Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status. PMID:24187542
Ward, Jamie; Hovard, Peter; Jones, Alicia; Rothen, Nicolas
2013-01-01
Memory has been shown to be enhanced in grapheme-color synaesthesia, and this enhancement extends to certain visual stimuli (that don't induce synaesthesia) as well as stimuli comprised of graphemes (which do). Previous studies have used a variety of testing procedures to assess memory in synaesthesia (e.g., free recall, recognition, associative learning) making it hard to know the extent to which memory benefits are attributable to the stimulus properties themselves, the testing method, participant strategies, or some combination of these factors. In the first experiment, we use the same testing procedure (recognition memory) for a variety of stimuli (written words, non-words, scenes, and fractals) and also check which memorization strategies were used. We demonstrate that grapheme-color synaesthetes show enhanced memory across all these stimuli, but this is not found for a non-visual type of synaesthesia (lexical-gustatory). In the second experiment, the memory advantage for scenes is explored further by manipulating the properties of the old and new images (changing color, orientation, or object presence). Again, grapheme-color synaesthetes show a memory advantage for scenes across all manipulations. Although recognition memory is generally enhanced in this study, the largest effects were found for abstract visual images (fractals) and scenes for which color can be used to discriminate old/new status.
Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei
2017-09-01
TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neurometabolic mechanisms for memory enhancement and neuroprotection of methylene blue
Rojas, Julio C.; Bruchey, Aleksandra K.; Gonzalez-Lima, F.
2011-01-01
This paper provides the first review of the memory-enhancing and neuroprotective metabolic mechanisms of action of methylene blue in vivo. These mechanisms have important implications as a new neurobiological approach to improve normal memory and to treat memory impairment and neurodegeneration associated with mitochondrial dysfunction. Methylene blue’s action is unique because its neurobiological effects are not determined by regular drug-receptor interactions or drug-response paradigms. Methylene blue shows a hormetic dose-response, with opposite effects at low and high doses. At low doses, methylene blue is an electron cycler in the mitochondrial electron transport chain, with unparalleled antioxidant and cell respiration-enhancing properties that affect the function of the nervous system in a versatile manner. A major role of the respiratory enzyme cytochrome oxidase on the memory-enhancing effects of methylene blue is supported by available data. The memory-enhancing effects have been associated with improvement of memory consolidation in a network-specific and use-dependent fashion. In addition, low doses of methylene blue have also been used for neuroprotection against mitochondrial dysfunction in humans and experimental models of disease. The unique auto-oxidizing property of methylene blue and its pleiotropic effects on a number of tissue oxidases explain its potent neuroprotective effects at low doses. The evidence reviewed supports a mechanistic role of low-dose methylene blue as a promising and safe intervention for improving memory and for the treatment of acute and chronic conditions characterized by increased oxidative stress, neurodegeneration and memory impairment. PMID:22067440
Remembering the snake in the grass: Threat enhances recognition but not source memory.
Meyer, Miriam Magdalena; Bell, Raoul; Buchner, Axel
2015-12-01
Research on the influence of emotion on source memory has yielded inconsistent findings. The object-based framework (Mather, 2007) predicts that negatively arousing stimuli attract attention, resulting in enhanced within-object binding, and, thereby, enhanced source memory for intrinsic context features of emotional stimuli. To test this prediction, we presented pictures of threatening and harmless animals, the color of which had been experimentally manipulated. In a memory test, old-new recognition for the animals and source memory for their color was assessed. In all 3 experiments, old-new recognition was better for the more threatening material, which supports previous reports of an emotional memory enhancement. This recognition advantage was due to the emotional properties of the stimulus material, and not specific for snake stimuli. However, inconsistent with the prediction of the object-based framework, intrinsic source memory was not affected by emotion. (c) 2015 APA, all rights reserved).
The Influence of Item Properties on Association-Memory
ERIC Educational Resources Information Center
Madan, Christopher R.; Glaholt, Mackenzie G.; Caplan, Jeremy B.
2010-01-01
Word properties like imageability and word frequency improve cued recall of verbal paired-associates. We asked whether these enhancements follow simply from prior effects on item-memory, or also strengthen associations between items. Participants studied word pairs varying in imageability or frequency: pairs were "pure" (high-high, low-low) or…
Cytokine activation induces human memory-like NK cells.
Romee, Rizwan; Schneider, Stephanie E; Leong, Jeffrey W; Chase, Julie M; Keppel, Catherine R; Sullivan, Ryan P; Cooper, Megan A; Fehniger, Todd A
2012-12-06
Natural killer (NK) cells are lymphocytes that play an important role in the immune response to infection and malignancy. Recent studies in mice have shown that stimulation of NK cells with cytokines or in the context of a viral infection results in memory-like properties. We hypothesized that human NK cells exhibit such memory-like properties with an enhanced recall response after cytokine preactivation. In the present study, we show that human NK cells preactivated briefly with cytokine combinations including IL-12, IL-15, and IL-18 followed by a 7- to 21-day rest have enhanced IFN-γ production after restimulation with IL-12 + IL-15, IL-12 + IL-18, or K562 leukemia cells. This memory-like phenotype was retained in proliferating NK cells. In CD56(dim) NK cells, the memory-like IFN-γ response was correlated with the expression of CD94, NKG2A, NKG2C, and CD69 and a lack of CD57 and KIR. Therefore, human NK cells have functional memory-like properties after cytokine activation, which provides a novel rationale for integrating preactivation with combinations of IL-12, IL-15, and IL-18 into NK cell immunotherapy strategies.
Aslan, Alp; John, Thomas
2016-12-01
Previous developmental work has indicated that animacy is a foundational ontogenetic category that is given priority already early in life. Here, we investigated whether such priority is also present in children's episodic memory, examining whether young children show enhanced retention of animacy-related information. Kindergartners and younger and older elementary school children were presented with fictitious (non)words (e.g., BULA, LAFE) paired with properties characteristic of humans (e.g., "likes music"), (nonhuman) animals (e.g., "builds nests"), and inanimate things (e.g., "has four edges") and were asked to rate the animacy status of each nonword. After a retention interval, a surprise recognition test for the nonwords was administered. We found enhanced recognition of nonwords paired with human and animal properties compared with (the same) nonwords paired with inanimate properties. The size of this animacy advantage was comparable across age groups, suggesting developmental invariance of the advantage over the age range examined (i.e., 4-11years). The results support a functional-evolutionary view on memory, suggesting that already young children's memory is "tuned" to process and retain animacy. Copyright © 2016 Elsevier Inc. All rights reserved.
Working memory can enhance unconscious visual perception.
Pan, Yi; Cheng, Qiu-Ping; Luo, Qian-Ying
2012-06-01
We demonstrate that unconscious processing of a stimulus property can be enhanced when there is a match between the contents of working memory and the stimulus presented in the visual field. Participants first held a cue (a colored circle) in working memory and then searched for a brief masked target shape presented simultaneously with a distractor shape. When participants reported having no awareness of the target shape at all, search performance was more accurate in the valid condition, where the target matched the cue in color, than in the neutral condition, where the target mismatched the cue. This effect cannot be attributed to bottom-up perceptual priming from the presentation of a memory cue, because unconscious perception was not enhanced when the cue was merely perceptually identified but not actively held in working memory. These findings suggest that reentrant feedback from the contents of working memory modulates unconscious visual perception.
Memory-like Responses of Natural Killer Cells
Cooper, Megan A.; Yokoyama, Wayne M.
2010-01-01
Summary Natural killer (NK) cells are lymphocytes with the capacity to produce cytokines and kill target cells upon activation. NK cells have long been categorized as members of the innate immune system and as such have been thought to follow the ‘rules’ of innate immunity, including the principle that they have no immunologic memory, a property thought to be strictly limited to adaptive immunity. However, recent studies have suggested that NK cells have the capacity to alter their behavior based on prior activation. This property is analogous to adaptive immune memory; however, some NK cell memory-like functions are not strictly antigen-dependent and can be demonstrated following cytokine stimulation. Here we discuss the recent evidence that NK cells can exhibit properties of immunologic memory, focusing on the ability of cytokines to non-specifically induce memory-like NK cells with enhanced responses to restimulation. PMID:20536571
Rubin, David C.; Dennis, Michelle F.; Beckham, Jean C.
2011-01-01
To provide the three-way comparisons needed to test existing theories, we compared 1) most-stressful memories to other memories and 2) involuntary to voluntary memories 3) in 75 community dwelling adults with and 42 without a current diagnosis of posttraumatic stress disorder (PTSD). Each rated their 3 most-stressful, 3 most-positive, 7 most-important and 15 word-cued autobiographical memories, and completed tests of personality and mood. Involuntary memories were then recorded and rated as they occurred for two weeks. Standard mechanisms of cognition and affect applied to extreme events accounted for the properties of stressful memories. Involuntary memories had greater emotional intensity than voluntary memories, but were not more frequently related to traumatic events. The emotional intensity, rehearsal, and centrality to the life story of both voluntary and involuntary memories, rather than incoherence of voluntary traumatic memories and enhanced availability of involuntary traumatic memories, were the properties of autobiographical memories associated with PTSD. PMID:21489820
Scholey, Andrew B; Tildesley, Nicola T J; Ballard, Clive G; Wesnes, Keith A; Tasker, Andrea; Perry, Elaine K; Kennedy, David O
2008-05-01
Species of Salvia (sage) have a long-standing reputation in European medical herbalism, including for memory enhancement. In recent controlled trials, administration of sage extracts with established cholinergic properties improved cognitive function in young adults. This randomised, placebo-controlled, double-blind, balanced, five-period crossover study investigated the acute effects on cognitive performance of a standardised extract of Salvia officinalis in older adults. Twenty volunteers (>65 years of age, mean = 72.95) received four active doses of extract (167, 333, 666 and 1332 mg) and a placebo with a 7-day wash-out period between visits. Assessment involved completion of the Cognitive Drug Research computerised assessment battery. On study days, treatments were administered immediately following a baseline assessment with further assessment at 1, 2.5, 4 and 6 h post treatment. Compared with the placebo condition (which exhibited the characteristic performance decline over the day), the 333-mg dose was associated with significant enhancement of secondary memory performance at all testing times. The same measure benefited to a lesser extent from other doses. There also were significant improvements to accuracy of attention following the 333-mg dose. In vitro analysis confirmed cholinesterase inhibiting properties for the extract. The overall pattern of results is consistent with a dose-related benefit to processes involved in efficient stimulus processing and/or memory consolidation rather than retrieval or working memory efficiency. These findings extend those of the memory-enhancing effects of Salvia extracts in younger populations and warrant further investigation in larger series, in other populations and with different dosing regimes.
St. Jacques, Peggy L.; Schacter, Daniel L.
2013-01-01
Memory can be modified when reactivated, but little is known about how the properties and extent of reactivation can selectively affect subsequent memory. We developed a novel museum paradigm to directly investigate reactivation-induced plasticity for personal memories. Participants reactivated memories triggered by photos taken from a camera they wore during a museum tour and made relatedness judgments on novel photos taken from a different tour of the same museum. Subsequent recognition memory for events at the museum was better for memories that were highly reactivated (i.e., the retrieval cues during reactivation matched the encoding experience) than for memories that were reactivated at a lower level (i.e., the retrieval cues during reactivation mismatched the encoding experience), but reactivation also increased false recognition of photographs depicting stops that were not experienced during the museum tour. Reactivation thus enables memories to be selectively enhanced and distorted via updating, thereby supporting the dynamic and flexible nature of memory. PMID:23406611
Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto
2014-01-01
A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867
What People Believe about How Memory Works: A Representative Survey of the U.S. Population
Simons, Daniel J.; Chabris, Christopher F.
2011-01-01
Incorrect beliefs about the properties of memory have broad implications: The media conflate normal forgetting and inadvertent memory distortion with intentional deceit, juries issue verdicts based on flawed intuitions about the accuracy and confidence of testimony, and students misunderstand the role of memory in learning. We conducted a large representative telephone survey of the U.S. population to assess common beliefs about the properties of memory. Substantial numbers of respondents agreed with propositions that conflict with expert consensus: Amnesia results in the inability to remember one's own identity (83% of respondents agreed), unexpected objects generally grab attention (78%), memory works like a video camera (63%), memory can be enhanced through hypnosis (55%), memory is permanent (48%), and the testimony of a single confident eyewitness should be enough to convict a criminal defendant (37%). This discrepancy between popular belief and scientific consensus has implications from the classroom to the courtroom. PMID:21826204
Linssen, A M W; Vuurman, E F P M; Sambeth, A; Riedel, W J
2012-06-01
Methylphenidate inhibits the reuptake of dopamine and noradrenaline and is used to treat children with attention deficit hyperactivity disorder (ADHD). Besides reducing behavioral symptoms, it improves their cognitive function. There are also observations of methylphenidate-induced cognition enhancement in healthy adults, although studies in this area are relatively sparse. We assessed the possible memory-enhancing properties of methylphenidate. In the current study, the possible enhancing effects of three doses of methylphenidate on declarative and working memory, attention, response inhibition and planning were investigated in healthy volunteers. In a double blind placebo-controlled crossover study, 19 healthy young male volunteers were tested after a single dose of placebo or 10, 20 or 40 mg of methylphenidate. Cognitive performance testing included a word learning test as a measure of declarative memory, a spatial working memory test, a set-shifting test, a stop signal test and a computerized version of the Tower of London planning test. Declarative memory consolidation was significantly improved relative to placebo after 20 and 40 mg of methylphenidate. Methylphenidate also improved set shifting and stopped signal task performance but did not affect spatial working memory or planning. To the best of our knowledge, this is the first study reporting enhanced declarative memory consolidation after methylphenidate in a dose-related fashion over a dose range that is presumed to reflect a wide range of dopamine reuptake inhibition.
Xu, Yanan; Cao, Zhiming; Khan, Ikhlas; Luo, Yuan
2008-04-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that shows cognitive deficits and memory impairment. Extract from the leaves of Gotu Kola (Centella Asiatica) have been used as an alternative medicine for memory improvement in Indian Ayurvedic system of medicine for a long time. Although several studies have revealed its effect in ameliorating the cognitive impairment in rat models of AD and stimulating property on neuronal dendrites of hippocampal region, the molecular mechanism of Gotu Kola on neuroprotection still remains to be elucidated. In this study, we report that phosphorylation of cyclic AMP response element binding protein (CREB) is enhanced in both a neuroblastoma cell line expressing amyloid beta 1-42 (Abeta) and in rat embryonic cortical primary cell culture. In addition, the contribution of two major single components to the enhanced CREB phosphorylatioin was examined. Furthermore, inhibitors were applied in this study revealing that ERK/RSK signaling pathway might mediate this effect of Gotu Kola extract. Taken together, we provide a possible molecular mechanism for memory enhancing property of Gotu Kola extract for the first time.
Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers
NASA Astrophysics Data System (ADS)
Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia
2016-09-01
A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{{g}}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.
Memory and pattern storage in neural networks with activity dependent synapses
NASA Astrophysics Data System (ADS)
Mejias, J. F.; Torres, J. J.
2009-01-01
We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.
Temperature and electrical memory of polymer fibers
NASA Astrophysics Data System (ADS)
Yuan, Jinkai; Zakri, Cécile; Grillard, Fabienne; Neri, Wilfrid; Poulin, Philippe
2014-05-01
We report in this work studies of the shape memory behavior of polymer fibers loaded with carbon nanotubes or graphene flakes. These materials exhibit enhanced shape memory properties with the generation of a giant stress upon shape recovery. In addition, they exhibit a surprising temperature memory with a peak of generated stress at a temperature nearly equal to the temperature of programming. This temperature memory is ascribed to the presence of dynamical heterogeneities and to the intrinsic broadness of the glass transition. We present recent experiments related to observables other than mechanical properties. In particular nanocomposite fibers exhibit variations of electrical conductivity with an accurate memory. Indeed, the rate of conductivity variations during temperature changes reaches a well defined maximum at a temperature equal to the temperature of programming. Such materials are promising for future actuators that couple dimensional changes with sensing electronic functionalities.
Word Imageability Enhances Association-memory by Increasing Hippocampal Engagement.
Caplan, Jeremy B; Madan, Christopher R
2016-10-01
The hippocampus is thought to support association-memory, particularly when tested with cued recall. One of the most well-known and studied factors that influences accuracy of verbal association-memory is imageability; participants remember pairs of high-imageability words better than pairs of low-imageability words. High-imageability words are also remembered better in tests of item-memory. However, we previously found that item-memory effects could not explain the enhancement in cued recall, suggesting that imageability enhances association-memory strength. Here we report an fMRI study designed to ask, what is the role of the hippocampus in the memory advantage for associations due to imageability? We tested two alternative hypotheses: (1) Recruitment Hypothesis: High-imageability pairs are remembered better because they recruit the underlying hippocampal association-memory function more effectively. Alternatively, (2) Bypassing Hypothesis: Imageability functions by making the association-forming process easier, enhancing memory in a way that bypasses the hippocampus, as has been found, for example, with explicit unitization imagery strategies. Results found, first, hippocampal BOLD signal was greater during study and recall of high- than low-imageability word pairs. Second, the difference in activity between recalled and forgotten pairs showed a main effect, but no significant interaction with imageability, challenging the bypassing hypothesis, but consistent with the predictions derived from the recruitment hypothesis. Our findings suggest that certain stimulus properties, like imageability, may leverage, rather than avoid, the associative function of the hippocampus to support superior association-memory.
Intersensory Redundancy Enhances Memory in Bobwhite Quail Embryos
ERIC Educational Resources Information Center
Lickliter, Robert; Bahrick, Lorraine E.; Honeycutt, Hunter
2004-01-01
Information presented concurrently and redundantly to 2 or more senses (intersensory redundancy) has been shown to recruit attention and promote perceptual learning of amodal stimulus properties in animal embryos and human infants. This study examined whether the facilitative effect of intersensory redundancy also extends to the domain of memory.…
The Negative Repetition Effect
ERIC Educational Resources Information Center
Mulligan, Neil W.; Peterson, Daniel J.
2013-01-01
A fundamental property of human memory is that repetition enhances memory. Peterson and Mulligan (2012) recently documented a surprising "negative repetition effect," in which participants who studied a list of cue-target pairs twice recalled fewer targets than a group who studied the pairs only once. Words within a pair rhymed, and…
Cambon, Karine; Hansen, Stine M; Venero, Cesar; Herrero, A Isabel; Skibo, Galina; Berezin, Vladimir; Bock, Elisabeth; Sandi, Carmen
2004-04-28
The neural cell adhesion molecule (NCAM) plays a critical role in development and plasticity of the nervous system and is involved in the mechanisms of learning and memory. Here, we show that intracerebroventricular administration of the FG loop (FGL), a synthetic 15 amino acid peptide corresponding to the binding site of NCAM for the fibroblast growth factor receptor 1 (FGFR1), immediately after training rats in fear conditioning or water maze learning, induced a long-lasting improvement of memory. In primary cultures of hippocampal neurons, FGL enhanced the presynaptic function through activation of FGFR1 and promoted synapse formation. These results provide the first evidence for a memory-facilitating effect resulting from a treatment that mimics NCAM function. They suggest that increased efficacy of synaptic transmission and formation of new synapses probably mediate the cognition-enhancing properties displayed by the peptide.
NASA Astrophysics Data System (ADS)
Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk
2018-05-01
We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.
Shape-memory effect of nanocomposites based on liquid-crystalline elastomers
NASA Astrophysics Data System (ADS)
Marotta, A.; Lama, G. C.; Gentile, G.; Cerruti, P.; Carfagna, C.; Ambrogi, V.
2016-05-01
In this work, nanocomposites based on liquid crystalline (LC) elastomers were prepared and characterized in their shape memory properties. For the synthesis of materials, p-bis(2,3-epoxypropoxy)-α-methylstilbene (DOMS) was used as mesogenic epoxy monomer, sebacic acid (SA) as curing agent and multi-walled carbon nanotubes (MWCNT) and graphene oxide (GO) as fillers. First, an effective compatibilization methodology was set up to improve the interfacial adhesion between the matrix and the carbonaceous nanofillers, thus obtaining homogeneous distribution and dispersion of the nanofillers within the polymer phase. Then, the obtained nanocomposite films were characterized in their morphological and thermal properties. In particular, the effect of the addition of the nanofillers on liquid crystalline behavior, as well as on shape-memory properties of the realized materials was investigated. It was found that both fillers were able to enhance the thermomechanical response of the LC elastomers, making them good candidates as shape memory materials.
Behavioral Specifications of Reward-Associated Long-Term Memory Enhancement in Humans
ERIC Educational Resources Information Center
Wittmann, Bianca C.; Dolan, Raymond J.; Duzel, Emrah
2011-01-01
Recent functional imaging studies link reward-related activation of the midbrain substantia nigra-ventral tegmental area (SN/VTA), the site of origin of ascending dopaminergic projections, with improved long-term episodic memory. Here, we investigated in two behavioral experiments how (1) the contingency between item properties and reward, (2) the…
Wang, Rong; Zhang, Fanjun; Lin, Weiwei; Liu, Wenkai; Li, Jiehua; Luo, Feng; Wang, Yaning; Tan, Hong
2018-06-01
Biodegradable shape memory polymers are promising biomaterials for minimally invasive surgical procedures. Herein, a series of linear biodegradable shape memory poly(ε-caprolactone) (PCL)-based polyurethane ureas (PUUs) containing a novel phenylalanine-derived chain extender is synthesized. The phenylalanine-derived chain extender, phenylalanine-hexamethylenediamine-phenylalanine (PHP), contains two chymotrypsin cleaving sites to enhance the enzymatic degradation of PUUs. The degradation rate, the crystallinity, and mechanical properties of PUUs are tailored by the content of PHP. Meanwhile, semicrystalline PCL is not only hydrolytically degradable but also vital for shape memory. Good shape memory ability under body temperature is achieved for PUUs due to the strong interactions in hard segments for permanent crosslinking and the crystallization-melt transition of PCL to switch temporary shape. The PUUs would have a great potential in application as implanting stent. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhao, Jingxin; Yang, Qiucheng; Wang, Tao; Wang, Lian; You, Jichun; Li, Yongjin
2017-12-20
An effective strategy to tailor the microporous structures has been developed based on the shape memory effect in porous poly(l-lactic acid) membranes in which tiny crystals and amorphous matrix play the roles of shape-fixed phase and reversible-phase, respectively. Our results indicate that not only PLLA membranes but micropores exhibit shape memory properties. The proportional deformations on two scales have been achieved by uniaxial or biaxial tension, providing a facile way to manipulate continuously the size and the orientation degree of pores on microscale. The enhanced separation performance has been validated by taking polystyrene colloids with varying diameters as an example.
ERIC Educational Resources Information Center
Kangas, Brian D.; Branch, Marc N.
2012-01-01
Emerging evidence suggests that nicotine may enhance short-term memory. Some of this evidence comes from nonhuman primate research using a procedure called delayed matching-to-sample, wherein the monkey is trained to select a comparison stimulus that matches some physical property of a previously presented sample stimulus. Delays between sample…
Kruk-Słomka, Marta; Stępnik, Katarzyna; Szalak, Radosław; Biała, Grażyna
2017-01-01
Civilization diseases associated with memory disorders are important health problems occurring due to a prolonged life span. The manuscript shows the results of an in vivo study targeting the emergence of two drug candidates with anti-amnestic properties. The preceding quantitative structure–activity relationship (QSAR) studies provided information on the ability of berberine and magnoflorine to cross the blood–brain barrier (BBB). In the light of these findings, both compounds were purified from crude plant extracts of barberries: berberine—from Berberis siberica using a method published earlier, and magnoflorine—from Berberis cretica by centrifugal partition chromatography (solvent system: ethyl acetate:butanol:water-0.6:1.5:3 v/v/v). Both the compounds were evaluated for their memory enhancing and scopolamine inhibitory properties in an in vivo passive avoidance (PA) test on mice towards short-term and long-term memory. Cognition enhancing properties were observed at the following doses: 5 mg/kg (i.p.) for berberine and 20 mg/kg (i.p.) for magnoflorine. In addition, both the tested isoquinolines with the co-administered scopolamine were found to block long-term but not short-term memory impairment. No influence on the locomotor activity was observed for the tested doses. The results confirmed a marked central activity of magnoflorine and showed the necessity to lower the dosage of berberine. Optimized purification conditions have been elaborated for magnoflorine. PMID:29186770
PDE4 as a target for cognition enhancement
Richter, Wito; Menniti, Frank S.; Zhang, Han-Ting; Conti, Marco
2014-01-01
Introduction The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. Areas covered PDE4 is the largest of the eleven mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. Expert opinion PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors. PMID:23883342
Kai, Dan; Prabhakaran, Molamma P; Chan, Benjamin Qi Yu; Liow, Sing Shy; Ramakrishna, Seeram; Xu, Fujian; Loh, Xian Jun
2016-02-02
A porous shape memory scaffold with biomimetic architecture is highly promising for bone tissue engineering applications. In this study, a series of new shape memory polyurethanes consisting of organic poly(ε-caprolactone) (PCL) segments and inorganic polydimethylsiloxane (PDMS) segments in different ratios (9 : 1, 8 : 2 and 7 : 3) was synthesised. These PCL-PDMS copolymers were further engineered into porous fibrous scaffolds by electrospinning. With different ratios of PCL: PDMS, the fibers showed various fiber diameters, thermal behaviour and mechanical properties. Even after being processed into fibrous structures, these PCL-PDMS copolymers maintained their shape memory properties, and all the fibers exhibited excellent shape recovery ratios of >90% and shape fixity ratios of >92% after 7 thermo-mechanical cycles. Biological assay results corroborated that the fibrous PCL-PDMS scaffolds were biocompatible by promoting osteoblast proliferation, functionally enhanced biomineralization-relevant alkaline phosphatase expression and mineral deposition. Our study demonstrated that the PCL-PDMS fibers with excellent shape memory properties are promising substrates as bioengineered grafts for bone regeneration.
AC Electric Field Activated Shape Memory Polymer Composite
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.
2011-01-01
Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.
Cooper, Megan A; Fehniger, Todd A; Colonna, Marco
2017-12-18
Studies over the last decade have decisively shown that innate immune natural killer (NK) cells exhibit enhanced long-lasting functional responses following a single activation event. With the increased recognition of memory and memory-like properties of NK cells, questions have arisen with regard to their ability to effectively mediate vaccination responses in humans. Moreover, recently discovered innate lymphoid cells (ILCs) could also potentially exhibit memory-like functions. Here, we review different forms of NK cell memory, and speculate about the ability of these cells and ILCs to meaningfully contribute to vaccination responses. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Evaluation of the Neurobehavioral Properties of Naringin in Swiss Mice.
Ben-Azu, Benneth; Nwoke, Ekene Enekabokom; Umukoro, Solomon; Aderibigbe, Adegbuyi Oladele; Ajayi, Abayomi Mayowa; Iwalewa, Ezekiel O
2018-03-12
This study was carried out to investigate the neurobehavioral properties of naringin, a flavonoid compound formed from naringenin on behavioral models in mice. The neurobehavioral property of naringin (2.5, 5 and 10 mg/kg) administered intraperitoneally (i.p.) was assessed on novelty-induced rearing, locomotor behavior using open field test; anxiolytic effect was evaluated using hole-board, light and dark box, and elevated-plus maze paradigms. The anti-depressant-like property was also assessed using forced swim test (FST), tail suspension test (TST) and social interaction test (SIT). The cognitive enhancing effect of naringin was evaluated using Y-maze test. Intraperitoneal administration of naringin (2.5 and 5 mg/kg) demonstrated significant (p<0.05) increase in rearing behavior but not the spontaneous motor activity in comparison to control. In the anti-depressant test, naringin (2.5, 5 and 10 mg/kg, i.p.) significantly decreased the duration of immobility in the FST and TST, and increased the % social interaction preference in the SIT relative to controls, suggesting anti-depressant-like and increased social behaviors. Moreover, naringin also exhibited anxiolytic and memory enhancing properties in mice. These findings suggest that naringin possesses anti-depressant- and anxiolytic-like activities as well as memory enhancing effect in mice. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Rhodes, Sinead M.; Donaldson, David I.
2007-01-01
Episodic memory depends upon multiple dissociable retrieval processes. Here we investigated the degree to which the processes engaged during successful retrieval are dependent on the properties of the representations that underlie memory for an event. Specifically we examined whether the individual elements of an event can, under some conditions,…
2007-01-01
Electro - optic properties of cholesteric liquid crystals with holographically patterned polymer stabilization were examined. It is hypothesized that...enhanced electro - optic properties of the final device. Prior to holographic patterning, polymer stabilization with large elastic memory was generated by way... electro - optic properties appear to stem from a single dimension domain size increase, which allows for a reduction in the LC/polymer interaction.
Wolf, O T; Atsak, P; de Quervain, D J; Roozendaal, B; Wingenfeld, K
2016-08-01
Stress causes a neuroendocrine response cascade, leading to the release of catecholamines and glucocorticoids (GCs). GCs influence learning and memory by acting on mineralocorticoid (MR) and glucocorticoid (GR) receptors. Typically, GCs enhance the consolidation of memory processing at the same time as impairing the retrieval of memory of emotionally arousing experiences. The present selective review addresses four recent developments in this area. First, the role of the endocannabinoid system in mediating the rapid, nongenomic effects of GCs on memory is illustrated in rodents. Subsequently, studies on the impact of the selective stimulation of MRs on different memory processes in humans are summarised. Next, a series of human experiments on the impact of stress or GC treatment on fear extinction and fear reconsolidation is presented. Finally, the clinical relevance of the effects of exogenous GC administration is highlighted by the description of patients with anxiety disorders who demonstrate an enhancement of extinction-based therapies by GC treatment. The review highlights the substantial progress made in our mechanistic understanding of the memory-modulating properties of GCs, as well as their clinical potential. © 2015 British Society for Neuroendocrinology.
LRP8-Reelin-regulated Neuronal (LRN) Enhancer Signature Underlying Learning and Memory Formation
Telese, Francesca; Ma, Qi; Perez, Patricia Montilla; Notani, Dimple; Oh, Soohwan; Li, Wenbo; Comoletti, Davide; Ohgi, Kenneth A.; Taylor, Havilah; Rosenfeld, Michael G.
2015-01-01
Summary One of the exceptional properties of the brain is its ability to acquire new knowledge through learning and to store that information through memory. The epigenetic mechanisms linking changes in neuronal transcriptional programs to behavioral plasticity remain largely unknown. Here, we identify the epigenetic signature of the neuronal enhancers required for transcriptional regulation of synaptic plasticity genes during memory formation, linking this to Reelin signaling. The binding of Reelin to its receptor, LRP8, triggers activation of this cohort of LRP8-Reelin-regulated-Neuronal (LRN) enhancers that serve as the ultimate convergence point of a novel synapse-to-nucleus pathway. Reelin simultaneously regulates NMDA-receptor transmission, which reciprocally permits the required, γ-secretase-dependent cleavage of LRP8, revealing an unprecedented role for its intracellular domain in the regulation of synaptically generated signals. These results uncover an in vivo enhancer code serving as a critical molecular component of cognition and relevant to psychiatric disorders linked to defects in Reelin signaling. PMID:25892301
Memory color of natural familiar objects: effects of surface texture and 3-D shape.
Vurro, Milena; Ling, Yazhu; Hurlbert, Anya C
2013-06-28
Natural objects typically possess characteristic contours, chromatic surface textures, and three-dimensional shapes. These diagnostic features aid object recognition, as does memory color, the color most associated in memory with a particular object. Here we aim to determine whether polychromatic surface texture, 3-D shape, and contour diagnosticity improve memory color for familiar objects, separately and in combination. We use solid three-dimensional familiar objects rendered with their natural texture, which participants adjust in real time to match their memory color for the object. We analyze mean, accuracy, and precision of the memory color settings relative to the natural color of the objects under the same conditions. We find that in all conditions, memory colors deviate slightly but significantly in the same direction from the natural color. Surface polychromaticity, shape diagnosticity, and three dimensionality each improve memory color accuracy, relative to uniformly colored, generic, or two-dimensional shapes, respectively. Shape diagnosticity improves the precision of memory color also, and there is a trend for polychromaticity to do so as well. Differently from other studies, we find that the object contour alone also improves memory color. Thus, enhancing the naturalness of the stimulus, in terms of either surface or shape properties, enhances the accuracy and precision of memory color. The results support the hypothesis that memory color representations are polychromatic and are synergistically linked with diagnostic shape representations.
Ballard, Michael E.; Gallo, David A.; de Wit, Harriet
2014-01-01
Rationale Several psychoactive drugs are known to influence episodic memory. However, these drugs’ effects on false memory, or the tendency to incorrectly remember nonstudied information, remain poorly understood. Objectives Here, we examined the effects of two commonly used psychoactive drugs, one with memory-enhancing properties (dextroamphetamine; AMP), and another with memory-impairing properties (Δ9-tetrahydrocannabinol; THC), on false memory using the Deese/Roediger–McDermott (DRM) illusion. Methods Two parallel studies were conducted in which healthy volunteers received either AMP (0, 10, and 20 mg) or THC (0, 7.5, and 15 mg) in within-subjects, randomized, double-blind designs. Participants studied DRM word lists under the influence of the drugs, and their recognition memory for the studied words was tested 2 days later, under sober conditions. Results As expected, AMP increased memory of studied words relative to placebo, and THC reduced memory of studied words. Although neither drug significantly affected false memory relative to placebo, AMP increased false memory relative to THC. Across participants, both drugs’ effects on true memory were positively correlated with their effects on false memory. Conclusions Our results indicate that AMP and THC have opposing effects on true memory, and these effects appear to correspond to similar, albeit more subtle, effects on false memory. These findings are consistent with previous research using the DRM illusion and provide further evidence that psychoactive drugs can affect the encoding processes that ultimately result in the creation of false memories. PMID:21647577
Ballard, Michael E; Gallo, David A; de Wit, Harriet
2012-01-01
Several psychoactive drugs are known to influence episodic memory. However, these drugs' effects on false memory, or the tendency to incorrectly remember nonstudied information, remain poorly understood. Here, we examined the effects of two commonly used psychoactive drugs, one with memory-enhancing properties (dextroamphetamine; AMP), and another with memory-impairing properties (Δ(9)-tetrahydrocannabinol; THC), on false memory using the Deese/Roediger-McDermott (DRM) illusion. Two parallel studies were conducted in which healthy volunteers received either AMP (0, 10, and 20 mg) or THC (0, 7.5, and 15 mg) in within-subjects, randomized, double-blind designs. Participants studied DRM word lists under the influence of the drugs, and their recognition memory for the studied words was tested 2 days later, under sober conditions. As expected, AMP increased memory of studied words relative to placebo, and THC reduced memory of studied words. Although neither drug significantly affected false memory relative to placebo, AMP increased false memory relative to THC. Across participants, both drugs' effects on true memory were positively correlated with their effects on false memory. Our results indicate that AMP and THC have opposing effects on true memory, and these effects appear to correspond to similar, albeit more subtle, effects on false memory. These findings are consistent with previous research using the DRM illusion and provide further evidence that psychoactive drugs can affect the encoding processes that ultimately result in the creation of false memories.
1996-05-01
detection, catalysts for enhancing and controlling energetic reactions, synthesis of new compounds (e.g., narrow band-gap materials and non-linear...design for synthesis of advanced materials Fabricate porous lightweight and resilient structural materials with novel properties and uses Demonstrate...elements for 10 nm computer memory elements Demonstrate enhanced propellants and explosives with nanoparticle surface chemistry Demonstrate sensing of
Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.
Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry
2018-03-07
3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.
Discovery of Selective Phosphodiesterase 1 Inhibitors with Memory Enhancing Properties.
Dyck, Brian; Branstetter, Bryan; Gharbaoui, Tawfik; Hudson, Andrew R; Breitenbucher, J Guy; Gomez, Laurent; Botrous, Iriny; Marrone, Tami; Barido, Richard; Allerston, Charles K; Cedervall, E Peder; Xu, Rui; Sridhar, Vandana; Barker, Ryan; Aertgeerts, Kathleen; Schmelzer, Kara; Neul, David; Lee, Dong; Massari, Mark Eben; Andersen, Carsten B; Sebring, Kristen; Zhou, Xianbo; Petroski, Robert; Limberis, James; Augustin, Martin; Chun, Lawrence E; Edwards, Thomas E; Peters, Marco; Tabatabaei, Ali
2017-04-27
A series of potent thienotriazolopyrimidinone-based PDE1 inhibitors was discovered. X-ray crystal structures of example compounds from this series in complex with the catalytic domain of PDE1B and PDE10A were determined, allowing optimization of PDE1B potency and PDE selectivity. Reduction of hERG affinity led to greater than a 3000-fold selectivity for PDE1B over hERG. 6-(4-Methoxybenzyl)-9-((tetrahydro-2H-pyran-4-yl)methyl)-8,9,10,11-tetrahydropyrido[4',3':4,5]thieno[3,2-e][1,2,4]triazolo[1,5-c]pyrimidin-5(6H)-one was identified as an orally bioavailable and brain penetrating PDE1B enzyme inhibitor with potent memory-enhancing effects in a rat model of object recognition memory.
Collaboration can improve individual recognition memory: evidence from immediate and delayed tests.
Rajaram, Suparna; Pereira-Pasarin, Luciane P
2007-02-01
In two experiments, we tested the effects of collaboration on individual recognition memory. In Experiment 1, participants studied pictures and words either for meaning or for surface properties and made recognition memory judgments individually either following group discussion among 3 members (collaborative condition) or in the absence of discussion (noncollaborative condition). Levels of processing and picture superiority effects were replicated, and collaboration significantly increased individual recognition memory. Experiment 2 replicated this positive effect and showed that even though memory sensitivity declined at longer delays (48 h and 1 week), collaboration continued to exert a positive influence. These findings show that (1) consensus is not necessary for producing benefits of collaboration on individual recognition, (2) collaborative facilitation on individual memory is robust, and (3) collaboration enhances individual memory further if conditions predispose individual accuracy in the absence of collaboration.
Emotional memory and migraine: effects of amitriptyline and sex related difference.
Gasbarri, Antonella; Arnone, Benedetto; Pompili, Assunta; Cifariello, Agata; Marini, Carmine; Tavares, M Clotilde; Tomaz, Carlos
2008-05-16
Many studies suggest that emotional arousal improves memory storage. The aim of this study was to evaluate the effects of emotional content on explicit memory in untreated cephalalgic patients and in migraineurs treated with the antidepressant amitriptyline. We utilized an adaptation of two versions of the same story, with different arousing properties (neutral or emotional), which have been already employed in experiments involving the enhancing effects of emotions on memory retention. Subjects of the present study were healthy subjects and cephalalgic patients, suffering from migraine headache, which included untreated migraineurs and migraineurs treated with the antidepressant amitriptyline. The findings of our experiments suggest that chronic migraine is related to memory impairment. Taking into account that migraine is associated with major depression, in the present research the effect of the antidepressant amitriptyline was also evaluated. Our results showed that amitriptyline has an impairment effect on memory. In fact, the untreated migraineurs, compared to treated, recalled the most emotional phase of the arousal story significantly better. Then, our data suggest that amitriptyline prevents the enhancing effects of emotional content on memory processes. Moreover, in agreement with our previous data, this study suggests the existence of gender differences in the processing of emotional stimuli and underscores the importance of sex on emotional memory mechanisms.
Is caffeine a cognitive enhancer?
Nehlig, Astrid
2010-01-01
The effects of caffeine on cognition were reviewed based on the large body of literature available on the topic. Caffeine does not usually affect performance in learning and memory tasks, although caffeine may occasionally have facilitatory or inhibitory effects on memory and learning. Caffeine facilitates learning in tasks in which information is presented passively; in tasks in which material is learned intentionally, caffeine has no effect. Caffeine facilitates performance in tasks involving working memory to a limited extent, but hinders performance in tasks that heavily depend on working memory, and caffeine appears to rather improve memory performance under suboptimal alertness conditions. Most studies, however, found improvements in reaction time. The ingestion of caffeine does not seem to affect long-term memory. At low doses, caffeine improves hedonic tone and reduces anxiety, while at high doses, there is an increase in tense arousal, including anxiety, nervousness, jitteriness. The larger improvement of performance in fatigued subjects confirms that caffeine is a mild stimulant. Caffeine has also been reported to prevent cognitive decline in healthy subjects but the results of the studies are heterogeneous, some finding no age-related effect while others reported effects only in one sex and mainly in the oldest population. In conclusion, it appears that caffeine cannot be considered a ;pure' cognitive enhancer. Its indirect action on arousal, mood and concentration contributes in large part to its cognitive enhancing properties.
Effect of surface etching and electrodeposition of copper on nitinol
NASA Astrophysics Data System (ADS)
Ramos-Moore, E.; Rosenkranz, A.; Matamala, L. F.; Videla, A.; Durán, A.; Ramos-Grez, J.
2017-10-01
Nitinol-based materials are very promising for medical and dental applications since those materials can combine shape memory, corrosion resistance, biocompatibility and antibacterial properties. In particular, surface modifications and coating deposition can be used to tailor and to unify those properties. We report preliminary results on the study of the effect of surface etching and electrodeposition of Copper on Nitinol using optical, chemical and thermal techniques. The results show that surface etching enhances the surface roughness of Nitinol, induces the formation of Copper-based compounds at the Nitinol-Copper interface, reduces the austenitic-martensitic transformations enthalpies and reduces the Copper coating roughness. Further studies are needed in order to highlight the influence of the electrodeposited Copper on the memory shape properties of NiTi.
2008-03-01
solution-gelation (sol- gel) technique, to form hybrids of these materials with high-Tg open-cell foams so as to enhance shape memory characteristics , and...did not demonstrate the shape memory properties of the original Morthane thermoplastic due to the suppression of crystallinity following sol-gel...method. The utilization of photolatent bases to allow for improved reaction control and the combination of this system with Basotect™ open-cell foam in
Simultaneous enhancement of magnetic and mechanical properties in Ni-Mn-Sn alloy by Fe doping
Tan, Changlong; Tai, Zhipeng; Zhang, Kun; Tian, Xiaohua; Cai, Wei
2017-01-01
Both magnetic-field-induced reverse martensitic transformation (MFIRMT) and mechanical properties are crucial for application of Ni-Mn-Sn magnetic shape memory alloys. Here, we demonstrate that substitution of Fe for Ni can simultaneously enhance the MFIRMT and mechanical properties of Ni-Mn-Sn, which are advantageous for its applications. The austenite in Ni44Fe6Mn39Sn11 shows the typical ferromagnetic magnetization with the highest saturation magnetization of 69 emu/g at 223 K. The result shows that an appropriate amount of Fe substitution can really enhance the ferromagnetism of Ni50Mn39Sn11 alloy in austenite, which directly leads to the enhancement of MFIRMT. Meanwhile, the mechanical property significantly improves with Fe doping. When there is 4 at.% Fe added, the compressive and maximum strain reach the maximum value (approximately 725.4 MPa and 9.3%). Furthermore, using first-principles calculations, we clarify the origin of Fe doping on martensitic transformation and magnetic properties. PMID:28230152
In vivo pharmacological profile of S 38093, a novel histamine H3 receptor inverse agonist.
Panayi, Fany; Sors, Aurore; Bert, Lionel; Martin, Brigitte; Rollin-Jego, Gaelle; Billiras, Rodolphe; Carrié, Isabelle; Albinet, Karine; Danober, Laurence; Rogez, Nathalie; Thomas, Jean-Yves; Pira, Luigi; Bertaina-Anglade, Valérie; Lestage, Pierre
2017-05-15
S 38093, a novel histamine H3 receptor inverse agonist, was tested in a series of neurochemical and behavioral paradigms designed to evaluate its procognitive and arousal properties. In intracerebral microdialysis studies performed in rats, S 38093 dose-dependently increased histamine extracellular levels in the prefrontal cortex and facilitated cholinergic transmission in the prefrontal cortex and hippocampus of rats after acute and chronic administration (10mg/kg i.p.). Acute oral administration of S 38093 at 0.1mg/kg significantly improved spatial working memory in rats in the Morris water maze test. The compound also displayed cognition enhancing properties in the two-trial object recognition task in rats, in a natural forgetting paradigm at 0.3 and 1mg/kg p.o. and in a scopolamine-induced memory deficit situation at 3mg/kg p.o. The property of S 38093 to promote episodic memory was confirmed in a social recognition test in rats at 0.3 and 1mg/kg i.p. Arousal properties of S 38093 were assessed in freely moving rats by using electroencephalographic recordings: at 3 and 10mg/kg i.p., S 38093 significantly reduced slow wave sleep delta power and induced at the highest dose a delay in sleep latency. S 38093 at 10mg/kg p.o. also decreased the barbital-induced sleeping time in rats. Taken together these data indicate that S 38093, a novel H3 inverse agonist, displays cognition enhancing at low doses and arousal properties at higher doses in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, Young Tack; Hwang, Do Kyung; Im, Seongil
2015-11-01
Two-dimensional (2D) van der Waals (vdWs) materials are a class of new materials due to their unique physical properties. Of the many 2D vdWs materials, molybdenum disulfide (MoS2) is a representative n-type transition-metal dichalcogenide (TMD) semiconductor. Here, we report on a high-performance MoS2 nanosheet-based nonvolatile memory transistor with a poly(vinylidenefluoride-trifluoroethylene) (P(VDF-TrFE)) ferroelectric top gate insulator. In order to enhance the ohmic contact property, we use graphene flakes as source/drain electrodes prepared by using the direct imprinting method with an elastomer stamp. The MoS2 ferroelectric field-effect transistor (FeFET) shows the highest linear electron mobility value of 175 cm2/Vs with a high on/off current ratio of more than 107, and a very clear memory window of more than 15 V. The program and erase dynamics and the static retention properties are also well demonstrated.
Alzoubi, Karem H; Rawashdeh, Nasab Q; Khabour, Omar F; El-Elimat, Tamam; Albataineh, Hanan; Al-Zghool, Hamzeh M; Alali, Feras Q
2017-12-01
Oxidative stress interferes with the functional roles of the hippocampus and results in cognitive decline. Antioxidant supplementation has a cognitive enhancing activity through protecting hippocampus brain cells from the damaging effects of the reactive oxygen species. The dried methanolic extract of the aboveground parts of Moringa peregrina (Forssk.) Fiori (Moringaceae) was hypothesized to have memory-enhancing activity via its antioxidative properties. HPLC and LC-MS methods were used for qualitative analysis of the marker compounds. Six major compounds of the methanolic extract of M. peregrina were identified, namely, rutin, myricetin, α-amyrin, β-amyrin, lupeol acetate, and β-sitosterol. Male Wistar rats were administered via oral gavage three dose levels (50, 100, and 500 mg/kg) of M. peregrina methanolic extract for 2 months. The radial arm water maze (RAWM) was used to test spatial learning and memory. In addition, ELISA was used to analyze the levels of brain-derived neurotrophic factor (BDNF) and to assess the level of some oxidative stress markers. M. peregrina (150 mg/kg) resulted in short- and long-term memory enhancement (P < 0.05). Moreover, M. peregrina administration elevated BDNF levels in the hippocampus (P < 0.05) and caused favorable changes in oxidative stress biomarkers. In particular, an increase in glutathione (GSH), a decrease in oxidized glutathione (GSSG), and an increase in the antioxidant enzyme glutathione peroxidase (GPx) levels in the hippocampus were elicited after treatment with M. peregrina. Taken together, our data show that oral administration of M. peregrina enhances both short- and long-term memory functions via combating oxidative stress and increasing BDNF levels in the hippocampus. Consuming this safe plant may thus help promote spatial learning and improve memory.
Enhancement of fear memory by retrieval through reconsolidation
Fukushima, Hotaka; Zhang, Yue; Archbold, Georgia; Ishikawa, Rie; Nader, Karim; Kida, Satoshi
2014-01-01
Memory retrieval is considered to have roles in memory enhancement. Recently, memory reconsolidation was suggested to reinforce or integrate new information into reactivated memory. Here, we show that reactivated inhibitory avoidance (IA) memory is enhanced through reconsolidation under conditions in which memory extinction is not induced. This memory enhancement is mediated by neurons in the amygdala, hippocampus, and medial prefrontal cortex (mPFC) through the simultaneous activation of calcineurin-induced proteasome-dependent protein degradation and cAMP responsive element binding protein-mediated gene expression. Interestingly, the amygdala is required for memory reconsolidation and enhancement, whereas the hippocampus and mPFC are required for only memory enhancement. Furthermore, memory enhancement triggered by retrieval utilizes distinct mechanisms to strengthen IA memory by additional learning that depends only on the amygdala. Our findings indicate that reconsolidation functions to strengthen the original memory and show the dynamic nature of reactivated memory through protein degradation and gene expression in multiple brain regions. DOI: http://dx.doi.org/10.7554/eLife.02736.001 PMID:24963141
Al Abed, Alice Shaam; Sellami, Azza; Brayda-Bruno, Laurent; Lamothe, Valérie; Noguès, Xavier; Potier, Mylène; Bennetau-Pelissero, Catherine; Marighetto, Aline
2016-07-01
Because estrogens have mostly been studied in gonadectomized females, effects of chronic exposure to environmental estrogens in the general population are underestimated. Estrogens can enhance hippocampus-dependent memory through the modulation of information storage. However, declarative memory, the hippocampus-dependent memory of facts and events, demands more than abilities to retain information. Specifically, memory of repetitive events of everyday life such as "where I parked" requires abilities to organize/update memories to prevent proactive interference from similar memories of previous "parking events". Whether such organizational processes are estrogen-sensitive is unknown. We here studied, in intact young and aged adult mice, drinking-water (1μM) estradiol effects on both retention and organizational components of hippocampus-dependent memory, using a radial-maze task of everyday-like memory. Demand on retention vs organization was manipulated by varying the time-interval separating repetitions of similar events. Estradiol increased performance in young and aged mice under minimized organizational demand, but failed to improve the age-associated memory impairment and diminished performance in young mice under high organizational demand. In fact, estradiol prolonged mnemonic retention of successive events without improving organization abilities, hence resulted in more proactive interference from irrelevant memories. c-Fos imaging of testing-induced brain activations showed that the deterioration of young memory was associated with dentate gyrus dysconnectivity, reminiscent of that seen in aged mice. Our findings support the view that estradiol is promnesic but also reveal that such property can paradoxically impair memory. These findings have important outcomes regarding health issues relative to the impact of environmental estrogens in the general population. Copyright © 2016 Elsevier Ltd. All rights reserved.
Arc expression identifies the lateral amygdala fear memory trace
Gouty-Colomer, L A; Hosseini, B; Marcelo, I M; Schreiber, J; Slump, D E; Yamaguchi, S; Houweling, A R; Jaarsma, D; Elgersma, Y; Kushner, S A
2016-01-01
Memories are encoded within sparsely distributed neuronal ensembles. However, the defining cellular properties of neurons within a memory trace remain incompletely understood. Using a fluorescence-based Arc reporter, we were able to visually identify the distinct subset of lateral amygdala (LA) neurons activated during auditory fear conditioning. We found that Arc-expressing neurons have enhanced intrinsic excitability and are preferentially recruited into newly encoded memory traces. Furthermore, synaptic potentiation of thalamic inputs to the LA during fear conditioning is learning-specific, postsynaptically mediated and highly localized to Arc-expressing neurons. Taken together, our findings validate the immediate-early gene Arc as a molecular marker for the LA neuronal ensemble recruited during fear learning. Moreover, these results establish a model of fear memory formation in which intrinsic excitability determines neuronal selection, whereas learning-related encoding is governed by synaptic plasticity. PMID:25802982
Near-Infrared Fluorescence-Enhanced Optical Tomography
2016-01-01
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography. PMID:27803924
Near-Infrared Fluorescence-Enhanced Optical Tomography.
Zhu, Banghe; Godavarty, Anuradha
2016-01-01
Fluorescence-enhanced optical imaging using near-infrared (NIR) light developed for in vivo molecular targeting and reporting of cancer provides promising opportunities for diagnostic imaging. The current state of the art of NIR fluorescence-enhanced optical tomography is reviewed in the context of the principle of fluorescence, the different measurement schemes employed, and the mathematical tools established to tomographically reconstruct the fluorescence optical properties in various tissue domains. Finally, we discuss the recent advances in forward modeling and distributed memory parallel computation to provide robust, accurate, and fast fluorescence-enhanced optical tomography.
Leong, Jeffrey W.; Chase, Julie M.; Romee, Rizwan; Schneider, Stephanie E.; Sullivan, Ryan P.; Cooper, Megan A.; Fehniger, Todd A.
2014-01-01
NK cells are effector lymphocytes that are under clinical investigation for the adoptive immunotherapy of hematologic malignancies, especially acute myeloid leukemia. Recent work in mice has identified innate memory-like properties of NK cells. Human NK cells also exhibit memory-like properties, and cytokine-induced memory-like (CIML) NK cells are generated via brief pre-activation with IL-12, IL-15, and IL-18, which later exhibit enhanced functionality upon restimulation. However, investigation of the optimal cytokine receptors and signals for maintenance of enhanced function and homeostasis following pre-activation remains unclear. Here, we show that IL-12, IL-15, and IL-18 pre-activation induces a rapid and prolonged expression of CD25, resulting in a functional high affinity IL-2 receptor (IL-2Rαβγ) that confers responsiveness to picomolar concentrations of IL-2. The expression of CD25 correlated with STAT5 phosphorylation in response to picomolar concentrations of IL-2, indicating the presence of a signal-competent IL-2Rαβγ. Furthermore, picomolar concentrations of IL-2 acted synergistically with IL-12 to co-stimulate IFN-γ production by pre-activated NK cells, an effect that was CD25-dependent. Picomolar concentrations of IL-2 also enhanced NK cell proliferation and cytotoxicity via the IL-2Rαβγ. Further, following adoptive transfer into immunodeficient NOD-SCID-γc−/− mice, human cytokine pre-activated NK cells expand preferentially in response to exogenous IL-2. Collectively, these data demonstrate that human CIML NK cells respond to IL-2 via IL-2Rαβγ with enhanced survival and functionality, and provide additional rationale for immunotherapeutic strategies that include brief cytokine pre-activation prior to adoptive NK cell transfer, followed by low dose IL-2 therapy. PMID:24434782
Encoding the world around us: motor-related processing influences verbal memory.
Madan, Christopher R; Singhal, Anthony
2012-09-01
It is known that properties of words such as their imageability can influence our ability to remember those words. However, it is not known if other object-related properties can also influence our memory. In this study we asked whether a word representing a concrete object that can be functionally interacted with (i.e., high-manipulability word) would enhance the memory representations for that item compared to a word representing a less manipulable object (i.e., low-manipulability word). Here participants incidentally encoded high-manipulability (e.g., CAMERA) and low-manipulability words (e.g., TABLE) while making word judgments. Using a between-subjects design, we varied the depth-of-processing involved in the word judgment task: participants judged the words based on personal experience (deep/elaborative processing), word length (shallow), or functionality (intermediate). Participants were able to remember high-manipulability words better than low-manipulability words in both the personal experience and word length groups; thus presenting the first evidence that manipulability can influence memory. However, we observed better memory for low- than high-manipulability words in the functionality group. We explain this surprising interaction between manipulability and memory as being mediated by automatic vs. controlled motor-related cognition. Copyright © 2012 Elsevier Inc. All rights reserved.
Kristofova, Martina; Aher, Yogesh D; Ilic, Marija; Radoman, Bojana; Kalaba, Predrag; Dragacevic, Vladimir; Aher, Nilima Y; Leban, Johann; Korz, Volker; Zanon, Lisa; Neuhaus, Winfried; Wieder, Marcus; Langer, Thierry; Urban, Ernst; Sitte, Harald H; Hoeger, Harald; Lubec, Gert; Aradska, Jana
2018-05-02
Dopamine reuptake inhibitors have been shown to improve cognitive parameters in various tasks and animal models. We recently reported a series of modafinil analogues, of which the most promising, 5-((benzhydrylsulfinyl)methyl) thiazole (CE-123), was selected for further development. The present study aims to characterize pharmacological properties of CE-123 and to investigate the potential to enhance memory performance in a rat model. In vitro transporter assays were performed in cells expressing human transporters. CE-123 blocked uptake of [3H] dopamine (IC50 = 4.606 μM) while effects on serotonin (SERT) and the norepinephrine transporter (NET) were negligible. Blood-brain barrier and pharmacokinetic studies showed that the compound reached the brain and lower elimination than R-modafinil. The Pro-cognitive effect was evaluated in a spatial hole-board task in male Sprague-Dawley rats and CE-123 enhances memory acquisition and memory retrieval, represented by significantly increased reference memory indices and shortened latency. Since DAT blockers can be considered as indirect dopamine receptor agonists, western blotting was used to quantify protein levels of dopamine receptors D1R, D2R and D5R and DAT in the synaptosomal fraction of hippocampal subregions CA1, CA3 and dentate gyrus (DG). CE-123 administration in rats increased total DAT levels and D1R protein levels were significantly increased in CA1 and CA3 in treated/trained groups. The increase of D5R was observed in DG only. Dopamine receptors, particularly D1R, seem to play a role in mediating CE-123-induced memory enhancement. Dopamine reuptake inhibition by CE-123 may represent a novel and improved stimulant therapeutic for impairments of cognitive functions. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, In-Sung; Jung, Yong Chan; Seong, Sejong
2015-01-15
The charge trapping properties of metal-HfO{sub 2}-Ge capacitor as a nonvolatile memory have been investigated with (NH{sub 4}){sub 2}S-treated Ge substrate and atomic-layer-deposited HfO{sub 2} layer. The interfacial layer generated by (NH{sub 4}){sub 2}S-treated Ge substrate reveals a trace of -S- bonding, very sharp interface edges, and smooth surface morphology. The Ru-HfO{sub 2}-Ge capacitor with (NH{sub 4}){sub 2}S-treated Ge substrate shows an enhanced interface state with little frequency dispersion, a lower leakage current, and very reliable properties with the enhanced endurance and retention than Ru-HfO{sub 2}-Ge capacitor with cyclic-cleaned Ge substrate.
Menze, Esther T; Esmat, Ahmed; Tadros, Mariane G; Abdel-Naim, Ashraf B; Khalifa, Amani E
2015-01-01
Huntington's disease (HD) is a progressive neurodegenerative disorder. The pre-motor symptomatic stages of the disease are commonly characterized by cognitive problems including memory loss. 3-Nitropropionic acid (3-NPA) is a mitochondrial toxin that produces selective lesions in the brain similar to that of HD and was proven to cause memory impairment in rodents. Phytoestrogens have well-established neuroprotective and memory enhancing effects with fewer side effects in comparison to estrogens. This study investigated the potential neuroprotective and memory enhancing effect of genistein (5, 10 and 20 mg/kg), a phytoestrogen, in ovariectomized rats challenged with 3-NPA (20 mg/kg). These potential effects were compared to those of 17β-estradiol (2.5 mg/kg). Systemic administration of 3-NPA for 4 consecutive days impaired locomotor activity, decreased retention latencies in the passive avoidance task, decreased striatal, cortical and hippocampal ATP levels, increased oxidative stress, acetylcholinesterase (AChE) activity, cycloxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions. Pretreatment with genistein and 17β-estradiol attenuated locomotor hypoactivity, increased retention latencies in the passive avoidance task, increased ATP levels, improved the oxidative stress profile, attenuated the increase in AChE activity and decreased the expression of COX-2 and iNOS. Overall, the higher genistein dose (20 mg/kg) was the most effective. In conclusion, this study suggests neuroprotective and memory enhancing effects for genistein in a rat model of HD. These effects might be attributed to its antioxidant, anti-inflammatory and cholinesterase inhibitory activities.
