Sample records for memory information processing

  1. A simplified computational memory model from information processing.

    PubMed

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-11-23

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view.

  2. A simplified computational memory model from information processing

    PubMed Central

    Zhang, Lanhua; Zhang, Dongsheng; Deng, Yuqin; Ding, Xiaoqian; Wang, Yan; Tang, Yiyuan; Sun, Baoliang

    2016-01-01

    This paper is intended to propose a computational model for memory from the view of information processing. The model, called simplified memory information retrieval network (SMIRN), is a bi-modular hierarchical functional memory network by abstracting memory function and simulating memory information processing. At first meta-memory is defined to express the neuron or brain cortices based on the biology and graph theories, and we develop an intra-modular network with the modeling algorithm by mapping the node and edge, and then the bi-modular network is delineated with intra-modular and inter-modular. At last a polynomial retrieval algorithm is introduced. In this paper we simulate the memory phenomena and functions of memorization and strengthening by information processing algorithms. The theoretical analysis and the simulation results show that the model is in accordance with the memory phenomena from information processing view. PMID:27876847

  3. The effect of low versus high approach-motivated positive affect on memory for peripherally versus centrally presented information.

    PubMed

    Gable, Philip A; Harmon-Jones, Eddie

    2010-08-01

    Emotions influence attention and processes involved in memory. Although some research has suggested that positive affect categorically influences these processes differently than neutral affect, recent research suggests that motivational intensity of positive affective states influences these processes. The present experiments examined memory for centrally or peripherally presented information after the evocation of approach-motivated positive affect. Experiment 1 found that, relative to neutral conditions, pregoal, approach-motivated positive affect (caused by a monetary incentives task) enhanced memory for centrally presented information, whereas postgoal, low approach-motivated positive affect enhanced memory for peripherally presented information. Experiment 2 found that, relative to a neutral condition, high approach-motivated positive affect (caused by appetitive pictures) enhanced memory for centrally presented information but hindered memory for peripheral information. These results suggest a more complex relationship between positive affect and memory processes and highlight the importance of considering the motivational intensity of positive affects in cognitive processes. Copyright 2010 APA

  4. False memory and importance: can we prioritize encoding without consequence?

    PubMed

    Bui, Dung C; Friedman, Michael C; McDonough, Ian M; Castel, Alan D

    2013-10-01

    Given the large amount of information that we encounter, we often must prioritize what information we attempt to remember. Although critical for everyday functioning, relatively little research has focused on how people prioritize the encoding of information. Recent research has shown that people can and do selectively remember information assigned with higher, relative to lower, importance. However, the mechanisms underlying this prioritization process and the consequences of these processes are still not well understood. In the present study, we sought to better understand these prioritization processes and whether implementing these processes comes at the cost of memory accuracy, by increasing false memories. We used a modified form of the Deese/Roediger-McDermott (DRM) paradigm, in which participants studied DRM lists, with each list paired with low, medium, or high point values. In Experiment 1, encoding higher values led to more false memories than did encoding lower values, possibly because prioritizing information enhanced relational processing among high-value words. In Experiment 2, disrupting relational processing selectively reduced false memories for high-value words. Finally, in Experiment 3, facilitating relational processing selectively increased false memories for low-value words. These findings suggest that while prioritizing information can enhance true memory, this process concomitantly increases false memories. Furthermore, the mechanism underlying these prioritization processes depends on the ability to successfully engage in relational processing. Thus, how we prioritize the encoding of incoming information can come at a cost in terms of accurate memory.

  5. Air Traffic Controller Working Memory: Considerations in Air Traffic Control Tactical Operations

    DTIC Science & Technology

    1993-09-01

    INFORMATION PROCESSING SYSTEM 3 2. AIR TRAFFIC CONTROLLER MEMORY 5 2.1 MEMORY CODES 6 21.1 Visual Codes 7 2.1.2 Phonetic Codes 7 2.1.3 Semantic Codes 8...raise an awareness of the memory re- quirements of ATC tactical operations by presenting information on working memory processes that are relevant to...working v memory permeates every aspect of the controller’s ability to process air traffic information and control live traffic. The

  6. Dissociations between Imagery and Language Processing.

    DTIC Science & Technology

    1984-08-20

    to form the image on the basis of information stored in memory . We wanted to eliminate such processing in order to assess image maintenance ability...of imagery described in Kosslyn (1980), three processing modules are used in generating an image from information stored in long-term memory . The...PICTURE processing module simply activates the stored information, forming an image in short-term memory . However, this processing module only activates

  7. Read-out of emotional information from iconic memory: the longevity of threatening stimuli.

    PubMed

    Kuhbandner, Christof; Spitzer, Bernhard; Pekrun, Reinhard

    2011-05-01

    Previous research has shown that emotional stimuli are more likely than neutral stimuli to be selected by attention, indicating that the processing of emotional information is prioritized. In this study, we examined whether the emotional significance of stimuli influences visual processing already at the level of transient storage of incoming information in iconic memory, before attentional selection takes place. We used a typical iconic memory task in which the delay of a poststimulus cue, indicating which of several visual stimuli has to be reported, was varied. Performance decreased rapidly with increasing cue delay, reflecting the fast decay of information stored in iconic memory. However, although neutral stimulus information and emotional stimulus information were initially equally likely to enter iconic memory, the subsequent decay of the initially stored information was slowed for threatening stimuli, a result indicating that fear-relevant information has prolonged availability for read-out from iconic memory. This finding provides the first evidence that emotional significance already facilitates stimulus processing at the stage of iconic memory.

  8. Fact Retrieval Processes in Human Memory. Psychology and Education Series Technical Report No. 252.

    ERIC Educational Resources Information Center

    Wescourt, Keith T.; Atkinson, Richard C.

    A major contribution of information-processing theory to the psychology of remembering is the concept of memory or information retrieval. Several theories of the fact retrieval processes of the human memory, which constitute a substrate for any cognitive ability requiring stored information, have drawn heavily on certain data processing…

  9. Watching diagnoses develop: Eye movements reveal symptom processing during diagnostic reasoning.

    PubMed

    Scholz, Agnes; Krems, Josef F; Jahn, Georg

    2017-10-01

    Finding a probable explanation for observed symptoms is a highly complex task that draws on information retrieval from memory. Recent research suggests that observed symptoms are interpreted in a way that maximizes coherence for a single likely explanation. This becomes particularly clear if symptom sequences support more than one explanation. However, there are no existing process data available that allow coherence maximization to be traced in ambiguous diagnostic situations, where critical information has to be retrieved from memory. In this experiment, we applied memory indexing, an eye-tracking method that affords rich time-course information concerning memory-based cognitive processing during higher order thinking, to reveal symptom processing and the preferred interpretation of symptom sequences. Participants first learned information about causes and symptoms presented in spatial frames. Gaze allocation to emptied spatial frames during symptom processing and during the diagnostic response reflected the subjective status of hypotheses held in memory and the preferred interpretation of ambiguous symptoms. Memory indexing traced how the diagnostic decision developed and revealed instances of hypothesis change and biases in symptom processing. Memory indexing thus provided direct online evidence for coherence maximization in processing ambiguous information.

  10. Dynamic frontotemporal systems process space and time in working memory

    PubMed Central

    Adams, Jenna N.; Solbakk, Anne-Kristin; Endestad, Tor; Larsson, Pål G.; Ivanovic, Jugoslav; Meling, Torstein R.; Lin, Jack J.; Knight, Robert T.

    2018-01-01

    How do we rapidly process incoming streams of information in working memory, a cognitive mechanism central to human behavior? Dominant views of working memory focus on the prefrontal cortex (PFC), but human hippocampal recordings provide a neurophysiological signature distinct from the PFC. Are these regions independent, or do they interact in the service of working memory? We addressed this core issue in behavior by recording directly from frontotemporal sites in humans performing a visuospatial working memory task that operationalizes the types of identity and spatiotemporal information we encounter every day. Theta band oscillations drove bidirectional interactions between the PFC and medial temporal lobe (MTL; including the hippocampus). MTL theta oscillations directed the PFC preferentially during the processing of spatiotemporal information, while PFC theta oscillations directed the MTL for all types of information being processed in working memory. These findings reveal an MTL theta mechanism for processing space and time and a domain-general PFC theta mechanism, providing evidence that rapid, dynamic MTL–PFC interactions underlie working memory for everyday experiences. PMID:29601574

  11. A Positive Generation Effect on Memory for Auditory Context

    PubMed Central

    Overman, Amy A.; Richard, Alison G.; Stephens, Joseph D. W.

    2016-01-01

    Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan, 2004; Mulligan, Lozito, & Rosner, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender) whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account. PMID:27696145

  12. The Effects of Presentation Method and Information Density on Visual Search Ability and Working Memory Load

    ERIC Educational Resources Information Center

    Chang, Ting-Wen; Kinshuk; Chen, Nian-Shing; Yu, Pao-Ta

    2012-01-01

    This study investigates the effects of successive and simultaneous information presentation methods on learner's visual search ability and working memory load for different information densities. Since the processing of information in the brain depends on the capacity of visual short-term memory (VSTM), the limited information processing capacity…

  13. Always look on the broad side of life: happiness increases the breadth of sensory memory.

    PubMed

    Kuhbandner, Christof; Lichtenfeld, Stephanie; Pekrun, Reinhard

    2011-08-01

    Research has shown that positive affect increases the breadth of information processing at several higher stages of information processing, such as attentional selection or knowledge activation. In the present study, we examined whether these affective influences are already present at the level of transiently storing incoming information in sensory memory, before attentional selection takes place. After inducing neutral, happy, or sad affect, participants performed an iconic memory task which measures visual sensory memory. In all conditions, iconic memory performance rapidly decreased with increasing delay between stimulus presentation and test, indicating that affect did not influence the decay of iconic memory. However, positive affect increased the amount of incoming information stored in iconic memory. In particular, our results showed that this occurs due to an elimination of the spatial bias typically observed in iconic memory. Whereas performance did not differ at positions where observers in the neutral and negative conditions showed the highest performance, positive affect enhanced performance at all positions where observers in the neutral and negative conditions were relatively "blind." These findings demonstrate that affect influences the breadth of information processing already at earliest processing stages, suggesting that affect may produce an even more fundamental shift in information processing than previously believed. 2011 APA, all rights reserved

  14. On the susceptibility of adaptive memory to false memory illusions.

    PubMed

    Howe, Mark L; Derbish, Mary H

    2010-05-01

    Previous research has shown that survival-related processing of word lists enhances retention for that material. However, the claim that survival-related memories are more accurate has only been examined when true recall and recognition of neutral material has been measured. In the current experiments, we examined the adaptive memory superiority effect for different types of processing and material, measuring accuracy more directly by comparing true and false recollection rates. Survival-related information and processing was examined using word lists containing backward associates of neutral, negative, and survival-related critical lures and type of processing (pleasantness, moving, survival) was varied using an incidental memory paradigm. Across four experiments, results showed that survival-related words were more susceptible than negative and neutral words to the false memory illusion and that processing information in terms of its relevance to survival independently increased this susceptibility to the false memory illusion. Overall, although survival-related processing and survival-related information resulted in poorer, not more accurate, memory, such inaccuracies may have adaptive significance. These findings are discussed in the context of false memory research and recent theories concerning the importance of survival processing and the nature of adaptive memory. Copyright 2009 Elsevier B.V. All rights reserved.

  15. False memories from survival processing make better primes for problem-solving.

    PubMed

    Garner, Sarah R; Howe, Mark L

    2014-01-01

    Previous research has demonstrated that participants remember significantly more survival-related information and more information that is processed for its survival relevance. Recent research has also shown that survival materials and processing result in more false memories, ones that are adaptive inasmuch as they prime solutions to insight-based problems. Importantly, false memories for survival-related information facilitate problem solving more than false memories for other types of information. The present study explores this survival advantage using an incidental rather than intentional memory task. Here participants rated information either in the context of its importance to a survival-processing scenario or to moving to a new house. Following this, participants solved a number of compound remote associate tasks (CRATs), half of which had the solution primed by false memories that were generated during the processing task. Results showed that (a) CRATs were primed by false memories in this incidental task, with participants solving significantly more CRATs when primed than when unprimed, (b) this effect was greatest when participants rated items for survival than moving, and (c) processing items for a survival scenario improved overall problem-solving performance even when specific problems themselves were not primed. Results are discussed with regard to adaptive theories of memory.

  16. Role of the lateral habenula in memory through online processing of information.

    PubMed

    Mathis, Victor; Lecourtier, Lucas

    2017-11-01

    Our memory abilities, whether they involve short-term working memory or long-term episodic or procedural memories, are essential for our well-being, our capacity to adapt to constraints of our environment and survival. Therefore, several key brain regions and neurotransmitter systems are engaged in the processing of sensory information to either maintain such information in working memory so that it will quickly be used, and/or participate in the elaboration and storage of enduring traces useful for longer periods of time. Animal research has recently attracted attention on the lateral habenula which, as shown in rodents and non-human primates, seems to process information stemming in the main regions involved in memory processing, e.g., the medial prefrontal cortex, the hippocampus, the amygdala, the septal region, the basal ganglia, and participates in the control of key memory-related neurotransmitters systems, i.e., dopamine, serotonin, acetylcholine. Recently, the lateral habenula has been involved in working and spatial reference memories, in rodents, likely by participating in online processing of contextual information. In addition, several behavioral studies strongly suggest that it is also involved in the processing of the emotional valance of incoming information in order to adapt to particularly stressful situations. Therefore, the lateral habenula appears like a key region at the interface between cognition and emotion to participate in the selection of appropriate behaviors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Hierarchical process memory: memory as an integral component of information processing

    PubMed Central

    Hasson, Uri; Chen, Janice; Honey, Christopher J.

    2015-01-01

    Models of working memory commonly focus on how information is encoded into and retrieved from storage at specific moments. However, in the majority of real-life processes, past information is used continuously to process incoming information across multiple timescales. Considering single unit, electrocorticography, and functional imaging data, we argue that (i) virtually all cortical circuits can accumulate information over time, and (ii) the timescales of accumulation vary hierarchically, from early sensory areas with short processing timescales (tens to hundreds of milliseconds) to higher-order areas with long processing timescales (many seconds to minutes). In this hierarchical systems perspective, memory is not restricted to a few localized stores, but is intrinsic to information processing that unfolds throughout the brain on multiple timescales. “The present contains nothing more than the past, and what is found in the effect was already in the cause.”Henri L Bergson PMID:25980649

  18. The impact of storage on processing: how is information maintained in working memory?

    PubMed

    Vergauwe, Evie; Camos, Valérie; Barrouillet, Pierre

    2014-07-01

    Working memory is typically defined as a system devoted to the simultaneous maintenance and processing of information. However, the interplay between these 2 functions is still a matter of debate in the literature, with views ranging from complete independence to complete dependence. The time-based resource-sharing model assumes that a central bottleneck constrains the 2 functions to alternate in such a way that maintenance activities postpone concurrent processing, with each additional piece of information to be maintained resulting in an additional postponement. Using different kinds of memoranda, we examined in a series of 7 experiments the effect of increasing memory load on different processing tasks. The results reveal that, insofar as attention is needed for maintenance, processing times linearly increase at a rate of about 50 ms per verbal or visuospatial memory item, suggesting a very fast refresh rate in working memory. Our results also show an asymmetry between verbal and spatial information, in that spatial information can solely rely on attention for its maintenance while verbal information can also rely on a domain-specific maintenance mechanism independent from attention. The implications for the functioning of working memory are discussed, with a specific focus on how information is maintained in working memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  19. The effects of valence and arousal on the neural activity leading to subsequent memory.

    PubMed

    Mickley Steinmetz, Katherine R; Kensinger, Elizabeth A

    2009-11-01

    This study examined how valence and arousal affect the processes linked to subsequent memory for emotional information. While undergoing an fMRI scan, participants viewed neutral pictures and emotional pictures varying by valence and arousal. After the scan, participants performed a recognition test. Subsequent memory for negative or high arousal information was associated with occipital and temporal activity, whereas memory for positive or low arousal information was associated with frontal activity. Regression analyses confirmed that for negative or high arousal items, temporal lobe activity was the strongest predictor of later memory whereas for positive or low arousal items, frontal activity corresponded most strongly with later memory. These results suggest that the types of encoding processes relating to memory (e.g., sensory vs. elaborative processing) can differ based on the affective qualities of emotional information.

  20. The effects of valence and arousal on the neural activity leading to subsequent memory

    PubMed Central

    Mickley Steinmetz, Katherine R.; Kensinger, Elizabeth A.

    2010-01-01

    This study examined how valence and arousal affect the processes linked to subsequent memory for emotional information. While undergoing an fMRI scan, participants viewed neutral pictures and emotional pictures varying by valence and arousal. After the scan, participants performed a recognition test. Subsequent memory for negative or high arousal information was associated with occipital and temporal activity, while memory for positive or low arousal information was associated with frontal activity. Regression analyses confirmed that for negative or high arousal items, temporal lobe activity was the strongest predictor of later memory whereas for positive or low arousal items, frontal activity corresponded most strongly with later memory. These results suggest that the types of encoding processes relating to memory (e.g., sensory vs. elaborative processing) can differ based on the affective qualities of emotional information. PMID:19674398

  1. Information Processing in Memory Tasks.

    ERIC Educational Resources Information Center

    Johnston, William A.

    The intensity of information processing engendered in different phases of standard memory tasks was examined in six experiments. Processing intensity was conceptualized as system capacity consumed, and was measured via a divided-attention procedure in which subjects performed a memory task and a simple reaction-time (RT) task concurrently. The…

  2. Enhanced dimension-specific visual working memory in grapheme–color synesthesia☆

    PubMed Central

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-01-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme–color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. PMID:23892185

  3. A Positive Generation Effect on Memory for Auditory Context.

    PubMed

    Overman, Amy A; Richard, Alison G; Stephens, Joseph D W

    2017-06-01

    Self-generation of information during memory encoding has large positive effects on subsequent memory for items, but mixed effects on memory for contextual information associated with items. A processing account of generation effects on context memory (Mulligan in Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(4), 838-855, 2004; Mulligan, Lozito, & Rosner in Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 836-846, 2006) proposes that these effects depend on whether the generation task causes any shift in processing of the type of context features for which memory is being tested. Mulligan and colleagues have used this account to predict various negative effects of generation on context memory, but the account also predicts positive generation effects under certain circumstances. The present experiment provided a critical test of the processing account by examining how generation affected memory for auditory rather than visual context. Based on the processing account, we predicted that generation of rhyme words should enhance processing of auditory information associated with the words (i.e., voice gender), whereas generation of antonym words should have no effect. These predictions were confirmed, providing support to the processing account.

  4. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  5. Intrusive effects of implicitly processed information on explicit memory.

    PubMed

    Sentz, Dustin F; Kirkhart, Matthew W; LoPresto, Charles; Sobelman, Steven

    2002-02-01

    This study described the interference of implicitly processed information on the memory for explicitly processed information. Participants studied a list of words either auditorily or visually under instructions to remember the words (explicit study). They were then visually presented another word list under instructions which facilitate implicit but not explicit processing. Following a distractor task, memory for the explicit study list was tested with either a visual or auditory recognition task that included new words, words from the explicit study list, and words implicitly processed. Analysis indicated participants both failed to recognize words from the explicit study list and falsely recognized words that were implicitly processed as originating from the explicit study list. However, this effect only occurred when the testing modality was visual, thereby matching the modality for the implicitly processed information, regardless of the modality of the explicit study list. This "modality effect" for explicit memory was interpreted as poor source memory for implicitly processed information and in light of the procedures used. as well as illustrating an example of "remembering causing forgetting."

  6. Working memory capacity and redundant information processing efficiency.

    PubMed

    Endres, Michael J; Houpt, Joseph W; Donkin, Chris; Finn, Peter R

    2015-01-01

    Working memory capacity (WMC) is typically measured by the amount of task-relevant information an individual can keep in mind while resisting distraction or interference from task-irrelevant information. The current research investigated the extent to which differences in WMC were associated with performance on a novel redundant memory probes (RMP) task that systematically varied the amount of to-be-remembered (targets) and to-be-ignored (distractor) information. The RMP task was designed to both facilitate and inhibit working memory search processes, as evidenced by differences in accuracy, response time, and Linear Ballistic Accumulator (LBA) model estimates of information processing efficiency. Participants (N = 170) completed standard intelligence tests and dual-span WMC tasks, along with the RMP task. As expected, accuracy, response-time, and LBA model results indicated memory search and retrieval processes were facilitated under redundant-target conditions, but also inhibited under mixed target/distractor and redundant-distractor conditions. Repeated measures analyses also indicated that, while individuals classified as high (n = 85) and low (n = 85) WMC did not differ in the magnitude of redundancy effects, groups did differ in the efficiency of memory search and retrieval processes overall. Results suggest that redundant information reliably facilitates and inhibits the efficiency or speed of working memory search, and these effects are independent of more general limits and individual differences in the capacity or space of working memory.

  7. [Neural Mechanisms Underlying the Processing of Temporal Information in Episodic Memory and Its Disturbance].

    PubMed

    Iwata, Saeko; Tsukiura, Takashi

    2017-11-01

    Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.

  8. Foreign Language Methods and an Information Processing Model of Memory.

    ERIC Educational Resources Information Center

    Willebrand, Julia

    The major approaches to language teaching (audiolingual method, generative grammar, Community Language Learning and Silent Way) are investigated to discover whether or not they are compatible in structure with an information-processing model of memory (IPM). The model of memory used was described by Roberta Klatzky in "Human Memory:…

  9. Enhanced Memory for both Threat and Neutral Information Under Conditions of Intergroup Threat

    PubMed Central

    Zhu, Yong; Zhao, Yufang; Ybarra, Oscar; Stephan, Walter G.; Yang, Qing

    2015-01-01

    Few studies have examined the effect of intergroup threat on cognitive outcomes such as memory. Different theoretical perspectives can inform how intergroup threat should affect memory for threat-relevant and neutral information, such as the mood-congruency approach, Yerkes–Dodson law, Easterbrook’s theory, and also evolutionary perspectives. To test among these, we conducted two experiments to examine how exposure to intergroup threats affected memory compared to control conditions. In study 1, we manipulated symbolic threat and examined participants’ memory for threat and neutral words. In study 2, memory performance was assessed following the induction of realistic threat. Across the studies, in the control condition participants showed better memory for threat-related than neutral information. However, participants under threat remembered neutral information as well as threat-related information. In addition, participants in the threat condition remembered threat-related information as well as participants in the control condition. The findings are discussed in terms of automatic vigilance processes but also the effects of threat on arousal and its effect on information processing. This latter perspective, suggests paradoxically, that under some circumstances involving an outgroup threat, non-threatening information about outgroups can be extensively processed. PMID:26635669

  10. Demonstrating the effects of phonological similarity and frequency on item and order memory in Down syndrome using process dissociation.

    PubMed

    Smith, Elizabeth; Jarrold, Christopher

    2014-12-01

    It is important to distinguish between memory for item information and memory for order information when considering the nature of verbal short-term memory (vSTM) performance. Although other researchers have attempted to make this distinction between item and order memory in children, none has done so using process dissociation. This study shows that such an approach can be particularly useful and informative. Individuals with Down syndrome (DS) tend to experience a vSTM deficit. These two experiments explored whether phonological similarity (Experiment 1) and item frequency (Experiment 2) affected vSTM for item and order information in a group of individuals with DS compared with typically developing (TD) vocabulary-matched children. Process dissociation was used to obtain measures of item and order memory via Nairne and Kelley's procedure (Journal of Memory and Language, 50 (2004) 113-133). Those with DS were poorer than the matched TD group for recall of both item and order information. However, in both populations, phonologically similar items reduced order memory but enhanced item memory, whereas high-frequency items resulted in improvements in both item and order memory-effects that are in line with previous research in the adult literature. These results indicate that, despite poorer vSTM performance in DS, individuals experience phonological coding of verbal input and a contribution of long-term memory knowledge to recall. These findings inform routes for interventions for those with DS, highlighting the need to enhance both item and order memory. Moreover, this work demonstrates that process dissociation is applicable and informative for studying special populations and children. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Disambiguating past events: Accurate source memory for time and context depends on different retrieval processes.

    PubMed

    Persson, Bjorn M; Ainge, James A; O'Connor, Akira R

    2016-07-01

    Current animal models of episodic memory are usually based on demonstrating integrated memory for what happened, where it happened, and when an event took place. These models aim to capture the testable features of the definition of human episodic memory which stresses the temporal component of the memory as a unique piece of source information that allows us to disambiguate one memory from another. Recently though, it has been suggested that a more accurate model of human episodic memory would include contextual rather than temporal source information, as humans' memory for time is relatively poor. Here, two experiments were carried out investigating human memory for temporal and contextual source information, along with the underlying dual process retrieval processes, using an immersive virtual environment paired with a 'Remember-Know' memory task. Experiment 1 (n=28) showed that contextual information could only be retrieved accurately using recollection, while temporal information could be retrieved using either recollection or familiarity. Experiment 2 (n=24), which used a more difficult task, resulting in reduced item recognition rates and therefore less potential for contamination by ceiling effects, replicated the pattern of results from Experiment 1. Dual process theory predicts that it should only be possible to retrieve source context from an event using recollection, and our results are consistent with this prediction. That temporal information can be retrieved using familiarity alone suggests that it may be incorrect to view temporal context as analogous to other typically used source contexts. This latter finding supports the alternative proposal that time since presentation may simply be reflected in the strength of memory trace at retrieval - a measure ideally suited to trace strength interrogation using familiarity, as is typically conceptualised within the dual process framework. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. The Research on Linux Memory Forensics

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Che, ShengBing

    2018-03-01

    Memory forensics is a branch of computer forensics. It does not depend on the operating system API, and analyzes operating system information from binary memory data. Based on the 64-bit Linux operating system, it analyzes system process and thread information from physical memory data. Using ELF file debugging information and propose a method for locating kernel structure member variable, it can be applied to different versions of the Linux operating system. The experimental results show that the method can successfully obtain the sytem process information from physical memory data, and can be compatible with multiple versions of the Linux kernel.

  13. Recognition Decisions From Visual Working Memory Are Mediated by Continuous Latent Strengths.

    PubMed

    Ricker, Timothy J; Thiele, Jonathan E; Swagman, April R; Rouder, Jeffrey N

    2017-08-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the contents of visual working memory follow a continuous decision process of graded information about the correct choice or a discrete decision process reflecting only knowing and guessing. We find a clear pattern in favor of a continuous latent strength model of visual working memory-based decision making, supporting the notion that visual recognition decision processes are impacted by the degree of matching between the contents of working memory and the choices given. Relation to relevant findings and the implications for human information processing more generally are discussed. Copyright © 2016 Cognitive Science Society, Inc.

  14. Emotions and memory in borderline personality disorder.

    PubMed

    Winter, Dorina; Elzinga, Bernet; Schmahl, Christian

    2014-01-01

    Memory processes such as encoding, storage, and retrieval of information are influenced by emotional content. Because patients with borderline personality disorder (BPD) are particularly susceptible to emotional information, it is relevant to understand whether such memory processes are altered in this patient group. This systematic literature review collects current evidence on this issue. Research suggests that emotional information interferes more strongly with information processing and learning in BPD patients than in healthy controls. In general, BPD patients do not seem to differ from healthy control subjects in their ability to memorize emotional information, but they tend to have specific difficulties forgetting negative information. Also, BPD patients seem to recall autobiographical, particularly negative events with stronger arousal than healthy controls, while BPD patients also show specific temporo-prefrontal alterations in neural correlates. No substantial evidence was found that the current affective state influences learning and memory in BPD patients any differently than in healthy control subjects. In general, a depressive mood seems to both deteriorate and negatively bias information processing and memories, while there is evidence that dissociative symptoms impair learning and memory independently of stimulus valence. This review discusses methodological challenges of studies on memory and emotions in BPD and makes suggestions for future research and clinical implications. © 2013 S. Karger AG, Basel.

  15. Information and processes underlying semantic and episodic memory across tasks, items, and individuals.

    PubMed

    Cox, Gregory E; Hemmer, Pernille; Aue, William R; Criss, Amy H

    2018-04-01

    The development of memory theory has been constrained by a focus on isolated tasks rather than the processes and information that are common to situations in which memory is engaged. We present results from a study in which 453 participants took part in five different memory tasks: single-item recognition, associative recognition, cued recall, free recall, and lexical decision. Using hierarchical Bayesian techniques, we jointly analyzed the correlations between tasks within individuals-reflecting the degree to which tasks rely on shared cognitive processes-and within items-reflecting the degree to which tasks rely on the same information conveyed by the item. Among other things, we find that (a) the processes involved in lexical access and episodic memory are largely separate and rely on different kinds of information, (b) access to lexical memory is driven primarily by perceptual aspects of a word, (c) all episodic memory tasks rely to an extent on a set of shared processes which make use of semantic features to encode both single words and associations between words, and (d) recall involves additional processes likely related to contextual cuing and response production. These results provide a large-scale picture of memory across different tasks which can serve to drive the development of comprehensive theories of memory. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Updating Procedures Can Reorganize the Neural Circuit Supporting a Fear Memory.

    PubMed

    Kwapis, Janine L; Jarome, Timothy J; Ferrara, Nicole C; Helmstetter, Fred J

    2017-07-01

    Established memories undergo a period of vulnerability following retrieval, a process termed 'reconsolidation.' Recent work has shown that the hypothetical process of reconsolidation is only triggered when new information is presented during retrieval, suggesting that this process may allow existing memories to be modified. Reconsolidation has received increasing attention as a possible therapeutic target for treating disorders that stem from traumatic memories, yet little is known about how this process changes the original memory. In particular, it is unknown whether reconsolidation can reorganize the neural circuit supporting an existing memory after that memory is modified with new information. Here, we show that trace fear memory undergoes a protein synthesis-dependent reconsolidation process following exposure to a single updating trial of delay conditioning. Further, this reconsolidation-dependent updating process appears to reorganize the neural circuit supporting the trace-trained memory, so that it better reflects the circuit supporting delay fear. Specifically, after a trace-to-delay update session, the amygdala is now required for extinction of the updated memory but the retrosplenial cortex is no longer required for retrieval. These results suggest that updating procedures could be used to force a complex, poorly defined memory circuit to rely on a better-defined neural circuit that may be more amenable to behavioral or pharmacological manipulation. This is the first evidence that exposure to new information can fundamentally reorganize the neural circuit supporting an existing memory.

  17. Enhanced dimension-specific visual working memory in grapheme-color synesthesia.

    PubMed

    Terhune, Devin Blair; Wudarczyk, Olga Anna; Kochuparampil, Priya; Cohen Kadosh, Roi

    2013-10-01

    There is emerging evidence that the encoding of visual information and the maintenance of this information in a temporarily accessible state in working memory rely on the same neural mechanisms. A consequence of this overlap is that atypical forms of perception should influence working memory. We examined this by investigating whether having grapheme-color synesthesia, a condition characterized by the involuntary experience of color photisms when reading or representing graphemes, would confer benefits on working memory. Two competing hypotheses propose that superior memory in synesthesia results from information being coded in two information channels (dual-coding) or from superior dimension-specific visual processing (enhanced processing). We discriminated between these hypotheses in three n-back experiments in which controls and synesthetes viewed inducer and non-inducer graphemes and maintained color or grapheme information in working memory. Synesthetes displayed superior color working memory than controls for both grapheme types, whereas the two groups did not differ in grapheme working memory. Further analyses excluded the possibilities of enhanced working memory among synesthetes being due to greater color discrimination, stimulus color familiarity, or bidirectionality. These results reveal enhanced dimension-specific visual working memory in this population and supply further evidence for a close relationship between sensory processing and the maintenance of sensory information in working memory. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Do different salience cues compete for dominance in memory over a daytime nap?

    PubMed

    Alger, Sara E; Chen, Shirley; Payne, Jessica D

    2018-06-12

    Information that is the most salient and important for future use is preferentially preserved through active processing during sleep. Emotional salience is a biologically adaptive cue that influences episodic memory processing through interactions between amygdalar and hippocampal activity. However, other cues that influence the importance of information, such as the explicit direction to remember or forget, interact with the inherent salience of information to determine its fate in memory. It is unknown how sleep-based processes selectively consolidate this complex information. The current study examined the development of memory for emotional and neutral information that was either cued to-be-remembered (TBR) or to-be-forgotten (TBF) across a daytime period including either napping or wakefulness. Baseline memory revealed dominance of the TBR cue, regardless of emotional salience. As anticipated, napping was found to preserve memory overall significantly better than remaining awake. Furthermore, we observed a trending interaction indicating that napping specifically enhanced the discrimination between the most salient information (negative TBR items) over other information. We found that memory for negative items was positively associated with the percentage of SWS obtained during a nap. Furthermore, the magnitude of the difference in memory between negative TBR items and negative TBF items increased with greater sleep spindle activity. Taken together, our results suggest that although the cue to actively remember or intentionally forget initially wins out, active processes during sleep facilitate the competition between salience cues to promote the most salient information in memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Salience of working-memory maintenance and manipulation deficits in schizophrenia

    PubMed Central

    Hill, S. K.; Griffin, G. B.; Miura, T. Kazuto; Herbener, E. S.; Sweeney, J. A.

