/exhausted, hypofunctional, hypoproliferative infiltrate. PMID:24004665
Defining characteristics of classical Hodgkin lymphoma microenvironment T-helper cells.
Greaves, Paul; Clear, Andrew; Owen, Andrew; Iqbal, Sameena; Lee, Abigail; Matthews, Janet; Wilson, Andrew; Calaminici, Maria; Gribben, John G
2013-10-17
CD4(+) T-helper cells (THs) dominate the classical Hodgkin lymphoma (CHL) microenvironment, but their role is poorly understood. Advances in flow cytometry and immunohistochemistry permit more detailed investigation of this aspect of CHL pathophysiology. To address the hypothesis that the TH-infiltrate, rather than being TH2-enriched, senescent and hypofunctional, is TH1 and activation marker-rich, cytokine-secretory and proliferative, we applied comprehensive flow cytometric immunophenotyping and functional assays of cytokine secretion/proliferation to TH cells from 18 CHL-derived single-cell suspensions (SCSs) compared to reactive lymph nodes (RLNs). CHL-derived TH cells express TH1-associated CXCR3/CCR5 and TNFα/IFNγ/interleukin-2 (IL-2) and less TH2-associated CCR3/CCR4, with no IL-4/IL-13. They lack exhaustion-/suppression-associated PD1, CD57 and terminally differentiated effector memory cells, with more central memory cells, activation-associated partners of Hodgkin Reed Sternberg (HRS) cell-expressed CD30/OX40-L/ICOS-L, and other activation markers. TH cell lines established from CHL and RLN-derived SCSs remain cytokine-secretory. We confirmed and extended these studies using tissue microarray immunohistochemistry (TMA-IHC) from a large CHL tissue bank (n = 122) and demonstrate TH1-associated TBET is abundant in CHL, and TH2-associated CMAF/GATA3 and exhaustion-associated PD1 expressed at significantly lower levels. These molecular insights into the CHL-associated TH offer potential diagnostic, prognostic and pharmacologically modifiable therapeutic targets and do not support the established view of a TH2-enriched, senescent/exhausted, hypofunctional, hypoproliferative infiltrate.
NASA Astrophysics Data System (ADS)
Yang, Jyun-Bao; Chang, Ting-Chang; Huang, Jheng-Jie; Chen, Yu-Chun; Chen, Yu-Ting; Tseng, Hsueh-Chih; Chu, Ann-Kuo; Sze, Simon M.
2014-04-01
In this study, indium-gallium-zinc-oxide thin film transistors can be operated either as transistors or resistance random access memory devices. Before the forming process, current-voltage curve transfer characteristics are observed, and resistance switching characteristics are measured after a forming process. These resistance switching characteristics exhibit two behaviors, and are dominated by different mechanisms. The mode 1 resistance switching behavior is due to oxygen vacancies, while mode 2 is dominated by the formation of an oxygen-rich layer. Furthermore, an easy approach is proposed to reduce power consumption when using these resistance random access memory devices with the amorphous indium-gallium-zinc-oxide thin film transistor.
Is magnetite a universal memory molecule?
Størmer, Fredrik C
2014-11-01
Human stem cells possess memory, and consequently all living human cells must have a memory system. How memory is stored in cells and organisms is an open question. Magnetite is perhaps the best candidate to be a universal memory molecule. Magnetite may give us a clue, because it is the Earth's most distributed and important magnetic material. It is found in living organisms with no known functions except for involvement in navigation in some organisms. In humans magnetite is found in the brain, heart, liver and spleen. Humans suffer from memory dysfunctions in many cases when iron is out of balance. Anomalous concentrations of magnetite is known to be associated with a neurodegenerative disorder like Alzheimer's disease. Due to the rapid speed and accuracy of our brain, memory and its functions must be governed by quantum mechanics. Copyright © 2014 Elsevier Ltd. All rights reserved.
Organic-Inorganic Hybrid Halide Perovskites for Memories, Transistors, and Artificial Synapses.
Choi, Jaeho; Han, Ji Su; Hong, Kootak; Kim, Soo Young; Jang, Ho Won
2018-05-30
Fascinating characteristics of halide perovskites (HPs), which cannot be seen in conventional semiconductors and metal oxides, have boosted the application of HPs in electronic devices beyond optoelectronics such as solar cells, photodetectors, and light-emitting diodes. Here, recent advances in HP-based memory and logic devices such as resistive-switching memories (i.e., resistive random access memory (RRAM) or memristors), transistors, and artificial synapses are reviewed, focusing on inherently exotic properties of HPs: i) tunable bandgap, ii) facile majority carrier control, iii) fast ion migration, and iv) superflexibility. Various fabrication techniques of HP thin films from solution-based methods to vacuum processes are introduced. Up-to-date work in the field, emphasizing the compositional flexibility of HPs, suggest that HPs are promising candidates for next-generation electronic devices. Taking advantages of their unique electrical properties, low-cost and low-temperature synthesis, and compositional and mechanical flexibility, HPs have enormous potential to provide a new platform for future electronic devices and explosively intensive studies will pave the way in finding new HP materials beyond conventional silicon-based semiconductors to keep up with "More-than-Moore" times. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Ke; Wu, Jiandong; Xu, Guoqing; Xie, Dongxue; Peretz-Soroka, Hagit; Santos, Susy; Alexander, Murray; Zhu, Ling; Zhang, Michael; Liu, Yong; Lin, Francis
2017-04-18
Chemotaxis is a classic mechanism for guiding cell migration and an important topic in both fundamental cell biology and health sciences. Neutrophils are a widely used model to study eukaryotic cell migration and neutrophil chemotaxis itself can lead to protective or harmful immune actions to the body. While much has been learnt from past research about how neutrophils effectively navigate through a chemoattractant gradient, many interesting questions remain unclear. For example, while it is tempting to model neutrophil chemotaxis using the well-established biased random walk theory, the experimental proof was challenged by the cell's highly persistent migrating nature. A special experimental design is required to test the key predictions from the random walk model. Another question that has interested the cell migration community for decades concerns the existence of chemotactic memory and its underlying mechanism. Although chemotactic memory has been suggested in various studies, a clear quantitative experimental demonstration will improve our understanding of the migratory memory effect. Motivated by these questions, we developed a microfluidic cell migration assay (so-called dual-docking chip or D 2 -Chip) that can test both the biased random walk model and the memory effect for neutrophil chemotaxis on a single chip enabled by multi-region gradient generation and dual-region cell alignment. Our results provide experimental support for the biased random walk model and chemotactic memory for neutrophil chemotaxis. Quantitative data analyses provide new insights into neutrophil chemotaxis and memory by making connections to entropic disorder, cell morphology and oscillating migratory response.
Killing of targets by effector CD8 T cells in the mouse spleen follows the law of mass action
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganusov, Vitaly V
2009-01-01
In contrast with antibody-based vaccines, it has been difficult to measure the efficacy of T cell-based vaccines and to correlate the efficacy of CD8 T cell responses with protection again viral infections. In part, this difficulty is due to poor understanding of the in vivo efficacy of CD8 T cells produced by vaccination. Using a: recently developed experimental method of in vivo cytotoxicity we have investigated quantitative aspects of killing of peptide-pulsed targets by effector and memory CD8 T cells, specific to three epitopes of lymphocytic choriomeningitis virus (LCMV), in the mouse spleen. By analyzing data on killing of targetsmore » with varying number of epitope-specific effector and memory CD8 T cells, we find that killing of targets by effectors follows the law of mass-action, that is the death rate of peptide-pulsed targets is proportional to the frequency of CTLs in the spleen. In contrast, killing of targets by memory CD8 T cells does not follow the mass action law because the death rate of targets saturates at high frequencies of memory CD8 T cells. For both effector and memory cells, we also find little support for the killing term that includes the decrease of the death rate of targets with target cell density. Interestingly, our analysis suggests that at low CD8 T cell frequencies, memory CD8 T cells on the per capita basis are more efficient at killing peptide-pulsed targets than effectors, but at high frequencies, effectors are more efficient killers than memory T cells. Comparison of the estimated killing efficacy of effector T cells with the value that is predicted from theoretical physics and based on motility of T cells in lymphoid tissues, suggests that limiting step in the killing of peptide-pulsed targets is delivering the lethal hit and not finding the target. Our results thus form a basis for quantitative understanding of the process of killing of virus-infected cells by T cell responses in tissues and can be used to correlate the phenotype of vaccine-induced memory CD8 T cells with their killing efficacy in vivo.« less
Oct1 and OCA-B are selectively required for CD4 memory T cell function.
Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N; Snook, Jeremy; Kuchroo, Vijay K; Yosef, Nir; Chan, Raymond C; Regev, Aviv; Williams, Matthew A; Tantin, Dean
2015-11-16
Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4(+) memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4(+) T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4(+) T cell memory. © 2015 Shakya et al.
Oct1 and OCA-B are selectively required for CD4 memory T cell function
Shakya, Arvind; Goren, Alon; Shalek, Alex; German, Cody N.; Snook, Jeremy; Kuchroo, Vijay K.; Yosef, Nir; Chan, Raymond C.; Regev, Aviv
2015-01-01
Epigenetic changes are crucial for the generation of immunological memory. Failure to generate or maintain these changes will result in poor memory responses. Similarly, augmenting or stabilizing the correct epigenetic states offers a potential method of enhancing memory. Yet the transcription factors that regulate these processes are poorly defined. We find that the transcription factor Oct1 and its cofactor OCA-B are selectively required for the in vivo generation of CD4+ memory T cells. More importantly, the memory cells that are formed do not respond properly to antigen reencounter. In vitro, both proteins are required to maintain a poised state at the Il2 target locus in resting but previously stimulated CD4+ T cells. OCA-B is also required for the robust reexpression of multiple other genes including Ifng. ChIPseq identifies ∼50 differentially expressed direct Oct1 and OCA-B targets. We identify an underlying mechanism involving OCA-B recruitment of the histone lysine demethylase Jmjd1a to targets such as Il2, Ifng, and Zbtb32. The findings pinpoint Oct1 and OCA-B as central mediators of CD4+ T cell memory. PMID:26481684
NASA Astrophysics Data System (ADS)
Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo
2018-03-01
Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.
B7-H1 limits the entry of effector CD8(+) T cells to the memory pool by upregulating Bim.
Gibbons, Rachel M; Liu, Xin; Pulko, Vesna; Harrington, Susan M; Krco, Christopher J; Kwon, Eugene D; Dong, Haidong
2012-10-01
Protective T‑cell immunity against cancer and infections is dependent on the generation of a durable effector and memory T‑cell pool. Studies from cancer and chronic infections reveal that B7-H1 (PD-L1) engagement with its receptor PD-1 promotes apoptosis of effector T cells. It is not clear how B7-H1 regulates T‑cell apoptosis and the subsequent impact of B7-H1 on the generation of memory T cells. In immunized B7-H1-deficient mice, we detected an increased expansion of effector CD8(+) T cells and a delayed T‑cell contraction followed by the emergence of a protective CD8(+) T‑cell memory capable of completely rejecting tumor metastases in the lung. Intracellular staining revealed that antigen-primed CD8(+) T cells in B7-H1-deficient mice express lower levels of the pro-apoptotic molecule Bim. The engagement of activated CD8(+) T cells by a plate-bound B7-H1 fusion protein led to the upregulation of Bim and increased cell death. Assays based on blocking antibodies determined that both PD-1 and CD80 are involved in the B7-H1-mediated regulation of Bim in activated CD8(+) T cells. Our results suggest that B7-H1 may negatively regulate CD8(+) T‑cell memory by enhancing the depletion of effector CD8(+) T cells through the upregulation of Bim. Our findings may provide a new strategy for targeting B7-H1 signaling in effector CD8(+) T cells to achieve protective antitumor memory responses.
Watanabe, Rei; Gehad, Ahmed; Yang, Chao; Scott, Laura L; Teague, Jessica E; Schlapbach, Christoph; Elco, Christopher P; Huang, Victor; Matos, Tiago R; Kupper, Thomas S; Clark, Rachael A
2015-03-18
The skin of an adult human contains about 20 billion memory T cells. Epithelial barrier tissues are infiltrated by a combination of resident and recirculating T cells in mice, but the relative proportions and functional activities of resident versus recirculating T cells have not been evaluated in human skin. We discriminated resident from recirculating T cells in human-engrafted mice and lymphoma patients using alemtuzumab, a medication that depletes recirculating T cells from skin, and then analyzed these T cell populations in healthy human skin. All nonrecirculating resident memory T cells (TRM) expressed CD69, but most were CD4(+), CD103(-), and located in the dermis, in contrast to studies in mice. Both CD4(+) and CD8(+) CD103(+) TRM were enriched in the epidermis, had potent effector functions, and had a limited proliferative capacity compared to CD103(-) TRM. TRM of both types had more potent effector functions than recirculating T cells. We observed two distinct populations of recirculating T cells, CCR7(+)/L-selectin(+) central memory T cells (TCM) and CCR7(+)/L-selectin(-) T cells, which we term migratory memory T cells (TMM). Circulating skin-tropic TMM were intermediate in cytokine production between TCM and effector memory T cells. In patients with cutaneous T cell lymphoma, malignant TCM and TMM induced distinct inflammatory skin lesions, and TMM were depleted more slowly from skin after alemtuzumab, suggesting that TMM may recirculate more slowly. In summary, human skin is protected by four functionally distinct populations of T cells, two resident and two recirculating, with differing territories of migration and distinct functional activities. Copyright © 2015, American Association for the Advancement of Science.
Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection
Muir, Roshell; Metcalf, Talibah; Tardif, Virginie; Takata, Hiroshi; Phanuphak, Nittaya; Kroon, Eugene; Colby, Donn J.; Trichavaroj, Rapee; Valcour, Victor; Robb, Merlin L.; Michael, Nelson L.; Ananworanich, Jintanat; Trautmann, Lydie; Haddad, Elias K.
2016-01-01
The RV254 cohort of HIV-infected very early acute (4thG stage 1 and 2) (stage 1/2) and late acute (4thG stage 3) (stage 3) individuals was used to study T helper- B cell responses in acute HIV infection and the impact of early antiretroviral treatment (ART) on T and B cell function. To investigate this, the function of circulating T follicular helper cells (cTfh) from this cohort was examined, and cTfh and memory B cell populations were phenotyped. Impaired cTfh cell function was observed in individuals treated in stage 3 when compared to stage 1/2. The cTfh/B cell cocultures showed lower B cell survival and IgG secretion at stage 3 compared to stage 1/2. This coincided with lower IL-10 and increased RANTES and TNF-α suggesting a role for inflammation in altering cTfh and B cell responses. Elevated plasma viral load in stage 3 was found to correlate with decreased cTfh-mediated B cell IgG production indicating a role for increased viremia in cTfh impairment and dysfunctional humoral response. Phenotypic perturbations were also evident in the mature B cell compartment, most notably a decrease in resting memory B cells in stage 3 compared to stage 1/2, coinciding with higher viremia. Our coculture assay also suggested that intrinsic memory B cell defects could contribute to the impaired response despite at a lower level. Overall, cTfh-mediated B cell responses are significantly altered in stage 3 compared to stage 1/2, coinciding with increased inflammation and a reduction in memory B cells. These data suggest that early ART for acutely HIV infected individuals could prevent immune dysregulation while preserving cTfh function and B cell memory. PMID:27463374
Correlates of the Gudjonsson Suggestibility Scale in delinquent adolescents.
Muris, Peter; Meesters, Cor; Merckelbach, Harald
2004-02-01
Correlations between scores on the Gudjonsson Suggestibility Scale and a number of relevant personality characteristics, i.e., intelligence, memory, social inadequacy, social desirability, and fantasy proneness, were examined in a sample of 71 delinquent boys. Analysis showed that intelligence and memory were negatively related to suggestibility scores. That is, lower memory and intelligence were associated with higher suggestibility. No significant correlations were found between suggestibility and other personality characteristics.