Biosmart Materials: Breaking New Ground in Dentistry
Badami, Vijetha; Ahuja, Bharat
2014-01-01
By definition and general agreement, smart materials are materials that have properties which may be altered in a controlled fashion by stimuli, such as stress, temperature, moisture, pH, and electric or magnetic fields. There are numerous types of smart materials, some of which are already common. Examples include piezoelectric materials, which produce a voltage when stress is applied or vice versa, shape memory alloys or shape memory polymers which are thermoresponsive, and pH sensitive polymers which swell or shrink as a response to change in pH. Thus, smart materials respond to stimuli by altering one or more of their properties. Smart behaviour occurs when a material can sense some stimulus from its environment and react to it in a useful, reliable, reproducible, and usually reversible manner. These properties have a beneficial application in various fields including dentistry. Shape memory alloys, zirconia, and smartseal are examples of materials exhibiting a smart behavior in dentistry. There is a strong trend in material science to develop and apply these intelligent materials. These materials would potentially allow new and groundbreaking dental therapies with a significantly enhanced clinical outcome of treatments. PMID:24672407
Joint effects of emotion and color on memory.
Kuhbandner, Christof; Pekrun, Reinhard
2013-06-01
Numerous studies have shown that memory is enhanced for emotionally negative and positive information relative to neutral information. We examined whether emotion-induced memory enhancement is influenced by low-level perceptual attributes such as color. Because in everyday life red is often used as a warning signal, whereas green signals security, we hypothesized that red might enhance memory for negative information and green memory for positive information. To capture the signaling function of colors, we measured memory for words standing out from the context by color, and manipulated the color and emotional significance of the outstanding words. Making words outstanding by color strongly enhanced memory, replicating the well-known von Restorff effect. Furthermore, memory for colored words was further increased by emotional significance, replicating the memory-enhancing effect of emotion. Most intriguingly, the effects of emotion on memory additionally depended on color type. Red strongly increased memory for negative words, whereas green strongly increased memory for positive words. These findings provide the first evidence that emotion-induced memory enhancement is influenced by color and demonstrate that different colors can have different functions in human memory.
Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han
2016-08-04
The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training.
Solution-processed Al-chelated gelatin for highly transparent non-volatile memory applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Yu-Chi; Wang, Yeong-Her, E-mail: yhw@ee.ncku.edu.tw
2015-03-23
Using the biomaterial of Al-chelated gelatin (ACG) prepared by sol-gel method in the ITO/ACG/ITO structure, a highly transparent resistive random access memory (RRAM) was obtained. The transmittance of the fabricated device is approximately 83% at 550 nm while that of Al/gelatin/ITO is opaque. As to the ITO/gelatin/ITO RRAM, no resistive switching behavior can be seen. The ITO/ACG/ITO RRAM shows high ON/OFF current ratio (>10{sup 5}), low operation voltage, good uniformity, and retention characteristics at room temperature and 85 °C. The mechanism of the ACG-based memory devices is presented. The enhancement of these electrical properties can be attributed to the chelate effect ofmore » Al ions with gelatin. Results show that transparent ACG-based memory devices possess the potential for next-generation resistive memories and bio-electronic applications.« less
Gad, Enas S; Zaitone, Sawsan A; Moustafa, Yasser M
2016-08-01
Insulin resistance is known to be a risk factor for cognitive impairment, most likely linked to insulin signaling, microglia overactivation, and beta amyloid (Aβ) deposition in the brain. Exenatide, a long lasting glucagon-like peptide-1 (GLP-1) analogue, enhances insulin signaling and shows neuroprotective properties. Pioglitazone, a peroxisome proliferated-activated receptor-γ (PPAR-γ) agonist, was previously reported to enhance cognition through its effect on Aβ accumulation and clearance. In the present study, insulin resistance was induced in male rats by drinking fructose for 12 weeks. The effect of monotherapy with pioglitazone (10 mg·kg(-1)) and exenatide or their combination on memory dysfunction was determined and some of the probable underlying mechanisms were studied. The current results confirmed that (1) feeding male rats with fructose syrup for 12 weeks resulted in a decline of learning and memory registered in eight-arm radial maze test; (2) treatment with pioglitazone or exenatide enhanced cognition, reduced hippocampal neurodegeneration, and reduced hippocampal microglia expression and beta amyloid oligomer deposition in a manner that is equal to monotherapies. These results may give promise for the use of pioglitazone or exenatide for ameliorating the learning and memory deficits associated with insulin resistance in clinical setting.
Li, Guo; Yan, Qiang; Xia, Hesheng; Zhao, Yue
2015-06-10
Therapeutic-ultrasound-triggered shape memory was demonstrated for the first time with a melamine-enhanced poly(vinyl alcohol) (PVA) physical hydrogel. The addition of a small amount of melamine (up to 1.5 wt %) in PVA results in a strong hydrogel due to the multiple H-bonding between the two constituents. A temporary shape of the hydrogel can be obtained by deformation of the hydrogel (∼65 wt % water) at room temperature, followed by fixation of the deformation by freezing/thawing the hydrogel under strain, which induces crystallization of PVA. We show that the ultrasound delivered by a commercially available device designed for the patient's pain relief could trigger the shape recovery process as a result of ultrasound-induced local heating in the hydrogel that melts the crystallized PVA cross-linking. This hydrogel is thus interesting for potential applications because it combines many desirable properties, being mechanically strong, biocompatible, and self-healable and displaying the shape memory capability triggered by a physiological stimulus.
Shin, Suk-Chul; Lee, Dong-Ung
2013-07-01
To study the chemical constituents and their anti-amnesic effect from the hooks of Uncaria rhynchophylla. The isolation of compounds was performed by chromatographic techniques and their structures were identified on the basis of spectral analysis. Their ameliorating effects on scopolamine-induced memory impairment in vivo using a Morris water-maze task and passive avoidance task system were evaluated. Activity-guided fractionation of the total extracts resulted in the isolation of four constituents, trans-anethole (1), p-anisaldehyde (2), estragole (3), and 3-oxo-olean-12-en-28-oic acid (4), which were found for the first time from this plant. Compound 1 exhibited a better memory enhancing effect than tacrine, a positive agent, at the same dose in the passive avoidance test and a similar property in the water-maze test, and its action may be mediated, in part, by the acetylcholine enhancing cholinergic nervous system. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Enhanced HMAX model with feedforward feature learning for multiclass categorization.
Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu
2015-01-01
In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.
NASA Astrophysics Data System (ADS)
Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen
2018-04-01
Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.
Long-term memory and volatility clustering in high-frequency price changes
NASA Astrophysics Data System (ADS)
oh, Gabjin; Kim, Seunghwan; Eom, Cheoljun
2008-02-01
We studied the long-term memory in diverse stock market indices and foreign exchange rates using Detrended Fluctuation Analysis (DFA). For all high-frequency market data studied, no significant long-term memory property was detected in the return series, while a strong long-term memory property was found in the volatility time series. The possible causes of the long-term memory property were investigated using the return data filtered by the AR(1) model, reflecting the short-term memory property, the GARCH(1,1) model, reflecting the volatility clustering property, and the FIGARCH model, reflecting the long-term memory property of the volatility time series. The memory effect in the AR(1) filtered return and volatility time series remained unchanged, while the long-term memory property diminished significantly in the volatility series of the GARCH(1,1) filtered data. Notably, there is no long-term memory property, when we eliminate the long-term memory property of volatility by the FIGARCH model. For all data used, although the Hurst exponents of the volatility time series changed considerably over time, those of the time series with the volatility clustering effect removed diminish significantly. Our results imply that the long-term memory property of the volatility time series can be attributed to the volatility clustering observed in the financial time series.
Generation and memory for contextual detail.
Mulligan, Neil W
2004-07-01
Generation enhances item memory but may not enhance other aspects of memory. In 12 experiments, the author investigated the effect of generation on context memory, motivated in part by the hypothesis that generation produces a trade-off in encoding item and contextual information. Participants generated some study words (e.g., hot-c__) and read others (e.g., hot-cold). Generation consistently enhanced item memory but did not enhance context memory. More specifically, generation disrupted context memory for the color of the target word but did not affect context memory for location, background color, and cue-word color. The specificity of the negative generation effect in context memory argues against a general item-context trade-off. A processing account of generation meets greater success. In addition, the results provide no evidence that generation enhances recollection of contextual details. Copyright 2004 APA, all rights reserved
PVDF-based semicrystalline-amorphous blends: Phase behavior and thermomechanical properties
NASA Astrophysics Data System (ADS)
Campo, Cheryl Josephine
Poly(vinylidene fluoride) [PVDF]-based semicrystalline-amorphous blends were studied to better understand the degree to which transition temperatures and mechanical properties could be varied as a function of composition. Changes in the amorphous component, processing parameters, MW, and filler content were used to manipulate blend properties. Compositional and MW series of PVDF:poly(vinyl acetate) [PVAc] blends were prepared and characterized. Varying PVDF content led to appreciable changes in crystallinity. In contrast, the effect of composition on blend glass transition temperature, Tg, was manifested only at low PVDF contents. The effect of MWPVA, on the 30:70 PVDF:PVAc composition was manifested primarily in the materials' viscoelastic response to deformation. Ternary blends of PVDF, PVAc, and poly(methyl methacrylate) [PMMA] showed limited miscibility with both a PVAc- and PMMA-rich amorphous phase apparent in all the compositions tested. PVDF:PMMA blends on the other hand exhibited good miscibility characterized by tunable Tg values which were further exploited by varying the processing conditions in order to obtain thermomechanical properties ideal for bio-related shape memory applications. PVDF:poly(ethyl methacrylate) [PEMA] blends, despite having very broad transitions, similarly exhibited desirable transition temperatures for in vivo actuation. The effect of boron nitride (BN), short carbon fibers (SCF), and clay on blend properties was also assessed. SCF filler in 50:50 PVDF:PMMA led mainly to the formation of PVDF crystals in the alpha form, clay was observed to promote growth of the beta crystal form, and BN led to a mixture of crystal forms. BN also exhibited interesting effects in the creep behavior of this system as well as the crystallization behavior of the 50:50 PVDF:PEMA blend, suppressed kinetic crystallization competing with enhanced nucleation effect under isothermal conditions observed in the latter. Depending on the processing conditions used, SCF was found to have similar nucleation effects in the 50:50 PVDF:PMMA blend but diminished degrees of crystallinity overall. Finally, shape memory behavior of PVDF:PVAc blends as well as SCF-filled 50:50 PVDF:PMMA was characterized using single and multiple shape memory cycles. Increasing PVDF content had a negative impact on PVDF:PVAc shape memory properties while increasing stress was found to have an enhancing effect as did low SCF filler content in 50:50 PVDF:PMMA.
Ragozzino, Michael E; Artis, Sonja; Singh, Amritha; Twose, Trevor M; Beck, Joseph E; Messer, William S
2012-03-01
Various neurodegenerative diseases and psychiatric disorders are marked by alterations in brain cholinergic function and cognitive deficits. Efforts to alleviate such deficits have been limited by a lack of selective M(1) muscarinic agonists. 5-(3-Ethyl-1,2,4-oxadiazol-5-yl)-1,4,5,6-tetrahydropyrimidine hydrochloride (CDD-0102A) is a partial agonist at M(1) muscarinic receptors with limited activity at other muscarinic receptor subtypes. The present studies investigated the effects of CDD-0102A on working memory and strategy shifting in rats. CDD-0102A administered intraperitoneally 30 min before testing at 0.1, 0.3, and 1 mg/kg significantly enhanced delayed spontaneous alternation performance in a four-arm cross maze, suggesting improvement in working memory. In separate experiments, CDD-0102A had potent enhancing effects on learning and switching between a place and visual cue discrimination. Treatment with CDD-0102A did not affect acquisition of either a place or visual cue discrimination. In contrast, CDD-0102A at 0.03 and 0.1 mg/kg significantly enhanced a shift between a place and visual cue discrimination. Analysis of the errors in the shift to the place or shift to the visual cue strategy revealed that in both cases CDD-0102A significantly increased the ability to initially inhibit a previously relevant strategy and maintain a new, relevant strategy once selected. In anesthetized rats, the minimum dose required to induce salivation was approximately 0.3 mg/kg i.p. Salivation increased with dose, and the estimated ED(50) was 2.0 mg/kg. The data suggest that CDD-0102A has unique memory and cognitive enhancing properties that might be useful in the treatment of neurological disorders at doses that do not produce adverse effects such as salivation.
Lim, Soonmin; Moon, Minho; Oh, Hyein; Kim, Hyo Geun; Kim, Sun Yeou; Oh, Myung Sook
2014-10-01
Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement. Copyright © 2014 Elsevier Inc. All rights reserved.
Enhanced musical rhythmic perception in Turkish early and late learners of German
Roncaglia-Denissen, M. Paula; Schmidt-Kassow, Maren; Heine, Angela; Vuust, Peter; Kotz, Sonja A.
2013-01-01
As language rhythm relies partly on general acoustic properties, such as intensity and duration, mastering two languages with distinct rhythmic properties (i.e., stress position) may enhance musical rhythm perception. We investigated whether competence in a second language (L2) with different rhythmic properties than a L1 affects musical rhythm aptitude. Turkish early (TELG) and late learners (TLLG) of German were compared to German late L2 learners of English (GLE) regarding their musical rhythmic aptitude. While Turkish and German present distinct linguistic rhythm and metric properties, German and English are rather similar in this regard. To account for inter-individual differences, we measured participants' short-term and working memory (WM) capacity, melodic aptitude, and time they spent listening to music. Both groups of Turkish L2 learners of German perceived rhythmic variations significantly better than German L2 learners of English. No differences were found between early and late learners' performance. Our findings suggest that mastering two languages with different rhythmic properties enhances musical rhythm perception, providing further evidence of shared cognitive resources between language and music. PMID:24065946
Vaughn, Kalif E; Rawson, Katherine A
2011-09-01
Previous research has shown that increasing the criterion level (i.e., the number of times an item must be correctly retrieved during practice) improves subsequent memory, but which specific components of memory does increased criterion level enhance? In two experiments, we examined the extent to which the criterion level affects associative memory, target memory, and cue memory. Participants studied Lithuanian-English word pairs via cued recall with restudy until items were correctly recalled one to five times. In Experiment 1, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In Experiment 2, participants took only recognition tests after a 1-week delay. In both experiments, increasing the criterion level enhanced associative memory, as indicated by enhanced performance on forward and backward cued-recall tests and on tests of associative recognition. An increased criterion level also improved target memory, as indicated by enhanced free recall and recognition of targets, and improved cue memory, as indicated by enhanced free recall and recognition of cues.
Inorganic-organic shape memory polymers and foams for bone defect repairs
NASA Astrophysics Data System (ADS)
Zhang, Dawei
The ultimate goal of this research was to develop a "self-fitting" shape memory polymer (SMP) scaffold for the repair of craniomaxillofacial (CMF) bone defects. CMF defects may be caused by trauma, tumor removal or congenital abnormalities and represent a major class of bone defects. Their repair with autografts is limited by availability, donor site morbidity and complex surgical procedures. In addition, shaping and positioning of these rigid grafts into irregular defects is difficult. Herein, we have developed SMP scaffolds which soften at T > ˜56 °C, allowing them to conformally fit into a bone defect. Upon cooling to body temperature, the scaffold becomes rigid and mechanically locks in place. This research was comprised of four major studies. In the first study, photocrosslinkable acrylated (AcO) SMP macromers containing a poly(epsilon-caprolactone) (PCL) segment and polydimethylsiloxane (PDMS) segments were synthesized with the general formula: AcO-PCL40-block-PDMS m-block-PCL40-OAc. By varying the PDMS segment length (m), solid SMPs with highly tunable mechanical properties and excellent shape memory abilities were prepared. In the second study, porous SMP scaffolds were fabricated based on AcO-PCL 40-block-PDMS37-block-PCL 40-OAc via a revised solvent casting particulate leaching (SCPL) method. By tailoring scaffold parameters including salt fusion, macromer concentration and salt size, scaffold properties (e.g. pore features, compressive modulus and shape memory behavior) were tuned. In the third study, porous SMP scaffolds were produced from macromers with variable PDMS segment lengths (m = 0 -- 130) via an optimized SCPL method. The impact on pore features, thermal, mechanical, and shape memory properties as well as degradation rates were investigated. In the final study, a bioactive polydopamine coating was applied onto pore surfaces of the SMP scaffold prepared from PCL diacrylate. The thin coating did not affect intrinsic bulk properties of the scaffold. However, the coating significantly increased its bioactivity, giving rise to the formation of "bone-bonding" hydroxyapatite (HAp) when exposed to simulated body fluid (SBF). It was also shown that the coating largely enhanced the scaffold's capacities to support osteoblasts adhesion, proliferation and osteogenesis. Thus, the polydopamine coating should enhance the performance of the "self-fitting" SMP scaffolds for the repair of bone defects.
Landsman, T L; Touchet, T; Hasan, S M; Smith, C; Russell, B; Rivera, J; Maitland, D J; Cosgriff-Hernandez, E
2017-01-01
Uncontrolled hemorrhage accounts for more than 30% of trauma deaths worldwide. Current hemostatic devices focus primarily on time to hemostasis, but prevention of bacterial infection is also critical for improving survival rates. In this study, we sought to improve on current devices used for hemorrhage control by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material (SMP foam and hydrogel) are retained when combined in a composite device. The iodine-doped hydrogel demonstrated an 80% reduction in bacteria viability when cultured with a high bioburden of Staphylococcus aureus. Hydrogel coating of the SMP foam increased fluid uptake by 19× over the uncoated SMP foam. The composite device retained the shape memory behavior of the foam with more than 15× volume expansion after being submerged in 37°C water for 15 min. Finally, the expansion force of the composite was tested to assess potential tissue damage within the wound during device expansion. Expansion forces did not exceed 0.6N, making tissue damage during device expansion unlikely, even when the expanded device diameter is substantially larger than the target wound site. Overall, the enhanced fluid uptake and bactericidal properties of the shape memory foam composite indicate its strong potential as a hemostatic agent to treat non-compressible wounds. No hemostatic device currently used in civilian and combat trauma situations satisfies all the desired criteria for an optimal hemostatic wound dressing. The research presented here sought to improve on current devices by combining the large volume-filling capabilities and rapid clotting of shape memory polymer (SMP) foams with the swelling capacity of hydrogels. In addition, a hydrogel composition was selected that readily complexes with elemental iodine to impart bactericidal properties to the device. The focus of this work was to verify that the advantages of each respective material are retained when combined into a composite device. This research opens the door to generating novel composites with a focus on both hemostasis, as well as wound healing and microbial prevention. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Source memory enhancement for emotional words.
Doerksen, S; Shimamura, A P
2001-03-01
The influence of emotional stimuli on source memory was investigated by using emotionally valenced words. The words were colored blue or yellow (Experiment 1) or surrounded by a blue or yellow frame (Experiment 2). Participants were asked to associate the words with the colors. In both experiments, emotionally valenced words elicited enhanced free recall compared with nonvalenced words; however, recognition memory was not affected. Source memory for the associated color was also enhanced for emotional words, suggesting that even memory for contextual information is benefited by emotional stimuli. This effect was not due to the ease of semantic clustering of emotional words because semantically related words were not associated with enhanced source memory, despite enhanced recall (Experiment 3). It is suggested that enhancement resulted from facilitated arousal or attention, which may act to increase organization processes important for source memory.
Fernell, Maria; Swinton, Cayley; Lukowiak, Ken
2016-01-01
Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water.
Fernell, Maria; Swinton, Cayley; Lukowiak, Ken
2016-01-01
ABSTRACT Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water. PMID:27574544
McQuail, Joseph A; Beas, B Sofia; Kelly, Kyle B; Simpson, Kailey L; Frazier, Charles J; Setlow, Barry; Bizon, Jennifer L
2016-12-14
Working memory, the ability to temporarily maintain representational knowledge, is a foundational cognitive process that can become compromised in aging and neuropsychiatric disease. NMDA receptor (NMDAR) activation in prefrontal cortex (PFC) is necessary for the pyramidal neuron activity believed to enable working memory; however, the distinct biophysical properties and localization of NMDARs containing NR2A and NR2B subunits suggest unique roles for NMDAR subtypes in PFC neural activity and working memory. Experiments herein show that working memory depends on NR2A- but not NR2B-NMDARs in PFC of rats and that NR2A-NMDARs mediate the majority of evoked NMDAR currents on layer 2/3 PFC pyramidal neurons. Moreover, attenuated expression of the NR2A but not the NR2B subunit in PFC associates with naturally occurring working memory impairment in aged rats. Finally, NMDAR currents and working memory are enhanced in aged rats by promoting activation of the NR2A-enriched synaptic pool of PFC NMDARs. These results implicate NR2A-NMDARs in normal working memory and suggest novel treatment strategies for improving working memory in cognitive disorders. Working memory, the ability to hold information "in mind," requires persistent activity of pyramidal neurons in prefrontal cortex (PFC) mediated by NMDA receptor (NMDAR) activation. NMDAR loss in PFC may account for working memory impairments in aging and psychiatric disease. Our studies demonstrate that NMDARs containing the NR2A subunit, but not the NR2B subunit, are required for working memory and that loss of NR2A predicts severity of age-related working memory impairment. The importance of NR2A to working memory is likely due its abundant contribution to pyramidal neuron activity and location at synaptic sites in PFC. This information is useful in designing new therapies to treat working memory impairments by enhancing the function of NR2A-containing NMDARs. Copyright © 2016 the authors 0270-6474/16/3612537-12$15.00/0.
Xue, Wei; Hu, Jin-feng; Yuan, Yu-he; Sun, Jian-dong; Li, Bo-yu; Zhang, Dong-ming; Li, Chuang-jun; Chen, Nai-hong
2009-09-01
The aim of this study was to investigate the cognition-enhancing activity and underlying mechanisms of a triterpenoid saponin (polygalasaponin XXXII, PGS32) isolated from the roots of Polygala tenuifolia Willd. The Morris water maze was used to evaluate the spatial learning and memory of mice. To detect the basic properties of synaptic transmission and long-term potentiation (LTP) in the dentate gyrus of rats, electrophysiological recordings were made of evoked potentials. Western blotting analysis and immunofluorescence assays were used to determine the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), synapsin I and the expression of brain derived neurotrophic factor (BDNF). When administered at 0.125, 0.5, or 2 mg/kg, PGS32 could significantly prevent scopolamine-induced cognitive impairments in mice. Intracerebroventricular (icv) administration of PGS32 greatly enhanced basic synaptic transmission in the dentate gyrus of rats and induced LTP. In primary hippocampal neurons, as well as in the hippocampus of maze-trained mice, PGS32 activated the mitogen-activated protein (MAP) kinase cascade by promoting phosphorylation of ERK, CREB and synapsin I. The expression of BDNF was also greatly enhanced in the hippocampus. Our findings suggest that PGS32 can improve hippocampus-dependent learning and memory, possibly through improvement of synaptic transmission, activation of the MAP kinase cascade and enhancement of the level of BDNF. Therefore, PGS32 shows promise as a potential cognition-enhancing therapeutic drug.
Xue, Wei; Hu, Jin-feng; Yuan, Yu-he; Sun, Jian-dong; Li, Bo-yu; Zhang, Dong-ming; Li, Chuang-jun; Chen, Nai-hong
2009-01-01
Aim: The aim of this study was to investigate the cognition-enhancing activity and underlying mechanisms of a triterpenoid saponin (polygalasaponin XXXII, PGS32) isolated from the roots of Polygala tenuifolia Willd. Methods: The Morris water maze was used to evaluate the spatial learning and memory of mice. To detect the basic properties of synaptic transmission and long-term potentiation (LTP) in the dentate gyrus of rats, electrophysiological recordings were made of evoked potentials. Western blotting analysis and immunofluorescence assays were used to determine the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), synapsin I and the expression of brain derived neurotrophic factor (BDNF). Results: When administered at 0.125, 0.5, or 2 mg/kg, PGS32 could significantly prevent scopolamine-induced cognitive impairments in mice. Intracerebroventricular (icv) administration of PGS32 greatly enhanced basic synaptic transmission in the dentate gyrus of rats and induced LTP. In primary hippocampal neurons, as well as in the hippocampus of maze-trained mice, PGS32 activated the mitogen-activated protein (MAP) kinase cascade by promoting phosphorylation of ERK, CREB and synapsin I. The expression of BDNF was also greatly enhanced in the hippocampus. Conclusion: Our findings suggest that PGS32 can improve hippocampus-dependent learning and memory, possibly through improvement of synaptic transmission, activation of the MAP kinase cascade and enhancement of the level of BDNF. Therefore, PGS32 shows promise as a potential cognition-enhancing therapeutic drug. PMID:19684611
NASA Astrophysics Data System (ADS)
Naumann, Gustavo; Vargas, Walter M.; Minetti, Juan L.
2011-10-01
The persistence and long-term memories in daily maximum and minimum temperature series during the instrumental period in southern South America were analysed. Here, we found a markedly seasonal pattern both for short- and long-term memories that can lead to enhanced predictability on intraseasonal timescales. In addition, well-defined spatial patterns of these properties were found in the region. Throughout the entire region, the strongest dependence was observed in autumn and early winter. In the Patagonia region only, the temperatures exhibited more memory during the spring. In general, these elements indicate that nonlinear interactions exist between the annual cycles of temperature and its anomalies. Knowledge of the spatiotemporal behaviour of these long-term memories can be used in the building of stochastic models that only use persistence. It is possible to propose two objective forecast models based on linear interactions associated with persistence and one that allows for the use of information from nonlinear interactions that are manifested in the form of forerunners.
Exarchos, Dimitrios A; Dalla, Panagiota T; Tragazikis, Ilias K; Dassios, Konstantinos G; Zafeiropoulos, Nikolaos E; Karabela, Maria M; De Crescenzo, Carmen; Karatza, Despina; Musmarra, Dino; Chianese, Simeone; Matikas, Theodore E
2018-05-18
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect.
NASA Astrophysics Data System (ADS)
Ghoneim, M. T.; Hussain, M. M.
2015-08-01
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ˜260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygen and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.
Exarchos, Dimitrios A.; Dalla, Panagiota T.; Tragazikis, Ilias K.; Zafeiropoulos, Nikolaos E.; Karabela, Maria M.; De Crescenzo, Carmen; Karatza, Despina; Matikas, Theodore E.
2018-01-01
This paper presents an innovative approach, which enables control of the mechanical properties of metallic components by external stimuli to improve the mechanical behavior of aluminum structures in aeronautical applications. The approach is based on the exploitation of the shape memory effect of novel Shape Memory Alloy (SMA) coatings deposited on metallic structural components, for the purpose of relaxing the stress of underlying structures by simple heating at field-feasible temperatures, therefore enhancing their structural integrity and increasing their stiffness and rigidity while allowing them to withstand expected loading conditions safely. Numerical analysis provided an insight in the expected response of the SMA coating and of the SMA-coated element, while the dependence of alloy composition and heat treatment on the experienced shape memory effect were investigated experimentally. A two-phase process is proposed for deposition of the SMA coating in an order that induces beneficial stress relaxation to the underlying structure through the shape memory effect. PMID:29783626
Modeling and optimization of shape memory-superelastic antagonistic beam assembly
NASA Astrophysics Data System (ADS)
Tabesh, Majid; Elahinia, Mohammad H.
2010-04-01
Superelasticity (SE), shape memory effect (SM), high damping capacity, corrosion resistance, and biocompatibility are the properties of NiTi that makes the alloy ideal for biomedical devices. In this work, the 1D model developed by Brinson was modified to capture the shape memory effect, superelasticity and hysteresis behavior, as well as partial transformation in both positive and negative directions. This model was combined with the Euler beam equation which, by approximation, considers 1D compression and tension stress-strain relationships in different layers of a 3D beam assembly cross-section. A shape memory-superelastic NiTi antagonistic beam assembly was simulated with this model. This wire-tube assembly is designed to enhance the performance of the pedicle screws in osteoporotic bones. For the purpose of this study, an objective design is pursued aiming at optimizing the dimensions and initial configurations of the SMA wire-tube assembly.
Hong, Fei; Wang, Liju; Wu, Sharon L; Tang, H C; Sha, Ou; Wai, Maria S M; Yew, David T
2017-01-01
This review looks into the herbs Gingko biloba, Polygala tenuifolia, and Lycii fructus for their widely studied neuroprotective properties. In particular, we investigated memory enhancing effect of these herbs, and their potential synergetic effect on memory with new data. Sixmonth treated mice demonstrated shorter escape latency in water maze and shorter arrival time in a consolidated memory task. Immunochemistry showed evident increase in superoxide dismutase activities in the prefrontal cortex, implying protection against free radicals during aging. Discrete increase of catecholaminergic neurons was found in the prefrontal cortex, hippocampus, corpus striatum, and midbrain, suggesting better memory and better control on mood and behavior. Necrotic cells in the brain decreased as indicated by immunocytochemistry of lactic dehydrogenase. Terminal deoxynucleotidyl transferase dUTP nick end labeling showed no apoptotic cells in most brain areas in high dose group. Biochemistry revealed increase of dopaminergic cells in treatment groups at prefrontal cortex, and in the hippocampus and cerebellum of the high dose group. Most 6-month groups showed increase of serotonin in all three areas. For the high dose group, GABA increased in the hippocampus but not prefrontal cortex, which would help induce sleep at night. Protein kinase C increased in most groups at prefrontal cortex, hippocampus and cerebellum, signifying increase of possible signal transduction pathways for memory or other nervous activations. Our results intimate that the interaction of the three herbs exerts beneficial effects on memory, associated cognitive function, and necrosis. Future investigations based on the present data shall aid development of clinically relevant medication. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DHEA Enhances Emotion Regulation Neurocircuits and Modulates Memory for Emotional Stimuli
Sripada, Rebecca K; Marx, Christine E; King, Anthony P; Rajaram, Nirmala; Garfinkel, Sarah N; Abelson, James L; Liberzon, Israel
2013-01-01
Dehydroepiandrosterone (DHEA) is a neurosteroid with anxiolytic, antidepressant, and antiglucocorticoid properties. It is endogenously released in response to stress, and may reduce negative affect when administered exogenously. Although there have been multiple reports of DHEA's antidepressant and anxiolytic effects, no research to date has examined the neural pathways involved. In particular, brain imaging has not been used to link neurosteroid effects to emotion neurocircuitry. To investigate the brain basis of DHEA's impact on emotion modulation, patients were administered 400 mg of DHEA (N=14) or placebo (N=15) and underwent 3T fMRI while performing the shifted-attention emotion appraisal task (SEAT), a test of emotional processing and regulation. Compared with placebo, DHEA reduced activity in the amygdala and hippocampus, enhanced connectivity between the amygdala and hippocampus, and enhanced activity in the rACC. These activation changes were associated with reduced negative affect. DHEA reduced memory accuracy for emotional stimuli, and also reduced activity in regions associated with conjunctive memory encoding. These results demonstrate that DHEA reduces activity in regions associated with generation of negative emotion and enhances activity in regions linked to regulatory processes. Considering that activity in these regions is altered in mood and anxiety disorders, our results provide initial neuroimaging evidence that DHEA may be useful as a pharmacological intervention for these conditions and invite further investigation into the brain basis of neurosteroid emotion regulatory effects. PMID:23552182
Genes and signaling pathways involved in memory enhancement in mutant mice
2014-01-01
Mutant mice have been used successfully as a tool for investigating the mechanisms of memory at multiple levels, from genes to behavior. In most cases, manipulating a gene expressed in the brain impairs cognitive functions such as memory and their underlying cellular mechanisms, including synaptic plasticity. However, a remarkable number of mutations have been shown to enhance memory in mice. Understanding how to improve a system provides valuable insights into how the system works under normal conditions, because this involves understanding what the crucial components are. Therefore, more can be learned about the basic mechanisms of memory by studying mutant mice with enhanced memory. This review will summarize the genes and signaling pathways that are altered in the mutants with enhanced memory, as well as their roles in synaptic plasticity. Finally, I will discuss how knowledge of memory-enhancing mechanisms could be used to develop treatments for cognitive disorders associated with impaired plasticity. PMID:24894914
Storbeck, Justin; Maswood, Raeya
2016-08-01
The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.
Emotional Arousal Does Not Enhance Association-Memory
ERIC Educational Resources Information Center
Madan, Christopher R.; Caplan, Jeremy B.; Lau, Christine S. M.; Fujiwara, Esther
2012-01-01
Emotionally arousing information is remembered better than neutral information. This enhancement effect has been shown for memory for items. In contrast, studies of association-memory have found both impairments and enhancements of association-memory by arousal. We aimed to resolve these conflicting results by using a cued-recall paradigm combined…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-21
.... Wainwright Memorial VA Medical Center in Walla Walla, Washington. As consideration, the selected lessee will... Veterans and their families, and a supportive services program. FOR FURTHER INFORMATION CONTACT: Edward... consideration under such a lease for the provision of medical care and services would result in a demonstrable...
Arousal-Enhanced Location Memory for Pictures
Mather, Mara; Nesmith, Kathryn
2008-01-01
Four experiments revealed arousal-enhanced location memory for pictures. After an incidental encoding task, participants were more likely to remember the locations of positive and negative arousing pictures than the locations of non-arousing pictures, indicating better binding of location to picture. This arousal-enhanced binding effect did not have a cost for the binding of nearby pictures to their locations. Thus, arousal can enhance binding of an arousing picture’s content to its location without interfering with picture-location binding for nearby pictures. In addition, arousal-enhanced picture-location memory binding is not just a side effect of enhanced memory for the picture itself, as it occurs both when recognition memory is good and when it is poor. PMID:19190722
Strategies To Enhance Memory Based on Brain-Research.
ERIC Educational Resources Information Center
Banikowski, Alison K.; Mehring, Teresa A.
1999-01-01
This article reviews the literature on three aspects of memory: (1) an information processing model of memory (including the sensory register, attention, short-term memory, and long-term memory); (2) instructional strategies designed to enhance memory (which stress gaining students' attention and active involvement); and (3) reasons why…
Nanophotonic photon echo memory based on rare-earth-doped crystals
NASA Astrophysics Data System (ADS)
Zhong, Tian; Kindem, Jonathan; Miyazono, Evan; Faraon, Andrei; Caltech nano quantum optics Team
2015-03-01
Rare earth ions (REIs) are promising candidates for implementing solid-state quantum memories and quantum repeater devices. Their high spectral stability and long coherence times make REIs a good choice for integration in an on-chip quantum nano-photonic platform. We report the coupling of the 883 nm transition of Neodymium (Nd) to a Yttrium orthosilicate (YSO) photonic crystal nano-beam resonator, achieving Purcell enhanced spontaneous emission by 21 times and increased optical absorption. Photon echoes were observed in nano-beams of different doping concentrations, yielding optical coherence times T2 up to 80 μs that are comparable to unprocessed bulk samples. This indicates the remarkable coherence properties of Nd are preserved during nanofabrication, therefore opening the possibility of efficient on-chip optical quantum memories. The nano-resonator with mode volume of 1 . 6(λ / n) 3 was fabricated using focused ion beam, and a quality factor of 3200 was measured. Purcell enhanced absorption of 80% by an ensemble of ~ 1 × 106 ions in the resonator was measured, which fulfills the cavity impedance matching condition that is necessary to achieve quantum storage of photons with unity efficiency.
St Jacques, Peggy L; Dolcos, Florin; Cabeza, Roberto
2009-01-01
Aging is associated with preserved enhancement of emotional memory, as well as with age-related reductions in memory for negative stimuli, but the neural networks underlying such alterations are not clear. We used a subsequent-memory paradigm to identify brain activity predicting enhanced emotional memory in young and older adults. Activity in the amygdala predicted enhanced emotional memory, with subsequent-memory activity greater for negative stimuli than for neutral stimuli, across age groups, a finding consistent with an overall enhancement of emotional memory. However, older adults recruited greater activity in anterior regions and less activity in posterior regions in general for negative stimuli that were subsequently remembered. Functional connectivity of the amygdala with the rest of the brain was consistent with age-related reductions in memory for negative stimuli: Older adults showed decreased functional connectivity between the amygdala and the hippocampus, but increased functional connectivity between the amygdala and dorsolateral prefrontal cortices. These findings suggest that age-related differences in the enhancement of emotional memory might reflect decreased connectivity between the amygdala and typical subsequent-memory regions, as well as the engagement of regulatory processes that inhibit emotional responses.
Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys
NASA Technical Reports Server (NTRS)
Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.
2014-01-01
This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.
Memory enhancing drugs and Alzheimer's disease: enhancing the self or preventing the loss of it?
Dekkers, Wim; Rikkert, Marcel Olde
2007-06-01
In this paper we analyse some ethical and philosophical questions related to the development of memory enhancing drugs (MEDs) and anti-dementia drugs. The world of memory enhancement is coloured by utopian thinking and by the desire for quicker, sharper, and more reliable memories. Dementia is characterized by decline, fragility, vulnerability, a loss of the most important cognitive functions and even a loss of self. While MEDs are being developed for self-improvement, in Alzheimer's Disease (AD) the self is being lost. Despite this it is precisely those patients with AD and other forms of dementia that provide the subjects for scientific research on memory improvement. Biomedical research in the field of MEDs and anti-dementia drugs appears to provide a strong impetus for rethinking what we mean by 'memory', 'enhancement', 'therapy', and 'self'. We conclude (1) that the enhancement of memory is still in its infancy, (2) that current MEDs and anti-dementia drugs are at best partially and minimally effective under specific conditions, (3) that 'memory' and 'enhancement' are ambiguous terms, (4) that there is no clear-cut distinction between enhancement and therapy, and (5) that the research into MEDs and anti-dementia drugs encourages a reductionistic view of the human mind and of the self.
Deng, Zexing; Guo, Yi; Zhao, Xin; Li, Longchao; Dong, Ruonan; Guo, Baolin; Ma, Peter X
2016-12-01
Development of flexible degradable electroactive shape memory polymers (ESMPs) with tunable switching temperature (around body temperature) for tissue engineering is still a challenge. Here we designed and synthesized a series of shape memory copolymers with electroactivity, super stretchability and tunable recovery temperature based on poly(ε-caprolactone) (PCL) with different molecular weight and conductive amino capped aniline trimer, and demonstrated their potential to enhance myogenic differentiation from C2C12 myoblast cells. We characterized the copolymers by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance ( 1 H NMR), cyclic voltammetry (CV), ultraviolet-visible spectroscopy (UV-vis), differential scanning calorimetry (DSC), shape memory test, tensile test and in vitro enzymatic degradation study. The electroactive biodegradable shape memory copolymers showed great elasticity, tunable recovery temperature around 37°C, and good shape memory properties. Furthermore, proliferation and differentiation of C2C12 myoblasts were investigated on electroactive copolymers films, and they greatly enhanced the proliferation, myotube formation and related myogenic differentiation genes expression of C2C12 myoblasts compared to the pure PCL with molecular weight of 80,000. Our study suggests that these electroactive, highly stretchable, biodegradable shape memory polymers with tunable recovery temperature near the body temperature have great potential in skeletal muscle tissue engineering application. Conducting polymers can regulate cell behavior such cell adhesion, proliferation, and differentiation with or without electrical stimulation. Therefore, they have great potential for electrical signal sensitive tissue regeneration. Although conducting biomaterials with degradability have been developed, highly stretchable and electroactive degradable copolymers for soft tissue engineering have been rarely reported. On the other hand, shape memory polymers (SMPs) have been widely used in biomedical fields. However, SMPs based on polyesters usually are biologically inert. This work reported the design of super stretchable electroactive degradable SMPs based on polycaprolactone and aniline trimer with tunable recovery temperature around body temperature. These flexible electroactive SMPs facilitated the proliferation and differentiation of C2C12 myoblast cells compared with polycaprolactone, indicating that they are excellent scaffolding biomaterials in tissue engineering to repair skeletal muscle and possibly other tissues. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Memory for Details with Self-Referencing
Serbun, Sarah J.; Shih, Joanne Y.; Gutchess, Angela H.
2011-01-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgments in reference to the self, a close other (one’s mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). Results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can disproportionately improve memory for specific internal source details as well. PMID:22092106
Memory for details with self-referencing.
Serbun, Sarah J; Shih, Joanne Y; Gutchess, Angela H
2011-11-01
Self-referencing benefits item memory, but little is known about the ways in which referencing the self affects memory for details. Experiment 1 assessed whether the effects of self-referencing operate only at the item, or general, level or whether they also enhance memory for specific visual details of objects. Participants incidentally encoded objects by making judgements in reference to the self, a close other (one's mother), or a familiar other (Bill Clinton). Results indicate that referencing the self or a close other enhances both specific and general memory. Experiments 2 and 3 assessed verbal memory for source in a task that relied on distinguishing between different mental operations (internal sources). The results indicate that self-referencing disproportionately enhances source memory, relative to conditions referencing other people, semantic, or perceptual information. We conclude that self-referencing not only enhances specific memory for both visual and verbal information, but can also disproportionately improve memory for specific internal source details.
Mechanisms of Memory Enhancement
Stern, Sarah A.
2012-01-01
The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g. via dopamine, adrenaline, cortisol or acetylcholine) and metabolic processes (e.g. via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By capitalizing on this knowledge and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future. PMID:23151999
Metallic materials for mechanical damping capacity applications
NASA Astrophysics Data System (ADS)
Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.
2016-08-01
Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.
Properties and medical applications of shape memory alloys.
Tarniţă, Daniela; Tarniţă, D N; Bîzdoacă, N; Mîndrilă, I; Vasilescu, Mirela
2009-01-01
One of the most known intelligent material is nitinol, which offers many functional advantages over conventional implantable alloys. Applications of SMA to the biomedical field have been successful because of their functional qualities, enhancing both the possibility and the execution of less invasive surgeries. The biocompatibility of these alloys is one of their most important features. Different applications exploit the shape memory effect (one-way or two-way) and the super elasticity, so that they can be employed in orthopedic and cardiovascular applications, as well as in the manufacture of new surgical tools. Therefore, one can say that smart materials, especially SMA, are becoming noticeable in the biomedical field. Super elastic NiTi has become a material of strategic importance as it allows to overcome a wide range of technical and design issues relating to the miniaturization of medical devices and the increasing trend for less invasive and therefore less traumatic procedures. This paper will consider just why the main properties of shape memory alloys hold so many opportunities for medical devices and will review a selection of current applications.
Sleep in Children Enhances Preferentially Emotional Declarative But Not Procedural Memories
ERIC Educational Resources Information Center
Prehn-Kristensen, Alexander; Goder, Robert; Chirobeja, Stefania; Bressman, Inka; Ferstl, Roman; Baving, Lioba
2009-01-01
Although the consolidation of several memory systems is enhanced by sleep in adults, recent studies suggest that sleep supports declarative memory but not procedural memory in children. In the current study, the influence of sleep on emotional declarative memory (recognition task) and procedural memory (mirror tracing task) in 20 healthy children…
Autophagy Enhances Memory Erasure through Synaptic Destabilization.
Shehata, Mohammad; Abdou, Kareem; Choko, Kiriko; Matsuo, Mina; Nishizono, Hirofumi; Inokuchi, Kaoru
2018-04-11
There is substantial interest in memory reconsolidation as a target for the treatment of anxiety disorders, such as post-traumatic stress disorder. However, its applicability is restricted by reconsolidation-resistant boundary conditions that constrain the initial memory destabilization. In this study, we investigated whether the induction of synaptic protein degradation through autophagy modulation, a major protein degradation pathway, can enhance memory destabilization upon retrieval and whether it can be used to overcome these conditions. Here, using male mice in an auditory fear reconsolidation model, we showed that autophagy contributes to memory destabilization and its induction can be used to enhance erasure of a reconsolidation-resistant auditory fear memory that depended on AMPAR endocytosis. Using male mice in a contextual fear reconsolidation model, autophagy induction in the amygdala or in the hippocampus enhanced fear or contextual memory destabilization, respectively. The latter correlated with AMPAR degradation in the spines of the contextual memory-ensemble cells. Using male rats in an in vivo LTP reconsolidation model, autophagy induction enhanced synaptic destabilization in an NMDAR-dependent manner. These data indicate that induction of synaptic protein degradation can enhance both synaptic and memory destabilization upon reactivation and that autophagy inducers have the potential to be used as a therapeutic tool in the treatment of anxiety disorders. SIGNIFICANCE STATEMENT It has been reported that inhibiting synaptic protein degradation prevents memory destabilization. However, whether the reverse relation is true and whether it can be used to enhance memory destabilization are still unknown. Here we addressed this question on the behavioral, molecular, and synaptic levels, and showed that induction of autophagy, a major protein degradation pathway, can enhance memory and synaptic destabilization upon reactivation. We also show that autophagy induction can be used to overcome a reconsolidation-resistant memory, suggesting autophagy inducers as a potential therapeutic tool in the treatment of anxiety disorders. Copyright © 2018 the authors 0270-6474/18/383809-14$15.00/0.
Skelton, J M; Elliott, S R
2013-05-22
Phase-change materials are the alloys at the heart of an emerging class of next-generation, non-volatile digital memory technologies. However, the widely studied Ge-Sb-Te system possesses several undesirable properties, and enhancing its properties, e.g. by doping, is an area of active research. Various first-row transition-metal dopants have been shown to impart useful property enhancements, but a systematic study of the entire period has yet to be undertaken, and little has been done to investigate their interaction with the host material at the atomic level. We have carried out first-principles computer simulations of the complete phase-change cycle in Ge2Sb2Te5 doped with each of the ten first-row transition metals. In this article, we present a comprehensive survey of the electronic, magnetic and optical properties of these doped materials. We discuss in detail their atomic-level structure, and relate the microscopic behaviours of the dopant atoms to their influence on the Ge2Sb2Te5 host. By considering an entire family of similar materials, we identify trends and patterns which might be used to predict suitable dopants for optimizing materials for specific phase-change applications. The computational method employed here is general, and this materials-discovery approach could be applied in the future to study other families of potential dopants for such materials.
Liu, Rongrong; Dai, Honglian; Zhou, Qian; Zhang, Qian; Zhang, Ping
2016-08-01
Two types of shape memory poly carbonate urethanes (PCUs) microspheres were synthesized by pre-polymerization and suspension polymerization, based on Polycarbonate diol (PCDL) as the soft segment, Isophorone diisocyanate (IPDI) and 1,6-hexamethylene diisocyanate (HDI) as the hard segments and 1,4-butanediol (BDO) as the chain expanding agent. The structure, crystallinity, and thermal property of the two synthesized PCUs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Differential scanning calorimetery (DSC), respectively. The results showed that the two types of PCUs exhibited high thermal stability with phase separation and semi-crystallinity. Also, the results of the compression test displayed that the shape fixity and the shape recovery of two PCUs were more than 90% compared to the originals, indicating their similar bio-applicability and shape-memory properties. The tensile strength, elongation at break was enhanced by introducing and increasing content of HDI. The water contact angles of PCUs decreased and their surface tension increased by surface modified with Bovine serum albumin (BSA). Furthermore, the biological study results of two types of PCUs from the platelet adhesion test and the cell proliferation inhibition test indicated they had some biocompatibilites. Hence, the PCU microspheres might represent a smart and shape-memory embolic agent for vascular embolization.
The role of serotonin 5-HT2A receptors in memory and cognition
Zhang, Gongliang; Stackman, Robert W.
2015-01-01
Serotonin 5-HT2A receptors (5-HT2ARs) are widely distributed in the central nervous system, especially in brain region essential for learning and cognition. In addition to endogenous 5-HT, several hallucinogens, antipsychotics, and antidepressants function by targeting 5-HT2ARs. Preclinical studies show that 5-HT2AR antagonists have antipsychotic and antidepressant properties, whereas agonist ligands possess cognition-enhancing and hallucinogenic properties. Abnormal 5-HT2AR activity is associated with a number of psychiatric disorders and conditions, including depression, schizophrenia, and drug addiction. In addition to its traditional activity as a G protein-coupled receptor (GPCR), recent studies have defined novel operations of 5-HT2ARs. Here we review progress in the (1) receptor anatomy and biology: distribution, signaling, polymerization and allosteric modulation; and (2) receptor functions: learning and memory, hallucination and spatial cognition, and mental disorders. Based on the recent progress in basic research on the 5-HT2AR, it appears that post-training 5-HT2AR activation enhances non-spatial memory consolidation, while pre-training 5-HT2AR activation facilitates fear extinction. Further, the potential influence that 5-HT2AR-elicited visual hallucinations may have on visual cue (i.e., landmark) guided spatial cognition is discussed. We conclude that the development of selective 5-HT2AR modulators to target distinct signaling pathways and neural circuits represents a new possibility for treating emotional, neuropsychiatric, and neurodegenerative disorders. PMID:26500553
Li, Wen; Guo, Fengning; Ling, Haifeng; Liu, Hui; Yi, Mingdong; Zhang, Peng; Wang, Wenjun; Xie, Linghai; Huang, Wei
2018-01-01
In this paper, the development of organic field-effect transistor (OFET) memory device based on isolated and ordered nanostructures (NSs) arrays of wide-bandgap (WBG) small-molecule organic semiconductor material [2-(9-(4-(octyloxy)phenyl)-9H-fluoren-2-yl)thiophene]3 (WG 3 ) is reported. The WG 3 NSs are prepared from phase separation by spin-coating blend solutions of WG 3 /trimethylolpropane (TMP), and then introduced as charge storage elements for nonvolatile OFET memory devices. Compared to the OFET memory device with smooth WG 3 film, the device based on WG 3 NSs arrays exhibits significant improvements in memory performance including larger memory window (≈45 V), faster switching speed (≈1 s), stable retention capability (>10 4 s), and reliable switching properties. A quantitative study of the WG 3 NSs morphology reveals that enhanced memory performance is attributed to the improved charge trapping/charge-exciton annihilation efficiency induced by increased contact area between the WG 3 NSs and pentacene layer. This versatile solution-processing approach to preparing WG 3 NSs arrays as charge trapping sites allows for fabrication of high-performance nonvolatile OFET memory devices, which could be applicable to a wide range of WBG organic semiconductor materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Ben; DeBartolo, Janae E.; Song, Jie
2017-01-26
Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydrationmore » was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.« less
Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory.
Benn, Abigail; Barker, Gareth R I; Stuart, Sarah A; Roloff, Eva V L; Teschemacher, Anja G; Warburton, E Clea; Robinson, Emma S J
2016-05-04
Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement. Copyright © 2016 Benn et al.
Lucena, Greice M R S; Matheus, Filipe C; Ferreira, Vania M; Tessele, Priscila B; Azevedo, Mariangela S; Cechinel-Filho, Valdir; Prediger, Rui D
2013-04-01
Previous studies from our group have indicated important biological properties of the ethanolic extract and isolated compounds from the bulbs of Cipura paludosa (Iridaceae), a native plant widely distributed in northern Brazil, including antioxidant, neuroprotective and anti-nociceptive activities. In the present study, the effects of the ethanolic extract and its two naphthoquinones (eleutherine and isoeleutherine) on the short- and long-term memory of adult rodents were assessed in social recognition and inhibitory avoidance tasks. Acute pre-training oral administration of the ethanolic extract improved the short-term social memory in rats as well as facilitated the step-down inhibitory avoidance short- and long-term memory in mice. Moreover, the co-administration of 'non-effective' doses of the extract of Cipura paludosa and the adenosine receptor antagonists caffeine (non-selective), DPCPX (adenosine A1 receptor antagonist) and ZM241385 (adenosine A2A receptor antagonist) improved the social recognition memory of rats. In the inhibitory avoidance task, the co-administration of sub-effective doses of the extract with caffeine or ZM241385, but not with DPCPX, improved the short- and long-term memory of mice. Finally, the acute oral administration of eleutherine and isoeleutherine facilitated the inhibitory avoidance short- and long-term memory in mice. These results demonstrate for the first time the cognitive-enhancing properties of the extract and isolated compounds from the bulbs of Cipura paludosa in rodents and suggest a possible involvement of adenosine A1 and A2A receptors in these effects. © 2012 The Authors Basic & Clinical Pharmacology & Toxicology © 2012 Nordic Pharmacological Society.
The effect of age on memory for emotional faces.
Grady, Cheryl L; Hongwanishkul, Donaya; Keightley, Michelle; Lee, Wendy; Hasher, Lynn
2007-05-01
Prior studies of emotion suggest that young adults should have enhanced memory for negative faces and that this enhancement should be reduced in older adults. Several studies have not shown these effects but were conducted with procedures different from those used with other emotional stimuli. In this study, researchers examined age differences in recognition of faces with emotional or neutral expressions, using trial-unique stimuli, as is typically done with other types of emotional stimuli. They also assessed the influence of personality traits and mood on memory. Enhanced recognition for negative faces was found in young adults but not in older adults. Recognition of faces was not influenced by mood or personality traits in young adults, but lower levels of extraversion and better emotional sensitivity predicted better negative face memory in older adults. These results suggest that negative expressions enhance memory for faces in young adults, as negative valence enhances memory for words and scenes. This enhancement is absent in older adults, but memory for emotional faces is modulated in older adults by personality traits that are relevant to emotional processing. (c) 2007 APA, all rights reserved
Barsegyan, Areg; Mackenzie, Scott M.; Kurose, Brian D.; McGaugh, James L.; Roozendaal, Benno
2010-01-01
It is well established that acute administration of adrenocortical hormones enhances the consolidation of memories of emotional experiences and, concurrently, impairs working memory. These different glucocorticoid effects on these two memory functions have generally been considered to be independently regulated processes. Here we report that a glucocorticoid receptor agonist administered into the medial prefrontal cortex (mPFC) of male Sprague-Dawley rats both enhances memory consolidation and impairs working memory. Both memory effects are mediated by activation of a membrane-bound steroid receptor and depend on noradrenergic activity within the mPFC to increase levels of cAMP-dependent protein kinase. These findings provide direct evidence that glucocorticoid effects on both memory consolidation and working memory share a common neural influence within the mPFC. PMID:20810923
Social importance enhances prospective memory: evidence from an event-based task.
Walter, Stefan; Meier, Beat
2017-07-01
Prospective memory performance can be enhanced by task importance, for example by promising a reward. Typically, this comes at costs in the ongoing task. However, previous research has suggested that social importance (e.g., providing a social motive) can enhance prospective memory performance without additional monitoring costs in activity-based and time-based tasks. The aim of the present study was to investigate the influence of social importance in an event-based task. We compared four conditions: social importance, promising a reward, both social importance and promising a reward, and standard prospective memory instructions (control condition). The results showed enhanced prospective memory performance for all importance conditions compared to the control condition. Although ongoing task performance was slowed in all conditions with a prospective memory task when compared to a baseline condition with no prospective memory task, additional costs occurred only when both the social importance and reward were present simultaneously. Alone, neither social importance nor promising a reward produced an additional slowing when compared to the cost in the standard (control) condition. Thus, social importance and reward can enhance event-based prospective memory at no additional cost.
Yan, Rongzi; Nguyen, Quang; Gonzaga, James; Johnson, Mai; Ritzmann, Ronald F; Taylor, Eve M
2003-04-01
AIT-082 (Neotrofin), a hypoxanthine derivative, has been shown to improve memory in both animals and humans. In animals, adrenal hormones modulate the efficacy of many memory-enhancing compounds, including piracetam and tacrine (Cognex). To investigate the role of adrenal hormones in the memory-enhancing action of AIT-082. Plasma levels of adrenal hormones (corticosterone and aldosterone) in mice were significantly reduced by surgical or chemical (aminoglutethimide) adrenalectomy or significantly elevated by oral administration of corticosterone. The effects of these hormone level manipulations on the memory-enhancing activity of AIT-082 and piracetam were evaluated using a cycloheximide-induced amnesia/passive avoidance model. As previously reported by others, the memory enhancing action of piracetam was abolished by adrenalectomy. In contrast, the memory enhancement by 60 mg/kg AIT-082 (IP) was unaffected. However, a sub-threshold dose of AIT-082 (0.1 mg/kg, IP) that did not improve memory in control animals did improve memory in adrenalectomized animals. These data suggested that, similar to piracetam and tacrine, the memory enhancing action of AIT-082 might be inhibited by high levels of adrenal hormones. As expected, corticosterone (30 and 100 mg/kg) inhibited the action of piracetam, however no dose up to 100 mg/kg corticosterone inhibited the activity of AIT-082. These data suggest that while AIT-082 function is not dependent on adrenal hormones, it is modulated by them. That memory enhancement by AIT-082 was not inhibited by high plasma corticosterone levels may have positive implications for its clinical utility, given that many Alzheimer's disease patients have elevated plasma cortisol levels.
Expectancies and memory for an emotional film fragment: a placebo study.
Van Oorsouw, Kim; Merckelbach, Harald
2007-01-01
This study investigated whether positive ("memory-enhancing") and negative ("memory-impairing") placebos may enhance and undermine, respectively, memory of a film fragment. After watching an emotional film fragment, participants were assigned to a "memory-enhancing" placebo group (n = 30), control group (n = 30), or "memory-impairing" placebo group (n = 30). Only participants who believed in the placebo effect were included in the analyses. In the positive placebo group, memory for the film fragment was better than that of participants who received negative placebos or control participants. Participants in the negative placebo group made more distortion errors than participants in the positive placebo or control group. Our findings show that people's expectancies about their memory may affect their memory performance. These results may have implications for both clinical practice and the legal domain.
Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement.
Adamsky, Adar; Kol, Adi; Kreisel, Tirzah; Doron, Adi; Ozeri-Engelhard, Nofar; Melcer, Talia; Refaeli, Ron; Horn, Henrike; Regev, Limor; Groysman, Maya; London, Michael; Goshen, Inbal
2018-05-18
Astrocytes respond to neuronal activity and were shown to be necessary for plasticity and memory. To test whether astrocytic activity is also sufficient to generate synaptic potentiation and enhance memory, we expressed the Gq-coupled receptor hM3Dq in CA1 astrocytes, allowing their activation by a designer drug. We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also sufficient to induce NMDA-dependent de novo long-term potentiation in the hippocampus that persisted after astrocytic activation ceased. In vivo, astrocytic activation enhanced memory allocation; i.e., it increased neuronal activity in a task-specific way only when coupled with learning, but not in home-caged mice. Furthermore, astrocytic activation using either a chemogenetic or an optogenetic tool during acquisition resulted in memory recall enhancement on the following day. Conversely, directly increasing neuronal activity resulted in dramatic memory impairment. Our findings that astrocytes induce plasticity and enhance memory may have important clinical implications for cognitive augmentation treatments. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhou, Xilin; Wu, Liangcai; Song, Zhitang; Rao, Feng; Zhu, Min; Peng, Cheng; Yao, Dongning; Song, Sannian; Liu, Bo; Feng, Songlin
2012-10-01
Carbon-doped Ge2Sb2Te5 material is proposed for high-density phase-change memories. The carbon doping effects on electrical and structural properties of Ge2Sb2Te5 are studied by in situ resistance and x-ray diffraction measurements as well as optical spectroscopy. C atoms are found to significantly enhance the thermal stability of amorphous Ge2Sb2Te5 by increasing the degree of disorder of the amorphous phase. The reversible electrical switching capability of the phase-change memory cells is improved in terms of power consumption with carbon addition. The endurance of ˜2.1 × 104 cycles suggests that C-doped Ge2Sb2Te5 film will be a potential phase-change material for high-density storage application.