    2011-01-01

    Background Encoding and maintenance of information in working memory, followed by internal manipulation of that information for planning adaptive behavior, are two key components of working-memory systems. Both processes have been reported to be impaired in schizophrenia, but few studies have directly compared the relative severity of these abnormalities, or the degree to which manipulation deficits might be secondary to alterations in maintenance processes. Method Clinically stable schizophrenia patients (n=25) and a demographically similar healthy comparison group (n=24) were administered a verbal span task with three levels of working-memory load. Maintenance was assessed using sequential position questions. Manipulation processes were assessed by requiring comparison of the relative sequential position of test items, which entailed simultaneous serial search strategies regarding item order. Results Both groups showed reduced accuracy and increased reaction time for manipulation compared with maintenance processing. There were significant patient impairments across working-memory loads. There was no differential deficit in manipulation processing, and effect sizes of relative deficit in the patient group were higher for maintenance than manipulation processing. Conclusions The strong correlation for maintenance and manipulation deficits suggest that impairments in the ability to internally manipulate information stored in working-memory systems are not greater than alterations in the encoding and maintaining of information in working memory and that disturbances in maintenance processing may contribute to deficits in higher-order working-memory operations. PMID:20214839

  20. An exploration of Intolerance of Uncertainty and memory bias.

    PubMed

    Francis, Kylie; Dugas, Michel J; Ricard, Nathalie C

    2016-09-01

    Research suggests that individuals high in Intolerance of Uncertainty (IU) have information processing biases, which may explain the close relationship between IU and worry. Specifically, high IU individuals show an attentional bias for uncertainty, and negatively interpret uncertain information. However, evidence of a memory bias for uncertainty among high IU individuals is limited. This study therefore explored the relationship between IU and memory for uncertainty. In two separate studies, explicit and implicit memory for uncertain compared to other types of words was assessed. Cognitive avoidance and other factors that could influence information processing were also examined. IUS Factor 1 was a significant positive predictor of explicit memory for positive words, and IUS Factor 2 a significant negative predictor of implicit memory for positive words. Stimulus relevance and vocabulary were significant predictors of implicit memory for uncertain words. Cognitive avoidance was a significant predictor of both explicit and implicit memory for threat words. Female gender was a significant predictor of implicit memory for uncertain and neutral words. Word stimuli such as those used in these studies may not be the optimal way of assessing information processing biases related to IU. In addition, the predominantly female, largely student sample may limit the generalizability of the findings. Future research focusing on IU factors, stimulus relevance, and both explicit and implicit memory, was recommended. The potential role of cognitive avoidance on memory, information processing, and worry was explored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Remote semantic memory for public figures in HIV infection, alcoholism, and their comorbidity.

    PubMed

    Fama, Rosemary; Rosenbloom, Margaret J; Sassoon, Stephanie A; Thompson, Megan A; Pfefferbaum, Adolf; Sullivan, Edith V

    2011-02-01

    Impairments in component processes of working and episodic memory mark both HIV infection and chronic alcoholism, with compounded deficits often observed in individuals comorbid for these conditions. Remote semantic memory processes, however, have only seldom been studied in these diagnostic groups. Examination of remote semantic memory could provide insight into the underlying processes associated with storage and retrieval of learned information over extended time periods while elucidating spared and impaired cognitive functions in these clinical groups. We examined component processes of remote semantic memory in HIV infection and chronic alcoholism in 4 subject groups (HIV, ALC, HIV + ALC, and age-matched healthy adults) using a modified version of the Presidents Test. Free recall, recognition, and sequencing of presidential candidates and election dates were assessed. In addition, component processes of working, episodic, and semantic memory were assessed with ancillary cognitive tests. The comorbid group (HIV + ALC) was significantly impaired on sequencing of remote semantic information compared with age-matched healthy adults. Free recall of remote semantic information was also modestly impaired in the HIV + ALC group, but normal performance for recognition of this information was observed. Few differences were observed between the single diagnosis groups (HIV, ALC) and healthy adults, although examination of the component processes underlying remote semantic memory scores elicited differences between the HIV and ALC groups. Selective remote memory processes were related to lifetime alcohol consumption in the ALC group and to viral load and depression level in the HIV group. Hepatitis C diagnosis was associated with lower remote semantic memory scores in all 3 clinical groups. Education level did not account for group differences reported. This study provides behavioral support for the existence of adverse effects associated with the comorbidity of HIV infection and chronic alcoholism on selective component processes of memory function, with untoward effects exacerbated by Hepatitis C infection. The pattern of remote semantic memory function in HIV + ALC is consistent with those observed in neurological conditions primarily affecting frontostriatal pathways and suggests that remote memory dysfunction in HIV + ALC may be a result of impaired retrieval processes rather than loss of remote semantic information per se. Copyright © 2010 by the Research Society on Alcoholism.

  2. Adaptive Memory: Survival Processing Increases Both True and False Memory in Adults and Children

    ERIC Educational Resources Information Center

    Otgaar, Henry; Smeets, Tom

    2010-01-01

    Research has shown that processing information in a survival context can enhance the information's memorability. The current study examined whether survival processing can also decrease the susceptibility to false memories and whether the survival advantage can be found in children. In Experiment 1, adults rated semantically related words in a…

  3. Information Engineering.

    DTIC Science & Technology

    1982-01-01

    determined that communications at battalion level were " working comparatively well", giving rise to the question, "What are the information processing ...through personal experience or training. The learning process includes reading information into and out of memory and comparing information that’s...received with information already stored in memory . REMEMBER This is a relatively uncomplex process . It is simply the storage of information to be recalled

  4. Information Memory Processing and Retrieval: Relationships of the Intellect with the Processing of a Learning and Cognition Task.

    ERIC Educational Resources Information Center

    Moser, Gene W.

    Reported is one of a series of investigations of the Project on an Information Memory Model. This study was done to test an information memory model for identifying the unit of information structure involved in task cognitions by humans. Four groups of 30 randomly selected subjects (ages 7, 9, 11 and 15 years) performed a sorting task of 14…

  5. Encoding and Retrieval Processes Involved in the Access of Source Information in the Absence of Item Memory

    ERIC Educational Resources Information Center

    Ball, B. Hunter; DeWitt, Michael R.; Knight, Justin B.; Hicks, Jason L.

    2014-01-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were "related" to the target item but never actually studied.…

  6. Running Memory for Clinical Handoffs: A Look at Active and Passive Processing.

    PubMed

    Anderson-Montoya, Brittany L; Scerbo, Mark W; Ramirez, Dana E; Hubbard, Thomas W

    2017-05-01

    The goal of the present study was to examine the effects of domain-relevant expertise on running memory and the ability to process handoffs of information. In addition, the role of active or passive processing was examined. Currently, there is little research that addresses how individuals with different levels of expertise process information in running memory when the information is needed to perform a real-world task. Three groups of participants differing in their level of clinical expertise (novice, intermediate, and expert) performed an abstract running memory span task and two tasks resembling real-world activities, a clinical handoff task and an air traffic control (ATC) handoff task. For all tasks, list length and the amount of information to be recalled were manipulated. Regarding processing strategy, all participants used passive processing for the running memory span and ATC tasks. The novices also used passive processing for the clinical task. The experts, however, appeared to use more active processing, and the intermediates fell in between. Overall, the results indicated that individuals with clinical expertise and a developed mental model rely more on active processing of incoming information for the clinical task while individuals with little or no knowledge rely on passive processing. The results have implications about how training should be developed to aid less experienced personnel identify what information should be included in a handoff and what should not.

  7. Bottlenecks of Motion Processing during a Visual Glance: The Leaky Flask Model

    PubMed Central

    Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E.; Tripathy, Srimant P.

    2013-01-01

    Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing. PMID:24391806

  8. Bottlenecks of motion processing during a visual glance: the leaky flask model.

    PubMed

    Öğmen, Haluk; Ekiz, Onur; Huynh, Duong; Bedell, Harold E; Tripathy, Srimant P

    2013-01-01

    Where do the bottlenecks for information and attention lie when our visual system processes incoming stimuli? The human visual system encodes the incoming stimulus and transfers its contents into three major memory systems with increasing time scales, viz., sensory (or iconic) memory, visual short-term memory (VSTM), and long-term memory (LTM). It is commonly believed that the major bottleneck of information processing resides in VSTM. In contrast to this view, we show major bottlenecks for motion processing prior to VSTM. In the first experiment, we examined bottlenecks at the stimulus encoding stage through a partial-report technique by delivering the cue immediately at the end of the stimulus presentation. In the second experiment, we varied the cue delay to investigate sensory memory and VSTM. Performance decayed exponentially as a function of cue delay and we used the time-constant of the exponential-decay to demarcate sensory memory from VSTM. We then decomposed performance in terms of quality and quantity measures to analyze bottlenecks along these dimensions. In terms of the quality of information, two thirds to three quarters of the motion-processing bottleneck occurs in stimulus encoding rather than memory stages. In terms of the quantity of information, the motion-processing bottleneck is distributed, with the stimulus-encoding stage accounting for one third of the bottleneck. The bottleneck for the stimulus-encoding stage is dominated by the selection compared to the filtering function of attention. We also found that the filtering function of attention is operating mainly at the sensory memory stage in a specific manner, i.e., influencing only quantity and sparing quality. These results provide a novel and more complete understanding of information processing and storage bottlenecks for motion processing.

  9. Post-encoding control of working memory enhances processing of relevant information in rhesus monkeys (Macaca mulatta).

    PubMed

    Brady, Ryan J; Hampton, Robert R

    2018-06-01

    Working memory is a system by which a limited amount of information can be kept available for processing after the cessation of sensory input. Because working memory resources are limited, it is adaptive to focus processing on the most relevant information. We used a retro-cue paradigm to determine the extent to which monkey working memory possesses control mechanisms that focus processing on the most relevant representations. Monkeys saw a sample array of images, and shortly after the array disappeared, they were visually cued to a location that had been occupied by one of the sample images. The cue indicated which image should be remembered for the upcoming recognition test. By determining whether the monkeys were more accurate and quicker to respond to cued images compared to un-cued images, we tested the hypothesis that monkey working memory focuses processing on relevant information. We found a memory benefit for the cued image in terms of accuracy and retrieval speed with a memory load of two images. With a memory load of three images, we found a benefit in retrieval speed but only after shortening the onset latency of the retro-cue. Our results demonstrate previously unknown flexibility in the cognitive control of memory in monkeys, suggesting that control mechanisms in working memory likely evolved in a common ancestor of humans and monkeys more than 32 million years ago. Future work should be aimed at understanding the interaction between memory load and the ability to control memory resources, and the role of working memory control in generating differences in cognitive capacity among primates. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Presentation Media, Information Complexity, and Learning Outcomes

    ERIC Educational Resources Information Center

    Andres, Hayward P.; Petersen, Candice

    2002-01-01

    Cognitive processing limitations restrict the number of complex information items held and processed in human working memory. To overcome such limitations, a verbal working memory channel is used to construct an if-then proposition representation of facts and a visual working memory channel is used to construct a visual imagery of geometric…

  11. The role of speed versus working memory in predicting learning new information in multiple sclerosis.

    PubMed

    Chiaravalloti, Nancy D; Stojanovic-Radic, Jelena; DeLuca, John

    2013-01-01

    The most common cognitive impairments in multiple sclerosis (MS) have been documented in specific domains, including new learning and memory, working memory, and information processing speed. However, little attempt has been made to increase our understanding of their relationship to one another. While recent studies have shown that processing speed impacts new learning and memory abilities in MS, the role of working memory in this relationship has received less attention. The present study examines the relative contribution of impaired working memory versus processing speed in new learning and memory functions in MS. Participants consisted of 51 individuals with clinically definite MS. Participants completed two measures of processing speed, two measures of working memory, and two measures of episodic memory. Data were analyzed via correlational and multiple regression analysis. Results indicate that the variance in new learning abilities in this sample was primarily associated with processing speed, with working memory exerting much less of an influence. Results are discussed in terms of the role of cognitive rehabilitation of new learning and memory abilities in persons with MS.

  12. The hippocampus and exploration: dynamically evolving behavior and neural representations

    PubMed Central

    Johnson, Adam; Varberg, Zachary; Benhardus, James; Maahs, Anthony; Schrater, Paul

    2012-01-01

    We develop a normative statistical approach to exploratory behavior called information foraging. Information foraging highlights the specific processes that contribute to active, rather than passive, exploration and learning. We hypothesize that the hippocampus plays a critical role in active exploration through directed information foraging by supporting a set of processes that allow an individual to determine where to sample. By examining these processes, we show how information directed information foraging provides a formal theoretical explanation for the common hippocampal substrates of constructive memory, vicarious trial and error behavior, schema-based facilitation of memory performance, and memory consolidation. PMID:22848196

  13. The Effect of Highlighting on Processing and Memory of Central and Peripheral Text Information: Evidence from Eye Movements

    ERIC Educational Resources Information Center

    Yeari, Menahem; Oudega, Marja; van den Broek, Paul

    2017-01-01

    The present study investigated the effect of text highlighting on online processing and memory of central and peripheral information. We compared processing time (using eye-tracking methodology) and recall of central and peripheral information for three types of highlighting: (a) highlighting of central information, (b) highlighting of peripheral…

  14. Evaluating the Role of Attention in the Context of Unconscious Thought Theory: Differential Impact of Attentional Scope and Load on Preference and Memory

    PubMed Central

    Srinivasan, Narayanan; Mukherjee, Sumitava; Mishra, Maruti V.; Kesarwani, Smriti

    2013-01-01

    Attention is a key process used to conceptualize and define modes of thought, but we lack information about the role of specific attentional processes on preferential choice and memory in multi-attribute decision making. In this study, we examine the role of attention based on two dimensions, attentional scope and load on choice preference strength and memory using a paradigm that arguably elicits unconscious thought. Scope of attention was manipulated by using global or local processing during distraction (Experiment 1) and before the information-encoding stage (Experiment 2). Load was manipulated by using the n-back task in Experiment 1. Results from Experiment 1 show that global processing or distributed attention during distraction results in stronger preference irrespective of load but better memory only at low cognitive load. Task difficulty or load did not have any effect on preference or memory. In Experiment 2, distributed attention before attribute encoding facilitated only memory but did not influence preference. Results show that attentional processes at different stages of processing like distraction and information-encoding influence decision making processes. Scope of attention not only influences preference and memory but the manner in which attentional scope influences them depends on both load and stage of information processing. The results indicate the important role of attention in processes critical for decision making and calls for a re-evaluation of the unconscious thought theory (UTT) and the need for reconceptualizing the role of attention. PMID:23382726

  15. Evaluating the role of attention in the context of unconscious thought theory: differential impact of attentional scope and load on preference and memory.

    PubMed

    Srinivasan, Narayanan; Mukherjee, Sumitava; Mishra, Maruti V; Kesarwani, Smriti

    2013-01-01

    Attention is a key process used to conceptualize and define modes of thought, but we lack information about the role of specific attentional processes on preferential choice and memory in multi-attribute decision making. In this study, we examine the role of attention based on two dimensions, attentional scope and load on choice preference strength and memory using a paradigm that arguably elicits unconscious thought. Scope of attention was manipulated by using global or local processing during distraction (Experiment 1) and before the information-encoding stage (Experiment 2). Load was manipulated by using the n-back task in Experiment 1. Results from Experiment 1 show that global processing or distributed attention during distraction results in stronger preference irrespective of load but better memory only at low cognitive load. Task difficulty or load did not have any effect on preference or memory. In Experiment 2, distributed attention before attribute encoding facilitated only memory but did not influence preference. Results show that attentional processes at different stages of processing like distraction and information-encoding influence decision making processes. Scope of attention not only influences preference and memory but the manner in which attentional scope influences them depends on both load and stage of information processing. The results indicate the important role of attention in processes critical for decision making and calls for a re-evaluation of the unconscious thought theory (UTT) and the need for reconceptualizing the role of attention.

  16. Information Memory Processing and Retrieval: Relationships of Learning and Cognition in a Verbal and Visual Task.

    ERIC Educational Resources Information Center

    Empfield, Chick O.; Moser, Gene W.

    One of a series of investigations on the Project on an Information Memory Model, the purpose of this study was to determine the amount and kind of visual information processed and stored in the memory of children using different modalities of observation. Children, aged 5, 9 and 13 years, were randomly assigned to one of three treatment groups.…

  17. Alpha Oscillations during Incidental Encoding Predict Subsequent Memory for New "Foil" Information.

    PubMed

    Vogelsang, David A; Gruber, Matthias; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2018-05-01

    People can employ adaptive strategies to increase the likelihood that previously encoded information will be successfully retrieved. One such strategy is to constrain retrieval toward relevant information by reimplementing the neurocognitive processes that were engaged during encoding. Using EEG, we examined the temporal dynamics with which constraining retrieval toward semantic versus nonsemantic information affects the processing of new "foil" information encountered during a memory test. Time-frequency analysis of EEG data acquired during an initial study phase revealed that semantic compared with nonsemantic processing was associated with alpha decreases in a left frontal electrode cluster from around 600 msec after stimulus onset. Successful encoding of semantic versus nonsemantic foils during a subsequent memory test was related to decreases in alpha oscillatory activity in the same left frontal electrode cluster, which emerged relatively late in the trial at around 1000-1600 msec after stimulus onset. Across participants, left frontal alpha power elicited by semantic processing during the study phase correlated significantly with left frontal alpha power associated with semantic foil encoding during the memory test. Furthermore, larger left frontal alpha power decreases elicited by semantic foil encoding during the memory test predicted better subsequent semantic foil recognition in an additional surprise foil memory test, although this effect did not reach significance. These findings indicate that constraining retrieval toward semantic information involves reimplementing semantic encoding operations that are mediated by alpha oscillations and that such reimplementation occurs at a late stage of memory retrieval, perhaps reflecting additional monitoring processes.

  18. Instructional Design and Directed Cognitive Processing.

    ERIC Educational Resources Information Center

    Bovy, Ruth Colvin

    This paper argues that the information processing model provides a promising basis on which to build a comprehensive theory of instruction. Characteristics of the major information processing constructs are outlined including attention, encoding and rehearsal, working memory, long term memory, retrieval, and metacognitive processes, and a unifying…

  19. A multisensory perspective of working memory

    PubMed Central

    Quak, Michel; London, Raquel Elea; Talsma, Durk

    2015-01-01

    Although our sensory experience is mostly multisensory in nature, research on working memory representations has focused mainly on examining the senses in isolation. Results from the multisensory processing literature make it clear that the senses interact on a more intimate manner than previously assumed. These interactions raise questions regarding the manner in which multisensory information is maintained in working memory. We discuss the current status of research on multisensory processing and the implications of these findings on our theoretical understanding of working memory. To do so, we focus on reviewing working memory research conducted from a multisensory perspective, and discuss the relation between working memory, attention, and multisensory processing in the context of the predictive coding framework. We argue that a multisensory approach to the study of working memory is indispensable to achieve a realistic understanding of how working memory processes maintain and manipulate information. PMID:25954176

  20. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation.

    PubMed

    Bieszczad, Kasia M; Bechay, Kiro; Rusche, James R; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M; McGaugh, James L; Wood, Marcelo A

    2015-09-23

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. Significance statement: Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually "tuned-in" to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control "informational capture" at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories. Copyright © 2015 the authors 0270-6474/15/3513125-09$15.00/0.

  1. Histone Deacetylase Inhibition via RGFP966 Releases the Brakes on Sensory Cortical Plasticity and the Specificity of Memory Formation

    PubMed Central

    Bechay, Kiro; Rusche, James R.; Jacques, Vincent; Kudugunti, Shashi; Miao, Wenyan; Weinberger, Norman M.; McGaugh, James L.

    2015-01-01

    Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C21H19FN4O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-to-reward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories. SIGNIFICANCE STATEMENT Here we provide evidence of an epigenetic mechanism for information processing. The study reveals that a class I HDAC inhibitor (Malvaez et al., 2013; Rumbaugh et al., 2015; RGFP966, chemical formula C21H19FN4O) alters the formation of auditory memory by enabling more acoustic information to become encoded into memory. Moreover, RGFP966 appears to affect cortical plasticity: the primary auditory cortex reorganized in a manner that was unusually “tuned-in” to the specific sound cues and acoustic features that were related to reward and subsequently remembered. We propose that HDACs control “informational capture” at a systems level for what and how much information is encoded by gating sensory cortical plasticity that underlies the sensory richness of newly formed memories. PMID:26400942

  2. NPY2-receptor variation modulates iconic memory processes.

    PubMed

    Arning, Larissa; Stock, Ann-Kathrin; Kloster, Eugen; Epplen, Jörg T; Beste, Christian

    2014-08-01

    Sensory memory systems are modality-specific buffers that comprise information about external stimuli, which represent the earliest stage of information processing. While these systems have been the subject of cognitive neuroscience research for decades, little is known about the neurobiological basis of sensory memory. However, accumulating evidence suggests that the glutamatergic system and systems influencing glutamatergic neural transmission are important. In the current study we examine if functional promoter variations in neuropeptide Y (NPY) and its receptor gene NPY2R affect iconic memory processes using a partial report paradigm. We found that iconic memory decayed much faster in individuals carrying the rare promoter NPY2R G allele which is associated with increased expression of the Y2 receptor. Possibly this effect is due to altered presynaptic inhibition of glutamate release, known to be modulated by Y2 receptors. Altogether, our results provide evidence that the functionally relevant single nucleotide polymorphism (SNP) in the NPY2R promoter gene affect circumscribed processes of early sensory processing, i.e. only the stability of information in sensory memory buffers. This leads us to suggest that especially the stability of information in sensory memory buffers depends on glutamatergic neural transmission and factors modulating glutamatergic turnover. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  3. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects-An ERP Evidence of Source Memory.

    PubMed

    Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan

    2017-01-01

    Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300-500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500-800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects.

  4. Self-Referential Information Alleviates Retrieval Inhibition of Directed Forgetting Effects—An ERP Evidence of Source Memory

    PubMed Central

    Mao, Xinrui; Wang, Yujuan; Wu, Yanhong; Guo, Chunyan

    2017-01-01

    Directed forgetting (DF) assists in preventing outdated information from interfering with cognitive processing. Previous studies pointed that self-referential items alleviated DF effects due to the elaboration of encoding processes. However, the retrieval mechanism of this phenomenon remains unknown. Based on the dual-process framework of recognition, the retrieval of self-referential information was involved in familiarity and recollection. Using source memory tasks combined with event-related potential (ERP) recording, our research investigated the retrieval processes of alleviative DF effects elicited by self-referential information. The FN400 (frontal negativity at 400 ms) is a frontal potential at 300–500 ms related to familiarity and the late positive complex (LPC) is a later parietal potential at 500–800 ms related to recollection. The FN400 effects of source memory suggested that familiarity processes were promoted by self-referential effects without the modulation of to-be-forgotten (TBF) instruction. The ERP results of DF effects were involved with LPCs of source memory, which indexed retrieval processing of recollection. The other-referential source memory of TBF instruction caused the absence of LPC effects, while the self-referential source memory of TBF instruction still elicited the significant LPC effects. Therefore, our neural findings suggested that self-referential processing improved both familiarity and recollection. Furthermore, the self-referential processing advantage which was caused by the autobiographical retrieval alleviated retrieval inhibition of DF, supporting that the self-referential source memory alleviated DF effects. PMID:29066962

  5. Information Warfare: Evaluation of Operator Information Processing Models

    DTIC Science & Technology

    1997-10-01

    that people can describe or report, including both episodic and semantic information. Declarative memory contains a network of knowledge represented...second dimension corresponds roughly to the distinction between episodic and semantic memory that is commonly made in cognitive psychology. Episodic ...3 is long-term memory for the discourse, a subset of episodic memory . Partition 4 is long-term semantic memory , or the knowledge-base. According to

  6. A review of visual memory capacity: Beyond individual items and towards structured representations

    PubMed Central

    Brady, Timothy F.; Konkle, Talia; Alvarez, George A.

    2012-01-01

    Traditional memory research has focused on identifying separate memory systems and exploring different stages of memory processing. This approach has been valuable for establishing a taxonomy of memory systems and characterizing their function, but has been less informative about the nature of stored memory representations. Recent research on visual memory has shifted towards a representation-based emphasis, focusing on the contents of memory, and attempting to determine the format and structure of remembered information. The main thesis of this review will be that one cannot fully understand memory systems or memory processes without also determining the nature of memory representations. Nowhere is this connection more obvious than in research that attempts to measure the capacity of visual memory. We will review research on the capacity of visual working memory and visual long-term memory, highlighting recent work that emphasizes the contents of memory. This focus impacts not only how we estimate the capacity of the system - going beyond quantifying how many items can be remembered, and moving towards structured representations - but how we model memory systems and memory processes. PMID:21617025

  7. Aging, culture, and memory for categorically processed information.

    PubMed

    Yang, Lixia; Chen, Wenfeng; Ng, Andy H; Fu, Xiaolan

    2013-11-01

    Literature on cross-cultural differences in cognition suggests that categorization, as an information processing and organization strategy, was more often used by Westerners than by East Asians, particularly for older adults. This study examines East-West cultural differences in memory for categorically processed items and sources in young and older Canadians and native Chinese with a conceptual source memory task (Experiment 1) and a reality monitoring task (Experiment 2). In Experiment 1, participants encoded photographic faces of their own ethnicity that were artificially categorized into GOOD or EVIL characters and then completed a source memory task in which they identified faces as old-GOOD, old-EVIL, or new. In Experiment 2, participants viewed a series of words, each followed either by a corresponding image (i.e., SEEN) or by a blank square within which they imagined an image for the word (i.e., IMAGINED). At test, they decided whether the test words were old-SEEN, old-IMAGINED, or new. In general, Canadians outperformed Chinese in memory for categorically processed information, an effect more pronounced for older than for young adults. Extensive exercise of culturally preferred categorization strategy differentially benefits Canadians and reduces their age group differences in memory for categorically processed information.

  8. Strengthening a consolidated memory: the key role of the reconsolidation process.

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2014-01-01

    The reconsolidation hypothesis posits that the presentation of a specific cue, previously associated with a life event, makes the stored memory pass from a stable to a reactivated state. In this state, memory is again labile and susceptible to different agents, which may either damage or improve the original memory. Such susceptibility decreases over time and leads to a re-stabilization phase known as reconsolidation process. This process has been assigned two biological roles: memory updating, which suggests that destabilization of the original memory allows the integration of new information into the background of the original memory; and memory strengthening, which postulates that the labilization-reconsolidation process strengthens the original memory. The aim of this review is to analyze the strengthening as an improvement obtained only by triggering such process without any other treatment. In our lab, we have demonstrated that when triggering the labilization-reconsolidation process at least once the original memory becomes strengthened and increases its persistence. We have also shown that repeated labilization-reconsolidation processes strengthened the original memory by enlarging its precision, and said reinforced memories were more resistant to interference. Finally, we have shown that the strengthening function is not operative in older memories. We present and discuss both our findings and those of others, trying to reveal the central role of reconsolidation in the modification of stored information. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Sleep-dependent memory triage: Evolving generalization through selective processing

    PubMed Central

    Stickgold, Robert; Walker, Matthew P.

    2018-01-01

    The brain does not retain all the information it encodes in a day. Much is forgotten, and of those memories retained, their subsequent “evolution” can follow any of a number of pathways. Emerging data makes clear that sleep is a compelling candidate for performing many of these operations. But how does the sleeping brain know which information to preserve and which to forget? What should sleep do with that information it chooses to keep? For information that is retained, sleep can integrate it into existing memory networks, look for common patterns and distill overarching rules, or simply stabilize and strengthen the memory exactly as it was learned. We suggest such “memory triage” lies at the heart of a sleep-dependent memory processing system that selects new information, in a discriminatory manner, and assimilates it into the brain’s vast armamentarium of evolving knowledge, helping guide each organism through its own, unique life. PMID:23354387

  10. Fuzzy-trace theory: dual processes in memory, reasoning, and cognitive neuroscience.

    PubMed

    Brainerd, C J; Reyna, V F

    2001-01-01

    Fuzzy-trace theory has evolved in response to counterintuitive data on how memory development influences the development of reasoning. The two traditional perspectives on memory-reasoning relations--the necessity and constructivist hypotheses--stipulate that the accuracy of children's memory for problem information and the accuracy of their reasoning are closely intertwined, albeit for different reasons. However, contrary to necessity, correlational and experimental dissociations have been found between children's memory for problem information that is determinative in solving certain problems and their solutions of those problems. In these same tasks, age changes in memory for problem information appear to be dissociated from age changes in reasoning. Contrary to constructivism, correlational and experimental dissociations also have been found between children's performance on memory tests for actual experience and memory tests for the meaning of experience. As in memory-reasoning studies, age changes in one type of memory performance do not seem to be closely connected to age changes in the other type of performance. Subsequent experiments have led to dual-process accounts in both the memory and reasoning spheres. The account of memory development features four other principles: parallel verbatim-gist storage, dissociated verbatim-gist retrieval, memorial bases of conscious recollection, and identity/similarity processes. The account of the development of reasoning features three principles: gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences. The fuzzy-processing preference is a particularly important notion because it implies that gist-based intuitive reasoning often suffices to deliver "logical" solutions and that such reasoning confers multiple cognitive advantages that enhance accuracy. The explanation of memory-reasoning dissociations in cognitive development then falls out of fuzzy-trace theory's dual-process models of memory and reasoning. More explicitly, in childhood reasoning tasks, it is assumed that both verbatim and gist traces of problem information are stored. Responding accurately to memory tests for presented problem information depends primarily on verbatim memory abilities (preserving traces of that information and accessing them when the appropriate memory probes are administered). However, accurate solutions to reasoning problems depend primarily on gist-memory abilities (extracting the correct gist from problem information, focusing on that gist during reasoning, and accessing reasoning operations that process that gist). Because verbatim and gist memories exhibit considerable dissociation, both during storage and when they are subsequently accessed on memory tests, dissociations of verbatim-based memory performance from gist-based reasoning are predictable. Conversely, associations are predicted in situations in which memory and reasoning are based on the same verbatim traces (Brainerd & Reyna, 1988) and in situations in which memory and reasoning are based on the same gist traces (Reyna & Kiernan, 1994). Fuzzy-trace theory's memory and reasoning principles have been applied in other research domains. Four such domains are developmental cognitive neuroscience studies of false memory, studies of false memory in brain-damaged patients, studies of reasoning errors in judgment and decision making, and studies of retrieval mechanisms in recall. In the first domain, the principles of parallel verbatim-gist storage, dissociated verbatim-gist retrieval, and identity/similarity processes have been used to explain both spontaneous and implanted false reports in children and in the elderly. These explanations have produced some surprising predictions that have been verified: false reports do not merely decline with age during childhood but increase under theoretically specified conditions; reports of events that were not experienced can nevertheless be highly persistent over time; and false reports can be suppressed by retrieving verbatim traces of corresponding true events. In the second domain, the same principles have been invoked to explain why some forms of brain damage lead to elevated levels of false memory and other forms lead to reduced levels of false memory. In the third domain, the principles of gist extraction, fuzzy-to-verbatim continua, and fuzzy-processing preferences have been exploited to formulate a general theory of loci of processing failures in judgment and decision making, cluminating in a developmental account of degrees of rationality that distinguishes more and less advanced reasoning. This theory has in turn been used to formulate local models, such as the inclusion illusions model, that explain the characteristic reasoning errors that are observed on specific judgment and decision-making tasks. Finally, in the fourth domain, a dual-process conception of recall has been derived from the principles of parallel verbatim-gist storage and dissociated verbatim-gist retrieval. In this conception, which has been used to explain cognitive triage effects in recall and robust false recall, targets are recalled either by directly accessing their verbatim traces and reading the retrieved information out of consciousness or by reconstructively processing their gist traces.