Zamorina, S A; Litvinova, L S; Yurova, K A; Khaziakhmatova, O G; Timganova, V P; Bochkova, M S; Khramtsov, P V; Rayev, M B
2018-01-01
The role of human chorionic gonadotropin (hCG) in the regulation of molecular genetics factors determining the functional activity of human naïve and memory T cells in vitro was studied. It was found that hCG (10 and 100IU/ml) inhibited CD28 and CD25 expression on the naïve T cells (CD45RA+) and CD25 expression on the memory T cells (CD45R0+). hCG didn't affect the CD71 proliferation marker expression in total. Nevertheless, hCG reduced the percentage of proliferating memory T cells with simultaneous suppression of CD71 expression on proliferating CD45R0+cells. In parallel, expression of U2af1l4, Gfi1, and hnRNPLL genes, which are Ptprc gene alternative splicing regulators was evaluated. It was established that hCG stimulated the expression of U2af1l4 and hnRNPLL genes, responsible for the assembly of CD45R0 in memory T cells, but reduced the expression of Gfi1 in these cells. In general, hCG promotes the differentiation of memory T cells by increasing of CD45R0 expression, but inhibits proliferation and CD25 expression which reflects their functional activity. Copyright © 2017 Elsevier B.V. All rights reserved.
The Cellular Bases of Antibody Responses during Dengue Virus Infection
Yam-Puc, Juan Carlos; Cedillo-Barrón, Leticia; Aguilar-Medina, Elsa Maribel; Ramos-Payán, Rosalío; Escobar-Gutiérrez, Alejandro; Flores-Romo, Leopoldo
2016-01-01
Dengue virus (DENV) is one of the most significant human viral pathogens transmitted by mosquitoes and can cause from an asymptomatic disease to mild undifferentiated fever, classical dengue, and severe dengue. Neutralizing memory antibody (Ab) responses are one of the most important mechanisms that counteract reinfections and are therefore the main aim of vaccination. However, it has also been proposed that in dengue, some of these class-switched (IgG) memory Abs might worsen the disease. Although these memory Abs derive from B cells by T-cell-dependent processes, we know rather little about the (acute, chronic, or memory) B cell responses and the complex cellular mechanisms generating these Abs during DENV infections. This review aims to provide an updated and comprehensive perspective of the B cell responses during DENV infection, starting since the very early events such as the cutaneous DENV entrance and the arrival into draining lymph nodes, to the putative B cell activation, proliferation, and germinal centers (GCs) formation (the source of affinity-matured class-switched memory Abs), till the outcome of GC reactions such as the generation of plasmablasts, Ab-secreting plasma cells, and memory B cells. We discuss topics very poorly explored such as the possibility of B cell infection by DENV or even activation-induced B cell death. The current information about the nature of the Ab responses to DENV is also illustrated. PMID:27375618
Rennick, D M; Morrow, P R; Benjamini, E
1983-08-01
The functional heterogeneity of memory B cells induced by a single determinant, consisting of a decapeptide representing amino acid residues 103-112 of tobacco mosaic virus protein (TMVP), was analyzed. Decapeptide specific antibodies were elicited in mice adoptively transferred with TMVP-immune spleen cells when challenged with TMVP, decapeptide conjugated to succinylated human gamma-globulin (SHGG), or decapeptide conjugated to Brucella abortus (BA). Whereas secondary stimulation by either TMVP or decapeptide-SHGG was dependent on appropriately primed T cells, stimulation by decapeptide-BA was independent of conventional T cell help. Furthermore, memory B cells responsive to TMVP (TD), decapeptide-SHGG (TD), or decapeptide-BA (TI. 1 prototype) were shown to consist of overlapping populations because adoptive recipients of TMVP-primed cells challenged simultaneously with TD and TI decapeptide antigens did not result in a higher antibody response than that elicited by one of the TD antigens injected alone. However, decapeptide-BA consistently induced a smaller antidecapeptide response than either TMVP or decapeptide-SHGG. This suggested that only a fraction of the memory B cell population which was activated by the original priming antigen (thymus-dependent) was also responsive to secondary in vivo stimulation by the priming hapten conjugated to Brucella abortus. Detailed analyses of the antibodies induced in the recipients of TMVP-immune spleen cells after secondary challenge with either TMVP, decapeptide-SHGG, or decapeptide-BA failed to distinguish between the responsive memory B cells; the antidecapeptide antibodies induced by all three immunogens shared the same fine specificities and immunoglobulin isotype composition. These data are viewed as further evidence that subsets of TD-primed B cells, which may display differential sensitivity to cross-stimulation with TD and TI forms of the antigen, represent distinct stages of memory B cell maturation within a common B cell lineage. In support of this conclusion, we establish a developmental relationship between TI and/or TD responsive decapeptide memory B cell in the following communication.
Bathke, Barbara; Pätzold, Juliane; Kassub, Ronny; Giessel, Raphael; Lämmermann, Kerstin; Hinterberger, Maria; Brinkmann, Kay; Chaplin, Paul; Suter, Mark; Hochrein, Hubertus; Lauterbach, Henning
2017-12-27
The immunological outcome of infections and vaccinations is largely determined during the initial first days in which antigen-presenting cells instruct T cells to expand and differentiate into effector and memory cells. Besides the essential stimulation of the T-cell receptor complex a plethora of co-stimulatory signals not only ensures a proper T-cell activation but also instils phenotypic and functional characteristics in the T cells appropriate to fight off the invading pathogen. The tumour necrosis factor receptor/ligand pair CD27/CD70 gained a lot of attention because of its key role in regulating T-cell activation, survival, differentiation and maintenance, especially in the course of viral infections and cancer. We sought to investigate the role of CD70 co-stimulation for immune responses induced by the vaccine vector modified vaccinia virus Ankara-Bavarian Nordic ® (MVA-BN ® ). Short-term blockade of CD70 diminished systemic CD8 T-cell effector and memory responses in mice. The dependence on CD70 became even more apparent in the lungs of MHC class II-deficient mice. Importantly, genetically encoded CD70 in MVA-BN ® not only increased CD8 T-cell responses in wild-type mice but also substituted for CD4 T-cell help. MHC class II-deficient mice that were immunized with recombinant MVA-CD70 were fully protected against a lethal virus infection, whereas MVA-BN ® -immunized mice failed to control the virus. These data are in line with CD70 playing an important role for vaccine-induced CD8 T-cell responses and prove the potency of integrating co-stimulatory molecules into the MVA-BN ® backbone. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.
Nash, A A; Quartey-Papafio, R; Wildy, P
1980-08-01
The functional characteristics of lymphoid cells were investigated during acute and latent infection of mice with herpes simplex virus (HSV). Cytotoxic T cells were found in the draining lymph node (DLN) 4 days p.i. and had reached maximum activity between 6 and 9 days. After the 12th day and during the period of latent infection (> 20 days) no cytotoxic cell activity was observed. Cytotoxic activity could only be detected when the lymphoid cells had been cultured for a period of 3 days. In general, the cell killing was specific for syngeneic infected target cells, although some killing of uninfected targets was observed. In contrast to the cytotoxic response, DLN cells responding to HSV in a proliferation assay were detected towards the end of the acute phase and at lease up to 9 months thereafter. The significance of these observations for the pathogenesis of HSV is discussed.
Asymmetric soft-error resistant memory
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Perlman, Marvin (Inventor)
1991-01-01
A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code.
Mihiretie, Hylemariam; Taye, Bineyam; Tsegaye, Aster
2015-01-01
Background. Anemia is one of the most commonly observed hematological abnormalities and an independent prognostic marker of HIV disease. The aim of this study was to determine the magnitude of anemia and associated factors among pediatric HIV/AIDS patients attending Zewditu Memorial Hospital (ZMH) ART Clinic in Addis Ababa, Ethiopia. Methods. A cross-sectional study was conducted among pediatric HIV/AIDS patients of Zewditu Memorial Hospital (ZMH) between August 05, 2013, and November 25, 2013. A total of 180 children were selected consecutively. Stool specimen was collected and processed. A structured questionnaire was used to collect data on sociodemographic characteristics and associated risk factors. Data were entered into EpiData 3.1.1. and were analyzed using SPSS version 16 software. Logistic regressions were applied to assess any association between explanatory factors and outcome variables. Results. The total prevalence of anemia was 22.2% where 21 (52.5%), 17 (42.5%), and 2 (5.0%) patients had mild, moderate, and severe anemia. There was a significant increase in severity and prevalence of anemia in those with CD4+ T cell counts below 350 cells/μL (P < 0.05). Having intestinal parasitic infections (AOR = 2.7, 95% CI, 1.1-7.2), having lower CD4+ T cell count (AOR = 3.8, 95% CI, 1.6-9.4), and being HAART naïve (AOR = 2.3, 95% CI, 1.6-9.4) were identified as significant predictors of anemia. Conclusion. Anemia was more prevalent and severe in patients with low CD4+ T cell counts, patients infected with intestinal parasites/helminthes, and HAART naïve patients. Therefore, public health measures and regular follow-up are necessary to prevent anemia.