ERIC Educational Resources Information Center
Parent, Marise B.; Krebs-Kraft, Desiree L.; Ryan, John P.; Wilson, Jennifer S.; Harenski, Carla; Hamann, Stephan
2011-01-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with…
Avalanche atomic switching in strain engineered Sb2Te3-GeTe interfacial phase-change memory cells
NASA Astrophysics Data System (ADS)
Zhou, Xilin; Behera, Jitendra K.; Lv, Shilong; Wu, Liangcai; Song, Zhitang; Simpson, Robert E.
2017-09-01
By confining phase transitions to the nanoscale interface between two different crystals, interfacial phase change memory heterostructures represent the state of the art for energy efficient data storage. We present the effect of strain engineering on the electrical switching performance of the {{Sb}}2{{Te}}3-GeTe superlattice van der Waals devices. Multiple Ge atoms switching through a two-dimensional Te layer reduces the activation barrier for further atoms to switch; an effect that can be enhanced by biaxial strain. The out-of-plane phonon mode of the GeTe crystal remains active in the superlattice heterostructures. The large in-plane biaxial strain imposed by the {{Sb}}2{{Te}}3 layers on the GeTe layers substantially improves the switching speed, reset energy, and cyclability of the superlattice memory devices. Moreover, carefully controlling residual stress in the layers of {{Sb}}2{{Te}}3-GeTe interfacial phase change memories provides a new degree of freedom to design the properties of functional superlattice structures for memory and photonics applications.
Tseng, Hsiang-Chien; Wang, Mao-Hsien; Soung, Hung-Sheng; Chang, Yi; Chang, Kuo-Chi
2015-12-01
Reserpine has been confirmed to induce cognitive dysfunction and increase brain neural oxidative stress. Green tea catechins, particularly (-)epigallocatechin-3-gallate (EGCG), have strong antioxidative properties and can protect against numerous oxidative damages. In this study, we examined the possible protective effects of EGCG on reserpine-induced impairment of short-term memory in rats. Reserpine (1 mg/kg, intraperitoneal)-induced memory impairment was assessed using the social recognition task method; locomotor activity and the olfactory discrimination ability were not altered as measured by an open-field test and an olfactory discrimination test, respectively. EGCG treatment (100 and 300 mg/kg, intraperitoneal, for 7 days, starting 6 days before the reserpine injection) could improve the worsened social memory of reserpine-treated rats. Also, EGCG treatment reduced reserpine-induced lipid peroxidation and enhanced the antioxidation power in the hippocampi of reserpine-treated rats. These results suggest a protective effect of EGCG in treating reserpine-induced impairment of memory, most probably through its powerful antioxidative activities. Accordingly, EGCG may hold a clinically relevant value in preventing reserpine-induced cognitive dysfunction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghoneim, M. T.; Hussain, M. M., E-mail: muhammadmustafa.hussain@kaust.edu.sa
Flexible memory can enable industrial, automobile, space, and smart grid centered harsh/extreme environment focused electronics application(s) for enhanced operation, safety, and monitoring where bent or complex shaped infrastructures are common and state-of-the-art rigid electronics cannot be deployed. Therefore, we report on the physical-mechanical-electrical characteristics of a flexible ferroelectric memory based on lead zirconium titanate as a key memory material and flexible version of bulk mono-crystalline silicon (100). The experimented devices show a bending radius down to 1.25 cm corresponding to 0.16% nominal strain (high pressure of ∼260 MPa), and full functionality up to 225 °C high temperature in ambient gas composition (21% oxygenmore » and 55% relative humidity). The devices showed unaltered data retention and fatigue properties under harsh conditions, still the reduced memory window (20% difference between switching and non-switching currents at 225 °C) requires sensitive sense circuitry for proper functionality and is the limiting factor preventing operation at higher temperatures.« less
Sleep Enhances Explicit Recollection in Recognition Memory
ERIC Educational Resources Information Center
Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan
2005-01-01
Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on a contextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of…
Synesthetic experiences enhance unconscious learning.
Rothen, Nicolas; Scott, Ryan B; Mealor, Andy D; Coolbear, Daniel J; Burckhardt, Vera; Ward, Jamie
2013-01-01
Synesthesia is characterized by consistent extra perceptual experiences in response to normal sensory input. Recent studies provide evidence for a specific profile of enhanced memory performance in synesthesia, but focus exclusively on explicit memory paradigms for which the learned content is consciously accessible. In this study, for the first time, we demonstrate with an implicit memory paradigm that synesthetic experiences also enhance memory performance relating to unconscious knowledge.
Gore, Jane B; Krebs, Desiree L; Parent, Marise B
2006-06-01
Emotional arousal enhances memory, and this memory-enhancing effect may involve neurochemicals released by arousal, such as glucose and cortisol. Physiological consequences of arousal change with age, and these changes may contribute to age-related memory decline. The present study examined whether emotionally arousing pictures would affect glucose and cortisol levels and enhance memory in young and older adults. Blood glucose and salivary cortisol were measured once before and six times after young and old adults viewed either 60 highly arousing or 60 relatively neutral pictures. Recall for the stimuli was measured 75 min later. The results indicated that recall was impaired in older adults. Arousal as measured by self-report enhanced recall in both young and older adults. However, arousal did not affect glucose or cortisol levels in either group. These findings demonstrate that changes in blood glucose or salivary cortisol levels are not necessary for arousal to enhance memory.
Green tea and cocoa enhance cognition in Lymnaea
Swinton, Erin; de Freitas, Emily; Swinton, Cayley; Shymansky, Tamila; Hiles, Emily; Zhang, Jack; Rothwell, Cailin; Lukowiak, Ken
2018-01-01
ABSTRACT A flavonoid, (-)-epicatechi (Epi), enhances long-term memory (LTM) formation in Lymnaea and reverses memory obstruction caused by stress. Many foods contain substantial amounts of Epi, (e.g. green tea and cocoa). In humans eating such foods may directly or indirectly enhance cognition. We directly test whether operant conditioning training Lymnaea in these natural foods result in the same effects as training snails in pure Epi. We found that exposure to products containing high concentrations of Epi (e.g. green tea and cocoa) during training enhanced memory formation and could even reverse a learning and memory deficit brought about by stress. Epi can be photo-inactivated by exposure to ultraviolet light. We found that following photo-inactivation of Epi, memory enhancement did not occur. Photo-inactivation of foods containing Epi (e,g. green tea) blocked their ability to enhance LTM. Our data are thus consistent with the hypothesis that dietary sources of Epi can have positive benefits on cognitive ability and be able to reverse memory aversive states. PMID:29497476
Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins
NASA Technical Reports Server (NTRS)
Williams, Tiffany; Meador, Michael; Miller, Sandi; Scheiman, Daniel
2011-01-01
Shape memory polymers (SMPs) and composites are a special class of smart materials known for their ability to change size and shape upon exposure to an external stimulus (e.g. light, heat, pH, or magnetic field). These materials are commonly used for biomedical applications; however, recent attempts have been made towards developing SMPs and composites for use in aircraft and space applications. Implementing SMPs and composites to create a shape change effect in some aircraft structures could potentially reduce drag, decrease fuel consumption, and improve engine performance. This paper discusses the development of suitable materials to use in morphing aircraft structures. Thermally responsive epoxy SMPs and nanocomposites were developed and the shape memory behavior and thermo-mechanical properties were studied. Overall, preliminary results from dynamic mechanical analysis (DMA) showed that thermally actuated shape memory epoxies and nanocomposites possessed Tgs near approximately 168 C. When graphene nanofiller was added, the storage modulus and crosslinking density decreased. On the other hand, the addition of graphene enhanced the recovery behavior of the shape memory nanocomposites. It was assumed that the addition of graphene improved shape memory recovery by reducing the crosslinking density and increasing the elasticity of the nanocomposites.
NASA Astrophysics Data System (ADS)
Bousoulas, P.; Giannopoulos, I.; Asenov, P.; Karageorgiou, I.; Tsoukalas, D.
2017-03-01
Although multilevel capability is probably the most important property of resistive random access memory (RRAM) technology, it is vulnerable to reliability issues due to the stochastic nature of conducting filament (CF) creation. As a result, the various resistance states cannot be clearly distinguished, which leads to memory capacity failure. In this work, due to the gradual resistance switching pattern of TiO2-x-based RRAM devices, we demonstrate at least six resistance states with distinct memory margin and promising temporal variability. It is shown that the formation of small CFs with high density of oxygen vacancies enhances the uniformity of the switching characteristics in spite of the random nature of the switching effect. Insight into the origin of the gradual resistance modulation mechanisms is gained by the application of a trap-assisted-tunneling model together with numerical simulations of the filament formation physical processes.
Validity and Normative Data for the Biber Figure Learning Test: A Visual Supraspan Memory Measure.
Gifford, Katherine A; Liu, Dandan; Neal, Jacquelyn E; Acosta, Lealani Mae Y; Bell, Susan P; Wiggins, Margaret E; Wisniewski, Kristi M; Godfrey, Mary; Logan, Laura A; Hohman, Timothy J; Pechman, Kimberly R; Libon, David J; Blennow, Kaj; Zetterberg, Henrik; Jefferson, Angela L
2018-05-01
The Biber Figure Learning Test (BFLT), a visuospatial serial figure learning test, was evaluated for biological correlates and psychometric properties, and normative data were generated. Nondemented individuals ( n = 332, 73 ± 7, 41% female) from the Vanderbilt Memory & Aging Project completed a comprehensive neuropsychological protocol. Adjusted regression models related BFLT indices to structural brain magnetic resonance imaging and cerebrospinal fluid (CSF) markers of brain health. Regression-based normative data were generated. Lower BFLT performances (Total Learning, Delayed Recall, Recognition) related to smaller medial temporal lobe volumes and higher CSF tau concentrations but not CSF amyloid. BFLT indices were most strongly correlated with other measures of verbal and nonverbal memory and visuospatial skills. The BFLT provides a comprehensive assessment of all aspects of visuospatial learning and memory and is sensitive to biomarkers of unhealthy brain aging. Enhanced normative data enriches the clinical utility of this visual serial figure learning test for use with older adults.
Kumar, A; Biradar, A M
2011-04-01
We present here the dielectric and electro-optical studies of cadmium telluride quantum dots (CdTe QDs) doped ferroelectric liquid crystals (FLCs). It has been observed that the doping of CdTe QDs not only induced a pronounced memory effect but also affected the physical parameters of FLC material (LAHS19). The modifications in the physical parameters and memory effect of LAHS19 are found to depend on the concentration ratio of CdTe QDs. The lower concentration of CdTe QDs (1-3 wt%) enhanced the values of spontaneous polarization and rotational viscosity of LAHS19 material but did not favor the memory effect, whereas a higher concentration of CdTe QDs (>5 wt%) degraded the alignment of LAHS19 material. The doping of ∼5 wt% of CdTe QDs is found to be the most suitable for achieving good memory effect without significantly affecting the material parameters. ©2011 American Physical Society
Cognitive enhancers (nootropics). Part 2: drugs interacting with enzymes.
Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea
2013-01-01
Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. This review covers the evolution of research in this field over the last 25 years.
Froestl, Wolfgang; Pfeifer, Andrea; Muhs, Andreas
2013-01-01
Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 19 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease modifying drugs, meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.
Cognitive enhancers (nootropics). Part 1: drugs interacting with receptors.
Froestl, Wolfgang; Muhs, Andreas; Pfeifer, Andrea
2012-01-01
Cognitive enhancers (nootropics) are drugs to treat cognition deficits in patients suffering from Alzheimer's disease, schizophrenia, stroke, attention deficit hyperactivity disorder, or aging. Cognition refers to a capacity for information processing, applying knowledge, and changing preferences. It involves memory, attention, executive functions, perception, language, and psychomotor functions. The term nootropics was coined in 1972 when memory enhancing properties of piracetam were observed in clinical trials. In the meantime, hundreds of drugs have been evaluated in clinical trials or in preclinical experiments. To classify the compounds, a concept is proposed assigning drugs to 18 categories according to their mechanism(s) of action, in particular drugs interacting with receptors, enzymes, ion channels, nerve growth factors, re-uptake transporters, antioxidants, metal chelators, and disease-modifying drugs meaning small molecules, vaccines, and monoclonal antibodies interacting with amyloid-β and tau. For drugs, whose mechanism of action is not known, they are either classified according to structure, e.g., peptides, or their origin, e.g., natural products. The review covers the evolution of research in this field over the last 25 years.
Emotional Memory Persists Longer than Event Memory
ERIC Educational Resources Information Center
Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu
2010-01-01
The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition…
Proverbio, Alice Mado; Mado Proverbio, C A Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto
2015-10-15
The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding.
Mado Proverbio, C.A. Alice; Lozano Nasi, Valentina; Alessandra Arcari, Laura; De Benedetto, Francesco; Guardamagna, Matteo; Gazzola, Martina; Zani, Alberto
2015-01-01
The aim of this study was to investigate how background auditory processing can affect other perceptual and cognitive processes as a function of stimulus content, style and emotional nature. Previous studies have offered contrasting evidence, and it has been recently shown that listening to music negatively affected concurrent mental processing in the elderly but not in young adults. To further investigate this matter, the effect of listening to music vs. listening to the sound of rain or silence was examined by administering an old/new face memory task (involving 448 unknown faces) to a group of 54 non-musician university students. Heart rate and diastolic and systolic blood pressure were measured during an explicit face study session that was followed by a memory test. The results indicated that more efficient and faster recall of faces occurred under conditions of silence or when participants were listening to emotionally touching music. Whereas auditory background (e.g., rain or joyful music) interfered with memory encoding, listening to emotionally touching music improved memory and significantly increased heart rate. It is hypothesized that touching music is able to modify the visual perception of faces by binding facial properties with auditory and emotionally charged information (music), which may therefore result in deeper memory encoding. PMID:26469712
Cognitive effects of methylphenidate in healthy volunteers: a review of single dose studies.
Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J
2014-06-01
Methylphenidate (MPH), a stimulant drug with dopamine and noradrenaline reuptake inhibition properties, is mainly prescribed in attention deficit hyperactivity disorder, is increasingly used by the general population, intending to enhance their cognitive function. In this literature review, we aim to answer whether this is effective. We present a novel way to determine the extent to which MPH enhances cognitive performance in a certain domain. Namely, we quantify this by a percentage that reflects the number of studies showing performance enhancing effects of MPH. To evaluate whether the dose-response relationship follows an inverted-U-shaped curve, MPH effects on cognition are also quantified for low, medium and high doses, respectively. The studies reviewed here show that single doses of MPH improve cognitive performance in the healthy population in the domains of working memory (65% of included studies) and speed of processing (48%), and to a lesser extent may also improve verbal learning and memory (31%), attention and vigilance (29%) and reasoning and problem solving (18%), but does not have an effect on visual learning and memory. MPH effects are dose-dependent and the dose-response relationship differs between cognitive domains. MPH use is associated with side effects and other adverse consequences, such as potential abuse. Future studies should focus on MPH specifically to adequately asses its benefits in relation to the risks specific to this drug.
The nootropic properties of ginseng saponin Rb1 are linked to effects on anxiety.
Churchill, James D; Gerson, Jennifer L; Hinton, Kendra A; Mifek, Jennifer L; Walter, Michael J; Winslow, Cynthia L; Deyo, Richard A
2002-01-01
Previous studies have shown that crude ginseng extracts enhance performance on shock-motivated tasks. Whether such performance enhancements are due to memory-enhancing (nootropic) properties of ginseng, or to other non-specific effects such as an influence on anxiety has not been determined. In the present study, we evaluated both the nootropic and anxiolytic effects of the ginseng saponin Rb1. In the first experiment, 80 five-day-old male chicks received intraperitoneal injections of 0, 0.25, 2.5 or 5.0 mg/kg Rb1. Performance on a visual discrimination task was evaluated 15 minutes, 24 and 72 hours later. Acquisition of a visual discrimination task was unaffected by drug treatment, but the number of errors was significantly reduced in the 0.25 mg/kg group during retention trials completed 24 and 72 hours after injection. Animals receiving higher dosages showed trends towards enhancement initially, but demonstrated impaired performance when tested 72 hours later. Rb1 had no effect on response rates or body weight. In the second experiment, 64 five-day-old male chicks received similar injections of Rb1 (0, 0.25, 2.5 or 5.0 mg/kg) and separation distress was evaluated 15 minutes, 24 and 72 hours later. Rb1 produced a change in separation distress that depended on the dose and environmental condition under which distress was recorded. These data suggest that Rb1 can improve memory for a visual discrimination task and that the nootropic effect may be related to changes in anxiety.
How Arousal Affects Younger and Older Adults' Memory Binding
Nashiro, Kaoru; Mather, Mara
2009-01-01
A number of recent studies have shown that associative memory for within-item features is enhanced for emotionally arousing items, whereas arousal-enhanced binding is not seen for associations between distinct items (for a review see Mather, 2007). The costs and benefits of arousal in memory binding have been examined for younger adults but not for older adults. The present experiment examined whether arousal would enhance younger and older adults' within-item and between-item memory binding. The results revealed that arousal improved younger adults' within-item memory binding but not that of older adults. Arousal worsened both groups' between-item memory binding. PMID:21240821
Modelling memory colour region for preference colour reproduction
NASA Astrophysics Data System (ADS)
Zeng, Huanzhao; Luo, Ronnier
2010-01-01
Colour preference adjustment is an essential step for colour image enhancement and perceptual gamut mapping. In colour reproduction for pictorial images, properly shifting colours away from their colorimetric originals may produce more preferred colour reproduction result. Memory colours, as a portion of the colour regions for colour preference adjustment, are especially important for preference colour reproduction. Identifying memory colours or modelling the memory colour region is a basic step to study preferred memory colour enhancement. In this study, we first created gamut for each memory colour region represented as a convex hull, and then used the convex hull to guide mathematical modelling to formulate the colour region for colour enhancement.
How arousal affects younger and older adults' memory binding.
Nashiro, Kaoru; Mather, Mara
2011-01-01
A number of recent studies have shown that associative memory for within-item features is enhanced for emotionally arousing items, whereas arousal-enhanced binding is not seen for associations between distinct items (for a review, see Mather, 2007, Perspectives on Psychological Science, 2, 33-52). The costs and benefits of arousal in memory binding have been examined for younger adults but not for older adults. The present experiment examined whether arousal would enhance younger and older adults' within-item and between-item memory binding. The results revealed that arousal improved younger adults' within-item memory binding but not that of older adults. Arousal worsened both groups' between-item memory binding.
Uthayathas, Subramaniam; Parameshwaran, Kodeeswaran; Karuppagounder, Senthilkumar S; Ahuja, Manuj; Dhanasekaran, Muralikrishnan; Suppiramaniam, Vishnu
2013-11-01
Phosphodiesterases (PDEs) belong to a family of proteins that control metabolism of cyclic nucleotides. Targeting PDE5, for enhancing cellular function, is one of the therapeutic strategies for male erectile dysfunction. We have investigated whether in vivo inhibition of PDE5, which is expressed in several brain regions, will enhance memory and synaptic transmission in the hippocampus of healthy mice. We have found that acute administration of sildenafil, a specific PDE5 inhibitor, enhanced hippocampus-dependent memory tasks. To elucidate the underlying mechanism in the memory enhancement, effects of sildenafil on long-term potentiation (LTP) were measured. The level of LTP was significantly elevated, with concomitant increases in basal synaptic transmission, in mice treated with sildenafil (1 mg/kg/day) for 15 days compared to control mice. These results suggest that moderate PDE5 inhibition enhances memory by increasing synaptic plasticity and transmission in the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.
Does stress enhance or impair memory consolidation?
Trammell, Janet P; Clore, Gerald L
2014-01-01
Three experiments examined the hypothesis that stress-induced arousal enhances long-term memory for experiences associated with arousing events. Contrary to expectations, in each experiment exposure to a stressor (arm immersion in ice water) interfered with, rather than enhanced, long-term memory for associated material. Despite varying the stimuli (words, pictures), their emotional value (positive, negative, neutral), the time between learning and stress inductions (0 to 1 minute), and opportunities for post-learning rehearsal, each experiment produced a significant reversal of the hypothesised effect. That is, in each experiment, exposure to a stressor interfered with, rather than enhanced, long-term memory for associated material. We conclude that the relationship between stress and memory consolidation is more bounded than previously believed.
The influence of cannabinoids on learning and memory processes of the dorsal striatum.
Goodman, Jarid; Packard, Mark G
2015-11-01
Extensive evidence indicates that the mammalian endocannabinoid system plays an integral role in learning and memory. Our understanding of how cannabinoids influence memory comes predominantly from studies examining cognitive and emotional memory systems mediated by the hippocampus and amygdala, respectively. However, recent evidence suggests that cannabinoids also affect habit or stimulus-response (S-R) memory mediated by the dorsal striatum. Studies implementing a variety of maze tasks in rats indicate that systemic or intra-dorsolateral striatum infusions of cannabinoid receptor agonists or antagonists impair habit memory. In mice, cannabinoid 1 (CB1) receptor knockdown can enhance or impair habit formation, whereas Δ(9)THC tolerance enhances habit formation. Studies in human cannabis users also suggest an enhancement of S-R/habit memory. A tentative conclusion based on the available data is that acute disruption of the endocannabinoid system with either agonists or antagonists impairs, whereas chronic cannabinoid exposure enhances, dorsal striatum-dependent S-R/habit memory. CB1 receptors are required for multiple forms of striatal synaptic plasticity implicated in memory, including short-term and long-term depression. Interactions with the hippocampus-dependent memory system may also have a role in some of the observed effects of cannabinoids on habit memory. The impairing effect often observed with acute cannabinoid administration argues for cannabinoid-based treatments for human psychopathologies associated with a dysfunctional habit memory system (e.g. post-traumatic stress disorder and drug addiction/relapse). In addition, the enhancing effect of repeated cannabinoid exposure on habit memory suggests a novel neurobehavioral mechanism for marijuana addiction involving the dorsal striatum-dependent memory system. Copyright © 2015 Elsevier Inc. All rights reserved.
Emotional arousal and memory after deep encoding.
Leventon, Jacqueline S; Camacho, Gabriela L; Ramos Rojas, Maria D; Ruedas, Angelica
2018-05-22
Emotion often enhances long-term memory. One mechanism for this enhancement is heightened arousal during encoding. However, reducing arousal, via emotion regulation (ER) instructions, has not been associated with reduced memory. In fact, the opposite pattern has been observed: stronger memory for emotional stimuli encoded with an ER instruction to reduce arousal. This pattern may be due to deeper encoding required by ER instructions. In the current research, we examine the effects of emotional arousal and deep-encoding on memory across three studies. In Study 1, adult participants completed a writing task (deep-encoding) for encoding negative, neutral, and positive picture stimuli, whereby half the emotion stimuli had the ER instruction to reduce the emotion. Memory was strong across conditions, and no memory enhancement was observed for any condition. In Study 2, adult participants completed the same writing task as Study 1, as well as a shallow-encoding task for one-third of negative, neutral, and positive trials. Memory was strongest for deep vs. shallow encoding trials, with no effects of emotion or ER instruction. In Study 3, adult participants completed a shallow-encoding task for negative, neutral, and positive stimuli, with findings indicating enhanced memory for negative emotional stimuli. Findings suggest that deep encoding must be acknowledged as a source of memory enhancement when examining manipulations of emotion-related arousal. Copyright © 2018. Published by Elsevier B.V.
Transient acidosis while retrieving a fear-related memory enhances its lability
Du, Jianyang; Price, Margaret P; Taugher, Rebecca J; Grigsby, Daniel; Ash, Jamison J; Stark, Austin C; Hossain Saad, Md Zubayer; Singh, Kritika; Mandal, Juthika; Wemmie, John A; Welsh, Michael J
2017-01-01
Attenuating the strength of fearful memories could benefit people disabled by memories of past trauma. Pavlovian conditioning experiments indicate that a retrieval cue can return a conditioned aversive memory to a labile state. However, means to enhance retrieval and render a memory more labile are unknown. We hypothesized that augmenting synaptic signaling during retrieval would increase memory lability. To enhance synaptic transmission, mice inhaled CO2 to induce an acidosis and activate acid sensing ion channels. Transient acidification increased the retrieval-induced lability of an aversive memory. The labile memory could then be weakened by an extinction protocol or strengthened by reconditioning. Coupling CO2 inhalation to retrieval increased activation of amygdala neurons bearing the memory trace and increased the synaptic exchange from Ca2+-impermeable to Ca2+-permeable AMPA receptors. The results suggest that transient acidosis during retrieval renders the memory of an aversive event more labile and suggest a strategy to modify debilitating memories. DOI: http://dx.doi.org/10.7554/eLife.22564.001 PMID:28650315
Wang, Bo
2015-05-01
The study examined the effect of negative emotion on consolidation of both item and source memory. Participants learned words read by either a male or female. Then they watched either a negative or a neutral video clip. Memory tests were carried out either 25min or 24h after learning. The study yielded the following findings. First, negative emotion enhanced consolidation of item memory as measured by recognition memory in the 25-min delay, and enhanced consolidation of item memory as measured by free recall in both the 25-min and the 24-h delay. Second, negative emotion had little effect on consolidation of source memory, either in the 25-min or the 24-h delay. These findings provide evidence for the differential effects of negative emotion on item memory and source memory and have implications for using emotion as a strategy to intervene memory consolidation. Copyright © 2015 Elsevier Inc. All rights reserved.
Liu, Albert; Jain, Neeraj; Vyas, Ajai; Lim, Lee Wei
2015-01-01
Memory dysfunction is a key symptom of age-related dementia. Although recent studies have suggested positive effects of electrical stimulation for memory enhancement, its potential targets remain largely unknown. In this study, we hypothesized that spatially targeted deep brain stimulation of ventromedial prefrontal cortex enhanced memory functions in a middle-aged rat model. Our results show that acute stimulation enhanced the short-, but not the long-term memory in the novel-object recognition task. Interestingly, after chronic high-frequency stimulation, both the short- and long-term memories were robustly improved in the novel-object recognition test and Morris water-maze spatial task compared to sham. Our results also demonstrated that chronic ventromedial prefrontal cortex high-frequency stimulation upregulated neurogenesis-associated genes along with enhanced hippocampal cell proliferation. Importantly, these memory behaviors were strongly correlated with the hippocampal neurogenesis. Overall, these findings suggest that chronic ventromedial prefrontal cortex high-frequency stimulation may serve as a novel effective therapeutic target for dementia-related disorders. DOI: http://dx.doi.org/10.7554/eLife.04803.001 PMID:25768425
Upregulation of CREB-mediated transcription enhances both short- and long-term memory.
Suzuki, Akinobu; Fukushima, Hotaka; Mukawa, Takuya; Toyoda, Hiroki; Wu, Long-Jun; Zhao, Ming-Gao; Xu, Hui; Shang, Yuze; Endoh, Kengo; Iwamoto, Taku; Mamiya, Nori; Okano, Emiko; Hasegawa, Shunsuke; Mercaldo, Valentina; Zhang, Yue; Maeda, Ryouta; Ohta, Miho; Josselyn, Sheena A; Zhuo, Min; Kida, Satoshi
2011-06-15
Unraveling the mechanisms by which the molecular manipulation of genes of interest enhances cognitive function is important to establish genetic therapies for cognitive disorders. Although CREB is thought to positively regulate formation of long-term memory (LTM), gain-of-function effects of CREB remain poorly understood, especially at the behavioral level. To address this, we generated four lines of transgenic mice expressing dominant active CREB mutants (CREB-Y134F or CREB-DIEDML) in the forebrain that exhibited moderate upregulation of CREB activity. These transgenic lines improved not only LTM but also long-lasting long-term potentiation in the CA1 area in the hippocampus. However, we also observed enhanced short-term memory (STM) in contextual fear-conditioning and social recognition tasks. Enhanced LTM and STM could be dissociated behaviorally in these four lines of transgenic mice, suggesting that the underlying mechanism for enhanced STM and LTM are distinct. LTM enhancement seems to be attributable to the improvement of memory consolidation by the upregulation of CREB transcriptional activity, whereas higher basal levels of BDNF, a CREB target gene, predicted enhanced shorter-term memory. The importance of BDNF in STM was verified by microinfusing BDNF or BDNF inhibitors into the hippocampus of wild-type or transgenic mice. Additionally, increasing BDNF further enhanced LTM in one of the lines of transgenic mice that displayed a normal BDNF level but enhanced LTM, suggesting that upregulation of BDNF and CREB activity cooperatively enhances LTM formation. Our findings suggest that CREB positively regulates memory consolidation and affects memory performance by regulating BDNF expression.
ERIC Educational Resources Information Center
Mulligan, Neil W.; Lozito, Jeffrey P.; Rosner, Zachary A.
2006-01-01
Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget…
Generation and Memory for Contextual Detail
ERIC Educational Resources Information Center
Mulligan, Neil W.
2004-01-01
Generation enhances item memory but may not enhance other aspects of memory. In 12 experiments, the author investigated the effect of generation on context memory, motivated in part by the hypothesis that generation produces a trade-off in encoding item and contextual information. Participants generated some study words (e.g., hot-___) and read…
Kim, Jaekyoon; Szinte, Julia S.; Boulware, Marissa I.
2016-01-01
The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. SIGNIFICANCE STATEMENT Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory. PMID:26985039
Kim, Jaekyoon; Szinte, Julia S; Boulware, Marissa I; Frick, Karyn M
2016-03-16
The ability of 17β-estradiol (E2) to enhance hippocampal object recognition and spatial memory depends on rapid activation of extracellular signal-regulated kinase (ERK) in the dorsal hippocampus (DH). Although this activation can be mediated by the intracellular estrogen receptors ERα and ERβ, little is known about the role that the membrane estrogen receptor GPER plays in regulating ERK or E2-mediated memory formation. In this study, post-training DH infusion of the GPER agonist G-1 enhanced object recognition and spatial memory in ovariectomized female mice, whereas the GPER antagonist G-15 impaired memory, suggesting that GPER activation, like E2, promotes hippocampal memory formation. However, unlike E2, G-1 did not increase ERK phosphorylation, but instead significantly increased phosphorylation of c-Jun N-terminal kinase (JNK) in the DH. Moreover, DH infusion of the JNK inhibitor SP600125 prevented G-1 from enhancing object recognition and spatial memory, but the ERK inhibitor U0126 did not. These data suggest that GPER enhances memory via different cell-signaling mechanisms than E2. This conclusion was supported by data showing that the ability of E2 to facilitate memory and activate ERK signaling was not blocked by G-15 or SP600125, which demonstrates that the memory-enhancing effects of E2 are not dependent on JNK or GPER activation in the DH. Together, these data indicate that GPER regulates memory independently from ERα and ERβ by activating JNK signaling, rather than ERK signaling. Thus, the findings suggest that GPER in the DH may not function as an estrogen receptor to regulate object recognition and spatial memory. Although 17β-estradiol has long been known to regulate memory function, the molecular mechanisms underlying estrogenic memory modulation remain largely unknown. Here, we examined whether the putative membrane estrogen receptor GPER acts like the classical estrogen receptors, ERα and ERβ, to facilitate hippocampal memory in female mice. Although GPER activation did enhance object recognition and spatial memory, it did so by activating different cell-signaling mechanisms from ERα, ERβ, or 17β-estradiol. These data indicate that 17β-estradiol and GPER independently regulate hippocampal memory, and suggest that hippocampal GPER may not function as an estrogen receptor in the dorsal hippocampus. These findings are significant because they provide novel insights about the molecular mechanisms through which 17β-estradiol modulates hippocampal memory. Copyright © 2016 the authors 0270-6474/16/363309-13$15.00/0.
NASA Astrophysics Data System (ADS)
Muqeet Rehman, Muhammad; Uddin Siddiqui, Ghayas; Kim, Sowon; Choi, Kyung Hyun
2017-08-01
Pursuit of the most appropriate materials and fabrication methods is essential for developing a reliable, rewritable and flexible memory device. In this study, we have proposed an advanced 2D nanocomposite of white graphene (hBN) flakes embedded with graphene quantum dots (GQDs) as the functional layer of a flexible memory device owing to their unique electrical, chemical and mechanical properties. Unlike the typical sandwich type structure of a memory device, we developed a cost effective planar structure, to simplify device fabrication and prevent sneak current. The entire device fabrication was carried out using printing technology followed by encapsulation in an atomically thin layer of aluminum oxide (Al2O3) for protection against environmental humidity. The proposed memory device exhibited attractive bipolar switching characteristics of high switching ratio, large electrical endurance and enhanced lifetime, without any crosstalk between adjacent memory cells. The as-fabricated device showed excellent durability for several bending cycles at various bending diameters without any degradation in bistable resistive states. The memory mechanism was deduced to be conductive filamentary; this was validated by illustrating the temperature dependence of bistable resistive states. Our obtained results pave the way for the execution of promising 2D material based next generation flexible and non-volatile memory (NVM) applications.
Arousal Enhanced Memory Retention Is Eliminated Following Temporal Lobe Resection
ERIC Educational Resources Information Center
Ahs, Fredrik; Kumlien, Eva; Fredrikson, Mats
2010-01-01
The amygdala, situated in the anterior medial temporal lobe (MTL), is involved in the emotional enhancement of memory. The present study evaluated whether anterior MTL-resections attenuated arousal induced memory enhancement for pictures. Also, the effect of MTL-resections on response latencies at retrieval was assessed. Thirty-one patients with…
Emotional Memories Are Not All Created Equal: Evidence for Selective Memory Enhancement
ERIC Educational Resources Information Center
Anderson, Adam K.; Grabski, Wojtek; Lacka, Dominika; Yamaguchi, Yuki
2006-01-01
Human brain imaging studies have shown that greater amygdala activation to emotional relative to neutral events leads to enhanced episodic memory. Other studies have shown that fearful faces also elicit greater amygdala activation relative to neutral faces. To the extent that amygdala recruitment is sufficient to enhance recollection, these…
Probability differently modulating the effects of reward and punishment on visuomotor adaptation.
Song, Yanlong; Smiley-Oyen, Ann L
2017-12-01
Recent human motor learning studies revealed that punishment seemingly accelerated motor learning but reward enhanced consolidation of motor memory. It is not evident how intrinsic properties of reward and punishment modulate the potentially dissociable effects of reward and punishment on motor learning and motor memory. It is also not clear what causes the dissociation of the effects of reward and punishment. By manipulating probability of distribution, a critical property of reward and punishment, the present study demonstrated that probability had distinct modulation on the effects of reward and punishment in adapting to a sudden visual rotation and consolidation of the adaptation memory. Specifically, two probabilities of monetary reward and punishment distribution, 50 and 100%, were applied during young adult participants adapting to a sudden visual rotation. Punishment and reward showed distinct effects on motor adaptation and motor memory. The group that received punishments in 100% of the adaptation trials adapted significantly faster than the other three groups, but the group that received rewards in 100% of the adaptation trials showed marked savings in re-adapting to the same rotation. In addition, the group that received punishments in 50% of the adaptation trials that were randomly selected also had savings in re-adapting to the same rotation. Sensitivity to sensory prediction error or difference in explicit process induced by reward and punishment may likely contribute to the distinct effects of reward and punishment.
Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆
Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi
2013-01-01
There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185
Exogenous temporal cues enhance recognition memory in an object-based manner.
Ohyama, Junji; Watanabe, Katsumi
2010-11-01
Exogenous attention enhances the perception of attended items in both a space-based and an object-based manner. Exogenous attention also improves recognition memory for attended items in the space-based mode. However, it has not been examined whether object-based exogenous attention enhances recognition memory. To address this issue, we examined whether a sudden visual change in a task-irrelevant stimulus (an exogenous cue) would affect participants' recognition memory for items that were serially presented around a cued time. The results showed that recognition accuracy for an item was strongly enhanced when the visual cue occurred at the same location and time as the item (Experiments 1 and 2). The memory enhancement effect occurred when the exogenous visual cue and an item belonged to the same object (Experiments 3 and 4) and even when the cue was counterpredictive of the timing of an item to be asked about (Experiment 5). The present study suggests that an exogenous temporal cue automatically enhances the recognition accuracy for an item that is presented at close temporal proximity to the cue and that recognition memory enhancement occurs in an object-based manner.
Emotion strengthens high priority memory traces but weakens low priority memory traces
Sakaki, Michiko; Fryer, Kellie; Mather, Mara
2014-01-01
When encountering emotional events, memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotional image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by negative and positive pictures both showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation. PMID:24311478
Distributed learning enhances relational memory consolidation.
Litman, Leib; Davachi, Lila
2008-09-01
It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.
Fiechter, Joshua L; Benjamin, Aaron S
2017-08-28
Retrieval practice has been shown to be a highly effective tool for enhancing memory, a fact that has led to major changes to educational practice and technology. However, when initial learning is poor, initial retrieval practice is unlikely to be successful and long-term benefits of retrieval practice are compromised or nonexistent. Here, we investigate the benefit of a scaffolded retrieval technique called diminishing-cues retrieval practice (Finley, Benjamin, Hays, Bjork, & Kornell, Journal of Memory and Language, 64, 289-298, 2011). Under learning conditions that favored a strong testing effect, diminishing cues and standard retrieval practice both enhanced memory performance relative to restudy. Critically, under learning conditions where standard retrieval practice was not helpful, diminishing cues enhanced memory performance substantially. These experiments demonstrate that diminishing-cues retrieval practice can widen the range of conditions under which testing can benefit memory, and so can serve as a model for the broader application of testing-based techniques for enhancing learning.
Dynamic actuation of a novel laser-processed NiTi linear actuator
NASA Astrophysics Data System (ADS)
Pequegnat, A.; Daly, M.; Wang, J.; Zhou, Y.; Khan, M. I.
2012-09-01
A novel laser processing technique, capable of locally modifying the shape memory effect, was applied to enhance the functionality of a NiTi linear actuator. By altering local transformation temperatures, an additional memory was imparted into a monolithic NiTi wire to enable dynamic actuation via controlled resistive heating. Characterizations of the actuator load, displacement and cyclic properties were conducted using a custom-built spring-biased test set-up. Monotonic tensile testing was also implemented to characterize the deformation behaviour of the martensite phase. Observed differences in the deformation behaviour of laser-processed material were found to affect the magnitude of the active strain. Furthermore, residual strain during cyclic actuation testing was found to stabilize after 150 cycles while the recoverable strain remained constant. This laser-processed actuator will allow for the realization of new applications and improved control methods for shape memory alloys.
Sherman, Aleksandra; Grabowecky, Marcia; Suzuki, Satoru
2015-08-01
What shapes art appreciation? Much research has focused on the importance of visual features themselves (e.g., symmetry, natural scene statistics) and of the viewer's experience and expertise with specific artworks. However, even after taking these factors into account, there are considerable individual differences in art preferences. Our new result suggests that art preference is also influenced by the compatibility between visual properties and the characteristics of the viewer's visual system. Specifically, we have demonstrated, using 120 artworks from diverse periods, cultures, genres, and styles, that art appreciation is increased when the level of visual complexity within an artwork is compatible with the viewer's visual working memory capacity. The result highlights the importance of the interaction between visual features and the beholder's general visual capacity in shaping art appreciation. (c) 2015 APA, all rights reserved).
Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.
Santoro, Adam; Frankland, Paul W; Richards, Blake A
2016-11-30
Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.
Does Stress Enhance or Impair Memory Consolidation?
Trammell, Janet P.; Clore, Gerald L.
2014-01-01
Three experiments examined the hypothesis that stress-induced arousal enhances long term memory for experiences associated with an arousing events. Contrary to expectations, in each experiment exposure to a stressor (arm immersion in ice water) interfered with, rather than enhanced, long term memory for associated material. Despite varying the stimuli (words, pictures), their emotional value (positive, negative, neutral), the time between learning and stress inductions (0 to 1 minute), and opportunities for post-learning rehearsal, each experiment produced a significant reversal of the hypothesized effect. That is, in each experiment, exposure to a stressor interfered with, rather than enhanced, long term memory for associated material. We conclude that the relationship between stress and memory consolidation is more bounded than previously believed. PMID:23895111
Exploring the use of memory colors for image enhancement
NASA Astrophysics Data System (ADS)
Xue, Su; Tan, Minghui; McNamara, Ann; Dorsey, Julie; Rushmeier, Holly
2014-02-01
Memory colors refer to those colors recalled in association with familiar objects. While some previous work introduces this concept to assist digital image enhancement, their basis, i.e., on-screen memory colors, are not appropriately investigated. In addition, the resulting adjustment methods developed are not evaluated from a perceptual view of point. In this paper, we first perform a context-free perceptual experiment to establish the overall distributions of screen memory colors for three pervasive objects. Then, we use a context-based experiment to locate the most representative memory colors; at the same time, we investigate the interactions of memory colors between different objects. Finally, we show a simple yet effective application using representative memory colors to enhance digital images. A user study is performed to evaluate the performance of our technique.
ERIC Educational Resources Information Center
Hawk, Joshua D.; Florian, Cedrick; Abel, Ted
2011-01-01
Long-term memory formation involves covalent modification of the histone proteins that package DNA. Reducing histone acetylation by mutating histone acetyltransferases impairs long-term memory, and enhancing histone acetylation by inhibiting histone deacetylases (HDACs) improves long-term memory. Previous studies using HDAC inhibitors to enhance…
Enhancing Memory in Your Students: COMPOSE Yourself!
ERIC Educational Resources Information Center
Rotter, Kathleen M.
2009-01-01
The essence of teaching is, in fact, creating new memories for your students. The teacher's role is to help students store the correct information (memories) in ways that make recall and future access and use likely. Therefore, choosing techniques to enhance memory is possibly the most critical aspect of instructional design. COMPOSE is an acronym…
Memory Performance for Everyday Motivational and Neutral Objects Is Dissociable from Attention
Schomaker, Judith; Wittmann, Bianca C.
2017-01-01
Episodic memory is typically better for items coupled with monetary reward or punishment during encoding. It is yet unclear whether memory is also enhanced for everyday objects with appetitive or aversive values learned through a lifetime of experience, and to what extent episodic memory enhancement for motivational and neutral items is attributable to attention. In a first experiment, we investigated attention to everyday motivational objects using eye-tracking during free-viewing and subsequently tested episodic memory using a remember/know procedure. Attention was directed more to aversive stimuli, as evidenced by longer viewing durations, whereas recollection was higher for both appetitive and aversive objects. In the second experiment, we manipulated the visual contrast of neutral objects through changes of contrast to further dissociate attention and memory encoding. While objects presented with high visual contrast were looked at longer, recollection was best for objects presented in unmodified, medium contrast. Generalized logistic mixed models on recollection performance showed that attention as measured by eye movements did not enhance subsequent memory, while motivational value (Experiment 1) and visual contrast (Experiment 2) had quadratic effects in opposite directions. Our findings suggest that an enhancement of incidental memory encoding for appetitive items can occur without an increase in attention and, vice versa, that enhanced attention towards salient neutral objects is not necessarily associated with memory improvement. Together, our results provide evidence for a double dissociation of attention and memory effects under certain conditions. PMID:28694774
Chacon, Jessica Ann; Sarnaik, Amod A; Pilon-Thomas, Shari; Radvanyi, Laszlo
2015-12-01
TIL from solid tumors can express activation/co-stimulatory molecules like 4-1BB/CD137, a sign of recent antigenic stimulation in the tumor microenvironment (TME). This activated state can be exploited ex vivo to enhance the expansion of tumor-reactive CD8 + TIL for adoptive cell therapy through direct addition of immunomodulators to tumor fragments in culture.
Rahim, Nur Syafiqah; Lim, Siong Meng; Mani, Vasudevan; Abdul Majeed, Abu Bakar; Ramasamy, Kalavathy
2017-12-01
Virgin coconut oil (VCO) has been reported to possess antioxidative, anti-inflammatory and anti-stress properties. Capitalizing on these therapeutic effects, this study investigated for the first time the potential of VCO on memory improvement in vivo. Thirty male Wistar rats (7-8 weeks old) were randomly assigned to five groups (n = six per group). Treatment groups were administered with 1, 5 and 10 g/kg VCO for 31 days by oral gavages. The cognitive function of treated-rats were assessed using the Morris Water Maze Test. Brains were removed, homogenized and subjected to biochemical analyses of acetylcholine (ACh) and acetylcholinesterase (AChE), antioxidants [superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and glutathione reductase (GRx)], lipid peroxidase [malondialdehyde (MDA)] as well as nitric oxide (NO). α-Tocopherol (αT; 150 mg/kg) was also included for comparison purposes. VCO-fed Wistar rats exhibited significant (p < 0.05) improvement of cognitive functions [reduced escape latency (≥ 1.8 s), reduced escape distance (≥ 0.3 m) and increased total time spent on platform (≥ 1 s)]. The findings were accompanied by elevation of ACh (15%), SOD (8%), CAT (≥ 54%), GSH (≥ 20%) and GPx (≥ 12%) and reduction of AChE (≥17%), MDA (> 33%) and NO (≥ 34%). Overall, memory improvement by VCO was comparable to αT. VCO has the potential to be used as a memory enhancer, the effect of which was mediated, at least in part, through enhanced cholinergic activity, increased antioxidants level and reduced oxidative stress.
Sanderson, David J; Good, Mark A; Skelton, Kathryn; Sprengel, Rolf; Seeburg, Peter H; Rawlins, J Nicholas P; Bannerman, David M
2009-06-01
The GluA1 AMPA receptor subunit is a key mediator of hippocampal synaptic plasticity and is especially important for a rapidly-induced, short-lasting form of potentiation. GluA1 gene deletion impairs hippocampus-dependent, spatial working memory, but spares hippocampus-dependent spatial reference memory. These findings may reflect the necessity of GluA1-dependent synaptic plasticity for short-term memory of recently visited places, but not for the ability to form long-term associations between a particular spatial location and an outcome. This hypothesis is in concordance with the theory that short-term and long-term memory depend on dissociable psychological processes. In this study we tested GluA1-/- mice on both short-term and long-term spatial memory using a simple novelty preference task. Mice were given a series of repeated exposures to a particular spatial location (the arm of a Y-maze) before their preference for a novel spatial location (the unvisited arm of the maze) over the familiar spatial location was assessed. GluA1-/- mice were impaired if the interval between the trials was short (1 min), but showed enhanced spatial memory if the interval between the trials was long (24 h). This enhancement was caused by the interval between the exposure trials rather than the interval prior to the test, thus demonstrating enhanced learning and not simply enhanced performance or expression of memory. This seemingly paradoxical enhancement of hippocampus-dependent spatial learning may be caused by GluA1 gene deletion reducing the detrimental effects of short-term memory on subsequent long-term learning. Thus, these results support a dual-process model of memory in which short-term and long-term memory are separate and sometimes competitive processes.
Enhancing early consolidation of human episodic memory by theta EEG neurofeedback.
Rozengurt, Roman; Shtoots, Limor; Sheriff, Aviv; Sadka, Ofir; Levy, Daniel A
2017-11-01
Consolidation of newly formed memories is readily disrupted, but can it be enhanced? Given the prominent role of hippocampal theta oscillations in memory formation and retrieval, we hypothesized that upregulating theta power during early stages of consolidation might benefit memory stability and persistence. We used EEG neurofeedback to enable participants to selectively increase theta power in their EEG spectra following episodic memory encoding, while other participants engaged in low beta-focused neurofeedback or passively viewed a neutral nature movie. Free recall assessments immediately following the interventions, 24h later and 7d later all indicated benefit to memory of theta neurofeedback, relative to low beta neurofeedback or passive movie-viewing control conditions. The degree of benefit to memory was correlated with the extent of theta power modulation, but not with other spectral changes. Theta enhancement may provide optimal conditions for stabilization of new hippocampus-dependent memories. Copyright © 2017 Elsevier Inc. All rights reserved.
Emotion strengthens high-priority memory traces but weakens low-priority memory traces.
Sakaki, Michiko; Fryer, Kellie; Mather, Mara
2014-02-01
When people encounter emotional events, their memory for those events is typically enhanced. But it has been unclear how emotionally arousing events influence memory for preceding information. Does emotional arousal induce retrograde amnesia or retrograde enhancement? The current study revealed that this depends on the top-down goal relevance of the preceding information. Across three studies, we found that emotional arousal induced by one image facilitated memory for the preceding neutral item when people prioritized that neutral item. In contrast, an emotionally arousing image impaired memory for the preceding neutral item when people did not prioritize that neutral item. Emotional arousal elicited by both negative and positive pictures showed this pattern of enhancing or impairing memory for the preceding stimulus depending on its priority. These results indicate that emotional arousal amplifies the effects of top-down priority in memory formation.
Enhancement of Immune Memory Responses to Respiratory Infection
2017-08-01
Unlimited Distribution 13. SUPPLEMENTARY NOTES 14. ABSTRACT Maintenance of long - term immunological memory against pathogens is crucial for the rapid...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long - term memory B cells needed to protect against influenza...AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD
The lasting memory enhancements of retrospective attention
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-01-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues (“retro-cues”) enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. PMID:27038756
Enhanced dimension-specific visual working memory in grapheme-color synesthesia.
Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi
2013-10-01
There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Humidity-activated shape memory effect on plasticized starch-based biomaterials.
Sessini, Valentina; Arrieta, Marina P; Fernández-Torres, Alberto; Peponi, Laura
2018-01-01
Humidity-activated shape memory behavior of plasticized starch-based films reinforced with the innovative combination of starch nanocrystals (SNCs) and catechin as antioxidant were studied. In a previous work, we reported the processing of gelatinized starch-based films filled with SNCs and catechin as antioxidant agent, and we observed that this novel combination leads to starch-based film with enhanced thermal and mechanical performance. In this work, the humidity-activated shape memory behavior of the previous developed starch-based films was characterized. The moisture loss as well as the moisture absorption were studied since they are essential parameters in humidity-activated shape memory polymers to fix the temporary shape and to recover the original shape, respectively. Therefore, the effect of the incorporation of SNCs and catechin on the humidity-activated shape memory properties of plasticized starch was also studied. Moreover, the effectiveness of catechin to increase the polymer stability under oxidative atmosphere and the thermo-mechanical relaxation of all the starch-based materials were studied. The combination of plasticized starch matrix loaded with both, SNCs and catechin, leads to a multifunctional starch-based films with increased hydrophilicity and with excellent humidity-activated shape memory behavior with interest for potential biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Joo, Beom Soo; Kim, Hyunseung; Jang, Seunghun; Han, Dongwoo; Han, Moonsup
2018-08-01
We investigated nano-floating gate memory having a charge trap layer (CTL) composed of cobalt germanide nanostructure (ns-CoGe). A tunneling oxide layer; a CTL containing Co, Ge, and Si; and a blocking oxide layer were sequentially deposited on a p-type silicon substrate by RF magnetron sputtering and low-pressure chemical vapor deposition. We optimized the CTL formation conditions by rapid thermal annealing at a somewhat low temperature (about 830 °C) by considering the differences in Gibbs free energy and chemical enthalpy among the components. To characterize the charge storage properties, capacitance-voltage (C-V) measurements were performed. Further, we used X-ray photoelectron spectroscopy for chemical analysis of the CTL. In this work, we not only report that the C-V measurement shows a remarkable opening of the memory window for the ns-CoGe compared with those of nanostructures composed of Co or Ge alone, but also clarify that the improvement in the memory characteristics originates in the nanostructure formation, which consists mainly of Co-Ge bonds. We expect ns-CoGe to be a strong candidate for fabrication of next-generation memory devices.
ERIC Educational Resources Information Center
Lyle, Keith B.; Hanaver-Torrez, Shelley D.; Hacklander, Ryan P.; Edlin, James M.
2012-01-01
Research has shown that consistently right-handed individuals have poorer memory than do inconsistently right- or left-handed individuals under baseline conditions but more reliably exhibit enhanced memory retrieval after making a series of saccadic eye movements. From this it could be that consistent versus inconsistent handedness, regardless of…
Reward Retroactively Enhances Memory Consolidation for Related Items
ERIC Educational Resources Information Center
Patil, Anuya; Murty, Vishnu P.; Dunsmoor, Joseph E.; Phelps, Elizabeth A.; Davachi, Lila
2017-01-01
Reward motivation has been shown to modulate episodic memory processes in order to support future adaptive behavior. However, for a memory system to be truly adaptive, it should enhance memory for rewarded events as well as for neutral events that may seem inconsequential at the time of encoding but can gain importance later. Here, we investigated…
Attentional influences on memory formation: A tale of a not-so-simple story.
Ortiz-Tudela, J; Milliken, B; Jiménez, L; Lupiáñez, J
2018-05-01
Is there a learning mechanism triggered by mere expectation violation? Is there some form of memory enhancement inherent to an event mismatching our predictions? Across seven experiments, we explore this issue by means of a validity paradigm. Although our manipulation clearly succeeded in generating an expectation and breaking it, the memory consequences of that expectation mismatch are not so obvious. We report here evidence of a null effect of expectation on memory formation. Our results (1) show that enhanced memory for unexpected events is not easily achieved and (2) call for a reevaluation of previous accounts of memory enhancements based on prediction error or difficulty of processing. Limitations of this study and possible implications for the field are discussed in detail.
Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun
2014-12-30
We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. © The Author 2015. Published by Oxford University Press on behalf of CINP.
Shin, Eun-Joo; Chung, Yoon Hee; Le, Hoang-Lan Thi; Jeong, Ji Hoon; Dang, Duy-Khanh; Nam, Yunsung; Wie, Myung Bok; Nah, Seung-Yeol; Nabeshima, Yo-Ichi; Nabeshima, Toshitaka; Kim, Hyoung-Chun
2015-01-01
Background: We demonstrated that oxidative stress plays a crucial role in cognitive impairment in klotho mutant mice, a genetic model of aging. Since down-regulation of melatonin due to aging is well documented, we used this genetic model to determine whether the antioxidant property of melatonin affects memory impairment. Methods: First, we examined the effects of melatonin on hippocampal oxidative parameters and the glutathione/oxidized glutathione (GSH/GSSG) ratio and memory dysfunction of klotho mutant mice. Second, we investigated whether a specific melatonin receptor is involved in the melatonin-mediated pharmacological response by application with melatonin receptor antagonists. Third, we examined phospho-extracellular-signal-regulated kinase (ERK) expression, nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, Nrf2 DNA binding activity, and glutamate-cysteine ligase (GCL) mRNA expression. Finally, we examined effects of the ERK inhibitor SL327 in response to antioxidant efficacy and memory enhancement mediated by melatonin. Results: Treatment with melatonin resulted in significant attenuations of oxidative damage, a decrease in the GSH/GSSG ratio, and a significant amelioration of memory impairment in this aging model. These effects of melatonin were significantly counteracted by the selective MT2 receptor antagonist 4-P-PDOT. Importantly, 4-P-PDOT or SL327 also counteracted melatonin-mediated attenuation in response to the decreases in phospho-ERK expression, Nrf2 nuclear translocation, Nrf2 DNA-binding activity, and GCL mRNA expression in the hippocampi of klotho mutant mice. SL327 also counteracted the up-regulation of the GSH/GSSG ratio and the memory enhancement mediated by melatonin in klotho mutant mice. Conclusions: Melatonin attenuates oxidative stress and the associated memory impairment induced by klotho deficiency via signaling interaction between the MT2 receptor and ERK- and Nrf2-related antioxidant potential. PMID:25550330
Kaplan, Alan P; Keenan, Terence; Scott, Roderick; Zhou, Xianbo; Bourchouladze, Rusiko; McRiner, Andrew J; Wilson, Mark E; Romashko, Darlene; Miller, Regina; Bletsch, Matthew; Anderson, Gary; Stanley, Jennifer; Zhang, Adia; Lee, Dong; Nikpur, John
2017-12-20
Initial work in Drosophila and mice demonstrated that the transcription factor cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) is a master control gene for memory formation. The relationship between CREB and memory has also been found to be true in other species, including aplysia and rats. It is thus well-established that CREB activation plays a central role in memory enhancement and that CREB is activated during memory formation. On the basis of these findings, a phenotypic high-throughput screening campaign utilizing a CRE-luciferase (CRE-Luci) SK-N-MC cell line was performed to identify compounds that enhance transcriptional activation of the CRE promoter with a suboptimal dose of forskolin. A number of small-molecule hits of unknown mechanisms of action were identified in the screening campaign, including HT-0411. Follow-up studies suggested that the CREB activation by HT-0411 is attributed to its specific and selective inhibition of monoamine oxidase B (MAO-B). Further, HT-0411 was shown to improve 24 h memory in rodents in a contextual fear conditioning model. This report describes the lead optimization of a series of 5-(1-methyl-5-(trifluoromethyl)-1H-pyrazol-3-yl) thiophene-2-carboxamides that were identified as novel, potent, and selective inhibitors of MAO-B. Extensive SAR studies and in vivo behavioral evaluations of this and other related analogue series identified a number of potential clinical development candidates; ultimately, compound 8f was identified as a candidate molecule with high selectivity toward MAO-B (29-56 nM) over MAO-A (19% inhibition at a screening concentration of 50 μM), an excellent profile against a panel of other enzymes and receptors, good pharmacokinetic properties in rodents and dogs, and efficacy in multiple rodent memory models.
Luine, Victoria N.; Frankfurt, Maya
2012-01-01
Estrogens exert sustained, genomically mediated effects on memory throughout the female life cycle, but here we review new studies documenting rapid effects of estradiol on memory, which are exerted through membrane-mediated mechanisms. Use of recognition memory tasks in rats, shows that estrogens enhance memory consolidation within one hour. 17α-estradiol is more potent than 17β-estradiol, and the dose response relationship between estrogens and memory is an inverted U shape. Use of specific estrogen receptor (ER) agonists suggests mediation by an ERβ-like membrane receptor. Enhanced memory is associated with increased spine density and altered noradrenergic activity in the medial prefrontal cortex and hippocampus within 30 min. of administration. The environmental chemical, bisphenol-A, rapidly antagonizes enhancements in memory in both sexes possibly through actions on spines. Thus, estradiol and related compounds exert rapid alterations in cognition through non-genomic mechanisms, a finding which may provide a basis for better understanding and treating memory impairments. PMID:22981654
Gibbs, Ayana A; Bautista, Carla E; Mowlem, Florence D; Naudts, Kris H; Duka, Theodora
2013-10-23
Evidence suggests that emotional memory plays a role in the pathophysiology of depression/anxiety disorders. Noradrenaline crucially modulates emotional memory. Genetic variants involved in noradrenergic signaling contribute to individual differences in emotional memory and vulnerability to psychopathology. A functional deletion polymorphism in the α-2B adrenoceptor gene (ADRA2B) has been linked to emotional memory and post-traumatic stress disorder. The noradrenaline reuptake inhibitor reboxetine attenuates enhanced memory for negative stimuli in healthy and depressed individuals. We examined whether the effect of reboxetine on emotional memory in healthy individuals would be moderated by ADRA2B genotype. ADRA2B deletion carriers demonstrated enhanced emotional memory for negative stimuli compared with deletion noncarriers, consistent with prior studies. Reboxetine attenuated enhanced memory for negative stimuli in deletion noncarriers but had no significant effect in deletion carriers. This is the first demonstration of genetic variation influencing antidepressant drug effects on emotional processing in healthy humans.