  11. Persistent neural activity in auditory cortex is related to auditory working memory in humans and nonhuman primates

    PubMed Central

    Huang, Ying; Matysiak, Artur; Heil, Peter; König, Reinhard; Brosch, Michael

    2016-01-01

    Working memory is the cognitive capacity of short-term storage of information for goal-directed behaviors. Where and how this capacity is implemented in the brain are unresolved questions. We show that auditory cortex stores information by persistent changes of neural activity. We separated activity related to working memory from activity related to other mental processes by having humans and monkeys perform different tasks with varying working memory demands on the same sound sequences. Working memory was reflected in the spiking activity of individual neurons in auditory cortex and in the activity of neuronal populations, that is, in local field potentials and magnetic fields. Our results provide direct support for the idea that temporary storage of information recruits the same brain areas that also process the information. Because similar activity was observed in the two species, the cellular bases of some auditory working memory processes in humans can be studied in monkeys. DOI: http://dx.doi.org/10.7554/eLife.15441.001 PMID:27438411

  12. How trait anxiety, interpretation bias and memory affect acquired fear in children learning about new animals.

    PubMed

    Field, Zoë C; Field, Andy P

    2013-06-01

    Cognitive models of vulnerability to anxiety propose that information processing biases such as interpretation bias play a part in the etiology and maintenance of anxiety disorders. However, at present little is known about the role of memory in information processing accounts of child anxiety. The current study investigates the relationships between interpretation biases, memory and fear responses when learning about new stimuli. Children (aged 8-11 years) were presented with ambiguous information regarding a novel animal, and their fear, interpretation bias, and memory for the information was measured. The main findings were: (1) trait anxiety and interpretation bias significantly predicted acquired fear; (2) interpretation bias did not significantly mediate the relationship between trait anxiety and acquired fear; (3) interpretation bias appeared to be a more important predictor of acquired fear than trait anxiety per se; and (4) the relationship between interpretation bias and acquired fear was not mediated by the number of negative memories but was mediated by the number of positive and false-positive memories. The findings suggest that information processing models of child anxiety need to explain the role of positive memory in the formation of fear responses.

  13. Perception and Reality of Cognitive Function: Information Processing Speed, Perceived Memory Function, and Perceived Task Difficulty in Older Adults.

    PubMed

    Torrens-Burton, Anna; Basoudan, Nasreen; Bayer, Antony J; Tales, Andrea

    2017-01-01

    This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders.

  14. Perception and Reality of Cognitive Function: Information Processing Speed, Perceived Memory Function, and Perceived Task Difficulty in Older Adults

    PubMed Central

    Torrens-Burton, Anna; Basoudan, Nasreen; Bayer, Antony J.; Tales, Andrea

    2017-01-01

    This study examines the relationships between two measures of information processing speed associated with executive function (Trail Making Test and a computer-based visual search test), the perceived difficulty of the tasks, and perceived memory function (measured by the Memory Functioning Questionnaire) in older adults (aged 50+ y) with normal general health, cognition (Montreal Cognitive Assessment score of 26+), and mood. The participants were recruited from the community rather than through clinical services, and none had ever sought or received help from a health professional for a memory complaint or mental health problem. For both the trail making and the visual search tests, mean information processing speed was not correlated significantly with perceived memory function. Some individuals did, however, reveal substantially slower information processing speeds (outliers) that may have clinical significance and indicate those who may benefit most from further assessment and follow up. For the trail making, but not the visual search task, higher levels of subjective memory dysfunction were associated with a greater perception of task difficulty. The relationship between actual information processing speed and perceived task difficulty also varied with respect to the task used. These findings highlight the importance of taking into account the type of task and metacognition factors when examining the integrity of information processing speed in older adults, particularly as this measure is now specifically cited as a key cognitive subdomain within the diagnostic framework for neurocognitive disorders. PMID:28984584

  15. Method and device for maximizing memory system bandwidth by accessing data in a dynamically determined order

    NASA Technical Reports Server (NTRS)

    Schwab, Andrew J. (Inventor); Aylor, James (Inventor); Hitchcock, Charles Young (Inventor); Wulf, William A. (Inventor); McKee, Sally A. (Inventor); Moyer, Stephen A. (Inventor); Klenke, Robert (Inventor)

    2000-01-01

    A data processing system is disclosed which comprises a data processor and memory control device for controlling the access of information from the memory. The memory control device includes temporary storage and decision ability for determining what order to execute the memory accesses. The compiler detects the requirements of the data processor and selects the data to stream to the memory control device which determines a memory access order. The order in which to access said information is selected based on the location of information stored in the memory. The information is repeatedly accessed from memory and stored in the temporary storage until all streamed information is accessed. The information is stored until required by the data processor. The selection of the order in which to access information maximizes bandwidth and decreases the retrieval time.

  16. How Does Knowledge Promote Memory? The Distinctiveness Theory of Skilled Memory

    ERIC Educational Resources Information Center

    Rawson, Katherine A.; Van Overschelde, James P.

    2008-01-01

    The robust effects of knowledge on memory for domain-relevant information reported in previous research have largely been attributed to improved organizational processing. The present research proposes the distinctiveness theory of skilled memory, which states that knowledge improves memory not only through improved organizational processing but…

  17. Individual Differences in Depth and Breadth of Processing.

    ERIC Educational Resources Information Center

    Schmeck, Ronald R.; McCarthy, Patricia

    Memory has been defined as traces left behind by past information processing. One approach to the study of everyday memory is to isolate reliable differences between individuals in the ways in which they process information when preparing for test events. The Inventory of Learning Processes, consisting of four scales, i.e., Deep Processing,…

  18. The removal of information from working memory.

    PubMed

    Lewis-Peacock, Jarrod A; Kessler, Yoav; Oberauer, Klaus

    2018-05-09

    What happens to goal-relevant information in working memory after it is no longer needed? Here, we review evidence for a selective removal process that operates on outdated information to limit working memory load and hence facilitates the maintenance of goal-relevant information. Removal alters the representations of irrelevant content so as to reduce access to it, thereby improving access to the remaining relevant content and also facilitating the encoding of new information. Both behavioral and neural evidence support the existence of a removal process that is separate from forgetting due to decay or interference. We discuss the potential mechanisms involved in removal and characterize the time course and duration of the process. In doing so, we propose the existence of two forms of removal: one is temporary, and reversible, which modifies working memory content without impacting content-to-context bindings, and another is permanent, which unbinds the content from its context in working memory (without necessarily impacting long-term forgetting). Finally, we discuss limitations on removal and prescribe conditions for evaluating evidence for or against this process. © 2018 New York Academy of Sciences.

  19. Neurocognitive architecture of working memory

    PubMed Central

    Eriksson, Johan; Vogel, Edward K.; Lansner, Anders; Bergström, Fredrik; Nyberg, Lars

    2015-01-01

    The crucial role of working memory for temporary information processing and guidance of complex behavior has been recognized for many decades. There is emerging consensus that working memory maintenance results from the interactions among long-term memory representations and basic processes, including attention, that are instantiated as reentrant loops between frontal and posterior cortical areas, as well as subcortical structures. The nature of such interactions can account for capacity limitations, lifespan changes, and restricted transfer after working-memory training. Recent data and models indicate that working memory may also be based on synaptic plasticity, and that working memory can operate on non-consciously perceived information. PMID:26447571

  20. The role of GABAA in the expression of updated information through the reconsolidation process in humans.

    PubMed

    Fernández, Rodrigo S; Moyano, Malen D; Radloff, Michael; Campos, Jorge; Carbó-Tano, Martin; Allegri, Ricardo F; Pedreira, María E; Forcato, Cecilia

    2017-07-01

    Consolidated memory can be again destabilized by the presentation of a memory cue (reminder) of the previously acquired information. During this process of labilization/restabilization memory traces can be either impaired, strengthened or updated in content. Here, we study if a consolidated memory can be updated by linking one original cue to two different outcomes and whether this process was modulated by the GABAergic system. To aim that, we designed two experiments carried out in three consecutive days. All participants learned a list of non-sense syllable pairs on day 1. On day 2 the new information was introduced after the reminder or no-reminder presentation. Participants were tested on day 3 for the updated or original list (Exp. 1). In Exp. 2 we tested whether this new information was incorporated by an inhibitory process mediated by the GABAergic system. For that, participants retrieved the original information before being taken Clonazepam 0.25mg (GABA A agonist) or Placebo pill. We found that the groups that received the reminder correctly recalled the old and new information. However, the no reminder groups only correctly recalled the original information. Furthermore, when testing occurred in the presence of Clonazepam, the group that received the reminder plus the new information showed an impaired original memory performance compared to the group that received only Clonazepam (without reminder) or the reminder plus Placebo pill. These results show that new information can be added to a reactivated declarative memory in humans by linking one cue to two different outcomes. Furthermore, we shed light on the mechanisms of memory updating being the GABAergic system involved in the modulation of the old and new information expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. High efficiency coherent optical memory with warm rubidium vapour

    PubMed Central

    Hosseini, M.; Sparkes, B.M.; Campbell, G.; Lam, P.K.; Buchler, B.C.

    2011-01-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory. PMID:21285952

  2. High efficiency coherent optical memory with warm rubidium vapour.

    PubMed

    Hosseini, M; Sparkes, B M; Campbell, G; Lam, P K; Buchler, B C

    2011-02-01

    By harnessing aspects of quantum mechanics, communication and information processing could be radically transformed. Promising forms of quantum information technology include optical quantum cryptographic systems and computing using photons for quantum logic operations. As with current information processing systems, some form of memory will be required. Quantum repeaters, which are required for long distance quantum key distribution, require quantum optical memory as do deterministic logic gates for optical quantum computing. Here, we present results from a coherent optical memory based on warm rubidium vapour and show 87% efficient recall of light pulses, the highest efficiency measured to date for any coherent optical memory suitable for quantum information applications. We also show storage and recall of up to 20 pulses from our system. These results show that simple warm atomic vapour systems have clear potential as a platform for quantum memory.

  3. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories

    PubMed Central

    2012-01-01

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies. PMID:22827854

  4. An overview of the neuro-cognitive processes involved in the encoding, consolidation, and retrieval of true and false memories.

    PubMed

    Straube, Benjamin

    2012-07-24

    Perception and memory are imperfect reconstructions of reality. These reconstructions are prone to be influenced by several factors, which may result in false memories. A false memory is the recollection of an event, or details of an episode, that did not actually occur. Memory formation comprises at least three different sub-processes: encoding, consolidation and the retrieval of the learned material. All of these sub-processes are vulnerable for specific errors and consequently may result in false memories. Whereas, processes like imagery, self-referential encoding or spreading activation can lead to the formation of false memories at encoding, semantic generalization during sleep and updating processes due to misleading post event information, in particular, are relevant at the consolidation stage. Finally at the retrieval stage, monitoring processes, which are assumed to be essential to reject false memories, are of specific importance. Different neuro-cognitive processes have been linked to the formation of true and false memories. Most consistently the medial temporal lobe and the medial and lateral prefrontal cortex have been reported with regard to the formation of true and false memories. Despite the fact that all phases entailing memory formation, consolidation of stored information and retrieval processes, are relevant for the forming of false memories, most studies focused on either memory encoding or retrieval. Thus, future studies should try to integrate data from all phases to give a more comprehensive view on systematic memory distortions. An initial outline is developed within this review to connect the different memory stages and research strategies.

  5. Processing Depth, Elaboration of Encoding, Memory Stores, and Expended Processing Capacity.

    ERIC Educational Resources Information Center

    Eysenck, Michael W.; Eysenck, M. Christine

    1979-01-01

    The effects of several factors on expended processing capacity were measured. Expended processing capacity was greater when information was retrieved from secondary memory than from primary memory, when processing was of a deep, semantic nature than when it was shallow and physical, and when processing was more elaborate. (Author/GDC)

  6. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep.

    PubMed

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-12-01

    It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. © 2016 Associated Professional Sleep Societies, LLC.

  7. Short-term memory affects color perception in context.

    PubMed

    Olkkonen, Maria; Allred, Sarah R

    2014-01-01

    Color-based object selection - for instance, looking for ripe tomatoes in the market - places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly.

  8. Effects of information processing speed on learning, memory, and executive functioning in people living with HIV/AIDS.

    PubMed

    Fellows, Robert P; Byrd, Desiree A; Morgello, Susan

    2014-01-01

    It is unclear whether or to what degree literacy, aging, and other neurologic abnormalities relate to cognitive deficits among people living with HIV/AIDS in the combined antiretroviral therapy (CART) era. The primary aim of this study was to simultaneously examine the association of age, HIV-associated motor abnormalities, major depressive disorder, and reading level with information processing speed, learning, memory, and executive functions, and to determine whether processing speed mediated any of the relationships between cognitive and noncognitive variables. Participants were 186 racially and ethnically diverse men and women living with HIV/AIDS who underwent comprehensive neurological, neuropsychological, and medical evaluations. Structural equation modeling was utilized to assess the extent to which information processing speed mediated the relationship between age, motor abnormalities, major depressive disorder, and reading level with other cognitive abilities. Age, motor dysfunction, reading level, and current major depressive disorder were all significantly associated with information processing speed. Information processing speed fully mediated the effects of age on learning, memory, and executive functioning and partially mediated the effect of major depressive disorder on learning and memory. The effect of motor dysfunction on learning and memory was fully mediated by processing speed. These findings provide support for information processing speed as a primary deficit, which may account, at least in part, for many of the other cognitive abnormalities recognized in complex HIV/AIDS populations. The association of age and information processing speed may account for HIV/aging synergies in the generation of CART-era cognitive abnormalities.

  9. Mental Schemas Hamper Memory Storage of Goal-Irrelevant Information

    PubMed Central

    Sweegers, C. C. G.; Coleman, G. A.; van Poppel, E. A. M.; Cox, R.; Talamini, L. M.

    2015-01-01

    Mental schemas exert top-down control on information processing, for instance by facilitating the storage of schema-related information. However, given capacity-limits and competition in neural network processing, schemas may additionally exert their effects by suppressing information with low momentary relevance. In particular, when existing schemas suffice to guide goal-directed behavior, this may actually reduce encoding of the redundant sensory input, in favor of gaining efficiency in task performance. The present experiment set out to test this schema-induced shallow encoding hypothesis. Our approach involved a memory task in which faces had to be coupled to homes. For half of the faces the responses could be guided by a pre-learned schema, for the other half of the faces such a schema was not available. Memory storage was compared between schema-congruent and schema-incongruent items. To characterize putative schema effects, memory was assessed both with regard to visual details and contextual aspects of each item. The depth of encoding was also assessed through an objective neural measure: the parietal old/new ERP effect. This ERP effect, observed between 500–800 ms post-stimulus onset, is thought to reflect the extent of recollection: the retrieval of a vivid memory, including various contextual details from the learning episode. We found that schema-congruency induced substantial impairments in item memory and even larger ones in context memory. Furthermore, the parietal old/new ERP effect indicated higher recollection for the schema-incongruent than the schema-congruent memories. The combined findings indicate that, when goals can be achieved using existing schemas, this can hinder the in-depth processing of novel input, impairing the formation of perceptually detailed and contextually rich memory traces. Taking into account both current and previous findings, we suggest that schemas can both positively and negatively bias the processing of sensory input. An important determinant in this matter is likely related to momentary goals, such that mental schemas facilitate memory processing of goal-relevant input, but suppress processing of goal-irrelevant information. Highlights – Schema-congruent information suffers from shallow encoding. – Schema congruency induces poor item and context memory. – The parietal old/new effect is less pronounced for schema-congruent items. – Schemas exert different influences on memory formation depending on current goals. PMID:26635582

  10. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  11. Sleep Enhances Explicit Recollection in Recognition Memory

    ERIC Educational Resources Information Center

    Drosopoulos, Spyridon; Wagner, Ullrich; Born, Jan

    2005-01-01

    Recognition memory is considered to be supported by two different memory processes, i.e., the explicit recollection of information about a previous event and an implicit process of recognition based on a contextual sense of familiarity. Both types of memory supposedly rely on distinct memory systems. Sleep is known to enhance the consolidation of…

  12. Working Memory in the Service of Executive Control Functions.

    PubMed

    Mansouri, Farshad A; Rosa, Marcello G P; Atapour, Nafiseh

    2015-01-01

    Working memory is a type of short-term memory which has a crucial cognitive function that supports ongoing and upcoming behaviors, allowing storage of information across delay periods. The content of this memory may typically include tangible information about features such as the shape, color or texture of an object, and its location and motion relative to the body, as well as phonological information. The neural correlate of working memory has been found in different brain areas that are involved in organizing perceptual or motor functions. In particular, neuronal activity in prefrontal areas encodes task-related information corresponding to working memory across delay periods, and lesions in the prefrontal cortex severely affect the ability to retain this type of memory. Recent studies have further expanded the scope and possible role of working memory by showing that information of a more abstract nature (including a behavior-guiding rule, or the occurrence of a conflict in information processing) can also be maintained in short-term memory, and used for adjusting the allocation of executive control in dynamic environments. It has also been shown that neuronal activity in the prefrontal cortex encodes and maintains information about such abstract entities. These findings suggest that the prefrontal cortex plays crucial roles in the organization of goal-directed behavior by supporting many different mnemonic processes, which maintain a wide range of information required for the executive control of ongoing and upcoming behaviors.

  13. Is the Survival-Processing Memory Advantage Due to Richness of Encoding?

    ERIC Educational Resources Information Center

    Röer, Jan P.; Bell, Raoul; Buchner, Axel

    2013-01-01

    Memory for words rated according to their relevance in a grassland survival context is exceptionally good. According to Nairne, Thompson, and Pandeirada's (2007) evolutionary-based explanation, natural selection processes have tuned the human memory system to prioritize the processing of fitness-relevant information. The survival-processing memory…

  14. Information Memory Processing and Retrieval: The Use of Information Theory to Study Primacy and Recency Characteristics of Ninth Grade Science Students Processing Learning Tasks.

    ERIC Educational Resources Information Center

    Dunlop, David L.

    Reported is another study related to the Project on an Information Memory Model. This study involved using information theory to investigate the concepts of primacy and recency as they were exhibited by ninth-grade science students while processing a biological sorting problem and an immediate, abstract recall task. Two hundred randomly selected…

  15. On the role of working memory in spatial contextual cueing.

    PubMed

    Travis, Susan L; Mattingley, Jason B; Dux, Paul E

    2013-01-01

    The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.

  16. Reasoning and Memory: People Make Varied Use of the Information Available in Working Memory

    ERIC Educational Resources Information Center

    Hardman, Kyle O.; Cowan, Nelson

    2016-01-01

    Working memory (WM) is used for storing information in a highly accessible state so that other mental processes, such as reasoning, can use that information. Some WM tasks require that participants not only store information, but also reason about that information to perform optimally on the task. In this study, we used visual WM tasks that had…

  17. Visual Working Memory Supports the Inhibition of Previously Processed Information: Evidence from Preview Search

    ERIC Educational Resources Information Center

    Al-Aidroos, Naseem; Emrich, Stephen M.; Ferber, Susanne; Pratt, Jay

    2012-01-01

    In four experiments we assessed whether visual working memory (VWM) maintains a record of previously processed visual information, allowing old information to be inhibited, and new information to be prioritized. Specifically, we evaluated whether VWM contributes to the inhibition (i.e., visual marking) of previewed distractors in a preview search.…

  18. Determinants to trigger memory reconsolidation: The role of retrieval and updating information.

    PubMed

    Rodriguez-Ortiz, Carlos J; Bermúdez-Rattoni, Federico

    2017-07-01

    Long-term memories can undergo destabilization/restabilization processes, collectively called reconsolidation. However, the parameters that trigger memory reconsolidation are poorly understood and are a matter of intense investigation. Particularly, memory retrieval is widely held as requisite to initiate reconsolidation. This assumption makes sense since only relevant cues will induce reconsolidation of a specific memory. However, recent studies show that pharmacological inhibition of retrieval does not avoid memory from undergoing reconsolidation, indicating that memory reconsolidation occurs through a process that can be dissociated from retrieval. We propose that retrieval is not a unitary process but has two dissociable components; one leading to the expression of memory and the other to reconsolidation, referred herein as executer and integrator respectively. The executer would lead to the behavioral expression of the memory. This component would be the one disrupted on the studies that show reconsolidation independence from retrieval. The integrator would deal with reconsolidation. This component of retrieval would lead to long-term memory destabilization when specific conditions are met. We think that an important number of reports are consistent with the hypothesis that reconsolidation is only initiated when updating information is acquired. We suggest that the integrator would initiate reconsolidation to integrate updating information into long-term memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Upgrading the sleeping brain with targeted memory reactivation.

    PubMed

    Oudiette, Delphine; Paller, Ken A

    2013-03-01

    A fundamental feature of human memory is the propensity for beneficial changes in information storage after initial encoding. Recent research findings favor the possibility that memory consolidation during sleep is instrumental for actively maintaining the storehouse of memories that individuals carry through their lives. The information that ultimately remains available for retrieval may tend to be that which is reactivated during sleep. A novel source of support for this idea comes from demonstrations that neurocognitive processing during sleep can benefit memory storage when memories are covertly cued via auditory or olfactory stimulation. Investigations of these subtle manipulations of memory processing during sleep can help elucidate the mechanisms of memory preservation in the human brain. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cognitive Processes Supporting Episodic Memory Formation in Childhood: The Role of Source Memory, Binding, and Executive Functioning

    ERIC Educational Resources Information Center

    Raj, Vinaya; Bell, Martha Ann

    2010-01-01

    Episodic memories contain various forms of contextual detail (e.g., perceptual, emotional, cognitive details) that need to become integrated. Each of these contextual features can be used to attribute a memory episode to its source, or origin of information. Memory for source information is one critical component in the formation of episodic…

  1. Preserved learning of novel information in amnesia: evidence for multiple memory systems.

    PubMed

    Gordon, B

    1988-06-01

    Four of five patients with marked global amnesia, and others with new learning impairments, showed normal processing facilitation for novel stimuli (nonwords) and/or for familiar stimuli (words) on a word/nonword (lexical) decision task. The data are interpreted as a reflection of the learning capabilities of in-line neural processing stages with multiple, distinct, informational codes. These in-line learning processes are separate from the recognition/recall memory impaired by amygdalohippocampal/dosomedial thalamic damage, but probably supplement such memory in some tasks in normal individuals. Preserved learning of novel information seems incompatible with explanations of spared learning in amnesia that are based on the episodic/semantic or memory/habit distinctions, but is consistent with the procedural/declarative hypothesis.

  2. The Influence of Colour on Memory Performance: A Review

    PubMed Central

    Dzulkifli, Mariam Adawiah; Mustafar, Muhammad Faiz

    2013-01-01

    Human cognition involves many mental processes that are highly interrelated, such as perception, attention, memory, and thinking. An important and core cognitive process is memory, which is commonly associated with the storing and remembering of environmental information. An interesting issue in memory research is on ways to enhance memory performance, and thus, remembering of information. Can colour result in improved memory abilities? The present paper highlights the relationship between colours, attention, and memory performance. The significance of colour in different settings is presented first, followed by a description on the nature of human memory. The role of attention and emotional arousal on memory performance is discussed next. The review of several studies on colours and memory are meant to explain some empirical works done in the area and related issues that arise from such studies. PMID:23983571

  3. The influence of colour on memory performance: a review.

    PubMed

    Dzulkifli, Mariam Adawiah; Mustafar, Muhammad Faiz

    2013-03-01

    Human cognition involves many mental processes that are highly interrelated, such as perception, attention, memory, and thinking. An important and core cognitive process is memory, which is commonly associated with the storing and remembering of environmental information. An interesting issue in memory research is on ways to enhance memory performance, and thus, remembering of information. Can colour result in improved memory abilities? The present paper highlights the relationship between colours, attention, and memory performance. The significance of colour in different settings is presented first, followed by a description on the nature of human memory. The role of attention and emotional arousal on memory performance is discussed next. The review of several studies on colours and memory are meant to explain some empirical works done in the area and related issues that arise from such studies.

  4. Emotion processing in the criminal psychopath: the role of attention in emotion-facilitated memory.

    PubMed

    Glass, Samantha J; Newman, Joseph P

    2009-02-01

    The response modulation hypothesis specifies that low-anxious psychopathic individuals have difficulty processing information outside their primary attentional focus. To evaluate the applicability of this model to affective processing, the authors had 239 offenders, classified with the Psychopathy Checklist--Revised (R. D. Hare, 2003) and the Welsh Anxiety Scale (G. Welsh, 1956), perform 1 of 3 emotion memory tasks that examined the effects of emotion on memory for primary and contextual information. Regardless of anxiety level, psychopathic and control offenders demonstrated a significant and comparable memory bias for emotional over neutral words in the primary conditions. However, psychopathic individuals showed significantly less memory bias than did controls in the contextual conditions. Results indicate that the impact of emotion on memory is moderated by attentional factors.

  5. Primate Cognition: Attention, Episodic Memory, Prospective Memory, Self-Control, and Metacognition as Examples of Cognitive Control in Nonhuman Primates1

    PubMed Central

    Menzel, Charles R.; Parrish, Audrey E.; Perdue, Bonnie M.; Sayers, Ken; Smith, J. David; Washburn, David A.

    2016-01-01

    Primate Cognition is the study of cognitive processes, which represent internal mental processes involved in discriminations, decisions, and behaviors of humans and other primate species. Cognitive control involves executive and regulatory processes that allocate attention, manipulate and evaluate available information (and, when necessary, seek additional information), remember past experiences to plan future behaviors, and deal with distraction and impulsivity when they are threats to goal achievement. Areas of research that relate to cognitive control as it is assessed across species include executive attention, episodic memory, prospective memory, metacognition and self-control. Executive attention refers to the ability to control what sensory stimuli one attends to and how one regulates responses to those stimuli, especially in cases of conflict. Episodic memory refers to memory for personally experienced, autobiographical events. Prospective memory refers to the formation and implementation of future-intended actions, such as remembering what needs to be done later. Metacognition consists of control and monitoring processes that allow individuals to assess what information they have and what information they still need, and then if necessary to seek information. Self-control is a regulatory process whereby individuals forego more immediate or easier to obtain rewards for more delayed or harder to obtain rewards that are objectively more valuable. The behavioral complexity shown by nonhuman primates when given tests to assess these capacities indicates psychological continuities with human cognitive control capacities. However, more research is needed to clarify the proper interpretation of these behaviors with regard to possible cognitive constructs that may underlie such behaviors. PMID:27284790

  6. Triazolam and zolpidem: effects on human memory and attentional processes.

    PubMed

    Mintzer, M Z; Griffiths, R R

    1999-05-01

    The imidazopyridine hypnotic zolpidem may produce less memory and cognitive impairment than classic benzodiazepines, due to its relatively low binding affinity for the benzodiazepine receptor subtypes found in areas of the brain which are involved in learning and memory. The study was designed to compare the acute effects of single oral doses of zolpidem (5, 10, 20 mg/70 kg) and the benzodiazepine hypnotic triazolam (0.125, 0.25, and 0.5 mg/70 kg) on specific memory and attentional processes. Drug effects on memory for target (i.e., focal) information and contextual information (i.e., peripheral details surrounding a target stimulus presentation) were evaluated using a source monitoring paradigm, and drug effects on selective attention mechanisms were evaluated using a negative priming paradigm, in 18 healthy volunteers in a double-blind, placebo-controlled, crossover design. Triazolam and zolpidem produced strikingly similar dose-related effects on memory for target information. Both triazolam and zolpidem impaired subjects' ability to remember whether a word stimulus had been presented to them on the computer screen or whether they had been asked to generate the stimulus based on an antonym cue (memory for the origin of a stimulus, which is one type of contextual information). The results suggested that triazolam, but not zolpidem, impaired memory for the screen location of picture stimuli (spatial contextual information). Although both triazolam and zolpidem increased overall reaction time in the negative priming task, only triazolam increased the magnitude of negative priming relative to placebo. The observed differences between triazolam and zolpidem have implications for the cognitive and pharmacological mechanisms underlying drug-induced deficits in specific memory and attentional processes, as well for the cognitive and brain mechanisms underlying these processes.

  7. Item Memory, Context Memory and the Hippocampus: fMRI Evidence

    ERIC Educational Resources Information Center

    Rugg, Michael D.; Vilberg, Kaia L.; Mattson, Julia T.; Yu, Sarah S.; Johnson, Jeffrey D.; Suzuki, Maki

    2012-01-01

    Dual-process models of recognition memory distinguish between the retrieval of qualitative information about a prior event (recollection), and judgments of prior occurrence based on an acontextual sense of familiarity. fMRI studies investigating the neural correlates of memory encoding and retrieval conducted within the dual-process framework have…

  8. Individual Differences in Working Memory Capacity Predict Sleep-Dependent Memory Consolidation

    ERIC Educational Resources Information Center

    Fenn, Kimberly M.; Hambrick, David Z.

    2012-01-01

    Decades of research have established that "online" cognitive processes, which operate during conscious encoding and retrieval of information, contribute substantially to individual differences in memory. Furthermore, it is widely accepted that "offline" processes during sleep also contribute to memory performance. However, the question of whether…

  9. Using a Process Dissociation Approach to Assess Verbal Short-Term Memory for Item and Order Information in a Sample of Individuals with a Self-Reported Diagnosis of Dyslexia

    PubMed Central

    Wang, Xiaoli; Xuan, Yifu; Jarrold, Christopher

    2016-01-01

    Previous studies have examined whether difficulties in short-term memory for verbal information, that might be associated with dyslexia, are driven by problems in retaining either information about to-be-remembered items or the order in which these items were presented. However, such studies have not used process-pure measures of short-term memory for item or order information. In this work we adapt a process dissociation procedure to properly distinguish the contributions of item and order processes to verbal short-term memory in a group of 28 adults with a self-reported diagnosis of dyslexia and a comparison sample of 29 adults without a dyslexia diagnosis. In contrast to previous work that has suggested that individuals with dyslexia experience item deficits resulting from inefficient phonological representation and language-independent order memory deficits, the results showed no evidence of specific problems in short-term retention of either item or order information among the individuals with a self-reported diagnosis of dyslexia, despite this group showing expected difficulties on separate measures of word and non-word reading. However, there was some suggestive evidence of a link between order memory for verbal material and individual differences in non-word reading, consistent with other claims for a role of order memory in phonologically mediated reading. The data from the current study therefore provide empirical evidence to question the extent to which item and order short-term memory are necessarily impaired in dyslexia. PMID:26941679

  10. Using a Process Dissociation Approach to Assess Verbal Short-Term Memory for Item and Order Information in a Sample of Individuals with a Self-Reported Diagnosis of Dyslexia.

    PubMed

    Wang, Xiaoli; Xuan, Yifu; Jarrold, Christopher

    2016-01-01

    Previous studies have examined whether difficulties in short-term memory for verbal information, that might be associated with dyslexia, are driven by problems in retaining either information about to-be-remembered items or the order in which these items were presented. However, such studies have not used process-pure measures of short-term memory for item or order information. In this work we adapt a process dissociation procedure to properly distinguish the contributions of item and order processes to verbal short-term memory in a group of 28 adults with a self-reported diagnosis of dyslexia and a comparison sample of 29 adults without a dyslexia diagnosis. In contrast to previous work that has suggested that individuals with dyslexia experience item deficits resulting from inefficient phonological representation and language-independent order memory deficits, the results showed no evidence of specific problems in short-term retention of either item or order information among the individuals with a self-reported diagnosis of dyslexia, despite this group showing expected difficulties on separate measures of word and non-word reading. However, there was some suggestive evidence of a link between order memory for verbal material and individual differences in non-word reading, consistent with other claims for a role of order memory in phonologically mediated reading. The data from the current study therefore provide empirical evidence to question the extent to which item and order short-term memory are necessarily impaired in dyslexia.

  11. Effects of emotional context on memory for details: the role of attention.

    PubMed

    Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias

    2013-01-01

    It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context.

  12. Effects of Emotional Context on Memory for Details: The Role of Attention

    PubMed Central

    Kim, Johann Sung-Cheul; Vossel, Gerhard; Gamer, Matthias

    2013-01-01

    It was repeatedly demonstrated that a negative emotional context enhances memory for central details while impairing memory for peripheral information. This trade-off effect is assumed to result from attentional processes: a negative context seems to narrow attention to central information at the expense of more peripheral details, thus causing the differential effects in memory. However, this explanation has rarely been tested and previous findings were partly inconclusive. For the present experiment 13 negative and 13 neutral naturalistic, thematically driven picture stories were constructed to test the trade-off effect in an ecologically more valid setting as compared to previous studies. During an incidental encoding phase, eye movements were recorded as an index of overt attention. In a subsequent recognition phase, memory for central and peripheral details occurring in the picture stories was tested. Explicit affective ratings and autonomic responses validated the induction of emotion during encoding. Consistent with the emotional trade-off effect on memory, encoding context differentially affected recognition of central and peripheral details. However, contrary to the common assumption, the emotional trade-off effect on memory was not mediated by attentional processes. By contrast, results suggest that the relevance of attentional processing for later recognition memory depends on the centrality of information and the emotional context but not their interaction. Thus, central information was remembered well even when fixated very briefly whereas memory for peripheral information depended more on overt attention at encoding. Moreover, the influence of overt attention on memory for central and peripheral details seems to be much lower for an arousing as compared to a neutral context. PMID:24116226

  13. Frontiers in Human Information Processing Conference

    DTIC Science & Technology

    2008-02-25

    Frontiers in Human Information Processing - Vision, Attention , Memory , and Applications: A Tribute to George Sperling, a Festschrift. We are grateful...with focus on the formal, computational, and mathematical approaches that unify the areas of vision, attention , and memory . The conference also...Information Processing Conference Final Report AFOSR GRANT # FA9550-07-1-0346 The AFOSR Grant # FA9550-07-1-0346 provided partial support for the Conference

  14. Neural correlates of recognition memory of social information in people with schizophrenia

    PubMed Central

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-01-01

    Background Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Methods Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d′. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Results Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Limitations Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Conclusion Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation. PMID:24119792

  15. Neural correlates of recognition memory of social information in people with schizophrenia.

    PubMed

    Harvey, Philippe-Olivier; Lepage, Martin

    2014-03-01

    Social dysfunction is a hallmark characteristic of schizophrenia. Part of it may stem from an inability to efficiently encode social information into memory and retrieve it later. This study focused on whether patients with schizophrenia show a memory boost for socially relevant information and engage the same neural network as controls when processing social stimuli that were previously encoded into memory. Patients with schizophrenia and healthy controls performed a social and nonsocial picture recognition memory task while being scanned. We calculated memory performance using d'. Our main analysis focused on brain activity associated with recognition memory of social and nonsocial pictures. Our study included 28 patients with schizophrenia and 26 controls. Healthy controls demonstrated a memory boost for socially relevant information. In contrast, patients with schizophrenia failed to show enhanced recognition sensitivity for social pictures. At the neural level, patients did not engage the dorsomedial prefrontal cortex (DMPFC) as much as controls while recognizing social pictures. Our study did not include direct measures of self-referential processing. All but 3 patients were taking antipsychotic medications, which may have altered both the behavioural performance during the picture recognition memory task and brain activity. Impaired social memory in patients with schizophrenia may be associated with altered DMPFC activity. A reduction of DMPFC activity may reflect less involvement of self-referential processes during memory retrieval. Our functional MRI results contribute to a better mapping of the neural disturbances associated with social memory impairment in patients with schizophrenia and may facilitate the development of innovative treatments, such as transcranial magnetic stimulation.