Remakus, Sanda; Ma, Xueying; Tang, Lingjuan; Xu, Ren-Huan; Knudson, Cory; Melo-Silva, Carolina R; Rubio, Daniel; Kuo, Yin-Ming; Andrews, Andrew; Sigal, Luis J
2018-05-15
Numerous attempts to produce antiviral vaccines by harnessing memory CD8 T cells have failed. A barrier to progress is that we do not know what makes an Ag a viable target of protective CD8 T cell memory. We found that in mice susceptible to lethal mousepox (the mouse homolog of human smallpox), a dendritic cell vaccine that induced memory CD8 T cells fully protected mice when the infecting virus produced Ag in large quantities and with rapid kinetics. Protection did not occur when the Ag was produced in low amounts, even with rapid kinetics, and protection was only partial when the Ag was produced in large quantities but with slow kinetics. Hence, the amount and timing of Ag expression appear to be key determinants of memory CD8 T cell antiviral protective immunity. These findings may have important implications for vaccine design. Copyright © 2018 by The American Association of Immunologists, Inc.
Entorhinal Cortical Ocean Cells Encode Specific Contexts and Drive Context-Specific Fear Memory
Kitamura, Takashi; Sun, Chen; Martin, Jared; Kitch, Lacey J; Schnitzer, Mark J; Tonegawa, Susumu
2016-01-01
Summary Forming distinct representations and memories of multiple contexts and episodes is thought to be a crucial function of the hippocampal-entorhinal cortical network. The hippocampal dentate gyrus (DG) and CA3 are known to contribute to these functions but the role of the entorhinal cortex (EC) is poorly understood. Here, we show that Ocean cells, excitatory stellate neurons in the medial EC layer II projecting into DG and CA3, rapidly form a distinct representation of a novel context and drive context-specific activation of downstream CA3 cells as well as context-specific fear memory. In contrast, Island cells, excitatory pyramidal neurons in the medial EC layer II projecting into CA1, are indifferent to context-specific encoding or memory. On the other hand, Ocean cells are dispensable for temporal association learning, for which Island cells are crucial. Together, the two excitatory medial EC layer II inputs to the hippocampus have complementary roles in episodic memory. PMID:26402611
Crocker, Amanda; Guan, Xiao-Juan; Murphy, Coleen T; Murthy, Mala
2016-05-17
Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Gao, Yanhua; Whitaker-Dowling, Patricia; Barmada, Mamdouha A; Basse, Per H; Bergman, Ira
2015-04-01
Leptomeningeal metastases occur in 2%-5% of patients with breast cancer and have an exceptionally poor prognosis. The blood-brain and blood-meningeal barriers severely inhibit successful chemotherapy. We have developed a straightforward method to induce antitumor memory T-cells using a Her2/neu targeted vesicular stomatitis virus. We sought to determine whether viral infection of meningeal tumor could attract antitumor memory T-cells to eradicate the tumors. Meningeal implants in mice were studied using treatment trials and analyses of immune cells in the tumors. This paper demonstrates that there is a blood-meningeal barrier to bringing therapeutic memory T-cells to meningeal tumors. The barrier can be overcome by viral infection of the tumor. Viral infection of the meningeal tumors followed by memory T-cell transfer resulted in 89% cure of meningeal tumor in 2 different mouse strains. Viral infection produced increased infiltration and proliferation of transferred memory T-cells in the meningeal tumors. Following viral infection, the leukocyte infiltration in meninges and tumor shifted from predominantly macrophages to predominantly T-cells. Finally, this paper shows that successful viral therapy of peritoneal tumors generates memory CD8 T-cells that prevent establishment of tumor in the meninges of these same animals. These results support the hypothesis that a virally based immunization strategy can be used to both prevent and treat meningeal metastases. The meningeal barriers to cancer therapy may be much more permeable to treatment based on cells than treatment based on drugs or molecules. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Analog Nonvolatile Computer Memory Circuits
NASA Technical Reports Server (NTRS)
MacLeod, Todd
2007-01-01
In nonvolatile random-access memory (RAM) circuits of a proposed type, digital data would be stored in analog form in ferroelectric field-effect transistors (FFETs). This type of memory circuit would offer advantages over prior volatile and nonvolatile types: In a conventional complementary metal oxide/semiconductor static RAM, six transistors must be used to store one bit, and storage is volatile in that data are lost when power is turned off. In a conventional dynamic RAM, three transistors must be used to store one bit, and the stored bit must be refreshed every few milliseconds. In contrast, in a RAM according to the proposal, data would be retained when power was turned off, each memory cell would contain only two FFETs, and the cell could store multiple bits (the exact number of bits depending on the specific design). Conventional flash memory circuits afford nonvolatile storage, but they operate at reading and writing times of the order of thousands of conventional computer memory reading and writing times and, hence, are suitable for use only as off-line storage devices. In addition, flash memories cease to function after limited numbers of writing cycles. The proposed memory circuits would not be subject to either of these limitations. Prior developmental nonvolatile ferroelectric memories are limited to one bit per cell, whereas, as stated above, the proposed memories would not be so limited. The design of a memory circuit according to the proposal must reflect the fact that FFET storage is only partly nonvolatile, in that the signal stored in an FFET decays gradually over time. (Retention times of some advanced FFETs exceed ten years.) Instead of storing a single bit of data as either a positively or negatively saturated state in a ferroelectric device, each memory cell according to the proposal would store two values. The two FFETs in each cell would be denoted the storage FFET and the control FFET. The storage FFET would store an analog signal value, between the positive and negative FFET saturation values. This signal value would represent a numerical value of interest corresponding to multiple bits: for example, if the memory circuit were designed to distinguish among 16 different analog values, then each cell could store 4 bits. Simultaneously with writing the signal value in the storage FFET, a negative saturation signal value would be stored in the control FFET. The decay of this control-FFET signal from the saturation value would serve as a model of the decay, for use in regenerating the numerical value of interest from its decaying analog signal value. The memory circuit would include addressing, reading, and writing circuitry that would have features in common with the corresponding parts of other memory circuits, but would also have several distinctive features. The writing circuitry would include a digital-to-analog converter (DAC); the reading circuitry would include an analog-to-digital converter (ADC). For writing a numerical value of interest in a given cell, that cell would be addressed, the saturation value would be written in the control FFET in that cell, and the non-saturation analog value representing the numerical value of interest would be generated by use of the DAC and stored in the storage FFET in that cell. For reading the numerical value of interest stored in a given cell, the cell would be addressed, the ADC would convert the decaying control and storage analog signal values to digital values, and an associated fast digital processing circuit would regenerate the numerical value from digital values.
NASA Astrophysics Data System (ADS)
Liu, L.; Xu, J. P.; Ji, F.; Chen, J. X.; Lai, P. T.
2012-07-01
Charge-trapping memory capacitor with nitrided gadolinium oxide (GdO) as charge storage layer (CSL) is fabricated, and the influence of post-deposition annealing in NH3 on its memory characteristics is investigated. Transmission electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction are used to analyze the cross-section and interface quality, composition, and crystallinity of the stack gate dielectric, respectively. It is found that nitrogen incorporation can improve the memory window and achieve a good trade-off among the memory properties due to NH3-annealing-induced reasonable distribution profile of a large quantity of deep-level bulk traps created in the nitrided GdO film and reduction of shallow traps near the CSL/SiO2 interface.