Enhanced associative memory for colour (but not shape or location) in synaesthesia.
Pritchard, Jamie; Rothen, Nicolas; Coolbear, Daniel; Ward, Jamie
2013-05-01
People with grapheme-colour synaesthesia have been shown to have enhanced memory on a range of tasks using both stimuli that induce synaesthesia (e.g. words) and, more surprisingly, stimuli that do not (e.g. certain abstract visual stimuli). This study examines the latter by using multi-featured stimuli consisting of shape, colour and location conjunctions (e.g. shape A+colour A+location A; shape B+colour B+location B) presented in a recognition memory paradigm. This enables distractor items to be created in which one of these features is 'unbound' with respect to the others (e.g. shape A+colour B+location A; shape A+colour A+location C). Synaesthetes had higher recognition rates suggesting an enhanced ability to bind certain visual features together into memory. Importantly, synaesthetes' false alarm rates were lower only when colour was the unbound feature, not shape or location. We suggest that synaesthetes are "colour experts" and that enhanced perception can lead to enhanced memory in very specific ways; but, not for instance, an enhanced ability to form associations per se. The results support contemporary models that propose a continuum between perception and memory. Copyright © 2013 Elsevier B.V. All rights reserved.
Nelson, Britta S; Black, Katelyn L; Daniel, Jill M
2016-01-01
Systemic estradiol treatment enhances hippocampus-dependent memory in ovariectomized rats. Although these enhancements are traditionally thought to be due to circulating estradiol, recent data suggest these changes are brought on by hippocampus-derived estradiol, the synthesis of which depends on gonadotropin-releasing hormone (GnRH) activity. The goal of the current work is to test the hypothesis that peripheral estradiol affects hippocampus-dependent memory through brain-derived estradiol regulated via hippocampal GnRH receptor activity. In the first experiment, intracerebroventricular infusion of letrozole, which prevents the synthesis of estradiol, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory in a radial-maze task. In the second experiment, hippocampal infusion of antide, a long-lasting GnRH receptor antagonist, blocked the ability of peripheral estradiol administration in ovariectomized rats to enhance hippocampus-dependent memory. In the third experiment, hippocampal infusion of GnRH enhanced hippocampus-dependent memory, the effects of which were blocked by letrozole infusion. Results indicate that peripheral estradiol-induced enhancement of cognition is mediated by brain-derived estradiol via hippocampal GnRH receptor activity.
Awake, Offline Processing during Associative Learning
Nestor, Adrian; Tarr, Michael J.; Creswell, J. David
2016-01-01
Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations. PMID:27119345
Awake, Offline Processing during Associative Learning.
Bursley, James K; Nestor, Adrian; Tarr, Michael J; Creswell, J David
2016-01-01
Offline processing has been shown to strengthen memory traces and enhance learning in the absence of conscious rehearsal or awareness. Here we evaluate whether a brief, two-minute offline processing period can boost associative learning and test a memory reactivation account for these offline processing effects. After encoding paired associates, subjects either completed a distractor task for two minutes or were immediately tested for memory of the pairs in a counterbalanced, within-subjects functional magnetic resonance imaging study. Results showed that brief, awake, offline processing improves memory for associate pairs. Moreover, multi-voxel pattern analysis of the neuroimaging data suggested reactivation of encoded memory representations in dorsolateral prefrontal cortex during offline processing. These results signify the first demonstration of awake, active, offline enhancement of associative memory and suggest that such enhancement is accompanied by the offline reactivation of encoded memory representations.
Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.
Pan, Yi; Luo, Qianying; Cheng, Min
2016-08-01
Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.
The Enhanced Musical Rhythmic Perception in Second Language Learners
Roncaglia-Denissen, M. Paula; Roor, Drikus A.; Chen, Ao; Sadakata, Makiko
2016-01-01
Previous research suggests that mastering languages with distinct rather than similar rhythmic properties enhances musical rhythmic perception. This study investigates whether learning a second language (L2) contributes to enhanced musical rhythmic perception in general, regardless of first and second languages rhythmic properties. Additionally, we investigated whether this perceptual enhancement could be alternatively explained by exposure to musical rhythmic complexity, such as the use of compound meter in Turkish music. Finally, it investigates if an enhancement of musical rhythmic perception could be observed among L2 learners whose first language relies heavily on pitch information, as is the case with tonal languages. Therefore, we tested Turkish, Dutch and Mandarin L2 learners of English and Turkish monolinguals on their musical rhythmic perception. Participants’ phonological and working memory capacities, melodic aptitude, years of formal musical training and daily exposure to music were assessed to account for cultural and individual differences which could impact their rhythmic ability. Our results suggest that mastering a L2 rather than exposure to musical rhythmic complexity could explain individuals’ enhanced musical rhythmic perception. An even stronger enhancement of musical rhythmic perception was observed for L2 learners whose first and second languages differ regarding their rhythmic properties, as enhanced performance of Turkish in comparison with Dutch L2 learners of English seem to suggest. Such a stronger enhancement of rhythmic perception seems to be found even among L2 learners whose first language relies heavily on pitch information, as the performance of Mandarin L2 learners of English indicates. Our findings provide further support for a cognitive transfer between the language and music domain. PMID:27375469
Lithium and cognitive enhancement: leave it or take it?
Tsaltas, Eleftheria; Kontis, Dimitris; Boulougouris, Vasileios; Papadimitriou, George N
2009-01-01
Lithium is established as an effective treatment of acute mania, bipolar and unipolar depression and as prophylaxis against bipolar disorder. Accumulating evidence is also delineating a neuroprotective and neurotrophic role for lithium. However, its primary effects on cognitive functioning remain ambiguous. The aim of this paper is to review and combine the relevant translational studies, focusing on the putative cognitive enhancement properties of lithium, specifically on learning, memory, and attention. These properties are also discussed in reference to research demonstrating a protective action of lithium against cognitive deficits induced by various challenges to the nervous system, such as stress, trauma, neurodegenerative disorders, and psychiatric disorders. It is suggested on the basis of the evidence that the cognitive effects of lithium are best expressed and should, therefore, be sought under conditions of functional or biological challenge to the nervous system.
NR4A nuclear receptors support memory enhancement by histone deacetylase inhibitors
Hawk, Joshua D.; Bookout, Angie L.; Poplawski, Shane G.; Bridi, Morgan; Rao, Allison J.; Sulewski, Michael E.; Kroener, Brian T.; Manglesdorf, David J.; Abel, Ted
2012-01-01
The formation of a long-lasting memory requires a transcription-dependent consolidation period that converts a short-term memory into a long-term memory. Nuclear receptors compose a class of transcription factors that regulate diverse biological processes, and several nuclear receptors have been implicated in memory formation. Here, we examined the potential contribution of nuclear receptors to memory consolidation by measuring the expression of all 49 murine nuclear receptors after learning. We identified 13 nuclear receptors with increased expression after learning, including all 3 members of the Nr4a subfamily. These CREB-regulated Nr4a genes encode ligand-independent “orphan” nuclear receptors. We found that blocking NR4A activity in memory-supporting brain regions impaired long-term memory but did not impact short-term memory in mice. Further, expression of Nr4a genes increased following the memory-enhancing effects of histone deacetylase (HDAC) inhibitors. Blocking NR4A signaling interfered with the ability of HDAC inhibitors to enhance memory. These results demonstrate that the Nr4a gene family contributes to memory formation and is a promising target for improving cognitive function. PMID:22996661
Emotional stimuli exert parallel effects on attention and memory.
Talmi, Deborah; Ziegler, Marilyne; Hawksworth, Jade; Lalani, Safina; Herman, C Peter; Moscovitch, Morris
2013-01-01
Because emotional and neutral stimuli typically differ on non-emotional dimensions, it has been difficult to determine conclusively which factors underlie the ability of emotional stimuli to enhance immediate long-term memory. Here we induced arousal by varying participants' goals, a method that removes many potential confounds between emotional and non-emotional items. Hungry and sated participants encoded food and clothing images under divided attention conditions. Sated participants attended to and recalled food and clothing images equivalently. Hungry participants performed worse on the concurrent tone-discrimination task when they viewed food relative to clothing images, suggesting enhanced attention to food images, and they recalled more food than clothing images. A follow-up regression analysis of the factors predicting memory for individual pictures revealed that food images had parallel effects on attention and memory in hungry participants, so that enhanced attention to food images did not predict their enhanced memory. We suggest that immediate long-term memory for food is enhanced in the hungry state because hunger leads to more distinctive processing of food images rendering them more accessible during retrieval.
Schapiro, Anna C; McDevitt, Elizabeth A; Chen, Lang; Norman, Kenneth A; Mednick, Sara C; Rogers, Timothy T
2017-11-01
Semantic memory encompasses knowledge about both the properties that typify concepts (e.g. robins, like all birds, have wings) as well as the properties that individuate conceptually related items (e.g. robins, in particular, have red breasts). We investigate the impact of sleep on new semantic learning using a property inference task in which both kinds of information are initially acquired equally well. Participants learned about three categories of novel objects possessing some properties that were shared among category exemplars and others that were unique to an exemplar, with exposure frequency varying across categories. In Experiment 1, memory for shared properties improved and memory for unique properties was preserved across a night of sleep, while memory for both feature types declined over a day awake. In Experiment 2, memory for shared properties improved across a nap, but only for the lower-frequency category, suggesting a prioritization of weakly learned information early in a sleep period. The increase was significantly correlated with amount of REM, but was also observed in participants who did not enter REM, suggesting involvement of both REM and NREM sleep. The results provide the first evidence that sleep improves memory for the shared structure of object categories, while simultaneously preserving object-unique information.
Kathirvelu, Balachandar; Colombo, Paul J
2013-11-01
Neural systems specialized for memory may interact during memory formation or recall, and the results of interactions are important determinants of how systems control behavioral output. In two experiments, we used lentivirus-mediated expression of the transcription factor CREB (LV-CREB) to test if localized manipulations of cellular plasticity influence interactions between the hippocampus and dorsolateral striatum. In Experiment 1, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for response learning, and impairs memory for place learning. LV-CREB in the dorsolateral striatum had no effect on response learning, but impaired place memory; a finding consistent with competition between the striatum and hippocampus. In Experiment 2, we tested the hypothesis that infusion of LV-CREB in the dorsolateral striatum facilitates memory for cue learning, and impairs memory for contextual fear conditioning. LV-CREB in the dorsolateral striatum enhanced memory for cue learning and, in contrast to our prediction, also enhanced memory for contextual fear conditioning, consistent with a cooperative interaction between the striatum and hippocampus. Overall, the current experiments demonstrate that infusion of LV-CREB in the dorsolateral striatum (1) increases levels of CREB protein locally, (2) does not alter acquisition of place, response, cue, or contextual fear conditioning, (3) facilitates memory for cue learning and contextual fear conditioning, and (4) impairs memory for place learning. Taken together, the present results provide evidence that LV-CREB in the dorsolateral striatum can enhance memory formation and cause both competitive and cooperative interactions with the hippocampus. Copyright © 2013 Wiley Periodicals, Inc.
Ko, Yong-Hyun; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon
2018-05-05
Daidzein is one of the major isoflavfones found in soy food and plants. Following ingestion, daidzein is readily converted to hydroxylated metabolites in the human body. 6,7,4'-Trihydroxyisoflavone (THIF), one of the metabolites of daidzein, has several pharmacological activities, including anti-cancer and anti-obesity properties. However, no reports exist on the effects of 6,7,4'-THIF for cognitive function in mice. The present study aimed to investigate the effects of 6,7,4'-THIF against scopolamine-induced learning and memory impairments using the Y-maze and passive avoidance test. A single administration of 6,7,4'-THIF significantly improved scopolamine-induced cognitive dysfunction in these in vivo tests. Moreover, treatment with 6,7,4'-THIF alone enhanced learning and memory performance in the same behavioral tests. Molecular studies showed that 6,7,4'-THIF significantly inhibited acetylcholinesterase and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus of scopolamine-induced mice. In addition, immunohistochemistry and Western blot results revealed that 6,7,4'-THIF significantly increased brain-derived neurotrophic factor (BDNF) and phosphor cAMP response element binding (CREB) in the hippocampus of mice. Taken together, these findings suggest that 6,7,4'-THIF improves cognitive dysfunction induced by scopolamine and enhances learning and memory by activation of the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Rababa'h, Abeer M; Alzoubi, Karem H; Atmeh, Ala'a
2018-06-01
Impairment of learning and memory has been associated with accumulation of reactive oxygen species in the body. It has also been found that antioxidants enhance learning and memory. Levosimendan is a cardiac inotropic and vasodilator agent that has pleotropic effects including antioxidant, anti-inflammatory, and smooth muscle vasodilatory actions. In this study, we investigated the effect of levosimendan on learning and memory in rats. Levosimendan (12 µg/kg, intraperitoneally) or vehicle was administered once a week for 8 weeks. The radial arm water maze was used to assess spatial learning and memory. In addition, hippocampus levels of antioxidant biomarkers/enzyme - reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase, superoxide dismutase, catalase, and thiobarbituric acid reactive substance - were assessed. Levosimendan significantly enhanced short-term (30 min) and long-term (5 h) memory. Levosimendan also significantly increased levels of glutathione peroxidase and GSH and decreased thiobarbituric acid reactive substance. There were no significant effects on the level of other oxidative stress biomarkers. In conclusion, levosimendan enhanced short-term and long-term memory by potentiating antioxidant defense mechanism in the hippocampus.
Parent, Marise B; Krebs-Kraft, Desiree L; Ryan, John P; Wilson, Jennifer S; Harenski, Carla; Hamann, Stephan
2011-04-01
Glucose enhances memory in a variety of species. In humans, glucose administration enhances episodic memory encoding, although little is known regarding the neural mechanisms underlying these effects. Here we examined whether elevating blood glucose would enhance functional MRI (fMRI) activation and connectivity in brain regions associated with episodic memory encoding and whether these effects would differ depending on the emotional valence of the material. We used a double-blind, within-participants, crossover design in which either glucose (50g) or a saccharin placebo were administered before scanning, on days approximately 1 week apart. We scanned healthy young male participants with fMRI as they viewed emotionally arousing negative pictures and emotionally neutral pictures, intermixed with baseline fixation. Free recall was tested at 5 min after scanning and again after 1 day. Glucose administration increased activation in brain regions associated with successful episodic memory encoding. Glucose also enhanced activation in regions whose activity was correlated with subsequent successful recall, including the hippocampus, prefrontal cortex, and other regions, and these effects differed for negative vs. neutral stimuli. Finally, glucose substantially increased functional connectivity between the hippocampus and amygdala and a network of regions previously implicated in successful episodic memory encoding. These findings fit with evidence from nonhuman animals indicating glucose modulates memory by selectively enhancing neural activity in brain regions engaged during memory tasks. Our results highlight the modulatory effects of glucose and the importance of examining both regional changes in activity and functional connectivity to fully characterize the effects of glucose on brain function and memory. Copyright © 2011 Elsevier Ltd. All rights reserved.
Positive Outcomes Enhance Incidental Learning for Both Younger and Older Adults
Mather, Mara; Schoeke, Andrej
2011-01-01
Previous studies suggest that memory encoding is enhanced when people are anticipating a potential reward, consistent with the idea that dopaminergic systems that respond to motivationally relevant information also enhance memory for that information. In the current study, we examined how anticipating and receiving rewards versus losses affect incidental learning of information. In addition, we compared the modulatory effects of reward anticipation and outcome on memory for younger and older adults. Forty-two younger (aged 18–33 years) and 44 older (aged 66–92 years) adults played a game involving pressing a button as soon as they saw a target. Gain trials began with a cue that they would win $0.25 if they pressed the button fast enough, loss trials began with a cue that they would avoid losing $0.25 if they pressed the button fast enough, and no-outcome trials began with a cue indicating no monetary outcome. The target was a different photo-object on each trial (e.g., balloon, dolphin) and performance outcomes were displayed after the photo disappeared. Both younger and older adults recalled and recognized pictures from trials with positive outcomes (either rewarding or loss avoiding) better than from trials with negative outcomes. Positive outcomes were associated with not only enhanced memory for the picture just seen in that trial, but also with enhanced memory for the pictures shown in the next two trials. Although anticipating a reward also enhanced incidental memory, this effect was seen only in recognition memory of positive pictures and was a smaller effect than the outcome effect. The fact that older adults showed similar incidental memory effects of reward anticipation and outcome as younger adults suggests that reward–memory system interactions remain intact in older age. PMID:22125509
Importance of the GluN2B Carboxy-Terminal Domain for Enhancement of Social Memories
ERIC Educational Resources Information Center
Jacobs, Stephanie; Wei, Wei; Wang, Deheng; Tsien, Joe Z.
2015-01-01
The N-methyl-D-aspartate (NMDA) receptor is known to be necessary for many forms of learning and memory, including social recognition memory. Additionally, the GluN2 subunits are known to modulate multiple forms of memory, with a high GluN2A:GluN2B ratio leading to impairments in long-term memory, while a low GluN2A:GluN2B ratio enhances some…
Chacon, Jessica Ann; Sarnaik, Amod A; Pilon-Thomas, Shari; Radvanyi, Laszlo
2015-01-01
TIL from solid tumors can express activation/co-stimulatory molecules like 4–1BB/CD137, a sign of recent antigenic stimulation in the tumor microenvironment (TME). This activated state can be exploited ex vivo to enhance the expansion of tumor-reactive CD8+ TIL for adoptive cell therapy through direct addition of immunomodulators to tumor fragments in culture. PMID:26587314
The lasting memory enhancements of retrospective attention.
Reaves, Sarah; Strunk, Jonathan; Phillips, Shekinah; Verhaeghen, Paul; Duarte, Audrey
2016-07-01
Behavioral research has shown that spatial cues that orient attention toward task relevant items being maintained in visual short-term memory (VSTM) enhance item memory accuracy. However, it is unknown if these retrospective attentional cues ("retro-cues") enhance memory beyond typical short-term memory delays. It is also unknown whether retro-cues affect the spatial information associated with VSTM representations. Emerging evidence suggests that processes that affect short-term memory maintenance may also affect long-term memory (LTM) but little work has investigated the role of attention in LTM. In the current event-related potential (ERP) study, we investigated the duration of retrospective attention effects and the impact of retrospective attention manipulations on VSTM representations. Results revealed that retro-cueing improved both VSTM and LTM memory accuracy and that posterior maximal ERPs observed during VSTM maintenance predicted subsequent LTM performance. N2pc ERPs associated with attentional selection were attenuated by retro-cueing suggesting that retrospective attention may disrupt maintenance of spatial configural information in VSTM. Collectively, these findings suggest that retrospective attention can alter the structure of memory representations, which impacts memory performance beyond short-term memory delays. Copyright © 2016 Elsevier B.V. All rights reserved.
Self-imagining enhances recognition memory in memory-impaired individuals with neurological damage.
Grilli, Matthew D; Glisky, Elizabeth L
2010-11-01
The ability to imagine an elaborative event from a personal perspective relies on several cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, we investigated the mnemonic benefit of a method we refer to as self-imagining-the imagining of an event from a realistic, personal perspective. Fourteen individuals with neurologically based memory deficits and 14 healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Findings revealed a robust "self-imagination effect (SIE)," as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F(1, 13) = 32.11, p < .001, η2 = .71; and healthy controls, F(1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. The findings suggest that the SIE may depend on unique mnemonic mechanisms possibly related to self-referential processing and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment.
Locus coeruleus and dopaminergic consolidation of everyday memory
Takeuchi, Tomonori; Duszkiewicz, Adrian J.; Sonneborn, Alex; Spooner, Patrick A.; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C.; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W.; Morris, Richard G. M.
2016-01-01
Summary The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine hydroxylase-expressing (TH+) neurons in the ventral tegmental area (VTA). We report that neuronal firing in the locus coeruleus (LC) is especially sensitive to environmental novelty, LC-TH+ neurons project more profusely than VTA-TH+ neurons to the hippocampus, optogenetic activation of LC-TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by VTA inactivation. Surprisingly, two effects of LC-TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptors blockade – memory enhancement and long lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, LC-TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in hippocampus. PMID:27602521
Locus coeruleus and dopaminergic consolidation of everyday memory.
Takeuchi, Tomonori; Duszkiewicz, Adrian J; Sonneborn, Alex; Spooner, Patrick A; Yamasaki, Miwako; Watanabe, Masahiko; Smith, Caroline C; Fernández, Guillén; Deisseroth, Karl; Greene, Robert W; Morris, Richard G M
2016-09-15
The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH + ) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH + neurons project more profusely than ventral tegmental area TH + neurons to the hippocampus, optogenetic activation of locus coeruleus TH + neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH + photoactivation are sensitive to hippocampal D 1 /D 5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH + neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.
Early Life Manipulations Alter Learning and Memory in Rats
Kosten, Therese A; Kim, Jeansok J; Lee, Hongjoo J.
2012-01-01
Much research shows early life manipulations have enduring behavioral, neural, and hormonal effects. However, findings of learning and memory performance vary widely across studies. We reviewed studies in which pre-weaning rat pups were exposed to stressors and tested on learning and memory tasks in adulthood. Tasks were classified as aversive conditioning, inhibitory learning, or spatial/relational memory. Variables of duration, type, and timing of neonatal manipulation and sex and strain of animals were examined to determine if any predict enhanced or impaired performance. Brief separations enhanced and prolonged separations impaired performance on spatial/relational tasks. Performance was impaired in aversive conditioning and enhanced in inhibitory learning tasks regardless of manipulation duration. Opposing effects on performance for spatial/relational memory also depended upon timing of manipulation. Enhanced performance was likely if the manipulation occurred during postnatal week 3 but performance was impaired if it was confined to the first two postnatal weeks. Thus, the relationship between early life experiences and adulthood learning and memory performance is multifaceted and decidedly task-dependent. PMID:22819985
Gable, Philip A; Harmon-Jones, Eddie
2010-08-01
Emotions influence attention and processes involved in memory. Although some research has suggested that positive affect categorically influences these processes differently than neutral affect, recent research suggests that motivational intensity of positive affective states influences these processes. The present experiments examined memory for centrally or peripherally presented information after the evocation of approach-motivated positive affect. Experiment 1 found that, relative to neutral conditions, pregoal, approach-motivated positive affect (caused by a monetary incentives task) enhanced memory for centrally presented information, whereas postgoal, low approach-motivated positive affect enhanced memory for peripherally presented information. Experiment 2 found that, relative to a neutral condition, high approach-motivated positive affect (caused by appetitive pictures) enhanced memory for centrally presented information but hindered memory for peripheral information. These results suggest a more complex relationship between positive affect and memory processes and highlight the importance of considering the motivational intensity of positive affects in cognitive processes. Copyright 2010 APA
Lyle, Keith B; Hanaver-Torrez, Shelley D; Hackländer, Ryan P; Edlin, James M
2012-01-01
Research has shown that consistently right-handed individuals have poorer memory than do inconsistently right- or left-handed individuals under baseline conditions but more reliably exhibit enhanced memory retrieval after making a series of saccadic eye movements. From this it could be that consistent versus inconsistent handedness, regardless of left/right direction, is an important individual difference factor in memory. Or, more specifically, it could be the presence or absence of consistent right-handedness that matters for memory. To resolve this ambiguity, we compared consistent and inconsistent left- and right-handers on associative recognition tests taken after saccades or a no-saccades control activity. Consistent-handers exhibited poorer memory than did inconsistent-handers following the control activity, and saccades enhanced retrieval for consistent-handers only. Saccades impaired retrieval for inconsistent-handers. None of these effects depended on left/right direction. Hence, this study establishes handedness consistency, regardless of direction, as an important individual difference factor in memory.
Ishikawa, Rie; Fukushima, Hotaka; Frankland, Paul W; Kida, Satoshi
2016-01-01
Forgetting of recent fear memory is promoted by treatment with memantine (MEM), which increases hippocampal neurogenesis. The approaches for treatment of post-traumatic stress disorder (PTSD) using rodent models have focused on the extinction and reconsolidation of recent, but not remote, memories. Here we show that, following prolonged re-exposure to the conditioning context, enhancers of hippocampal neurogenesis, including MEM, promote forgetting of remote contextual fear memory. However, these interventions are ineffective following shorter re-exposures. Importantly, we find that long, but not short re-exposures activate gene expression in the hippocampus and induce hippocampus-dependent reconsolidation of remote contextual fear memory. Furthermore, remote memory retrieval becomes hippocampus-dependent after the long-time recall, suggesting that remote fear memory returns to a hippocampus dependent state after the long-time recall, thereby allowing enhanced forgetting by increased hippocampal neurogenesis. Forgetting of traumatic memory may contribute to the development of PTSD treatment. DOI: http://dx.doi.org/10.7554/eLife.17464.001 PMID:27669409
Andy, Shathiswaran N; Pandy, Vijayapandi; Alias, Zazali; Kadir, Habsah Abdul
2018-08-01
Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model. In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group. DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3. Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD. Copyright © 2018 Elsevier Inc. All rights reserved.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Urban, Magdalena
2017-01-01
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
Urban, Magdalena; Strankowski, Michał
2017-09-14
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
ERIC Educational Resources Information Center
Bhattacharya, Sriya; Mukherjee, Bandhan; Doré, Jules J. E.; Yuan, Qi; Harley, Carolyn W.; McLean, John H.
2017-01-01
Histone deacetylase (HDAC) plays a role in synaptic plasticity and long-term memory formation. We hypothesized that trichostatin-A (TSA), an HDAC inhibitor, would promote long-term odor preference memory and maintain enhanced GluA1 receptor levels that have been hypothesized to support memory. We used an early odor preference learning model in…
Effects of Sleep on Word Pair Memory in Children - Separating Item and Source Memory Aspects.
Wang, Jing-Yi; Weber, Frederik D; Zinke, Katharina; Noack, Hannes; Born, Jan
2017-01-01
Word paired-associate learning is a well-established task to demonstrate sleep-dependent memory consolidation in adults as well as children. Sleep has also been proposed to benefit episodic features of memory, i.e., a memory for an event (item) bound into the spatiotemporal context it has been experienced in (source). We aimed to explore if sleep enhances word pair memory in children by strengthening the episodic features of the memory, in particular. Sixty-one children (8-12 years) studied two lists of word pairs with 1 h in between. Retrieval testing comprised cued recall of the target word of each word pair (item memory) and recalling in which list the word pair had appeared in (source memory). Retrieval was tested either after 1 h (short retention interval) or after 11 h, with this long retention interval covering either nocturnal sleep or daytime wakefulness. Compared with the wake interval, sleep enhanced separate recall of both word pairs and the lists per se , while recall of the combination of the word pair and the list it had appeared in remained unaffected by sleep. An additional comparison with adult controls ( n = 37) suggested that item-source bound memory (combined recall of word pair and list) is generally diminished in children. Our results argue against the view that the sleep-induced enhancement in paired-associate learning in children is a consequence of sleep specifically enhancing the episodic features of the memory representation. On the contrary, sleep in children might strengthen item and source representations in isolation, while leaving the episodic memory representations (item-source binding) unaffected.
Bardgett, Mark E; Points, Megan; Kleier, Jennifer; Blankenship, Meredith; Griffith, Molly S
2010-11-01
Antagonists of H(3)-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H(3) antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed 20 min later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H(3) antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors. Copyright © 2010 Elsevier Ltd. All rights reserved.
Bardgett, Mark E.; Points, Megan; Kleier, Jennifer; Blankenship, Meredith; Griffith, Molly S.
2010-01-01
Summary Antagonists of H3-type histamine receptors exhibit cognitive-enhancing properties in various memory paradigms as well as evidence of antipsychotic activity in normal animals. The present study determined if a prototypical H3 antagonist, ciproxifan, could reverse the behavioral effects of MK-801, a drug used in animals to mimic the hypoglutamatergic state suspected to exist in schizophrenia. Four behaviors were chosen for study, locomotor activity, ataxia, prepulse inhibition (PPI), and delayed spatial alternation, since their modification by dizocilpine (MK-801) has been well characterized. Adult male Long-Evans rats were tested after receiving a subcutaneous injection of ciproxifan or vehicle followed twenty minutes later by a subcutaneous injection of MK-801 or vehicle. Three doses of MK-801 (0.05, 0.1, & 0.3 mg/kg) increased locomotor activity. Each dose of ciproxifan (1.0 & 3.0 mg/kg) enhanced the effect of the moderate dose of MK-801, but suppressed the effect of the high dose. Ciproxifan (3.0 mg/kg) enhanced the effects of MK-801 (0.1 & 0.3 mg/kg) on fine movements and ataxia. Deficits in PPI were observed after treatment with MK-801 (0.05 & 0.1 mg/kg), but ciproxifan did not alter these effects. Delayed spatial alternation was significantly impaired by MK-801 (0.1 mg/kg) at a longer delay, and ciproxifan (3.0 mg/kg) alleviated this impairment. These results indicate that some H3 antagonists can alleviate the impact of NMDA receptor hypofunction on some forms of memory, but may exacerbate its effect on other behaviors. PMID:20621107
Memory: from the laboratory to everyday life.
Schacter, Daniel L
2013-12-01
One of the key goals of memory research is to develop a basic understanding of the nature and characteristics of memory processes and systems. Another important goal is to develop useful applications of basic research to everyday life. This editorial considers two lines of work that illustrate some of the prospects for applying memory research to everyday life: interpolated quizzing to enhance learning in educational settings, and specificity training to enhance memory and associated functions in individuals who have difficulties remembering details of their past experiences.
Shape memory alloys: Properties and biomedical applications
NASA Astrophysics Data System (ADS)
Mantovani, Diego
2000-10-01
Shape memory alloys provide new insights for the design of biomaterials in bioengineering for the design of artificial organs and advanced surgical instruments, since they have specific characteristics and unusual properties. This article will examine (a) the four properties of shape memory alloys, (b) medical applications with high potential for improving the present and future quality of life, and (c) concerns regarding the biocom-patibility properties of nickel-titanium alloys. In particular, the long-term challenges of using shape memory alloys will be discussed, regarding corrosion and potential leakage of elements and ions that could be toxic to cells, tissues and organs.
Oyarzún, Javiera P; Packard, Pau A; de Diego-Balaguer, Ruth; Fuentemilla, Lluis
2016-09-01
Neurobiological models of long-term memory explain how memory for inconsequential events fades, unless these happen before or after other relevant (i.e., rewarding or aversive) or novel events. Recently, it has been shown in humans that retrospective and prospective memories are selectively enhanced if semantically related events are paired with aversive stimuli. However, it remains unclear whether motivating stimuli, as opposed to aversive, have the same effect in humans. Here, participants performed a three phase incidental encoding task where one semantic category was rewarded during the second phase. A memory test 24h after, but not immediately after encoding, revealed that memory for inconsequential items was selectively enhanced only if items from the same category had been previously, but not subsequently, paired with rewards. This result suggests that prospective memory enhancement of reward-related information requires, like previously reported for aversive memories, of a period of memory consolidation. The current findings provide the first empirical evidence in humans that the effects of motivated encoding are selectively and prospectively prolonged over time. Copyright © 2016 Elsevier Inc. All rights reserved.
Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana
2011-01-01
Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment.
Effects of early morning nap sleep on associative memory for neutral and emotional stimuli.
Sopp, Marie Roxanne; Michael, Tanja; Mecklinger, Axel
2018-06-18
Emotional events are preferentially retained in episodic memory. This effect is commonly attributed to enhanced consolidation and has been linked specifically to rapid eye movement (REM) sleep physiology. While several studies have demonstrated an enhancing effect of REM sleep on emotional item memory, it has not been thoroughly explored whether this effect extends to the retention of associative memory. Moreover, it is unclear how non-rapid eye movement (NREM) sleep contributes to these effects. The present study thus examined associative recognition of emotional and non-emotional material across an early morning nap (N= 23) and sustained wakefulness (N= 23). Nap group subjects demonstrated enhanced post-sleep associative memory performance, which was evident across both valence categories. Subsequent analyses revealed significant correlations between NREM spindle density and pre-sleep memory performance. Moreover, NREM spindle density was positively correlated with post-sleep neutral associative memory performance but not with post-sleep emotional associative memory. Accordingly, only neutral associative memory, but not emotional associative memory, was significantly correlated with spindle density after an additional night of sleep (+24 h). These results illustrate a temporally persistent relationship between spindle density and memory for neutral associations, whereas post-sleep emotional associative memory appears to be disengaged from NREM-sleep-dependent processes. Copyright © 2018. Published by Elsevier B.V.
Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor
Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.
2012-01-01
The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326
Su, Ting; Zhang, Haifeng
2017-01-01
Charge trapping properties of electrons and holes in copper-doped zinc oxide (ZnO:Cu) films have been studied by scanning probe microscopy. We investigated the surface potential dependence on the voltage and duration applied to the copper-doped ZnO films by Kelvin probe force microscopy. It is found that the Fermi Level of the 8 at.% Cu-doped ZnO films shifted by 0.53 eV comparing to undoped ZnO films. This shift indicates significant change in the electronic structure and energy balance in Cu-doped ZnO films. The Fermi Level (work function) of zinc oxide films can be tuned by Cu doping, which are important for developing this functional material. In addition, Kelvin probe force microscopy measurements demonstrate that the nature of contact at Pt-coated tip/ZnO:Cu interface is changed from Schottky contact to Ohmic contact by increasing sufficient amount of Cu ions. The charge trapping property of the ZnO films enhance greatly by Cu doping (~10 at.%). The improved stable bipolar charge trapping properties indicate that copper-doped ZnO films are promising for nonvolatile memory applications. PMID:28135335
Murayama, Kou; Kitagami, Shinji
2014-02-01
Recent research suggests that extrinsic rewards promote memory consolidation through dopaminergic modulation processes. However, no conclusive behavioral evidence exists given that the influence of extrinsic reward on attention and motivation during encoding and consolidation processes are inherently confounded. The present study provides behavioral evidence that extrinsic rewards (i.e., monetary incentives) enhance human memory consolidation independently of attention and motivation. Participants saw neutral pictures, followed by a reward or control cue in an unrelated context. Our results (and a direct replication study) demonstrated that the reward cue predicted a retrograde enhancement of memory for the preceding neutral pictures. This retrograde effect was observed only after a delay, not immediately upon testing. An additional experiment showed that emotional arousal or unconscious resource mobilization cannot explain the retrograde enhancement effect. These results provide support for the notion that the dopaminergic memory consolidation effect can result from extrinsic reward.
Random walk with memory enhancement and decay
NASA Astrophysics Data System (ADS)
Tan, Zhi-Jie; Zou, Xian-Wu; Huang, Sheng-You; Zhang, Wei; Jin, Zhun-Zhi
2002-04-01
A model of random walk with memory enhancement and decay was presented on the basis of the characteristics of the biological intelligent walks. In this model, the movement of the walker is determined by the difference between the remaining information at the jumping-out site and jumping-in site. The amount of the memory information si(t) at a site i is enhanced with the increment of visiting times to that site, and decays with time t by the rate e-βt, where β is the memory decay exponent. When β=0, there exists a transition from Brownian motion (BM) to the compact growth of walking trajectory with the density of information energy u increasing. But for β>0, this transition does not appear and the walk with memory enhancement and decay can be considered as the BM of the mass center of the cluster composed of remembered sites in the late stage.
Retrospective attention enhances visual working memory in the young but not the old: an ERP study
Duarte, Audrey; Hearons, Patricia; Jiang, Yashu; Delvin, Mary Courtney; Newsome, Rachel N.; Verhaeghen, Paul
2013-01-01
Behavioral evidence from the young suggests spatial cues that orient attention toward task relevant items in visual working memory (VWM) enhance memory capacity. Whether older adults can also use retrospective cues (“retro-cues”) to enhance VWM capacity is unknown. In the current event-related potential (ERP) study, young and old adults performed a VWM task in which spatially informative retro-cues were presented during maintenance. Young but not older adults’ VWM capacity benefitted from retro-cueing. The contralateral delay activity (CDA) ERP index of VWM maintenance was attenuated after the retro-cue, which effectively reduced the impact of memory load. CDA amplitudes were reduced prior to retro-cue onset in the old only. Despite a preserved ability to delete items from VWM, older adults may be less able to use retrospective attention to enhance memory capacity when expectancy of impending spatial cues disrupts effective VWM maintenance. PMID:23445536
Test Expectation Enhances Memory Consolidation across Both Sleep and Wake
Wamsley, Erin J.; Hamilton, Kelly; Graveline, Yvette; Manceor, Stephanie; Parr, Elaine
2016-01-01
Memory consolidation benefits from post-training sleep. However, recent studies suggest that sleep does not uniformly benefit all memory, but instead prioritizes information that is important to the individual. Here, we examined the effect of test expectation on memory consolidation across sleep and wakefulness. Following reports that information with strong “future relevance” is preferentially consolidated during sleep, we hypothesized that test expectation would enhance memory consolidation across a period of sleep, but not across wakefulness. To the contrary, we found that expectation of a future test enhanced memory for both spatial and motor learning, but that this effect was equivalent across both wake and sleep retention intervals. These observations differ from those of least two prior studies, and fail to support the hypothesis that the “future relevance” of learned material moderates its consolidation selectively during sleep. PMID:27760193
Gist memory in the unconscious-thought effect.
Abadie, Marlène; Waroquier, Laurent; Terrier, Patrice
2013-07-01
The unconscious-thought effect (UTE) occurs when people are better able to make complex decisions after a period of distraction rather than immediately or after a period of conscious deliberation. This finding has often been interpreted as evidence of unconscious thinking. In two experiments, we provided the first evidence that the UTE is accompanied by enhanced memory for the gist of decision-relevant attributes and demonstrated that the cognitive demands of a distraction task moderate its effect on decision making and gist memory. It was only following a low-demand distraction task that participants chose the best alternative more often and displayed enhanced gist memory for decision-relevant attributes. These findings suggest that the UTE occurs only if cognitive resources are available and that it is accompanied by enhanced organization of information in memory, as shown by the increase in gist memory.
Money Enhances Memory Consolidation--But Only for Boring Material
ERIC Educational Resources Information Center
Murayama, Kou; Kuhbandner, Christof
2011-01-01
Money's ability to enhance memory has received increased attention in recent research. However, previous studies have not directly addressed the time-dependent nature of monetary effects on memory, which are suggested to exist by research in cognitive neuroscience, and the possible detrimental effects of monetary rewards on learning interesting…
Ban, Jianfeng; Zhu, Linjiang; Chen, Shaojun; Wang, Yiping
2016-01-01
To better understand shape memory materials and self-healing materials, a new series of liquid-crystalline shape memory polyurethane (LC-SMPU) composites, named SMPU-OOBAm, were successfully prepared by incorporating 4-octyldecyloxybenzoic acid (OOBA) into the PEG-based SMPU. The effect of OOBA on the structure, morphology, and properties of the material has been carefully investigated. The results demonstrate that SMPU-OOBAm has liquid crystalline properties, triple-shape memory properties, and self-healing properties. The incorporated OOBA promotes the crystallizability of both soft and hard segments of SMPU, and the crystallization rate of the hard segment of SMPU decreases when the OOBA-content increases. Additionally, the SMPU-OOBAm forms a two-phase separated structure (SMPU phase and OOBA phase), and it shows two-step modulus changes upon heating. Therefore, the SMPU-OOBAm exhibits triple-shape memory behavior, and the shape recovery ratio decreases with an increase in the OOBA content. Finally, SMPU-OOBAm exhibits self-healing properties. The new mechanism can be ascribed to the heating-induced “bleeding” of OOBA in the liquid crystalline state and the subsequent re-crystallization upon cooling. This successful combination of liquid crystalline properties, triple-shape memory properties, and self-healing properties make the SMPU-OOBAm composites ideal for many promising applications in smart optical devices, smart electronic devices, and smart sensors. PMID:28773914
Properties of a memory network in psychology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wedemann, Roseli S.; Donangelo, Raul; Carvalho, Luis A. V. de
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Properties of a memory network in psychology
NASA Astrophysics Data System (ADS)
Wedemann, Roseli S.; Donangelo, Raul; de Carvalho, Luís A. V.
2007-12-01
We have previously described neurotic psychopathology and psychoanalytic working-through by an associative memory mechanism, based on a neural network model, where memory was modelled by a Boltzmann machine (BM). Since brain neural topology is selectively structured, we simulated known microscopic mechanisms that control synaptic properties, showing that the network self-organizes to a hierarchical, clustered structure. Here, we show some statistical mechanical properties of the complex networks which result from this self-organization. They indicate that a generalization of the BM may be necessary to model memory.
Reischle, M; Beirne, G J; Rossbach, R; Jetter, M; Michler, P
2008-10-03
The dark exciton state strongly affects the optical and quantum optical properties of flat InP/GaInP quantum dots. The exciton intensity drops sharply compared to the biexciton with rising pulsed laser excitation power while the opposite is true with temperature. Also, the decay rate is faster for the exciton than the biexciton and the dark-to-bright state spin flip is enhanced with temperature. Furthermore, long-lived dark state related memory effects are observed in second-order cross-correlation measurements between the exciton and biexciton and have been simulated using a rate-equation model.
Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan
2015-01-01
Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.
Ossoukhova, Anastasia; Owen, Lauren; Ibarra, Alvin; Pipingas, Andrew; He, Kan; Roller, Marc; Stough, Con
2010-01-01
Rationale Over the last decade, Asian ginseng (Panax ginseng) has been shown to improve aspects of human cognitive function. American ginseng (Panax quinquefolius) has a distinct ginsenoside profile from P. ginseng, promising cognitive enhancing properties in preclinical studies and benefits processes linked to human cognition. Objectives The availability of a highly standardised extract of P. quinquefolius (Cereboost™) led us to evaluate its neurocognitive properties in humans for the first time. Methods This randomised, double-blind, placebo-controlled, crossover trial (N = 32, healthy young adults) assessed the acute mood, neurocognitive and glycaemic effects of three doses (100, 200 400 mg) of Cereboost™ (P. quinquefolius standardised to 10.65% ginsenosides). Participants' mood, cognitive function and blood glucose were measured 1, 3 and 6 h following administration. Results There was a significant improvement of working memory (WM) performance associated with P. quinquefolius. Corsi block performance was improved by all doses at all testing times. There were differential effects of all doses on other WM tasks which were maintained across the testing day. Choice reaction time accuracy and ‘calmness’ were significantly improved by 100 mg. There were no changes in blood glucose levels. Conclusions This preliminary study has identified robust working memory enhancement following administration of American ginseng. These effects are distinct from those of Asian ginseng and suggest that psychopharmacological properties depend critically on ginsenoside profiles. These results have ramifications for the psychopharmacology of herbal extracts and merit further study using different dosing regimens and in populations where cognition is fragile. PMID:20676609
Following the crowd: Brain Substrates of Long-Term Memory Conformity
Edelson, Micah; Sharot, Tali; Dolan, Raymond J; Dudai, Yadin
2012-01-01
Human memory is strikingly susceptible to social influences, yet we know little about the underlying mechanisms. We examined how socially induced memory errors are generated in the brain by studying the memory of individuals exposed to recollections of others. Participants exhibited a strong tendency to conform to erroneous recollections of the group, producing both long-lasting and temporary errors, even when their initial memory was strong and accurate. Functional brain imaging revealed that social influence modified the neuronal representation of memory. Specifically, a particular brain signature of enhanced amygdala activity and enhanced amygdala-hippocampus connectivity predicted long-lasting, but not temporary memory alterations. Our findings reveal how social manipulation can alter memory and extend the known functions of the amygdala to encompass socially-mediated memory distortions. PMID:21719681
Self-Imagining Enhances Recognition Memory in Memory-Impaired Individuals with Neurological Damage
Grilli, Matthew D.; Glisky, Elizabeth L.
2010-01-01
Objective The ability to imagine an elaborative event from a personal perspective relies on a number of cognitive processes that may potentially enhance subsequent memory for the event, including visual imagery, semantic elaboration, emotional processing, and self-referential processing. In an effort to find a novel strategy for enhancing memory in memory-impaired individuals with neurological damage, the present study investigated the mnemonic benefit of a method we refer to as “self-imagining” – or the imagining of an event from a realistic, personal perspective. Method Fourteen individuals with neurologically-based memory deficits and fourteen healthy control participants intentionally encoded neutral and emotional sentences under three instructions: structural-baseline processing, semantic processing, and self-imagining. Results Findings revealed a robust “self-imagination effect” as self-imagination enhanced recognition memory relative to deep semantic elaboration in both memory-impaired individuals, F (1, 13) = 32.11, p < .001, η2 = .71, and healthy controls, F (1, 13) = 5.57, p < .05, η2 = .30. In addition, results indicated that mnemonic benefits of self-imagination were not limited by severity of the memory disorder nor were they related to self-reported vividness of visual imagery, semantic processing, or emotional content of the materials. Conclusions The findings suggest that the self-imagination effect may depend on unique mnemonic mechanisms possibly related to self-referential processing, and that imagining an event from a personal perspective makes that event particularly memorable even for those individuals with severe memory deficits. Self-imagining may thus provide an effective rehabilitation strategy for individuals with memory impairment. PMID:20873930
Nobiletin improves emotional and novelty recognition memory but not spatial referential memory.
Kang, Jiyun; Shin, Jung-Won; Kim, Yoo-Rim; Swanberg, Kelley M; Kim, Yooseung; Bae, Jae Ryong; Kim, Young Ki; Lee, Jinwon; Kim, Soo-Yeon; Sohn, Nak-Won; Maeng, Sungho
2017-01-01
How to maintain and enhance cognitive functions for both aged and young populations is a highly interesting subject. But candidate memory-enhancing reagents are tested almost exclusively on lesioned or aged animals. Also, there is insufficient information on the type of memory these reagents can improve. Working memory, located in the prefrontal cortex, manages short-term sensory information, but, by gaining significant relevance, this information is converted to long-term memory by hippocampal formation and/or amygdala, followed by tagging with space-time or emotional cues, respectively. Nobiletin is a product of citrus peel known for cognitive-enhancing effects in various pharmacological and neurodegenerative disease models, yet, it is not well studied in non-lesioned animals and the type of memory that nobiletin can improve remains unclear. In this study, 8-week-old male mice were tested using behavioral measurements for working, spatial referential, emotional and visual recognition memory after daily administration of nobiletin. While nobiletin did not induce any change of spontaneous activity in the open field test, freezing by fear conditioning and novel object recognition increased. However, the effectiveness of spatial navigation in the Y-maze and Morris water maze was not improved. These results mean that nobiletin can specifically improve memories of emotionally salient information associated with fear and novelty, but not of spatial information without emotional saliency. Accordingly, the use of nobiletin on normal subjects as a memory enhancer would be more effective on emotional types but may have limited value for the improvement of episodic memories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kakade, S. G., E-mail: sundipkakade@gmail.com, E-mail: ydk@physics.unipune.ac.in; Department of Physics, Sir Parashurambhau College, Pune-411 030; Kambale, R. C.
Cobalt ferrite (CoFe{sub 2}O{sub 4}) shown to be promising candidate for applications such as high-density magnetic recording, enhanced memory storage, magnetic fluids and catalysts. Utility of ferrite nanoparticles depends on its size, dispersibility in solutions, and magnetic properties. We have investigated the structural properties of synthesized cobalt ferrite nanoparticles synthesized by sol gel auto combustion for uncontrolled, acidic, neutral and basic pH values. X-ray diffraction (XRD) study confirms the cubic spinel phase formation with lattice constant 8.38 Å. In this study, we have optimized the pH value to synthesize homogenous cobalt ferrite nanoparticles with enhanced magnetic behavior. The surface morphologymore » has been investigated by employing SEM images and the confirmation of spinel ferrite was also supported by using IR spectroscopy. Magnetic measurements for CoFe{sub 2}O{sub 4} compositions (with pH <1, pH = 3, 7, 10) were investigated using VSM measurements.« less
TRPC3 channels critically regulate hippocampal excitability and contextual fear memory.
Neuner, Sarah M; Wilmott, Lynda A; Hope, Kevin A; Hoffmann, Brian; Chong, Jayhong A; Abramowitz, Joel; Birnbaumer, Lutz; O'Connell, Kristen M; Tryba, Andrew K; Greene, Andrew S; Savio Chan, C; Kaczorowski, Catherine C
2015-03-15
Memory formation requires de novo protein synthesis, and memory disorders may result from misregulated synthesis of critical proteins that remain largely unidentified. Plasma membrane ion channels and receptors are likely candidates given their role in regulating neuron excitability, a candidate memory mechanism. Here we conduct targeted molecular monitoring and quantitation of hippocampal plasma membrane proteins from mice with intact or impaired contextual fear memory to identify putative candidates. Here we report contextual fear memory deficits correspond to increased Trpc3 gene and protein expression, and demonstrate TRPC3 regulates hippocampal neuron excitability associated with memory function. These data provide a mechanistic explanation for enhanced contextual fear memory reported herein following knockdown of TRPC3 in hippocampus. Collectively, TRPC3 modulates memory and may be a feasible target to enhance memory and treat memory disorders. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-10-10
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme.
Huang, Min; Liu, Zhaoqing; Qiao, Liyan
2014-01-01
While the NAND flash memory is widely used as the storage medium in modern sensor systems, the aggressive shrinking of process geometry and an increase in the number of bits stored in each memory cell will inevitably degrade the reliability of NAND flash memory. In particular, it's critical to enhance metadata reliability, which occupies only a small portion of the storage space, but maintains the critical information of the file system and the address translations of the storage system. Metadata damage will cause the system to crash or a large amount of data to be lost. This paper presents Asymmetric Programming, a highly reliable metadata allocation strategy for MLC NAND flash memory storage systems. Our technique exploits for the first time the property of the multi-page architecture of MLC NAND flash memory to improve the reliability of metadata. The basic idea is to keep metadata in most significant bit (MSB) pages which are more reliable than least significant bit (LSB) pages. Thus, we can achieve relatively low bit error rates for metadata. Based on this idea, we propose two strategies to optimize address mapping and garbage collection. We have implemented Asymmetric Programming on a real hardware platform. The experimental results show that Asymmetric Programming can achieve a reduction in the number of page errors of up to 99.05% with the baseline error correction scheme. PMID:25310473
Schuette, Sven R M; Fernández-Fernández, Diego; Lamla, Thorsten; Rosenbrock, Holger; Hobson, Scott
2016-04-13
The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal models in which compensatory mechanisms may occur. To avoid these issues, some studies have been done using viral overexpression of PKMζ in different brain structures to show cognitive enhancement. However, electrophysiological experiments were exclusively done in knock-out models or inhibitory studies to show depletion of LTP. There was no study showing the effect of PKMζ overexpression in the hippocampus on behavior and LTP experiments. To our knowledge, this is the first study to combine these aspects with the result of enhanced memory for contextual fear memory and to show enhanced LTP in hippocampal slices overexpressing PKMζ. Copyright © 2016 Schuette et al.
Rajagopal, Lakshmi; Burgdorf, Jeffrey S.; Moskal, Joseph R.; Meltzer, Herbert Y.
2016-01-01
GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-d-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg. i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications. PMID:26632337
Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device
NASA Astrophysics Data System (ADS)
Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen
2015-01-01
The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5 × 104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.
NASA Technical Reports Server (NTRS)
Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.
2018-01-01
Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.
NASA Astrophysics Data System (ADS)
Bernier, Jean D.
1991-09-01
The imaging in real time of infrared background scenes with the Naval Postgraduate School Infrared Search and Target Designation (NPS-IRSTD) System was achieved through extensive software developments in protected mode assembly language on an Intel 80386 33 MHz computer. The new software processes the 512 by 480 pixel images directly in the extended memory area of the computer where the DT-2861 frame grabber memory buffers are mapped. Direct interfacing, through a JDR-PR10 prototype card, between the frame grabber and the host computer AT bus enables each load of the frame grabber memory buffers to be effected under software control. The protected mode assembly language program can refresh the display of a six degree pseudo-color sector in the scanner rotation within the two second period of the scanner. A study of the imaging properties of the NPS-IRSTD is presented with preliminary work on image analysis and contrast enhancement of infrared background scenes.
Flores-Santibáñez, Felipe; Cuadra, Bárbara; Fernández, Dominique; Rosemblatt, Mariana V.; Núñez, Sarah; Cruz, Pablo; Gálvez-Cancino, Felipe; Cárdenas, J. César; Lladser, Alvaro; Rosemblatt, Mario; Bono, María Rosa; Sauma, Daniela
2018-01-01
Memory CD8+ T cells are ideal candidates for cancer immunotherapy because they can mediate long-term protection against tumors. However, the therapeutic potential of different in vitro-generated CD8+ T cell effector subsets to persist and become memory cells has not been fully characterized. Type 1 CD8+ T (Tc1) cells produce interferon-γ and are endowed with high cytotoxic capacity, whereas IL-17-producing CD8+ T (Tc17) cells are less cytotoxic but display enhanced self-renewal capacity. We sought to evaluate the functional properties of in vitro-generated Tc17 cells and elucidate their potential to become long lasting memory cells. Our results show that in vitro-generated Tc17 cells display a greater in vivo persistence and expansion in response to secondary antigen stimulation compared to Tc1 cells. When transferred into recipient mice, Tc17 cells persist in secondary lymphoid organs, present a recirculation behavior consistent with central memory T cells, and can shift to a Tc1 phenotype. Accordingly, Tc17 cells are endowed with a higher mitochondrial spare respiratory capacity than Tc1 cells and express higher levels of memory-related molecules than Tc1 cells. Together, these results demonstrate that in vitro-generated Tc17 cells acquire a central memory program and provide a lasting reservoir of Tc1 cells in vivo, thus supporting the use of Tc17 lymphocytes in the design of novel and more effective therapies. PMID:29472932
Epigenetic regulation of estrogen-dependent memory
Fortress, Ashley M.; Frick, Karyn M.
2014-01-01
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement. PMID:24878494
Epigenetic regulation of estrogen-dependent memory.
Fortress, Ashley M; Frick, Karyn M
2014-10-01
Hippocampal memory formation is highly regulated by post-translational histone modifications and DNA methylation. Accordingly, these epigenetic processes play a major role in the effects of modulatory factors, such as sex steroid hormones, on hippocampal memory. Our laboratory recently demonstrated that the ability of the potent estrogen 17β-estradiol (E2) to enhance hippocampal-dependent novel object recognition memory in ovariectomized female mice requires ERK-dependent histone H3 acetylation and DNA methylation in the dorsal hippocampus. Although these data provide valuable insight into the chromatin modifications that mediate the memory-enhancing effects of E2, epigenetic regulation of gene expression is enormously complex. Therefore, more research is needed to fully understand how E2 and other hormones employ epigenetic alterations to shape behavior. This review discusses the epigenetic alterations shown thus far to regulate hippocampal memory, briefly reviews the effects of E2 on hippocampal function, and describes in detail our work on epigenetic regulation of estrogenic memory enhancement. Copyright © 2014 Elsevier Inc. All rights reserved.
Xie, Weizhen; Zhang, Weiwei
2017-09-01
Negative emotion sometimes enhances memory (higher accuracy and/or vividness, e.g., flashbulb memories). The present study investigates whether it is the qualitative (precision) or quantitative (the probability of successful retrieval) aspect of memory that drives these effects. In a visual long-term memory task, observers memorized colors (Experiment 1a) or orientations (Experiment 1b) of sequentially presented everyday objects under negative, neutral, or positive emotions induced with International Affective Picture System images. In a subsequent test phase, observers reconstructed objects' colors or orientations using the method of adjustment. We found that mnemonic precision was enhanced under the negative condition relative to the neutral and positive conditions. In contrast, the probability of successful retrieval was comparable across the emotion conditions. Furthermore, the boost in memory precision was associated with elevated subjective feelings of remembering (vividness and confidence) and metacognitive sensitivity in Experiment 2. Altogether, these findings suggest a novel precision-based account for emotional memories. Copyright © 2017 Elsevier B.V. All rights reserved.
Cognition enhancers between treating and doping the mind.
Lanni, Cristina; Lenzken, Silvia C; Pascale, Alessia; Del Vecchio, Igor; Racchi, Marco; Pistoia, Francesca; Govoni, Stefano
2008-03-01
Memory, attention and creativity represent three different cognitive domains, which are interconnected and contribute the "mental performance" of an individual. Modern neuroscience has investigated some of the neuronal circuits and of the neurotransmitters and molecular events underlying the above-mentioned cognitive functions. Within this renewed reference context, some of the properties of the components of the remedies to increase mental performance have been studied and validated in experimental models and, to date, these substances are named "smart drugs", "memory enhancing drugs" or "nootropic drugs" (from the Greek root noos for mind and tropein for toward). Recently pharmaceutical industries are increasingly focusing on the research for potential substances in this field: several "smart drugs" are in clinical trials and could be on the market in few years. Furthermore, a quick survey from Internet highlights the presence of a great variety of both approved and non-approved drugs, with some of them addressing to only medical and others to performance-oriented use, opening room to some reflections or speculations from scientific and ethical points of view. In order to point out the effect of nootropic drugs on cognition of healthy people, we reviewed the literature on drug enhancement of various cognitive functions, including memory, attention and creativity. As their simplest, memory is regarded as the ability to remember events or learned material, attention is the cognitive process of selectively concentrating on one aspect while ignoring distracters and creativity could be described as the ability to create products or ideas which are original and which possess a social usefulness. Reports from literature reveal that some medications currently available to patients with memory disorders may also increase performances in healthy people and that drugs designed for psychiatric disorders can also be used to enhance certain mental functions. However, the long-term effects of these drugs are unknown, but their apparent effectiveness allows room to their use and misuse. At variance with these literature data showing scientific, even if poor, evidence of the effect of smart drugs in the field of memory and attention, only indirect information on creativity can be obtained by studies of the effects of diseases and drugs on the artistic productivity of classic painters and famous authors, offering a link to understand the neuronal basis of this cognitive function and a cue to understand how drugs (used to correct the illness) may affect the function. On the basis of these cues, in this review we will discuss some critical aspects of the different cerebral circuits and molecular events regulating memory, attention and creativity in order to outline the neurobiological bases of the effects of "smart drugs" on cognitive functions, and to evaluate their putative pharmaceutical development.
Hoogeveen, Heleen R.; ter Horst, Gert J.
2016-01-01
Increasingly consumption of healthy foods is advised to improve population health. Reasons people give for choosing one food over another suggest that non-sensory features like health aspects are appreciated as of lower importance than taste. However, many food choices are made in the absence of the actual perception of a food’s sensory properties, and therefore highly rely on previous experiences of similar consumptions stored in memory. In this study we assessed the differential strength of food associations implicitly stored in memory, using an associative priming paradigm. Participants (N = 30) were exposed to a forced-choice picture-categorization task, in which the food or non-food target images were primed with either non-sensory or sensory related words. We observed a smaller N400 amplitude at the parietal electrodes when categorizing food as compared to non-food images. While this effect was enhanced by the presentation of a food-related word prime during food trials, the primes had no effect in the non-food trials. More specifically, we found that sensory associations are stronger implicitly represented in memory as compared to non-sensory associations. Thus, this study highlights the neuronal mechanisms underlying previous observations that sensory associations are important features of food memory, and therefore a primary motive in food choice. PMID:27213567
How To Create and Conduct a Memory Enhancement Program.