  16. Encoding and retrieval processes involved in the access of source information in the absence of item memory.

    PubMed

    Ball, B Hunter; DeWitt, Michael R; Knight, Justin B; Hicks, Jason L

    2014-09-01

    The current study sought to examine the relative contributions of encoding and retrieval processes in accessing contextual information in the absence of item memory using an extralist cuing procedure in which the retrieval cues used to query memory for contextual information were related to the target item but never actually studied. In Experiments 1 and 2, participants studied 1 category member (e.g., onion) from a variety of different categories and at test were presented with an unstudied category label (e.g., vegetable) to probe memory for item and source information. In Experiments 3 and 4, 1 member of unidirectional (e.g., credit or card) or bidirectional (e.g., salt or pepper) associates was studied, whereas the other unstudied member served as a test probe. When recall failed, source information was accessible only when items were processed deeply during encoding (Experiments 1 and 2) and when there was strong forward associative strength between the retrieval cue and target (Experiments 3 and 4). These findings suggest that a retrieval probe diagnostic of semantically related item information reinstantiates information bound in memory during encoding that results in reactivation of associated contextual information, contingent upon sufficient learning of the item itself and the association between the item and its context information.

  17. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins

    PubMed Central

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory). PMID:28713278

  18. The Neuroanatomical, Neurophysiological and Psychological Basis of Memory: Current Models and Their Origins.

    PubMed

    Camina, Eduardo; Güell, Francisco

    2017-01-01

    This review aims to classify and clarify, from a neuroanatomical, neurophysiological, and psychological perspective, different memory models that are currently widespread in the literature as well as to describe their origins. We believe it is important to consider previous developments without which one cannot adequately understand the kinds of models that are now current in the scientific literature. This article intends to provide a comprehensive and rigorous overview for understanding and ordering the latest scientific advances related to this subject. The main forms of memory presented include sensory memory, short-term memory, and long-term memory. Information from the world around us is first stored by sensory memory, thus enabling the storage and future use of such information. Short-term memory (or memory) refers to information processed in a short period of time. Long-term memory allows us to store information for long periods of time, including information that can be retrieved consciously (explicit memory) or unconsciously (implicit memory).

  19. Short-Term Memory Affects Color Perception in Context

    PubMed Central

    Olkkonen, Maria; Allred, Sarah R.

    2014-01-01

    Color-based object selection — for instance, looking for ripe tomatoes in the market — places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly. PMID:24475131

  20. Neural bases of orthographic long-term memory and working memory in dysgraphia

    PubMed Central

    Purcell, Jeremy; Hillis, Argye E.; Capasso, Rita; Miceli, Gabriele

    2016-01-01

    Spelling a word involves the retrieval of information about the word’s letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. PMID:26685156

  1. Commentary: Should Gender Differences Be Included in the Evolutionary Upgrade to Cognitive Load Theory?

    ERIC Educational Resources Information Center

    Bevilacqua, Andy

    2017-01-01

    Recent upgrades to cognitive load theory suggest that evolutionary processes have shaped the way that working memory processes cultural and social information. According to evolutionarily educational psychologists, some forms of information are processed with lower working memory loads than other forms. The former are evolutionarily salient and…

  2. Chunk formation in immediate memory and how it relates to data compression.

    PubMed

    Chekaf, Mustapha; Cowan, Nelson; Mathy, Fabien

    2016-10-01

    This paper attempts to evaluate the capacity of immediate memory to cope with new situations in relation to the compressibility of information likely to allow the formation of chunks. We constructed a task in which untrained participants had to immediately recall sequences of stimuli with possible associations between them. Compressibility of information was used to measure the chunkability of each sequence on a single trial. Compressibility refers to the recoding of information in a more compact representation. Although compressibility has almost exclusively been used to study long-term memory, our theory suggests that a compression process relying on redundancies within the structure of the list materials can occur very rapidly in immediate memory. The results indicated a span of about three items when the list had no structure, but increased linearly as structure was added. The amount of information retained in immediate memory was maximal for the most compressible sequences, particularly when information was ordered in a way that facilitated the compression process. We discuss the role of immediate memory in the rapid formation of chunks made up of new associations that did not already exist in long-term memory, and we conclude that immediate memory is the starting place for the reorganization of information. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Adaptive Memory: Is Survival Processing Special?

    ERIC Educational Resources Information Center

    Nairne, James S.; Pandeirada, Josefa N. S.

    2008-01-01

    Do the operating characteristics of memory continue to bear the imprints of ancestral selection pressures? Previous work in our laboratory has shown that human memory may be specially tuned to retain information processed in terms of its survival relevance. A few seconds of survival processing in an incidental learning context can produce recall…

  4. Information processing efficiency in patients with multiple sclerosis.

    PubMed

    Archibald, C J; Fisk, J D

    2000-10-01

    Reduced information processing efficiency, consequent to impaired neural transmission, has been proposed as underlying various cognitive problems in patients with Multiple Sclerosis (MS). This study employed two measures developed from experimental psychology that control for the potential confound of perceptual-motor abnormalities (Salthouse, Babcock, & Shaw, 1991; Sternberg, 1966, 1969) to assess the speed of information processing and working memory capacity in patients with mild to moderate MS. Although patients had significantly more cognitive complaints than neurologically intact matched controls, their performance on standard tests of immediate memory span did not differ from control participants and their word list learning was within normal limits. On the experimental measures, both relapsing-remitting and secondary-progressive patients exhibited significantly slowed information processing speed relative to controls. However, only the secondary-progressive patients had an additional decrement in working memory capacity. Depression, fatigue, or neurologic disability did not account for performance differences on these measures. While speed of information processing may be slowed early in the disease process, deficits in working memory capacity may appear only as there is progression of MS. It is these latter deficits, however, that may underlie the impairment of new learning that patients with MS demonstrate.

  5. Levels of Interference in Long and Short-Term Memory Differentially Modulate Non-REM and REM Sleep

    PubMed Central

    Fraize, Nicolas; Carponcy, Julien; Joseph, Mickaël Antoine; Comte, Jean-Christophe; Luppi, Pierre-Hervé; Libourel, Paul-Antoine; Salin, Paul-Antoine; Malleret, Gaël; Parmentier, Régis

    2016-01-01

    Study Objectives: It is commonly accepted that sleep is beneficial to memory processes, but it is still unclear if this benefit originates from improved memory consolidation or enhanced information processing. It has thus been proposed that sleep may also promote forgetting of undesirable and non-essential memories, a process required for optimization of cognitive resources. We tested the hypothesis that non-rapid eye movement sleep (NREMS) promotes forgetting of irrelevant information, more specifically when processing information in working memory (WM), while REM sleep (REMS) facilitates the consolidation of important information. Methods: We recorded sleep patterns of rats trained in a radial maze in three different tasks engaging either the long-term or short-term storage of information, as well as a gradual level of interference. Results: We observed a transient increase in REMS amount on the day the animal learned the rule of a long-term/reference memory task (RM), and, in contrast, a positive correlation between the performance of rats trained in a WM task involving an important processing of interference and the amount of NREMS or slow wave activity. Various oscillatory events were also differentially modulated by the type of training involved. Notably, NREMS spindles and REMS rapid theta increase with RM training, while sharp-wave ripples increase with all types of training. Conclusions: These results suggest that REMS, but also rapid oscillations occurring during NREMS would be specifically implicated in the long-term memory in RM, whereas NREMS and slow oscillations could be involved in the forgetting of irrelevant information required for WM. Citation: Fraize N, Carponcy J, Joseph MA, Comte JC, Luppi PH, Libourel PA, Salin PA, Malleret G, Parmentier R. Levels of interference in long and short-term memory differentially modulate non-REM and REM sleep. SLEEP 2016;39(12):2173–2188. PMID:27748246

  6. Beyond perceptual load and dilution: a review of the role of working memory in selective attention

    PubMed Central

    de Fockert, Jan W.

    2013-01-01

    The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed. PMID:23734139

  7. Beyond perceptual load and dilution: a review of the role of working memory in selective attention.

    PubMed

    de Fockert, Jan W

    2013-01-01

    The perceptual load and dilution models differ fundamentally in terms of the proposed mechanism underlying variation in distractibility during different perceptual conditions. However, both models predict that distracting information can be processed beyond perceptual processing under certain conditions, a prediction that is well-supported by the literature. Load theory proposes that in such cases, where perceptual task aspects do not allow for sufficient attentional selectivity, the maintenance of task-relevant processing depends on cognitive control mechanisms, including working memory. The key prediction is that working memory plays a role in keeping clear processing priorities in the face of potential distraction, and the evidence reviewed and evaluated in a meta-analysis here supports this claim, by showing that the processing of distracting information tends to be enhanced when load on a concurrent task of working memory is high. Low working memory capacity is similarly associated with greater distractor processing in selective attention, again suggesting that the unavailability of working memory during selective attention leads to an increase in distractibility. Together, these findings suggest that selective attention against distractors that are processed beyond perception depends on the availability of working memory. Possible mechanisms for the effects of working memory on selective attention are discussed.

  8. The transformation of multi-sensory experiences into memories during sleep.

    PubMed

    Rothschild, Gideon

    2018-03-26

    Our everyday lives present us with a continuous stream of multi-modal sensory inputs. While most of this information is soon forgotten, sensory information associated with salient experiences can leave long-lasting memories in our minds. Extensive human and animal research has established that the hippocampus is critically involved in this process of memory formation and consolidation. However, the underlying mechanistic details are still only partially understood. Specifically, the hippocampus has often been suggested to encode information during experience, temporarily store it, and gradually transfer this information to the cortex during sleep. In rodents, ample evidence has supported this notion in the context of spatial memory, yet whether this process adequately describes the consolidation of multi-sensory experiences into memories is unclear. Here, focusing on rodent studies, I examine how multi-sensory experiences are consolidated into long term memories by hippocampal and cortical circuits during sleep. I propose that in contrast to the classical model of memory consolidation, the cortex is a "fast learner" that has a rapid and instructive role in shaping hippocampal-dependent memory consolidation. The proposed model may offer mechanistic insight into memory biasing using sensory cues during sleep. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Females scan more than males: a potential mechanism for sex differences in recognition memory.

    PubMed

    Heisz, Jennifer J; Pottruff, Molly M; Shore, David I

    2013-07-01

    Recognition-memory tests reveal individual differences in episodic memory; however, by themselves, these tests provide little information regarding the stage (or stages) in memory processing at which differences are manifested. We used eye-tracking technology, together with a recognition paradigm, to achieve a more detailed analysis of visual processing during encoding and retrieval. Although this approach may be useful for assessing differences in memory across many different populations, we focused on sex differences in face memory. Females outperformed males on recognition-memory tests, and this advantage was directly related to females' scanning behavior at encoding. Moreover, additional exposures to the faces reduced sex differences in face recognition, which suggests that males may be able to improve their recognition memory by extracting more information at encoding through increased scanning. A strategy of increased scanning at encoding may prove to be a simple way to enhance memory performance in other populations with memory impairment.

  10. Neural circuits in Auditory and Audiovisual Memory

    PubMed Central

    Plakke, B.; Romanski, L.M.

    2016-01-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. PMID:26656069

  11. Executive Functions Are Employed to Process Episodic and Relational Memories in Children With Autism Spectrum Disorders

    PubMed Central

    2013-01-01

    Objective: Long-term memory functioning in autism spectrum disorders (ASDs) is marked by a characteristic pattern of impairments and strengths. Individuals with ASD show impairment in memory tasks that require the processing of relational and contextual information, but spared performance on tasks requiring more item-based, acontextual processing. Two experiments investigated the cognitive mechanisms underlying this memory profile. Method: A sample of 14 children with a diagnosis of high-functioning ASD (age: M = 12.2 years), and a matched control group of 14 typically developing (TD) children (age: M = 12.1 years), participated in a range of behavioral memory tasks in which we measured both relational and item-based memory abilities. They also completed a battery of executive function measures. Results: The ASD group showed specific deficits in relational memory, but spared or superior performance in item-based memory, across all tasks. Importantly, for ASD children, executive ability was significantly correlated with relational memory but not with item-based memory. No such relationship was present in the control group. This suggests that children with ASD atypically employed effortful, executive strategies to retrieve relational (but not item-specific) information, whereas TD children appeared to use more automatic processes. Conclusions: The relational memory impairment in ASD may result from a specific impairment in automatic associative retrieval processes with an increased reliance on effortful and strategic retrieval processes. Our findings allow specific neural predictions to be made regarding the interactive functioning of the hippocampus, prefrontal cortex, and posterior parietal cortex in ASD as a neural network supporting relational memory processing. PMID:24245930

  12. Processing distinct linguistic information types in working memory in aphasia.

    PubMed

    Wright, Heather Harris; Downey, Ryan A; Gravier, Michelle; Love, Tracy; Shapiro, Lewis P

    2007-06-01

    BACKGROUND: Recent investigations have suggested that adults with aphasia present with a working memory deficit that may contribute to their language-processing difficulties. Working memory capacity has been conceptualised as a single "resource" pool for attentional, linguistic, and other executive processing-alternatively, it has been suggested that there may be separate working memory abilities for different types of linguistic information. A challenge in this line of research is developing an appropriate measure of working memory ability in adults with aphasia. One candidate measure of working memory ability that may be appropriate for this population is the n-back task. By manipulating stimulus type, the n-back task may be appropriate for tapping linguistic-specific working memory abilities. AIMS: The purposes of this study were (a) to measure working memory ability in adults with aphasia for processing specific types of linguistic information, and (b) to examine whether a relationship exists between participants' performance on working memory and auditory comprehension measures. METHOD #ENTITYSTARTX00026; PROCEDURES: Nine adults with aphasia participated in the study. Participants completed three n-back tasks, each tapping different types of linguistic information. They included the PhonoBack (phonological level), SemBack (semantic level), and SynBack (syntactic level). For all tasks, two n-back levels were administered: a 1-back and 2-back. Each level contained 20 target items; accuracy was recorded by stimulus presentation software. The Subject-relative, Object-relative, Active, Passive Test of Syntactic Complexity (SOAP) was the syntactic sentence comprehension task administered to all participants. OUTCOMES #ENTITYSTARTX00026; RESULTS: Participants' performance declined as n-back task difficulty increased. Overall, participants performed better on the SemBack than PhonoBack and SynBack tasks, but the differences were not statistically significant. Finally, participants who performed poorly on the SynBack also had more difficulty comprehending syntactically complex sentence structures (i.e., passive & object-relative sentences). CONCLUSIONS: Results indicate that working memory ability for different types of linguistic information can be measured in adults with aphasia. Further, our results add to the growing literature that favours separate working memory abilities for different types of linguistic information view.

  13. Inefficient Executive Cognitive Control in Schizophrenia Is Preceded by Altered Functional Activation during Information Encoding: An fMRI Study

    ERIC Educational Resources Information Center

    Schlosser, Ralf G. M.; Koch, Kathrin; Wagner, Gerd; Nenadic, Igor; Roebel, Martin; Schachtzabel, Claudia; Axer, Martina; Schultz, Christoph; Reichenbach, Jurgen R.; Sauer, Heinrich

    2008-01-01

    Working memory deficits are a core feature of schizophrenia. Previous working memory studies suggest a load dependent storage deficit. However, explicit studies of higher executive working memory processes are limited. Moreover, few studies have examined whether subcomponents of working memory such as encoding and maintenance of information are…

  14. Memory Effects in Visual Spatial Information Processing.

    ERIC Educational Resources Information Center

    Fishbein, Harold D.

    1978-01-01

    Eight, ten, and twelve year old children were tested on a novel procedure involving the successive presentation of standard and comparision stimuli. Two hypotheses were evaluated: one dealing with memory effects, and the other with children's pretesting of choice responses in spatial information processing. (Editor/RK)

  15. Information Memory Processing and Retrieval: Relationships of Concrete Learning and Concrete and Abstract Cognitions.

    ERIC Educational Resources Information Center

    Dean, Bonnie L.

    Reported is a study related to the Project on an Information Memory Model and designed to encompass the claims of Piaget and Inhelder on differences of kinds of cognition and recall done on figural sorting task cognition at the Project on an Information Memory Model. The work of Piaget and Inhelder has defined learning information flow and related…

  16. Consolidation and reconsolidation: Two lives of memories?

    PubMed Central

    McKenzie, Sam; Eichenbaum, Howard

    2011-01-01

    Most studies on memory consolidation consider the new information as if it were imposed on a tabula rasa, but considerable evidence indicates that new memories must be interleaved within a large network of relevant pre-existing knowledge. Early studies on reconsolidation highlighted that a newly consolidated memory could be erased after reactivation, but new evidence has shown that an effective reactivation experience must also involve memory re-organization to incorporate new learning. The combination of these observations on consolidation and reconsolidation highlight the fundamental similarities of both phenomena as integration of new information on old, and suggest that reconsolidation = consolidation as a never-ending process of schema modification. Memories evolve over time, and many have come to consider that memories have two extended “lives” following the initial encoding of new information. The first, called consolidation, involves a prolonged period after learning when new information becomes fixed at a cellular level and interleaved among already existing memories to enrich our body of personal and factual knowledge. The second, called reconsolidation, turns the tables on a memory and involves the converse process in which a newly consolidated memory is now subject to modification though subsequent reminders and interference. Here we propose that the time has come to join the literatures on these two lives of memories, towards the goal of understanding memory as an ever-evolving organization of the record of experience. PMID:21791282

  17. Primate cognition: attention, episodic memory, prospective memory, self-control, and metacognition as examples of cognitive control in nonhuman primates.

    PubMed

    Beran, Michael J; Menzel, Charles R; Parrish, Audrey E; Perdue, Bonnie M; Sayers, Ken; Smith, J David; Washburn, David A

    2016-09-01

    Primate Cognition is the study of cognitive processes, which represent internal mental processes involved in discriminations, decisions, and behaviors of humans and other primate species. Cognitive control involves executive and regulatory processes that allocate attention, manipulate and evaluate available information (and, when necessary, seek additional information), remember past experiences to plan future behaviors, and deal with distraction and impulsivity when they are threats to goal achievement. Areas of research that relate to cognitive control as it is assessed across species include executive attention, episodic memory, prospective memory, metacognition, and self-control. Executive attention refers to the ability to control what sensory stimuli one attends to and how one regulates responses to those stimuli, especially in cases of conflict. Episodic memory refers to memory for personally experienced, autobiographical events. Prospective memory refers to the formation and implementation of future-intended actions, such as remembering what needs to be done later. Metacognition consists of control and monitoring processes that allow individuals to assess what information they have and what information they still need, and then if necessary to seek information. Self-control is a regulatory process whereby individuals forego more immediate or easier to obtain rewards for more delayed or harder to obtain rewards that are objectively more valuable. The behavioral complexity shown by nonhuman primates when given tests to assess these capacities indicates psychological continuities with human cognitive control capacities. However, more research is needed to clarify the proper interpretation of these behaviors with regard to possible cognitive constructs that may underlie such behaviors. WIREs Cogn Sci 2016, 7:294-316. doi: 10.1002/wcs.1397 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  18. Short-term memory for spatial configurations in the tactile modality: a comparison with vision.

    PubMed

    Picard, Delphine; Monnier, Catherine

    2009-11-01

    This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.

  19. What Process Mediates Predictions of Childhood IQ from Infant Habituation and Recognition Memory? Speculations on the Roles of Inhibition and Rate of Information Processing.

    ERIC Educational Resources Information Center

    McCall, Robert B.

    1994-01-01

    This editorial proposes that the dependent variables that predict childhood intelligence quotient (IQ) from habituation and recognition memory assessments made during infancy may primarily reflect individual differences in rate of information processing. Inhibition may be a stable thread in mental development. (Author/SLD)

  20. On the Law Relating Processing to Storage in Working Memory

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Portrat, Sophie; Camos, Valerie

    2011-01-01

    "Working memory" is usually defined in cognitive psychology as a system devoted to the simultaneous processing and maintenance of information. However, although many models of working memory have been put forward during the last decades, they often leave underspecified the dynamic interplay between processing and storage. Moreover, the account of…

  1. Martin Mayman's early memories technique: bridging the gap between personality assessment and psychotherapy.

    PubMed

    Fowler, J C; Hilsenroth, M J; Handler, L

    2000-08-01

    In this article, we describe Martin Mayman's approach to early childhood memories as a projective technique, beginning with his scientific interest in learning theory, coupled with his interest in ego psychology and object relations theory. We describe Mayman's contributions to the use of the early memories technique to inform the psychotherapy process, tying assessment closely to psychotherapy and making assessment more useful in treatment. In this article, we describe a representative sample of research studies that demonstrate the reliability and validity of early memories, followed by case examples in which the early memories informed the therapy process, including issues of transference and countertransference.

  2. Multilevel radiative thermal memory realized by the hysteretic metal-insulator transition of vanadium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Kota, E-mail: kotaito@mosk.tytlabs.co.jp; Nishikawa, Kazutaka; Iizuka, Hideo

    Thermal information processing is attracting much interest as an analog of electronic computing. We experimentally demonstrated a radiative thermal memory utilizing a phase change material. The hysteretic metal-insulator transition of vanadium dioxide (VO{sub 2}) allows us to obtain a multilevel memory. We developed a Preisach model to explain the hysteretic radiative heat transfer between a VO{sub 2} film and a fused quartz substrate. The transient response of our memory predicted by the Preisach model agrees well with the measured response. Our multilevel thermal memory paves the way for thermal information processing as well as contactless thermal management.

  3. The impact of beliefs about face recognition ability on memory retrieval processes in young and older adults.

    PubMed

    Humphries, Joyce E; Flowe, Heather D; Hall, Louise C; Williams, Louise C; Ryder, Hannah L

    2016-01-01

    This study examined whether beliefs about face recognition ability differentially influence memory retrieval in older compared to young adults. Participants evaluated their ability to recognise faces and were also given information about their ability to perceive and recognise faces. The information was ostensibly based on an objective measure of their ability, but in actuality, participants had been randomly assigned the information they received (high ability, low ability or no information control). Following this information, face recognition accuracy for a set of previously studied faces was measured using a remember-know memory paradigm. Older adults rated their ability to recognise faces as poorer compared to young adults. Additionally, negative information about face recognition ability improved only older adults' ability to recognise a previously seen face. Older adults were also found to engage in more familiarity than item-specific processing than young adults, but information about their face recognition ability did not affect face processing style. The role that older adults' memory beliefs have in the meta-cognitive strategies they employ is discussed.

  4. Neural circuits in auditory and audiovisual memory.

    PubMed

    Plakke, B; Romanski, L M

    2016-06-01

    Working memory is the ability to employ recently seen or heard stimuli and apply them to changing cognitive context. Although much is known about language processing and visual working memory, the neurobiological basis of auditory working memory is less clear. Historically, part of the problem has been the difficulty in obtaining a robust animal model to study auditory short-term memory. In recent years there has been neurophysiological and lesion studies indicating a cortical network involving both temporal and frontal cortices. Studies specifically targeting the role of the prefrontal cortex (PFC) in auditory working memory have suggested that dorsal and ventral prefrontal regions perform different roles during the processing of auditory mnemonic information, with the dorsolateral PFC performing similar functions for both auditory and visual working memory. In contrast, the ventrolateral PFC (VLPFC), which contains cells that respond robustly to auditory stimuli and that process both face and vocal stimuli may be an essential locus for both auditory and audiovisual working memory. These findings suggest a critical role for the VLPFC in the processing, integrating, and retaining of communication information. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Memory dynamics under stress.

    PubMed

    Quaedflieg, Conny W E M; Schwabe, Lars

    2018-03-01

    Stressful events have a major impact on memory. They modulate memory formation in a time-dependent manner, closely linked to the temporal profile of action of major stress mediators, in particular catecholamines and glucocorticoids. Shortly after stressor onset, rapidly acting catecholamines and fast, non-genomic glucocorticoid actions direct cognitive resources to the processing and consolidation of the ongoing threat. In parallel, control of memory is biased towards rather rigid systems, promoting habitual forms of memory allowing efficient processing under stress, at the expense of "cognitive" systems supporting memory flexibility and specificity. In this review, we discuss the implications of this shift in the balance of multiple memory systems for the dynamics of the memory trace. Specifically, stress appears to hinder the incorporation of contextual details into the memory trace, to impede the integration of new information into existing knowledge structures, to impair the flexible generalisation across past experiences, and to hamper the modification of memories in light of new information. Delayed, genomic glucocorticoid actions might reverse the control of memory, thus restoring homeostasis and "cognitive" control of memory again.

  6. How to Assess Gaming-Induced Benefits on Attention and Working Memory.

    PubMed

    Mishra, Jyoti; Bavelier, Daphne; Gazzaley, Adam

    2012-06-01

    Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education.

  7. How to Assess Gaming-Induced Benefits on Attention and Working Memory

    PubMed Central

    Mishra, Jyoti; Bavelier, Daphne

    2012-01-01

    Abstract Our daily actions are driven by our goals in the moment, constantly forcing us to choose among various options. Attention and working memory are key enablers of that process. Attention allows for selective processing of goal-relevant information and rejecting task-irrelevant information. Working memory functions to maintain goal-relevant information in memory for brief periods of time for subsequent recall and/or manipulation. Efficient attention and working memory thus support the best extraction and retention of environmental information for optimal task performance. Recent studies have evidenced that attention and working memory abilities can be enhanced by cognitive training games as well as entertainment videogames. Here we review key cognitive paradigms that have been used to evaluate the impact of game-based training on various aspects of attention and working memory. Common use of such methodology within the scientific community will enable direct comparison of the efficacy of different games across age groups and clinical populations. The availability of common assessment tools will ultimately facilitate development of the most effective forms of game-based training for cognitive rehabilitation and education. PMID:24761314

  8. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds.

    PubMed

    Rammsayer, Thomas; Ulrich, Rolf

    2011-05-01

    The distinct timing hypothesis suggests a sensory mechanism for processing of durations in the range of milliseconds and a cognitively controlled mechanism for processing of longer durations. To test this hypothesis, we employed a dual-task approach to investigate the effects of maintenance and elaborative rehearsal on temporal processing of brief and long durations. Unlike mere maintenance rehearsal, elaborative rehearsal as a secondary task involved transfer of information from working to long-term memory and elaboration of information to enhance storage in long-term memory. Duration discrimination of brief intervals was not affected by a secondary cognitive task that required either maintenance or elaborative rehearsal. Concurrent elaborative rehearsal, however, impaired discrimination of longer durations as compared to maintenance rehearsal and a control condition with no secondary task. These findings endorse the distinct timing hypothesis and are in line with the notion that executive functions, such as continuous memory updating and active transfer of information into long-term memory interfere with temporal processing of durations in the second, but not in the millisecond range. 2011 Elsevier B.V. All rights reserved.

  9. Episodic Memory Retrieval Functionally Relies on Very Rapid Reactivation of Sensory Information.

    PubMed

    Waldhauser, Gerd T; Braun, Verena; Hanslmayr, Simon

    2016-01-06

    Episodic memory retrieval is assumed to rely on the rapid reactivation of sensory information that was present during encoding, a process termed "ecphory." We investigated the functional relevance of this scarcely understood process in two experiments in human participants. We presented stimuli to the left or right of fixation at encoding, followed by an episodic memory test with centrally presented retrieval cues. This allowed us to track the reactivation of lateralized sensory memory traces during retrieval. Successful episodic retrieval led to a very early (∼100-200 ms) reactivation of lateralized alpha/beta (10-25 Hz) electroencephalographic (EEG) power decreases in the visual cortex contralateral to the visual field at encoding. Applying rhythmic transcranial magnetic stimulation to interfere with early retrieval processing in the visual cortex led to decreased episodic memory performance specifically for items encoded in the visual field contralateral to the site of stimulation. These results demonstrate, for the first time, that episodic memory functionally relies on very rapid reactivation of sensory information. Remembering personal experiences requires a "mental time travel" to revisit sensory information perceived in the past. This process is typically described as a controlled, relatively slow process. However, by using electroencephalography to measure neural activity with a high time resolution, we show that such episodic retrieval entails a very rapid reactivation of sensory brain areas. Using transcranial magnetic stimulation to alter brain function during retrieval revealed that this early sensory reactivation is causally relevant for conscious remembering. These results give first neural evidence for a functional, preconscious component of episodic remembering. This provides new insight into the nature of human memory and may help in the understanding of psychiatric conditions that involve the automatic intrusion of unwanted memories. Copyright © 2016 the authors 0270-6474/16/360251-10$15.00/0.

  10. Temporal information processing in short- and long-term memory of patients with schizophrenia.

    PubMed

    Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank

    2011-01-01

    Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.

  11. Human hippocampus associates information in memory

    PubMed Central

    Henke, Katharina; Weber, Bruno; Kneifel, Stefan; Wieser, Heinz Gregor; Buck, Alfred

    1999-01-01

    The hippocampal formation, one of the most complex and vulnerable brain structures, is recognized as a crucial brain area subserving human long-term memory. Yet, its specific functions in memory are controversial. Recent experimental results suggest that the hippocampal contribution to human memory is limited to episodic memory, novelty detection, semantic (deep) processing of information, and spatial memory. We measured the regional cerebral blood flow by positron-emission tomography while healthy volunteers learned pairs of words with different learning strategies. These led to different forms of learning, allowing us to test the degree to which they challenge hippocampal function. Neither novelty detection nor depth of processing activated the hippocampal formation as much as semantically associating the primarily unrelated words in memory. This is compelling evidence for another function of the human hippocampal formation in memory: establishing semantic associations. PMID:10318979

  12. False memory for context activates the parahippocampal cortex.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2014-01-01

    Previous studies have reported greater activity in the parahippocampal cortex during true memory than false memory, which has been interpreted as reflecting greater sensory processing during true memory. However, in these studies, sensory detail and contextual information were confounded. In the present fMRI study, we employed a novel paradigm to dissociate these factors. During encoding, abstract shapes were presented in one of two contexts (i.e., moving or stationary). During retrieval, participants classified shapes as previously "moving" or "stationary." Critically, contextual processing was relatively greater during false memory ("moving" responses to stationary items), while sensory processing was relatively greater during true memory ("moving" responses to moving items). Within the medial temporal lobe, false memory versus true memory produced greater activity in the parahippocampal cortex, whereas true memory versus false memory produced greater activity in the hippocampus. The present results indicate that the parahippocampal cortex mediates contextual processing rather than sensory processing.