Pulvermüller, Friedemann; Garagnani, Max
2014-08-01
Memory cells, the ultimate neurobiological substrates of working memory, remain active for several seconds and are most commonly found in prefrontal cortex and higher multisensory areas. However, if correlated activity in "embodied" sensorimotor systems underlies the formation of memory traces, why should memory cells emerge in areas distant from their antecedent activations in sensorimotor areas, thus leading to "disembodiment" (movement away from sensorimotor systems) of memory mechanisms? We modelled the formation of memory circuits in six-area neurocomputational architectures, implementing motor and sensory primary, secondary and higher association areas in frontotemporal cortices along with known between-area neuroanatomical connections. Sensorimotor learning driven by Hebbian neuroplasticity led to formation of cell assemblies distributed across the different areas of the network. These action-perception circuits (APCs) ignited fully when stimulated, thus providing a neural basis for long-term memory (LTM) of sensorimotor information linked by learning. Subsequent to ignition, activity vanished rapidly from APC neurons in sensorimotor areas but persisted in those in multimodal prefrontal and temporal areas. Such persistent activity provides a mechanism for working memory for actions, perceptions and symbols, including short-term phonological and semantic storage. Cell assembly ignition and "disembodied" working memory retreat of activity to multimodal areas are documented in the neurocomputational models' activity dynamics, at the level of single cells, circuits, and cortical areas. Memory disembodiment is explained neuromechanistically by APC formation and structural neuroanatomical features of the model networks, especially the central role of multimodal prefrontal and temporal cortices in bridging between sensory and motor areas. These simulations answer the "where" question of cortical working memory in terms of distributed APCs and their inner structure, which is, in part, determined by neuroanatomical structure. As the neurocomputational model provides a mechanistic explanation of how memory-related "disembodied" neuronal activity emerges in "embodied" APCs, it may be key to solving aspects of the embodiment debate and eventually to a better understanding of cognitive brain functions. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hyun, Seung; Kwon, Owoong; Lee, Bom-Yi; Seol, Daehee; Park, Beomjin; Lee, Jae Yong; Lee, Ju Hyun; Kim, Yunseok; Kim, Jin Kon
2016-01-01
Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process.Multiple data writing-based multi-level non-volatile memory has gained strong attention for next-generation memory devices to quickly accommodate an extremely large number of data bits because it is capable of storing multiple data bits in a single memory cell at once. However, all previously reported devices have failed to store a large number of data bits due to the macroscale cell size and have not allowed fast access to the stored data due to slow single data writing. Here, we introduce a novel three-dimensional multi-floor cascading polymeric ferroelectric nanostructure, successfully operating as an individual cell. In one cell, each floor has its own piezoresponse and the piezoresponse of one floor can be modulated by the bias voltage applied to the other floor, which means simultaneously written data bits in both floors can be identified. This could achieve multi-level memory through a multiple data writing process. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07377d
The roles of long-term phonotactic and lexical prosodic knowledge in phonological short-term memory.
Tanida, Yuki; Ueno, Taiji; Lambon Ralph, Matthew A; Saito, Satoru
2015-04-01
Many previous studies have explored and confirmed the influence of long-term phonological representations on phonological short-term memory. In most investigations, phonological effects have been explored with respect to phonotactic constraints or frequency. If interaction between long-term memory and phonological short-term memory is a generalized principle, then other phonological characteristics-that is, suprasegmental aspects of phonology-should also exert similar effects on phonological short-term memory. We explored this hypothesis through three immediate serial-recall experiments that manipulated Japanese nonwords with respect to lexical prosody (pitch-accent type, reflecting suprasegmental characteristics) as well as phonotactic frequency (reflecting segmental characteristics). The results showed that phonotactic frequency affected the retention not only of the phonemic sequences, but also of pitch-accent patterns, when participants were instructed to recall both the phoneme sequence and accent pattern of nonwords. In addition, accent pattern typicality influenced the retention of the accent pattern: Typical accent patterns were recalled more accurately than atypical ones. These results indicate that both long-term phonotactic and lexical prosodic knowledge contribute to phonological short-term memory performance.
Cotugno, Nicola; De Armas, Lesley; Pallikkuth, Suresh; Rinaldi, Stefano; Issac, Biju; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita
2017-01-01
Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27 + CD21 - ) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27 + CD21 + ) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses ( APRIL, BTK, BLIMP1 ) and BCR signaling ( MTOR, FYN, CD86 ) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population.
Cotugno, Nicola; De Armas, Lesley; Pallikkuth, Suresh; Rinaldi, Stefano; Issac, Biju; Cagigi, Alberto; Rossi, Paolo; Palma, Paolo; Pahwa, Savita
2017-01-01
Despite effective antiretroviral therapy (ART), HIV-infected individuals with apparently similar clinical and immunological characteristics can vary in responsiveness to vaccinations. However, molecular mechanisms responsible for such impairment, as well as biomarkers able to predict vaccine responsiveness in HIV-infected children, remain unknown. Following the hypothesis that a B cell qualitative impairment persists in HIV-infected children (HIV) despite effective ART and phenotypic B cell immune reconstitution, the aim of the current study was to investigate B cell gene expression of HIV compared to age-matched healthy controls (HCs) and to determine whether distinct gene expression patterns could predict the ability to respond to influenza vaccine. To do so, we analyzed prevaccination transcriptional levels of a 96-gene panel in equal numbers of sort-purified B cell subsets (SPBS) isolated from peripheral blood mononuclear cells using multiplexed RT-PCR. Immune responses to H1N1 antigen were determined by hemaglutination inhibition and memory B cell ELISpot assays following trivalent-inactivated influenza vaccination (TIV) for all study participants. Although there were no differences in terms of cell frequencies of SPBS between HIV and HC, the groups were distinguishable based upon gene expression analyses. Indeed, a 28-gene signature, characterized by higher expression of genes involved in the inflammatory response and immune activation was observed in activated memory B cells (CD27+CD21−) from HIV when compared to HC despite long-term viral control (>24 months). Further analysis, taking into account H1N1 responses after TIV in HIV participants, revealed that a 25-gene signature in resting memory (RM) B cells (CD27+CD21+) was able to distinguish vaccine responders from non-responders (NR). In fact, prevaccination RM B cells of responders showed a higher expression of gene sets involved in B cell adaptive immune responses (APRIL, BTK, BLIMP1) and BCR signaling (MTOR, FYN, CD86) when compared to NR. Overall, these data suggest that a perturbation at a transcriptional level in the B cell compartment persists despite stable virus control achieved through ART in HIV-infected children. Additionally, the present study demonstrates the potential utility of transcriptional evaluation of RM B cells before vaccination for identifying predictive correlates of vaccine responses in this population. PMID:28955330
Cytomegalovirus Reinfections Stimulate CD8 T-Memory Inflation.
Trgovcich, Joanne; Kincaid, Michelle; Thomas, Alicia; Griessl, Marion; Zimmerman, Peter; Dwivedi, Varun; Bergdall, Valerie; Klenerman, Paul; Cook, Charles H
2016-01-01
Cytomegalovirus (CMV) has been shown to induce large populations of CD8 T-effector memory cells that unlike central memory persist in large quantities following infection, a phenomenon commonly termed "memory inflation". Although murine models to date have shown very large and persistent CMV-specific T-cell expansions following infection, there is considerable variability in CMV-specific T-memory responses in humans. Historically such memory inflation in humans has been assumed a consequence of reactivation events during the life of the host. Because basic information about CMV infection/re-infection and reactivation in immune competent humans is not available, we used a murine model to test how primary infection, reinfection, and reactivation stimuli influence memory inflation. We show that low titer infections induce "partial" memory inflation of both mCMV specific CD8 T-cells and antibody. We show further that reinfection with different strains can boost partial memory inflation. Finally, we show preliminary results suggesting that a single strong reactivation stimulus does not stimulate memory inflation. Altogether, our results suggest that while high titer primary infections can induce memory inflation, reinfections during the life of a host may be more important than previously appreciated.
Development of a monolithic ferrite memory array
NASA Technical Reports Server (NTRS)
Heckler, C. H., Jr.; Bhiwandker, N. C.
1972-01-01
The results of the development and testing of ferrite monolithic memory arrays are presented. This development required the synthesis of ferrite materials having special magnetic and physical characteristics and the development of special processes; (1) for making flexible sheets (laminae) of the ferrite composition, (2) for embedding conductors in ferrite, and (3) bonding ferrite laminae together to form a monolithic structure. Major problems encountered in each of these areas and their solutions are discussed. Twenty-two full-size arrays were fabricated and fired during the development of these processes. The majority of these arrays were tested for their memory characteristics as well as for their physical characteristics and the results are presented. The arrays produced during this program meet the essential goals and demonstrate the feasibility of fabricating monolithic ferrite memory arrays by the processes developed.