ERIC Educational Resources Information Center
Meyer, Genevieve R.; Ober-Reynolds, Sharman
This report describes Memory Enhancement Group workshops which have been conducted at the Senior Health and Peer Counseling Center in Santa Monica, California and gives basic data regarding outcomes of the workshops. It provides a model of memory as a three-step process of registration or becoming aware, consolidation, and retrieval. It presents…
Does an Activity-Based Learning Strategy Improve Preschool Children's Memory for Narrative Passages?
ERIC Educational Resources Information Center
Biazak, Janna E.; Marley, Scott C.; Levin, Joel R.
2010-01-01
Contemporary embodiment theory's indexical hypothesis predicts that engaging in text-relevant activity while listening to a story will: (1) enhance memory for enacted story content; and, (2) result in relatively greater memory enhancement for enacted atypical events than for typical ones ([Glenberg and Robertson, 1999] and [Glenberg and Robertson,…
Accounting for Immediate Emotional Memory Enhancement
ERIC Educational Resources Information Center
Talmi, Deborah; McGarry, Lucy M.
2012-01-01
Memory for emotional events is usually very good even when tested shortly after study, before it is altered by the influence of emotional arousal on consolidation. Immediate emotion-enhanced memory may stem from the influence of emotion on cognitive processes at encoding and retrieval. Our goal was to test which cognitive factors are necessary and…
ERIC Educational Resources Information Center
Seamon, John G.; Bohn, Justin M.; Coddington, Inslee E.; Ebling, Maritza C.; Grund, Ethan M.; Haring, Catherine T.; Jang, Sue-Jung; Kim, Daniel; Liong, Christopher; Paley, Frances M.; Pang, Luke K.; Siddique, Ashik H.
2012-01-01
Research from the adaptive memory framework shows that thinking about words in terms of their survival value in an incidental learning task enhances their free recall relative to other semantic encoding strategies and intentional learning (Nairne, Pandeirada, & Thompson, 2008). We found similar results. When participants used incidental…
Flom, Ross; Bahrick, Lorraine E
2010-03-01
This research examined the effects of bimodal audiovisual and unimodal visual stimulation on infants' memory for the visual orientation of a moving toy hammer following a 5-min, 2-week, or 1-month retention interval. According to the intersensory redundancy hypothesis (L. E. Bahrick & R. Lickliter, 2000; L. E. Bahrick, R. Lickliter, & R. Flom, 2004) detection of and memory for nonredundantly specified properties, including the visual orientation of an event, are facilitated in unimodal stimulation and attenuated in bimodal stimulation in early development. Later in development, however, nonredundantly specified properties can be perceived and remembered in both multimodal and unimodal stimulation. The current study extended tests of these predictions to the domain of memory in infants of 3, 5, and 9 months of age. Consistent with predictions of the intersensory redundancy hypothesis, in unimodal stimulation, memory for visual orientation emerged by 5 months and remained stable across age, whereas in bimodal stimulation, memory did not emerge until 9 months of age. Memory for orientation was evident even after a 1-month delay and was expressed as a shifting preference, from novelty to null to familiarity, across increasing retention time, consistent with Bahrick and colleagues' four-phase model of attention. Together, these findings indicate that infant memory for nonredundantly specified properties of events is a consequence of selective attention to those event properties and is facilitated in unimodal stimulation. Memory for nonredundantly specified properties thus emerges in unimodal stimulation, is later extended to bimodal stimulation, and lasts across a period of at least 1 month.
Montero-Pedrazuela, Ana; Fernández-Lamo, Iván; Alieva, María; Pereda-Pérez, Inmaculada; Venero, César; Guadaño-Ferraz, Ana
2011-01-01
Hypothyroidism is the most common hormonal disease in adults, which is frequently accompanied by learning and memory impairments and emotional disorders. However, the deleterious effects of thyroid hormones deficiency on emotional memory are poorly understood and often underestimated. To evaluate the consequences of hypothyroidism on emotional learning and memory, we have performed a classical Pavlovian fear conditioning paradigm in euthyroid and adult-thyroidectomized Wistar rats. In this experimental model, learning acquisition was not impaired, fear memory was enhanced, memory extinction was delayed and spontaneous recovery of fear memory was exacerbated in hypothyroid rats. The potentiation of emotional memory under hypothyroidism was associated with an increase of corticosterone release after fear conditioning and with higher expression of glucocorticoid and mineralocorticoid receptors in the lateral and basolateral nuclei of the amygdala, nuclei that are critically involved in the circuitry of fear memory. Our results demonstrate for the first time that adult-onset hypothyroidism potentiates fear memory and also increases vulnerability to develop emotional memories. Furthermore, our findings suggest that enhanced corticosterone signaling in the amygdala is involved in the pathophysiological mechanisms of fear memory potentiation. Therefore, we recommend evaluating whether inappropriate regulation of fear in patients with post-traumatic stress and other mental disorders is associated with abnormal levels of thyroid hormones, especially those patients refractory to treatment. PMID:22039511
Cognitive effects of methylphenidate and levodopa in healthy volunteers.
Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J
2014-02-01
Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.
Verifying visual properties in sentence verification facilitates picture recognition memory.
Pecher, Diane; Zanolie, Kiki; Zeelenberg, René
2007-01-01
According to the perceptual symbols theory (Barsalou, 1999), sensorimotor simulations underlie the representation of concepts. We investigated whether recognition memory for pictures of concepts was facilitated by earlier representation of visual properties of those concepts. During study, concept names (e.g., apple) were presented in a property verification task with a visual property (e.g., shiny) or with a nonvisual property (e.g., tart). Delayed picture recognition memory was better if the concept name had been presented with a visual property than if it had been presented with a nonvisual property. These results indicate that modality-specific simulations are used for concept representation.
Not all repetition is alike: Different benefits of repetition in amnesia and normal memory
Verfaellie, Mieke; Rajaram, Suparna; Fossum, Karen; Williams, Lisa
2008-01-01
While it is well known that repetition can enhance memory in amnesia, little is known about which forms of repetition are most beneficial. This study compared the effect on recognition memory of repetition of words in the same semantic context and in varied semantic contexts. To gain insight into the mechanisms by which these forms of repetition affect performance, participants were asked to make Remember/Know judgments during recognition. These judgments were used to make inferences about the contribution of recollection and familiarity to performance. For individuals with intact memory, the two forms of repetition were equally beneficial to overall recognition, and were associated with both enhanced Remember and Know responses. However, varied repetition was associated with a higher likelihood of Remember responses than was fixed repetition. The two forms of repetition also conferred equivalent benefits on overall recognition in amnesia, but in both cases, this enhancement was manifest exclusively in enhanced Know responses. We conclude that the repetition of information, and especially repetition in varied contexts, enhances recollection in individuals with intact memory, but exclusively affects familiarity in patients with severe amnesia. PMID:18419835
Auditory closed-loop stimulation of the sleep slow oscillation enhances memory.
Ngo, Hong-Viet V; Martinetz, Thomas; Born, Jan; Mölle, Matthias
2013-05-08
Brain rhythms regulate information processing in different states to enable learning and memory formation. The <1 Hz sleep slow oscillation hallmarks slow-wave sleep and is critical to memory consolidation. Here we show in sleeping humans that auditory stimulation in phase with the ongoing rhythmic occurrence of slow oscillation up states profoundly enhances the slow oscillation rhythm, phase-coupled spindle activity, and, consequently, the consolidation of declarative memory. Stimulation out of phase with the ongoing slow oscillation rhythm remained ineffective. Closed-loop in-phase stimulation provides a straight-forward tool to enhance sleep rhythms and their functional efficacy. Copyright © 2013 Elsevier Inc. All rights reserved.
Self-defining memories during exposure to music in Alzheimer's disease.
El Haj, Mohamad; Antoine, Pascal; Nandrino, Jean Louis; Gély-Nargeot, Marie-Christine; Raffard, Stéphane
2015-10-01
Research suggests that exposure to music may enhance autobiographical recall in Alzheimer's Disease (AD) patients. This study investigated whether exposure to music could enhance the production of self-defining memories, that is, memories that contribute to self-discovery, self-understanding, and identity in AD patients. Twenty-two mild-stage AD patients and 24 healthy controls were asked to produce autobiographical memories in silence, while listening to researcher-chosen music, and to their own-chosen music. AD patients showed better autobiographical recall when listening to their own-chosen music than to researcher-chosen music or than in silence. More precisely, they produced more self-defining memories during exposure to their own-chosen music than to researcher-chosen music or during silence. Additionally, AD patients produced more self-defining memories than autobiographical episodes or personal-semantics during exposure to their own-chosen music. This pattern contrasted with the poor production of self-defining memories during silence or during exposure to researcher-chosen music. Healthy controls did not seem to enjoy the same autobiographical benefits nor the same self-defining memory enhancement in the self-chosen music condition. Poor production of self-defining memories, as observed in AD, may somehow be alleviated by exposure to self-chosen music.
Time-limited effects of emotional arousal on item and source memory.
Wang, Bo; Sun, Bukuan
2015-01-01
Two experiments investigated the time-limited effects of emotional arousal on consolidation of item and source memory. In Experiment 1, participants memorized words (items) and the corresponding speakers (sources) and then took an immediate free recall test. Then they watched a neutral, positive, or negative video 5, 35, or 50 min after learning, and 24 hours later they took surprise memory tests. Experiment 2 was similar to Experiment 1 except that (a) a reality monitoring task was used; (b) elicitation delays of 5, 30, and 45 min were used; and (c) delayed memory tests were given 60 min after learning. Both experiments showed that, regardless of elicitation delay, emotional arousal did not enhance item recall memory. Second, both experiments showed that negative arousal enhanced delayed item recognition memory only at the medium elicitation delay, but not in the shorter or longer delays. Positive arousal enhanced performance only in Experiment 1. Third, regardless of elicitation delay, emotional arousal had little effect on source memory. These findings have implications for theories of emotion and memory, suggesting that emotion effects are contingent upon the nature of the memory task and elicitation delay.
A flavanoid component of chocolate quickly reverses an imposed memory deficit.
Knezevic, Bogdan; Komatsuzaki, Yoshimasa; de Freitas, Emily; Lukowiak, Ken
2016-03-01
The ability to remember is influenced by environmental and lifestyle factors, such as stress and diet. A flavanol contained in chocolate, epicatechin (Epi), has been shown to enhance long-term memory (LTM) formation in Lymnaea. Combining two stressors (low-calcium pond water and crowding) blocks learning and all forms of memory; that is, this combination of environmentally relevant stressors creates a memory-unfriendly state. We tested the hypothesis that Epi will immediately reverse the memory-unfriendly state, i.e. that snails in the memory-deficit state when trained in Epi will immediately become competent to learn and form memory. We found that Epi not only reverses the memory-deficit state but also further enhances LTM formation. Thus, a naturally occurring bioactive plant compound can overcome a memory-unfriendly state. This supports the idea that bioactive substances may mitigate memory-making deficits that, for example, occur with ageing. © 2016. Published by The Company of Biologists Ltd.
Kennedy, D O; Wake, G; Savelev, S; Tildesley, N T J; Perry, E K; Wesnes, K A; Scholey, A B
2003-10-01
Melissa officinalis (Lemon balm) is a herbal medicine that has traditionally been attributed with memory-enhancing properties, but which is currently more widely used as a mild sedative and sleep aid. In a previous study it was demonstrated that a commercial Melissa extract led to dose-specific increases in calmness, and dose-dependent decrements in timed memory task performance. However, the extract utilized in that study did not exhibit in vitro cholinergic receptor-binding properties. The current study involved an initial screening of samples of M. officinalis for human acetylcholinesterase inhibition and cholinergic receptor-binding properties. The cognitive and mood effects of single doses of the most cholinergically active dried leaf were then assessed in a randomized, placebo-controlled, double-blind, balanced crossover study. Following the in vitro analysis, 20 healthy, young participants received single doses of 600, 1000, and 1600 mg of encapsulated dried leaf, or a matching placebo, at 7-day intervals. Cognitive performance and mood were assessed predose and at 1, 3, and 6 h postdose using the Cognitive Drug Research computerized assessment battery and Bond-Lader visual analog scales, respectively. In vitro analysis of the chosen extract established IC(50) concentrations of 0.18 and 3.47 mg ml(-1), respectively, for the displacement of [(3)H]-(N)-nicotine and [(3)H]-(N)-scopolamine from nicotinic and muscarinic receptors in the human cerebral cortex tissue. However, no cholinesterase inhibitory properties were detected. The most notable cognitive and mood effects were improved memory performance and increased 'calmness' at all postdose time points for the highest (1600 mg) dose. However, while the profile of results was overwhelmingly favorable for the highest dose, decrements in the speed of timed memory task performance and on a rapid visual information-processing task increased with decreasing dose. These results suggest that doses of Melissa officinalis at or above the maximum employed here can improve cognitive performance and mood and may therefore be a valuable adjunct in the treatment of Alzheimer's disease. The results also suggest that different preparations derived from the same plant species may exhibit different properties depending on the process used for the sample preparation.
Kleen, Jonathan K.; Wu, Edie X.; Holmes, Gregory L.; Scott, Rod C.; Lenck-Santini, Pierre-Pascal
2011-01-01
Neurological insults during development are associated with later impairments in learning and memory. Although remedial training can help restore cognitive function, the neural mechanisms of this recovery in memory systems are largely unknown. To examine this issue we measured electrophysiological oscillatory activity in the hippocampus (both CA3 and CA1) and prefrontal cortex of adult rats that had experienced repeated seizures in the first weeks of life, while they were remedially trained on a delayed-nonmatch-to-sample memory task. Seizure-exposed rats showed initial difficulties learning the task but performed similar to control rats after extra training. Whole-session analyses illustrated enhanced theta power in all three structures while seizure rats learned response tasks prior to the memory task. Whilst performing the memory task, dynamic oscillation patterns revealed that prefrontal cortex theta power was increased among seizure-exposed rats. This enhancement appeared after the first memory training steps using short delays and plateaued at the most difficult steps which included both short and long delays. Further, seizure rats showed enhanced CA1-prefrontal theta coherence in correct trials compared to incorrect trials when long delays were imposed, suggesting increased hippocampal-prefrontal synchrony for the task in this group when memory demand was high. Seizure-exposed rats also showed heightened gamma power and coherence among all three structures during the trials. Our results demonstrate the first evidence of hippocampal-prefrontal enhancements following seizures in early development. Dynamic compensatory changes in this network and interconnected circuits may underpin cognitive rehabilitation following other neurological insults to higher cognitive systems. PMID:22031886
Wagner, Julia A; Berrien-Elliott, Melissa M; Rosario, Maximillian; Leong, Jeffrey W; Jewell, Brea A; Schappe, Timothy; Abdel-Latif, Sara; Fehniger, Todd A
2017-03-01
Cytokine-induced memory-like natural killer (NK) cells differentiate after short-term preactivation with IL-12, IL-15, and IL-18 and display enhanced effector function in response to cytokines or tumor targets for weeks after the initial preactivation. Conventional NK cell function depends on a licensing signal, classically delivered by an inhibitory receptor engaging its cognate MHC class I ligand. How licensing status integrates with cytokine-induced memory-like NK cell responses is unknown. We investigated this interaction using killer cell immunoglobulin-like receptor- and HLA-genotyped primary human NK cells. Memory-like differentiation resulted in enhanced IFN-γ production triggered by leukemia targets or FcγRIIIa ligation within licensed NK cells, which exhibited the highest functionality of the NK cell subsets interrogated. IFN-γ production by unlicensed memory-like NK cells was also enhanced to a level comparable with that of licensed control NK cells. Mechanistically, differences in responses to FcγRIIIa-based triggering were not explained by alterations in key signaling intermediates, indicating that the underlying biology of memory-like NK cells is distinct from that of adaptive NK cells in human cytomegalovirus-positive individuals. Additionally, memory-like NK cells responded robustly to cytokine receptor restimulation with no impact of licensing status. These results demonstrate that both licensed and unlicensed memory-like NK cell populations have enhanced functionality, which may be translated to improve leukemia immunotherapy. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Animal model of methylphenidate's long-term memory-enhancing effects.
Carmack, Stephanie A; Howell, Kristin K; Rasaei, Kleou; Reas, Emilie T; Anagnostaras, Stephan G
2014-01-16
Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01-10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1-10 mg/kg, i.p.), bupropion (0.5-20 mg/kg, i.p.), and citalopram (0.01-10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development.
Animal model of methylphenidate's long-term memory-enhancing effects
Carmack, Stephanie A.; Howell, Kristin K.; Rasaei, Kleou; Reas, Emilie T.; Anagnostaras, Stephan G.
2014-01-01
Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01–10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1–10 mg/kg, i.p.), bupropion (0.5–20 mg/kg, i.p.), and citalopram (0.01–10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development. PMID:24434869
The Simple Act of Choosing Influences Declarative Memory
Murty, Vishnu P.; DuBrow, Sarah
2015-01-01
Individuals value the opportunity to make choices and exert control over their environment. This perceived sense of agency has been shown to have broad influences on cognition, including preference, decision-making, and valuation. However, it is unclear whether perceived control influences memory. Using a combined behavioral and functional magnetic resonance imaging approach, we investigated whether imbuing individuals with a sense of agency over their learning experience influences novel memory encoding. Participants encoded objects during a task that manipulated the opportunity to choose. Critically, unlike previous work on active learning, there was no relationship between individuals' choices and the content of memoranda. Despite this, we found that the opportunity to choose resulted in robust, reliable enhancements in declarative memory. Neuroimaging results revealed that anticipatory activation of the striatum, a region associated with decision-making, valuation, and exploration, correlated with choice-induced memory enhancements in behavior. These memory enhancements were further associated with interactions between the striatum and hippocampus. Specifically, anticipatory signals in the striatum when participants are alerted to the fact that they will have to choose one of two memoranda were associated with encoding success effects in the hippocampus on a trial-by-trial basis. The precedence of the striatal signal in these interactions suggests a modulatory relationship of the striatum over the hippocampus. These findings not only demonstrate enhanced declarative memory when individuals have perceived control over their learning but also support a novel mechanism by which these enhancements emerge. Furthermore, they demonstrate a novel context in which mesolimbic and declarative memory systems interact. PMID:25904779
The simple act of choosing influences declarative memory.
Murty, Vishnu P; DuBrow, Sarah; Davachi, Lila
2015-04-22
Individuals value the opportunity to make choices and exert control over their environment. This perceived sense of agency has been shown to have broad influences on cognition, including preference, decision-making, and valuation. However, it is unclear whether perceived control influences memory. Using a combined behavioral and functional magnetic resonance imaging approach, we investigated whether imbuing individuals with a sense of agency over their learning experience influences novel memory encoding. Participants encoded objects during a task that manipulated the opportunity to choose. Critically, unlike previous work on active learning, there was no relationship between individuals' choices and the content of memoranda. Despite this, we found that the opportunity to choose resulted in robust, reliable enhancements in declarative memory. Neuroimaging results revealed that anticipatory activation of the striatum, a region associated with decision-making, valuation, and exploration, correlated with choice-induced memory enhancements in behavior. These memory enhancements were further associated with interactions between the striatum and hippocampus. Specifically, anticipatory signals in the striatum when participants are alerted to the fact that they will have to choose one of two memoranda were associated with encoding success effects in the hippocampus on a trial-by-trial basis. The precedence of the striatal signal in these interactions suggests a modulatory relationship of the striatum over the hippocampus. These findings not only demonstrate enhanced declarative memory when individuals have perceived control over their learning but also support a novel mechanism by which these enhancements emerge. Furthermore, they demonstrate a novel context in which mesolimbic and declarative memory systems interact. Copyright © 2015 the authors 0270-6474/15/356255-10$15.00/0.
Akinyemi, Ayodele Jacob; Okonkwo, Princess Kamsy; Faboya, Opeyemi Ayodeji; Onikanni, Sunday Amos; Fadaka, Adewale; Olayide, Israel; Akinyemi, Elizabeth Olufisayo; Oboh, Ganiyu
2017-02-01
Curcumin, the main polyphenolic component of turmeric (Curcuma longa) rhizomes has been reported to exert cognitive enhancing potential with limited scientific basis. Hence, this study sought to evaluate the effect of curcumin on cerebral cortex acetylcholinesterase (AChE) and adenosine deaminase (ADA) activities in cadmium (Cd)-induced memory impairment in rats. Animals were divided into six groups (n = 6): saline/vehicle, saline/curcumin 12.5 mg/kg, saline/curcumin 25 mg/kg, Cd/vehicle, Cd/curcumin 12.5 mg/kg, and Cd/curcumin 25 mg/kg. Rats received Cd (2.5 mg/kg) and curcumin (12.5 and 25 mg/kg, respectively) by gavage for 7 days. The results of this study revealed that cerebral cortex AChE and ADA activities were increased in Cd-poisoned rats, and curcumin co-treatment reversed these activities to the control levels. Furthermore, Cd intoxication increased the level of lipid peroxidation in cerebral cortex with a concomitant decreased in functional sulfuhydryl (-SH) group and nitric oxide (NO), a potent neurotransmitter and neuromodulatory agent. However, the co-treatment with curcumin at 12.5 and 25 mg/kg, respectively increased the non-enzymatic antioxidant status and NO in cerebral cortex with a decreased in malondialdehyde (MDA) level. Therefore, inhibition of AChE and ADA activities as well as increased antioxidant status by curcumin in Cd-induced memory dysfunction could suggest some possible mechanism of action for their cognitive enhancing properties.
Vignisse, Julie; Steinbusch, Harry W M; Grigoriev, Vladimir; Bolkunov, Alexei; Proshin, Alexey; Bettendorff, Lucien; Bachurin, Sergey; Strekalova, Tatyana
2014-02-01
Bifunctional drug therapy targeting distinct receptor signalling systems can generate increased efficacy at lower concentrations compared to monofunctional therapy. Non-competitive blockade of the NMDA receptors or the potentiation of AMPA receptors is well documented to result in memory enhancement. Here, we compared the efficacy of the low-affinity NMDA receptor blocker memantine or the positive modulator of AMPA receptor QXX (in C57BL/6J at 1 or 5mg/kg, ip) with new derivatives of isothiourea (0.5-1 mg/kg, ip) that have bifunctional efficacy. Low-affinity NMDA blockade by these derivatives was achieved by introducing greater flexibility into the molecule, and AMPA receptor stimulation was produced by a sulfamide-containing derivative of isothiourea. Contextual learning was examined in a step-down avoidance task and extinction of contextual memory was studied in a fear-conditioning paradigm. Memantine enhanced contextual learning while QXX facilitated memory extinction; both drugs were effective at 5 mg/kg. The new derivative IPAC-5 elevated memory scores in both tasks at the dose 0.5 mg/kg and exhibited the lowest IC₅₀ values of NMDA receptor blockade and highest potency of AMPA receptor stimulation. Thus, among the new drugs tested, IPAC-5 replicated the properties of memantine and QXX in one administration with increased potency. Our data suggest that a concomitant manipulation of NMDA- and AMPA-receptors results in pro-cognitive effects and supports the concept bifunctional drug therapy as a promising strategy to replace monofunctional therapies with greater efficacy and improved compliance. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Sleep for cognitive enhancement.
Diekelmann, Susanne
2014-01-01
Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications.
Sleep for cognitive enhancement
Diekelmann, Susanne
2014-01-01
Sleep is essential for effective cognitive functioning. Loosing even a few hours of sleep can have detrimental effects on a wide variety of cognitive processes such as attention, language, reasoning, decision making, learning and memory. While sleep is necessary to ensure normal healthy cognitive functioning, it can also enhance performance beyond the boundaries of the normal condition. This article discusses the enhancing potential of sleep, mainly focusing on the domain of learning and memory. Sleep is known to facilitate the consolidation of memories learned before sleep as well as the acquisition of new memories to be learned after sleep. According to a widely held model this beneficial effect of sleep relies on the neuronal reactivation of memories during sleep that is associated with sleep-specific brain oscillations (slow oscillations, spindles, ripples) as well as a characteristic neurotransmitter milieu. Recent research indicates that memory processing during sleep can be boosted by (i) cueing memory reactivation during sleep; (ii) stimulating sleep-specific brain oscillations; and (iii) targeting specific neurotransmitter systems pharmacologically. Olfactory and auditory cues can be used, for example, to increase reactivation of associated memories during post-learning sleep. Intensifying neocortical slow oscillations (the hallmark of slow wave sleep (SWS)) by electrical or auditory stimulation and modulating specific neurotransmitters such as noradrenaline and glutamate likewise facilitates memory processing during sleep. With this evidence in mind, this article concludes by discussing different methodological caveats and ethical issues that should be considered when thinking about using sleep for cognitive enhancement in everyday applications. PMID:24765066
Smeets, Tom; Otgaar, Henry; Candel, Ingrid; Wolf, Oliver T
2008-11-01
Adrenal stress hormones released in response to acute stress may yield memory-enhancing effects when released post-learning and impairing effects at memory retrieval, especially for emotional memory material. However, so far these differential effects of stress hormones on the various memory phases for neutral and emotional memory material have not been demonstrated within one experiment. This study investigated whether, in line with their effects on true memory, stress and stress-induced adrenal stress hormones affect the encoding, consolidation, and retrieval of emotional and neutral false memories. Participants (N=90) were exposed to a stressor before encoding, during consolidation, before retrieval, or were not stressed and then were subjected to neutral and emotional versions of the Deese-Roediger-McDermott word list learning paradigm. Twenty-four hours later, recall of presented words (true recall) and non-presented critical lure words (false recall) was assessed. Results show that stress exposure resulted in superior true memory performance in the consolidation stress group and reduced true memory performance in the retrieval stress group compared to the other groups, predominantly for emotional words. These memory-enhancing and memory-impairing effects were strongly related to stress-induced cortisol and sympathetic activity measured via salivary alpha-amylase levels. Neutral and emotional false recall, on the other hand, was neither affected by stress exposure, nor related to cortisol and sympathetic activity following stress. These results demonstrate the importance of stress-induced hormone-related activity in enhancing memory consolidation and in impairing memory retrieval, in particular for emotional memory material.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
Opposing roles for GABAA and GABAC receptors in short-term memory formation in young chicks.
Gibbs, M E; Johnston, G A R
2005-01-01
The inhibitory neurotransmitter GABA has both inhibitory and enhancing effects on short-term memory for a bead discrimination task in the young chick. Low doses of GABA (1-3 pmol/hemisphere) injected into the multimodal association area of the chick forebrain, inhibit strongly reinforced memory, whereas higher doses (30-100 pmol/hemisphere) enhance weakly reinforced memory. The effect of both high and low doses of GABA is clearly on short-term memory in terms of both the time of injection and in the time that the memory loss occurs. We argue on the basis of relative sensitivities to GABA and to selective GABA receptor antagonists that low doses of GABA act at GABAC receptors (EC50 approximately 1 microM) and the higher doses of GABA act via GABAA receptors (EC50 approximately 10 microM). The selective GABAA receptor antagonist bicuculline inhibited strongly reinforced memory in a dose and time dependent manner, whereas the selective GABAC receptor antagonists TPMPA and P4MPA enhanced weakly reinforced in a dose and time dependent manner. Confirmation that different levels of GABA affect different receptor subtypes was demonstrated by the shift in the GABA dose-response curves to the selective antagonists. It is clear that GABA is involved in the control of short-term memory formation and its action, enhancing or inhibiting, depends on the level of GABA released at the time of learning.
Development of Metallic Sensory Alloys
NASA Technical Reports Server (NTRS)
Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.
2010-01-01
Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.
ERIC Educational Resources Information Center
Shu, Guanhua; Kramár, Enikö A.; López, Alberto J.; Huynh, Grace; Wood, Marcelo A.; Kwapis, Janine L.
2018-01-01
Multiple epigenetic mechanisms, including histone acetylation and nucleosome remodeling, are known to be involved in long-term memory formation. Enhancing histone acetylation by deleting histone deacetylases, like HDAC3, typically enhances long-term memory formation. In contrast, disrupting nucleosome remodeling by blocking the neuron-specific…
Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications.
Hoh, Daniel J; Hoh, Brian L; Amar, Arun P; Wang, Michael Y
2009-05-01
SHAPE MEMORY ALLOYS possess distinct dynamic properties with particular applications in neurosurgery. Because of their unique physical characteristics, these materials are finding increasing application where resiliency, conformation, and actuation are needed. Nitinol, the most frequently manufactured shape memory alloy, responds to thermal and mechanical stimuli with remarkable mechanical properties such as shape memory effect, super-elasticity, and high damping capacity. Nitinol has found particular use in the biomedical community because of its excellent fatigue resistance and biocompatibility, with special interest in neurosurgical applications. The properties of nitinol and its diffusionless phase transformations contribute to these unique mechanical capabilities. The features of nitinol, particularly its shape memory effect, super-elasticity, damping capacity, as well as its biocompatibility and biomechanics are discussed herein. Current and future applications of nitinol and other shape memory alloys in endovascular, spinal, and minimally invasive neurosurgery are introduced. An understanding of the metallurgic properties of nitinol provides a foundation for further exploration of its use in neurosurgical implant design.
NASA Astrophysics Data System (ADS)
Elzouka, Mahmoud
This dissertation investigates Near-Field Thermal Radiation (NFTR) applied to MEMS-based concentrated solar thermophotovoltaics (STPV) energy conversion and thermal memory and logics. NFTR is the exchange of thermal radiation energy at nano/microscale; when separation between the hot and cold objects is less than dominant radiation wavelength (˜1 mum). NFTR is particularly of interest to the above applications due to its high rate of energy transfer, exceeding the blackbody limit by orders of magnitude, and its strong dependence on separation gap size, surface nano/microstructure and material properties. Concentrated STPV system converts solar radiation to electricity using heat as an intermediary through a thermally coupled absorber/emitter, which causes STPV to have one of the highest solar-to-electricity conversion efficiency limits (85.4%). Modeling of a near-field concentrated STPV microsystem is carried out to investigate the use of STPV based solid-state energy conversion as high power density MEMS power generator. Numerical results for In 0.18Ga0.82Sb PV cell illuminated with tungsten emitter showed significant enhancement in energy transfer, resulting in output power densities as high as 60 W/cm2; 30 times higher than the equivalent far-field power density. On thermal computing, this dissertation demonstrates near-field heat transfer enabled high temperature NanoThermoMechanical memory and logics. Unlike electronics, NanoThermoMechanical memory and logic devices use heat instead of electricity to record and process data; hence they can operate in harsh environments where electronics typically fail. NanoThermoMechanical devices achieve memory and thermal rectification functions through the coupling of near-field thermal radiation and thermal expansion in microstructures, resulting in nonlinear heat transfer between two temperature terminals. Numerical modeling of a conceptual NanoThermoMechanical is carried out; results include the dynamic response under write/read cycles for a practical silicon-based device. NanoThermoMechanical rectification is achieved experimentally--for the first time--with measurements at a high temperature of 600 K, demonstrating the feasibility of NanoThermoMechanical to operate in harsh environments. The proof-of-concept device has shown a maximum rectification of 10.9%. This dissertation proposes using meshed photonic crystal structures to enhance NFTR between surfaces. Numerical results show thermal rectification as high as 2500%. Incorporating these structures in thermal memory and rectification devices will significantly enhance their functionality and performance.
Nagy, Paul Michael; Aubert, Isabelle
2015-05-01
Aging is marked by progressive impairments in the process of adult neurogenesis and spatial memory performance. The underlying mechanisms for these impairments have not been fully established; however, they may coincide with decline of cholinergic signaling in the hippocampus. This study investigates whether augmenting cholinergic neurotransmission, by enhancing the expression of the vesicular acetylcholine transporter (VAChT), influences the age-related decline in the development of newborn hippocampal cells and spatial memory. We found that enhanced VAChT expression in the hippocampus of mice contributes to lifelong increases in the dendritic complexity of newborn neurons. Furthermore, enhanced VAChT expression improved memory acquisition through an increased use of spatially precise search strategies in the Morris water maze through the course of the aging process. These data suggest that VAChT overexpression contributes to increases in dendritic complexity and improved spatial memory during aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Memory recall in arousing situations - an emotional von Restorff effect?
Wiswede, Daniel; Rüsseler, Jascha; Hasselbach, Simone; Münte, Thomas F
2006-07-24
Previous research has demonstrated a relationship between memory recall and P300 amplitude in list learning tasks, but the variables mediating this P300-recall relationship are not well understood. In the present study, subjects were required to recall items from lists consisting of 12 words, which were presented in front of pictures taken from the IAPS collection. One word per list is made distinct either by font color or by a highly arousing background IAPS picture. This isolation procedure was first used by von Restorff. Brain potentials were recorded during list presentation. Recall performance was enhanced for color but not for emotional isolates. Event-related brain potentials (ERP) showed a more positive P300-component for recalled non-isolated words and color-isolated words, compared to the respective non-remembered words, but not for words isolated by arousing background. Our findings indicate that it is crucial to take emotional mediator variables into account, when using the P300 to predict later recall. Highly arousing environments might force the cognitive system to interrupt rehearsal processes in working memory, which might benefit transfer into other, more stable memory systems. The impact of attention-capturing properties of arousing background stimuli is also discussed.
Can Oxytocin Enhance the Placebo Effect?
2018-02-06
Oxytocin Effect on Memory Performance During Phase 1; Oxytocin Effect on Memory Performance During Phase 2; Oxytocin Effect on Memory Performance During Phase 3; Oxytocin Effect on Memory Performance During Phase 4
VRX-03011, a novel 5-HT4 agonist, enhances memory and hippocampal acetylcholine efflux.
Mohler, Eric G; Shacham, Sharon; Noiman, Silvia; Lezoualc'h, Frank; Robert, Sylvain; Gastineau, Monique; Rutkowski, Joseph; Marantz, Yael; Dumuis, Aline; Bockaert, Joel; Gold, Paul E; Ragozzino, Michael E
2007-09-01
Recent evidence suggests that 5-hydroxytryptamine (5-HT)(4) receptor activity enhances cognition and provides neuroprotection. Here we report the effects of VRX-03011, a novel partial 5-HT(4) agonist, that is both potent (K(i) approximately 30 nM) and highly selective (K(i) > 5 microM for all other 5-HT receptors tested). In separate experiments, rats received VRX-03011 (0.1-10 mg/kg i.p.) 30 min prior to spontaneous alternation testing in a no-delay or a 30-s delay condition. VRX-03011 (1, 5 and 10 mg/kg, but not 0.1 mg/kg) significantly enhanced delayed spontaneous alternation performance while none of the doses enhanced performance in the no-delay test. VRX-03011 (1 and 5 mg/kg) concomitantly enhanced hippocampal acetylcholine output and delayed spontaneous alternation scores compared to that of vehicle controls, but had no effect on hippocampal acetylcholine release under a resting condition. Moreover, suboptimal doses of VRX-03011 and the acetylcholinesterase inhibitor galanthamine combined to enhance memory. VRX-03011 also regulated amyloid precursor protein (APP) metabolism by inducing a concentration-dependent increase in the non-amyloidogenic soluble form of APP (sAPPalpha) with an EC(50) approximately 1--10 nM. VRX-03011 had no effect on contractile properties in guinea pig ileum or colon preparations with an EC(50) > 10 microM and did not alter rat intestinal transit at doses up to 10 mg/kg. These findings suggest that VRX-03011 may represent a novel treatment for Alzheimer's disease that reduces cognitive impairments and provides neuroprotection without gastrointestinal side effects.
Emotional content enhances true but not false memory for categorized stimuli.
Choi, Hae-Yoon; Kensinger, Elizabeth A; Rajaram, Suparna
2013-04-01
Past research has shown that emotion enhances true memory, but that emotion can either increase or decrease false memory. Two theoretical possibilities-the distinctiveness of emotional stimuli and the conceptual relatedness of emotional content-have been implicated as being responsible for influencing both true and false memory for emotional content. In the present study, we sought to identify the mechanisms that underlie these mixed findings by equating the thematic relatedness of the study materials across each type of valence used (negative, positive, or neutral). In three experiments, categorically bound stimuli (e.g., funeral, pets, and office items) were used for this purpose. When the encoding task required the processing of thematic relatedness, a significant true-memory enhancement for emotional content emerged in recognition memory, but no emotional boost to false memory (exp. 1). This pattern persisted for true memory with a longer retention interval between study and test (24 h), and false recognition was reduced for emotional items (exp. 2). Finally, better recognition memory for emotional items once again emerged when the encoding task (arousal ratings) required the processing of the emotional aspect of the study items, with no emotional boost to false recognition (EXP. 3). Together, these findings suggest that when emotional and neutral stimuli are equivalently high in thematic relatedness, emotion continues to improve true memory, but it does not override other types of grouping to increase false memory.
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins
Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A
2015-01-01
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential. PMID:25124553
Bim controls IL-15 availability and limits engagement of multiple BH3-only proteins.
Kurtulus, S; Sholl, A; Toe, J; Tripathi, P; Raynor, J; Li, K-P; Pellegrini, M; Hildeman, D A
2015-01-01
During the effector CD8+ T-cell response, transcriptional differentiation programs are engaged that promote effector T cells with varying memory potential. Although these differentiation programs have been used to explain which cells die as effectors and which cells survive and become memory cells, it is unclear if the lack of cell death enhances memory. Here, we investigated effector CD8+ T-cell fate in mice whose death program has been largely disabled because of the loss of Bim. Interestingly, the absence of Bim resulted in a significant enhancement of effector CD8+ T cells with more memory potential. Bim-driven control of memory T-cell development required T-cell-specific, but not dendritic cell-specific, expression of Bim. Both total and T-cell-specific loss of Bim promoted skewing toward memory precursors, by enhancing the survival of memory precursors, and limiting the availability of IL-15. Decreased IL-15 availability in Bim-deficient mice facilitated the elimination of cells with less memory potential via the additional pro-apoptotic molecules Noxa and Puma. Combined, these data show that Bim controls memory development by limiting the survival of pre-memory effector cells. Further, by preventing the consumption of IL-15, Bim limits the role of Noxa and Puma in causing the death of effector cells with less memory potential.
Neural Conflict–Control Mechanisms Improve Memory for Target Stimuli
Krebs, Ruth M.; Boehler, Carsten N.; De Belder, Maya; Egner, Tobias
2015-01-01
According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. PMID:24108799
Canto de Souza, Lucas; Provensi, Gustavo; Vullo, Daniela; Carta, Fabrizio; Scozzafava, Andrea; Costa, Alessia; Schmidt, Scheila Daiane; Passani, Maria Beatrice; Supuran, Claudiu T; Blandina, Patrizio
2017-05-15
Rats injected with by d-phenylalanine, a carbonic anhydrase (CA) activator, enhanced spatial learning, whereas rats given acetazolamide, a CA inhibitor, exhibited impairments of fear memory consolidation. However, the related mechanisms are unclear. We investigated if CAs are involved in a non-spatial recognition memory task assessed using the object recognition test (ORT). Systemic administration of acetazolamide to male CD1 mice caused amnesia in the ORT and reduced CA activity in brain homogenates, while treatment with d-phenylalanine enhanced memory and increased CA activity. We provided also the first evidence that d-phenylalanine administration rapidly activated extracellular signal-regulated kinase (ERK) pathways, a critical step for memory formation, in the cortex and the hippocampus, two brain areas involved in memory processing. Effects elicited by d-phenylalanine were completely blunted by co-administration of acetazolamide, but not of 1-N-(4-sulfamoylphenyl-ethyl)-2,4,6-trimethylpyridinium perchlorate (C18), a CA inhibitor that, differently from acetazolamide, does not cross the blood brain barrier. Our results strongly suggest that brain but not peripheral CAs activation potentiates memory as a result of ERK pathway enhanced activation. Copyright © 2017 Elsevier Ltd. All rights reserved.
Inducible nitric oxide synthase in T cells regulates T cell death and immune memory
Vig, Monika; Srivastava, Smita; Kandpal, Usha; Sade, Hadassah; Lewis, Virginia; Sarin, Apurva; George, Anna; Bal, Vineeta; Durdik, Jeannine M.; Rath, Satyajit
2004-01-01
The progeny of T lymphocytes responding to immunization mostly die rapidly, leaving a few long-lived survivors functioning as immune memory. Thus, control of this choice of death versus survival is critical for immune memory. There are indications that reactive radicals may be involved in this death pathway. We now show that, in mice lacking inducible nitric oxide synthase (iNOS), higher frequencies of both CD4 and CD8 memory T cells persist in response to immunization, even when iNOS+/+ APCs are used for immunization. Postactivation T cell death by neglect is reduced in iNOS–/– T cells, and levels of the antiapoptotic proteins Bcl-2 and Bcl-xL are increased. Inhibitors of the iNOS-peroxynitrite pathway also enhance memory responses and block postactivation death by neglect in both mouse and human T cells. However, early primary immune responses are not enhanced, which suggests that altered survival, rather than enhanced activation, is responsible for the persistent immunity observed. Thus, in primary immune responses, iNOS in activated T cells autocrinely controls their susceptibility to death by neglect to determine the level of persisting CD4 and CD8 T cell memory, and modulation of this pathway can enhance the persistence of immune memory in response to vaccination. PMID:15199408
do Vale, Sónia; Selinger, Lenka; Martins, João Martin; Bicho, Manuel; do Carmo, Isabel; Escera, Carles
2016-11-10
Several studies have suggested that dehydroepiandrosterone (DHEA) and dehydroepiandrosterone-sulfate (DHEAS) may enhance working memory and attention, yet current evidence is still inconclusive. The balance between both forms of the hormone might be crucial regarding the effects that DHEA and DHEAS exert on the central nervous system. To test the hypothesis that higher DHEAS-to-DHEA ratios might enhance working memory and/or involuntary attention, we studied the DHEAS-to-DHEA ratio in relation to involuntary attention and working memory processing by recording the electroencephalogram of 22 young women while performing a working memory load task and a task without working memory load in an audio-visual oddball paradigm. DHEA and DHEAS were measured in saliva before each task. We found that a higher DHEAS-to-DHEA ratio was related to enhanced auditory novelty-P3 amplitudes during performance of the working memory task, indicating an increased processing of the distracter, while on the other hand there was no difference in the processing of the visual target. These results suggest that the balance between DHEAS and DHEA levels modulates involuntary attention during the performance of a task with cognitive load without interfering with the processing of the task-relevant visual stimulus. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The effect of environmental harshness on neurogenesis: a large-scale comparison.
Chancellor, Leia V; Roth, Timothy C; LaDage, Lara D; Pravosudov, Vladimir V
2011-03-01
Harsh environmental conditions may produce strong selection pressure on traits, such as memory, that may enhance fitness. Enhanced memory may be crucial for survival in animals that use memory to find food and, thus, particularly important in environments where food sources may be unpredictable. For example, animals that cache and later retrieve their food may exhibit enhanced spatial memory in harsh environments compared with those in mild environments. One way that selection may enhance memory is via the hippocampus, a brain region involved in spatial memory. In a previous study, we established a positive relationship between environmental severity and hippocampal morphology in food-caching black-capped chickadees (Poecile atricapillus). Here, we expanded upon this previous work to investigate the relationship between environmental harshness and neurogenesis, a process that may support hippocampal cytoarchitecture. We report a significant and positive relationship between the degree of environmental harshness across several populations over a large geographic area and (1) the total number of immature hippocampal neurons, (2) the number of immature neurons relative to the hippocampal volume, and (3) the number of immature neurons relative to the total number of hippocampal neurons. Our results suggest that hippocampal neurogenesis may play an important role in environments where increased reliance on memory for cache recovery is critical. Copyright © 2010 Wiley Periodicals, Inc.
Kodali, Maheedhar; Megahed, Tarick; Mishra, Vikas; Shuai, Bing; Hattiangady, Bharathi; Shetty, Ashok K
2016-08-03
Running exercise (RE) improves cognition, formation of anterograde memories, and mood, alongside enhancing hippocampal neurogenesis. A previous investigation in a mouse model showed that RE-induced increased neurogenesis erases retrograde memory (Akers et al., 2014). However, it is unknown whether RE-induced forgetting is common to all species. We ascertained whether voluntary RE-induced enhanced neurogenesis interferes with the recall of spatial memory in rats. Young rats assigned to either sedentary (SED) or running exercise (RE) groups were first subjected to eight learning sessions in a water maze. A probe test (PT) conducted 24 h after the final training session confirmed that animals in either group had a similar ability for the recall of short-term memory. Following this, rats in the RE group were housed in larger cages fitted with running wheels, whereas rats in the SED group remained in standard cages. Animals in the RE group ran an average of 78 km in 4 weeks. A second PT performed 4 weeks after the first PT revealed comparable ability for memory recall between animals in the RE and SED groups, which was evidenced through multiple measures of memory retrieval function. The RE group displayed a 1.5- to 2.1-fold higher hippocampal neurogenesis than SED rats. Additionally, both moderate and brisk RE did not interfere with the recall of memory, although increasing amounts of RE proportionally enhanced neurogenesis. In conclusion, RE does not impair memory recall ability in a rat model despite substantially increasing neurogenesis. Running exercise (RE) improves new memory formation along with an increased neurogenesis in the hippocampus. In view of a recent study showing that RE-mediated increased hippocampal neurogenesis promotes forgetfulness in a mouse model, we ascertained whether a similar adverse phenomenon exists in a rat model. Memory recall ability examined 4 weeks after learning confirmed that animals that had run a mean of 78 km and displayed a 1.5- to 2.1-fold increase in hippocampal neurogenesis demonstrated similar proficiency for memory recall as animals that had remained sedentary. Furthermore, both moderate and brisk RE did not interfere with memory recall, although increasing amounts of RE proportionally enhanced neurogenesis, implying that RE has no adverse effects on memory recall. Copyright © 2016 the authors 0270-6474/16/368112-11$15.00/0.
Recognition Memory for Braille or Spoken Words: An fMRI study in Early Blind
Burton, Harold; Sinclair, Robert J.; Agato, Alvin
2012-01-01
We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5 yrs. In an event-related design, we studied blood oxygen level-dependent responses to studied (“old”) compared to novel (“new”) words. Presentation mode was in Braille or spoken. Responses were larger for identified “new” words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken “new” words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with “old”/“new” recognition. Left dorsolateral prefrontal cortex had larger responses to “old” words only with Braille. Larger occipital cortex responses to “new” Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for “new” words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering “old” words. A larger response when identifying “new” words possibly resulted from exhaustive recollecting the sensory properties of “old” words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a “sensory echo” that aids recollection. PMID:22251836
Recognition memory for Braille or spoken words: an fMRI study in early blind.
Burton, Harold; Sinclair, Robert J; Agato, Alvin
2012-02-15
We examined cortical activity in early blind during word recognition memory. Nine participants were blind at birth and one by 1.5years. In an event-related design, we studied blood oxygen level-dependent responses to studied ("old") compared to novel ("new") words. Presentation mode was in Braille or spoken. Responses were larger for identified "new" words read with Braille in bilateral lower and higher tier visual areas and primary somatosensory cortex. Responses to spoken "new" words were larger in bilateral primary and accessory auditory cortex. Auditory cortex was unresponsive to Braille words and occipital cortex responded to spoken words but not differentially with "old"/"new" recognition. Left dorsolateral prefrontal cortex had larger responses to "old" words only with Braille. Larger occipital cortex responses to "new" Braille words suggested verbal memory based on the mechanism of recollection. A previous report in sighted noted larger responses for "new" words studied in association with pictures that created a distinctiveness heuristic source factor which enhanced recollection during remembering. Prior behavioral studies in early blind noted an exceptional ability to recall words. Utilization of this skill by participants in the current study possibly engendered recollection that augmented remembering "old" words. A larger response when identifying "new" words possibly resulted from exhaustive recollecting the sensory properties of "old" words in modality appropriate sensory cortices. The uniqueness of a memory role for occipital cortex is in its cross-modal responses to coding tactile properties of Braille. The latter possibly reflects a "sensory echo" that aids recollection. Copyright © 2011 Elsevier B.V. All rights reserved.
Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E
2016-08-24
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.
Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate
2016-01-01
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180
Oversimplification in the study of emotional memory
Bennion, Kelly A.; Ford, Jaclyn H.; Murray, Brendan D.; Kensinger, Elizabeth A.
2014-01-01
This Short Review critically evaluates three hypotheses about the effects of emotion on memory: First, emotion usually enhances memory. Second, when emotion does not enhance memory, this can be understood by the magnitude of physiological arousal elicited, with arousal benefiting memory to a point but then having a detrimental influence. Third, when emotion facilitates the processing of information, this also facilitates the retention of that same information. For each of these hypotheses, we summarize the evidence consistent with it, present counter-evidence suggesting boundary conditions for the effect, and discuss the implications for future research. PMID:24007950
Ab initio study of ceria films for resistive switching memory applications
NASA Astrophysics Data System (ADS)
Firdos, Mehreen; Hussain, Fayyaz; Imran, Muhammad; Ismail, Muhammad; Rana, A. M.; Arshad Javid, M.; Majid, Abdul; Arif Khalil, R. M.; Ullah, Hafeez
2017-10-01
The aim of this study is to investigate the charge distribution/relocation activities in relation to resistive switching (RS) memory behavior in the metal/insulator/metal (MIM) structure of Zr/CeO2/Pt hybrid layers. The Zr layer is truly expected to act not only as an oxygen ion extraction layer but also as an ion barrier by forming a ZrO2 interfacial layer. Such behavior of the Zr not only introduces a high concentration of oxygen vacancies to the active CeO2 layer but also enhances the resistance change capability. Such Zr contributions have been explored by determining the work function, charge distribution and electronic properties with the help of density functional theory (DFT) based on the generalized gradient approximation (GGA). In doped CeO2, the dopant (Zr) plays a significant role in the formation of defect states, such as oxygen vacancies, which are necessary for generating conducting filaments. The total density of state (DOS) analyses reveal that the existence of impurity states in the hybrid system considerably upgrade the performance of charge transfer/accumulation, consequently leading to enhanced RS behavior, as noticed in our earlier experimental results on Zr/CeO2/Pt devices. Hence it can be concluded that the present DFT studies can be implemented on CeO2-based RRAM devices, which have skyscraping potential for future nonvolatile memory (NVM) applications.
Acute Effects of Alcohol on Encoding and Consolidation of Memory for Emotional Stimuli
Weafer, Jessica; Gallo, David A.; De Wit, Harriet
2016-01-01
Objective: Acute doses of alcohol impair memory when administered before encoding of emotionally neutral stimuli but enhance memory when administered immediately after encoding, potentially by affecting memory consolidation. Here, we examined whether alcohol produces similar biphasic effects on memory for positive or negative emotional stimuli. Method: The current study examined memory for emotional stimuli after alcohol (0.8 g/kg) was administered either before stimulus viewing (encoding group; n = 20) or immediately following stimulus viewing (consolidation group; n = 20). A third group received placebo both before and after stimulus viewing (control group; n = 19). Participants viewed the stimuli on one day, and their retrieval was assessed exactly 48 hours later, when they performed a surprise cued recollection and recognition test of the stimuli in a drug-free state. Results: As in previous studies, alcohol administered before encoding impaired memory accuracy, whereas alcohol administered after encoding enhanced memory accuracy. Critically, alcohol effects on cued recollection depended on the valence of the emotional stimuli: Its memory-impairing effects during encoding were greatest for emotional stimuli, whereas its memory-enhancing effects during consolidation were greatest for emotionally neutral stimuli. Effects of alcohol on recognition were not related to stimulus valence. Conclusions: This study extends previous findings with memory for neutral stimuli, showing that alcohol differentially affects the encoding and consolidation of memory for emotional stimuli. These effects of alcohol on memory for emotionally salient material may contribute to the development of alcohol-related problems, perhaps by dampening memory for adverse consequences of alcohol consumption. PMID:26751358
Emotion’s Influence on Memory for Spatial and Temporal Context
Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A.
2010-01-01
Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item’s valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. PMID:21379376
Advancing reversible shape memory by tuning the polymer network architecture
Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...
2016-02-02
Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less
Negative reinforcement impairs overnight memory consolidation.
Stamm, Andrew W; Nguyen, Nam D; Seicol, Benjamin J; Fagan, Abigail; Oh, Angela; Drumm, Michael; Lundt, Maureen; Stickgold, Robert; Wamsley, Erin J
2014-11-01
Post-learning sleep is beneficial for human memory. However, it may be that not all memories benefit equally from sleep. Here, we manipulated a spatial learning task using monetary reward and performance feedback, asking whether enhancing the salience of the task would augment overnight memory consolidation and alter its incorporation into dreaming. Contrary to our hypothesis, we found that the addition of reward impaired overnight consolidation of spatial memory. Our findings seemingly contradict prior reports that enhancing the reward value of learned information augments sleep-dependent memory processing. Given that the reward followed a negative reinforcement paradigm, consolidation may have been impaired via a stress-related mechanism. © 2014 Stamm et al.; Published by Cold Spring Harbor Laboratory Press.
Thirst for Knowledge: The Effects of Curiosity and Interest on Memory in Younger and Older Adults
McGillivray, Shannon; Murayama, Kou; Castel, Alan D.
2015-01-01
Given age-related memory impairments, one’s level of curiosity or interest could enhance memory for certain information. In the current study, younger and older adults read trivia questions, rated how curious they were to learn each answer, provided confidence and interest ratings, and judgments of learning (JOL) after learning the answer. No age-related differences in memory were found. Analyses indicated that curiosity and interest contributed to the formation of JOLs. Additionally, interest had a unique increasing relationship with older, but not younger, adults’ memory performance after a week. The results suggest that subjective interest may serve to enhance older adults’ memory. PMID:26479013
Thirst for knowledge: The effects of curiosity and interest on memory in younger and older adults.
McGillivray, Shannon; Murayama, Kou; Castel, Alan D
2015-12-01
Given age-related memory impairments, one's level of curiosity or interest could enhance memory for certain information. In the current study, younger and older adults read trivia questions, rated how curious they were to learn each answer, provided confidence and interest ratings, and judgments of learning after learning the answer. No age-related differences in memory were found. Analyses indicated that curiosity and interest contributed to the formation of judgments of learning. Additionally, interest had a unique increasing relationship with older, but not younger, adults' memory performance after a one-week delay. The results suggest that subjective interest may serve to enhance older adults' memory. (c) 2015 APA, all rights reserved).
The Effect of Emotional Arousal on Memory Binding in Normal Aging and Alzheimer’s Disease
Nashiro, Kaoru; Mather, Mara
2012-01-01
Previous research suggests that associative memory declines in normal aging and is severely affected by Alzheimer’s disease (AD); however, it is unclear whether and how this deficit can be minimized. The present study investigated whether emotional arousal enhances associative memory in healthy younger and older adults and patients with probable AD. We examined the effect of arousal on memory for item-location associations. Arousal enhanced memory for item location similarly across the three groups, while valence had no effect in any groups. Overall, our results suggest that arousal has beneficial effects on associative memory in healthy older adults and AD patients, as previously observed in younger adults. PMID:21977692
Martin, Matthew D; Kim, Marie T; Shan, Qiang; Sompallae, Ramakrishna; Xue, Hai-Hui; Harty, John T; Badovinac, Vladimir P
2015-10-01
Memory CD8 T cells confer increased protection to immune hosts upon secondary viral, bacterial, and parasitic infections. The level of protection provided depends on the numbers, quality (functional ability), and location of memory CD8 T cells present at the time of infection. While primary memory CD8 T cells can be maintained for the life of the host, the full extent of phenotypic and functional changes that occur over time after initial antigen encounter remains poorly characterized. Here we show that critical properties of circulating primary memory CD8 T cells, including location, phenotype, cytokine production, maintenance, secondary proliferation, secondary memory generation potential, and mitochondrial function change with time after infection. Interestingly, phenotypic and functional alterations in the memory population are not due solely to shifts in the ratio of effector (CD62Llo) and central memory (CD62Lhi) cells, but also occur within defined CD62Lhi memory CD8 T cell subsets. CD62Lhi memory cells retain the ability to efficiently produce cytokines with time after infection. However, while it is was not formally tested whether changes in CD62Lhi memory CD8 T cells over time occur in a cell intrinsic manner or are due to selective death and/or survival, the gene expression profiles of CD62Lhi memory CD8 T cells change, phenotypic heterogeneity decreases, and mitochondrial function and proliferative capacity in either a lymphopenic environment or in response to antigen re-encounter increase with time. Importantly, and in accordance with their enhanced proliferative and metabolic capabilities, protection provided against chronic LCMV clone-13 infection increases over time for both circulating memory CD8 T cell populations and for CD62Lhi memory cells. Taken together, the data in this study reveal that memory CD8 T cells continue to change with time after infection and suggest that the outcome of vaccination strategies designed to elicit protective memory CD8 T cells using single or prime-boost immunizations depends upon the timing between antigen encounters.
Zoladz, Phillip R; Peters, David M; Kalchik, Andrea E; Hoffman, Mackenzie M; Aufdenkampe, Rachael L; Woelke, Sarah A; Wolters, Nicholas E; Talbot, Jeffery N
2014-04-10
Some of the previous research on stress-memory interactions has suggested that stress increases the production of false memories. However, as accumulating work has shown that the effects of stress on learning and memory depend critically on the timing of the stressor, we hypothesized that brief stress administered immediately before learning would reduce, rather than increase, false memory production. In the present study, participants submerged their dominant hand in a bath of ice cold water (stress) or sat quietly (no stress) for 3 min. Then, participants completed a short-term memory task, the Deese-Roediger-McDermott paradigm, in which they were presented with 10 different lists of semantically related words (e.g., candy, sour, sugar) and, after each list, were tested for their memory of presented words (e.g., candy), non-presented unrelated "distractor" words (e.g., hat), and non-presented semantically related "critical lure" words (e.g., sweet). Stress, overall, significantly reduced the number of critical lures recalled (i.e., false memory) by participants. In addition, stress enhanced memory for the presented words (i.e., true memory) in female, but not male, participants. These findings reveal that stress does not unequivocally enhance false memory production and that the timing of the stressor is an important variable that could mediate such effects. Such results could have important implications for understanding the dependability of eyewitness accounts of events that are observed following stress. Copyright © 2014 Elsevier Inc. All rights reserved.
Emotionally arousing pictures increase blood glucose levels and enhance recall.
Blake, T M; Varnhagen, C K; Parent, M B
2001-05-01
Arousal enhances memory in human participants and this enhancing effect is likely due to the release of peripheral epinephrine. As epinephrine does not readily enter the brain, one way that peripheral epinephrine may enhance memory is by increasing circulating blood glucose levels. The present study investigated the possibility that emotionally arousing color pictures would improve memory and elevate blood glucose levels in human participants. Blood glucose levels were measured before, 15 min, and 30 min after male university students viewed 60 emotionally arousing or relatively neutral pictures. Participants viewed each picture for 6 s and then had 10 s to rate the arousal (emotional intensity) and valence (pleasantness) of each picture. A free-recall memory test was given 30 min after the last picture was viewed. Although the emotionally arousing and neutral picture sets were given comparable valence ratings, participants who viewed the emotionally arousing pictures rated the pictures as being more arousing, recalled more pictures, and had higher blood glucose levels after viewing the pictures than did participants who viewed the neutral pictures. These findings indicate that emotionally arousing pictures increase blood glucose levels and enhance memory, and that this effect is not due to differences in the degree of pleasantness of the stimuli. These findings support the possibility that increases in circulating blood glucose levels in response to emotional arousal may be part of the biological mechanism that allows emotional arousal to enhance memory. Copyright 2001 Academic Press.