  13. Brain activity related to working memory for temporal order and object information.

    PubMed

    Roberts, Brooke M; Libby, Laura A; Inhoff, Marika C; Ranganath, Charan

    2017-06-08

    Maintaining items in an appropriate sequence is important for many daily activities; however, remarkably little is known about the neural basis of human temporal working memory. Prior work suggests that the prefrontal cortex (PFC) and medial temporal lobe (MTL), including the hippocampus, play a role in representing information about temporal order. The involvement of these areas in successful temporal working memory, however, is less clear. Additionally, it is unknown whether regions in the PFC and MTL support temporal working memory across different timescales, or at coarse or fine levels of temporal detail. To address these questions, participants were scanned while completing 3 working memory task conditions (Group, Position and Item) that were matched in terms of difficulty and the number of items to be actively maintained. Group and Position trials probed temporal working memory processes, requiring the maintenance of hierarchically organized coarse and fine temporal information, respectively. To isolate activation related to temporal working memory, Group and Position trials were contrasted against Item trials, which required detailed working memory maintenance of visual objects. Results revealed that working memory encoding and maintenance of temporal information relative to visual information was associated with increased activation in dorsolateral PFC (DLPFC), and perirhinal cortex (PRC). In contrast, maintenance of visual details relative to temporal information was characterized by greater activation of parahippocampal cortex (PHC), medial and anterior PFC, and retrosplenial cortex. In the hippocampus, a dissociation along the longitudinal axis was observed such that the anterior hippocampus was more active for working memory encoding and maintenance of visual detail information relative to temporal information, whereas the posterior hippocampus displayed the opposite effect. Posterior parietal cortex was the only region to show sensitivity to temporal working memory across timescales, and was particularly involved in the encoding and maintenance of fine temporal information relative to maintenance of temporal information at more coarse timescales. Collectively, these results highlight the involvement of PFC and MTL in temporal working memory processes, and suggest a dissociation in the type of working memory information represented along the longitudinal axis of the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Activation and Binding in Verbal Working Memory: A Dual-Process Model for the Recognition of Nonwords

    ERIC Educational Resources Information Center

    Oberauer, Klauss; Lange, Elke B.

    2009-01-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. "Journal of Experimental Psychology: Learning, Memory, and Cognition, 28", 411-421]. Familiarity arises…

  15. What pharmacological interventions indicate concerning the role of the perirhinal cortex in recognition memory

    PubMed Central

    Brown, M.W.; Barker, G.R.I.; Aggleton, J.P.; Warburton, E.C.

    2012-01-01

    Findings of pharmacological studies that have investigated the involvement of specific regions of the brain in recognition memory are reviewed. The particular emphasis of the review concerns what such studies indicate concerning the role of the perirhinal cortex in recognition memory. Most of the studies involve rats and most have investigated recognition memory for objects. Pharmacological studies provide a large body of evidence supporting the essential role of the perirhinal cortex in the acquisition, consolidation and retrieval of object recognition memory. Such studies provide increasingly detailed evidence concerning both the neurotransmitter systems and the underlying intracellular mechanisms involved in recognition memory processes. They have provided evidence in support of synaptic weakening as a major synaptic plastic process within perirhinal cortex underlying object recognition memory. They have also supplied confirmatory evidence that that there is more than one synaptic plastic process involved. The demonstrated necessity to long-term recognition memory of intracellular signalling mechanisms related to synaptic modification within perirhinal cortex establishes a central role for the region in the information storage underlying such memory. Perirhinal cortex is thereby established as an information storage site rather than solely a processing station. Pharmacological studies have also supplied new evidence concerning the detailed roles of other regions, including the hippocampus and the medial prefrontal cortex in different types of recognition memory tasks that include a spatial or temporal component. In so doing, they have also further defined the contribution of perirhinal cortex to such tasks. To date it appears that the contribution of perirhinal cortex to associative and temporal order memory reflects that in simple object recognition memory, namely that perirhinal cortex provides information concerning objects and their prior occurrence (novelty/familiarity). PMID:22841990

  16. Mood-congruent attention and memory bias in dysphoria: Exploring the coherence among information-processing biases.

    PubMed

    Koster, Ernst H W; De Raedt, Rudi; Leyman, Lemke; De Lissnyder, Evi

    2010-03-01

    Recent studies indicate that depression is characterized by mood-congruent attention bias at later stages of information-processing. Moreover, depression has been associated with enhanced recall of negative information. The present study tested the coherence between attention and memory bias in dysphoria. Stable dysphoric (n = 41) and non-dysphoric (n = 41) undergraduates first performed a spatial cueing task that included negative, positive, and neutral words. Words were presented for 250 ms under conditions that allowed or prevented elaborate processing. Memory for the words presented in the cueing task was tested using incidental free recall. Dysphoric individuals exhibited an attention bias for negative words in the condition that allowed elaborate processing, with the attention bias for negative words predicting free recall of negative words. Results demonstrate the coherence of attention and memory bias in dysphoric individuals and provide suggestions on the influence of attention bias on further processing of negative material. 2009 Elsevier Ltd. All rights reserved.

  17. Adaptive memory: young children show enhanced retention of fitness-related information.

    PubMed

    Aslan, Alp; Bäuml, Karl-Heinz T

    2012-01-01

    Evolutionary psychologists propose that human cognition evolved through natural selection to solve adaptive problems related to survival and reproduction, with its ultimate function being the enhancement of reproductive fitness. Following this proposal and the evolutionary-developmental view that ancestral selection pressures operated not only on reproductive adults, but also on pre-reproductive children, the present study examined whether young children show superior memory for information that is processed in terms of its survival value. In two experiments, we found such survival processing to enhance retention in 4- to 10-year-old children, relative to various control conditions that also required deep, meaningful processing but were not related to survival. These results suggest that, already in very young children, survival processing is a special and extraordinarily effective form of memory encoding. The results support the functional-evolutionary proposal that young children's memory is "tuned" to process and retain fitness-related information. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Depth of Information Processing and Memory for Medical Facts.

    ERIC Educational Resources Information Center

    Slade, Peter D.; Onion, Carl W. R.

    1995-01-01

    The current emphasis in medical education is on engaging learners in deep processing of information to achieve better understanding of the subject matter. Traditional approaches aimed for memorization of medical facts; however, a good memory for medical facts is still essential in clinical practice. This study demonstrates that deep information…

  19. Multifractal analysis of information processing in hippocampal neural ensembles during working memory under Δ9-tetrahydrocannabinol administration

    PubMed Central

    Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L.; Deadwyler, Sam A.; Hampson, Robert E.; Kraft, Robert A.

    2014-01-01

    Background Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. New method Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain–computer interfaces and nonlinear neuronal models. Results Neurons involved in memory processing (“Functional Cell Types” or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid-type 1 receptor partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. Comparison with existing methods WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. Conclusion z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain–computer interfaces. PMID:25086297

  20. Coherence and specificity of information-processing biases in depression and social phobia.

    PubMed

    Gotlib, Ian H; Kasch, Karen L; Traill, Saskia; Joormann, Jutta; Arnow, Bruce A; Johnson, Sheri L

    2004-08-01

    Research has not resolved whether depression is associated with a distinct information-processing bias, whether the content of the information-processing bias in depression is specific to themes of loss and sadness, or whether biases are consistent across the tasks most commonly used to assess attention and memory processing. In the present study, participants diagnosed with major depression, social phobia, or no Axis I disorder, completed several information-processing tasks assessing attention and memory for sad, socially threatening, physically threatening, and positive stimuli. As predicted, depressed participants exhibited specific biases for stimuli connoting sadness; social phobic participants did not evidence such specificity for threat stimuli. It is important to note that the different measures of bias in memory and attention were not systematically intercorrelated. Implications for the study of cognitive bias in depression, and for cognitive theory more broadly, are discussed.

  1. Large-Scale Fluorescence Calcium-Imaging Methods for Studies of Long-Term Memory in Behaving Mammals

    PubMed Central

    Jercog, Pablo; Rogerson, Thomas; Schnitzer, Mark J.

    2016-01-01

    During long-term memory formation, cellular and molecular processes reshape how individual neurons respond to specific patterns of synaptic input. It remains poorly understood how such changes impact information processing across networks of mammalian neurons. To observe how networks encode, store, and retrieve information, neuroscientists must track the dynamics of large ensembles of individual cells in behaving animals, over timescales commensurate with long-term memory. Fluorescence Ca2+-imaging techniques can monitor hundreds of neurons in behaving mice, opening exciting avenues for studies of learning and memory at the network level. Genetically encoded Ca2+ indicators allow neurons to be targeted by genetic type or connectivity. Chronic animal preparations permit repeated imaging of neural Ca2+ dynamics over multiple weeks. Together, these capabilities should enable unprecedented analyses of how ensemble neural codes evolve throughout memory processing and provide new insights into how memories are organized in the brain. PMID:27048190

  2. Memory modification as an outcome variable in anxiety disorder treatment.

    PubMed

    Tryon, Warren W; McKay, Dean

    2009-05-01

    Learning and memory are interdependent processes. Memories are learned, and cumulative learning requires memory. It is generally accepted that learning contributes to psychopathology and consequently to pertinent memory formation. Neuroscience and psychological research have established that memory is an active reconstructive process that is influenced by thoughts, feelings, and behaviors including post-event information. Recent research on the treatment of anxiety disorders using medications (i.e., d-cyclcloserine) to alter neurological systems associated with memory used in conjunction with behavior therapy suggests that memory is part of a central mechanism in the etiology and maintenance of these conditions. The main thesis of this article is that learning-based interventions create new memories that may modify existing ones. This raises the possibility of using such memory modifications to measure intervention outcome. A connectionist context for understanding this phenomenon and informing intervention is provided, with specific reference to post-traumatic stress disorder, obsessive-compulsive disorder, and generalized anxiety disorder. Recommendations for future research examining the role of memory change in treatment outcome are suggested.

  3. General intelligence predicts memory change across sleep.

    PubMed

    Fenn, Kimberly M; Hambrick, David Z

    2015-06-01

    Psychometric intelligence (g) is often conceptualized as the capability for online information processing but it is also possible that intelligence may be related to offline processing of information. Here, we investigated the relationship between psychometric g and sleep-dependent memory consolidation. Participants studied paired-associates and were tested after a 12-hour retention interval that consisted entirely of wake or included a regular sleep phase. We calculated the number of word-pairs that were gained and lost across the retention interval. In a separate session, participants completed a battery of cognitive ability tests to assess g. In the wake group, g was not correlated with either memory gain or memory loss. In the sleep group, we found that g correlated positively with memory gain and negatively with memory loss. Participants with a higher level of general intelligence showed more memory gain and less memory loss across sleep. Importantly, the correlation between g and memory loss was significantly stronger in the sleep condition than in the wake condition, suggesting that the relationship between g and memory loss across time is specific to time intervals that include sleep. The present research suggests that g not only reflects the capability for online cognitive processing, but also reflects capability for offline processes that operate during sleep.

  4. Multiple neural states of representation in short-term memory? It's a matter of attention.

    PubMed

    Larocque, Joshua J; Lewis-Peacock, Jarrod A; Postle, Bradley R

    2014-01-01

    Short-term memory (STM) refers to the capacity-limited retention of information over a brief period of time, and working memory (WM) refers to the manipulation and use of that information to guide behavior. In recent years it has become apparent that STM and WM interact and overlap with other cognitive processes, including attention (the selection of a subset of information for further processing) and long-term memory (LTM-the encoding and retention of an effectively unlimited amount of information for a much longer period of time). Broadly speaking, there have been two classes of memory models: systems models, which posit distinct stores for STM and LTM (Atkinson and Shiffrin, 1968; Baddeley and Hitch, 1974); and state-based models, which posit a common store with different activation states corresponding to STM and LTM (Cowan, 1995; McElree, 1996; Oberauer, 2002). In this paper, we will focus on state-based accounts of STM. First, we will consider several theoretical models that postulate, based on considerable behavioral evidence, that information in STM can exist in multiple representational states. We will then consider how neural data from recent studies of STM can inform and constrain these theoretical models. In the process we will highlight the inferential advantage of multivariate, information-based analyses of neuroimaging data (fMRI and electroencephalography (EEG)) over conventional activation-based analysis approaches (Postle, in press). We will conclude by addressing lingering questions regarding the fractionation of STM, highlighting differences between the attention to information vs. the retention of information during brief memory delays.

  5. The role of inhibition for working memory processes: ERP evidence from a short-term storage task.

    PubMed

    Getzmann, Stephan; Wascher, Edmund; Schneider, Daniel

    2018-05-01

    Human working memory is the central unit for short-term storage of information. In addition to the selection and adequate storage of relevant information, the suppression of irrelevant stimuli from the environment seems to be of importance for working memory processes. To learn more about the interplay of information uptake and inhibition of irrelevant information, the present study used ERP measures and a short-term storage and retrieval task, in which pairs of either numbers or letters had to be compared. Random sequences of four stimuli (two numbers and two letters) were presented, with either the numbers or the letters being relevant for comparison. The analysis of ERPs to each of the four stimuli indicated more pronounced P2 and P3b amplitudes for relevant than irrelevant stimuli. In contrast, the N2 (reflecting inhibitory control) was only elicited by irrelevant stimuli. Moreover, the N2 amplitude of the second irrelevant stimulus was associated with behavioral performance, indicating the importance of inhibition of task-irrelevant stimuli for working memory processes. In sum, the findings demonstrate the role of cognitive control mechanisms for protecting relevant contents in working memory against irrelevant information. © 2017 Society for Psychophysiological Research.

  6. Processing of visual semantic information to concrete words: temporal dynamics and neural mechanisms indicated by event-related brain potentials( ).

    PubMed

    van Schie, Hein T; Wijers, Albertus A; Mars, Rogier B; Benjamins, Jeroen S; Stowe, Laurie A

    2005-05-01

    Event-related brain potentials were used to study the retrieval of visual semantic information to concrete words, and to investigate possible structural overlap between visual object working memory and concreteness effects in word processing. Subjects performed an object working memory task that involved 5 s retention of simple 4-angled polygons (load 1), complex 10-angled polygons (load 2), and a no-load baseline condition. During the polygon retention interval subjects were presented with a lexical decision task to auditory presented concrete (imageable) and abstract (nonimageable) words, and pseudowords. ERP results are consistent with the use of object working memory for the visualisation of concrete words. Our data indicate a two-step processing model of visual semantics in which visual descriptive information of concrete words is first encoded in semantic memory (indicated by an anterior N400 and posterior occipital positivity), and is subsequently visualised via the network for object working memory (reflected by a left frontal positive slow wave and a bilateral occipital slow wave negativity). Results are discussed in the light of contemporary models of semantic memory.

  7. Visual information can hinder working memory processing of speech.

    PubMed

    Mishra, Sushmit; Lunner, Thomas; Stenfelt, Stefan; Rönnberg, Jerker; Rudner, Mary

    2013-08-01

    The purpose of the present study was to evaluate the new Cognitive Spare Capacity Test (CSCT), which measures aspects of working memory capacity for heard speech in the audiovisual and auditory-only modalities of presentation. In Experiment 1, 20 young adults with normal hearing performed the CSCT and an independent battery of cognitive tests. In the CSCT, they listened to and recalled 2-digit numbers according to instructions inducing executive processing at 2 different memory loads. In Experiment 2, 10 participants performed a less executively demanding free recall task using the same stimuli. CSCT performance demonstrated an effect of memory load and was associated with independent measures of executive function and inference making but not with general working memory capacity. Audiovisual presentation was associated with lower CSCT scores but higher free recall performance scores. CSCT is an executively challenging test of the ability to process heard speech. It captures cognitive aspects of listening related to sentence comprehension that are quantitatively and qualitatively different from working memory capacity. Visual information provided in the audiovisual modality of presentation can hinder executive processing in working memory of nondegraded speech material.

  8. An Approach toward the Development of a Functional Encoding Model of Short Term Memory during Reading.

    ERIC Educational Resources Information Center

    Herndon, Mary Anne

    1978-01-01

    In a model of the functioning of short term memory, the encoding of information for subsequent storage in long term memory is simulated. In the encoding process, semantically equivalent paragraphs are detected for recombination into a macro information unit. (HOD)

  9. Transfer-Appropriate Processing in Recognition Memory: Perceptual and Conceptual Effects on Recognition Memory Depend on Task Demands

    ERIC Educational Resources Information Center

    Parks, Colleen M.

    2013-01-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…

  10. Strategies To Enhance Memory Based on Brain-Research.

    ERIC Educational Resources Information Center

    Banikowski, Alison K.; Mehring, Teresa A.

    1999-01-01

    This article reviews the literature on three aspects of memory: (1) an information processing model of memory (including the sensory register, attention, short-term memory, and long-term memory); (2) instructional strategies designed to enhance memory (which stress gaining students' attention and active involvement); and (3) reasons why…

  11. Memory. Engram cells retain memory under retrograde amnesia.

    PubMed

    Ryan, Tomás J; Roy, Dheeraj S; Pignatelli, Michele; Arons, Autumn; Tonegawa, Susumu

    2015-05-29

    Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively through the stabilization of memory engrams. By using learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. Although these properties are lacking in engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process. Copyright © 2015, American Association for the Advancement of Science.

  12. Influence of encoding focus and stereotypes on source monitoring event-related-potentials.

    PubMed

    Leynes, P Andrew; Nagovsky, Irina

    2016-01-01

    Source memory, memory for the origin of a memory, can be influenced by stereotypes and the information of focus during encoding processes. Participants studied words from two different speakers (male or female) using self-focus or other-focus encoding. Source judgments for the speaker׳s voice and Event-Related Potentials (ERPs) were recorded during test. Self-focus encoding increased dependence on stereotype information and the Late Posterior Negativity (LPN). The results link the LPN with an increase in systematic decision processes such as consulting prior knowledge to support an episodic memory judgment. In addition, other-focus encoding increased conditional source judgments and resulted in weaker old/new recognition relative to the self-focus encoding. The putative correlate of recollection (LPC) was absent during this condition and this was taken as evidence that recollection of partial information supported source judgments. Collectively, the results suggest that other-focus encoding changes source monitoring processing by altering the weight of specific memory features. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Retrieval monitoring is influenced by information value: the interplay between importance and confidence on false memory.

    PubMed

    McDonough, Ian M; Bui, Dung C; Friedman, Michael C; Castel, Alan D

    2015-10-01

    The perceived value of information can influence one's motivation to successfully remember that information. This study investigated how information value can affect memory search and evaluation processes (i.e., retrieval monitoring). In Experiment 1, participants studied unrelated words associated with low, medium, or high values. Subsequent memory tests required participants to selectively monitor retrieval for different values. False memory effects were smaller when searching memory for high-value than low-value words, suggesting that people more effectively monitored more important information. In Experiment 2, participants studied semantically-related words, and the need for retrieval monitoring was reduced at test by using inclusion instructions (i.e., endorsement of any word related to the studied words) compared with standard instructions. Inclusion instructions led to increases in false recognition for low-value, but not for high-value words, suggesting that under standard-instruction conditions retrieval monitoring was less likely to occur for important information. Experiment 3 showed that words retrieved with lower confidence were associated with more effective retrieval monitoring, suggesting that the quality of the retrieved memory influenced the degree and effectiveness of monitoring processes. Ironically, unless encouraged to do so, people were less likely to carefully monitor important information, even though people want to remember important memories most accurately. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Double-Labeled Metabolic Maps of Memory.

    ERIC Educational Resources Information Center

    John, E. R.; And Others

    1986-01-01

    Reviews a study which sought to obtain a quantitative metabolic map of the neurons mediating a specific memory. Research results support notions of cooperative processes in which nonrandom behavior of high ensembles of neural elements mediates the integration and processing of information and the retrieval of memory. (ML)

  15. Computer Use and Its Effect on the Memory Process in Young and Adults

    ERIC Educational Resources Information Center

    Alliprandini, Paula Mariza Zedu; Straub, Sandra Luzia Wrobel; Brugnera, Elisangela; de Oliveira, Tânia Pitombo; Souza, Isabela Augusta Andrade

    2013-01-01

    This work investigates the effect of computer use in the memory process in young and adults under the Perceptual and Memory experimental conditions. The memory condition involved the phases acquisition of information and recovery, on time intervals (2 min, 24 hours and 1 week) on situations of pre and post-test (before and after the participants…

  16. Impaired Social Processing in Autism and Its Reflections in Memory: A Deeper View of Encoding and Retrieval Processes

    ERIC Educational Resources Information Center

    Brezis, Rachel S.; Galili, Tal; Wong, Tiffany; Piggot, Judith I.

    2014-01-01

    Previous studies of memory in autism spectrum conditions (ASC) have consistently shown that persons with ASC have reduced memories for social information, relative to a spared memory for non-social facts. The current study aims to reproduce these findings, while examining the possible causes leading to this difference. Participants' memory…

  17. Studying frequency processing of the brain to enhance long-term memory and develop a human brain protocol.

    PubMed

    Friedrich, Wernher; Du, Shengzhi; Balt, Karlien

    2015-01-01

    The temporal lobe in conjunction with the hippocampus is responsible for memory processing. The gamma wave is involved with this process. To develop a human brain protocol, a better understanding of the relationship between gamma and long-term memory is vital. A more comprehensive understanding of the human brain and specific analogue waves it uses will support the development of a human brain protocol. Fifty-eight participants aged between 6 and 60 years participated in long-term memory experiments. It is envisaged that the brain could be stimulated through binaural beats (sound frequency) at 40 Hz (gamma) to enhance long-term memory capacity. EEG recordings have been transformed to sound and then to an information standard, namely ASCII. Statistical analysis showed a proportional relationship between long-term memory and gamma activity. Results from EEG recordings indicate a pattern. The pattern was obtained through the de-codification of an EEG recording to sound and then to ASCII. Stimulation of gamma should enhance long term memory capacity. More research is required to unlock the human brains' protocol key. This key will enable the processing of information directly to and from human memory via gamma, the hippocampus and the temporal lobe.

  18. Social anxiety and information processing biases: An integrated theoretical perspective.

    PubMed

    Peschard, Virginie; Philippot, Pierre

    2016-01-01

    Models of anxiety disorders posit that information processing biases towards threat may result from an imbalance between top-down attentional control processes and bottom-up attentional processes, such that anxiety could reduce the influence of the former and increase the influence of the latter. However, researchers have recently pointed to limitations of the top-down/bottom-up terminology and outlined the additional contribution of memory processes to attention guidance. The goal of this paper is to provide bridges between recent findings from cognitive psychology and anxiety disorders research. We first provide an integrative overview of the processes influencing the content of working memory, including the availability of attentional control, and the strengths of task goals, stimulus salience, selection history and long-term memory. We then illustrate the interest of this formulation to the study of information processing biases in anxiety disorders, with a specific focus on social anxiety.

  19. Accessing Information in Working Memory: Can the Focus of Attention Grasp Two Elements at the Same Time?

    ERIC Educational Resources Information Center

    Oberauer, Klaus; Bialkova, Svetlana

    2009-01-01

    Processing information in working memory requires selective access to a subset of working-memory contents by a focus of attention. Complex cognition often requires joint access to 2 items in working memory. How does the focus select 2 items? Two experiments with an arithmetic task and 1 with a spatial task investigate time demands for successive…

  20. Tracing the time course of picture--word processing.

    PubMed

    Smith, M C; Magee, L E

    1980-12-01

    A number of independent lines of research have suggested that semantic and articulatory information become available differentially from pictures and words. The first of the experiments reported here sought to clarify the time course by which information about pictures and words becomes available by considering the pattern of interference generated when incongruent pictures and words are presented simultaneously in a Stroop-like situation. Previous investigators report that picture naming is easily disrupted by the presence of a distracting word but that word naming is relatively immune to interference from an incongruent picture. Under the assumption that information available from a completed process may disrupt an ongoing process, these results suggest that words access articulatory information more rapidly than do pictures. Experiment 1 extended this paradigm by requiring subjects to verify the category of the target stimulus. In accordance with the hypothesis that picture access the semantic code more rapidly than words, there was a reversal in the interference pattern: Word categorization suffered considerable disruption, whereas picture categorization was minimally affected by the presence of an incongruent word. Experiment 2 sought to further test the hypothesis that access to semantic and articulatory codes is different for pictures and words by examining memory for those items following naming or categorization. Categorized words were better recognized than named words, whereas the reverse was true for pictures, a result which suggests that picture naming involves more extensive processing than picture categorization. Experiment 3 replicated this result under conditions in which viewing time was held constant. The last experiment extended the investigation of memory differences to a situation in which subjects were required to generate the superordinate category name. Here, memory for categorized pictures was as good as memory for named pictures. Category generation also influenced memory for words, memory performance being superior to that following a yes--no verification of category membership. These experiments suggest a model of information access whereby pictures access semantic information were readily than name information, with the reverse being true for words. Memory for both pictures and words was a function of the amount of processing required to access a particular type of information as well as the extent of response differentiation necessitated by the task.

  1. Visual short-term memory: activity supporting encoding and maintenance in retinotopic visual cortex.

    PubMed

    Sneve, Markus H; Alnæs, Dag; Endestad, Tor; Greenlee, Mark W; Magnussen, Svein

    2012-10-15

    Recent studies have demonstrated that retinotopic cortex maintains information about visual stimuli during retention intervals. However, the process by which transient stimulus-evoked sensory responses are transformed into enduring memory representations is unknown. Here, using fMRI and short-term visual memory tasks optimized for univariate and multivariate analysis approaches, we report differential involvement of human retinotopic areas during memory encoding of the low-level visual feature orientation. All visual areas show weaker responses when memory encoding processes are interrupted, possibly due to effects in orientation-sensitive primary visual cortex (V1) propagating across extrastriate areas. Furthermore, intermediate areas in both dorsal (V3a/b) and ventral (LO1/2) streams are significantly more active during memory encoding compared with non-memory (active and passive) processing of the same stimulus material. These effects in intermediate visual cortex are also observed during memory encoding of a different stimulus feature (spatial frequency), suggesting that these areas are involved in encoding processes on a higher level of representation. Using pattern-classification techniques to probe the representational content in visual cortex during delay periods, we further demonstrate that simply initiating memory encoding is not sufficient to produce long-lasting memory traces. Rather, active maintenance appears to underlie the observed memory-specific patterns of information in retinotopic cortex. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The Asymmetrical Effects of Divided Attention on Encoding and Retrieval Processes: A Different View Based on an Interference with the Episodic Register

    PubMed Central

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2013-01-01

    In this study, we evaluate the conceptualization of encoding and retrieval processes established in previous studies that used a divided attention (DA) paradigm. These studies indicated that there were considerable detrimental effects of DA at encoding on later memory performance, but only minimal effects, if any, on divided attention at retrieval. We suggest that this asymmetry in the effects of DA on memory can be due, at least partially, to a confound between the memory phase (encoding and retrieval) and the memory requirements of the task (memory “for” encoded information versus memory “at” test). To control for this confound, we tested memory for encoded information and for retrieved information by introducing a second test that assessed memory for the retrieved information from the first test. We report the results of four experiments that use measures of memory performance, retrieval latency, and performance on the concurrent task, all of which consistently show that DA at retrieval strongly disrupts later memory for the retrieved episode, similarly to the effects of DA at encoding. We suggest that these symmetrical disruptive effects of DA at encoding and retrieval on later retrieval reflect a disruption of an episodic buffer (EB) or episodic register component (ER), rather than a failure of encoding or retrieval operations per se. PMID:24040249

  3. The asymmetrical effects of divided attention on encoding and retrieval processes: a different view based on an interference with the episodic register.

    PubMed

    Guez, Jonathan; Naveh-Benjamin, Moshe

    2013-01-01

    In this study, we evaluate the conceptualization of encoding and retrieval processes established in previous studies that used a divided attention (DA) paradigm. These studies indicated that there were considerable detrimental effects of DA at encoding on later memory performance, but only minimal effects, if any, on divided attention at retrieval. We suggest that this asymmetry in the effects of DA on memory can be due, at least partially, to a confound between the memory phase (encoding and retrieval) and the memory requirements of the task (memory "for" encoded information versus memory "at" test). To control for this confound, we tested memory for encoded information and for retrieved information by introducing a second test that assessed memory for the retrieved information from the first test. We report the results of four experiments that use measures of memory performance, retrieval latency, and performance on the concurrent task, all of which consistently show that DA at retrieval strongly disrupts later memory for the retrieved episode, similarly to the effects of DA at encoding. We suggest that these symmetrical disruptive effects of DA at encoding and retrieval on later retrieval reflect a disruption of an episodic buffer (EB) or episodic register component (ER), rather than a failure of encoding or retrieval operations per se.

  4. Insensitivity of visual short-term memory to irrelevant visual information.

    PubMed

    Andrade, Jackie; Kemps, Eva; Werniers, Yves; May, Jon; Szmalec, Arnaud

    2002-07-01

    Several authors have hypothesized that visuo-spatial working memory is functionally analogous to verbal working memory. Irrelevant background speech impairs verbal short-term memory. We investigated whether irrelevant visual information has an analogous effect on visual short-term memory, using a dynamic visual noise (DVN) technique known to disrupt visual imagery (Quinn & McConnell, 1996b). Experiment I replicated the effect of DVN on pegword imagery. Experiments 2 and 3 showed no effect of DVN on recall of static matrix patterns, despite a significant effect of a concurrent spatial tapping task. Experiment 4 showed no effect of DVN on encoding or maintenance of arrays of matrix patterns, despite testing memory by a recognition procedure to encourage visual rather than spatial processing. Serial position curves showed a one-item recency effect typical of visual short-term memory. Experiment 5 showed no effect of DVN on short-term recognition of Chinese characters, despite effects of visual similarity and a concurrent colour memory task that confirmed visual processing of the characters. We conclude that irrelevant visual noise does not impair visual short-term memory. Visual working memory may not be functionally analogous to verbal working memory, and different cognitive processes may underlie visual short-term memory and visual imagery.

  5. Elements of the cellular metabolic structure

    PubMed Central

    De la Fuente, Ildefonso M.

    2015-01-01

    A large number of studies have demonstrated the existence of metabolic covalent modifications in different molecular structures, which are able to store biochemical information that is not encoded by DNA. Some of these covalent mark patterns can be transmitted across generations (epigenetic changes). Recently, the emergence of Hopfield-like attractor dynamics has been observed in self-organized enzymatic networks, which have the capacity to store functional catalytic patterns that can be correctly recovered by specific input stimuli. Hopfield-like metabolic dynamics are stable and can be maintained as a long-term biochemical memory. In addition, specific molecular information can be transferred from the functional dynamics of the metabolic networks to the enzymatic activity involved in covalent post-translational modulation, so that determined functional memory can be embedded in multiple stable molecular marks. The metabolic dynamics governed by Hopfield-type attractors (functional processes), as well as the enzymatic covalent modifications of specific molecules (structural dynamic processes) seem to represent the two stages of the dynamical memory of cellular metabolism (metabolic memory). Epigenetic processes appear to be the structural manifestation of this cellular metabolic memory. Here, a new framework for molecular information storage in the cell is presented, which is characterized by two functionally and molecularly interrelated systems: a dynamic, flexible and adaptive system (metabolic memory) and an essentially conservative system (genetic memory). The molecular information of both systems seems to coordinate the physiological development of the whole cell. PMID:25988183

  6. Visuospatial Immediate Memory in Specific Language Impairment

    ERIC Educational Resources Information Center

    Archibald, Lisa M. D.; Gathercole, Susan E.

    2006-01-01

    Purpose: Investigations of the cognitive processes underlying specific language impairment (SLI) have implicated deficits in verbal short-term and working memory and in particular the storage and processing of phonological information. This study investigated short-term and working memory for visuospatial material for a group of children with SLI,…

  7. Displays, memories, and signal processing: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.

  8. Neural bases of orthographic long-term memory and working memory in dysgraphia.

    PubMed

    Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele

    2016-02-01

    Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Relational information processing of novel unrelated actions by infants.

    PubMed

    Knopf, Monika; Kraus, Uta; Kressley-Mba, Regina A

    2006-01-01

    Declarative memory in infants is often assessed via deferred imitation. Not much is known about the information processing basis of the memory effect found in these experiments. While in the typical deferred imitation study the order of actions remains the same during demonstration and retrieval, in two experiments with n=30 respective n=25, 10- and 11-month-old infants, the order of novel unrelated actions in demonstration and retrieval was varied (same, reversed, mixed). This allowed a separation of item-specific from item-relational information processing. In both experiments best memory performance was found when the order of target actions remained the same during encoding and recall, demonstrating that infants seem to rely on item-specific as well as item-relational information which has to be ad hoc constructed while encoding.

  10. A unified framework for the functional organization of the medial temporal lobes and the phenomenology of episodic memory.

    PubMed

    Ranganath, Charan

    2010-11-01

    There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.

  11. Engram Cells Retain Memory Under Retrograde Amnesia

    PubMed Central

    Ryan, Tomás J.; Roy, Dheeraj S.; Pignatelli, Michele; Arons, Autumn; Tonegawa, Susumu

    2017-01-01

    Memory consolidation is the process by which a newly formed and unstable memory transforms into a stable long-term memory. It is unknown whether the process of memory consolidation occurs exclusively by the stabilization of memory engrams. By employing learning-dependent cell labeling, we identified an increase of synaptic strength and dendritic spine density specifically in consolidated memory engram cells. While these properties are lacking in the engram cells under protein synthesis inhibitor-induced amnesia, direct optogenetic activation of these cells results in memory retrieval, and this correlates with the retained engram cell-specific connectivity. We propose that a specific pattern of connectivity of engram cells may be crucial for memory information storage and that strengthened synapses in these cells critically contribute to the memory retrieval process. PMID:26023136

  12. Iconic Memories Die a Sudden Death.

    PubMed

    Pratte, Michael S

    2018-06-01

    Iconic memory is characterized by its large storage capacity and brief storage duration, whereas visual working memory is characterized by its small storage capacity. The limited information stored in working memory is often modeled as an all-or-none process in which studied information is either successfully stored or lost completely. This view raises a simple question: If almost all viewed information is stored in iconic memory, yet one second later most of it is completely absent from working memory, what happened to it? Here, I characterized how the precision and capacity of iconic memory changed over time and observed a clear dissociation: Iconic memory suffered from a complete loss of visual items, while the precision of items retained in memory was only marginally affected by the passage of time. These results provide new evidence for the discrete-capacity view of working memory and a new characterization of iconic memory decay.