Figuring fact from fiction: unbiased polling of memory T cells.
Gerlach, Carmen; Loughhead, Scott M; von Andrian, Ulrich H
2015-05-07
Immunization generates several memory T cell subsets that differ in their migratory properties, anatomic distribution, and, hence, accessibility to investigation. In this issue, Steinert et al. demonstrate that what was believed to be a minor memory cell subset in peripheral tissues has been dramatically underestimated. Thus, current models of protective immunity require revision. Copyright © 2015 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The mechanisms involved in the maintenance of memory IgE responses are poorly understood, and the role played by germinal center (GC) IgE+ cells in memory responses is particularly unclear. IgE B cell differentiation is characterized by a transient GC phase, a bias towards the plasma cell (PC) fate,...
Abacavir-Reactive Memory T Cells Are Present in Drug Naïve Individuals
Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M.; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M.; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D’Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A.; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth
2015-01-01
Background Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. Methods To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Results Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. Conclusions We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection. PMID:25674793
Abacavir-reactive memory T cells are present in drug naïve individuals.
Lucas, Andrew; Lucas, Michaela; Strhyn, Anette; Keane, Niamh M; McKinnon, Elizabeth; Pavlos, Rebecca; Moran, Ellen M; Meyer-Pannwitt, Viola; Gaudieri, Silvana; D'Orsogna, Lloyd; Kalams, Spyros; Ostrov, David A; Buus, Søren; Peters, Bjoern; Mallal, Simon; Phillips, Elizabeth
2015-01-01
Fifty-five percent of individuals with HLA-B*57:01 exposed to the antiretroviral drug abacavir develop a hypersensitivity reaction (HSR) that has been attributed to naïve T-cell responses to neo-antigen generated by the drug. Immunologically confirmed abacavir HSR can manifest clinically in less than 48 hours following first exposure suggesting that, at least in some cases, abacavir HSR is due to re-stimulation of a pre-existing memory T-cell population rather than priming of a high frequency naïve T-cell population. To determine whether a pre-existing abacavir reactive memory T-cell population contributes to early abacavir HSR symptoms, we studied the abacavir specific naïve or memory T-cell response using HLA-B*57:01 positive HSR patients or healthy controls using ELISpot assay, intra-cellular cytokine staining and tetramer labelling. Abacavir reactive CD8+ T-cell responses were detected in vitro in one hundred percent of abacavir unexposed HLA-B*57:01 positive healthy donors. Abacavir-specific CD8+ T cells from such donors can be expanded from sorted memory, and sorted naïve, CD8+ T cells without need for autologous CD4+ T cells. We propose that these pre-existing abacavir-reactive memory CD8+ T-cell responses must have been primed by earlier exposure to another foreign antigen and that these T cells cross-react with an abacavir-HLA-B*57:01-endogenous peptide ligand complex, in keeping with the model of heterologous immunity proposed in transplant rejection.
Manipulating memory CD8 T cell numbers by timed enhancement of IL-2 signals1
Kim, Marie T.; Kurup, Samarchith P.; Starbeck-Miller, Gabriel R.; Harty, John T.
2016-01-01
Due to the growing burden of tumors and chronic infections, manipulating CD8 T cell responses for clinical use has become an important goal for immunologists. Here, we show that dendritic cell (DC) immunization coupled with relatively early (days 1–3) or late (days 4–6) administration of enhanced IL-2-signals both increase peak effector CD8 T cell numbers, but only early IL-2 signals enhance memory numbers. IL-2 signals delivered at relatively late time points drive terminal differentiation, marked Bim mediated contraction and do not increase memory T cell numbers. In contrast, early IL-2 signals induce effector cell metabolic profiles more conducive to memory formation. Of note, down-regulation of CD80 and CD86 was observed on DCs in vivo following early IL-2 treatment. Mechanistically, early IL-2 treatment enhanced CTLA-4 expression on regulatory T (Treg) cells, and CTLA-4 blockade alongside IL-2 treatment in vivo prevented the decrease in CD80 and CD86, supporting a cell-extrinsic role of CTLA-4 in down-regulating B7-ligand expression on DCs. Finally, DC immunization followed by early IL-2 treatment and αCTLA-4 blockade resulted in lower memory CD8 T cell numbers compared to the DC + early IL-2 treatment group. These data suggest that curtailed signaling through the B7-CD28 co-stimulatory axis during CD8 T cell activation limits terminal differentiation and preserves memory CD8 T cell formation and thus, should be considered in future T cell vaccination strategies. PMID:27439516
NASA Technical Reports Server (NTRS)
Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)
1994-01-01
A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.
Chronic Dry Eye Disease is Principally Mediated by Effector Memory Th17 Cells
Chen, Yihe; Chauhan, Sunil K.; Lee, Hyun Soo; Saban, Daniel R.; Dana, Reza
2013-01-01
Recent experimental and clinical data suggest that there is a link between dry eye disease (DED) and T cell-mediated immunity. However, whether these immune responses are a consequence or cause of ocular surface inflammation remains to be determined. Thus far, only models of acute DED have been used to derive experimental data. This is in contrast to clinical DED which usually presents as a chronic disease. In the present study, using a murine model of chronic DED, it was established that the chronic phase of the disease is accompanied by Th17 responses at the ocular surface, and that a significant memory T cell population can be recovered from chronic DED. This memory response is predominantly mediated by Th17 cells. Moreover, adoptive transfer of this memory T cell population was shown to induce more severe and rapidly progressing DED than did the adoptive transfer of its effector or naïve counterparts. Not only do these results clearly demonstrate that effector memory Th17 cells are primarily responsible for maintaining the chronic and relapsing course of DED, but they also highlight a potentially novel therapeutic strategy for targeting memory immune responses in patients with DED. PMID:23571503
Attrition of memory CD8 T cells during sepsis requires LFA-1.
Serbanescu, Mara A; Ramonell, Kimberly M; Hadley, Annette; Margoles, Lindsay M; Mittal, Rohit; Lyons, John D; Liang, Zhe; Coopersmith, Craig M; Ford, Mandy L; McConnell, Kevin W
2016-11-01
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69 + CD25 int CD62L HI ) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain "unactivated" (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44 HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis. © Society for Leukocyte Biology.
Attrition of memory CD8 T cells during sepsis requires LFA-1
Serbanescu, Mara A.; Ramonell, Kimberly M.; Hadley, Annette; Margoles, Lindsay M.; Mittal, Rohit; Lyons, John D.; Liang, Zhe; Coopersmith, Craig M.; Ford, Mandy L.; McConnell, Kevin W.
2016-01-01
CD8 T cell loss and dysfunction have been implicated in the increased susceptibility to opportunistic infections during the later immunosuppressive phase of sepsis, but CD8 T cell activation and attrition in early sepsis remain incompletely understood. With the use of a CLP model, we assessed CD8 T cell activation at 5 consecutive time points and found that activation after sepsis results in a distinct phenotype (CD69+CD25intCD62LHI) independent of cognate antigen recognition and TCR engagement and likely through bystander-mediated cytokine effects. Additionally, we observed that sepsis concurrently results in the preferential depletion of a subset of memory-phenotype CD8 T cells that remain “unactivated” (i.e., fail to up-regulate activation markers) by apoptosis. Unactivated CD44HI OT-I cells were spared from sepsis-induced attrition, as were memory-phenotype CD8 T cells of mice treated with anti-LFA-1 mAb, 1 h after CLP. Perhaps most importantly, we demonstrate that attrition of memory phenotype cells may have a pathologic significance, as elevated IL-6 levels were associated with decreased numbers of memory-phenotype CD8 T cells in septic mice, and preservation of this subset after administration of anti-LFA-1 mAb conferred improved survival at 7 d. Taken together, these data identify potentially modifiable responses of memory-phenotype CD8 T cells in early sepsis and may be particularly important in the application of immunomodulatory therapies in sepsis. PMID:27286793
Iwajomo, Oluwadamilola H; Finn, Adam; Ogunniyi, Abiodun D; Williams, Neil A; Heyderman, Robert S
2013-01-01
Pneumococcal disease is associated with a particularly high morbidity and mortality amongst adults in HIV endemic countries. Our previous findings implicating a B-cell defect in HIV-infected children from the same population led us to comprehensively characterize B-cell subsets in minimally symptomatic HIV-infected Malawian adults and investigate the isotype-switched IgG memory B-cell immune response to the pneumococcus. We show that similar to vertically acquired HIV-infected Malawian children, horizontally acquired HIV infection in these adults is associated with IgM memory B-cell (CD19(+) CD27(+) IgM(+) IgD(+)) depletion, B-cell activation and impairment of specific IgG B-cell memory to a range of pneumococcal proteins. Our data suggest that HIV infection affects both T-cell independent and T-cell dependent B-cell maturation, potentially leading to impairment of humoral responses to extracellular pathogens such as the pneumococcus, and thus leaving this population susceptible to invasive disease.
Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy.
Urak, Ryan; Walter, Miriam; Lim, Laura; Wong, ChingLam W; Budde, Lihua E; Thomas, Sandra; Forman, Stephen J; Wang, Xiuli
2017-01-01
Insufficient persistence and effector function of chimeric antigen receptor (CAR)-redirected T cells have been challenging issues for adoptive T cell therapy. Generating potent CAR T cells is of increasing importance in the field. Studies have demonstrated the importance of the Akt pathway in the regulation of T cell differentiation and memory formation. We now investigate whether inhibition of Akt signaling during ex vivo expansion of CAR T cells can promote the generation of CAR T cells with enhanced antitumor activity following adoptive therapy in a murine leukemia xenograft model. Various T cell subsets including CD8+ T cells, bulk T cells, central memory T cells and naïve/memory T cells were isolated from PBMC of healthy donors, activated with CD3/CD28 beads, and transduced with a lentiviral vector encoding a second-generation CD19CAR containing a CD28 co-stimulatory domain. The transduced CD19CAR T cells were expanded in the presence of IL-2 (50U/mL) and Akt inhibitor (Akti) (1 μM) that were supplemented every other day. Proliferative/expansion potential, phenotypical characteristics and functionality of the propagated CD19CAR T cells were analyzed in vitro and in vivo after 17-21 day ex vivo expansion. Anti-tumor activity was evaluated after adoptive transfer of the CD19CAR T cells into CD19+ tumor-bearing immunodeficient mice. Tumor signals were monitored with biophotonic imaging, and survival rates were analyzed by the end of the experiments. We found that Akt inhibition did not compromise CD19CAR T cell proliferation and expansion in vitro, independent of the T cell subsets, as comparable CD19CAR T cell expansion was observed after culturing in the presence or absence of Akt inhibitor. Functionally, Akt inhibition did not dampen cell-mediated effector function, while Th1 cytokine production increased. With respect to phenotype, Akti-treated CD19CAR T cells expressed higher levels of CD62L and CD28 as compared to untreated CD19CAR T cells. Once adoptively transferred into CD19+ tumor-bearing mice, Akti treated CD19CAR T cells exhibited more antitumor activity than did untreated CD19CAR T cells. Inhibition of Akt signaling during ex vivo priming and expansion gives rise to CD19CAR T cell populations that display comparatively higher antitumor activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Bettina W.M.; Onuska, Jaya M.; Niewiesk, Stefan
2005-06-20
Respiratory syncytial virus (RSV) is a major cause of lower airway disease in infants and children. Immunity to RSV is not long lasting, resulting in re-occurring infections throughout life. Effective long-lived immunity results when central-memory T cells that proliferate vigorously and secrete IL-2 are present. In contrast, effector-memory T cells that mainly produce IFN-{gamma}, facilitate virus clearance but are not long lived. To identify the type of memory response induced after RSV-A (Long) infection, we characterized the kinetics of the antigen-specific immune response and identified the types of cytokines induced. RSV-specific lymphocytic proliferation following primary and secondary infection was similar,more » and in both cases responses waned within a short period of time. In addition, mRNA for IFN-{gamma} but not IL-2 was induced in RSV-specific CD4{sup +} T cells. This supports the idea that the presence of effector-memory rather than central-memory T cells contributes to the ineffectiveness of the immune response to RSV.« less
Perdomo, Carolina; Zedler, Ulrike; Kühl, Anja A; Lozza, Laura; Saikali, Philippe; Sander, Leif E; Vogelzang, Alexis; Kaufmann, Stefan H E; Kupz, Andreas
2016-11-22
Mycobacterium bovis Bacille Calmette-Guérin (BCG) is the only licensed vaccine against tuberculosis (TB), yet its moderate efficacy against pulmonary TB calls for improved vaccination strategies. Mucosal BCG vaccination generates superior protection against TB in animal models; however, the mechanisms of protection remain elusive. Tissue-resident memory T (T RM ) cells have been implicated in protective immune responses against viral infections, but the role of T RM cells following mycobacterial infection is unknown. Using a mouse model of TB, we compared protection and lung cellular infiltrates of parenteral and mucosal BCG vaccination. Adoptive transfer and gene expression analyses of lung airway cells were performed to determine the protective capacities and phenotypes of different memory T cell subsets. In comparison to subcutaneous vaccination, intratracheal and intranasal BCG vaccination generated T effector memory and T RM cells in the lung, as defined by surface marker phenotype. Adoptive mucosal transfer of these airway-resident memory T cells into naive mice mediated protection against TB. Whereas airway-resident memory CD4 + T cells displayed a mixture of effector and regulatory phenotype, airway-resident memory CD8 + T cells displayed prototypical T RM features. Our data demonstrate a key role for mucosal vaccination-induced airway-resident T cells in the host defense against pulmonary TB. These results have direct implications for the design of refined vaccination strategies. BCG remains the only licensed vaccine against TB. Parenterally administered BCG has variable efficacy against pulmonary TB, and thus, improved prevention strategies and a more refined understanding of correlates of vaccine protection are required. Induction of memory T cells has been shown to be essential for protective TB vaccines. Mimicking the natural infection route by mucosal vaccination has been known to generate superior protection against TB in animal models; however, the mechanisms of protection have remained elusive. Here we performed an in-depth analysis to dissect the immunological mechanisms associated with superior mucosal protection in the mouse model of TB. We found that mucosal, and not subcutaneous, BCG vaccination generates lung-resident memory T cell populations that confer protection against pulmonary TB. We establish a comprehensive phenotypic characterization of these populations, providing a framework for future vaccine development. Copyright © 2016 Perdomo et al.