ERIC Educational Resources Information Center
Liu, Rong-Yu; Neveu, Curtis; Smolen, Paul; Cleary, Leonard J.; Byrne, John H.
2017-01-01
Developing treatment strategies to enhance memory is an important goal of neuroscience research. Activation of multiple biochemical signaling cascades, such as the protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) pathways, is necessary to induce long-term synaptic facilitation (LTF), a correlate of long-term memory (LTM).…
ERIC Educational Resources Information Center
Zhang, Ming; Wang, Hongbing
2013-01-01
There is significant interest in understanding the contribution of intracellular signaling and synaptic substrates to memory flexibility, which involves new learning and suppression of obsolete memory. Here, we report that enhancement of Ca[superscript 2+]-stimulated cAMP signaling by overexpressing type 1 adenylyl cyclase (AC1) facilitated…
ERIC Educational Resources Information Center
LaLumiere, Ryan T.; McGaugh, James L.
2005-01-01
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a [beta]-adrenergic or muscarinic cholinergic agonist requires concurrent activation…
Enhancing memory and imagination improves problem solving among individuals with depression.
McFarland, Craig P; Primosch, Mark; Maxson, Chelsey M; Stewart, Brandon T
2017-08-01
Recent work has revealed links between memory, imagination, and problem solving, and suggests that increasing access to detailed memories can lead to improved imagination and problem-solving performance. Depression is often associated with overgeneral memory and imagination, along with problem-solving deficits. In this study, we tested the hypothesis that an interview designed to elicit detailed recollections would enhance imagination and problem solving among both depressed and nondepressed participants. In a within-subjects design, participants completed a control interview or an episodic specificity induction prior to completing memory, imagination, and problem-solving tasks. Results revealed that compared to the control interview, the episodic specificity induction fostered increased detail generation in memory and imagination and more relevant steps on the problem-solving task among depressed and nondepressed participants. This study builds on previous work by demonstrating that a brief interview can enhance problem solving among individuals with depression and supports the notion that episodic memory plays a key role in problem solving. It should be noted, however, that the results of the interview are relatively short-lived.
van Dulmen, Sandra; Smits, Lies; Eide, Hilde
2017-11-01
To explore in what way emotional communication can enhance the memory of people with (different types of) dementia. Relevant studies published after 2000 were searched using the terms: dementia, positive, words, communication, recall, and memory. Papers were included that reported results of studies with people with dementia that investigated memory effects of communication with either an emotionally valent content or context. Twelve papers grouped under four prevailing themes (pictures, facial emotions, stories and words) are described. The studies provide mixed results: in some studies negative emotional information enhances memory in older people with dementia, in other studies positive emotional information is helpful or hardly any effect is found. Emotional communication seems to enhance memory in people with dementia. None of the studies described focused on the association between personally relevant, emotionally valent information and memory, so further research is needed. Caregivers in dementia care should realize that 1) the information they provide might carry an emotional valence, and 2) this valence might influence the extent to which people with dementia remember information. Copyright © 2017 Elsevier B.V. All rights reserved.
Friedrich, Wernher; Du, Shengzhi; Balt, Karlien
2015-01-01
The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.
Bell, Raoul; Buchner, Axel; Musch, Jochen
2010-12-01
A popular assumption in evolutionary psychology is that the human mind comprises specialized cognitive modules for social exchange, including a module that serves to enhance memory for faces of cheaters. In the present study, participants played a trust game with computerized opponents, who either defected or cooperated. In a control condition, no interaction took place. In a surprise memory test, old-new recognition for faces and source memory for the associated cooperative or non-cooperative behavior were assessed. A multinomial model was used to measure old-new discrimination, source memory, and guessing biases separately. Inconsistent with the assumption of a memory mechanism that focuses exclusively on cheating, the present study showed enhanced old-new discrimination and source memory for both cooperators and defectors. Rarity of the behavior strategies within the experiment modulated source memory, but only when the differences in base rates were extreme. The findings can be attributed to a mechanism that focuses on exchange-relevant information and flexibly adapts to take into account the relative significance of this information in the encoding context, which may be more beneficial than focusing exclusively on cheaters. Copyright © 2010 Elsevier B.V. All rights reserved.
Motor Skills Enhance Procedural Memory Formation and Protect against Age-Related Decline
Müller, Nils C. J.; Genzel, Lisa; Konrad, Boris N.; Pawlowski, Marcel; Neville, David; Fernández, Guillén; Steiger, Axel
2016-01-01
The ability to consolidate procedural memories declines with increasing age. Prior knowledge enhances learning and memory consolidation of novel but related information in various domains. Here, we present evidence that prior motor experience–in our case piano skills–increases procedural learning and has a protective effect against age-related decline for the consolidation of novel but related manual movements. In our main experiment, we tested 128 participants with a sequential finger-tapping motor task during two sessions 24 hours apart. We observed enhanced online learning speed and offline memory consolidation for piano players. Enhanced memory consolidation was driven by a strong effect in older participants, whereas younger participants did not benefit significantly from prior piano experience. In a follow up independent control experiment, this compensatory effect of piano experience was not visible after a brief offline period of 30 minutes, hence requiring an extended consolidation window potentially involving sleep. Through a further control experiment, we rejected the possibility that the decreased effect in younger participants was caused by training saturation. We discuss our results in the context of the neurobiological schema approach and suggest that prior experience has the potential to rescue memory consolidation from age-related cognitive decline. PMID:27333186
Wang, Pengyun; Li, Juan; Li, Huijie; Li, Bing; Jiang, Yang; Bao, Feng; Zhang, Shouzi
2013-11-01
This study investigated whether the observed absence of emotional memory enhancement in recognition tasks in patients with amnestic mild cognitive impairment (aMCI) could be related to their greater proportion of familiarity-based responses for all stimuli, and whether recognition tests with emotional items had better discriminative power for aMCI patients than those with neutral items. In total, 31 aMCI patients and 30 healthy older adults participated in a recognition test followed by remember/know judgments. Positive, neutral, and negative faces were used as stimuli. For overall recognition performance, emotional memory enhancement was found only in healthy controls; they remembered more negative and positive stimuli than neutral ones. For "remember" responses, we found equivalent emotional memory enhancement in both groups, though a greater proportion of "remember" responses was observed in normal controls. For "know" responses, aMCI patients presented a larger proportion than normal controls did, and their "know" responses were not affected by emotion. A negative correlation was found between emotional enhancement effect and the memory performance related to "know" responses. In addition, receiver operating characteristic curve analysis revealed higher diagnostic accuracy for recognition test with emotional stimuli than with neutral stimuli. The present results implied that the absence of the emotional memory enhancement effect in aMCI patients might be related to their tendency to rely more on familiarity-based "know" responses for all stimuli. Furthermore, recognition memory tests using emotional stimuli may be better able than neutral stimuli to differentiate people with aMCI from cognitively normal older adults. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Carbon nanomaterials for non-volatile memories
NASA Astrophysics Data System (ADS)
Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric
2018-03-01
Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.
The semantics of emotion in false memory.
Brainerd, C J; Bookbinder, S H
2018-03-26
The emotional valence of target information has been a centerpiece of recent false memory research, but in most experiments, it has been confounded with emotional arousal. We sought to clarify the results of such research by identifying a shared mathematical relation between valence and arousal ratings in commonly administered normed materials. That relation was then used to (a) decide whether arousal as well as valence influences false memory when they are confounded and to (b) determine whether semantic properties that are known to affect false memory covary with valence and arousal ratings. In Study 1, we identified a quadratic relation between valence and arousal ratings of words and pictures that has 2 key properties: Arousal increases more rapidly as function of negative valence than positive valence, and hence, a given level of negative valence is more arousing than the same level of positive valence. This quadratic function predicts that if arousal as well as valence affects false memory when they are confounded, false memory data must have certain fine-grained properties. In Study 2, those properties were absent from norming data for the Cornell-Cortland Emotional Word Lists, indicating that valence but not arousal affects false memory in those norms. In Study 3, we tested fuzzy-trace theory's explanation of that pattern: that valence ratings are positively related to semantic properties that are known to increase false memory, but arousal ratings are not. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bueno, Ana Paula A; de Paiva, Joselisa Péres Queiroz; Corrêa, Moisés Dos Santos; Tiba, Paula Ayako; Fornari, Raquel Vecchio
2017-03-15
It is well established that corticosterone (CORT) enhances memory consolidation of emotionally arousing experiences. Despite emotional memories being usually referred to as well remembered for long periods, there are no studies that have investigated the effects of CORT in modulating the duration and specificity of memory. In the present study, we trained Wistar rats in a single-trial contextual fear conditioning protocol and injected CORT (0.3, 1.0 or 3.0mg/kg), immediately after training, to investigate its effects on memory consolidation. Rats were tested 2 and 29days after the training session or only 29days after training to assess recent or remote memory. Our results show that animals tested for recent memory discriminated the training context from a novel one, while those tested only for remote memory generalized the fear response to both contexts. Animals tested for remote memory after being tested for recent memory were able to discriminate both contexts. These results support the literature regarding memory specificity and duration. However, CORT treatment, even at the dose of 1.0mg/kg that effectively enhanced the plasmatic hormone levels, did not affect the strength or the specificity of memory in either recent or remote memory tests. We hypothesize that the lack of effect of CORT treatment could be due to the low arousing training experience of the single-trial protocol which, despite being sufficient to induce significant recent and remote memory consolidation, may not be sufficient to allow the memory-enhancing effect of CORT. Copyright © 2017 Elsevier Inc. All rights reserved.
Cai, Hong-Yan; Wang, Zhao-Jun; Hölscher, Christian; Yuan, Li; Zhang, Jun; Sun, Peng; Li, Jing; Yang, Wei; Wu, Mei-Na; Qi, Jin-Shun
2017-02-01
Type 2 diabetes mellitus(T2DM) is a risk factor of Alzheimer's disease (AD), which is most likely linked to impairments of insulin signaling in the brain. Hence, drugs enhancing insulin signaling may have therapeutic potential for AD. Lixisenatide, a novel long-lasting glucagon-like peptide 1 (GLP-1) analogue, facilitates insulin signaling and has neuroprotective properties. We previously reported the protective effects of lixisenatide on memory formation and synaptic plasticity. Here, we describe additional key neuroprotective properties of lixisenatide and its possible molecular and cellular mechanisms against AD-related impairments in rats. The results show that lixisenatide effectively alleviated amyloid β protein (Aβ) 25-35-induced working memory impairment, reversed Aβ25-35-triggered cytotoxicity on hippocampal cell cultures, and prevented against Aβ25-35-induced suppression of the Akt-MEK1/2 signaling pathway. Lixisenatide also reduced the Aβ25-35 acute application induced intracellular calcium overload, which was abolished by U0126, a specific MEK1/2 inhibitor. These results further confirmed the neuroprotective and cytoprotective action of lixisenatide against Aβ-induced impairments, suggesting that the protective effects of lixisenatide may involve the activation of the Akt-MEK1/2 signaling pathway and the regulation of intracellular calcium homeostasis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
Sterpenich, Virginie; Schmidt, Christina; Albouy, Geneviève; Matarazzo, Luca; Vanhaudenhuyse, Audrey; Boveroux, Pierre; Degueldre, Christian; Leclercq, Yves; Balteau, Evelyne; Collette, Fabienne; Luxen, André; Phillips, Christophe; Maquet, Pierre
2014-06-01
Memory reactivation appears to be a fundamental process in memory consolidation. In this study we tested the influence of memory reactivation during rapid eye movement (REM) sleep on memory performance and brain responses at retrieval in healthy human participants. Fifty-six healthy subjects (28 women and 28 men, age [mean ± standard deviation]: 21.6 ± 2.2 y) participated in this functional magnetic resonance imaging (fMRI) study. Auditory cues were associated with pictures of faces during their encoding. These memory cues delivered during REM sleep enhanced subsequent accurate recollections but also false recognitions. These results suggest that reactivated memories interacted with semantically related representations, and induced new creative associations, which subsequently reduced the distinction between new and previously encoded exemplars. Cues had no effect if presented during stage 2 sleep, or if they were not associated with faces during encoding. Functional magnetic resonance imaging revealed that following exposure to conditioned cues during REM sleep, responses to faces during retrieval were enhanced both in a visual area and in a cortical region of multisensory (auditory-visual) convergence. These results show that reactivating memories during REM sleep enhances cortical responses during retrieval, suggesting the integration of recent memories within cortical circuits, favoring the generalization and schematization of the information.
Effects of cortisol suppression on sleep-associated consolidation of neutral and emotional memory.
Wagner, Ullrich; Degirmenci, Metin; Drosopoulos, Spyridon; Perras, Boris; Born, Jan
2005-12-01
Previous research indicates that hippocampus-dependent declarative memory benefits from early nocturnal sleep, when slow-wave sleep (SWS) prevails and cortisol release is minimal, whereas amygdala-dependent emotional memory is enhanced through late sleep, when rapid eye movement (REM) sleep predominates. The role of the strong cortisol rise accompanying late sleep for emotional memory consolidation has not yet been investigated. Effects of the cortisol synthesis inhibitor metyrapone on sleep-associated consolidation of memory for neutral and emotional texts were investigated in a randomized, double-blind, placebo-controlled study in 14 healthy men. Learning took place immediately before treatment, which was followed by 8 hours of sleep. Retrieval was tested at 11 am the next morning. Metyrapone suppressed cortisol during sleep and blocked particularly the late-night rise in cortisol. It reduced SWS and concomitantly impaired the consolidation of neutral texts. Emotional texts were spared from this impairing influence, however. Metyrapone even amplified emotional enhancement in text recall indicating amygdala-dependent memory. Cortisol blockade during sleep impairs hippocampus-dependent declarative memory formation but enhances amygdala-dependent emotional memory formation. The natural cortisol rise during late sleep may thus protect from overshooting emotional memory formation, a mechanism possibly pertinent to the development of posttraumatic stress disorder.
Haider, Saida; Khaliq, Saima; Haleem, Darakhshan J
2007-01-01
Increasing evidence shows that serotonin (5-hydroxytryptamine - 5-HT) plays a modulatory role in memory functions. 5-HT transmission has been implicated in learning and memory. Both 5-HT depletion and specific 5-HT agonists lower memory performance. Hippocampus is thought to be the key region involved in long-term memory. It is the major limbic target of the brainstem serotonergic neurons that modulate learning. In the present study, we examined the effects of increased hippocampal 5-HT metabolism following tryptophan (TRP) administration on short-term memory (STM) and long-term memory (LTM) in rats. Learning acquisition (LA) and memory consolidation (MC) in rats was also evaluated. TRP at 50 mg/kg and 100 mg/kg body weight was used. Assessment of memory in rats was done using the water maze test (WM) after 6 weeks of daily administration of TRP. The results showed that administration of TRP enhanced both STM and LTM. However, the effect on STM was significant only at the higher dose. Rats administered the higher dose of TRP also exhibited a significant enhancement in LA. A significant effect on MC was also observed in tryptophan-treated rats. The results suggest that serotonergic system in the hippocampus is important in LA and MC in rats.
Dolcos, Florin; Cabeza, Roberto
2008-01-01
According to the consolidation hypothesis, enhanced memory for emotional information reflects the modulatory effect of the amygdala on the medial temporal lobe (MTL) memory system during consolidation. Although there is evidence that amygdala–MTL connectivity enhances memory for emotional stimuli, it remains unclear whether this enhancement increases over time, as consolidation processes unfold. To investigate this, we used functional magnetic resonance imaging to measure encoding activity predicting memory for emotionally negative and neutral pictures after short (20-min) versus long (1-week) delays. Memory measures distinguished between vivid remembering (recollection) and feelings of knowing (familiarity). Consistent with the consolidation hypothesis, the persistence of recollection over time (long divided by short) was greater for emotional than neutral pictures. Activity in the amygdala predicted subsequent memory to a greater extent for emotional than neutral pictures. Although this advantage did not vary with delay, the contribution of amygdala–MTL connectivity to subsequent memory for emotional items increased over time. Moreover, both this increase in connectivity and amygdala activity itself were correlated with individual differences in recollection persistence for emotional but not neutral pictures. These results suggest that the amygdala and its connectivity with the MTL are critical to sustaining emotional memories over time, consistent with the consolidation hypothesis. PMID:18375529
Clewett, David; Sakaki, Michiko; Huang, Ringo; Nielsen, Shawn E.; Mather, Mara
2017-01-01
Recent findings indicate that emotional arousal can enhance memory consolidation of goal-relevant stimuli while impairing it for irrelevant stimuli. According to one recent model, these goal-dependent memory tradeoffs are driven by arousal-induced release of norepinephrine (NE), which amplifies neural gain in target sensory and memory processing brain regions. Past work also shows that ovarian hormones modulate activity in the same regions thought to support NE’s effects on memory, such as the amygdala, suggesting that men and women may be differentially susceptible to arousal’s dual effects on episodic memory. Here, we aimed to determine the neurohormonal mechanisms that mediate arousal-biased competition processes in memory. In a competitive visuo-attention task, participants viewed images of a transparent object overlaid on a background scene and explicitly memorized one of these stimuli while ignoring the other. Participants then heard emotional or neutral audio-clips and provided a subjective arousal rating. Hierarchical generalized linear modeling (HGLM) analyses revealed that greater pre-to-post task increases in salivary alpha-amylase (sAA), a biomarker of noradrenergic activity, was associated with significantly greater arousal-enhanced memory tradeoffs in women than in men. These sex-dependent effects appeared to result from phasic and background noradrenergic activity interacting to suppress task-irrelevant representations in women but enhancing them in men. Additionally, in naturally cycling women, low ovarian hormone levels interacted with increased noradrenergic activity to amplify memory selectivity independently of emotion-induced arousal. Together these findings suggest that increased noradrenergic transmission enhances preferential consolidation of goal-relevant memory traces according to phasic arousal and ovarian hormone levels in women. PMID:28324703
Wang, Bo; Bukuan, Sun
2015-05-01
Two experiments examined the time-dependent effects of negative emotion on consolidation of item and internal-monitoring source memory. In Experiment 1, participants (n=121) learned a list of words. They were asked to read aloud half of the words and to think about the remaining half. They were instructed to memorize each word and its associative cognitive operation ("reading" versus "thinking"). Immediately following learning they conducted free recall and then watched a 3-min either neutral or negative video clip when 5 min, 30 min or 45 min had elapsed after learning. Twenty-four hours later they returned to take surprise tests for item and source memory. Experiment 2 was similar to Experiment 1 except that participants, without conducting an immediate test of free recall, took tests of source memory for all encoded words both immediately and 24 h after learning. Experiment 1 showed that negative emotion enhanced consolidation of item memory (as measured by retention ratio of free recall) regardless of delay of emotion elicitation and that negative emotion enhanced consolidation of source memory when it was elicited at a 5 min delay but reduced consolidation of source memory when it was elicited at a 30 min delay; when elicited at a 45 min delay, negative emotion had little effect. Furthermore, Experiment 2 replicated the enhancement effect on source memory in the 5 min delay even when participants were tested on all the encoded words. The current study partially replicated prior studies on item memory and extends the literature by providing evidence for a time-dependent effect of negative emotion on consolidation of source memory based on internal monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.
Wong, Stephanie; Irish, Muireann; Savage, Greg; Hodges, John R; Piguet, Olivier; Hornberger, Michael
2018-02-12
In healthy adults, the ability to prioritize learning of highly valued information is supported by executive functions and enhances subsequent memory retrieval for this information. In Alzheimer's disease (AD) and behavioural-variant frontotemporal dementia (bvFTD), marked deficits are evident in learning and memory, presenting in the context of executive dysfunction. It is unclear whether these patients show a typical memory bias for higher valued stimuli. We administered a value-directed word-list learning task to AD (n = 10) and bvFTD (n = 21) patients and age-matched healthy controls (n = 22). Each word was assigned a low, medium or high point value, and participants were instructed to maximize the number of points earned across three learning trials. Participants' memory for the words was assessed on a delayed recall trial, followed by a recognition test for the words and corresponding point values. Relative to controls, both patient groups showed poorer overall learning, delayed recall and recognition. Despite these impairments, patients with AD preferentially recalled high-value words on learning trials and showed significant value-directed enhancement of recognition memory for the words and points. Conversely, bvFTD patients did not prioritize recall of high-value words during learning trials, and this reduced selectivity was related to inhibitory dysfunction. Nonetheless, bvFTD patients showed value-directed enhancement of recognition memory for the point values, suggesting a mismatch between memory of high-value information and the ability to apply this in a motivationally salient context. Our findings demonstrate that value-directed enhancement of memory may persist to some degree in patients with dementia, despite pronounced deficits in learning and memory. © 2018 The British Psychological Society.
Clewett, David; Sakaki, Michiko; Huang, Ringo; Nielsen, Shawn E; Mather, Mara
2017-06-01
Recent findings indicate that emotional arousal can enhance memory consolidation of goal-relevant stimuli while impairing it for irrelevant stimuli. According to one recent model, these goal-dependent memory tradeoffs are driven by arousal-induced release of norepinephrine (NE), which amplifies neural gain in target sensory and memory processing brain regions. Past work also shows that ovarian hormones modulate activity in the same regions thought to support NE's effects on memory, such as the amygdala, suggesting that men and women may be differentially susceptible to arousal's dual effects on episodic memory. Here, we aimed to determine the neurohormonal mechanisms that mediate arousal-biased competition processes in memory. In a competitive visuo-attention task, participants viewed images of a transparent object overlaid on a background scene and explicitly memorized one of these stimuli while ignoring the other. Participants then heard emotional or neutral audio-clips and provided a subjective arousal rating. Hierarchical generalized linear modeling (HGLM) analyses revealed that greater pre-to-post task increases in salivary alpha-amylase (sAA), a biomarker of noradrenergic activity, was associated with significantly greater arousal-enhanced memory tradeoffs in women than in men. These sex-dependent effects appeared to result from phasic and background noradrenergic activity interacting to suppress task-irrelevant representations in women but enhancing them in men. Additionally, in naturally cycling women, low ovarian hormone levels interacted with increased noradrenergic activity to amplify memory selectivity independently of emotion-induced arousal. Together these findings suggest that increased noradrenergic transmission enhances preferential consolidation of goal-relevant memory traces according to phasic arousal and ovarian hormone levels in women. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dolcos, Florin; Iordan, Alexandru D.; Kragel, James; Stokes, Jared; Campbell, Ryan; McCarthy, Gregory; Cabeza, Roberto
2013-01-01
A fundamental question in the emotional memory literature is why emotion enhances memory in some conditions but disrupts memory in other conditions. For example, separate studies have shown that emotional stimuli tend to be better remembered in long-term episodic memory (EM), whereas emotional distracters tend to impair working memory (WM) maintenance. The first goal of this study was to directly compare the neural correlates of EM enhancement (EME) and WM impairing (WMI) effects, and the second goal was to explore individual differences in these mechanisms. During event-related functional magnetic resonance imaging (fMRI), participants maintained faces in WM while being distracted by emotional or neutral pictures presented during the delay period. EM for the distracting pictures was tested after scanning and was used to identify successful encoding activity for the picture distracters. The first goal yielded two findings: (1) emotional pictures that disrupted face WM but enhanced subsequent EM were associated with increased amygdala (AMY) and hippocampal activity (ventral system) coupled with reduced dorsolateral PFC (dlPFC) activity (dorsal system); (2) trials in which emotion enhanced EM without disrupting WM were associated with increased ventrolateral PFC activity. The ventral-dorsal switch can explain EME and WMI, while the ventrolateral PFC effect suggests a coping mechanism. The second goal yielded two additional findings: (3) participants who were more susceptible to WMI showed greater amygdala increases and PFC reductions; (4) AMY activity increased and dlPFC activity decreased with measures of attentional impulsivity. Taken together, these results clarify the mechanisms linking the enhancing and impairing effects of emotion on memory, and provide insights into the role of individual differences in the impact of emotional distraction. PMID:23761770
Emotionally Negative Pictures Enhance Gist Memory
Bookbinder, S. H.; Brainerd, C. J.
2016-01-01
In prior work on how true and false memory are influenced by emotion, valence and arousal have often been conflated. Thus, it is difficult to say which specific effects are due to valence and which are due to arousal. In the present research, we used a picture-memory paradigm that allowed emotional valence to be manipulated with arousal held constant. Negatively-valenced pictures elevated both true and false memory, relative to positive and neutral pictures. Conjoint recognition modeling revealed that negative valence (a) reduced erroneous suppression of true memories and (b) increased the familiarity of the semantic content of both true and false memories. Overall, negative valence impaired the verbatim side of episodic memory but enhanced the gist side, and these effects persisted even after a week-long delay. PMID:27454002
In sync: gamma oscillations and emotional memory
Headley, Drew B.; Paré, Denis
2013-01-01
Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35–120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory. PMID:24319416
In sync: gamma oscillations and emotional memory.
Headley, Drew B; Paré, Denis
2013-11-21
Emotional experiences leave vivid memories that can last a lifetime. The emotional facilitation of memory has been attributed to the engagement of diffusely projecting neuromodulatory systems that enhance the consolidation of synaptic plasticity in regions activated by the experience. This process requires the propagation of signals between brain regions, and for those signals to induce long-lasting synaptic plasticity. Both of these demands are met by gamma oscillations, which reflect synchronous population activity on a fast timescale (35-120 Hz). Regions known to participate in the formation of emotional memories, such as the basolateral amygdala, also promote gamma-band activation throughout cortical and subcortical circuits. Recent studies have demonstrated that gamma oscillations are enhanced during emotional situations, coherent between regions engaged by salient stimuli, and predict subsequent memory for cues associated with aversive stimuli. Furthermore, neutral stimuli that come to predict emotional events develop enhanced gamma oscillations, reflecting altered processing in the brain, which may underpin how past emotional experiences color future learning and memory.
Romberg, Carola; Yang, Sujeong; Melani, Riccardo; Andrews, Melissa R.; Horner, Alexa E.; Spillantini, Maria G.; Bussey, Timothy J.; Fawcett, James W.; Pizzorusso, Tommaso; Saksida, Lisa M.
2013-01-01
Perineuronal nets are extracellular matrix structures surrounding cortical neuronal cell bodies and proximal dendrites, and are involved in the control of brain plasticity and the closure of critical periods. Expression of the link protein Crtl1/Hapln1 in neurons has recently been identified as the key event triggering the formation of perineuronal nets. Here we show that the genetic attenuation of perineuronal nets in adult brain Crtl1 knockout mice enhances long term object recognition memory and facilitates long-term depression in the perirhinal cortex, a neural correlate of object recognition memory. Identical prolongation of memory follows localised digestion of perineuronal nets with chondroitinase ABC, an enzyme that degrades the chondroitin sulphate proteoglycans (CSPGs) components of PNNs. The memory-enhancing effect of chondroitinase ABC treatment attenuated over time, suggesting that regeneration of PNNs gradually restored control plasticity levels. Our findings indicate that perineuronal nets regulate both memory and experience-driven synaptic plasticity in adulthood. PMID:23595763
A single dose of cocaine enhances prospective memory performance.
Hutten, Nadia Rpw; Kuypers, Kim Pc; van Wel, Janelle Hp; Theunissen, Eef L; Toennes, Stefan W; Verkes, Robbert-Jan; Ramaekers, Johannes G
2018-06-01
Prospective memory is the ability to recall intended actions or events at the right time or in the right context. While cannabis is known to impair prospective memory, the acute effect of cocaine is unknown. In addition, it is not clear whether changes in prospective memory represent specific alterations in memory processing or result from more general effects on cognition that spread across multiple domains such as arousal and attention. The main objective of the study was, therefore, to determine whether drug-induced changes in prospective memory are memory specific or associated with more general drug-induced changes in attention and arousal. A placebo-controlled, three-way, cross-over study including 15 regular poly-drug users was set up to test the influence of oral cocaine (300 mg) and vaporised cannabis (300+150 'booster' µg/kg bodyweight) on an event-based prospective memory task. Attentional performance was assessed using a divided attention task and subjective arousal was assessed with the Profile of Mood States questionnaire. Results showed that cocaine enhanced prospective memory, attention and arousal. Mean performance of prospective memory and attention, as well as levels of arousal were lowest during treatment with cannabis as compared with placebo and cocaine as evinced by a significantly increased trend across treatment conditions. Prospective memory performance was only weakly positively associated to measures of attention and arousal. Together, these results indicate that cocaine enhancement of prospective memory performance cannot be fully explained by parallel changes in arousal and attention levels, and is likely to represent a direct change in the neural network underlying prospective memory.
Hippocampal-targeted Theta-burst Stimulation Enhances Associative Memory Formation.
Tambini, Arielle; Nee, Derek Evan; D'Esposito, Mark
2018-06-19
The hippocampus plays a critical role in episodic memory, among other cognitive functions. However, few tools exist to causally manipulate hippocampal function in healthy human participants. Recent work has targeted hippocampal-cortical networks by performing TMS to a region interconnected with the hippocampus, posterior inferior parietal cortex (pIPC). Such hippocampal-targeted TMS enhances associative memory and influences hippocampal functional connectivity. However, it is currently unknown which stages of mnemonic processing (encoding or retrieval) are affected by hippocampal-targeted TMS. Here, we examined whether hippocampal-targeted TMS influences the initial encoding of associations (vs. items) into memory. To selectively influence encoding and not retrieval, we performed continuous theta-burst TMS before participants encoded object-location associations and assessed memory after the direct effect of stimulation dissipated. Relative to control TMS and baseline memory, pIPC TMS enhanced associative memory success and confidence. Item memory was unaffected, demonstrating a selective influence on associative versus item memory. The strength of hippocampal-pIPC functional connectivity predicted TMS-related memory benefits, which was mediated by parahippocampal and retrosplenial cortices. Our findings indicate that hippocampal-targeted TMS can specifically modulate the encoding of new associations into memory without directly influencing retrieval processes and suggest that the ability to influence associative memory may be related to the fidelity of hippocampal TMS targeting. Our results support the notion that pIPC TMS may serve as a potential tool for manipulating hippocampal function in healthy participants. Nonetheless, future work combining hippocampal-targeted continuous theta-burst TMS with neuroimaging is needed to better understand the neural basis of TMS-induced memory changes.
de Voogd, Lycia D; Klumpers, Floris; Fernández, Guillén; Hermans, Erno J
2017-01-01
Declarative memories of stressful events are less prone to forgetting than mundane events. Animal research has demonstrated that such stress effects on consolidation of hippocampal-dependent memories require the amygdala. In humans, it has been shown that during learning, increased amygdala-hippocampal interactions are related to more efficient memory encoding. Animal models predict that following learning, amygdala-hippocampal interactions are instrumental to strengthening the consolidation of such declarative memories. Whether this is the case in humans is unknown and remains to be empirically verified. To test this, we analyzed data from a sample of 120 healthy male participants who performed an incidental encoding task and subsequently underwent resting-state functional MRI in a stressful and a neutral context. Stress was assessed by measures of salivary cortisol, blood pressure, heart rate, and subjective ratings. Memory was tested afterwards outside of the scanner. Our data show that memory was stronger in the stress context compared to the neutral context and that stress-induced cortisol responses were associated with this memory enhancement. Interestingly, amygdala-hippocampal connectivity during post-encoding awake rest regardless of context (stress or neutral) was associated with the enhanced memory performance under stress. Thus, our findings are in line with a role for intrinsic functional connectivity during rest between the amygdala and the hippocampus in the state effects of stress on strengthening memory. Copyright © 2016 Elsevier Ltd. All rights reserved.
Motivation Matters: Differing Effects of Pre-Goal and Post-Goal Emotions on Attention and Memory
Kaplan, Robin L.; Van Damme, Ilse; Levine, Linda J.
2012-01-01
People often show enhanced memory for information that is central to emotional events and impaired memory for peripheral details. The intensity of arousal elicited by an emotional event is commonly held to be the mechanism underlying memory narrowing, with the implication that all sources of emotional arousal should have comparable effects. Discrete emotions differ in their effects on memory, however, with some emotions broadening rather than narrowing the range of information attended to and remembered. Thus, features of emotion other than arousal appear to play a critical role in memory narrowing. We review theory and research on emotional memory narrowing and argue that motivation matters. Recent evidence suggests that emotions experienced prior to goal attainment or loss lead to memory narrowing whereas emotions experienced after goal attainment or loss broaden the range of information encoded in memory. The motivational component of emotion is an important but understudied feature that can help to clarify the conditions under which emotions enhance and impair attention and memory. PMID:23162490
Motivation matters: differing effects of pre-goal and post-goal emotions on attention and memory.
Kaplan, Robin L; Van Damme, Ilse; Levine, Linda J
2012-01-01
People often show enhanced memory for information that is central to emotional events and impaired memory for peripheral details. The intensity of arousal elicited by an emotional event is commonly held to be the mechanism underlying memory narrowing, with the implication that all sources of emotional arousal should have comparable effects. Discrete emotions differ in their effects on memory, however, with some emotions broadening rather than narrowing the range of information attended to and remembered. Thus, features of emotion other than arousal appear to play a critical role in memory narrowing. We review theory and research on emotional memory narrowing and argue that motivation matters. Recent evidence suggests that emotions experienced prior to goal attainment or loss lead to memory narrowing whereas emotions experienced after goal attainment or loss broaden the range of information encoded in memory. The motivational component of emotion is an important but understudied feature that can help to clarify the conditions under which emotions enhance and impair attention and memory.
Demiray, Burcu; Freund, Alexandra M
2017-03-01
Three studies examined the self-enhancement function of autobiographical memory (measured with subjective temporal distance of memories). Participants recalled a memory of an attained and a failed goal and rated the subjective distance between each memory and the present. Study 1 showed that young adults with higher self-esteem felt closer to memories of attained goals and farther from failure memories than those with lower self-esteem. In Study 2, young, middle-aged and older adults with higher self-esteem felt closer to success memories, whereas self-esteem was unrelated to the temporal distance of failure memories. In both studies, feeling closer to success memories (and far from failure) led to enhanced mood. In Study 3, state self-esteem was experimentally manipulated. The manipulation had no effect on young and older adults, but middle-aged adults whose self-esteem was decreased, felt closer to success memories than failure memories. Results are discussed in relation to the temporal self-appraisal theory. Copyright © 2017 Elsevier Inc. All rights reserved.
Rashidy-Pour, Ali; Vafaei, Abbas Ali; Taherian, Abbas Ali; Miladi-Gorji, Hossein; Sadeghi, Hassan; Fathollahi, Yaghoub; Bandegi, Ahmad Reza
2009-10-12
This study was designed to investigate an interaction between acute restraint stress and corticosterone with verapamil, a blocker of L-type voltage-dependent calcium (VDC) channels on retrieval of long-term memory. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On retention test given 48 h after training, the latency to re-enter dark compartment of the apparatus was recorded. In Experiment 1, verapamil pretreatment (5, 10, or 20 mg/kg) enhanced the impairing effects of acute stress (which was applied for 10 min in a Plexiglass tube 30 min before the retention test) on memory retrieval. The applied stress increased circulating corticosterone levels as assessed immediately after the retention test, indicating that stress-induced impairment of memory retrieval is mediated, in part, by increased plasma levels of glucocorticoids. Verapamil did not change this response. In Experiment 2, pretreatment of an intermediate dose of verapamil also enhanced corticosterone-induced impairment of memory retrieval. In Experiments 3 and 4, acute stress or corticosterone did not change motor activity with or without prior treatment of verapamil, suggesting that stress or glucocorticoid-induced impairment of memory retrieval is not due to any gross disturbances in motor performance of animals. These findings indicate that blockade of L-type VDC channels enhances stress or glucocorticoid-induced impairment of memory retrieval, and provide evidence for the existence of an interaction between glucocorticoids and L-type VDC channels on memory retrieval.
Does Testing Impair Relational Processing? Failed Attempts to Replicate the Negative Testing Effect
ERIC Educational Resources Information Center
Rawson, Katherine A.; Wissman, Kathryn T.; Vaughn, Kalif E.
2015-01-01
Recent research on testing effects (i.e., practice tests are more effective than restudy for enhancing subsequent memory) has focused on explaining when and why testing enhances memory. Of particular interest for present purposes, Zaromb and Roediger (2010) reported evidence that testing effects in part reflect enhanced relational processing,…
Self-assembled phase-change nanowire for nonvolatile electronic memory
NASA Astrophysics Data System (ADS)
Jung, Yeonwoong
One of the most important subjects in nanosciences is to identify and exploit the relationship between size and structural/physical properties of materials and to explore novel material properties at a small-length scale. Scale-down of materials is not only advantageous in realizing miniaturized devices but nanometer-sized materials often exhibit intriguing physical/chemical properties that greatly differ from their bulk counterparts. This dissertation studies self-assembled phase-change nanowires for future nonvolatile electronic memories, mainly focusing on their size-dependent memory switching properties. Owing to the one-dimensional, unique geometry coupled with the small and tunable sizes, bottom-designed nanowires offer great opportunities in terms for both fundamental science and practical engineering perspectives, which would be difficult to realize in conventional top-down based approaches. We synthesized chalcogenide phase-change nanowires of different compositions and sizes, and studied their electronic memory switching owing to the structural change between crystalline and amorphous phases. In particular, we investigated nanowire size-dependent memory switching parameters, including writing current, power consumption, and data retention times, as well as studying composition-dependent electronic properties. The observed size and composition-dependent switching and recrystallization kinetics are explained based on the heat transport model and heterogeneous nucleation theories, which help to design phase-change materials with better properties. Moreover, we configured unconventional heterostructured phase-change nanowire memories and studied their multiple memory states in single nanowire devices. Finally, by combining in-situ/ex-situ electron microscopy techniques and electrical measurements, we characterized the structural states involved in electrically-driven phase-change in order to understand the atomistic mechanism that governs the electronic memory switching through phase-change.
Rademaker, Rosanne L; van de Ven, Vincent G; Tong, Frank; Sack, Alexander T
2017-01-01
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise.
van de Ven, Vincent G.; Tong, Frank; Sack, Alexander T.
2017-01-01
Neuroimaging studies have demonstrated that activity patterns in early visual areas predict stimulus properties actively maintained in visual working memory. Yet, the mechanisms by which such information is represented remain largely unknown. In this study, observers remembered the orientations of 4 briefly presented gratings, one in each quadrant of the visual field. A 10Hz Transcranial Magnetic Stimulation (TMS) triplet was applied directly at stimulus offset, or midway through a 2-second delay, targeting early visual cortex corresponding retinotopically to a sample item in the lower hemifield. Memory for one of the four gratings was probed at random, and participants reported this orientation via method of adjustment. Recall errors were smaller when the visual field location targeted by TMS overlapped with that of the cued memory item, compared to errors for stimuli probed diagonally to TMS. This implied topographic storage of orientation information, and a memory-enhancing effect at the targeted location. Furthermore, early pulses impaired performance at all four locations, compared to late pulses. Next, response errors were fit empirically using a mixture model to characterize memory precision and guess rates. Memory was more precise for items proximal to the pulse location, irrespective of pulse timing. Guesses were more probable with early TMS pulses, regardless of stimulus location. Thus, while TMS administered at the offset of the stimulus array might disrupt early-phase consolidation in a non-topographic manner, TMS also boosts the precise representation of an item at its targeted retinotopic location, possibly by increasing attentional resources or by injecting a beneficial amount of noise. PMID:28384347
Uzer, Tugba; Gulgoz, Sami
2015-01-01
Few studies have compared the phenomenological properties of younger and older adults' memories for emotional events. Some studies suggest that younger adults remember negative information more vividly than positive information whereas other studies suggest that positive emotion yields phenomenologically richer memories than negative emotion for both younger and older adults. One problem with previous studies is a tendency to treat emotion as a dichotomous variable. In contrast, emotional richness demands inclusion of assessments beyond just a positive and negative dimension (e.g., assessing specific emotions like anger, fear and happiness). The present study investigated different properties of autobiographical remembering as a function of discrete emotions and age. Thirty-two younger and thirty-one older adults participated by recalling recent and remote memories associated with six emotional categories and completed the Memory Characteristics Questionnaire for each. Results demonstrated that older adults' angry memories received lower ratings on some phenomenological properties than other emotional memories whereas younger adults' angry memories did not show this same pattern. These results are discussed within the context of socioemotional selectivity theory.
Sleep enhances false memories depending on general memory performance.
Diekelmann, Susanne; Born, Jan; Wagner, Ullrich
2010-04-02
Memory is subject to dynamic changes, sometimes giving rise to the formation of false memories due to biased processes of consolidation or retrieval. Sleep is known to benefit memory consolidation through an active reorganization of representations whereas acute sleep deprivation impairs retrieval functions. Here, we investigated whether sleep after learning and sleep deprivation at retrieval enhance the generation of false memories in a free recall test. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal", etc.), lacking the strongest common associate or theme word (here: "black"). Free recall was tested after 9h following a night of sleep, a night of wakefulness (sleep deprivation) or daytime wakefulness. Compared with memory performance after a retention period of daytime wakefulness, both post-learning nocturnal sleep as well as acute sleep deprivation at retrieval significantly enhanced false recall of theme words. However, these effects were only observed in subjects with low general memory performance. These data point to two different ways in which sleep affects false memory generation through semantic generalization: one acts during consolidation on the memory trace per se, presumably by active reorganization of the trace in the post-learning sleep period. The other is related to the recovery function of sleep and affects cognitive control processes of retrieval. Both effects are unmasked when the material is relatively weakly encoded. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.
Jiang, J H; He, Z; Peng, Y L; Jin, W D; Wang, Z; Han, R W; Chang, M; Wang, R
2015-09-01
Kisspeptin (KP), the endogenous ligand of GPR54, is a recently discovered neuropeptide shown to be involved in regulating reproductive system, anxiety-related behavior, locomotion, food intake, and suppression of metastasis across a range of cancers. KP is transcribed within the hippocampus, and GPR54 has been found in the amygdala and hippocampus, suggesting that KP might be involved in mediating learning and memory. However, the role of KP in cognition was largely unclear. Here, we investigated the role of KP-13, one of the endogenous active isoforms, in memory processes, and determined whether KP-13 could mitigate memory impairment induced by Aβ1-42 in mice, using novel object recognition (NOR) and object location recognition (OLR) tasks. Intracerebroventricular (i.c.v.) infusion of KP-13 (2μg) immediately after training not only facilitated memory formation, but also prolonged memory retention in both tasks. The memory-improving effects of KP-13 could be blocked by the GPR54 receptor antagonist, kisspeptin-234 (234), and GnRH receptors antagonist, Cetrorelix, suggesting pharmacological specificity. Then the memory-enhancing effects were also presented after infusion of KP-13 into the hippocampus. Moreover, we found that i.c.v. injection of KP-13 was able to reverse the memory impairment induced by Aβ1-42, which was inhibited by 234. To sum up, the results of our work indicate that KP-13 could facilitate memory formation and prolong memory retention through activation of the GPR54 and GnRH receptors, and suppress memory-impairing effect of Aβ1-42 through activation of the GPR54, suggesting that KP-13 may be a potential drug for enhancing memory and treating Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Slime mold uses an externalized spatial "memory" to navigate in complex environments.
Reid, Chris R; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine
2012-10-23
Spatial memory enhances an organism's navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem--a classic test of autonomous navigational ability commonly used in robotics--requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism's ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms.
Sleep enhances a spatially mediated generalization of learned values
Tolat, Anisha; Spiers, Hugo J.
2015-01-01
Sleep is thought to play an important role in memory consolidation. Here we tested whether sleep alters the subjective value associated with objects located in spatial clusters that were navigated to in a large-scale virtual town. We found that sleep enhances a generalization of the value of high-value objects to the value of locally clustered objects, resulting in an impaired memory for the value of high-valued objects. Our results are consistent with (a) spatial context helping to bind items together in long-term memory and serve as a basis for generalizing across memories and (b) sleep mediating memory effects on salient/reward-related items. PMID:26373834
NASA Astrophysics Data System (ADS)
Wen, Jiahong; Zhao, Xiaoyu; Li, Qian; Zhang, Sheng; Wang, Dunhui; Du, Youwei
2018-04-01
Multilevel resistance switching (RS) effect has attracted more and more attention due to its promising potential for the increase of storage density in memory devices. In this work, the transport properties are investigated in an Au/La2/3Ba1/3MnO3 (LBMO)/Pt heterostructure. Taking advantage of the strong interplay among the spin, charge, orbital and lattice of LBMO, the Au/LBMO/Pt device can exhibit bipolar RS effect and magnetoresistance effect simultaneously. Under the coaction of electric field and magnetic field, four different resistance states are achieved in this device. These resistance states show excellent repeatability and retentivity and can be switched between any two states, which suggest the potential applications in the multilevel RS memory devices with enhanced storage density.
Kagan Structures, Processing, and Excellence in College Teaching
ERIC Educational Resources Information Center
Kagan, Spencer
2014-01-01
Frequent student processing of lecture content (1) clears working memory, (2) increases long-term memory storage, (3) produces retrograde memory enhancement, (4) creates episodic memories, (5) increases alertness, and (6) activates many brain structures. These outcomes increase comprehension of and memory for content. Many professors now…
Kroneisen, Meike; Bell, Raoul
2013-01-01
The present study examines memory for social-exchange-relevant information. In Experiment 1 male and female faces were shown together with behaviour descriptions of cheating, altruistic, and neutral behaviour. Previous results have led to the hypothesis that people preferentially remember schema-atypical information. Given the common gender stereotype that women are kinder and less egoistic than men, this atypicality account would predict that source memory (that is, memory for the type of context to which a face was associated) should be enhanced for female cheaters in comparison to male cheaters. The results of Experiment 1 confirmed this hypothesis. Experiment 2 reveals that source memory for female faces associated with disgusting behaviours is enhanced in comparison to male faces associated with disgusting behaviours. Thus the atypicality effect generalises beyond social-exchange-relevant information, a result which is inconsistent with the assumption that the findings can be ascribed to a highly specific cheater detection module.
Better than sleep: theta neurofeedback training accelerates memory consolidation.
Reiner, Miriam; Rozengurt, Roman; Barnea, Anat
2014-01-01
Consistent empirical results showed that both night and day sleep enhanced memory consolidation. In this study we explore processes of consolidation of memory during awake hours. Since theta oscillations have been shown to play a central role in exchange of information, we hypothesized that elevated theta during awake hours will enhance memory consolidation. We used a neurofeedback protocol, to enhance the relative power of theta or beta oscillations. Participants trained on a tapping task, were divided into three groups: neurofeedback theta; neurofeedback beta; control. We found a significant improvement in performance in the theta group, relative to the beta and control groups, immediately after neurofeedback. Performance was further improved after night sleep in all groups, with a significant advantage favoring the theta group. Theta power during training was correlated with the level of improvement, indicating a clear relationship between memory consolidation, and theta neurofeedback. Copyright © 2013 Elsevier B.V. All rights reserved.
Revest, J-M; Le Roux, A; Roullot-Lacarrière, V; Kaouane, N; Vallée, M; Kasanetz, F; Rougé-Pont, F; Tronche, F; Desmedt, A; Piazza, P V
2014-01-01
Activation of glucocorticoid receptors (GR) by glucocorticoid hormones (GC) enhances contextual fear memories through the activation of the Erk1/2MAPK signaling pathway. However, the molecular mechanism mediating this effect of GC remains unknown. Here we used complementary molecular and behavioral approaches in mice and rats and in genetically modified mice in which the GR was conditionally deleted (GRNesCre). We identified the tPA-BDNF-TrkB signaling pathway as the upstream molecular effectors of GR-mediated phosphorylation of Erk1/2MAPK responsible for the enhancement of contextual fear memory. These findings complete our knowledge of the molecular cascade through which GC enhance contextual fear memory and highlight the role of tPA-BDNF-TrkB-Erk1/2MAPK signaling pathways as one of the core effectors of stress-related effects of GC. PMID:24126929
Congenital blindness improves semantic and episodic memory.
Pasqualotto, Achille; Lam, Jade S Y; Proulx, Michael J
2013-05-01
Previous studies reported that congenitally blind people possess superior verb-generation skills. Here we tested the impact of blindness on capacity and the fidelity of semantic memory by using a false memory paradigm. In the Deese-Roediger-McDermott paradigm, participants study lists of words that are all semantically related to a lure that is not presented. Subsequently, participants frequently recall the missing lure. We found that congenitally blind participants have enhanced memory performance for recalling the presented words and reduced false memories for the lure. The dissociation of memory capacity and fidelity provides further evidence for enhanced verbal ability in the blind, supported by their broader structural and functional brain reorganisation. Copyright © 2013 Elsevier B.V. All rights reserved.
Demeter, Elise; Mirdamadi, Jasmine L.; Meehan, Sean K.; Taylor, Stephan F.
2016-01-01
Deep semantic encoding of verbal stimuli can aid in later successful retrieval of those stimuli from long-term episodic memory. Evidence from numerous neuropsychological and neuroimaging experiments demonstrate regions in left prefrontal cortex, including left dorsolateral prefrontal cortex (DLPFC), are important for processes related to encoding. Here, we investigated the relationship between left DLPFC activity during encoding and successful subsequent memory with transcranial magnetic stimulation (TMS). In a pair of experiments using a 2-session within-subjects design, we stimulated either left DLPFC or a control region (Vertex) with a single 2-s train of short theta burst stimulation (sTBS) during a semantic encoding task and then gave participants a recognition memory test. We found that subsequent memory was enhanced on the day left DLPFC was stimulated, relative to the day Vertex was stimulated, and that DLPFC stimulation also increased participants’ confidence in their decisions during the recognition task. We also explored the time course of how long the effects of sTBS persisted. Our data suggest 2 s of sTBS to left DLPFC is capable of enhancing subsequent memory for items encoded up to 15 s following stimulation. Collectively, these data demonstrate sTBS is capable of enhancing long-term memory and provide evidence that TBS protocols are a potentially powerful tool for modulating cognitive function. PMID:27098772
Neural conflict-control mechanisms improve memory for target stimuli.
Krebs, Ruth M; Boehler, Carsten N; De Belder, Maya; Egner, Tobias
2015-03-01
According to conflict-monitoring models, conflict serves as an internal signal for reinforcing top-down attention to task-relevant information. While evidence based on measures of ongoing task performance supports this idea, implications for long-term consequences, that is, memory, have not been tested yet. Here, we evaluated the prediction that conflict-triggered attentional enhancement of target-stimulus processing should be associated with superior subsequent memory for those stimuli. By combining functional magnetic resonance imaging (fMRI) with a novel variant of a face-word Stroop task that employed trial-unique face stimuli as targets, we were able to assess subsequent (incidental) memory for target faces as a function of whether a given face had previously been accompanied by congruent, neutral, or incongruent (conflicting) distracters. In line with our predictions, incongruent distracters not only induced behavioral conflict, but also gave rise to enhanced memory for target faces. Moreover, conflict-triggered neural activity in prefrontal and parietal regions was predictive of subsequent retrieval success, and displayed conflict-enhanced functional coupling with medial-temporal lobe regions. These data provide support for the proposal that conflict evokes enhanced top-down attention to task-relevant stimuli, thereby promoting their encoding into long-term memory. Our findings thus delineate the neural mechanisms of a novel link between cognitive control and memory. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Stress enhances the consolidation of extinction memory in a predictive learning task
Hamacher-Dang, Tanja C.; Engler, Harald; Schedlowski, Manfred; Wolf, Oliver T.
2013-01-01
Extinction is not always permanent, as indicated by several types of recovery effects, such as the renewal effect, which may occur after a context change and points towards the importance of contextual cues. Strengthening the retrieval of extinction memory is a crucial aim of extinction-based psychotherapeutic treatments of anxiety disorders to prevent relapse. Stress is known to modulate learning and memory, with mostly enhancing effects on memory consolidation. However, whether such a consolidation-enhancing effect of acute stress can also be found for extinction memory has not yet been examined in humans. In this study, we investigated the effect of stress after extinction learning on the retrieval of extinction memory in a predictive learning renewal paradigm. Participants took the part of being the doctor of a fictitious patient and learned to predict whether certain food stimuli were associated with “stomach trouble” in two different restaurants (contexts). On the first day, critical stimuli were associated with stomach trouble in context A (acquisition phase). On the second day, these associations were extinguished in context B. Directly after extinction, participants were either exposed to a stressor (socially evaluated cold pressor test; n = 22) or a control condition (n = 24). On the third day, we tested retrieval of critical associations in contexts A and B. Participants exposed to stress after extinction exhibited a reduced recovery of responding at test in context B, suggesting that stress may context-dependently enhance the consolidation of extinction memory. Furthermore, the increase in cortisol in response to the stressor was negatively correlated with the recovery of responding in context A. Our findings suggest that in parallel to the known effects of stress on the consolidation of episodic memory, stress also enhances the consolidation of extinction memory, which might be relevant for potential applications in extinction-based psychotherapy. PMID:23986667
An object memory bias induced by communicative reference.
Marno, Hanna; Davelaar, Eddy J; Csibra, Gergely
2016-01-01
In humans, a good proportion of knowledge, including knowledge about objects and object kinds, is acquired via social learning by direct communication from others. If communicative signals raise the expectation of social learning about objects, intrinsic (permanent) features that support object recognition are relevant to store into memory, while extrinsic (accidental) object properties can be ignored. We investigated this hypothesis by instructing participants to memorise shape-colour associations that constituted either an extrinsic object property (the colour of the box that contained the object, Experiment 1) or an intrinsic one (the colour of the object, Experiment 2). Compared to a non-communicative context, communicative presentation of the objects impaired participants' performance when they recalled extrinsic object properties, while their incidental memory of the intrinsic shape-colour associations was not affected. Communicative signals had no effect on performance when the task required the memorisation of intrinsic object properties. The negative effect of communicative reference on the memory of extrinsic properties was also confirmed in Experiment 3, where this property was object location. Such a memory bias suggests that referent objects in communication tend to be seen as representatives of their kind rather than as individuals. Copyright © 2015 Elsevier B.V. All rights reserved.
Pharmacological Enhancement of Memory and Executive Functioning in Laboratory Animals
Floresco, Stan B; Jentsch, James D
2011-01-01
Investigating how different pharmacological compounds may enhance learning, memory, and higher-order cognitive functions in laboratory animals is the first critical step toward the development of cognitive enhancers that may be used to ameliorate impairments in these functions in patients suffering from neuropsychiatric disorders. Rather than focus on one aspect of cognition, or class of drug, in this review we provide a broad overview of how distinct classes of pharmacological compounds may enhance different types of memory and executive functioning, particularly those mediated by the prefrontal cortex. These include recognition memory, attention, working memory, and different components of behavioral flexibility. A key emphasis is placed on comparing and contrasting the effects of certain drugs on different cognitive and mnemonic functions, highlighting methodological issues associated with this type of research, tasks used to investigate these functions, and avenues for future research. Viewed collectively, studies of the neuropharmacological basis of cognition in rodents and non-human primates have identified targets that will hopefully open new avenues for the treatment of cognitive disabilities in persons affected by mental disorders. PMID:20844477
Memory Enhancement by Targeting Cdk5 Regulation of NR2B
Plattner, Florian; Hernandéz, Adan; Kistler, Tara M.; Pozo, Karine; Zhong, Ping; Yuen, Eunice Y.; Tan, Chunfeng; Hawasli, Ammar H.; Cooke, Sam F.; Nishi, Akinori; Guo, Ailan; Wiederhold, Thorsten; Yan, Zhen; Bibb, James A.
2014-01-01
SUMMARY Many psychiatric and neurological disorders are characterized by learning and memory deficits, for which cognitive enhancement is considered a valid treatment strategy. The N-methyl-D-aspartate receptor (NMDAR) is a prime target for the development of cognitive enhancers due to its fundamental role in learning and memory. In particular, the NMDAR subunit NR2B improves synaptic plasticity and memory when over-expressed in neurons. However, NR2B regulation is not well understood and no therapies potentiating NMDAR function have been developed. Here, we show that serine 1116 of NR2B is phosphorylated by cyclin-dependent kinase 5 (Cdk5). Cdk5-dependent NR2B phosphorylation is regulated by neuronal activity and controls the receptor’s cell surface expression. Disrupting NR2B-Cdk5 interaction using a small interfering peptide (siP) increases NR2B surface levels, facilitates synaptic transmission, and improves memory formation in vivo. Our results reveal a novel regulatory mechanism critical to NR2B function that can be targeted for the development of cognitive enhancers. PMID:24607229
NASA Astrophysics Data System (ADS)
Cheng, Xinying; Kondyurin, Alexey; Bao, Shisan; Bilek, Marcela M. M.; Ye, Lin
2017-09-01
Polyurethane-type shape memory polymers (SMPU) are promising biomedical implant materials due to their ability to recover to a predetermined shape from a temporary shape induced by thermal activation close to human body temperature and their advantageous mechanical properties including large recovery strains and low recovery stresses. Plasma Immersion Ion Implantation (PIII) is a surface modification process using energetic ions that generates radicals in polymer surfaces leading to carbonisation and oxidation and the ability to covalently immobilise proteins without the need for wet chemistry. Here we show that PIII treatment of SMPU significantly enhances its bioactivity making SMPU suitable for applications in permanent implantable biomedical devices. Scanning Electron Microscopy (SEM), contact angle measurements, surface energy measurements, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) were used to characterise the PIII modified surface, including its after treatment aging kinetics and its capability to covalently immobilise protein directly from solution. The results show a substantial improvement in wettability and dramatic changes of surface chemical composition dependent on treatment duration, due to the generation of radicals and subsequent oxidation. The SMPU surface, PIII treated for 200s, achieved a saturated level of covalently immobilized protein indicating that a full monolayer coverage was achieved. We conclude that PIII is a promising and efficient surface modification method to enhance the biocompatibility of SMPU for use in medical applications that demand bioactivity for tissue integration and stability in vivo.
Activation of Gαq Signaling Enhances Memory Consolidation and Slows Cognitive Decline.
Arey, Rachel N; Stein, Geneva M; Kaletsky, Rachel; Kauffman, Amanda; Murphy, Coleen T
2018-05-02
Perhaps the most devastating decline with age is the loss of memory. Therefore, identifying mechanisms to restore memory function with age is critical. Using C. elegans associative learning and memory assays, we identified a gain-of-function G αq signaling pathway mutant that forms a long-term (cAMP response element binding protein [CREB]-dependent) memory following one conditioned stimulus-unconditioned stimulus (CS-US) pairing, which usually requires seven CS-US pairings. Increased CREB activity in AIM interneurons reduces the threshold for memory consolidation through transcription of a set of previously identified "long-term memory" genes. Enhanced G αq signaling in the AWC sensory neuron is both necessary and sufficient for improved memory and increased AIM CREB activity, and activation of G αq specifically in aged animals rescues the ability to form memory. Activation of G αq in AWC sensory neurons non-cell autonomously induces consolidation after one CS-US pairing, enabling both cognitive function maintenance with age and restoration of memory function in animals with impaired memory performance without decreased longevity. Copyright © 2018 Elsevier Inc. All rights reserved.
Jacob, Jane; Jacobs, Christianne; Silvanto, Juha
2015-01-01
What is the role of top-down attentional modulation in consciously accessing working memory (WM) content? In influential WM models, information can exist in different states, determined by allocation of attention; placing the original memory representation in the center of focused attention gives rise to conscious access. Here we discuss various lines of evidence indicating that such attentional modulation is not sufficient for memory content to be phenomenally experienced. We propose that, in addition to attentional modulation of the memory representation, another type of top-down modulation is required: suppression of all incoming visual information, via inhibition of early visual cortex. In this view, there are three distinct memory levels, as a function of the top-down control associated with them: (1) Nonattended, nonconscious associated with no attentional modulation; (2) attended, phenomenally nonconscious memory, associated with attentional enhancement of the actual memory trace; (3) attended, phenomenally conscious memory content, associated with enhancement of the memory trace and top-down suppression of all incoming visual input.