  13. The Association between Physical Activity During the Day and Long-Term Memory Stability.

    PubMed

    Pontifex, Matthew B; Gwizdala, Kathryn L; Parks, Andrew C; Pfeiffer, Karin A; Fenn, Kimberly M

    2016-12-02

    Despite positive associations between chronic physical activity and memory; we have little understanding of how best to incorporate physical activity during the day to facilitate the consolidation of information into memory, nor even how time spent physically active during the day relates to memory processes. The purpose of this investigation was to examine the relation between physical activity during the day and long-term memory. Ninety-two young adults learned a list of paired-associate items and were tested on the items after a 12-hour interval during which heart rate was recorded continuously. Although the percentage of time spent active during the day was unrelated to memory, two critical physical activity periods were identified as relating to the maintenance of long-term memory. Engaging in physical activity during the period 1 to 2-hours following the encoding of information was observed to be detrimental to the maintenance of information in long-term memory. In contrast, physical activity during the period 1-hour prior to memory retrieval was associated with superior memory performance, likely due to enhanced retrieval processing. These findings provide initial evidence to suggest that long-term memory may be enhanced by more carefully attending to the relative timing of physical activity incorporated during the day.

  14. Using Implicit Instructional Cues to Influence False Memory Induction.

    PubMed

    Cirelli, Laura K; Dickinson, Joël; Poirier, Marie

    2015-10-01

    Previous research has shown that explicit cues specific to the encoding process (endogenous) or characteristic of the stimuli themselves (exogenous) can be used to direct a reader's attentional resources towards either relational or item-specific information. By directing attention to relational information (and therefore away from item-specific information) the rate of false memory induction can be increased. The purpose of the current study was to investigate if a similar effect would be found by manipulating implicitly endogenous cues. An instructional manipulation was used to influence the perceptual action participants performed on word stimuli during the encoding of DRM list words. Results demonstrated that the instructional conditions that encouraged faster processing also led to an increased rate of false memory induction for semantically related words, supporting the hypothesis that attention was directed towards relational information. This finding supports the impoverished relational processing account of false memory induction. This supports the idea that implicitly endogenous cues, exogenous cues (like font) or explicitly endogenous cues (like training) can direct attentional resources during encoding.

  15. Working memory and the design of health materials: a cognitive factors perspective.

    PubMed

    Wilson, Elizabeth A H; Wolf, Michael S

    2009-03-01

    Working memory and other supportive cognitive processes involved in learning are reviewed in the context of developing patient education materials. We specifically focus on the impact of certain design factors such as text format and syntax, the inclusion of images, and the choice of modality on individuals' ability to understand and remember health information. A selective review of relevant cognitive and learning theories is discussed with regard to their potential impact on the optimal design of health materials. Working memory is measured as an individual's capacity to hold and manipulate information in active consciousness. It is limited by necessity, and well-designed health materials can effectively minimize extraneous cognitive demands placed on individuals, making working memory resources more available to better process content-related information. Further research is needed to evaluate specific design principles and identify ideal uses of print versus video-based forms of communication for conveying information. The process of developing health materials should account for the cognitive demands that extrinsic factors such as modality place on patients.

  16. Memory Modality Differences in Children with Attention Deficit Hyperactive Disorder with and without Learning Disabilities.

    ERIC Educational Resources Information Center

    Webster, Raymond E.; And Others

    1996-01-01

    Assesses information processing and memory functioning in 50 children diagnosed with Attention Deficit Hyperactive Disorder (ADHD) with and without learning disabilities (LD). Both groups struggled with auditory ordered recall. The ADHD/LD group demonstrated more problems transferring information into short-term and long-term memory stores than…

  17. Emotional arousal impairs association-memory: Roles of amygdala and hippocampus.

    PubMed

    Madan, Christopher R; Fujiwara, Esther; Caplan, Jeremy B; Sommer, Tobias

    2017-08-01

    Emotional arousal is well-known to enhance memory for individual items or events, whereas it can impair association memory. The neural mechanism of this association memory impairment by emotion is not known: In response to emotionally arousing information, amygdala activity may interfere with hippocampal associative encoding (e.g., via prefrontal cortex). Alternatively, emotional information may be harder to unitize, resulting in reduced availability of extra-hippocampal medial temporal lobe support for emotional than neutral associations. To test these opposing hypotheses, we compared neural processes underlying successful and unsuccessful encoding of emotional and neutral associations. Participants intentionally studied pairs of neutral and negative pictures (Experiments 1-3). We found reduced association-memory for negative pictures in all experiments, accompanied by item-memory increases in Experiment 2. High-resolution fMRI (Experiment 3) indicated that reductions in associative encoding of emotional information are localizable to an area in ventral-lateral amygdala, driven by attentional/salience effects in the central amygdala. Hippocampal activity was similar during both pair types, but a left hippocampal cluster related to successful encoding was observed only for negative pairs. Extra-hippocampal associative memory processes (e.g., unitization) were more effective for neutral than emotional materials. Our findings suggest that reduced emotional association memory is accompanied by increases in activity and functional coupling within the amygdala. This did not disrupt hippocampal association-memory processes, which indeed were critical for successful emotional association memory formation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Temporal dynamics of encoding, storage and reallocation of visual working memory

    PubMed Central

    Bays, Paul M; Gorgoraptis, Nikos; Wee, Natalie; Marshall, Louise; Husain, Masud

    2012-01-01

    The process of encoding a visual scene into working memory has previously been studied using binary measures of recall. Here we examine the temporal evolution of memory resolution, based on observers’ ability to reproduce the orientations of objects presented in brief, masked displays. Recall precision was accurately described by the interaction of two independent constraints: an encoding limit that determines the maximum rate at which information can be transferred into memory, and a separate storage limit that determines the maximum fidelity with which information can be maintained. Recall variability decreased incrementally with time, consistent with a parallel encoding process in which visual information from multiple objects accumulates simultaneously in working memory. No evidence was observed for a limit on the number of items stored. Cueing one display item with a brief flash led to rapid development of a recall advantage for that item. This advantage was short-lived if the cue was simply a salient visual event, but was maintained if it indicated an object of particular relevance to the task. These cueing effects were observed even for items that had already been encoded into memory, indicating that limited memory resources can be rapidly reallocated to prioritize salient or goal-relevant information. PMID:21911739

  19. Temporal dynamics of encoding, storage, and reallocation of visual working memory.

    PubMed

    Bays, Paul M; Gorgoraptis, Nikos; Wee, Natalie; Marshall, Louise; Husain, Masud

    2011-09-12

    The process of encoding a visual scene into working memory has previously been studied using binary measures of recall. Here, we examine the temporal evolution of memory resolution, based on observers' ability to reproduce the orientations of objects presented in brief, masked displays. Recall precision was accurately described by the interaction of two independent constraints: an encoding limit that determines the maximum rate at which information can be transferred into memory and a separate storage limit that determines the maximum fidelity with which information can be maintained. Recall variability decreased incrementally with time, consistent with a parallel encoding process in which visual information from multiple objects accumulates simultaneously in working memory. No evidence was observed for a limit on the number of items stored. Cuing one display item with a brief flash led to rapid development of a recall advantage for that item. This advantage was short-lived if the cue was simply a salient visual event but was maintained if it indicated an object of particular relevance to the task. These cuing effects were observed even for items that had already been encoded into memory, indicating that limited memory resources can be rapidly reallocated to prioritize salient or goal-relevant information.

  20. Individual differences in working memory capacity and workload capacity.

    PubMed

    Yu, Ju-Chi; Chang, Ting-Yun; Yang, Cheng-Ta

    2014-01-01

    We investigated the relationship between working memory capacity (WMC) and workload capacity (WLC). Each participant performed an operation span (OSPAN) task to measure his/her WMC and three redundant-target detection tasks to measure his/her WLC. WLC was computed non-parametrically (Experiments 1 and 2) and parametrically (Experiment 2). Both levels of analyses showed that participants high in WMC had larger WLC than those low in WMC only when redundant information came from visual and auditory modalities, suggesting that high-WMC participants had superior processing capacity in dealing with redundant visual and auditory information. This difference was eliminated when multiple processes required processing for only a single working memory subsystem in a color-shape detection task and a double-dot detection task. These results highlighted the role of executive control in integrating and binding information from the two working memory subsystems for perceptual decision making.

  1. The neural substrates of memory suppression: a FMRI exploration of directed forgetting.

    PubMed

    Bastin, Christine; Feyers, Dorothée; Majerus, Steve; Balteau, Evelyne; Degueldre, Christian; Luxen, André; Maquet, Pierre; Salmon, Eric; Collette, Fabienne

    2012-01-01

    The directed forgetting paradigm is frequently used to determine the ability to voluntarily suppress information. However, little is known about brain areas associated with information to forget. The present study used functional magnetic resonance imaging to determine brain activity during the encoding and retrieval phases of an item-method directed forgetting recognition task with neutral verbal material in order to apprehend all processing stages that information to forget and to remember undergoes. We hypothesized that regions supporting few selective processes, namely recollection and familiarity memory processes, working memory, inhibitory and selection processes should be differentially activated during the processing of to-be-remembered and to-be-forgotten items. Successful encoding and retrieval of items to remember engaged the entorhinal cortex, the hippocampus, the anterior medial prefrontal cortex, the left inferior parietal cortex, the posterior cingulate cortex and the precuneus; this set of regions is well known to support deep and associative encoding and retrieval processes in episodic memory. For items to forget, encoding was associated with higher activation in the right middle frontal and posterior parietal cortex, regions known to intervene in attentional control. Items to forget but nevertheless correctly recognized at retrieval yielded activation in the dorsomedial thalamus, associated with familiarity-based memory processes and in the posterior intraparietal sulcus and the anterior cingulate cortex, involved in attentional processes.

  2. MEMORY MODULATION

    PubMed Central

    Roozendaal, Benno; McGaugh, James L.

    2011-01-01

    Our memories are not all created equally strong: Some experiences are well remembered while others are remembered poorly, if at all. Research on memory modulation investigates the neurobiological processes and systems that contribute to such differences in the strength of our memories. Extensive evidence from both animal and human research indicates that emotionally significant experiences activate hormonal and brain systems that regulate the consolidation of newly acquired memories. These effects are integrated through noradrenergic activation of the basolateral amygdala which regulates memory consolidation via interactions with many other brain regions involved in consolidating memories of recent experiences. Modulatory systems not only influence neurobiological processes underlying the consolidation of new information, but also affect other mnemonic processes, including memory extinction, memory recall and working memory. In contrast to their enhancing effects on consolidation, adrenal stress hormones impair memory retrieval and working memory. Such effects, as with memory consolidation, require noradrenergic activation of the basolateral amygdala and interactions with other brain regions. PMID:22122145

  3. Working memory deficits in developmental dyscalculia: The importance of serial order.

    PubMed

    Attout, Lucie; Majerus, Steve

    2015-01-01

    Although a number of studies suggests a link between working memory (WM) storage capacity of short-term memory and calculation abilities, the nature of verbal WM deficits in children with developmental dyscalculia (DD) remains poorly understood. We explored verbal WM capacity in DD by focusing on the distinction between memory for item information (the items to be retained) and memory for order information (the order of the items within a list). We hypothesized that WM for order could be specifically related to impaired numerical abilities given that recent studies suggest close interactions between the representation of order information in WM and ordinal numerical processing. We investigated item and order WM abilities as well as basic numerical processing abilities in 16 children with DD (age: 8-11 years) and 16 typically developing children matched on age, IQ, and reading abilities. The DD group performed significantly poorer than controls in the order WM condition but not in the item WM condition. In addition, the DD group performed significantly slower than the control group on a numerical order judgment task. The present results show significantly reduced serial order WM abilities in DD coupled with less efficient numerical ordinal processing abilities, reflecting more general difficulties in explicit processing of ordinal information.

  4. The role of similarity in updating numerical information in working memory: decomposing the numerical distance effect.

    PubMed

    Lendínez, Cristina; Pelegrina, Santiago; Lechuga, M Teresa

    2014-01-01

    The present study investigates the process of updating representations in working memory (WM) and how similarity between the information involved influences this process. In WM updating tasks, the similarity in terms of numerical distance between the number to be substituted and the new one facilitates the updating process. We aimed to disentangle the possible effect of two dimensions of similarity that may contribute to this numerical effect: numerical distance itself and common digits shared between the numbers involved. Three experiments were conducted in which different ranges of distances and the coincidence between the digits of the two numbers involved in updating were manipulated. Results showed that the two dimensions of similarity had an effect on updating times. The greater the similarity between the information maintained in memory and the new information that substituted it, the faster the updating. This is consistent both with the idea of distributed representations based on features, and with a selective updating process based on a feature overwriting mechanism. Thus, updating in WM can be understood as a selective substitution process influenced by similarity in which only certain parts of the representation stored in memory are changed.

  5. Working Memory Integration Processes in Benign Childhood Epilepsy with Centrotemporal Spikes.

    PubMed

    Kárpáti, Judit; Donauer, Nándor; Somogyi, Eszter; Kónya, Anikó

    2015-12-01

    Benign epilepsy of childhood with centrotemporal spikes (BECTS) is the most frequent focal epilepsy in children; however, the pattern of affected memory processes remains controversial. Previous studies in BECTS imply deficits in complex working memory tasks, but not in simple modality-specific tasks. We studied working memory processes in children with BECTS by comparing performance in memory binding tasks of different complexities. We compared 17 children with BECTS (aged 6 to 13 years) to 17 healthy children matched for age, sex, and intelligence quotient. We measured spatial and verbal memory components separately and jointly on three single-binding tasks (binding of what and where; what and when; and where and when) and a combined-binding task (integration of what, where, and when). We also evaluated basic visuospatial memory functions with subtests of the Children's Memory Scale, and intellectual abilities with verbal tasks of the Wechsler Intelligence Scale for Children-Fourth Edition and the Raven Progressive Matrices. We found no difference between the BECTS and control groups in single-binding tasks; however, the children with BECTS performed significantly worse on the combined task, which included integration of spatial, verbal, and temporal information. We found no deficits in their intellectual abilities or basic visuospatial memory functions. Children with BECTS may have intact simple maintenance processes of working memory, but difficulty with high-level functions requiring attentional and executive resources. Our findings imply no specific memory dysfunction in BECTS, but suggest difficulties in integrating information within working memory, and possible frontal lobe disturbances.

  6. Neural suppression of irrelevant information underlies optimal working memory performance.

    PubMed

    Zanto, Theodore P; Gazzaley, Adam

    2009-03-11

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding, and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (< 200 ms from stimulus onset) is intimately related to subsequent WM performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity.

  7. Expertise Development With Different Types of Automation: A Function of Different Cognitive Abilities.

    PubMed

    Jipp, Meike

    2016-02-01

    I explored whether different cognitive abilities (information-processing ability, working-memory capacity) are needed for expertise development when different types of automation (information vs. decision automation) are employed. It is well documented that expertise development and the employment of automation lead to improved performance. Here, it is argued that a learner's ability to reason about an activity may be hindered by the employment of information automation. Additional feedback needs to be processed, thus increasing the load on working memory and decelerating expertise development. By contrast, the employment of decision automation may stimulate reasoning, increase the initial load on information-processing ability, and accelerate expertise development. Authors of past research have not investigated the interrelations between automation assistance, individual differences, and expertise development. Sixty-one naive learners controlled simulated air traffic with two types of automation: information automation and decision automation. Their performance was captured across 16 trials. Well-established tests were used to assess information-processing ability and working-memory capacity. As expected, learners' performance benefited from expertise development and decision automation. Furthermore, individual differences moderated the effect of the type of automation on expertise development: The employment of only information automation increased the load on working memory during later expertise development. The employment of decision automation initially increased the need to process information. These findings highlight the importance of considering individual differences and expertise development when investigating human-automation interaction. The results are relevant for selecting automation configurations for expertise development. © 2015, Human Factors and Ergonomics Society.

  8. The Role of Shape in Semantic Memory Organization of Objects: An Experimental Study Using PI-Release.

    PubMed

    van Weelden, Lisanne; Schilperoord, Joost; Swerts, Marc; Pecher, Diane

    2015-01-01

    Visual information contributes fundamentally to the process of object categorization. The present study investigated whether the degree of activation of visual information in this process is dependent on the contextual relevance of this information. We used the Proactive Interference (PI-release) paradigm. In four experiments, we manipulated the information by which objects could be categorized and subsequently be retrieved from memory. The pattern of PI-release showed that if objects could be stored and retrieved both by (non-perceptual) semantic and (perceptual) shape information, then shape information was overruled by semantic information. If, however, semantic information could not be (satisfactorily) used to store and retrieve objects, then objects were stored in memory in terms of their shape. The latter effect was found to be strongest for objects from identical semantic categories.

  9. Parallel interactive retrieval of item and associative information from event memory.

    PubMed

    Cox, Gregory E; Criss, Amy H

    2017-09-01

    Memory contains information about individual events (items) and combinations of events (associations). Despite the fundamental importance of this distinction, it remains unclear exactly how these two kinds of information are stored and whether different processes are used to retrieve them. We use both model-independent qualitative properties of response dynamics and quantitative modeling of individuals to address these issues. Item and associative information are not independent and they are retrieved concurrently via interacting processes. During retrieval, matching item and associative information mutually facilitate one another to yield an amplified holistic signal. Modeling of individuals suggests that this kind of facilitation between item and associative retrieval is a ubiquitous feature of human memory. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Object-Location Memory: A Lesion-Behavior Mapping Study in Stroke Patients

    ERIC Educational Resources Information Center

    van Asselen, Marieke; Kessels, Roy P. C.; Frijns, Catharina J. M.; Kappelle, L. Jaap; Neggers, Sebastiaan F. W.; Postma, Albert

    2009-01-01

    Object-location memory is an important form of spatial memory, comprising different subcomponents that each process specific types of information within memory, i.e. remembering objects, remembering positions and binding these features in memory. In the current study we investigated the neural correlates of binding categorical (relative) or…

  11. Superior memory efficiency of quantum devices for the simulation of continuous-time stochastic processes

    NASA Astrophysics Data System (ADS)

    Elliott, Thomas J.; Gu, Mile

    2018-03-01

    Continuous-time stochastic processes pervade everyday experience, and the simulation of models of these processes is of great utility. Classical models of systems operating in continuous-time must typically track an unbounded amount of information about past behaviour, even for relatively simple models, enforcing limits on precision due to the finite memory of the machine. However, quantum machines can require less information about the past than even their optimal classical counterparts to simulate the future of discrete-time processes, and we demonstrate that this advantage extends to the continuous-time regime. Moreover, we show that this reduction in the memory requirement can be unboundedly large, allowing for arbitrary precision even with a finite quantum memory. We provide a systematic method for finding superior quantum constructions, and a protocol for analogue simulation of continuous-time renewal processes with a quantum machine.

  12. A Critical Review of the Drug/Performance Literature. Volume I.

    DTIC Science & Technology

    1979-12-01

    70 Information Processing ---------------------------------- 71 Eye Movement Studies------------------------------------ 72 IF...77 Memory and Information Processing ------------------------ 79 State-Dependent Learning---------------------------------- 81 Driving...Information Processing ------------------------------ 163 Decisionmaking--------------------------------------- 166 Communication Skills

  13. Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories

    PubMed Central

    Jarome, Timothy J; Ferrara, Nicole C; Kwapis, Janine L; Helmstetter, Fred J

    2015-01-01

    Stored memories enter a temporary state of vulnerability following retrieval known as ‘reconsolidation', a process that can allow memories to be modified to incorporate new information. Although reconsolidation has become an attractive target for treatment of memories related to traumatic past experiences, we still do not know what new information triggers the updating of retrieved memories. Here, we used biochemical markers of synaptic plasticity in combination with a novel behavioral procedure to determine what was learned during memory reconsolidation under normal retrieval conditions. We eliminated new information during retrieval by manipulating animals' training experience and measured changes in proteasome activity and GluR2 expression in the amygdala, two established markers of fear memory lability and reconsolidation. We found that eliminating new contextual information during the retrieval of memories for predictable and unpredictable fear associations prevented changes in proteasome activity and glutamate receptor expression in the amygdala, indicating that this new information drives the reconsolidation of both predictable and unpredictable fear associations on retrieval. Consistent with this, eliminating new contextual information prior to retrieval prevented the memory-impairing effects of protein synthesis inhibitors following retrieval. These results indicate that under normal conditions, reconsolidation updates memories by incorporating new contextual information into the memory trace. Collectively, these results suggest that controlling contextual information present during retrieval may be a useful strategy for improving reconsolidation-based treatments of traumatic memories associated with anxiety disorders such as post-traumatic stress disorder. PMID:26062788

  14. Individual Differences in Working Memory Capacity Predict Retrieval-Induced Forgetting

    ERIC Educational Resources Information Center

    Aslan, Alp; Bauml, Karl-Heinz T.

    2011-01-01

    Selectively retrieving a subset of previously studied information enhances memory for the retrieved information but causes forgetting of related, nonretrieved information. Such retrieval-induced forgetting (RIF) has often been attributed to inhibitory executive-control processes that supposedly suppress the nonretrieved items' memory…

  15. Memory formation during anaesthesia: plausibility of a neurophysiological basis

    PubMed Central

    Veselis, R. A.

    2015-01-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of ‘hidden’ memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. PMID:25735711

  16. Subjective Experience of Episodic Memory and Metacognition: A Neurodevelopmental Approach

    PubMed Central

    Souchay, Céline; Guillery-Girard, Bérengère; Pauly-Takacs, Katalin; Wojcik, Dominika Zofia; Eustache, Francis

    2013-01-01

    Episodic retrieval is characterized by the subjective experience of remembering. This experience enables the co-ordination of memory retrieval processes and can be acted on metacognitively. In successful retrieval, the feeling of remembering may be accompanied by recall of important contextual information. On the other hand, when people fail (or struggle) to retrieve information, other feelings, thoughts, and information may come to mind. In this review, we examine the subjective and metacognitive basis of episodic memory function from a neurodevelopmental perspective, looking at recollection paradigms (such as source memory, and the report of recollective experience) and metacognitive paradigms such as the feeling of knowing). We start by considering healthy development, and provide a brief review of the development of episodic memory, with a particular focus on the ability of children to report first-person experiences of remembering. We then consider neurodevelopmental disorders (NDDs) such as amnesia acquired in infancy, autism, Williams syndrome, Down syndrome, or 22q11.2 deletion syndrome. This review shows that different episodic processes develop at different rates, and that across a broad set of different NDDs there are various types of episodic memory impairment, each with possibly a different character. This literature is in agreement with the idea that episodic memory is a multifaceted process. PMID:24399944

  17. Stream specificity and asymmetries in feature binding and content-addressable access in visual encoding and memory.

    PubMed

    Huynh, Duong L; Tripathy, Srimant P; Bedell, Harold E; Ögmen, Haluk

    2015-01-01

    Human memory is content addressable-i.e., contents of the memory can be accessed using partial information about the bound features of a stored item. In this study, we used a cross-feature cuing technique to examine how the human visual system encodes, binds, and retains information about multiple stimulus features within a set of moving objects. We sought to characterize the roles of three different features (position, color, and direction of motion, the latter two of which are processed preferentially within the ventral and dorsal visual streams, respectively) in the construction and maintenance of object representations. We investigated the extent to which these features are bound together across the following processing stages: during stimulus encoding, sensory (iconic) memory, and visual short-term memory. Whereas all features examined here can serve as cues for addressing content, their effectiveness shows asymmetries and varies according to cue-report pairings and the stage of information processing and storage. Position-based indexing theories predict that position should be more effective as a cue compared to other features. While we found a privileged role for position as a cue at the stimulus-encoding stage, position was not the privileged cue at the sensory and visual short-term memory stages. Instead, the pattern that emerged from our findings is one that mirrors the parallel processing streams in the visual system. This stream-specific binding and cuing effectiveness manifests itself in all three stages of information processing examined here. Finally, we find that the Leaky Flask model proposed in our previous study is applicable to all three features.

  18. [Learning and implicit memory: mechanisms and neuroplasticity].

    PubMed

    Machado, S; Portella, C E; Silva, J G; Velasques, B; Bastos, V H; Cunha, M; Basile, L; Cagy, M; Piedade, R A; Ribeiro, P

    Learning and memory are complex processes that researchers have been attempting to unravel for over a century in order to gain a clear view of the underlying mechanisms. To review the basic cellular and molecular mechanisms involved in the process of procedural retention, to offer an overall view of the fundamental mechanisms involved in storing information by means of theories and models of memory, and to discuss the different types of memory and the role played by the cerebellum as a modulator of procedural memory. Experimental results from recent decades have opened up new areas of study regarding the participation of the biochemical and cellular processes related to the consolidation of information in the nervous system. The neuronal circuits involved in acquiring and consolidating memory are still not fully understood and the exact location of memory in the nervous system remains unknown. A number of intrinsic and extrinsic factors interfere in these processes, such as molecular (long-term potentiation and depression) and cellular mechanisms, which respond to communication and transmission between nerve cells. There are also factors that have their origin in the outside environment, which use the association of events to bring about the formation of new memories or may divert the subject from his or her main focus. Memory is not a singular occurrence; it is sub-divided into declarative and non-declarative or, when talking about the time it lasts, into short and long-term memory. Moreover, given its relation with neuronal mechanisms of learning, memory cannot be said to constitute an isolated process.

  19. Impaired short-term memory for pitch in congenital amusia.

    PubMed

    Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne

    2016-06-01

    Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The organization and neural substrates of human memory.

    PubMed

    Squire, L R

    The neurology of memory has been illuminated by parallel studies of patients with circumscribed memory impairment and animal models of human amnesia. Human amnesia can occur as an isolated cognitive deficit that impairs the ability to learn new facts and episodes. In addition, memory can be affected for material learned many years prior to the onset of amnesia. The finding that some memory abilities are intact in amnesia (e.g., skill learning, word priming, and adaptation-level effects) has suggested that memory can be divided into two or more separate processes. Declarative memory affords the ability to store information explicitly and to retrieve it later as a conscious recollection. This form of memory depends on the integrity of the structures damaged in amnesia. Other, non-declarative kinds of memory afford the ability to change as the result of experience, but the information is available only through performance. Recent studies of a favorable human case provided strong evidence that the hippocampus is a critical component of the declarative memory system. Extensive convergent and divergent projections link the hippocampus to many areas of neocortex where processing and storage of new information is likely to occur. It is perhaps by way of these connections that the hippocampus operates upon and participates in declarative representations.

  1. The Impact of Storage on Processing: How Is Information Maintained in Working Memory?

    ERIC Educational Resources Information Center

    Vergauwe, Evie; Camos, Valérie; Barrouillet, Pierre

    2014-01-01

    Working memory is typically defined as a system devoted to the simultaneous maintenance and processing of information. However, the interplay between these 2 functions is still a matter of debate in the literature, with views ranging from complete independence to complete dependence. The time-based resource-sharing model assumes that a central…

  2. Applying Catastrophe Theory to an Information-Processing Model of Problem Solving in Science Education

    ERIC Educational Resources Information Center

    Stamovlasis, Dimitrios; Tsaparlis, Georgios

    2012-01-01

    In this study, we test an information-processing model (IPM) of problem solving in science education, namely the working memory overload model, by applying catastrophe theory. Changes in students' achievement were modeled as discontinuities within a cusp catastrophe model, where working memory capacity was implemented as asymmetry and the degree…

  3. Information Processing: A Review of Implications of Johnstone's Model for Science Education

    ERIC Educational Resources Information Center

    St Clair-Thompson, Helen; Overton, Tina; Botton, Chris

    2010-01-01

    The current review is concerned with an information processing model used in science education. The purpose is to summarise the current theoretical understanding, in published research, of a number of factors that are known to influence learning and achievement. These include field independence, working memory, long-term memory, and the use of…

  4. Retention interval affects visual short-term memory encoding.

    PubMed

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  5. The persistence of a visual dominance effect in a telemanipulator task: A comparison between visual and electrotactile feedback

    NASA Technical Reports Server (NTRS)

    Gaillard, J. P.

    1981-01-01

    The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes.

  6. Fast associative memory + slow neural circuitry = the computational model of the brain.

    NASA Astrophysics Data System (ADS)

    Berkovich, Simon; Berkovich, Efraim; Lapir, Gennady

    1997-08-01

    We propose a computational model of the brain based on a fast associative memory and relatively slow neural processors. In this model, processing time is expensive but memory access is not, and therefore most algorithmic tasks would be accomplished by using large look-up tables as opposed to calculating. The essential feature of an associative memory in this context (characteristic for a holographic type memory) is that it works without an explicit mechanism for resolution of multiple responses. As a result, the slow neuronal processing elements, overwhelmed by the flow of information, operate as a set of templates for ranking of the retrieved information. This structure addresses the primary controversy in the brain architecture: distributed organization of memory vs. localization of processing centers. This computational model offers an intriguing explanation of many of the paradoxical features in the brain architecture, such as integration of sensors (through DMA mechanism), subliminal perception, universality of software, interrupts, fault-tolerance, certain bizarre possibilities for rapid arithmetics etc. In conventional computer science the presented type of a computational model did not attract attention as it goes against the technological grain by using a working memory faster than processing elements.

  7. Reduced short-term memory capacity in Alzheimer's disease: the role of phonological, lexical, and semantic processing.

    PubMed

    Caza, Nicole; Belleville, Sylvie

    2008-05-01

    Individuals with Alzheimer's disease (AD) are often reported to have reduced verbal short-term memory capacity, typically attributed to their attention/executive deficits. However, these individuals also tend to show progressive impairment of semantic, lexical, and phonological processing which may underlie their low short-term memory capacity. The goals of this study were to assess the contribution of each level of representation (phonological, lexical, and semantic) to immediate serial recall performance in 18 individuals with AD, and to examine how these linguistic effects on short-term memory were modulated by their reduced capacity to manipulate information in short-term memory associated with executive dysfunction. Results showed that individuals with AD had difficulty recalling items that relied on phonological representations, which led to increased lexicality effects relative to the control group. This finding suggests that patients have a greater reliance on lexical/semantic information than controls, possibly to make up for deficits in retention and processing of phonological material. This lexical/semantic effect was not found to be significantly correlated with patients' capacity to manipulate verbal material in short-term memory, indicating that language processing and executive deficits may independently contribute to reducing verbal short-term memory capacity in AD.

  8. Information Content Moderates Positivity and Negativity Biases in Memory

    PubMed Central

    Hess, Thomas M.; Popham, Lauren E.; Dennis, Paul A.; Emery, Lisa

    2014-01-01

    Two experiments examined the impact of encoding conditions and information content in memory for positive, neutral, and negative pictures. We examined the hypotheses that the positivity effect in memory (i.e., a bias in favor of positive or against negative information in later life) would be reduced when (a) pictures were viewed under structured as opposed to unstructured conditions, and (b) contained social as opposed to nonsocial content. Both experiments found that the positivity effect observed with nonsocial stimuli was absent with social stimuli. In addition, little evidence was obtained that encoding conditions affected the strength of the positivity effect. We argue that some types of social stimuli may engage different types of processing than nonsocial stimuli, perhaps encouraging self-referential processing that engages attention and supports memory. This processing may then conflict with the goal-driven, top-down processing that is hypothesized to drive the positivity effect. Thus, our results identify further boundary conditions associated with the positivity effect in memory, arguing that stimulus factors as well as situational goals may affect its occurrence. Further research awaits to determine if this effect is specific to all social stimuli or specific subsets. PMID:23421322

  9. Information content moderates positivity and negativity biases in memory.

    PubMed

    Hess, Thomas M; Popham, Lauren E; Dennis, Paul A; Emery, Lisa

    2013-09-01

    Two experiments examined the impact of encoding conditions and information content in memory for positive, neutral, and negative pictures. We examined the hypotheses that the positivity effect in memory (i.e., a bias in favor of positive or against negative information in later life) would be reduced when (a) pictures were viewed under structured as opposed to unstructured conditions, and (b) contained social as opposed to nonsocial content. Both experiments found that the positivity effect observed with nonsocial stimuli was absent with social stimuli. In addition, little evidence was obtained that encoding conditions affected the strength of the positivity effect. We argue that some types of social stimuli may engage different types of processing than nonsocial stimuli, perhaps encouraging self-referential processing that engages attention and supports memory. This processing may then conflict with the goal-driven, top-down processing that is hypothesized to drive the positivity effect. Thus, our results identify further boundary conditions associated with the positivity effect in memory, arguing that stimulus factors as well as situational goals may affect its occurrence. Further research awaits to determine if this effect is specific to all social stimuli or specific subsets.