Chacon, Jessica Ann; Sarnaik, Amod A; Chen, Jie Qing; Creasy, Caitlin; Kale, Charuta; Robinson, John; Weber, Jeffrey; Hwu, Patrick; Pilon-Thomas, Shari; Radvanyi, Laszlo
2014-01-01
Purpose Cultured tumor fragments from melanoma metastases have been used for years as a source of tumor-infiltrating lymphocytes (TIL) for adoptive cell therapy. The expansion of tumor-reactive CD8+ T cells with IL-2 in these early cultures is critical in generating clinically active TIL infusion products, with a population of activated 4-1BB CD8+ T cells recently found to constitute the majority of tumor-specific T cells. Experimental Design We used an agonistic anti-4-1BB antibody added during the initial tumor fragment cultures to provide in situ 4-1BB co-stimulation. Results We found that addition of an agonistic anti-4-1BB antibody could activate 4-1BB signaling within early cultured tumor fragments and accelerated the rate of memory CD8+ TIL outgrowth that were highly enriched for melanoma antigen specificity. This was associated with NFκB activation and the induction of T-cell survival and memory genes, as well as enhanced IL-2 responsiveness, in the CD8+ T cells in the fragments and emerging from the fragments. Early provision of 4-1BB co-stimulation also affected the dendritic cells (DC) by activating NFκB in DC and promoting their maturation inside the tumor fragments. Blocking HLA class I prevented the enhanced outgrowth of CD8+ T cells with anti-4-1BB, suggesting that an ongoing HLA class I-mediated antigen presentation in early tumor fragment cultures plays a role in mediating tumor-specific CD8+ TIL outgrowth. Conclusions Our results highlight a previously unrecognized concept in TIL adoptive cell therapy that the tumor microenvironment can be dynamically regulated in the initial tumor fragment cultures to regulate the types of T cells expanded and their functional characteristics. PMID:25472998
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Shujia; Duffy, Daniel; Clune, Thomas
The call for ever-increasing model resolutions and physical processes in climate and weather models demands a continual increase in computing power. The IBM Cell processor's order-of-magnitude peak performance increase over conventional processors makes it very attractive to fulfill this requirement. However, the Cell's characteristics, 256KB local memory per SPE and the new low-level communication mechanism, make it very challenging to port an application. As a trial, we selected the solar radiation component of the NASA GEOS-5 climate model, which: (1) is representative of column physics components (half the total computational time), (2) has an extremely high computational intensity: the ratiomore » of computational load to main memory transfers, and (3) exhibits embarrassingly parallel column computations. In this paper, we converted the baseline code (single-precision Fortran) to C and ported it to an IBM BladeCenter QS20. For performance, we manually SIMDize four independent columns and include several unrolling optimizations. Our results show that when compared with the baseline implementation running on one core of Intel's Xeon Woodcrest, Dempsey, and Itanium2, the Cell is approximately 8.8x, 11.6x, and 12.8x faster, respectively. Our preliminary analysis shows that the Cell can also accelerate the dynamics component (~;;25percent total computational time). We believe these dramatic performance improvements make the Cell processor very competitive as an accelerator.« less
Seress, L
1998-06-01
Jean Piaget's "stage theory" suggests that cognitive development proceeds in discrete steps, among which the first is the sensorimotor period that occupies the first two years. In recent years it became clear that an intact and mature hippocampus is necessary for memory formation both in experimental animals and in human. In the present experiments the perinatal morphological development of the human hippocampus was studied to describe structural changes that may correlate with the developmental changes of intellectual growth. Our results suggest that cell formation in the human hippocampus terminates several weeks before birth, but immature cells migrate to their final positions through the first six postnatal months. The newborn hippocampus contains all cell types and cell layers that are characteristic for the adult hippocampus. However, changes of the light microscopic features of the postsynaptic target neurons of hippocampal granule cells indicate that connections between granule cells and their target neurons are immature at birth and develop through an extended period of time that may last for three years. Since this neuronal connection is the first link in the chain of the main hippocampal synaptic circuitry, it may be suggested that human hippocampus is functionally impaired at birth. This period of light microscopic morphological maturation correlates well with the time period of Piaget's first stage of cognitive development. It can also be suggested that the prolonged postnatal development of some neuronal circuitries in the human hippocampus may be responsible for the psychological phenomenon of "infantile amnesia", that is the lack of memory traces from the early postnatal period.
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu
2017-12-01
Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.
Peacock, Craig D; Welsh, Raymond M
2004-07-01
CD8+ T cells that coexpress the inhibitory NK cell receptor, Ly49G2 (G2), are present in immunologically naive C57BL/6 mice but display Ags found on memory T cells. To assess how G2+CD8+ cells relate to bona fide memory cells, we examined the origin and fate of lymphocytic choriomeningitis virus (LCMV)-induced G2+CD8+ cells. During early (day 4) acute LCMV infection, both G2+ and G2-CD8+ T cell subsets underwent an attrition in number and displayed an activation (CD69(high)1B11(high)CD62L(low)) phenotype. By day 8, both subsets synthesized IFN-gamma in response to immunodominant LCMV peptides, though the expansion of G2+ cells was less than that of G2- cells. Adoptive transfer experiments with purified G2- or G2+CD8+ cells from naive mice indicated that the LCMV-specific G2+ subset was derived from a pre-existing G2+ population and not generated from G2- cells responding to LCMV infection. Their participation in the LCMV-specific T cell response increased with age, reflecting an increase in the size of the pre-existing G2+ pool. Following establishment of stable LCMV memory, the proportion of CD8+ cells coexpressing G2 was reduced in comparison to naive controls, presumably due to displacement by G2- LCMV-specific memory cells. LCMV-specific G2+ cells were present in the memory pool, but at low frequencies, and they did not exhibit the typical phenotypic changes of reactivation during secondary challenge. We suggest that G2+CD8+ cells represent a cell lineage distinct from bona fide memory T cells, but that they can participate in an acute virus-specific T cell response.
Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard
2004-01-19
Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process. Copyright 2003 Wiley-Liss, Inc.
Intrinsic role of FoxO3a in the development of CD8+ T cell memory
Tzelepis, Fanny; Joseph, Julie; Haddad, Elias K.; MacLean, Susanne; Dudani, Renu; Agenes, Fabien; Peng, Stanford L.; Sekaly, Rafick-Pierre; Sad, Subash
2013-01-01
CD8+ T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8+ T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8+ T cells are not clear. We show here that the transcription factor, FoxO3a does not influence antigen-presentation and the consequent expansion of CD8+ T cell response during Listeria monocytogenes (LM) infection, but plays a key role in the maintenance of memory CD8+ T cells. The effector function of primed CD8+ T cells as revealed by cytokine secretion and CD107a degranulation was not influenced by inactivation of FoxO3a. Interestingly, FoxO3a-deficient CD8+ T cells displayed reduced expression of pro-apoptotic molecules BIM and PUMA during the various phases of response, and underwent reduced apoptosis in comparison to WT cells. A higher number of memory precursor effector cells (MPECs) and memory subsets were detectable in FoxO3a-deficient mice compared to WT mice. Furthermore, FoxO3a-deficient memory CD8+ T cells upon transfer into normal or RAG1-deficient mice displayed enhanced survival. These results suggest that FoxO3a acts in a cell intrinsic manner to regulate the survival of primed CD8+ T cells. PMID:23277488
Dopaminergic neurons write and update memories with cell-type-specific rules
Aso, Yoshinori; Rubin, Gerald M
2016-01-01
Associative learning is thought to involve parallel and distributed mechanisms of memory formation and storage. In Drosophila, the mushroom body (MB) is the major site of associative odor memory formation. Previously we described the anatomy of the adult MB and defined 20 types of dopaminergic neurons (DANs) that each innervate distinct MB compartments (Aso et al., 2014a, 2014b). Here we compare the properties of memories formed by optogenetic activation of individual DAN cell types. We found extensive differences in training requirements for memory formation, decay dynamics, storage capacity and flexibility to learn new associations. Even a single DAN cell type can either write or reduce an aversive memory, or write an appetitive memory, depending on when it is activated relative to odor delivery. Our results show that different learning rules are executed in seemingly parallel memory systems, providing multiple distinct circuit-based strategies to predict future events from past experiences. DOI: http://dx.doi.org/10.7554/eLife.16135.001 PMID:27441388
Schmidt, Jonas D; Ahlström, Malin G; Johansen, Jeanne D; Dyring-Andersen, Beatrice; Agerbeck, Christina; Nielsen, Morten M; Poulsen, Steen S; Woetmann, Anders; Ødum, Niels; Thomsen, Allan R; Geisler, Carsten; Bonefeld, Charlotte M
2017-04-01
Skin-resident memory T (T RM ) cells are associated with immunological memory in the skin. Whether immunological memory responses to allergens in the skin are solely localized to previously allergen-exposed sites or are present globally in the skin is not clear. Furthermore, the mechanisms whereby T RM cells induce rapid recall responses need further investigation. To study whether contact allergens induce local and/or global memory, and to determine the mechanisms involved in memory responses in the skin. To address these questions, we analysed responses to contact allergens in mice and humans sensitized to 2,4-dinitrofluorobenzene and nickel, respectively. Challenge responses in both mice and humans were dramatically increased at sites previously exposed to allergens as compared with previously unexposed sites. Importantly, the magnitude of the challenge response correlated with the epidermal accumulation of interleukin (IL)-17A-producing and interferon (IFN)-γ-producing T RM cells. Moreover, IL-17A and IFN-γ enhanced allergen-induced IL-1β production in keratinocytes. We show that sensitization with contact allergens induces a strong, long-lasting local memory and a weaker, temporary global immunological memory response to the allergen that is mediated by IL-17A-producing and IFN-γ-producing CD8 + T RM cells. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
CD22 is required for formation of memory B cell precursors within germinal centers.
Chappell, Craig P; Draves, Kevin E; Clark, Edward A
2017-01-01
CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens.
CD22 is required for formation of memory B cell precursors within germinal centers
Chappell, Craig P.; Draves, Kevin E.
2017-01-01
CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens. PMID:28346517