Orr, Patrick T.; Rubin, Amanda J.; Fan, Lu; Kent, Brianne A.; Frick, Karyn M.
2012-01-01
Although much recent work has elucidated the biochemical mechanisms underlying the modulation of memory by 17β-estradiol, little is known about the signaling events through which progesterone (P) regulates memory. We recently demonstrated that immediate post-training infusion of P into the dorsal hippocampus enhances object recognition memory consolidation in young ovariectomized female mice (Orr et al., 2009). The goal of the present study was to identify the biochemical alterations that might underlie this mnemonic enhancement. We hypothesized that the P-induced enhancement of object recognition would be dependent on activation of the ERK and mTOR pathways. In young ovariectomized mice, we found that bilateral dorsal hippocampal infusion of P significantly increased levels of phospho-p42 ERK and the mTOR substrate S6K in the dorsal hippocampus 5 minutes after infusion. Phospho-p42 ERK levels were downregulated 15 minutes after infusion and returned to baseline 30 minutes after infusion, suggesting a biphasic effect of P on ERK activation. Dorsal hippocampal ERK and mTOR activation were necessary for P to facilitate memory consolidation, as suggested by the fact that inhibitors of both pathways infused into the dorsal hippocampus immediately after training blocked the P-induced enhancement of object recognition. Collectively, these data provide the first demonstration that the ability of P to enhance memory consolidation depends on the rapid activation of cell signaling and protein synthesis pathways in the dorsal hippocampus. PMID:22265866
Emotionally negative pictures enhance gist memory.
Bookbinder, S H; Brainerd, C J
2017-02-01
In prior work on how true and false memory are influenced by emotion, valence and arousal have often been conflated. Thus, it is difficult to say which specific effects are caused by valence and which are caused by arousal. In the present research, we used a picture-memory paradigm that allowed emotional valence to be manipulated with arousal held constant. Negatively valenced pictures elevated both true and false memory, relative to positive and neutral pictures. Conjoint recognition modeling revealed that negative valence (a) reduced erroneous suppression of true memories and (b) increased the familiarity of the semantic content of both true and false memories. Overall, negative valence impaired the verbatim side of episodic memory but enhanced the gist side, and these effects persisted even after a week-long delay. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Sharpen Kids' Memory to Raise Test Scores
ERIC Educational Resources Information Center
Willis, Judy
2005-01-01
By understanding the different types of memory, the neurophysiology of brain chemical and anatomical changes associated with memory, and the ways to enhance the memory process, teachers can utilize proven technique--and develop their own--to guide students over that bleak terrain of memorization. From simplest recall of awareness, memory skills…
NASA Astrophysics Data System (ADS)
Hong, Seok Bin; Ahn, Yong San; Jang, Joon Hyeok; Kim, Jin-Gyun; Goo, Nam Seo; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Reinforcements as carbon fiber had been used for making shape memory polymer composite (CF-SMPC). This study investigated a possibility of designing self-deployable structures in harsh space condition using CF-SMPCs and analyzed their shape memory behaviors with constitutive equation model.CF-SMPCs were prepared using woven carbon fabrics and a thermoset epoxy based SMP to obtain their basic mechanical properties including actuation in harsh environment. The mechanical and shape memory properties of SMP and CF-SMPCs were characterized using dynamic mechanical analysis (DMA) and universal tensile machine (UTM) with an environmental chamber. The mechanical properties such as flexural strength and tensile strength of SMP and CF-SMPC were measured with simple tensile/bending test and time dependent shape memory behavior was characterized with designed shape memory bending test. For mechanical analysis of CF-SMPCs, a 3D constitutive equation of SMP, which had been developed using multiplicative decomposition of the deformation gradient and shape memory strains, was used with material parameters determined from CF-SMPCs. Carbon fibers in composites reinforced tensile and flexural strength of SMP and acted as strong elastic springs in rheology based equation models. The actuation behavior of SMP matrix and CF-SMPCs was then simulated as 3D shape memory bending cases. Fiber bundle property was imbued with shell model for more precise analysis and it would be used for prediction of deploying behavior in self-deployable hinge structure.
Kutlu, Munir Gunes
2016-01-01
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. PMID:27634143
Kutlu, Munir Gunes; Gould, Thomas J
2016-10-01
It has long been hypothesized that conditioning mechanisms play major roles in addiction. Specifically, the associations between rewarding properties of drugs of abuse and the drug context can contribute to future use and facilitate the transition from initial drug use into drug dependency. On the other hand, the self-medication hypothesis of drug abuse suggests that negative consequences of drug withdrawal result in relapse to drug use as an attempt to alleviate the negative symptoms. In this review, we explored these hypotheses and the involvement of the hippocampus in the development and maintenance of addiction to widely abused drugs such as cocaine, amphetamine, nicotine, alcohol, opiates, and cannabis. Studies suggest that initial exposure to stimulants (i.e., cocaine, nicotine, and amphetamine) and alcohol may enhance hippocampal function and, therefore, the formation of augmented drug-context associations that contribute to the development of addiction. In line with the self-medication hypothesis, withdrawal from stimulants, ethanol, and cannabis results in hippocampus-dependent learning and memory deficits, which suggest that an attempt to alleviate these deficits may contribute to relapse to drug use and maintenance of addiction. Interestingly, opiate withdrawal leads to enhancement of hippocampus-dependent learning and memory. Given that a conditioned aversion to drug context develops during opiate withdrawal, the cognitive enhancement in this case may result in the formation of an augmented association between withdrawal-induced aversion and withdrawal context. Therefore, individuals with opiate addiction may return to opiate use to avoid aversive symptoms triggered by the withdrawal context. Overall, the systematic examination of the role of the hippocampus in drug addiction may help to formulate a better understanding of addiction and underlying neural substrates. © 2016 Kutlu and Gould; Published by Cold Spring Harbor Laboratory Press.
Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-01
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca(2+) indicator in the MBs, we investigated synaptic transmission and plasticity at the AL-MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca(2+) responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca(2+) responses were mediated through Drosophila NMDA receptors (dNRs). AL-MB synaptic transmission was enhanced more than 2 h after the simultaneous 'associative-stimulation' of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL-MB synapses but not at the AFV-MB synapses. AL-MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL-MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL-MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL-MB LTE might be a relevant cellular model for olfactory memory.
Ueno, Kohei; Naganos, Shintaro; Hirano, Yukinori; Horiuchi, Junjiro; Saitoe, Minoru
2013-01-01
In Drosophila, the mushroom body (MB) is a critical brain structure for olfactory associative learning. During aversive conditioning, the MBs are thought to associate odour signals, conveyed by projection neurons (PNs) from the antennal lobe (AL), with shock signals conveyed through ascending fibres of the ventral nerve cord (AFV). Although synaptic transmission between AL and MB might play a crucial role for olfactory associative learning, its physiological properties have not been examined directly. Using a cultured Drosophila brain expressing a Ca2+ indicator in the MBs, we investigated synaptic transmission and plasticity at the AL–MB synapse. Following stimulation with a glass micro-electrode, AL-induced Ca2+ responses in the MBs were mediated through Drosophila nicotinic acetylcholine receptors (dnAChRs), while AFV-induced Ca2+ responses were mediated through Drosophila NMDA receptors (dNRs). AL–MB synaptic transmission was enhanced more than 2 h after the simultaneous ‘associative-stimulation’ of AL and AFV, and such long-term enhancement (LTE) was specifically formed at the AL–MB synapses but not at the AFV–MB synapses. AL–MB LTE was not induced by intense stimulation of the AL alone, and the LTE decays within 60 min after subsequent repetitive AL stimulation. These phenotypes of associativity, input specificity and persistence of AL–MB LTE are highly reminiscent of olfactory memory. Furthermore, similar to olfactory aversive memory, AL–MB LTE formation required activation of the Drosophila D1 dopamine receptor, DopR, along with dnAChR and dNR during associative stimulations. These physiological and genetic analogies indicate that AL–MB LTE might be a relevant cellular model for olfactory memory. PMID:23027817
Stephens, Robin; Seddon, Benedict; Langhorne, Jean
2011-01-01
While chronic infection has been shown to enhance protection from disease caused by several pathogens, the mechanisms are not known. The gamma-c family of cytokines IL-7, IL-2, and IL-15 are implicated in homeostatic proliferation, which is thought to maintain T cell memory. However in chronic infection, prolonged antigen exposure itself may contribute to lymphocyte survival. We have previously observed that chronic malaria infection enhances protection to re-infection, as well as enhancing B cell responses. Here, we show that chronic Plasmodium chabaudi malaria infection in mice enhances the expansion of CD4+ T cells in a second infection, and that this correlates with increased expression of the IL-2/15 Receptor beta (CD122) on memory T cells, as well as increasing IL-2 producers on re-infection. IL-2 has been recently linked to improved secondary proliferation, while the role of IL-7 in maintenance of CD4+ memory cells has been demonstrated in homeostatic proliferation, but its role in protective memory populations in infectious disease protective has not been fully investigated. Increased IL-7Rα (CD127) expression correlated, as previously reported with increased turnover of CD4 memory cells, however, this was not linked to protection or enhanced response to rechallenge, These data support the idea that antigen or IL-2 production resulting from chronic stimulation may play a role in an enhanced secondary T cell response. PMID:22039531
Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites
NASA Astrophysics Data System (ADS)
Yang, Qingsheng; Liu, Xia; Leng, Fangfang
2009-07-01
Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.
Emotion's influence on memory for spatial and temporal context.
Schmidt, Katherine; Patnaik, Pooja; Kensinger, Elizabeth A
2011-02-01
Individuals report remembering emotional items vividly. It is debated whether this report reflects enhanced memory accuracy or a bias to believe emotional memories are vivid. We hypothesized emotion would enhance memory accuracy, improving memory for contextual details. The hallmark of episodic memory is that items are remembered in a spatial and temporal context, so we examined whether an item's valence (positive, negative) or arousal (high, low) would influence its ability to be remembered with those contextual details. Across two experiments, high-arousal items were remembered with spatial and temporal context more often than low-arousal items. Item valence did not influence memory for those details, although positive high-arousal items were recognized or recalled more often than negative items. These data suggest that emotion does not just bias participants to believe they have a vivid memory; rather, the arousal elicited by an event can benefit memory for some types of contextual details. © 2010 Psychology Press, an imprint of the Taylor & Francis Group, an Informa business
Improving working memory in children with low language abilities
Holmes, Joni; Butterfield, Sally; Cormack, Francesca; van Loenhoud, Anita; Ruggero, Leanne; Kashikar, Linda; Gathercole, Susan
2015-01-01
This study investigated whether working memory training is effective in enhancing verbal memory in children with low language abilities (LLA). Cogmed Working Memory Training was completed by a community sample of children aged 8–11 years with LLA and a comparison group with matched non-verbal abilities and age-typical language performance. Short-term memory (STM), working memory, language, and IQ were assessed before and after training. Significant and equivalent post-training gains were found in visuo-spatial short-term memory in both groups. Exploratory analyses across the sample established that low verbal IQ scores were strongly and highly specifically associated with greater gains in verbal STM, and that children with higher verbal IQs made greater gains in visuo-spatial short-term memory following training. This provides preliminary evidence that intensive working memory training may be effective for enhancing the weakest aspects of STM in children with low verbal abilities, and may also be of value in developing compensatory strategies. PMID:25983703
Context odor presentation during sleep enhances memory in honeybees.
Zwaka, Hanna; Bartels, Ruth; Gora, Jacob; Franck, Vivien; Culo, Ana; Götsch, Moritz; Menzel, Randolf
2015-11-02
Sleep plays an important role in stabilizing new memory traces after learning [1-3]. Here we investigate whether sleep's role in memory processing is similar in evolutionarily distant species and demonstrate that a context trigger during deep-sleep phases improves memory in invertebrates, as it does in humans. We show that in honeybees (Apis mellifera), exposure to an odor during deep sleep that has been present during learning improves memory performance the following day. Presentation of the context odor during wake phases or novel odors during sleep does not enhance memory. In humans, memory consolidation can be triggered by presentation of a context odor during slow-wave sleep that had been present during learning [3-5]. Our results reveal that deep-sleep phases in honeybees have the potential to prompt memory consolidation, just as they do in humans. This study provides strong evidence for a conserved role of sleep-and how it affects memory processes-from insects to mammals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Biodegradable toughened nanohybrid shape memory polymer for smart biomedical applications.
Biswas, Arpan; Singh, Akhand Pratap; Rana, Dipak; Aswal, Vinod K; Maiti, Pralay
2018-05-31
A polyurethane nanohybrid has been prepared through the in situ polymerization of an aliphatic diisocyanate, ester polyol and a chain extender in the presence of two-dimensional platelets. Polymerization within the platelet galleries helps to intercalate, generate diverse nanostructure and improve the nano to macro scale self-assembly, which leads to a significant enhancement in the toughness and thermal stability of the nanohybrid in comparison to pure polyurethane. The extensive interactions, the reason for property enhancement, between nanoplatelets and polymer chains are revealed through spectroscopic measurements and thermal studies. The nanohybrid exhibits significant improvement in the shape memory phenomena (91% recovery) at the physiological temperature, which makes it suitable for many biomedical applications. The structural alteration, studied through temperature dependent small angle neutron scattering and X-ray diffraction, along with unique crystallization behavior have extensively revealed the special shape memory behavior of this nanohybrid and facilitated the understanding of the molecular flipping in the presence of nanoplatelets. Cell line studies and subsequent imaging testify that this nanohybrid is a superior biomaterial that is suitable for use in the biomedical arena. In vivo studies on albino rats exhibit the potential of the shape memory effect of the nanohybrid as a self-tightening suture in keyhole surgery by appropriately closing the lips of the wound through the recovery of the programmed shape at physiological temperature with faster healing of the wound and without the formation of any scar. Further, the improved biodegradable nature along with the rapid self-expanding ability of the nanohybrid at 37 °C make it appropriate for many biomedical applications including a self-expanding stent for occlusion recovery due to its tough and flexible nature.
Li, H F; Qiu, K J; Zhou, F Y; Li, L; Zheng, Y F
2016-11-29
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
NASA Astrophysics Data System (ADS)
Li, H. F.; Qiu, K. J.; Zhou, F. Y.; Li, L.; Zheng, Y. F.
2016-11-01
In the case of medical implants, foreign materials are preferential sites for bacterial adhesion and microbial contamination, which can lead to the development of prosthetic infections. Commercially biomedical TiNi shape memory alloys are the most commonly used materials for permanent implants in contact with bone and dental, and the prevention of infections of TiNi biomedical shape memory alloys in clinical cases is therefore a crucial challenge for orthopaedic and dental surgeons. In the present study, copper has been chosen as the alloying element for design and development novel ternary biomedical Ti‒Ni‒Cu shape memory alloys with antibacterial properties. The effects of copper alloying element on the microstructure, mechanical properties, corrosion behaviors, cytocompatibility and antibacterial properties of biomedical Ti‒Ni‒Cu shape memory alloys have been systematically investigated. The results demonstrated that Ti‒Ni‒Cu alloys have good mechanical properties, and remain the excellent shape memory effects after adding copper alloying element. The corrosion behaviors of Ti‒Ni‒Cu alloys are better than the commercial biomedical Ti‒50.8Ni alloys. The Ti‒Ni‒Cu alloys exhibit excellent antibacterial properties while maintaining the good cytocompatibility, which would further guarantee the potential application of Ti‒Ni‒Cu alloys as future biomedical implants and devices without inducing bacterial infections.
Neuroenhancement of Memory for Children with Autism by a Mind–Body Exercise
Chan, Agnes S.; Han, Yvonne M. Y.; Sze, Sophia L.; Lau, Eliza M.
2015-01-01
The memory deficits found in individuals with autism spectrum disorder (ASD) may be caused by the lack of an effective strategy to aid memory. The executive control of memory processing is mediated largely by the timely coupling between frontal and posterior brain regions. The present study aimed to explore the potential effect of a Chinese mind–body exercise, namely Nei Gong, for enhancing learning and memory in children with ASD, and the possible neural basis of the improvement. Sixty-six children with ASD were randomly assigned to groups receiving Nei Gong training (NGT), progressive muscle relaxation (PMR) training, or no training for 1 month. Before and after training, the participants were tested individually on a computerized visual memory task while EEG signals were acquired during the memory encoding phase. Children in the NGT group demonstrated significantly enhanced memory performance and more effective use of a memory strategy, which was not observed in the other two groups. Furthermore, the improved memory after NGT was consistent with findings of elevated EEG theta coherence between frontal and posterior brain regions, a measure of functional coupling. The scalp EEG signals were localized by the standardized low resolution brain electromagnetic tomography method and found to originate from a neural network that promotes effective memory processing, including the prefrontal cortex, the parietal cortex, and the medial and inferior temporal cortex. This alteration in neural processing was not found in children receiving PMR or in those who received no training. The present findings suggest that the mind–body exercise program may have the potential effect on modulating neural functional connectivity underlying memory processing and hence enhance memory functions in individuals with autism. PMID:26696946
Michalak, Agnieszka; Biala, Grazyna
2017-01-15
Long-term potentiation (LTP) and long-term depression (LTD) depend on specific postsynaptic Ca 2+ /calmodulin concentration. LTP results from Ca 2+ influx through the activated NMDA receptors or voltage-gated calcium channels (VGCCs) and is linked with activation of protein kinases including mitogen-activated protein kinase (MAPK). Weaker synaptic stimulation, as a result of low Ca 2+ influx, leads to activation of Ca 2+ /calmodulin-dependent phosphatase (calcineurin - CaN) and triggers LTD. Interestingly, both memory formation and drug addiction share similar neuroplastic changes. Nicotine, which is one of the most common addictive drugs, manifests its memory effects through nicotinic acetylcholine receptors (nAChRs). Because nAChRs may also gate Ca 2+ , it is suggested that calcium signaling pathways are involved in nicotine-induced memory effects. Within the scope of the study was to evaluate the importance of calcium homeostasis and protein kinase/phosphatase balance in nicotine-induced short- and long-term memory effects. To assess memory function in mice passive avoidance test was used. The presented results confirm that acute nicotine (0.1mg/kg) improves short- and long-term memory. Pretreatment with L-type VGCC blockers (amlodipine, nicardipine verapamil) increased nicotine-induced memory improvement in the context of short- and long-term memory. Pretreatment with FK-506 (a potent CaN inhibitor) enhanced short- but not long-term memory effects of nicotine, while SL-327 (a selective MAPK/ERK kinase inhibitor) attenuated both nicotine-induced short- and long-term memory improvement. Acute nicotine enhances both types of memory via L-type VGCC blockade and via ERK1/2 activation. Only short- but not long-term memory enhancement induced by nicotine is dependent on CaN inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.
Neuroenhancement of Memory for Children with Autism by a Mind-Body Exercise.
Chan, Agnes S; Han, Yvonne M Y; Sze, Sophia L; Lau, Eliza M
2015-01-01
The memory deficits found in individuals with autism spectrum disorder (ASD) may be caused by the lack of an effective strategy to aid memory. The executive control of memory processing is mediated largely by the timely coupling between frontal and posterior brain regions. The present study aimed to explore the potential effect of a Chinese mind-body exercise, namely Nei Gong, for enhancing learning and memory in children with ASD, and the possible neural basis of the improvement. Sixty-six children with ASD were randomly assigned to groups receiving Nei Gong training (NGT), progressive muscle relaxation (PMR) training, or no training for 1 month. Before and after training, the participants were tested individually on a computerized visual memory task while EEG signals were acquired during the memory encoding phase. Children in the NGT group demonstrated significantly enhanced memory performance and more effective use of a memory strategy, which was not observed in the other two groups. Furthermore, the improved memory after NGT was consistent with findings of elevated EEG theta coherence between frontal and posterior brain regions, a measure of functional coupling. The scalp EEG signals were localized by the standardized low resolution brain electromagnetic tomography method and found to originate from a neural network that promotes effective memory processing, including the prefrontal cortex, the parietal cortex, and the medial and inferior temporal cortex. This alteration in neural processing was not found in children receiving PMR or in those who received no training. The present findings suggest that the mind-body exercise program may have the potential effect on modulating neural functional connectivity underlying memory processing and hence enhance memory functions in individuals with autism.
Vandervert, Larry
2015-01-01
Following in the vein of studies that concluded that music training resulted in plastic changes in Einstein's cerebral cortex, controlled research has shown that music training (1) enhances central executive attentional processes in working memory, and (2) has also been shown to be of significant therapeutic value in neurological disorders. Within this framework of music training-induced enhancement of central executive attentional processes, the purpose of this article is to argue that: (1) The foundational basis of the central executive begins in infancy as attentional control during the establishment of working memory, (2) In accordance with Akshoomoff, Courchesne and Townsend's and Leggio and Molinari's cerebellar sequence detection and prediction models, the rigors of volitional control demands of music training can enhance voluntary manipulation of information in thought and movement, (3) The music training-enhanced blending of cerebellar internal models in working memory as can be experienced as intuition in scientific discovery (as Einstein often indicated) or, equally, as moments of therapeutic advancement toward goals in the development of voluntary control in neurological disorders, and (4) The blending of internal models as in (3) thus provides a mechanism by which music training enhances central executive processes in working memory that can lead to scientific discovery and improved therapeutic outcomes in neurological disorders. Within the framework of Leggio and Molinari's cerebellar sequence detection model, it is determined that intuitive steps forward that occur in both scientific discovery and during therapy in those with neurological disorders operate according to the same mechanism of adaptive error-driven blending of cerebellar internal models. It is concluded that the entire framework of the central executive structure of working memory is a product of the cerebrocerebellar system which can, through the learning of internal models, incorporate the multi-dimensional rigor and volitional-control demands of music training and, thereby, enhance voluntary control. It is further concluded that this cerebrocerebellar view of the music training-induced enhancement of central executive control in working memory provides a needed mechanism to explain both the highest level of scientific discovery and the efficacy of music training in the remediation of neurological impairments.
Otsuka, Sachio; Saiki, Jun
2016-02-01
Prior studies have shown that visual statistical learning (VSL) enhances familiarity (a type of memory) of sequences. How do statistical regularities influence the processing of each triplet element and inserted distractors that disrupt the regularity? Given that increased attention to triplets induced by VSL and inhibition of unattended triplets, we predicted that VSL would promote memory for each triplet constituent, and degrade memory for inserted stimuli. Across the first two experiments, we found that objects from structured sequences were more likely to be remembered than objects from random sequences, and that letters (Experiment 1) or objects (Experiment 2) inserted into structured sequences were less likely to be remembered than those inserted into random sequences. In the subsequent two experiments, we examined an alternative account for our results, whereby the difference in memory for inserted items between structured and random conditions is due to individuation of items within random sequences. Our findings replicated even when control letters (Experiment 3A) or objects (Experiment 3B) were presented before or after, rather than inserted into, random sequences. Our findings suggest that statistical learning enhances memory for each item in a regular set and impairs memory for items that disrupt the regularity. Copyright © 2015 Elsevier B.V. All rights reserved.
Iqbal, Ghazala; Iqbal, Anila; Mahboob, Aamra; Farhat, Syeda M; Ahmed, Touqeer
Black pepper (Piper nigrum Linn.) has vital pharmacological properties with profound effects on central nervous system. Neurotoxic agents like Aluminum Chloride (AlCl3) cause the oxidative stress and result in improper processing of amyloid proteins leading to accumulation of amyloid β plaques. The study aimed to explore the neuroprotective potential of black pepper (BP) extract (12.5mg/kg/day) on memory enhancement and its effect on expression of amyloid precursor protein (APP) isoforms (APP770 and APP695) in AlCl3 induced neurotoxicity (250mg/kg) mouse model. The study included the isolation and identification of pure compound from BP (chavicine) which was found pharmacologically active. Morris water maze test, elevated plus maze, fear conditioning, context and cue dependent test and social preference tests were performed to investigate the learning and memory. Gene expression (APP isoforms) and in-vitro and ex-vivo DPPH free radical scavenging activity were performed to evaluate the role of BP. BP significantly improved memory in AlCl3 induced neurotoxicity mouse model along with effectively decreasing the expression of APP770 (amyloidogenic) isoform and improved level of APP695 (non-amyloidogenic) in hippocampus, amygdala and cortex. Fear extinction learning was considerably improved in BP treated group (7.83±2.03) than AlCl3 induced neurotoxicity group (39.75±4.25). In the hippocampus, BP significantly reduced the expression of APP770 (0.37±0.05) as compared to AlCl3 induced neurotoxicity group (0.72±0.06), and effectively increased (34.80±1.39) the percentage inhibition of DPPH free radicals as compared to AlCl3 induced neurotoxicity group (14±2.68). The study revealed that BP improves memory and chavicine is a lead compound producing pharmacological effects of BP.
Malashchenko, Vladimir Vladimirovich; Meniailo, Maxsim Evgenievich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich
2018-03-01
We investigated the direct effects of human granulocyte colony-stimulating factor (G-CSF) on functionality of human T-cell subsets. CD3 + T-lymphocytes were isolated from blood of healthy donors by positive magnetic separation. T cell activation with particles conjugated with antibodies (Abs) to human CD3, CD28 and CD2 molecules increased the proportion of cells expressing G-CSF receptor (G-CSFR, CD114) in all T cell subpopulations studied (CD45RA + /CD197 + naive T cells, CD45RA - /CD197 + central memory T cells, CD45RA - /CD197 - effector memory T cells and CD45RA + /CD197 - terminally differentiated effector T cells). Upon T-cell activation in vitro, G-CSF (10.0 ng/ml) significantly and specifically enhanced the proportion of CD114 + T cells in central memory CD4 + T cell compartment. A dilution series of G-CSF (range, 0.1-10.0 ng/ml) was tested, with no effect on the expression of CD25 (interleukin-2 receptor α-chain) on activated T cells. Meanwhile, G-CSF treatment enhanced the proportion of CD38 + T cells in CD4 + naïve T cell, effector memory T cell and terminally differentiated effector T cell subsets, as well as in CD4 - central memory T cells and terminally differentiated effector T cells. G-CSF did not affect IL-2 production by T cells; relatively low concentrations of G-CSF down-regulated INF-γ production, while high concentrations of this cytokine up-regulated IL-4 production in activated T cells. The data obtained suggests that G-CSF could play a significant role both in preventing the development of excessive and potentially damaging inflammatory reactivity, and in constraining the expansion of potentially cytodestructive T cells. Copyright © 2018 Elsevier Inc. All rights reserved.
The Benefit of Attention-to-Memory Depends on the Interplay of Memory Capacity and Memory Load
Lim, Sung-Joo; Wöstmann, Malte; Geweke, Frederik; Obleser, Jonas
2018-01-01
Humans can be cued to attend to an item in memory, which facilitates and enhances the perceptual precision in recalling this item. Here, we demonstrate that this facilitating effect of attention-to-memory hinges on the overall degree of memory load. The benefit an individual draws from attention-to-memory depends on her overall working memory performance, measured as sensitivity (d′) in a retroactive cue (retro-cue) pitch discrimination task. While listeners maintained 2, 4, or 6 auditory syllables in memory, we provided valid or neutral retro-cues to direct listeners’ attention to one, to-be-probed syllable in memory. Participants’ overall memory performance (i.e., perceptual sensitivity d′) was relatively unaffected by the presence of valid retro-cues across memory loads. However, a more fine-grained analysis using psychophysical modeling shows that valid retro-cues elicited faster pitch-change judgments and improved perceptual precision. Importantly, as memory load increased, listeners’ overall working memory performance correlated with inter-individual differences in the degree to which precision improved (r = 0.39, p = 0.029). Under high load, individuals with low working memory profited least from attention-to-memory. Our results demonstrate that retrospective attention enhances perceptual precision of attended items in memory but listeners’ optimal use of informative cues depends on their overall memory abilities. PMID:29520246
ERIC Educational Resources Information Center
Ma, Nan; Abel, Ted; Hernandez, Pepe J.
2009-01-01
It is well established that cAMP signaling within neurons plays a major role in the formation of long-term memories--signaling thought to proceed through protein kinase A (PKA). However, here we show that exchange protein activated by cAMP (Epac) is able to enhance the formation of long-term memory in the hippocampus and appears to do so…
Where to start? Bottom-up attention improves working memory by determining encoding order.
Ravizza, Susan M; Uitvlugt, Mitchell G; Hazeltine, Eliot
2016-12-01
The present study aimed to characterize the mechanism by which working memory is enhanced for items that capture attention because of their novelty or saliency-that is, via bottom-up attention. The first experiment replicated previous research by corroborating that bottom-up attention directed to an item is sufficient for enhancing working memory and, moreover, generalized the effect to the domain of verbal working memory. The subsequent 3 experiments sought to determine how bottom-up attention affects working memory. We considered 2 hypotheses: (1) Bottom-up attention enhances the encoded representation of the stimulus, similar to how voluntary attention functions, or (2) It affects the order of encoding by shifting priority onto the attended stimulus. By manipulating how stimuli were presented (simultaneous/sequential display) and whether the cue predicted the tested items, we found evidence that bottom-up attention improves working memory performance via the order of encoding hypothesis. This finding was observed across change detection and free recall paradigms. In contrast, voluntary attention improved working memory regardless of encoding order and showed greater effects on working memory. We conclude that when multiple information sources compete, bottom-up attention prioritizes the location at which encoding should begin. When encoding order is set, bottom-up attention has little or no benefit to working memory. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Earles, Julie L; Kersten, Alan W; Vernon, Laura L; Starkings, Rachel
2016-01-01
When remembering an event, it is important to remember both the features of the event (e.g., a person and an action) and the connections among features (e.g., who performed which action). Emotion often enhances memory for stimulus features, but the relationship between emotion and the binding of features in memory is unclear. Younger and older adults attempted to remember events in which a person performed a negative, positive or neutral action. Memory for the action was enhanced by emotion, but emotion did not enhance the ability of participants to remember which person performed which action. Older adults were more likely than younger adults to make binding errors in which they incorrectly remembered a familiar actor performing a familiar action that had actually been performed by someone else, and this age-related associative deficit was found for both neutral and emotional actions. Emotion not only increased correct recognition of old events for older and younger adults but also increased false recognition of events in which a familiar actor performed a familiar action that had been performed by someone else. Thus, although emotion may enhance memory for the features of an event, it does not increase the accuracy of remembering who performed which action.
Ghrelin modulates encoding-related brain function without enhancing memory formation in humans.
Kunath, N; Müller, N C J; Tonon, M; Konrad, B N; Pawlowski, M; Kopczak, A; Elbau, I; Uhr, M; Kühn, S; Repantis, D; Ohla, K; Müller, T D; Fernández, G; Tschöp, M; Czisch, M; Steiger, A; Dresler, M
2016-11-15
Ghrelin regulates energy homeostasis in various species and enhances memory in rodent models. In humans, the role of ghrelin in cognitive processes has yet to be characterized. Here we show in a double-blind randomized crossover design that acute administration of ghrelin alters encoding-related brain activity, however does not enhance memory formation in humans. Twenty-one healthy young male participants had to memorize food- and non-food-related words presented on a background of a virtual navigational route while undergoing fMRI recordings. After acute ghrelin administration, we observed decreased post-encoding resting state fMRI connectivity between the caudate nucleus and the insula, amygdala, and orbitofrontal cortex. In addition, brain activity related to subsequent memory performance was modulated by ghrelin. On the next day, however, no differences were found in free word recall or cued location-word association recall between conditions; and ghrelin's effects on brain activity or functional connectivity were unrelated to memory performance. Further, ghrelin had no effect on a cognitive test battery comprising tests for working memory, fluid reasoning, creativity, mental speed, and attention. In conclusion, in contrast to studies with animal models, we did not find any evidence for the potential of ghrelin acting as a short-term cognitive enhancer in humans. Copyright © 2016 Elsevier Inc. All rights reserved.
Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.
2015-01-01
Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362
Social Relevance Enhances Memory for Impressions in Older Adults
Cassidy, Brittany S.; Gutchess, Angela H.
2012-01-01
Previous research has demonstrated that older adults have difficulty retrieving contextual material over items alone. Recent research suggests this deficit can be reduced by adding emotional context, allowing for the possibility that memory for social impressions may show less age-related decline than memory for other types of contextual information. Two studies investigated how orienting to social or self-relevant aspects of information contributed to the learning and retrieval of impressions in young and older adults. Participants encoded impressions of others in conditions varying in the use of self-reference (Experiment 1) and interpersonal meaningfulness (Experiment 2), and completed memory tasks requiring the retrieval of specific traits. For both experiments, age groups remembered similar numbers of impressions. In Experiment 1, using more self-relevant encoding contexts increased memory for impressions over orienting to stimuli in a non-social way, regardless of age. In Experiment 2, older adults had enhanced memory for impressions presented in an interpersonally meaningful relative to a personally irrelevant way, whereas young adults were unaffected by this manipulation. The results provide evidence that increasing social relevance ameliorates age differences in memory for impressions, and enhances older adults’ ability to successfully retrieve contextual information. PMID:22364168
Social relevance enhances memory for impressions in older adults.
Cassidy, Brittany S; Gutchess, Angela H
2012-01-01
Previous research has demonstrated that older adults have difficulty retrieving contextual material over items alone. Recent research suggests this deficit can be reduced by adding emotional context, allowing for the possibility that memory for social impressions may show less age-related decline than memory for other types of contextual information. Two studies investigated how orienting to social or self-relevant aspects of information contributed to the learning and retrieval of impressions in young and older adults. Participants encoded impressions of others in conditions varying in the use of self-reference (Experiment 1) and interpersonal meaningfulness (Experiment 2), and completed memory tasks requiring the retrieval of specific traits. For both experiments, age groups remembered similar numbers of impressions. In Experiment 1 using more self-relevant encoding contexts increased memory for impressions over orienting to stimuli in a non-social way, regardless of age. In Experiment 2 older adults had enhanced memory for impressions presented in an interpersonally meaningful relative to a personally irrelevant way, whereas young adults were unaffected by this manipulation. The results provide evidence that increasing social relevance ameliorates age differences in memory for impressions, and enhances older adults' ability to successfully retrieve contextual information.
Collaboration enhances later individual memory for emotional material.
Bärthel, Gwennis A; Wessel, Ineke; Huntjens, Rafaële J C; Verwoerd, Johan
2017-05-01
Research on collaborative remembering suggests that collaboration hampers group memory (i.e., collaborative inhibition), yet enhances later individual memory. Studies examining collaborative effects on memory for emotional stimuli are scarce, especially concerning later individual memory. In the present study, female undergraduates watched an emotional movie and recalled it either collaboratively (n = 60) or individually (n = 60), followed by an individual free recall test and a recognition test. We replicated the standard collaborative inhibition effect. Further, in line with the literature, the collaborative condition displayed better post-collaborative individual memory. More importantly, in post-collaborative free recall, the centrality of the information to the movie plot did not play an important role. Recognition rendered slightly different results. Although collaboration rendered more correct recognition for more central details, it did not enhance recognition of background details. Secondly, the collaborative and individual conditions did not differ with respect to overlap of unique correct items in free recall. Yet, during recognition former collaborators more unanimously endorsed correct answers, as well as errors. Finally, extraversion, neuroticism, social anxiety, and depressive symptoms did not moderate the influence of collaboration on memory. Implications for the fields of forensic and clinical psychology are discussed.
Park, Jin Ho; Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo; Kim, Byung Kyu
2014-01-01
Shape memory behavior of crystalline shape memory polyurethane (SPU) reinforced with graphene, which utilizes melting temperature as a shape recovery temperature, was examined with various external actuating stimuli such as direct heating, resistive heating, and infrared (IR) heating. Compatibility of graphene with crystalline SPU was adjusted by altering the structure of the hard segment of the SPU, by changing the structure of the graphene, and by changing the preparation method of the graphene/SPU composite. The SPU made of aromatic 4,4′-diphenylmethane diisocyanate (MSPU) exhibited better compatibility with graphene, having an aromatic structure, compared to that made of the aliphatic hexamethylene diisocyanate. The finely dispersed graphene effectively reinforced MSPU, improved shape recovery of MSPU, and served effectively as a filler, triggering shape recovery by resistive or IR heating. Compatibility was enhanced when the graphene was modified with methanol. This improved shape recovery by direct heating, but worsened the conductivity of the composite, and consequently the efficiency of resistive heating for shape recovery also declined. Graphene modified with methanol was more effective than pristine graphene in terms of shape recovery by IR heating. PMID:28788529
Enhanced stability of Bi-doped Ge2Sb2Te5 amorphous films
NASA Astrophysics Data System (ADS)
Dyussembayev, S.; Prikhodko, O.; Tsendin, K.; Timoshenkov, S.; Korobova, N.
2014-09-01
Although, several reviews have appeared on various physical properties and applications of chalcogenide glasses, there is no thorough study of local atomic structure and its modification for eutectic Ge-Sb-Te alloys doped with Bi. Ge2Sb2Te5 pure and Bi-doped films were deposited by ion-plasma sputtering method of synthesized GTS material on Si (100) and glass substrates coated with a conductive Al layer which was used as a bottom electrode. Current-voltage characteristics of different points of the same samples have been measured. Random distribution of inclusions within the sample made it possible to investigate the dependence of switching and memory effects on the phase composition at a constant value of other parameters. Measurements in the current controlled mode clearly showed that the memory state formation voltage does not depend on current in a wide range. Results indicate that the development of imaging technologies phase memory cells need to pay special attention to the conditions of Ge-Sb-Te film preparation. To increase the number of cycles "write - erase" should be additional prolonged annealing of the synthesized films.
Determining the Mechanical Properties of Lattice Block Structures
NASA Technical Reports Server (NTRS)
Wilmoth, Nathan
2013-01-01
Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.
Low-level light therapy improves cortical metabolic capacity and memory retention.
Rojas, Julio C; Bruchey, Aleksandra K; Gonzalez-Lima, Francisco
2012-01-01
Cerebral hypometabolism characterizes mild cognitive impairment and Alzheimer's disease. Low-level light therapy (LLLT) enhances the metabolic capacity of neurons in culture through photostimulation of cytochrome oxidase, the mitochondrial enzyme that catalyzes oxygen consumption in cellular respiration. Growing evidence supports that neuronal metabolic enhancement by LLLT positively impacts neuronal function in vitro and in vivo. Based on its effects on energy metabolism, it is proposed that LLLT will also affect the cerebral cortex in vivo and modulate higher-order cognitive functions such as memory. In vivo effects of LLLT on brain and behavior are poorly characterized. We tested the hypothesis that in vivo LLLT facilitates cortical oxygenation and metabolic energy capacity and thereby improves memory retention. Specifically, we tested this hypothesis in rats using fear extinction memory, a form of memory modulated by prefrontal cortex activation. Effects of LLLT on brain metabolism were determined through measurement of prefrontal cortex oxygen concentration with fluorescent quenching oximetry and by quantitative cytochrome oxidase histochemistry. Experiment 1 verified that LLLT increased the rate of oxygen consumption in the prefrontal cortex in vivo. Experiment 2 showed that LLLT-treated rats had an enhanced extinction memory as compared to controls. Experiment 3 showed that LLLT reduced fear renewal and prevented the reemergence of extinguished conditioned fear responses. Experiment 4 showed that LLLT induced hormetic dose-response effects on the metabolic capacity of the prefrontal cortex. These data suggest that LLLT can enhance cortical metabolic capacity and retention of extinction memories, and implicate LLLT as a novel intervention to improve memory.
Encoding of goal-relevant stimuli is strengthened by emotional arousal in memory.
Lee, Tae-Ho; Greening, Steven G; Mather, Mara
2015-01-01
Emotional information receives preferential processing, which facilitates adaptive strategies for survival. However, the presence of emotional stimuli and the arousal they induce also influence how surrounding non-emotional information is processed in memory (Mather and Sutherland, 2011). For example, seeing a highly emotional scene often leads to forgetting of what was seen right beforehand, but sometimes instead enhances memory for the preceding information. In two studies, we examined how emotional arousal affects short-term memory retention for goal-relevant information that was just seen. In Study 1, participants were asked to remember neutral objects in spatially-cued locations (i.e., goal-relevant objects determined by specific location), while ignoring objects in uncued locations. After each set of objects were shown, arousal was manipulated by playing a previously fear-conditioned tone (i.e., CS+) or a neutral tone that had not been paired with shock (CS-). In Study 1, memory for the goal-relevant neutral objects from arousing trials was enhanced compared to those from the non-arousing trials. This result suggests that emotional arousal helps to increase the impact of top-down priority (i.e., goal-relevancy) on memory encoding. Study 2 supports this conclusion by demonstrating that when the goal was to remember all objects regardless of the spatial cue, emotional arousal induced memory enhancement in a more global manner for all objects. In sum, the two studies show that the ability of arousal to enhance memory for previously encoded items depends on the goal relevance initially assigned to those items.
Levichkina, Ekaterina; Saalmann, Yuri B; Vidyasagar, Trichur R
2017-03-01
Primate posterior parietal cortex (PPC) is known to be involved in controlling spatial attention. Neurons in one part of the PPC, the lateral intraparietal area (LIP), show enhanced responses to objects at attended locations. Although many are selective for object features, such as the orientation of a visual stimulus, it is not clear how LIP circuits integrate feature-selective information when providing attentional feedback about behaviorally relevant locations to the visual cortex. We studied the relationship between object feature and spatial attention properties of LIP cells in two macaques by measuring the cells' orientation selectivity and the degree of attentional enhancement while performing a delayed match-to-sample task. Monkeys had to match both the location and orientation of two visual gratings presented separately in time. We found a wide range in orientation selectivity and degree of attentional enhancement among LIP neurons. However, cells with significant attentional enhancement had much less orientation selectivity in their response than cells which showed no significant modulation by attention. Additionally, orientation-selective cells showed working memory activity for their preferred orientation, whereas cells showing attentional enhancement also synchronized with local neuronal activity. These results are consistent with models of selective attention incorporating two stages, where an initial feature-selective process guides a second stage of focal spatial attention. We suggest that LIP contributes to both stages, where the first stage involves orientation-selective LIP cells that support working memory of the relevant feature, and the second stage involves attention-enhanced LIP cells that synchronize to provide feedback on spatial priorities. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.
Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.
Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen
2017-11-13
Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.
Chen, Xiaoli; Zhou, Ye; Roy, Vellaisamy A L; Han, Su-Ting
2018-01-01
Because of current fabrication limitations, miniaturizing nonvolatile memory devices for managing the explosive increase in big data is challenging. Molecular memories constitute a promising candidate for next-generation memories because their properties can be readily modulated through chemical synthesis. Moreover, these memories can be fabricated through mild solution processing, which can be easily scaled up. Among the various materials, polyoxometalate (POM) molecules have attracted considerable attention for use as novel data-storage nodes for nonvolatile memories. Here, an overview of recent advances in the development of POMs for nonvolatile memories is presented. The general background knowledge of the structure and property diversity of POMs is also summarized. Finally, the challenges and perspectives in the application of POMs in memories are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effects of free recall testing on subsequent source memory.
Brewer, Gene A; Marsh, Richard L; Meeks, Joseph T; Clark-Foos, Arlo; Hicks, Jason L
2010-05-01
The testing effect is the finding that prior retrieval of information from memory will result in better subsequent memory for that material. One explanation for these effects is that initial free recall testing increases the recollective details for tested information, which then becomes more available during a subsequent test phase. In three experiments we explored this hypothesis using a source-monitoring test phase after the initial free recall tests. We discovered that memory is differentially enhanced for certain recollective details depending on the nature of the free recall task. Thus further research needs to be conducted to specify how different kinds of memorial details are enhanced by free recall testing.
The specificity of memory enhancement during interaction with a virtual environment.
Brooks, B M; Attree, E A; Rose, F D; Clifford, B R; Leadbetter, A G
1999-01-01
Two experiments investigated differences between active and passive participation in a computer-generated virtual environment in terms of spatial memory, object memory, and object location memory. It was found that active participants, who controlled their movements in the virtual environment using a joystick, recalled the spatial layout of the virtual environment better than passive participants, who merely watched the active participants' progress. Conversely, there were no significant differences between the active and passive participants' recall or recognition of the virtual objects, nor in their recall of the correct locations of objects in the virtual environment. These findings are discussed in terms of subject-performed task research and the specificity of memory enhancement in virtual environments.
Accurate forced-choice recognition without awareness of memory retrieval.
Voss, Joel L; Baym, Carol L; Paller, Ken A
2008-06-01
Recognition confidence and the explicit awareness of memory retrieval commonly accompany accurate responding in recognition tests. Memory performance in recognition tests is widely assumed to measure explicit memory, but the generality of this assumption is questionable. Indeed, whether recognition in nonhumans is always supported by explicit memory is highly controversial. Here we identified circumstances wherein highly accurate recognition was unaccompanied by hallmark features of explicit memory. When memory for kaleidoscopes was tested using a two-alternative forced-choice recognition test with similar foils, recognition was enhanced by an attentional manipulation at encoding known to degrade explicit memory. Moreover, explicit recognition was most accurate when the awareness of retrieval was absent. These dissociations between accuracy and phenomenological features of explicit memory are consistent with the notion that correct responding resulted from experience-dependent enhancements of perceptual fluency with specific stimuli--the putative mechanism for perceptual priming effects in implicit memory tests. This mechanism may contribute to recognition performance in a variety of frequently-employed testing circumstances. Our results thus argue for a novel view of recognition, in that analyses of its neurocognitive foundations must take into account the potential for both (1) recognition mechanisms allied with implicit memory and (2) recognition mechanisms allied with explicit memory.
Gupta, Bhawna; Iancu, Emanuela M; Gannon, Philippe O; Wieckowski, Sébastien; Baitsch, Lukas; Speiser, Daniel E; Rufer, Nathalie
2012-07-01
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
de Vargas, Liane da Silva; Gonçalves, Rithiele; Lara, Marcus Vinícius S; Costa-Ferro, Zaquer S M; Salamoni, Simone Denise; Domingues, Michelle Flores; Piovesan, Angela Regina; de Assis, Dênis Reis; Vinade, Lucia; Corrado, Alexandre P; Alves-Do-Prado, Wilson; Correia-de-Sá, Paulo; da Costa, Jaderson Costa; Izquierdo, Ivan; Dal Belo, Cháriston A; Mello-Carpes, Pâmela B
2017-09-01
It is well recognized that stress or glucocorticoids hormones treatment can modulate memory performance in both directions, either impairing or enhancing it. Despite the high number of studies aiming at explaining the effects of glucocorticoids on memory, this has not yet been completely elucidated. Here, we demonstrate that a low daily dose of methylprednisolone (MP, 5mg/kg, i.p.) administered for 10-days favors aversive memory persistence in adult rats, without any effect on the exploring behavior, locomotor activity, anxiety levels and pain perception. Enhanced performance on the inhibitory avoidance task was correlated with long-term potentiation (LTP), a phenomenon that was strengthen in hippocampal slices of rats injected with MP (5mg/kg) during 10days. Additionally, in vitro incubation with MP (30-300µM) concentration-dependently increased intracellular [Ca 2+ ] i in cultured hippocampal neurons depolarized by KCl (35mM). In conclusion, a low daily dose of MP for 10days may promote aversive memory persistence in rats. Copyright © 2017 Elsevier B.V. All rights reserved.
Broster, Lucas S; Jenkins, Shonna L; Holmes, Sarah D; Jicha, Gregory A.; Jiang, Yang
2018-01-01
Emotional enhancement effects on memory have been reported to mitigate the pathophysiology of Alzheimer’s disease (AD). However, relative to their manifestation in persons without pathologic aging, these effects may be reduced in magnitude or even deleterious, especially in tasks that more closely model ecologic memory performance. Based upon a synthesis of such reports, we hypothesized that in persons with AD low arousal positive stimuli would evoke relatively intact emotional enhancement effects, but that high arousal negative stimuli would evoke disordered emotional enhancement effects. To assess this, participants with and without mild cognitive impairment (MCI) presumed to be due to AD performed an emotionally-valenced short-term memory task while encephalography was recorded. Results indicated that for persons with MCI, high arousal negative stimuli led to working memory processing patterns previously associated with MCI presumed due to AD and dementia of the Alzheimer’s type. In contrast, low arousal positive stimuli evoked a processing pattern similar to MCI participants’ unaffected spouses. Our current findings suggest that low arousal positive stimuli attenuate working memory deficits of MCI due to Alzheimer’s disease. PMID:29060938
Caffeine in floral nectar enhances a pollinator's memory of reward.
Wright, G A; Baker, D D; Palmer, M J; Stabler, D; Mustard, J A; Power, E F; Borland, A M; Stevenson, P C
2013-03-08
Plant defense compounds occur in floral nectar, but their ecological role is not well understood. We provide evidence that plant compounds pharmacologically alter pollinator behavior by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar did not exceed the bees' bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success.
Caffeine in floral nectar enhances a pollinator’s memory of reward
Wright, G. A.; Baker, D. D.; Palmer, M. J.; Stabler, D.; Mustard, J. A.; Power, E. F.; Borland, A. M.; Stevenson, P. C.
2015-01-01
Plant defence compounds occur in floral nectar, but their ecological role is not well-understood. We provide the first evidence that plant compounds pharmacologically alter pollinator behaviour by enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in nectar of Coffea and Citrus species, were three times more likely to remember a learned floral scent than those rewarded with sucrose alone. Caffeine potentiated responses of mushroom body neurons involved in olfactory learning and memory by acting as an adenosine receptor antagonist. Caffeine concentrations in nectar never exceeded the bees’ bitter taste threshold, implying that pollinators impose selection for nectar that is pharmacologically active but not repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and improve reproductive success. PMID:23471406
NASA Astrophysics Data System (ADS)
Wang, Chenjie; Huo, Zongliang; Liu, Ziyu; Liu, Yu; Cui, Yanxiang; Wang, Yumei; Li, Fanghua; Liu, Ming
2013-07-01
The effects of interfacial fluorination on the metal/Al2O3/HfO2/SiO2/Si (MAHOS) memory structure have been investigated. By comparing MAHOS memories with and without interfacial fluorination, it was identified that the deterioration of the performance and reliability of MAHOS memories is mainly due to the formation of an interfacial layer that generates excess oxygen vacancies at the interface. Interfacial fluorination suppresses the growth of the interfacial layer, which is confirmed by X-ray photoelectron spectroscopy depth profile analysis, increases enhanced program/erase efficiency, and improves data retention characteristics. Moreover, it was observed that fluorination at the SiO-HfO interface achieves a more effective performance enhancement than that at the HfO-AlO interface.
Positive emotion can protect against source memory impairment.
MacKenzie, Graham; Powell, Tim F; Donaldson, David I
2015-01-01
Despite widespread belief that memory is enhanced by emotion, evidence also suggests that emotion can impair memory. Here we test predictions inspired by object-based binding theory, which states that memory enhancement or impairment depends on the nature of the information to be retrieved. We investigated emotional memory in the context of source retrieval, using images of scenes that were negative, neutral or positive in valence. At study each scene was paired with a colour and during retrieval participants reported the source colour for recognised scenes. Critically, we isolated effects of valence by equating stimulus arousal across conditions. In Experiment 1 colour borders surrounded scenes at study: memory impairment was found for both negative and positive scenes. Experiment 2 used colours superimposed over scenes at study: valence affected source retrieval, with memory impairment for negative scenes only. These findings challenge current theories of emotional memory by showing that emotion can impair memory for both intrinsic and extrinsic source information, even when arousal is equated between emotional and neutral stimuli, and by dissociating the effects of positive and negative emotion on episodic memory retrieval.
Scholey, Andrew B; Sünram-Lea, Sandra I; Greer, Joanna; Elliott, Jade; Kennedy, David O
2009-01-01
The cognition-enhancing effects of glucose administration to humans have been well-documented; however, it remains unclear whether this effect preferentially targets episodic memory or other cognitive domains. The effect of glucose on the allocation of attentional resources during memory encoding was assessed using a sensitive dual-attention paradigm. One hundred and twenty volunteers (mean age 21.60, SD 4.89, 77 females) took part in this randomised, double-blind, placebo-controlled, parallel groups study where each consumed a 25-g glucose drink or a placebo. Half of the participants in each drink condition attempted to track a moving on-screen target during auditory word presentation. The distance between the cursor and the tracking target was used as an index of attentional cost during encoding. Effects of drink and tracking on recognition memory and drink on tracking performance were assessed. Self-rated appetite and mood were co-monitored. Co-performing the tracking task significantly impaired memory performance irrespective of drink condition. In the placebo-tracking condition, there was a cost to tracking manifest as greater deviation from target during and immediately following word presentation. Compared with placebo, the glucose drink significantly improved tracking performance during encoding. There were significant time-related changes in thirst and alertness ratings but these were not differentially affected by drink or tracking conditions. Tracking but not memory was enhanced by glucose. This finding suggests that, under certain task conditions, glucose administrations does not preferentially enhance memory performance. One mechanism through which glucose acts as a cognition enhancer is through allowing greater allocation of attentional resources.
Repeated administration of fresh garlic increases memory retention in rats.
Haider, Saida; Naz, Nosheen; Khaliq, Saima; Perveen, Tahira; Haleem, Darakhshan J
2008-12-01
Garlic (Allium sativum) is regarded as both a food and a medicinal herb. Increasing attention has focused on the biological functions and health benefits of garlic as a potentially major dietary component. Chronic garlic administration has been shown to enhance memory function. Evidence also shows that garlic administration in rats affects brain serotonin (5-hydroxytryptamine [5-HT]) levels. 5-HT, a neurotransmitter involved in a number of physiological functions, is also known to enhance cognitive performance. The present study was designed to investigate the probable neurochemical mechanism responsible for the enhancement of memory following garlic administration. Sixteen adult locally bred male albino Wistar rats were divided into control (n = 8) and test (n = 8) groups. The test group was orally administered 250 mg/kg fresh garlic homogenate (FGH), while control animals received an equal amount of water daily for 21 days. Estimation of plasma free and total tryptophan (TRP) and whole brain TRP, 5-HT, and 5-hydroxyindole acetic acid (5-HIAA) was determined by high-performance liquid chromatography with electrochemical detection. For assessment of memory, a step-through passive avoidance paradigm (electric shock avoidance) was used. The results showed that the levels of plasma free TRP significantly increased (P < .01) and plasma total TRP significantly decreased (P < .01) in garlic-treated rats. Brain TRP, 5-HT, and 5-HIAA levels were also significantly increased following garlic administration. A significant improvement in memory function was exhibited by garlic-treated rats in the passive avoidance test. Increased brain 5-HT levels were associated with improved cognitive performance. The present results, therefore, demonstrate that the memory-enhancing effect of garlic may be associated with increased brain 5-HT metabolism in rats. The results further support the use of garlic as a food supplement for the enhancement of memory.
Ferree, Nikole K; Cahill, Larry
2009-03-01
Spontaneous intrusive recollections (SIRs) follow traumatic events in clinical and non-clinical populations. To determine whether any relationship exists between SIRs and enhanced memory for emotional events, participants viewed emotional or neutral films, had their memory for the films tested two days later, and estimated the number of SIRs they experienced for each film. SIR frequency related positively to memory strength, an effect more pronounced in the emotional condition. These findings represent the first demonstration of a relationship between SIRs occurring after an emotional experience and subsequent memory strength for that experience. The results are consistent with the possibility that emotional arousal leads both to elevated SIR frequency and better memory, and that the covert rehearsal associated with SIRs enhances memory for emotional relative to neutral stimuli. Additional evidence of menstrual cycle influences on SIR incidence in female participants appears to merit consideration in future work.
Ferree, Nikole K.; Cahill, Larry
2009-01-01
Spontaneous intrusive recollections (SIRs) follow traumatic events in clinical and non-clinical populations. To determine whether any relationship exists between SIRs and enhanced memory for emotional events, participants viewed emotional or neutral films, had their memory for the films tested two days later, and estimated the number of SIRs they experienced for each film. SIR frequency related positively to memory strength, an effect more pronounced in the emotional condition. These findings represent the first demonstration of a relationship between SIRs occurring after an emotional experience and subsequent memory strength for that experience. The results are consistent with the possibility that emotional arousal leads both to elevated SIR frequency and better memory, and that the covert rehearsal associated with SIRs enhances memory for emotional relative to neutral stimuli. Additional evidence of menstrual cycle influences on SIR incidence in female participants appears to merit consideration in future work. PMID:19131257
Effects of semantic relatedness on recall of stimuli preceding emotional oddballs.
Smith, Ryan M; Beversdorf, David Q
2008-07-01
Semantic and episodic memory networks function as highly interconnected systems, both relying on the hippocampal/medial temporal lobe complex (HC/MTL). Episodic memory encoding triggers the retrieval of semantic information, serving to incorporate contextual relationships between the newly acquired memory and existing semantic representations. While emotional material augments episodic memory encoding at the time of stimulus presentation, interactions between emotion and semantic memory that contribute to subsequent episodic recall are not well understood. Using a modified oddball task, we examined the modulatory effects of negative emotion on semantic interactions with episodic memory by measuring the free-recall of serially presented neutral or negative words varying in semantic relatedness. We found increased free-recall for words related to and preceding emotionally negative oddballs, suggesting that negative emotion can indirectly facilitate episodic free-recall by enhancing semantic contributions during encoding. Our findings demonstrate the ability of emotion and semantic memory to interact to mutually enhance free-recall.
Slime mold uses an externalized spatial “memory” to navigate in complex environments
Reid, Chris R.; Latty, Tanya; Dussutour, Audrey; Beekman, Madeleine
2012-01-01
Spatial memory enhances an organism’s navigational ability. Memory typically resides within the brain, but what if an organism has no brain? We show that the brainless slime mold Physarum polycephalum constructs a form of spatial memory by avoiding areas it has previously explored. This mechanism allows the slime mold to solve the U-shaped trap problem—a classic test of autonomous navigational ability commonly used in robotics—requiring the slime mold to reach a chemoattractive goal behind a U-shaped barrier. Drawn into the trap, the organism must rely on other methods than gradient-following to escape and reach the goal. Our data show that spatial memory enhances the organism’s ability to navigate in complex environments. We provide a unique demonstration of a spatial memory system in a nonneuronal organism, supporting the theory that an externalized spatial memory may be the functional precursor to the internal memory of higher organisms. PMID:23045640
Enhancing quantum sensing sensitivity by a quantum memory
Zaiser, Sebastian; Rendler, Torsten; Jakobi, Ingmar; Wolf, Thomas; Lee, Sang-Yun; Wagner, Samuel; Bergholm, Ville; Schulte-Herbrüggen, Thomas; Neumann, Philipp; Wrachtrup, Jörg
2016-01-01
In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single 13C nuclear spins. PMID:27506596
Understanding the shape-memory alloys used in orthodontics.
Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N
2011-01-01
Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA.