  10. Using Information Processing Theory to Teach Social Stratification to Pre-Service Teachers

    ERIC Educational Resources Information Center

    Brown, Jennifer L.

    2015-01-01

    Information in context has meaning for the student, easily understood, easily retrieved, and successfully moves to long term memory. If information is not in context, rote memorization occurs with the less meaningful information, and information is not easily retrieved or successfully stored in long term memory. The purpose of this study was to…

  11. How Emotional Pictures Influence Visuospatial Binding in Short-Term Memory in Ageing and Alzheimer's Disease?

    ERIC Educational Resources Information Center

    Borg, Celine; Leroy, Nicolas; Favre, Emilie; Laurent, Bernard; Thomas-Anterion, Catherine

    2011-01-01

    The present study examines the prediction that emotion can facilitate short-term memory. Nevertheless, emotion also recruits attention to process information, thereby disrupting short-term memory when tasks involve high attentional resources. In this way, we aimed to determine whether there is a differential influence of emotional information on…

  12. Endogenous BDNF Is Required for Long-Term Memory Formation in the Rat Parietal Cortex

    ERIC Educational Resources Information Center

    Alonso, Mariana; Bekinschtein, Pedro, Cammarota, Martin; Vianna, Monica R. M.; Izquierdo, Ivan; Medina, Jorge H.

    2005-01-01

    Information storage in the brain is a temporally graded process involving different memory phases as well as different structures in the mammalian brain. Cortical plasticity seems to be essential to store stable long-term memories, although little information is available at the moment regarding molecular and cellular events supporting memory…

  13. Evaluation methodology for comparing memory and communication of analytic processes in visual analytics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragan, Eric D; Goodall, John R

    2014-01-01

    Provenance tools can help capture and represent the history of analytic processes. In addition to supporting analytic performance, provenance tools can be used to support memory of the process and communication of the steps to others. Objective evaluation methods are needed to evaluate how well provenance tools support analyst s memory and communication of analytic processes. In this paper, we present several methods for the evaluation of process memory, and we discuss the advantages and limitations of each. We discuss methods for determining a baseline process for comparison, and we describe various methods that can be used to elicit processmore » recall, step ordering, and time estimations. Additionally, we discuss methods for conducting quantitative and qualitative analyses of process memory. By organizing possible memory evaluation methods and providing a meta-analysis of the potential benefits and drawbacks of different approaches, this paper can inform study design and encourage objective evaluation of process memory and communication.« less

  14. Processes of conscious and unconscious memory: evidence from current research on dissociation of memories within a test.

    PubMed

    Cheng, Chao-Ming; Huang, Chin-Lan

    2011-01-01

    The processes of conscious memory (CM) and unconscious memory (UM) are explored, based on the results of the current and previous studies in which the 2 forms of memory within a test were separated by either the process dissociation or metacognition-based dissociation procedure. The results assessing influences of shallow and deep processing, association, and self-generation on CM in explicit and implicit tests are taken as evidence that CM in a test is driven not only conceptually but also by the driving nature of the test, and CM benefits from an encoding condition to the extent that information processing for CM recapitulates that engaged in the encoding condition.Those influences on UM in explicit and implicit tests are taken to support the view that UM in a test is driven by the nature of the test itself, and UM benefits from an encoding condition to the extent that the cognitive environments at test and at study match to activate the same type of information (e.g., visual, lexical, or semantic) about memory items or the same content of a preexisting association or categorical structure.

  15. Switching Attention Within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential

    PubMed Central

    Berti, Stefan

    2016-01-01

    The flexible access to information in working memory is crucial for adaptive behavior. It is assumed that this is realized by switching the focus of attention within working memory. Switching of attention is mirrored in the P3a component of the human event-related brain potential (ERP) and it has been argued that the processes reflected by the P3a are also relevant for selecting information within working memory. The aim of the present study was to further evaluate whether the P3a mirrors genuine switching of attention within working memory by applying an object switching task: Participants updated a memory list of four digits either by replacing one item with another digit or by processing the stored digit. ERPs were computed separately for two types of trials: (1) trials in which an object was repeated and (2) trials in which a switch to a new object was required in order to perform the task. Object-switch trials showed increased response times compared with repetition trials in both task conditions. In addition, switching costs were increased in the processing compared with the replacement condition. Pronounced P3a’s were obtained in switching trials but there were no difference between the two updating tasks (replacement or processing). These results were qualified by the finding that the magnitude of the visual location shift also affects the ERPs in the P3a time window. Taken together, the present pattern of results suggest that the P3a reflects an initial process of selecting information in working memory but not the memory updating itself. PMID:26779009

  16. THE COGNITIVE NEUROSCIENCE OF WORKING MEMORY

    PubMed Central

    D’Esposito, Mark; Postle, Bradley R.

    2015-01-01

    For over 50 years, psychologists and neuroscientists have recognized the importance of a “working memory” to coordinate processing when multiple goals are active, and to guide behavior with information that is not present in the immediate environment. In recent years, psychological theory and cognitive neuroscience data have converged on the idea that information is encoded into working memory via the allocation of attention to internal representations – be they semantic long-term memory (e.g., letters, digits, words), sensory, or motoric. Thus, information-based multivariate analyses of human functional MRI data typically find evidence for the temporary representation of stimuli in regions that also process this information in nonworking-memory contexts. The prefrontal cortex, on the other hand, exerts control over behavior by biasing the salience of mnemonic representations, and adjudicating among competing, context-dependent rules. The “control of the controller” emerges from a complex interplay between PFC and striatal circuits, and ascending dopaminergic neuromodulatory signals. PMID:25251486

  17. Visuospatial bootstrapping: Binding useful visuospatial information during verbal working memory encoding does not require set-shifting executive resources.

    PubMed

    Calia, Clara; Darling, Stephen; Havelka, Jelena; Allen, Richard J

    2018-05-01

    Immediate serial recall of digits is better when the digits are shown by highlighting them in a familiar array, such as a phone keypad, compared with presenting them serially in a single location, a pattern referred to as "visuospatial bootstrapping." This pattern implies the establishment of temporary links between verbal and spatial working memory, alongside access to information in long-term memory. However, the role of working memory control processes like those implied by the "Central Executive" in bootstrapping has not been directly investigated. Here, we report a study addressing this issue, focusing on executive processes of attentional shifting. Tasks in which information has to be sequenced are thought to be heavily dependent on shifting. Memory for digits presented in keypads versus single locations was assessed under two secondary task load conditions, one with and one without a sequencing requirement, and hence differing in the degree to which they invoke shifting. Results provided clear evidence that multimodal binding (visuospatial bootstrapping) can operate independently of this form of executive control process.

  18. Memory and disgust: Effects of appearance-congruent and appearance-incongruent information on source memory for food.

    PubMed

    Mieth, Laura; Bell, Raoul; Buchner, Axel

    2016-01-01

    The present study was stimulated by previous findings showing that people preferentially remember person descriptions that violate appearance-based first impressions. Given that until now all studies used faces as stimuli, these findings can be explained by referring to a content-specific module for social information processing that facilitates social orientation within groups via stereotyping and counter-stereotyping. The present study tests whether the same results can be obtained with fitness-relevant stimuli from another domain--pictures of disgusting-looking or tasty-looking food, paired with tasty and disgusting descriptions. A multinomial model was used to disentangle item memory, guessing and source memory. There was an old-new recognition advantage for disgusting-looking food. People had a strong tendency towards guessing that disgusting-looking food had been previously associated with a disgusting description. Source memory was enhanced for descriptions that disconfirmed these negative, appearance-based impressions. These findings parallel the results from the social domain. Heuristic processing of stimuli based on visual appearance may be complemented by intensified processing of incongruent information that invalidates these first impressions.

  19. Compression in Working Memory and Its Relationship With Fluid Intelligence.

    PubMed

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-06-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between working-memory capacity and fluid intelligence because both depend on the optimization of storage capacity. Compressibility of memoranda was estimated using an algorithmic complexity metric. The results showed that compressibility can be used to predict working-memory performance and that fluid intelligence is well predicted by the ability to compress information. We conclude that the ability to compress information in working memory is the reason why both manipulation and retention of information are linked to intelligence. This result offers a new concept of intelligence based on the idea that compression and intelligence are equivalent problems. Copyright © 2018 Cognitive Science Society, Inc.

  20. Why Consumers Misattribute Sponsorships to Non-Sponsor Brands: Differential Roles of Item and Relational Communications.

    PubMed

    Weeks, Clinton S; Humphreys, Michael S; Cornwell, T Bettina

    2018-02-01

    Brands engaged in sponsorship of events commonly have objectives that depend on consumer memory for the sponsor-event relationship (e.g., sponsorship awareness). Consumers however, often misattribute sponsorships to nonsponsor competitor brands, indicating erroneous memory for these relationships. The current research uses an item and relational memory framework to reveal sponsor brands may inadvertently foster this misattribution when they communicate relational linkages to events. Effects can be explained via differential roles of communicating item information (information that supports processing item distinctiveness) versus relational information (information that supports processing relationships among items) in contributing to memory outcomes. Experiment 1 uses event-cued brand recall to show that correct memory retrieval is best supported by communicating relational information when sponsorship relationships are not obvious (low congruence). In contrast, correct retrieval is best supported by communicating item information when relationships are obvious (high congruence). Experiment 2 uses brand-cued event recall to show that, against conventional marketing recommendations, relational information increases misattribution, whereas item information guards against misattribution. Results suggest sponsor brands must distinguish between item and relational communications to enhance correct retrieval and limit misattribution. Methodologically, the work shows that choice of cueing direction is critical in differentially revealing patterns of correct and incorrect retrieval with pair relationships. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Music, memory and emotion.

    PubMed

    Jäncke, Lutz

    2008-08-08

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory.

  2. Look before you leap: sensory memory improves decision making.

    PubMed

    Vlassova, Alexandra; Pearson, Joel

    2013-09-01

    Simple decisions require the processing and evaluation of perceptual and cognitive information, the formation of a decision, and often the execution of a motor response. This process involves the accumulation of evidence over time until a particular choice reaches a decision threshold. Using a random-dot-motion stimulus, we showed that simply delaying responses after the stimulus offset can almost double accuracy, even in the absence of new incoming visual information. However, under conditions in which the otherwise blank interval was filled with a sensory mask or concurrent working memory load was high, performance gains were lost. Further, memory and perception showed equivalent rates of evidence accumulation, suggesting a high-capacity memory store. We propose an account of continued evidence accumulation by sequential sampling from a simultaneously decaying memory trace. Memories typically decay with time, hence immediate inquiry trumps later recall from memory. However, the results we report here show the inverse: Inspecting a memory trumps viewing the actual object.

  3. Selective interference reveals dissociation between memory for location and colour.

    PubMed

    Vuontela, V; Rämä, P; Raninen, A; Aronen, H J; Carlson, S

    1999-08-02

    The aim was to study whether there is indication of a dissociation in processing of visuospatial and colour information in working memory in humans. Experimental subjects performed visuospatial and colour n-back tasks with and without visuospatial and colour distractive stimuli presented in the middle of the delay period to specifically affect mnemonic processing of task-related information. In the high memory-load condition, the visuospatial, but not the colour, task was selectively disrupted by visuospatial but not colour distractors. When subvocal rehearsal of the memoranda in the colour task was prevented by articulatory suppression; colour task performance was also selectively disrupted by distractors qualitatively similar to the memoranda. The results support the suggestion that visual working memory for location is processed separate from that for colour.

  4. The Construction of Semantic Memory: Grammar-Based Representations Learned from Relational Episodic Information

    PubMed Central

    Battaglia, Francesco P.; Pennartz, Cyriel M. A.

    2011-01-01

    After acquisition, memories underlie a process of consolidation, making them more resistant to interference and brain injury. Memory consolidation involves systems-level interactions, most importantly between the hippocampus and associated structures, which takes part in the initial encoding of memory, and the neocortex, which supports long-term storage. This dichotomy parallels the contrast between episodic memory (tied to the hippocampal formation), collecting an autobiographical stream of experiences, and semantic memory, a repertoire of facts and statistical regularities about the world, involving the neocortex at large. Experimental evidence points to a gradual transformation of memories, following encoding, from an episodic to a semantic character. This may require an exchange of information between different memory modules during inactive periods. We propose a theory for such interactions and for the formation of semantic memory, in which episodic memory is encoded as relational data. Semantic memory is modeled as a modified stochastic grammar, which learns to parse episodic configurations expressed as an association matrix. The grammar produces tree-like representations of episodes, describing the relationships between its main constituents at multiple levels of categorization, based on its current knowledge of world regularities. These regularities are learned by the grammar from episodic memory information, through an expectation-maximization procedure, analogous to the inside–outside algorithm for stochastic context-free grammars. We propose that a Monte-Carlo sampling version of this algorithm can be mapped on the dynamics of “sleep replay” of previously acquired information in the hippocampus and neocortex. We propose that the model can reproduce several properties of semantic memory such as decontextualization, top-down processing, and creation of schemata. PMID:21887143

  5. Working memory consolidation: insights from studies on attention and working memory.

    PubMed

    Ricker, Timothy J; Nieuwenstein, Mark R; Bayliss, Donna M; Barrouillet, Pierre

    2018-04-10

    Working memory, the system that maintains a limited set of representations for immediate use in cognition, is a central part of human cognition. Three processes have recently been proposed to govern information storage in working memory: consolidation, refreshing, and removal. Here, we discuss in detail the theoretical construct of working memory consolidation, a process critical to the creation of a stable working memory representation. We present a brief overview of the research that indicated the need for a construct such as working memory consolidation and the subsequent research that has helped to define the parameters of the construct. We then move on to explicitly state the points of agreement as to what processes are involved in working memory consolidation. © 2018 New York Academy of Sciences.

  6. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model

    PubMed Central

    Marsh, John E.; Campbell, Tom A.

    2016-01-01

    The rostral brainstem receives both “bottom-up” input from the ascending auditory system and “top-down” descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory. PMID:27242396

  7. Processing Complex Sounds Passing through the Rostral Brainstem: The New Early Filter Model.

    PubMed

    Marsh, John E; Campbell, Tom A

    2016-01-01

    The rostral brainstem receives both "bottom-up" input from the ascending auditory system and "top-down" descending corticofugal connections. Speech information passing through the inferior colliculus of elderly listeners reflects the periodicity envelope of a speech syllable. This information arguably also reflects a composite of temporal-fine-structure (TFS) information from the higher frequency vowel harmonics of that repeated syllable. The amplitude of those higher frequency harmonics, bearing even higher frequency TFS information, correlates positively with the word recognition ability of elderly listeners under reverberatory conditions. Also relevant is that working memory capacity (WMC), which is subject to age-related decline, constrains the processing of sounds at the level of the brainstem. Turning to the effects of a visually presented sensory or memory load on auditory processes, there is a load-dependent reduction of that processing, as manifest in the auditory brainstem responses (ABR) evoked by to-be-ignored clicks. Wave V decreases in amplitude with increases in the visually presented memory load. A visually presented sensory load also produces a load-dependent reduction of a slightly different sort: The sensory load of visually presented information limits the disruptive effects of background sound upon working memory performance. A new early filter model is thus advanced whereby systems within the frontal lobe (affected by sensory or memory load) cholinergically influence top-down corticofugal connections. Those corticofugal connections constrain the processing of complex sounds such as speech at the level of the brainstem. Selective attention thereby limits the distracting effects of background sound entering the higher auditory system via the inferior colliculus. Processing TFS in the brainstem relates to perception of speech under adverse conditions. Attentional selectivity is crucial when the signal heard is degraded or masked: e.g., speech in noise, speech in reverberatory environments. The assumptions of a new early filter model are consistent with these findings: A subcortical early filter, with a predictive selectivity based on acoustical (linguistic) context and foreknowledge, is under cholinergic top-down control. A prefrontal capacity limitation constrains this top-down control as is guided by the cholinergic processing of contextual information in working memory.

  8. Emotion processing facilitates working memory performance.

    PubMed

    Lindström, Björn R; Bohlin, Gunilla

    2011-11-01

    The effect of emotional stimulus content on working memory performance has been investigated with conflicting results, as both emotion-dependent facilitation and impairments are reported in the literature. To clarify this issue, 52 adult participants performed a modified visual 2-back task with highly arousing positive stimuli (sexual scenes), highly arousing negative stimuli (violent death) and low-arousal neutral stimuli. Emotional stimulus processing was found to facilitate task performance relative to that of neutral stimuli, both in regards to response accuracy and reaction times. No emotion-dependent differences in false-alarm rates were found. These results indicate that emotional information can have a facilitating effect on working memory maintenance and processing of information.

  9. A fault-tolerant information processing concept for space vehicles.

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L., Jr.

    1971-01-01

    A distributed fault-tolerant information processing system is proposed, comprising a central multiprocessor, dedicated local processors, and multiplexed input-output buses connecting them together. The processors in the multiprocessor are duplicated for error detection, which is felt to be less expensive than using coded redundancy of comparable effectiveness. Error recovery is made possible by a triplicated scratchpad memory in each processor. The main multiprocessor memory uses replicated memory for error detection and correction. Local processors use any of three conventional redundancy techniques: voting, duplex pairs with backup, and duplex pairs in independent subsystems.

  10. Impact of Noise and Working Memory on Speech Processing in Adults with and without ADHD

    ERIC Educational Resources Information Center

    Michalek, Anne M. P.

    2012-01-01

    Auditory processing of speech is influenced by internal (i.e., attention, working memory) and external factors (i.e., background noise, visual information). This study examined the interplay among these factors in individuals with and without ADHD. All participants completed a listening in noise task, two working memory capacity tasks, and two…

  11. Older and Stronger Object Memories are Selectively Destabilized by Reactivation in the Presence of New Information

    ERIC Educational Resources Information Center

    Winters, Boyer D.; Tucci, Mark C.; DaCosta-Furtado, Melynda

    2009-01-01

    Reactivation can destabilize previously consolidated memories, rendering them vulnerable to disruption and necessitating a process of reconsolidation in order for them to be maintained. This process of destabilization and reconsolidation has commonly been cited as a means by which established memories can be updated or modified. However, little…

  12. Simultaneous but Not Independent Anisomycin Infusions in Insular Cortex and Amygdala Hinder Stabilization of Taste Memory when Updated

    ERIC Educational Resources Information Center

    Garcia-DeLaTorre, Paola; Rodriguez-Ortiz, Carlos J.; Arreguin-Martinez, Jose L.; Cruz-Castaneda, Paulina; Bermudez-Rattoni, Federico

    2009-01-01

    Reconsolidation has been described as a process where a consolidated memory returns to a labile state when retrieved. Growing evidence suggests that reconsolidation is, in fact, a destabilization/stabilization process that incorporates updated information to a previously consolidated memory. We used the conditioned taste aversion (CTA) task in…

  13. Processing and Memory of Central versus Peripheral Information as a Function of Reading Goals: Evidence from Eye-Movements

    ERIC Educational Resources Information Center

    Yeari, Menahem; van den Broek, Paul; Oudega, Marja

    2015-01-01

    The present study examined the effect of reading goals on the processing and memory of central and peripheral textual information. Using eye-tracking methodology, we compared the effect of four common reading goals--entertainment, presentation, studying for a close-ended (multiple-choice) questions test, and studying for an open-ended questions…

  14. Source memory that encoding was self-referential: the influence of stimulus characteristics.

    PubMed

    Durbin, Kelly A; Mitchell, Karen J; Johnson, Marcia K

    2017-10-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one's self-schema, and that depends, in part, on the stimulus' valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation.

  15. Neuroanatomy of episodic and semantic memory in humans: a brief review of neuroimaging studies.

    PubMed

    García-Lázaro, Haydée G; Ramirez-Carmona, Rocio; Lara-Romero, Ruben; Roldan-Valadez, Ernesto

    2012-01-01

    One of the most basic functions in every individual and species is memory. Memory is the process by which information is saved as knowledge and retained for further use as needed. Learning is a neurobiological phenomenon by which we acquire certain information from the outside world and is a precursor to memory. Memory consists of the capacity to encode, store, consolidate, and retrieve information. Recently, memory has been defined as a network of connections whose function is primarily to facilitate the long-lasting persistence of learned environmental cues. In this review, we present a brief description of the current classifications of memory networks with a focus on episodic memory and its anatomical substrate. We also present a brief review of the anatomical basis of memory systems and the most commonly used neuroimaging methods to assess memory, illustrated with magnetic resonance imaging images depicting the hippocampus, temporal lobe, and hippocampal formation, which are the main brain structures participating in memory networks.

  16. Monitoring item and source information: evidence for a negative generation effect in source memory.

    PubMed

    Jurica, P J; Shimamura, A P

    1999-07-01

    Item memory and source memory were assessed in a task that simulated a social conversation. Participants generated answers to questions or read statements presented by one of three sources (faces on a computer screen). Positive generation effects were observed for item memory. That is, participants remembered topics of conversation better if they were asked questions about the topics than if they simply read statements about topics. However, a negative generation effect occurred for source memory. That is, remembering the source of some information was disrupted if participants were required to answer questions pertaining to that information. These findings support the notion that item and source memory are mediated, as least in part, by different processes during encoding.

  17. Stress leads to aberrant hippocampal involvement when processing schema-related information.

    PubMed

    Vogel, Susanne; Kluen, Lisa Marieke; Fernández, Guillén; Schwabe, Lars

    2018-01-01

    Prior knowledge, represented as a mental schema, has critical impact on how we organize, interpret, and process incoming information. Recent findings indicate that the use of an existing schema is coordinated by the medial prefrontal cortex (mPFC), communicating with parietal areas. The hippocampus, however, is crucial for encoding schema-unrelated information but not for schema-related information. A recent study indicated that stress mediators may affect schema-related memory, but the underlying neural mechanisms are currently unknown. Here, we thus tested the impact of acute stress on neural processing of schema-related information. We exposed healthy participants to a stress or control manipulation before they processed, in the MRI scanner, words related or unrelated to a preexisting schema activated by a specific cue. Participants' memory for the presented material was tested 3-5 d after encoding. Overall, the processing of schema-related information activated the mPFC, the precuneus, and the angular gyrus. Stress resulted in aberrant hippocampal activity and connectivity while participants processed schema-related information. This aberrant engagement of the hippocampus was linked to altered subsequent memory. These findings suggest that stress may interfere with the efficient use of prior knowledge during encoding and may have important practical implications, in particular for educational settings. © 2018 Vogel et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Happiness increases verbal and spatial working memory capacity where sadness does not: Emotion, working memory and executive control.

    PubMed

    Storbeck, Justin; Maswood, Raeya

    2016-08-01

    The effects of emotion on working memory and executive control are often studied in isolation. Positive mood enhances verbal and impairs spatial working memory, whereas negative mood enhances spatial and impairs verbal working memory. Moreover, positive mood enhances executive control, whereas negative mood has little influence. We examined how emotion influences verbal and spatial working memory capacity, which requires executive control to coordinate between holding information in working memory and completing a secondary task. We predicted that positive mood would improve both verbal and spatial working memory capacity because of its influence on executive control. Positive, negative and neutral moods were induced followed by completing a verbal (Experiment 1) or spatial (Experiment 2) working memory operation span task to assess working memory capacity. Positive mood enhanced working memory capacity irrespective of the working memory domain, whereas negative mood had no influence on performance. Thus, positive mood was more successful holding information in working memory while processing task-irrelevant information, suggesting that the influence mood has on executive control supersedes the independent effects mood has on domain-specific working memory.

  19. Destination memory in Alzheimer's Disease: when I imagine telling Ronald Reagan about Paris.

    PubMed

    El Haj, Mohamad; Postal, Virginie; Allain, Philippe

    2013-01-01

    Destination memory refers to remembering the destination of information that people output. This present paper establishes a new distinction between external and internal processes within this memory system for both normal aging and Alzheimer's Disease (AD). Young adults, older adults, and mild AD patients were asked either to tell facts (i.e., external destination memory condition) or to imagine telling facts (i.e., internal destination memory condition) to pictures of famous people. The experiment established three major findings. First, the destination memory performance of the AD patients was significantly poorer than that of older adults, which in turn was poorer than that of the young adults. Furthermore, internal destination processes were more prone to being forgotten than external destination memory processes. In other words, participants had more difficulty in remembering whether they had previously imagined telling the facts to the pictures or not (i.e., imagined condition) than in remembering whether they had previously told the facts to the pictures or not (i.e., enacted condition). Second, significant correlations were detected between performances on destination memory and several executive measures such as the Stroop, the Plus-Minus and the Binding tasks. Third, among the executive measures, regression analyses showed that performance on the Stroop task was a main factor in explaining variance in destination memory performance. Our findings reflect the difficulty in remembering the destination of internally generated information. They also demonstrate the involvement of inhibitory processes in destination memory. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. BAIAP2 is related to emotional modulation of human memory strength.

    PubMed

    Luksys, Gediminas; Ackermann, Sandra; Coynel, David; Fastenrath, Matthias; Gschwind, Leo; Heck, Angela; Rasch, Bjoern; Spalek, Klara; Vogler, Christian; Papassotiropoulos, Andreas; de Quervain, Dominique

    2014-01-01

    Memory performance is the result of many distinct mental processes, such as memory encoding, forgetting, and modulation of memory strength by emotional arousal. These processes, which are subserved by partly distinct molecular profiles, are not always amenable to direct observation. Therefore, computational models can be used to make inferences about specific mental processes and to study their genetic underpinnings. Here we combined a computational model-based analysis of memory-related processes with high density genetic information derived from a genome-wide study in healthy young adults. After identifying the best-fitting model for a verbal memory task and estimating the best-fitting individual cognitive parameters, we found a common variant in the gene encoding the brain-specific angiogenesis inhibitor 1-associated protein 2 (BAIAP2) that was related to the model parameter reflecting modulation of verbal memory strength by negative valence. We also observed an association between the same genetic variant and a similar emotional modulation phenotype in a different population performing a picture memory task. Furthermore, using functional neuroimaging we found robust genotype-dependent differences in activity of the parahippocampal cortex that were specifically related to successful memory encoding of negative versus neutral information. Finally, we analyzed cortical gene expression data of 193 deceased subjects and detected significant BAIAP2 genotype-dependent differences in BAIAP2 mRNA levels. Our findings suggest that model-based dissociation of specific cognitive parameters can improve the understanding of genetic underpinnings of human learning and memory.

  1. Some-or-None Recollection: Evidence from Item and Source Memory

    ERIC Educational Resources Information Center

    Onyper, Serge V.; Zhang, Yaofei X.; Howard, Marc W.

    2010-01-01

    Dual-process theory hypothesizes that recognition memory depends on 2 distinguishable memory signals. Recollection reflects conscious recovery of detailed information about the learning episode. Familiarity reflects a memory signal that is not accompanied by a vivid conscious experience but nonetheless enables participants to distinguish recently…

  2. Attending to items in working memory: Evidence that refreshing and memory search are closely related

    PubMed Central

    Vergauwe, Evie; Cowan, Nelson

    2014-01-01

    Refreshing refers to the use of attention to reactivate items in working memory (WM). The current study aims at testing the hypothesis that refreshing is closely related to memory search. The assumption is that refreshing and memory search both rely on a basic covert memory process that quickly retrieves the memory items into the focus of attention, thereby reactivating the information (Cowan, 1992; Vergauwe & Cowan, 2014). Consistent with the idea that people use their attention to prevent loss from WM, previous research has shown that increasing the proportion of time during which attention is occupied by concurrent processing, thereby preventing refreshing, results in poorer recall performance in complex span tasks (Barrouillet, Portrat, & Camos, 2011). Here, we tested whether recall performance is differentially affected by prolonged attentional capture caused by memory search. If memory search and refreshing both rely on retrieval from WM, then prolonged attentional capture caused by memory search should not lead to forgetting because memory items are assumed to be reactivated during memory search, in the same way as they would if that period of time were to be used for refreshing. Consistent with this idea, prolonged attentional capture had a disruptive effect when it was caused by the need to retrieve knowledge from long-term memory but not when it was caused by the need to search through the content of WM. The current results support the idea that refreshing operates through a process of retrieval of information into the focus of attention. PMID:25361821

  3. Dopaminergic and cholinergic modulations of visual-spatial attention and working memory: insights from molecular genetic research and implications for adult cognitive development.

    PubMed

    Störmer, Viola S; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-05-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic pathways. Here we review the literature on cholinergic and dopaminergic modulations of visual-spatial attention and visual working memory processes to gain insights on aging-related changes in these processes. Some extant findings have suggested that the cholinergic system plays a role in the orienting of attention to enable the detection and discrimination of visual information, whereas the dopaminergic system has mainly been associated with working memory processes such as updating and stabilizing representations. However, since visual-spatial attention and working memory processes are not fully dissociable, there is also evidence of interacting cholinergic and dopaminergic modulations of both processes. We further review gene-cognition association studies that have shown that individual differences in visual-spatial attention and visual working memory are associated with acetylcholine- and dopamine-relevant genes. The efficiency of these 2 transmitter systems declines substantially during healthy aging. These declines, in part, contribute to age-related deficits in attention and working memory functions. We report novel data showing an effect of dopamine COMT gene on spatial updating processes in older but not in younger adults, indicating potential magnification of genetic effects in old age.

  4. Level of processing modulates the neural correlates of emotional memory formation

    PubMed Central

    Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2010-01-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study employed a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. FMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral prefrontal cortex demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information. PMID:20350176

  5. Level of processing modulates the neural correlates of emotional memory formation.

    PubMed

    Ritchey, Maureen; LaBar, Kevin S; Cabeza, Roberto

    2011-04-01

    Emotion is known to influence multiple aspects of memory formation, including the initial encoding of the memory trace and its consolidation over time. However, the neural mechanisms whereby emotion impacts memory encoding remain largely unexplored. The present study used a levels-of-processing manipulation to characterize the impact of emotion on encoding with and without the influence of elaborative processes. Participants viewed emotionally negative, neutral, and positive scenes under two conditions: a shallow condition focused on the perceptual features of the scenes and a deep condition that queried their semantic meaning. Recognition memory was tested 2 days later. Results showed that emotional memory enhancements were greatest in the shallow condition. fMRI analyses revealed that the right amygdala predicted subsequent emotional memory in the shallow more than deep condition, whereas the right ventrolateral PFC demonstrated the reverse pattern. Furthermore, the association of these regions with the hippocampus was modulated by valence: the amygdala-hippocampal link was strongest for negative stimuli, whereas the prefrontal-hippocampal link was strongest for positive stimuli. Taken together, these results suggest two distinct activation patterns underlying emotional memory formation: an amygdala component that promotes memory during shallow encoding, especially for negative information, and a prefrontal component that provides extra benefits during deep encoding, especially for positive information.

  6. Long-term memory for verbal and visual information in Down syndrome and Williams syndrome: performance on the Doors and People test.

    PubMed

    Jarrold, Christopher; Baddeley, Alan D; Phillips, Caroline

    2007-02-01

    Previous studies have suggested that Williams syndrome and Down syndrome may be associated with specific short-term memory deficits. Individuals with Williams syndrome perform relatively poorly on tests of visuo-spatial short-term memory and individuals with Down syndrome show a relative deficit on verbal short-term memory tasks. However, these patterns of impairments may reflect the impact of generally impaired visuo-spatial processing skills in Williams syndrome, and verbal abilities in Down syndrome. The current study explored this possibility by assessing long-term memory among 15 individuals with Williams syndrome and 20 individuals with Down syndrome using the Doors and People test, a battery which assesses recall and recognition of verbal and visual information. Individuals' performance was standardised for age and level of intellectual ability with reference to that shown by a sample of 110 typically developing children. The results showed that individuals with Down syndrome have no differential deficits in long-term memory for verbal information, implying that verbal short-term memory deficits in this population are relatively selective. Instead both individuals with Down syndrome and with Williams syndrome showed some evidence of relatively poor performance on tests of long-term memory for visual information. It is therefore possible that visuo-spatial short-term memory deficits that have previously been demonstrated in Williams syndrome may be secondary to more general problems in visuo-spatial processing in this population.

  7. Alcohol and Memory: Retrieval Processes

    ERIC Educational Resources Information Center

    Birnbaum, Isabel M.; And Others

    1978-01-01

    The influence of alcohol intoxication on the retrieval of information from memory was investigated in nonalcoholic subjects Intoxicated subjects recalled fewer categories and words within categories. The retrieval stage of memory did not appear to be affected by alcohol. (SW)

  8. Thermodynamic framework for information in nanoscale systems with memory

    NASA Astrophysics Data System (ADS)

    Arias-Gonzalez, J. Ricardo

    2017-11-01

    Information is represented by linear strings of symbols with memory that carry errors as a result of their stochastic nature. Proofreading and edition are assumed to improve certainty although such processes may not be effective. Here, we develop a thermodynamic theory for material chains made up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is based on the characterization of single sequences of symbols constructed under a protocol and is used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the role of proofreading and edition in the presence of memory finding conditions to make revision an effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism to DNA replication and RNA transcription finding that Watson and Crick hybridization energies with which nucleotides are branched to the template strand during the copying process are optimal to regulate the fidelity in proofreading. These results are important in applications of information theory to a variety of solid-state physical systems and other biomolecular processes.