Sleep Enhances Recognition Memory for Conspecifics as Bound into Spatial Context
Sawangjit, Anuck; Kelemen, Eduard; Born, Jan; Inostroza, Marion
2017-01-01
Social memory refers to the fundamental ability of social species to recognize their conspecifics in quite different contexts. Sleep has been shown to benefit consolidation, especially of hippocampus-dependent episodic memory whereas effects of sleep on social memory are less well studied. Here, we examined the effect of sleep on memory for conspecifics in rats. To discriminate interactions between the consolidation of social memory and of spatial context during sleep, adult Long Evans rats performed on a social discrimination task in a radial arm maze. The Learning phase comprised three 10-min sampling sessions in which the rats explored a juvenile rat presented at a different arm of the maze in each session. Then the rats were allowed to sleep (n = 18) or stayed awake (n = 18) for 120 min. During the following 10-min Test phase, the familiar juvenile rat (of the Learning phase) was presented along with a novel juvenile rat, each rat at an opposite arm of the maze. Significant social recognition memory, as indicated by preferential exploration of the novel over the familiar conspecific, occurred only after post-learning sleep, but not after wakefulness. Sleep, compared with wakefulness, significantly enhanced social recognition during the first minute of the Test phase. However, memory expression depended on the spatial configuration: Significant social recognition memory emerged only after sleep when the rat encountered the novel conspecific at a place different from that of the familiar juvenile in the last sampling session before sleep. Though unspecific retrieval-related effects cannot entirely be excluded, our findings suggest that sleep, rather than independently enhancing social and spatial aspects of memory, consolidates social memory by acting on an episodic representation that binds the memory of the conspecific together with the spatial context in which it was recently encountered. PMID:28270755
ERIC Educational Resources Information Center
Liu, Ru-De; Ding, Yi; Gao, Bing-Cheng; Zhang, Dake
2015-01-01
This study aimed to examine the relations among property strategies, working memory, and multiplication tasks with 101 Chinese fourth-grade students. Two multiplication property strategies (associative and distributive) were compared with no strategy and demonstrated differentiated effects on students' accuracy and reaction time. Associative…
Sun, Yanmei; Lu, Junguo; Ai, Chunpeng; Wen, Dianzhong; Bai, Xuduo
2016-11-09
Memory devices based on composites of polystyrene (PS) and [6,6]-phenyl-C 61 -butyric acid methyl ester (PCBM) were investigated with bistable resistive switching behavior. Current-voltage (I-V) curves for indium-tin-oxide (ITO)/PS + PCBM/Al devices with 33 wt% PCBM showed non-volatile, rewritable, flash memory properties with a maximum ON/OFF current ratio of 1 × 10 4 , which was 100 times larger than the ON/OFF ratio of the device with 5 wt% PCBM. For ITO/PS + PCBM/Al devices with 33 wt% PCBM, the write-read-erase-read test cycles demonstrated the bistable devices with ON and OFF states at the same voltage. The programmable ON and OFF states endured up to 10 4 read pulses and possessed a retention time of over 10 5 s, indicative of the memory stability of the device. In the OFF state, the I-V curve at lower voltages up to 0.45 V was attributed to the thermionic emission mechanism, and the I-V characteristics in the applied voltage above 0.5 V dominantly followed the space-charge-limited-current behaviors. In the ON state, the curve in the applied voltage range was related to an Ohmic mechanism.
Abichandani, L. G.; Thawani, Vijay; Gharpure, K. J.; Naidu, M. U. R.; Venkat Ramana, G.
2016-01-01
Rationale. Bacopa monnieri, popularly known as Brahmi, has been traditionally used in Ayurveda since ages for its memory enhancing properties. However, data on placebo-controlled trial of Bacopa monnieri on intellectual sample is scarce. Hence this study was planned to evaluate the effect of Bacopa monnieri on memory of medical students for six weeks. Objective. To evaluate the efficacy of Bacopa monnieri on memory of medical students with six weeks' administration. Method and Material. This was a randomized double blind placebo-controlled noncrossover, parallel trial. Sixty medical students of either gender from second year of medical school, third term, regular batch, were enrolled from Government Medical College, Nagpur, India. Baseline biochemical and memory tests were done. The participants were randomly divided in two groups to receive either 150 mg of standardized extract of Bacopa monnieri (Bacognize) or matching placebo twice daily for six weeks. All baseline investigations were repeated at the end of the trial. Students were followed up for 15 days after the intervention. Results. Statistically significant improvement was seen in the tests relating to the cognitive functions with use of Bacopa monnieri. Blood biochemistry also showed a significant increase in serum calcium levels (still within normal range). PMID:27803728
Memory recall in arousing situations – an emotional von Restorff effect?
Wiswede, Daniel; Rüsseler, Jascha; Hasselbach, Simone; Münte, Thomas F
2006-01-01
Background Previous research has demonstrated a relationship between memory recall and P300 amplitude in list learning tasks, but the variables mediating this P300-recall relationship are not well understood. In the present study, subjects were required to recall items from lists consisting of 12 words, which were presented in front of pictures taken from the IAPS collection. One word per list is made distinct either by font color or by a highly arousing background IAPS picture. This isolation procedure was first used by von Restorff. Brain potentials were recorded during list presentation. Results Recall performance was enhanced for color but not for emotional isolates. Event-related brain potentials (ERP) showed a more positive P300-component for recalled non-isolated words and color-isolated words, compared to the respective non-remembered words, but not for words isolated by arousing background. Conclusion Our findings indicate that it is crucial to take emotional mediator variables into account, when using the P300 to predict later recall. Highly arousing environments might force the cognitive system to interrupt rehearsal processes in working memory, which might benefit transfer into other, more stable memory systems. The impact of attention-capturing properties of arousing background stimuli is also discussed. PMID:16863589
Scaling properties in time-varying networks with memory
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
Object representations in visual memory: evidence from visual illusions.
Ben-Shalom, Asaf; Ganel, Tzvi
2012-07-26
Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.
Neutral and emotional episodic memory: global impairment after lorazepam or scopolamine.
Kamboj, Sunjeev K; Curran, H Valerie
2006-11-01
Benzodiazepines and anticholinergic drugs have repeatedly been shown to impair episodic memory for emotionally neutral material in humans. However, their effect on memory for emotionally laden stimuli has been relatively neglected. We sought to investigate the effects of the benzodiazepine, lorazepam, and the anticholinergic, scopolamine, on incidental episodic memory for neutral and emotional components of a narrative memory task in humans. A double-blind, placebo-controlled independent group design was used with 48 healthy volunteers to examine the effects of these drugs on emotional and neutral episodic memory. As expected, the emotional memory advantage was retained for recall and recognition memory under placebo conditions. However, lorazepam and scopolamine produced anterograde recognition memory impairments on both the neutral and emotional components of the narrative, although floor effects were obtained for recall memory. Furthermore, compared with placebo, recognition memory for both central (gist) and peripheral (detail) aspects of neutral and emotional elements of the narrative was poorer after either drug. Benzodiazepine-induced GABAergic enhancement or scopolamine-induced cholinergic hypofunction results in a loss of the enhancing effect of emotional arousal on memory. Furthermore, lorazepam- and scopolamine-induced memory impairment for both gist (which is amygdala dependent) and detail raises the possibility that their effects on emotional memory do not depend only on the amygdala. We discuss the results with reference to potential clinical/forensic implications of processing emotional memories under conditions of globally impaired episodic memory.
Xiang, Lan; Cao, Xue-Li; Xing, Tian-Yan; Mori, Daisuke; Tang, Rui-Qi; Li, Jing; Gao, Li-Juan; Qi, Jian-Hua
2016-01-01
Long-term use of fish oil (FO) is known to induce oxidative stress and increase the risk of Alzheimer’s disease in humans. In the present study, peanut skin extract (PSE), which has strong antioxidant capacity, was mixed with FO to reduce its side effects while maintaining its beneficial properties. Twelve-week Institute of Cancer Research (ICR) mice were used to conduct animal behavior tests in order to evaluate the memory-enhancing ability of the mixture of peanut skin extract and fish oil (MPF). MPF significantly increased alternations in the Y-maze and cognitive index in the novel object recognition test. MPF also improved performance in the water maze test. We further sought to understand the mechanisms underlying these effects. A significant decrease in superoxide dismutase (SOD) activity and an increase in malonyldialdehyde (MDA) in plasma were observed in the FO group. The MPF group showed reduced MDA level and increased SOD activity in the plasma, cortex and hippocampus. Furthermore, the gene expression levels of brain-derived neurotrophic factor (BDNF) and cAMP responsive element-binding protein (CREB) in the hippocampus were increased in the MPF group, while phosphorylation of protein kinase B (AKT), extracellular signal-regulated kinase (ERK) and CREB in the hippocampus were enhanced. MPF improves memory in mice via modulation of anti-oxidative stress and activation of BDNF/ERK/CREB signaling pathways. PMID:27136583
Robust Adaptive Data Encoding and Restoration
NASA Technical Reports Server (NTRS)
Park, Stephen K.; Rahman, Zia-ur; Halyo, Nesim
2000-01-01
This is the final report for NASA cooperative agreement and covers the period from 01 October, 1997 to 11 April, 2000. The research during this period was performed in three primary, but related, areas. 1. Evaluation of integrated information adaptive imaging. 2. Improvements in memory utilization and performance of the multiscale retinex with color restoration (MSRCR). 3. Commencement of a theoretical study to evaluate the non-linear retinex image enhancement technique. The research resulted in several publications, and an intellectual property disclosure to the NASA patent council in May, 1999.
Mazzola, Carmen; Medalie, Julie; Scherma, Maria; Panlilio, Leigh V.; Solinas, Marcello; Tanda, Gianluigi; Drago, Filippo; Cadet, Jean Lud; Goldberg, Steven R.; Yasar, Sevil
2009-01-01
Inhibitors of fatty acid amide hydrolase (FAAH) increase endogenous levels of anandamide (a cannabinoid CB1-receptor ligand) and oleoylethanolamide and palmitoylethanolamide (OEA and PEA, ligands for α-type peroxisome proliferator-activated nuclear receptors, PPAR-α) when and where they are naturally released in the brain. Using a passive-avoidance task in rats, we found that memory acquisition was enhanced by the FAAH inhibitor URB597 or by the PPAR-α agonist WY14643, and these enhancements were blocked by the PPAR-α antagonist MK886. These findings demonstrate novel mechanisms for memory enhancement by activation of PPAR-α, either directly by administering a PPAR-α agonist or indirectly by administering a FAAH inhibitor. PMID:19403796
Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA
NASA Astrophysics Data System (ADS)
Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei
2018-01-01
In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.
Jäncke, Lutz
2008-08-08
Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory.
Self-Referencing Enhances Memory Specificity with Age
Hamami, Ayala; Serbun, Sarah J.; Gutchess, Angela H.
2011-01-01
Self-referencing has been identified as an advantageous mnemonic strategy for young and older adults. However, little research has investigated the ways in which self-referencing may influence older adults’ memory for details, which is typically impaired with age, beyond memory for the item itself. Experiment 1 assessed the effects of self- and other-referencing on memory for visually detailed pictures of objects in thirty-two young and thirty-two older adults. Results indicate that self- and close other-referencing similarly enhance general (item) and specific (detail) recognition for both young and older adults relative to the distant other condition. Experiment 2 extended these findings to source memory, with young and older adults encoding verbal information in self-referent, semantic, and structural conditions. Findings suggest that self-referencing provides an age-equivalent boost in general memory and specific memory for specific source details. We conclude that the mnemonic benefits of referencing the self extend to specific memory for visual and verbal information across the lifespan. PMID:21480719
Hirshman, Elliot; Wells, Ellen; Wierman, Margaret E; Anderson, Benjamin; Butler, Andrew; Senholzi, Meredith; Fisher, Julia
2003-03-01
In this article, the theoretical distinction between recognition memory decision and discrimination processes is used to explore the effect of dehydroepiandrosterone (DHEA) in postmenopausal women. DHEA is an adrenal steroid that diminishes with aging. It has enhanced memory in laboratory animals. An 8-week placebo-controlled, double-blind experiment in which 30 women (ages 39-70) received a 50-mg/day oral dose of DHEA for 4 weeks demonstrated that DHEA made subjects more conservative (i.e., less likely to call test items "old") in their recognition memory decisions and enhanced recognition memory discrimination for items presented briefly. The former result may reflect an empirical regularity (Hirshman, 1995) in which recent strong memory experiences make participants more conservative. The latter result may reflect the effect of DHEA on visual perception, with consequent effects on memory. These results suggest the methodological importance of focusing on decision processes when examining the effects of hormones on memory.
Holographic implementation of a binary associative memory for improved recognition
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somnath; Ghosh, Ajay; Datta, Asit K.
1998-03-01
Neural network associate memory has found wide application sin pattern recognition techniques. We propose an associative memory model for binary character recognition. The interconnection strengths of the memory are binary valued. The concept of sparse coding is sued to enhance the storage efficiency of the model. The question of imposed preconditioning of pattern vectors, which is inherent in a sparsely coded conventional memory, is eliminated by using a multistep correlation technique an the ability of correct association is enhanced in a real-time application. A potential optoelectronic implementation of the proposed associative memory is also described. The learning and recall is possible by using digital optical matrix-vector multiplication, where full use of parallelism and connectivity of optics is made. A hologram is used in the experiment as a longer memory (LTM) for storing all input information. The short-term memory or the interconnection weight matrix required during the recall process is configured by retrieving the necessary information from the holographic LTM.
Gai, Yunchao; Liu, Ze; Cervantes-Sandoval, Isaac; Davis, Ronald L.
2016-01-01
SUMMARY The mechanisms that constrain memory formation are of special interest because they provide insights into the brain’s memory management systems and potential avenues for correcting cognitive disorders. RNAi knockdown in the Drosophila mushroom body neurons (MBn) of a newly discovered memory suppressor gene, Solute Carrier DmSLC22A, a member of the organic cation transporter family, enhances olfactory memory expression, while overexpression inhibits it. The protein localizes to the dendrites of the MBn, surrounding the presynaptic terminals of cholinergic afferent fibers from projection neurons (Pn). Cell-based expression assays show that this plasma membrane protein transports cholinergic compounds with the highest affinity among several in vitro substrates. Feeding flies choline or inhibiting acetylcholinesterase in Pn enhances memory; an effect blocked by overexpression of the transporter in the MBn. The data argue that DmSLC22A is a memory suppressor protein that limits memory formation by helping to terminate cholinergic neurotransmission at the Pn:MBn synapse. PMID:27146270
Optimal Phase Oscillatory Network
NASA Astrophysics Data System (ADS)
Follmann, Rosangela
2013-03-01
Important topics as preventive detection of epidemics, collective self-organization, information flow and systemic robustness in clusters are typical examples of processes that can be studied in the context of the theory of complex networks. It is an emerging theory in a field, which has recently attracted much interest, involving the synchronization of dynamical systems associated to nodes, or vertices, of the network. Studies have shown that synchronization in oscillatory networks depends not only on the individual dynamics of each element, but also on the combination of the topology of the connections as well as on the properties of the interactions of these elements. Moreover, the response of the network to small damages, caused at strategic points, can enhance the global performance of the whole network. In this presentation we explore an optimal phase oscillatory network altered by an additional term in the coupling function. The application to associative-memory network shows improvement on the correct information retrieval as well as increase of the storage capacity. The inclusion of some small deviations on the nodes, when solutions are attracted to a false state, results in additional enhancement of the performance of the associative-memory network. Supported by FAPESP - Sao Paulo Research Foundation, grant number 2012/12555-4
Wang, Bo; Sun, Bukuan
2017-03-01
The current study examined whether the effect of post-encoding emotional arousal on item memory extends to reality-monitoring source memory and, if so, whether the effect depends on emotionality of learning stimuli and testing format. In Experiment 1, participants encoded neutral words and imagined or viewed their corresponding object pictures. Then they watched a neutral, positive, or negative video. The 24-hour delayed test showed that emotional arousal had little effect on both item memory and reality-monitoring source memory. Experiment 2 was similar except that participants encoded neutral, positive, and negative words and imagined or viewed their corresponding object pictures. The results showed that positive and negative emotional arousal induced after encoding enhanced consolidation of item memory, but not reality-monitoring source memory, regardless of emotionality of learning stimuli. Experiment 3, identical to Experiment 2 except that participants were tested only on source memory for all the encoded items, still showed that post-encoding emotional arousal had little effect on consolidation of reality-monitoring source memory. Taken together, regardless of emotionality of learning stimuli and regardless of testing format of source memory (conjunction test vs. independent test), the facilitatory effect of post-encoding emotional arousal on item memory does not generalize to reality-monitoring source memory.
The Role of Sex in Memory Function: Considerations and Recommendations in the Context of Exercise.
Loprinzi, Paul D; Frith, Emily
2018-05-31
There is evidence to suggest that biological sex plays a critical role in memory function, with sex differentially influencing memory type. In this review, we detail the current evidence evaluating sex-specific effects on various memory types. We also discuss potential mechanisms that explain these sex-specific effects, which include sex differences in neuroanatomy, neurochemical differences, biological differences, and cognitive and affect-related differences. Central to this review, we also highlight that, despite the established sex differences in memory, there is little work directly comparing whether males and females have a differential exercise-induced effect on memory function. As discussed herein, such a differential effect is plausible given the clear sex-specific effects on memory, exercise response, and molecular mediators of memory. We emphasize that future work should be carefully powered to detect sex differences. Future research should also examine these potential exercise-related sex-specific effects for various memory types and exercise intensities and modalities. This will help enhance our understanding of whether sex indeed moderates the effects of exercise and memory function, and as such, will improve our understanding of whether sex-specific, memory-enhancing interventions should be developed, implemented, and evaluated.
Making lasting memories: Remembering the significant
McGaugh, James L.
2013-01-01
Although forgetting is the common fate of most of our experiences, much evidence indicates that emotional arousal enhances the storage of memories, thus serving to create, selectively, lasting memories of our more important experiences. The neurobiological systems mediating emotional arousal and memory are very closely linked. The adrenal stress hormones epinephrine and corticosterone released by emotional arousal regulate the consolidation of long-term memory. The amygdala plays a critical role in mediating these stress hormone influences. The release of norepinephrine in the amygdala and the activation of noradrenergic receptors are essential for stress hormone-induced memory enhancement. The findings of both animal and human studies provide compelling evidence that stress-induced activation of the amygdala and its interactions with other brain regions involved in processing memory play a critical role in ensuring that emotionally significant experiences are well-remembered. Recent research has determined that some human subjects have highly superior autobiographic memory of their daily experiences and that there are structural differences in the brains of these subjects compared with the brains of subjects who do not have such memory. Understanding of neurobiological bases of such exceptional memory may provide additional insights into the processes underlying the selectivity of memory. PMID:23754441
Guo, Zhiqiang; Wu, Xiuqin; Li, Weifeng; Jones, Jeffery A; Yan, Nan; Sheft, Stanley; Liu, Peng; Liu, Hanjun
2017-10-25
Although working memory (WM) is considered as an emergent property of the speech perception and production systems, the role of WM in sensorimotor integration during speech processing is largely unknown. We conducted two event-related potential experiments with female and male young adults to investigate the contribution of WM to the neurobehavioural processing of altered auditory feedback during vocal production. A delayed match-to-sample task that required participants to indicate whether the pitch feedback perturbations they heard during vocalizations in test and sample sequences matched, elicited significantly larger vocal compensations, larger N1 responses in the left middle and superior temporal gyrus, and smaller P2 responses in the left middle and superior temporal gyrus, inferior parietal lobule, somatosensory cortex, right inferior frontal gyrus, and insula compared with a control task that did not require memory retention of the sequence of pitch perturbations. On the other hand, participants who underwent extensive auditory WM training produced suppressed vocal compensations that were correlated with improved auditory WM capacity, and enhanced P2 responses in the left middle frontal gyrus, inferior parietal lobule, right inferior frontal gyrus, and insula that were predicted by pretraining auditory WM capacity. These findings indicate that WM can enhance the perception of voice auditory feedback errors while inhibiting compensatory vocal behavior to prevent voice control from being excessively influenced by auditory feedback. This study provides the first evidence that auditory-motor integration for voice control can be modulated by top-down influences arising from WM, rather than modulated exclusively by bottom-up and automatic processes. SIGNIFICANCE STATEMENT One outstanding question that remains unsolved in speech motor control is how the mismatch between predicted and actual voice auditory feedback is detected and corrected. The present study provides two lines of converging evidence, for the first time, that working memory cannot only enhance the perception of vocal feedback errors but also exert inhibitory control over vocal motor behavior. These findings represent a major advance in our understanding of the top-down modulatory mechanisms that support the detection and correction of prediction-feedback mismatches during sensorimotor control of speech production driven by working memory. Rather than being an exclusively bottom-up and automatic process, auditory-motor integration for voice control can be modulated by top-down influences arising from working memory. Copyright © 2017 the authors 0270-6474/17/3710324-11$15.00/0.
Rendeiro, Catarina; Vauzour, David; Rattray, Marcus; Waffo-Téguo, Pierre; Mérillon, Jean Michel; Butler, Laurie T.; Williams, Claire M.; Spencer, Jeremy P. E.
2013-01-01
Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods. PMID:23723987
Heat stress enhances LTM formation in Lymnaea: role of HSPs and DNA methylation.
Sunada, Hiroshi; Riaz, Hamza; de Freitas, Emily; Lukowiak, Kai; Swinton, Cayley; Swinton, Erin; Protheroe, Amy; Shymansky, Tamila; Komatsuzaki, Yoshimasa; Lukowiak, Ken
2016-05-01
Environmentally relevant stressors alter the memory-forming process in Lymnaea following operant conditioning of aerial respiration. One such stressor is heat. Previously, we found that following a 1 h heat shock, long-term memory (LTM) formation was enhanced. We also had shown that the heat stressor activates at least two heat shock proteins (HSPs): HSP40 and HSP70. Here, we tested two hypotheses: (1) the production of HSPs is necessary for enhanced LTM formation; and (2) blocking DNA methylation prevents the heat stressor-induced enhancement of LTM formation. We show here that the enhancing effect of the heat stressor on LTM formation occurs even if snails experienced the stressor 3 days previously. We further show that a flavonoid, quercetin, which inhibits HSP activation, blocks the enhancing effect of the heat stressor on LTM formation. Finally, we show that injection of a DNA methylation blocker, 5-AZA, before snails experience the heat stressor prevents enhancement of memory formation. © 2016. Published by The Company of Biologists Ltd.
Jones, Emma K; Sünram-Lea, Sandra I; Wesnes, Keith A
2012-02-01
The role of carbohydrates on mood and cognition is fairly well established, however research examining the behavioural effects of the other macronutrients is limited. The current study compared the effects of a 25 g glucose drink to energetically matched protein and fat drinks and an inert placebo. Following a blind, placebo-controlled, randomised crossover design, 18 healthy young adults consumed drinks containing fat, glucose, protein and placebo. Cognitive performance was examined at baseline and again 15- and 60 min post drink. Mood was assessed at baseline and then 10-, 35- and 80 min post drink. Attention and speed were enhanced 15 min following fat or glucose ingestion and working memory was enhanced 15 min following protein ingestion. Sixty minutes post drink memory enhancements were observed after protein and memory impairment was observed following glucose. All drinks increased ratings of alertness. The findings suggest that macronutrients: (i) have different windows of opportunity for effects (ii) target different cognitive domains. Copyright © 2012 Elsevier B.V. All rights reserved.
Reconciling findings of emotion-induced memory enhancement and impairment of preceding items
Knight, Marisa; Mather, Mara
2009-01-01
A large body of work reveals that people remember emotionally arousing information better than neutral information. However, previous research reveals contradictory effects of emotional events on memory for neutral events that precede or follow them: in some studies emotionally arousing items impair memory for immediately preceding or following items and in others arousing items enhance memory for preceding items. By demonstrating both emotion-induced enhancement and impairment, Experiments 1 and 2 clarified the conditions under which these effects are likely to occur. The results suggest that emotion-induced enhancement is most likely to occur for neutral items that: (1) precede (and so are poised to predict the onset of) emotionally arousing items, (2) have high attentional weights at encoding, and (3) are tested after a delay period of a week rather than within the same experiment session. In contrast, emotion-induced impairment is most likely to occur for neutral items near the onset of emotional arousal that are overshadowed by highly activated competing items during encoding. PMID:20001121
Image detection and compression for memory efficient system analysis
NASA Astrophysics Data System (ADS)
Bayraktar, Mustafa
2015-02-01
The advances in digital signal processing have been progressing towards efficient use of memory and processing. Both of these factors can be utilized efficiently by using feasible techniques of image storage by computing the minimum information of image which will enhance computation in later processes. Scale Invariant Feature Transform (SIFT) can be utilized to estimate and retrieve of an image. In computer vision, SIFT can be implemented to recognize the image by comparing its key features from SIFT saved key point descriptors. The main advantage of SIFT is that it doesn't only remove the redundant information from an image but also reduces the key points by matching their orientation and adding them together in different windows of image [1]. Another key property of this approach is that it works on highly contrasted images more efficiently because it`s design is based on collecting key points from the contrast shades of image.
Allenstein, Uta; Selle, Susanne; Tadsen, Meike; Patzig, Christian; Höche, Thomas; Zink, Mareike; Mayr, Stefan G
2015-07-22
Durable, mechanically robust osseointegration of metal implants poses one of the largest challenges in contemporary orthopedics. The application of biomimetic hydroxyapatite (HAp) coatings as mediators for enhanced mechanical coupling to natural bone constitutes a promising approach. Motivated by recent advances in the field of smart metals that might open the venue for alternate therapeutic concepts, we explore their mechanical coupling to sputter-deposited HAp layers in a combined experimental-theoretical study. While experimental delamination tests and comprehensive structural characterization, including high-resolution transmission electron microscopy, are utilized to establish structure-property relationships, density functional theory based total energy calculations unravel the underlying physics and chemistry of bonding and confirm the experimental findings. Experiments and modeling indicate that sputter-deposited HAp coatings are strongly adherent to the exemplary ferromagnetic shape-memory alloys, Ni-Mn-Ga and Fe-Pd, with delamination stresses and interface bonding strength exceeding the physiological scales by orders of magnitude.
Ejaz Ahmed, Md; Khan, Mohd Moshahid; Javed, Hayate; Vaibhav, Kumar; Khan, Andleeb; Tabassum, Rizwana; Ashafaq, Mohammad; Islam, Farah; Safhi, Mohammed M; Islam, Fakhrul
2013-03-01
Alzheimer's disease (AD) is a progressive neurodegenerative disorder resulting in cognitive decline and enhancement of oxidative loads in the brain. Flavonoids have been considered to exert human health benefits by anti-oxidant and anti-inflammatory properties. The present study is aimed to elucidate the neuroprotective effect of catechin hydrate (CH), a natural flavanoid with potential antioxidant and anti-inflammatory properties, on intracerebroventricular streptozotocin (ICV-STZ) induced neuronal loss and memory impairment. To test this hypothesis, male Wistar rats were pretreated with CH (10 and 20mg/kgb wt) orally once daily for 21 days and then bilaterally injected with ICV-STZ (3mg/kgb wt), while sham group rats receive the same volume of vehicle. After 2 weeks of ICV-STZ infusion, rats were tested for cognitive performance using Morris water maze (MWM) test and then sacrifice for biochemical and histopathological assays. CH was found to be successful in upregulating the antioxidant status and prevented the memory loss. The expression of choline acetyl transferase (ChAT) was decreased in ICV-STZ group and CH pretreatment increases the expression of ChAT. Moreover, inflammatory mediators like TNF-α, IL-1β levels and expression of iNOS were significantly attenuated by CH pretreatment. The study suggests that CH is effective in preventing memory loss, ameliorating the oxidative stress and might be beneficial for the treatment of sporadic dementia of Alzheimer's type (SDAT). Copyright © 2013 Elsevier Ltd. All rights reserved.
Bassani, Taysa B; Turnes, Joelle M; Moura, Eric L R; Bonato, Jéssica M; Cóppola-Segovia, Valentín; Zanata, Silvio M; Oliveira, Rúbia M M W; Vital, Maria A B F
2017-09-29
Curcumin is a natural polyphenol with evidence of antioxidant, anti-inflammatory and neuroprotective properties. Recent evidence also suggests that curcumin increases cognitive performance in animal models of dementia, and this effect would be related to its capacity to enhance adult neurogenesis. The aim of this study was to test the hypothesis that curcumin treatment would be able to preserve cognition by increasing neurogenesis and decreasing neuroinflammation in the model of dementia of Alzheimer's type induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) in Wistar rats. The animals were injected with ICV-STZ or vehicle and curcumin treatments (25, 50 and 100mg/kg, gavage) were performed for 30days. Four weeks after surgery, STZ-lesioned animals exhibited impairments in short-term spatial memory (Object Location Test (OLT) and Y maze) and short-term recognition memory (Object Recognition Test - ORT), decreased cell proliferation and immature neurons (Ki-67- and doublecortin-positive cells, respectively) in the subventricular zone (SVZ) and dentate gyrus (DG) of hippocampus, and increased immunoreactivity for the glial markers GFAP and Iba-1 (neuroinflammation). Curcumin treatment in the doses of 50 and 100mg/kg prevented the deficits in recognition memory in the ORT, but not in spatial memory in the OLT and Y maze. Curcumin treatment exerted only slight improvements in neuroinflammation, resulting in no improvements in hippocampal and subventricular neurogenesis. These results suggest a positive effect of curcumin in object recognition memory which was not related to hippocampal neurogenesis. Copyright © 2017 Elsevier B.V. All rights reserved.
Beneficial effects of glycine (bioglycin) on memory and attention in young and middle-aged adults.
File, S E; Fluck, E; Fernandes, C
1999-12-01
The N-methyl D-aspartate receptor complex is involved in the mechanism of long-term potentiation, which is thought to be the biological basis of learning and memory. This complex can be manipulated in a number of ways, one of which is through the strychnine-insensitive glycine receptor coagonist site. The effects of Bioglycin(Konapharma, Pratteln, Switzerland), a biologically active form of the amino acid glycine, were therefore studied in healthy students (mean age, 20.7 years) and middle-aged men (mean age, 58.9 years) with tests that measured attention, memory and mood, using a double-blind, randomized, crossover design. Compared with the young group, the middle-aged group had significantly poorer verbal episodic memory, focused, divided, and sustained attention; they also differed in their subjective responses at the end of testing. Bioglycin significantly improved retrieval from episodic memory in both the young and the middle-aged groups, but it did not affect focused or divided attention. However, the middle-aged men significantly benefited from Bioglycin in the sustained-attention task. The effects of Bioglycin differed from those of other cognitive enhancers in that it was without stimulant properties or significant effects on mood, and it primarily improved memory rather than attention. It is likely to be of benefit in young or older people in situations where high retrieval of information is needed or when performance is impaired by jet lag, shift work, or disrupted sleep. It may also benefit the impaired retrieval shown in patients with schizophrenia, Parkinson's disease, and Huntington's disease.
How the amygdala affects emotional memory by altering brain network properties.
Hermans, Erno J; Battaglia, Francesco P; Atsak, Piray; de Voogd, Lycia D; Fernández, Guillén; Roozendaal, Benno
2014-07-01
The amygdala has long been known to play a key role in supporting memory for emotionally arousing experiences. For example, classical fear conditioning depends on neural plasticity within this anterior medial temporal lobe region. Beneficial effects of emotional arousal on memory, however, are not restricted to simple associative learning. Our recollection of emotional experiences often includes rich representations of, e.g., spatiotemporal context, visceral states, and stimulus-response associations. Critically, such memory features are known to bear heavily on regions elsewhere in the brain. These observations led to the modulation account of amygdala function, which postulates that amygdala activation enhances memory consolidation by facilitating neural plasticity and information storage processes in its target regions. Rodent work in past decades has identified the most important brain regions and neurochemical processes involved in these modulatory actions, and neuropsychological and neuroimaging work in humans has produced a large body of convergent data. Importantly, recent methodological developments make it increasingly realistic to monitor neural interactions underlying such modulatory effects as they unfold. For instance, functional connectivity network modeling in humans has demonstrated how information exchanges between the amygdala and specific target regions occur within the context of large-scale neural network interactions. Furthermore, electrophysiological and optogenetic techniques in rodents are beginning to make it possible to quantify and even manipulate such interactions with millisecond precision. In this paper we will discuss that these developments will likely lead to an updated view of the amygdala as a critical nexus within large-scale networks supporting different aspects of memory processing for emotionally arousing experiences. Copyright © 2014 Elsevier Inc. All rights reserved.
Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion
2013-01-01
Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8-12 years) and adolescents (n = 12; 13-17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated.
Pinabiaux, Charlotte; Hertz-Pannier, Lucie; Chiron, Catherine; Rodrigo, Sébastian; Jambaqué, Isabelle; Noulhiane, Marion
2013-01-01
Enhanced memory for emotional faces is a significant component of adaptive social interactions, but little is known on its neural developmental correlates. We explored the role of amygdaloid complex (AC) and medial temporal lobe (MTL) in emotional memory recognition across development, by comparing fMRI activations of successful memory encoding of fearful and neutral faces in children (n = 12; 8–12 years) and adolescents (n = 12; 13–17 years). Memory for fearful faces was enhanced compared with neutral ones in adolescents, as opposed to children. In adolescents, activations associated with successful encoding of fearful faces were centered on baso-lateral AC nuclei, hippocampus, enthorhinal and parahippocampal cortices. In children, successful encoding of fearful faces relied on activations of centro-mesial AC nuclei, which was not accompanied by functional activation of MTL memory structures. Successful encoding of neutral faces depended on activations in anterior MTL region (hippocampal head and body) in adolescents, but more posterior ones (hippocampal tail and parahippocampal cortex) in children. In conclusion, two distinct functional specializations emerge from childhood to adolescence and result in the enhancement of memory for these particular stimuli: the specialization of baso-lateral AC nuclei, which is associated with the expertise in processing emotional facial expression, and which is intimately related to the specialization of MTL memory network. How the interplay between specialization of AC nuclei and of MTL memory structures is fundamental for the edification of social interactions remains to be elucidated. PMID:24399958
Soyasaponin I Improved Neuroprotection and Regeneration in Memory Deficient Model Rats
Hong, Sung-Woon; Heo, Hwon; Yang, Jeong-hwa; Han, Maeum; Kim, Dong-Hyun; Kwon, Yunhee Kim
2013-01-01
Soy (Glycine Max Merr, family Leguminosae) has been reported to possess anti-cancer, anti-lipidemic, estrogen-like, and memory-enhancing effects. We investigated the memory-enhancing effects and the underlying mechanisms of soyasaponin I (soya-I), a major constituent of soy. Impaired learning and memory were induced by injecting ibotenic acid into the entorhinal cortex of adult rat brains. The effects of soya-I were evaluated by measuring behavioral tasks and neuronal regeneration of memory-deficient rats. Oral administration of soya-I exhibited significant memory-enhancing effects in the passive avoidance, Y-maze, and Morris water maze tests. Soya-Ι also increased BrdU incorporation into the dentate gyrus and the number of cell types (GAD67, ChAT, and VGluT1) in the hippocampal region of memory-deficient rats, whereas the number of reactive microglia (OX42) decreased. The mechanism underlying memory improvement was assessed by detecting the differentiation and proliferation of neural precursor cells (NPCs) prepared from the embryonic hippocampus (E16) of timed-pregnant Sprague-Dawley rats using immunocytochemical staining and immunoblotting analysis. Addition of soya-Ι in the cultured NPCs significantly elevated the markers for cell proliferation (Ki-67) and neuronal differentiation (NeuN, TUJ1, and MAP2). Finally, soya-I increased neurite lengthening and the number of neurites during the differentiation of NPCs. Soya-Ι may improve hippocampal learning and memory impairment by promoting proliferation and differentiation of NPCs in the hippocampus through facilitation of neuronal regeneration and minimization of neuro-inflammation. PMID:24324703
Tuscher, Jennifer J.; Szinte, Julia S.; Starrett, Joseph R.; Krentzel, Amanda A.; Fortress, Ashley M.; Remage-Healey, Luke; Frick, Karyn M.
2016-01-01
The potent estrogen 17β-Estradiol (E2) plays a critical role in mediating hippocampal function, yet the precise mechanisms through which E2 enhances hippocampal memory remain unclear. In young adult female rodents, the beneficial effects of E2 on memory are generally attributed to ovarian-synthesized E2. However, E2 is also synthesized in the adult brain in numerous species, where it regulates synaptic plasticity and is synthesized in response to experiences such as exposure to females or conspecific song. Although de novo E2 synthesis has been demonstrated in rodent hippocampal cultures, little is known about the functional role of local E2 synthesis in mediating hippocampal memory function. Therefore, the present study examined the role of hippocampal E2 synthesis in hippocampal memory consolidation. Using bilateral dorsal hippocampal infusions of the aromatase inhibitor letrozole, we first found that blockade of dorsal hippocampal E2 synthesis impaired hippocampal memory consolidation. We next found that elevated levels of E2 in dorsal hippocampus observed 30 min after object training were blocked by dorsal hippocampal infusion of letrozole, suggesting that behavioral experience increases acute and local E2 synthesis. Finally, aromatase inhibition did not prevent exogenous E2 from enhancing hippocampal memory consolidation, indicating that hippocampal E2 synthesis is not necessary for exogenous E2 to enhance hippocampal memory. Combined, these data are consistent with the hypothesis that hippocampally-synthesized E2 is necessary for hippocampus-dependent memory consolidation in rodents. PMID:27178577
Dynamics of Hippocampal Protein Expression During Long-term Spatial Memory Formation*
Borovok, Natalia; Nesher, Elimelech; Levin, Yishai; Reichenstein, Michal; Pinhasov, Albert
2016-01-01
Spatial memory depends on the hippocampus, which is particularly vulnerable to aging. This vulnerability has implications for the impairment of navigation capacities in older people, who may show a marked drop in performance of spatial tasks with advancing age. Contemporary understanding of long-term memory formation relies on molecular mechanisms underlying long-term synaptic plasticity. With memory acquisition, activity-dependent changes occurring in synapses initiate multiple signal transduction pathways enhancing protein turnover. This enhancement facilitates de novo synthesis of plasticity related proteins, crucial factors for establishing persistent long-term synaptic plasticity and forming memory engrams. Extensive studies have been performed to elucidate molecular mechanisms of memory traces formation; however, the identity of plasticity related proteins is still evasive. In this study, we investigated protein turnover in mouse hippocampus during long-term spatial memory formation using the reference memory version of radial arm maze (RAM) paradigm. We identified 1592 proteins, which exhibited a complex picture of expression changes during spatial memory formation. Variable linear decomposition reduced significantly data dimensionality and enriched three principal factors responsible for variance of memory-related protein levels at (1) the initial phase of memory acquisition (165 proteins), (2) during the steep learning improvement (148 proteins), and (3) the final phase of the learning curve (123 proteins). Gene ontology and signaling pathways analysis revealed a clear correlation between memory improvement and learning phase-curbed expression profiles of proteins belonging to specific functional categories. We found differential enrichment of (1) neurotrophic factors signaling pathways, proteins regulating synaptic transmission, and actin microfilament during the first day of the learning curve; (2) transcription and translation machinery, protein trafficking, enhancement of metabolic activity, and Wnt signaling pathway during the steep phase of memory formation; and (3) cytoskeleton organization proteins. Taken together, this study clearly demonstrates dynamic assembly and disassembly of protein-protein interaction networks depending on the stage of memory formation engrams. PMID:26598641
The Testing Effect under Divided Attention
ERIC Educational Resources Information Center
Buchin, Zachary L.; Mulligan, Neil W.
2017-01-01
Memory retrieval often enhances later memory compared with restudying (i.e., the testing effect), indicating that retrieval does not simply reveal but also modifies memory representations. Dividing attention (DA) during encoding greatly disrupts later memory performance while DA during retrieval typically has modest effects--but what of the…
Alkozei, Anna; Smith, Ryan; Dailey, Natalie S; Bajaj, Sahil; Killgore, William D S
2017-01-01
Acute exposure to light within the blue wavelengths has been shown to enhance alertness and vigilance, and lead to improved speed on reaction time tasks, possibly due to activation of the noradrenergic system. It remains unclear, however, whether the effects of blue light extend beyond simple alertness processes to also enhance other aspects of cognition, such as memory performance. The aim of this study was to investigate the effects of a thirty minute pulse of blue light versus placebo (amber light) exposure in healthy normally rested individuals in the morning during verbal memory consolidation (i.e., 1.5 hours after memory acquisition) using an abbreviated version of the California Verbal Learning Test (CVLT-II). At delayed recall, individuals who received blue light (n = 12) during the consolidation period showed significantly better long-delay verbal recall than individuals who received amber light exposure (n = 18), while controlling for the effects of general intelligence, depressive symptoms and habitual wake time. These findings extend previous work demonstrating the effect of blue light on brain activation and alertness to further demonstrate its effectiveness at facilitating better memory consolidation and subsequent retention of verbal material. Although preliminary, these findings point to a potential application of blue wavelength light to optimize memory performance in healthy populations. It remains to be determined whether blue light exposure may also enhance performance in clinical populations with memory deficits.
Levin, Natali; Kritman, Milly; Maroun, Mouna; Akirav, Irit
2017-09-01
Studies about reconsolidation of conditioned fear memories have shown that pharmacological manipulation at memory reactivation can attenuate or enhance the subsequent expression of the conditioned fear response. Here we examined the effects of a single injection of the mTOR inhibitor rapamycin (Rap) into the infralimbic (IL) and prelimbic (PL) areas [which compose the ventromedial prefrontal cortex (PFC)] on reconsolidation and extinction of a traumatic fear memory. We found opposite effects of Rap infused into the PL and IL on reconsolidation and extinction: intra-PL Rap and systemic Rap impaired reconsolidation and facilitated extinction whereas intra-IL Rap enhanced reconsolidation and impaired extinction. These effects persisted at least 10 days after reactivation. Shock exposure induced anxiety-like behavior and impaired working memory and intra-IL and -PL Rap normalized these effects. Finally, when measured after fear retrieval, shocked rats exhibited reduced and increased phosphorylated p70s6K levels in the IL and basolateral amygdala, respectively. No effect on phosphorylated p70s6K levels was observed in the PL. The study points to the differential roles of the IL and PL in memory reconsolidation and extinction. Moreover, inhibiting mTOR via rapamycin following reactivation of a fear memory may be a novel approach in attenuating enhanced fear memories. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.
Borghans, Laura G J M; Sambeth, Anke; Prickaerts, Jos; Ramaekers, Johannes G; Blokland, Arjan
2018-06-07
After stimulation with nitric oxide, soluble guanylate cyclase (sGC) produces cyclic guanosine monophosphate (cGMP), which stimulates an important signalling pathway for long-term potentiation (LTP). By upregulating cGMP, LTP could be stimulated and thereby enhancing memory processes. The present study investigated the effects of the sGC stimulator riociguat on cognition in healthy volunteers. Participants were pre-treated with and without biperiden, which impairs memory performance, to investigate the memory-enhancing effects of riociguat. Twenty volunteers participated in a double-blind placebo-controlled six-way crossover design with a cognitive test battery including the verbal learning task (VLT), n-back task, spatial memory test, the attention network test, and a reaction time task. Treatments were placebo and riociguat 0.5 mg, placebo and riociguat 1.0 mg, biperiden 2.0 mg and placebo, biperiden 2.0 mg and riociguat 0.5 mg and biperiden 2.0 mg and riociguat 1.0 mg. Blood pressure was found to be decreased and heart rate to be increased after administration of riociguat. Cognitive performance was not enhanced after administration of riociguat. Biperiden decreased episodic memory on the VLT, yet this deficit was not reversed by riociguat. This supports the notion that biperiden might be a valuable pharmacological model to induce episodic memory impairments as observed in AD/MCI.
Bourtchouladze, Rusiko; Lidge, Regina; Catapano, Ray; Stanley, Jennifer; Gossweiler, Scott; Romashko, Darlene; Scott, Rod; Tully, Tim
2003-01-01
Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formation appears to be evolutionarily conserved. From this observation, we reasoned that drugs that modulate CREB function by enhancing cAMP signaling might yield an effective treatment for the memory defect(s) of CBP+/− mice. To this end, we designed a cell-based drug screen and discovered inhibitors of phosphodiesterase 4 (PDE4) to be particularly effective enhancers of CREB function. We extend previous behavioral observations by showing that CBP+/− mutants have impaired long-term memory but normal learning and short-term memory in an object recognition task. We demonstrate that the prototypical PDE4 inhibitor, rolipram, and a novel one (HT0712) abolish the long-term memory defect of CBP+/− mice. Importantly, the genetic lesion in CBP acts specifically to shift the dose sensitivity for HT0712 to enhance memory formation, which conveys molecular specificity on the drug's mechanism of action. Our results suggest that PDE4 inhibitors may be used to treat the cognitive dysfunction of RTS patients. PMID:12930888
Hidalgo, Vanesa; Villada, Carolina; Almela, Mercedes; Espín, Laura; Gómez-Amor, Jesús; Salvador, Alicia
2012-05-01
Social stress affects cognitive processes in general, and memory performance in particular. However, the direction of these effects has not been clearly established, as it depends on several factors. Our aim was to determine the impact of the hypothalamus-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) reactivity to psychosocial stress on short-term non-declarative memory and declarative memory performance. Fifty-two young participants (18 men, 34 women) were subjected to the Trier Social Stress Task (TSST) and a control condition in a crossover design. Implicit memory was assessed by a priming test, and explicit memory was assessed by the Rey Auditory Verbal Learning Test (RAVLT). The TSST provoked greater salivary cortisol and salivary alpha-amylase (sAA) responses than the control task. Men had a higher cortisol response to stress than women, but no sex differences were found for sAA release. Stress was associated with an enhancement of priming but did not affect declarative memory. Additionally, the enhancement on the priming test was higher in those whose sAA levels increased more in response to stress (r(48) = 0.339, p = 0.018). Our results confirm an effect of acute stress on priming, and that this effect is related to SNS activity. In addition, they suggest a different relationship between stress biomarkers and the different memory systems.
Olfactory Context-Dependent Memory and the Effects of Affective Congruency.
Hackländer, Ryan P M; Bermeitinger, Christina
2017-10-31
Odors have been claimed to be particularly effective mnemonic cues, possibly because of the strong links between olfaction and emotion processing. Indeed, past research has shown that odors can bias processing towards affectively congruent material. In order to determine whether this processing bias translates to memory, we conducted 2 olfactory-enhanced-context memory experiments where we manipulated affective congruency between the olfactory context and to-be-remembered material. Given the presumed importance of valence to olfactory perception, we hypothesized that memory would be best for affectively congruent material in the olfactory enhanced context groups. Across the 2 experiments, groups which encoded and retrieved material in the presence of an odorant exhibited better memory performance than groups that did not have the added olfactory context during encoding and retrieval. While context-enhanced memory was exhibited in the presence of both pleasant and unpleasant odors, there was no indication that memory was dependent on affective congruency between the olfactory context and the to-be-remembered material. While the results provide further support for the notion that odors can act as powerful contextual mnemonic cues, they call into question the notion that affective congruency between context and focal material is important for later memory performance. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Slow-Wave Sleep-Imposed Replay Modulates Both Strength and Precision of Memory
2014-01-01
Odor perception is hypothesized to be an experience-dependent process involving the encoding of odor objects by distributed olfactory cortical ensembles. Olfactory cortical neurons coactivated by a specific pattern of odorant evoked input become linked through association fiber synaptic plasticity, creating a template of the familiar odor. In this way, experience and memory play an important role in odor perception and discrimination. In other systems, memory consolidation occurs partially via slow-wave sleep (SWS)-dependent replay of activity patterns originally evoked during waking. SWS is ideal for replay given hyporesponsive sensory systems, and thus reduced interference. Here, using artificial patterns of olfactory bulb stimulation in a fear conditioning procedure in the rat, we tested the effects of imposed post-training replay during SWS and waking on strength and precision of pattern memory. The results show that imposed replay during post-training SWS enhanced the subsequent strength of memory, whereas the identical replay during waking induced extinction. The magnitude of this enhancement was dependent on the timing of imposed replay relative to cortical sharp-waves. Imposed SWS replay of stimuli, which differed from the conditioned stimulus, did not affect conditioned stimulus memory strength but induced generalization of the fear memory to novel artificial patterns. Finally, post-training disruption of piriform cortex intracortical association fiber synapses, hypothesized to be critical for experience-dependent odor coding, also impaired subsequent memory precision but not strength. These results suggest that SWS replay in the olfactory cortex enhances memory consolidation, and that memory precision is dependent on the fidelity of that replay. PMID:24719093
Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation
Goodman, Robert J.; Ryan, Richard M.; Anālayo, Bhikkhu
2016-01-01
Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training—episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance. PMID:27115491
Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation.
Brown, Kirk Warren; Goodman, Robert J; Ryan, Richard M; Anālayo, Bhikkhu
2016-01-01
Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training-episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance.
Sleep Improves Prospective Remembering by Facilitating Spontaneous-Associative Retrieval Processes
Diekelmann, Susanne; Wilhelm, Ines; Wagner, Ullrich; Born, Jan
2013-01-01
Memories are of the past but for the future, enabling individuals to implement intended plans and actions at the appropriate time. Prospective memory is the specific ability to remember and execute an intended behavior at some designated point in the future. Although sleep is well-known to benefit the consolidation of memories for past events, its role for prospective memory is still not well understood. Here, we show that sleep as compared to wakefulness after prospective memory instruction enhanced the successful execution of prospective memories two days later. We further show that sleep benefited both components of prospective memory, i.e. to remember that something has to be done (prospective component) and to remember what has to be done (retrospective component). Finally, sleep enhanced prospective remembering particularly when attentional resources were reduced during task execution, suggesting that subjects after sleep were able to recruit additional spontaneous-associative retrieval processes to remember intentions successfully. Our findings indicate that sleep supports the maintenance of prospective memory over time by strengthening intentional memory representations, thus favoring the spontaneous retrieval of the intended action at the appropriate time. PMID:24143246
Fortress, Ashley M.; Kim, Jaekyoon; Poole, Rachel L.; Gould, Thomas J.
2014-01-01
Histone acetylation is essential for hippocampal memory formation in young adult rodents. Although dysfunctional histone acetylation has been associated with age-related memory decline in male rodents, little is known about whether histone acetylation is altered by aging in female rodents. In young female mice, the ability of 17β-estradiol (E2) to enhance object recognition memory consolidation requires histone H3 acetylation in the dorsal hippocampus. However, the extent to which histone acetylation is regulated by E2 in middle-aged females is unknown. The mnemonic benefits of E2 in aging females appear to be greatest in middle age, and so pinpointing the molecular mechanisms through which E2 enhances memory at this age could lead to the development of safer and more effective treatments for maintaining memory function without the side effects of current therapies. Here, we show that dorsal hippocampal infusion of E2 rapidly enhanced object recognition and spatial memory, and increased histone H3 acetylation in the dorsal hippocampus, while also significantly reducing levels of histone deacetylase (HDAC2 and HDAC3) proteins. E2 specifically increased histone H3 acetylation at Bdnf promoters pII and pIV in the dorsal hippocampus of both young and middle-aged mice, despite age-related decreases in pI and pIV acetylation. Furthermore, levels of mature BDNF and pro-BDNF proteins in the dorsal hippocampus were increased by E2 in middle-aged females. Together, these data suggest that the middle-aged female dorsal hippocampus remains epigenetically responsive to E2, and that E2 may enhance memory in middle-aged females via epigenetic regulation of Bdnf. PMID:25128537
Music-based memory enhancement in Alzheimer's disease: promise and limitations.
Simmons-Stern, Nicholas R; Deason, Rebecca G; Brandler, Brian J; Frustace, Bruno S; O'Connor, Maureen K; Ally, Brandon A; Budson, Andrew E
2012-12-01
In a previous study (Simmons-Stern, Budson & Ally, 2010), we found that patients with Alzheimer's disease (AD) better recognized visually presented lyrics when the lyrics were also sung rather than spoken at encoding. The present study sought to further investigate the effects of music on memory in patients with AD by making the content of the song lyrics relevant for the daily life of an older adult and by examining how musical encoding alters several different aspects of episodic memory. Patients with AD and healthy older adults studied visually presented novel song lyrics related to instrumental activities of daily living (IADL) that were accompanied by either a sung or a spoken recording. Overall, participants performed better on a memory test of general lyric content for lyrics that were studied sung as compared to spoken. However, on a memory test of specific lyric content, participants performed equally well for sung and spoken lyrics. We interpret these results in terms of a dual-process model of recognition memory such that the general content questions represent a familiarity-based representation that is preferentially sensitive to enhancement via music, while the specific content questions represent a recollection-based representation unaided by musical encoding. Additionally, in a test of basic recognition memory for the audio stimuli, patients with AD demonstrated equal discrimination for sung and spoken stimuli. We propose that the perceptual distinctiveness of musical stimuli enhanced metamemorial awareness in AD patients via a non-selective distinctiveness heuristic, thereby reducing false recognition while at the same time reducing true recognition and eliminating the mnemonic benefit of music. These results are discussed in the context of potential music-based memory enhancement interventions for the care of patients with AD. Published by Elsevier Ltd.
Music-Based Memory Enhancement in Alzheimer’s Disease: Promise and Limitations
Simmons-Stern, Nicholas R.; Deason, Rebecca G.; Brandler, Brian J.; Frustace, Bruno S.; O’Connor, Maureen K.; Ally, Brandon A.; Budson, Andrew E.
2012-01-01
In a previous study (Simmons-Stern, Budson, & Ally 2010), we found that patients with Alzheimer’s disease (AD) better recognized visually presented lyrics when the lyrics were also sung rather than spoken at encoding. The present study sought to further investigate the effects of music on memory in patients with AD by making the content of the song lyrics relevant for the daily life of an older adult and by examining how musical encoding alters several different aspects of episodic memory. Patients with AD and healthy older adults studied visually presented novel song lyrics related to instrumental activities of daily living (IADL) that were accompanied by either a sung or a spoken recording. Overall, participants performed better on a memory test of general lyric content for lyrics that were studied sung as compared to spoken. However, on a memory test of specific lyric content, participants performed equally well for sung and spoken lyrics. We interpret these results in terms of a dual-process model of recognition memory such that the general content questions represent a familiarity-based representation that is preferentially sensitive to enhancement via music, while the specific content questions represent a recollection-based representation unaided by musical encoding. Additionally, in a test of basic recognition memory for the audio stimuli, patients with AD demonstrated equal discrimination for sung and spoken stimuli. We propose that the perceptual distinctiveness of musical stimuli enhanced metamemorial awareness in AD patients via a non-selective distinctiveness heuristic, thereby reducing false recognition while at the same time reducing true recognition and eliminating the mnemonic benefit of music. These results are discussed in the context of potential music-based memory enhancement interventions for the care of patients with AD. PMID:23000133
Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.
Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela
2017-07-19
High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory. SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.
Boccia, M M; Blake, M G; Krawczyk, M C; Baratti, C M
2011-07-07
Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation. Copyright © 2011 Elsevier B.V. All rights reserved.
Bouchet, Courtney A; Lloyd, Brian A; Loetz, Esteban C; Farmer, Caroline E; Ostrovskyy, Mykola; Haddad, Natalie; Foright, Rebecca M; Greenwood, Benjamin N
2017-08-01
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced. © 2017 Bouchet et al.; Published by Cold Spring Harbor Laboratory Press.
Model-Driven Study of Visual Memory
2004-12-01
dimensional stimuli (synthetic human faces ) afford important insights into episodic recognition memory. The results were well accommodated by a summed...the unusual properties of the z-transformed ROCS. 15. SUBJECT TERMS Memory, visual memory, computational model, human memory, faces , identity 16...3 Accomplishments/New Findings 3 Work on Objective One: Recognition Memory for Synthetic Faces . 3 Experim ent 1
Taheri Andani, Mohsen; Saedi, Soheil; Turabi, Ali Sadi; Karamooz, M R; Haberland, Christoph; Karaca, Haluk Ersin; Elahinia, Mohammad
2017-04-01
Near equiatomic NiTi shape memory alloys were fabricated in dense and designed porous forms by Selective Laser Melting (SLM) and their mechanical and shape memory properties were systematically characterized. Particularly, the effects of pore morphology on their mechanical responses were investigated. Dense and porous NiTi alloys exhibited good shape memory effect with a recoverable strain of about 5% and functional stability after eight cycles of compression. The stiffness and residual plastic strain of porous NiTi were found to depend highly on the pore shape and the level of porosity. Since porous NiTi structures have lower elastic modulus and density than dense NiTi with still good shape memory properties, they are promising materials for lightweight structures, energy absorbers, and biomedical implants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Neurobiological effects of Hyperforin and its potential in Alzheimer's disease therapy.
Griffith, T N; Varela-Nallar, L; Dinamarca, M C; Inestrosa, N C
2010-01-01
St. John's Wort (SJW) has been used medicinally for over 5,000 years. Relatively recently, one of its phloroglucinol derivatives, hyperforin, has emerged as a compound of interest. Hyperforin first gained attention as the constituent of SJW responsible for its antidepressant effects. Since then, several of its neurobiological effects have been described, including neurotransmitter re-uptake inhibition, the ability to increase intracellular sodium and calcium levels, canonical transient receptor potential 6 (TRPC6) activation, N-methyl-D-aspartic acid (NMDA) receptor antagonism as well as antioxidant and anti-inflammatory properties. Until recently, its pharmacological actions outside of depression had not been investigated. However, hyperforin has been shown to have cognitive enhancing and memory facilitating properties. Importantly, it has been shown to have neuroprotective effects against Alzheimer's disease (AD) neuropathology, including the ability to disassemble amyloid-beta (Abeta) aggregates in vitro, decrease astrogliosis and microglia activation, as well as improve spatial memory in vivo. This review will examine some of the early studies involving hyperforin and its effects in the central nervous system (CNS), with an emphasis on its potential use in AD therapy. With further investigation, hyperforin could emerge to be a likely therapeutical candidate in the treatment of this disease.
Durability of carbon fiber reinforced shape memory polymer composites in space
NASA Astrophysics Data System (ADS)
Jang, Joon Hyeok; Hong, Seok Bin; Ahn, Yong San; Kim, Jin-Gyun; Nam, Yong-Youn; Lee, Geun Ho; Yu, Woong-Ryeol
2016-04-01
Shape memory polymer (SMP) is one of smart polymers which exhibit shape memory effect upon external stimuli. Recently, shape memory polymer composites (SMPCs) have been considered for space structure instead of shape memory alloys due to their deformability, lightweight and large recovery ratio, requiring characterization of their mechanical properties against harsh space environment and further prediction of the durability of SMPCs in space. As such, the durability of carbon fiber reinforced shape memory polymer composites (CF-SMPCs) was investigated using accelerated testing method based on short-term testing of CF-SMPCs in harsh condition. CF-SMPCs were prepared using woven carbon fabrics and a thermoset SMP via vacuum assisted resin transfer molding process. Bending tests with constant strain rate of CF-SMPCs were conducted using universal tensile machine (UTM) and Storage modulus test were conducted using dynamic mechanical thermal analysis (DMTA). Using the results, a master curve based on time-temperature superposition principle was then constructed, through which the mechanical properties of CF-SMPCs at harsh temperature were predicted. CF-SMPCs would be exposed to simulated space environments under ultra-violet radiations at various temperatures. The mechanical properties including flexural and tensile strength and shape memory properties of SMPCs would be measured using UTM before and after such exposures for comparison. Finally, the durability of SMPCs in space would be assessed by developing a degradation model of SMPC.