  9. Thermodynamic framework for information in nanoscale systems with memory.

    PubMed

    Arias-Gonzalez, J Ricardo

    2017-11-28

    Information is represented by linear strings of symbols with memory that carry errors as a result of their stochastic nature. Proofreading and edition are assumed to improve certainty although such processes may not be effective. Here, we develop a thermodynamic theory for material chains made up of nanoscopic subunits with symbolic meaning in the presence of memory. This framework is based on the characterization of single sequences of symbols constructed under a protocol and is used to derive the behavior of ensembles of sequences similarly constructed. We then analyze the role of proofreading and edition in the presence of memory finding conditions to make revision an effective process, namely, to decrease the entropy of the chain. Finally, we apply our formalism to DNA replication and RNA transcription finding that Watson and Crick hybridization energies with which nucleotides are branched to the template strand during the copying process are optimal to regulate the fidelity in proofreading. These results are important in applications of information theory to a variety of solid-state physical systems and other biomolecular processes.

  10. Memory formation during anaesthesia: plausibility of a neurophysiological basis.

    PubMed

    Veselis, R A

    2015-07-01

    As opposed to conscious, personally relevant (explicit) memories that we can recall at will, implicit (unconscious) memories are prototypical of 'hidden' memory; memories that exist, but that we do not know we possess. Nevertheless, our behaviour can be affected by these memories; in fact, these memories allow us to function in an ever-changing world. It is still unclear from behavioural studies whether similar memories can be formed during anaesthesia. Thus, a relevant question is whether implicit memory formation is a realistic possibility during anaesthesia, considering the underlying neurophysiology. A different conceptualization of memory taxonomy is presented, the serial parallel independent model of Tulving, which focuses on dynamic information processing with interactions among different memory systems rather than static classification of different types of memories. The neurophysiological basis for subliminal information processing is considered in the context of brain function as embodied in network interactions. Function of sensory cortices and thalamic activity during anaesthesia are reviewed. The role of sensory and perisensory cortices, in particular the auditory cortex, in support of memory function is discussed. Although improbable, with the current knowledge of neurophysiology one cannot rule out the possibility of memory formation during anaesthesia. © The Author 2015. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Retrieval from Episodic Memory: Neural Mechanisms of Interference Resolution

    ERIC Educational Resources Information Center

    Wimber, Maria; Rutschmann, Roland Marcus; Greenlee, Mark W.; Bauml, Karl-Heinz

    2009-01-01

    Selectively retrieving a target memory among related memories requires some degree of inhibitory control over interfering and competing memories, a process assumed to be supported by inhibitory mechanisms. Evidence from behavioral studies suggests that such inhibitory control can lead to subsequent forgetting of the interfering information, a…

  12. Expectancies as a Determinant of Interference Phenomena

    ERIC Educational Resources Information Center

    Hasher, Lynn; Greenberg, Michael

    1977-01-01

    One version, by Lockhart, Craik, and Jacoby, of a levels-of-processing model of memory asserts the importance of the role of expectancies about forthcoming information in determining the elaborateness of a memory trace. Confirmed expectancies result in less-elaborated memory traces; disconfirmed expectancies result in elaborate memory traces.…

  13. Improving Working Memory Efficiency by Reframing Metacognitive Interpretation of Task Difficulty

    ERIC Educational Resources Information Center

    Autin, Frederique; Croizet, Jean-Claude

    2012-01-01

    Working memory capacity, our ability to manage incoming information for processing purposes, predicts achievement on a wide range of intellectual abilities. Three randomized experiments (N = 310) tested the effectiveness of a brief psychological intervention designed to boost working memory efficiency (i.e., state working memory capacity) by…

  14. Memory and Study Strategies for Optimal Learning.

    ERIC Educational Resources Information Center

    Hamachek, Alice L.

    Study strategies are those specific reading skills that increase understanding, memory storage, and retrieval. Memory techniques are crucial to effective studying, and to subsequent performance in class and on written examinations. A major function of memory is to process information. Stimuli are picked up by sensory receptors and transferred to…

  15. Negative affect promotes encoding of and memory for details at the expense of the gist: affect, encoding, and false memories.

    PubMed

    Storbeck, Justin

    2013-01-01

    I investigated whether negative affective states enhance encoding of and memory for item-specific information reducing false memories. Positive, negative, and neutral moods were induced, and participants then completed a Deese-Roediger-McDermott (DRM) false-memory task. List items were presented in unique spatial locations or unique fonts to serve as measures for item-specific encoding. The negative mood conditions had more accurate memories for item-specific information, and they also had fewer false memories. The final experiment used a manipulation that drew attention to distinctive information, which aided learning for DRM words, but also promoted item-specific encoding. For the condition that promoted item-specific encoding, false memories were reduced for positive and neutral mood conditions to a rate similar to that of the negative mood condition. These experiments demonstrated that negative affective cues promote item-specific processing reducing false memories. People in positive and negative moods encode events differently creating different memories for the same event.

  16. The processing of spatial information in short-term memory: insights from eye tracking the path length effect.

    PubMed

    Guérard, Katherine; Tremblay, Sébastien; Saint-Aubin, Jean

    2009-10-01

    Serial memory for spatial locations increases as the distance between successive stimuli locations decreases. This effect, known as the path length effect [Parmentier, F. B. R., Elford, G., & Maybery, M. T. (2005). Transitional information in spatial serial memory: Path characteristics affect recall performance. Journal of Experimental Psychology: Learning, Memory & Cognition, 31, 412-427], was investigated in a systematic manner using eye tracking and interference procedures to explore the mechanisms responsible for the processing of spatial information. In Experiment 1, eye movements were monitored during a spatial serial recall task--in which the participants have to remember the location of spatially and temporally separated dots on the screen. In the experimental conditions, eye movements were suppressed by requiring participants to incessantly move their eyes between irrelevant locations. Ocular suppression abolished the path length effect whether eye movements were prevented during item presentation or during a 7s retention interval. In Experiment 2, articulatory suppression was combined with a spatial serial recall task. Although articulatory suppression impaired performance, it did not alter the path length effect. Our results suggest that rehearsal plays a key role in serial memory for spatial information, though the effect of path length seems to involve other processes located at encoding, such as the time spent fixating each location and perceptual organization.

  17. Strategic retrieval, confabulations, and delusions: theory and data.

    PubMed

    Gilboa, Asaf

    2010-01-01

    Based on Moscovitch and Winocur's "working with memory" framework, confabulation is described as a deficit in strategic retrieval processes. The present paper suggests that only a confluence of deficits on multiple memory-related processes leads to confabulation. These are divided into three categories. Core processes that are unique to confabulation and required for its evolution include: (1) an intuitive, rapid, preconscious "feeling of rightness" monitoring, (2) an elaborate conscious "editor" monitoring, and (3) control processes that mediate the decision whether to act upon a retrieved memory. The second category is deficits on constitutional processes which are required for confabulation to occur but are not unique to it. These include the formation of erroneous memory representation, (temporal) context confusion, and deficits in retrieval cue generation. Finally, associated Features of confabulations determine the content "flavour" and frequency of confabulation but are not required for their evolution. Some associated features are magnification of normal reconstructive memory processes such as reliance on generic/schematic representations, and positivity biases in memory, whereas others are abnormal such as perseveration or source memory deficits. Data on deficits in core processes in confabulation are presented. Next, the apparent correspondences between confabulation and delusion are discussed. Considering confabulation within a strategic memory framework may help elucidate both the commonalities and differences between the two symptoms. Delusions are affected by a convergence of abnormal perception and encoding of information, associated with aberrant cognitive schema structure and disordered belief monitoring. Whereas confabulation is primarily a disorder of retrieval, mnemonic aspects of delusions can be described as primarily a disorder of input and integration of information. It is suggested that delusions might share some of the associated features of confabulation but not its core and constitutional processes. Preliminary data in support of this view are presented.

  18. Working Memory Capacity and Fluid Intelligence: Maintenance and Disengagement.

    PubMed

    Shipstead, Zach; Harrison, Tyler L; Engle, Randall W

    2016-11-01

    Working memory capacity and fluid intelligence have been demonstrated to be strongly correlated traits. Typically, high working memory capacity is believed to facilitate reasoning through accurate maintenance of relevant information. In this article, we present a proposal reframing this issue, such that tests of working memory capacity and fluid intelligence are seen as measuring complementary processes that facilitate complex cognition. Respectively, these are the ability to maintain access to critical information and the ability to disengage from or block outdated information. In the realm of problem solving, high working memory capacity allows a person to represent and maintain a problem accurately and stably, so that hypothesis testing can be conducted. However, as hypotheses are disproven or become untenable, disengaging from outdated problem solving attempts becomes important so that new hypotheses can be generated and tested. From this perspective, the strong correlation between working memory capacity and fluid intelligence is due not to one ability having a causal influence on the other but to separate attention-demanding mental functions that can be contrary to one another but are organized around top-down processing goals. © The Author(s) 2016.

  19. An Account of Performance in Accessing Information Stored in Long-Term Memory. A Fixed-Links Model Approach

    ERIC Educational Resources Information Center

    Altmeyer, Michael; Schweizer, Karl; Reiss, Siegbert; Ren, Xuezhu; Schreiner, Michael

    2013-01-01

    Performance in working memory and short-term memory tasks was employed for predicting performance in a long-term memory task in order to find out about the underlying processes. The types of memory were represented by versions of the Posner Task, the Backward Counting Task and the Sternberg Task serving as measures of long-term memory, working…

  20. Nocturnal Mnemonics: Sleep and Hippocampal Memory Processing

    PubMed Central

    Saletin, Jared M.; Walker, Matthew P.

    2012-01-01

    As critical as waking brain function is to learning and memory, an established literature now describes an equally important yet complementary role for sleep in information processing. This overview examines the specific contribution of sleep to human hippocampal memory processing; both the detriments caused by a lack of sleep, and conversely, the proactive benefits that develop following the presence of sleep. First, a role for sleep before learning is discussed, preparing the hippocampus for initial memory encoding. Second, a role for sleep after learning is considered, modulating the post-encoding consolidation of hippocampal-dependent memory. Third, a model is outlined in which these encoding and consolidation operations are symbiotically accomplished, associated with specific NREM sleep physiological oscillations. As a result, the optimal network outcome is achieved: increasing hippocampal independence and hence overnight consolidation, while restoring next-day sparse hippocampal encoding capacity for renewed learning ability upon awakening. Finally, emerging evidence is considered suggesting that, unlike previous conceptions, sleep does not universally consolidate all information. Instead, and based on explicit as well as saliency cues during initial encoding, sleep executes the discriminatory offline consolidation only of select information. Consequently, sleep promotes the targeted strengthening of some memories while actively forgetting others; a proposal with significant theoretical and clinical ramifications. PMID:22557988

  1. Nonverbal working memory of humans and monkeys: rehearsal in the sketchpad?

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Astur, R. S.; Rumbaugh, D. M. (Principal Investigator)

    1998-01-01

    Investigations of working memory tend to focus on the retention of verbal information. The present experiments were designed to characterize the active maintenance rehearsal process used in the retention of visuospatial information. Rhesus monkeys (Macaca mulatta; N = 6) were tested as well as humans (total N = 90) because these nonhuman primates have excellent visual working memory but, unlike humans, cannot verbally recode the stimuli to employ verbal rehearsal mechanisms. A series of experiments was conducted using a distractor-task paradigm, a directed forgetting procedure, and a dual-task paradigm. No evidence was found for an active maintenance process for either species. Rather, it appears that information is maintained in the visuospatial sketchpad without active rehearsal.

  2. Reflections of the social environment in chimpanzee memory: applying rational analysis beyond humans.

    PubMed

    Stevens, Jeffrey R; Marewski, Julian N; Schooler, Lael J; Gilby, Ian C

    2016-08-01

    In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees ( Pan troglodytes ) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition.

  3. Reflections of the social environment in chimpanzee memory: applying rational analysis beyond humans

    PubMed Central

    Marewski, Julian N.; Schooler, Lael J.; Gilby, Ian C.

    2016-01-01

    In cognitive science, the rational analysis framework allows modelling of how physical and social environments impose information-processing demands onto cognitive systems. In humans, for example, past social contact among individuals predicts their future contact with linear and power functions. These features of the human environment constrain the optimal way to remember information and probably shape how memory records are retained and retrieved. We offer a primer on how biologists can apply rational analysis to study animal behaviour. Using chimpanzees (Pan troglodytes) as a case study, we modelled 19 years of observational data on their social contact patterns. Much like humans, the frequency of past encounters in chimpanzees linearly predicted future encounters, and the recency of past encounters predicted future encounters with a power function. Consistent with the rational analyses carried out for human memory, these findings suggest that chimpanzee memory performance should reflect those environmental regularities. In re-analysing existing chimpanzee memory data, we found that chimpanzee memory patterns mirrored their social contact patterns. Our findings hint that human and chimpanzee memory systems may have evolved to solve similar information-processing problems. Overall, rational analysis offers novel theoretical and methodological avenues for the comparative study of cognition. PMID:27853606

  4. An Array Processing Theory of Memory, Thought, and Behavior Patterning: A Radically Reconstructive View.

    ERIC Educational Resources Information Center

    Allison, Dennis J.

    A theory of memory is introduced, which seeks to respond to the shortcomings of existing theories based on metaphors. Memory is presented as a mechanism, a comparison process in which information held in some form of immediate storage (whether based on perception or previous cognition or both) is compared to previously stored long-term storage.…

  5. Object Selection Costs in Visual Working Memory: A Diffusion Model Analysis of the Focus of Attention

    ERIC Educational Resources Information Center

    Sewell, David K.; Lilburn, Simon D.; Smith, Philip L.

    2016-01-01

    A central question in working memory research concerns the degree to which information in working memory is accessible to other cognitive processes (e.g., decision-making). Theories assuming that the focus of attention can only store a single object at a time require the focus to orient to a target representation before further processing can…

  6. Adaptive Memory: Determining the Proximate Mechanisms Responsible for the Memorial Advantages of Survival Processing

    ERIC Educational Resources Information Center

    Burns, Daniel J.; Burns, Sarah A.; Hwang, Ana J.

    2011-01-01

    J. S. Nairne, S. R. Thompson, and J. N. S. Pandeirada (2007) suggested that our memory systems may have evolved to help us remember fitness-relevant information and showed that retention of words rated for their relevance to survival is superior to that of words encoded under other deep processing conditions. The authors present 4 experiments that…

  7. A Rational Analysis of the Effects of Memory Biases on Serial Reproduction

    ERIC Educational Resources Information Center

    Xu, Jing; Griffiths, Thomas L.

    2010-01-01

    Many human interactions involve pieces of information being passed from one person to another, raising the question of how this process of information transmission is affected by the cognitive capacities of the agents involved. Bartlett (1932) explored the influence of memory biases on the "serial reproduction" of information, in which one…

  8. Visuo-Spatial Processing and Executive Functions in Children with Specific Language Impairment

    ERIC Educational Resources Information Center

    Marton, Klara

    2008-01-01

    Background: Individual differences in complex working memory tasks reflect simultaneous processing, executive functions, and attention control. Children with specific language impairment (SLI) show a deficit in verbal working memory tasks that involve simultaneous processing of information. Aims: The purpose of the study was to examine executive…

  9. Short-term memory in networks of dissociated cortical neurons.

    PubMed

    Dranias, Mark R; Ju, Han; Rajaram, Ezhilarasan; VanDongen, Antonius M J

    2013-01-30

    Short-term memory refers to the ability to store small amounts of stimulus-specific information for a short period of time. It is supported by both fading and hidden memory processes. Fading memory relies on recurrent activity patterns in a neuronal network, whereas hidden memory is encoded using synaptic mechanisms, such as facilitation, which persist even when neurons fall silent. We have used a novel computational and optogenetic approach to investigate whether these same memory processes hypothesized to support pattern recognition and short-term memory in vivo, exist in vitro. Electrophysiological activity was recorded from primary cultures of dissociated rat cortical neurons plated on multielectrode arrays. Cultures were transfected with ChannelRhodopsin-2 and optically stimulated using random dot stimuli. The pattern of neuronal activity resulting from this stimulation was analyzed using classification algorithms that enabled the identification of stimulus-specific memories. Fading memories for different stimuli, encoded in ongoing neural activity, persisted and could be distinguished from each other for as long as 1 s after stimulation was terminated. Hidden memories were detected by altered responses of neurons to additional stimulation, and this effect persisted longer than 1 s. Interestingly, network bursts seem to eliminate hidden memories. These results are similar to those that have been reported from similar experiments in vivo and demonstrate that mechanisms of information processing and short-term memory can be studied using cultured neuronal networks, thereby setting the stage for therapeutic applications using this platform.

  10. Attentional and non-attentional systems in the maintenance of verbal information in working memory: the executive and phonological loops

    PubMed Central

    Camos, Valérie; Barrouillet, Pierre

    2014-01-01

    Working memory is the structure devoted to the maintenance of information at short term during concurrent processing activities. In this respect, the question regarding the nature of the mechanisms and systems fulfilling this maintenance function is of particular importance and has received various responses in the recent past. In the time-based resource-sharing (TBRS) model, we suggest that only two systems sustain the maintenance of information at the short term, counteracting the deleterious effect of temporal decay and interference. A non-attentional mechanism of verbal rehearsal, similar to the one described by Baddeley in the phonological loop model, uses language processes to reactivate phonological memory traces. Besides this domain-specific mechanism, an executive loop allows the reconstruction of memory traces through an attention-based mechanism of refreshing. The present paper reviews evidence of the involvement of these two independent systems in the maintenance of verbal memory items. PMID:25426049

  11. Neural correlates of retrieval-based memory enhancement: An fMRI study of the testing effect

    PubMed Central

    Wing, Erik A.; Marsh, Elizabeth J.; Cabeza, Roberto

    2013-01-01

    Restudying material is a common method for learning new information, but not necessarily an effective one. Research on the testing effect shows that practice involving retrieval from memory can facilitate later memory in contrast to passive restudy. Despite extensive behavioral work, the brain processes that make retrieval an effective learning strategy remain unclear. In the present experiment, we explored how initially retrieving items affected memory a day later as compared to a condition involving traditional restudy. In contrast to restudy, initial testing that contributed to future memory success was associated with engagement of several regions including the anterior hippocampus, lateral temporal cortices, and medial prefrontal cortex (PFC). Additionally, testing enhanced hippocampal connectivity with ventrolateral PFC and midline regions. These findings indicate that the testing effect may be contingent on processes that are typically thought to support memory success at encoding (e.g. relational binding, selection and elaboration of semantically-related information) in addition to those more often associated with retrieval (e.g. memory search). PMID:23607935

  12. The effect of visual arrangement on visuospatial short-term memory: Insights from children with 22q11.2 deletion syndrome.

    PubMed

    Attout, Lucie; Noël, Marie-Pascale; Rousselle, Laurence

    2018-04-11

    Recent models of visuospatial (VSSP) short-term memory postulate the existence of two dissociable mechanisms depending on whether VSSP information is presented simultaneously or sequentially. However, they do not specify to what extent VSSP short-term memory is under the influence of general VSSP processing. This issue was examined in people with 22q11.2 deletion syndrome, a genetic condition involving a VSSP deficit. The configuration of VSSP information was manipulated (structured vs. unstructured) to explore the impact of arrangement on VSSP short-term memory. Two presentation modes were used to see whether the VSSP arrangement has the same impact on simultaneous and sequential short-term memory. Compared to children matched on chronological age, children with 22q11.2 deletion syndrome showed impaired performance only for structured arrangement, regardless of the presentation mode, suggesting an influence of VSSP processing on VSSP short-term memory abilities. A revised cognitive architecture for a model of VSSP short-term memory is proposed.

  13. Memory for Chess Positions: Resistance to Interference

    ERIC Educational Resources Information Center

    Charness, Neil

    1976-01-01

    An information processing model, Memory-Aided Pattern Perceiver (MAPP), that simulates the recall of briefly presented chess positions, was subjected to a test of its assumption that such positions are encoded and stored as chunks in short-term memory. (Editor)

  14. Work and information processing in a solvable model of Maxwell's demon.

    PubMed

    Mandal, Dibyendu; Jarzynski, Christopher

    2012-07-17

    We describe a minimal model of an autonomous Maxwell demon, a device that delivers work by rectifying thermal fluctuations while simultaneously writing information to a memory register. We solve exactly for the steady-state behavior of our model, and we construct its phase diagram. We find that our device can also act as a "Landauer eraser", using externally supplied work to remove information from the memory register. By exposing an explicit, transparent mechanism of operation, our model offers a simple paradigm for investigating the thermodynamics of information processing by small systems.

  15. Localized Fluctuant Oscillatory Activity by Working Memory Load: A Simultaneous EEG-fMRI Study.

    PubMed

    Zhao, Xiaojie; Li, Xiaoyun; Yao, Li

    2017-01-01

    Working memory (WM) is a resource-limited memory system for temporary storage and processing of brain information during the execution of cognitive tasks. Increased WM load will increase the amount and difficulty of memory information. Several studies have used electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) to explore load-dependent cognition processing according to the time courses of electrophysiological activity or the spatial pattern of blood oxygen metabolic activity. However, the relationships between these two activities and the underlying neural mechanism are still unclear. In this study, using simultaneously collected EEG and fMRI data under an n-back verbal WM task, we modeled the spectral perturbation of EEG oscillation and fMRI activation through joint independent component analysis (JICA). Multi-channel oscillation features were also introduced into the JICA model for further analysis. The results showed that time-locked activity of theta and beta were modulated by memory load in the early stimuli evaluation stage, corresponding to the enhanced activation in the frontal and parietal lobe, which were involved in stimulus discrimination, information encoding and delay-period activity. In the late response selection stage, alpha and gamma activity changes dependent on the load correspond to enhanced activation in the areas of frontal, temporal and parietal lobes, which played important roles in attention, information extraction and memory retention. These findings suggest that the increases in memory load not only affect the intensity and time course of the EEG activities, but also lead to the enhanced activation of brain regions which plays different roles during different time periods of cognitive process of WM.

  16. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks.

    PubMed

    Gyurko, David M; Soti, Csaba; Stetak, Attila; Csermely, Peter

    2014-05-01

    During the last decade, network approaches became a powerful tool to describe protein structure and dynamics. Here, we describe first the protein structure networks of molecular chaperones, then characterize chaperone containing sub-networks of interactomes called as chaperone-networks or chaperomes. We review the role of molecular chaperones in short-term adaptation of cellular networks in response to stress, and in long-term adaptation discussing their putative functions in the regulation of evolvability. We provide a general overview of possible network mechanisms of adaptation, learning and memory formation. We propose that changes of network rigidity play a key role in learning and memory formation processes. Flexible network topology provides ' learning-competent' state. Here, networks may have much less modular boundaries than locally rigid, highly modular networks, where the learnt information has already been consolidated in a memory formation process. Since modular boundaries are efficient filters of information, in the 'learning-competent' state information filtering may be much smaller, than after memory formation. This mechanism restricts high information transfer to the 'learning competent' state. After memory formation, modular boundary-induced segregation and information filtering protect the stored information. The flexible networks of young organisms are generally in a 'learning competent' state. On the contrary, locally rigid networks of old organisms have lost their 'learning competent' state, but store and protect their learnt information efficiently. We anticipate that the above mechanism may operate at the level of both protein-protein interaction and neuronal networks.

  17. The Ease of Language Understanding (ELU) model: theoretical, empirical, and clinical advances

    PubMed Central

    Rönnberg, Jerker; Lunner, Thomas; Zekveld, Adriana; Sörqvist, Patrik; Danielsson, Henrik; Lyxell, Björn; Dahlström, Örjan; Signoret, Carine; Stenfelt, Stefan; Pichora-Fuller, M. Kathleen; Rudner, Mary

    2013-01-01

    Working memory is important for online language processing during conversation. We use it to maintain relevant information, to inhibit or ignore irrelevant information, and to attend to conversation selectively. Working memory helps us to keep track of and actively participate in conversation, including taking turns and following the gist. This paper examines the Ease of Language Understanding model (i.e., the ELU model, Rönnberg, 2003; Rönnberg et al., 2008) in light of new behavioral and neural findings concerning the role of working memory capacity (WMC) in uni-modal and bimodal language processing. The new ELU model is a meaning prediction system that depends on phonological and semantic interactions in rapid implicit and slower explicit processing mechanisms that both depend on WMC albeit in different ways. It is based on findings that address the relationship between WMC and (a) early attention processes in listening to speech, (b) signal processing in hearing aids and its effects on short-term memory, (c) inhibition of speech maskers and its effect on episodic long-term memory, (d) the effects of hearing impairment on episodic and semantic long-term memory, and finally, (e) listening effort. New predictions and clinical implications are outlined. Comparisons with other WMC and speech perception models are made. PMID:23874273

  18. Depressive thoughts limit working memory capacity in dysphoria.

    PubMed

    Hubbard, Nicholas A; Hutchison, Joanna L; Turner, Monroe; Montroy, Janelle; Bowles, Ryan P; Rypma, Bart

    2016-01-01

    Dysphoria is associated with persistence of attention on mood-congruent information. Longer time attending to mood-congruent information for dysphoric individuals (DIs) detracts from goal-relevant information processing and should reduce working memory (WM) capacity. Study 1 showed that DIs and non-DIs have similar WM capacities. Study 2 embedded depressive information into a WM task. Compared to non-DIs, DIs showed significantly reduced WM capacity for goal-relevant information in this task. Study 3 replicated results from Studies 1 and 2, and further showed that DIs had a significantly greater association between processing speed and recall on the depressively modified WM task compared to non-DIs. The presence of inter-task depressive information leads to DI-related decreased WM capacity. Results suggest dysphoria-related WM capacity deficits when depressive thoughts are present. WM capacity deficits in the presence of depressive thoughts are a plausible mechanism to explain day-to-day memory and concentration difficulties associated with depressed mood.

  19. Studies of short and long memory in mining-induced seismic processes

    NASA Astrophysics Data System (ADS)

    Węglarczyk, Stanisław; Lasocki, Stanisław

    2009-09-01

    Memory of a stochastic process implies its predictability, understood as a possibility to gain information on the future above the random guess level. Here we search for memory in the mining-induced seismic process (MIS), that is, a process induced or triggered by mining operations. Long memory is investigated by means of the Hurst rescaled range analysis, and the autocorrelation function estimate is used to test for short memory. Both methods are complemented with result uncertainty analyses based on different resampling techniques. The analyzed data comprise event series from Rudna copper mine in Poland. The studies show that the interevent time and interevent distance processes have both long and short memory. MIS occurrences and locations are internally interrelated. Internal relations among the sizes of MIS events are apparently weaker than those of other two studied parameterizations and are limited to long term interactions.

  20. Is Moving More Memorable than Proving? Effects of Embodiment and Imagined Enactment on Verb Memory

    PubMed Central

    Sidhu, David M.; Pexman, Penny M.

    2016-01-01

    Theories of embodied cognition propose that sensorimotor information is simulated during language processing (e.g., Barsalou, 1999). Previous studies have demonstrated that differences in simulation can have implications for word processing; for instance, lexical processing is facilitated for verbs that have relatively more embodied meanings (e.g., Sidhu et al., 2014). Here we examined the effects of these differences on memory for verbs. We observed higher rates of recognition (Experiments 1a-2a) and recall accuracy (Experiments 2b-3b) for verbs with a greater amount of associated bodily information (i.e., an embodiment effect). We also examined how this interacted with the imagined enactment effect: a memory benefit for actions that one imagines performing (e.g., Ditman et al., 2010). We found that these two effects did not interact (Experiment 3b), suggesting that the memory benefits of automatic simulation (i.e., the embodiment effect) and deliberate simulation (i.e., the imagined enactment effect) are distinct. These results provide evidence for the role of simulation in language processing, and its effects on memory. PMID:27445956

  1. Memory for non-native language: the role of lexical processing in the retention of surface form.

    PubMed

    Sampaio, Cristina; Konopka, Agnieszka E

    2013-01-01

    Research on memory for native language (L1) has consistently shown that retention of surface form is inferior to that of gist (e.g., Sachs, 1967). This paper investigates whether the same pattern is found in memory for non-native language (L2). We apply a model of bilingual word processing to more complex linguistic structures and predict that memory for L2 sentences ought to contain more surface information than L1 sentences. Native and non-native speakers of English were tested on a set of sentence pairs with different surface forms but the same meaning (e.g., "The bullet hit/struck the bull's eye"). Memory for these sentences was assessed with a cued recall procedure. Responses showed that native and non-native speakers did not differ in the accuracy of gist-based recall but that non-native speakers outperformed native speakers in the retention of surface form. The results suggest that L2 processing involves more intensive encoding of lexical level information than L1 processing.

  2. Working memory capacity and visual-verbal cognitive load modulate auditory-sensory gating in the brainstem: toward a unified view of attention.

    PubMed

    Sörqvist, Patrik; Stenfelt, Stefan; Rönnberg, Jerker

    2012-11-01

    Two fundamental research questions have driven attention research in the past: One concerns whether selection of relevant information among competing, irrelevant, information takes place at an early or at a late processing stage; the other concerns whether the capacity of attention is limited by a central, domain-general pool of resources or by independent, modality-specific pools. In this article, we contribute to these debates by showing that the auditory-evoked brainstem response (an early stage of auditory processing) to task-irrelevant sound decreases as a function of central working memory load (manipulated with a visual-verbal version of the n-back task). Furthermore, individual differences in central/domain-general working memory capacity modulated the magnitude of the auditory-evoked brainstem response, but only in the high working memory load condition. The results support a unified view of attention whereby the capacity of a late/central mechanism (working memory) modulates early precortical sensory processing.

  3. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults

    PubMed Central

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2017-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597

  4. No Evidence for Improved Associative Memory Performance Following Process-Based Associative Memory Training in Older Adults.

    PubMed

    Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne

    2016-01-01

    Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults ( M age = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.

  5. Association between cognitive impairments and obsessive-compulsive spectrum presentations following traumatic brain injury.

    PubMed

    Rydon-Grange, Michelle; Coetzer, Rudi

    2017-01-02

    This study examined the association between self-reported obsessive-compulsive spectrum symptomatology and cognitive performance in a sample of patients with traumatic brain injury (TBI). Twenty-four adults with a moderate-severe TBI accessing a community brain injury rehabilitation service were recruited. Age ranged between 19 and 69 years. Participants completed a battery of neuropsychological tasks assessing memory, executive functioning, and speed of information processing. Self-report questionnaires assessing obsessive-compulsive (OC) symptoms and obsessive-compulsive personality disorder (OCPD) traits were also completed. Correlational analyses revealed that deficits in cognitive flexibility were associated with greater self-reported OC symptomatology and severity. Greater OC symptom severity was significantly related to poorer performance on a visual memory task. Verbal memory and speed of information processing impairments were unrelated to OC symptoms. Performance on tasks of memory, executive functioning, and speed of information processing were not associated with OCPD traits. Overall, results indicate that greater OC symptomatology and severity were associated with specific neuropsychological functions (i.e., cognitive flexibility, visual memory). OCPD personality traits were unrelated to cognitive performance. Further research is needed to examine the potential causal relationship and longer-term interactions between cognitive sequelae and obsessive-compulsive spectrum presentations post-TBI.

  6. The contents of visual working memory reduce uncertainty during visual search.

    PubMed

    Cosman, Joshua D; Vecera, Shaun P

    2011-05-01

    Information held in visual working memory (VWM) influences the allocation of attention during visual search, with targets matching the contents of VWM receiving processing benefits over those that do not. Such an effect could arise from multiple mechanisms: First, it is possible that the contents of working memory enhance the perceptual representation of the target. Alternatively, it is possible that when a target is presented among distractor items, the contents of working memory operate postperceptually to reduce uncertainty about the location of the target. In both cases, a match between the contents of VWM and the target should lead to facilitated processing. However, each effect makes distinct predictions regarding set-size manipulations; whereas perceptual enhancement accounts predict processing benefits regardless of set size, uncertainty reduction accounts predict benefits only with set sizes larger than 1, when there is uncertainty regarding the target location. In the present study, in which briefly presented, masked targets were presented in isolation, there was a negligible effect of the information held in VWM on target discrimination. However, in displays containing multiple masked items, information held in VWM strongly affected target discrimination. These results argue that working memory representations act at a postperceptual level to reduce uncertainty during visual search.

  7. Memory for Faces Dissociates from Memory for Location Following Anterior Temporal Lobectomy

    ERIC Educational Resources Information Center

    Chiaravalloti, Nancy D.; Glosser, Guila

    2004-01-01

    It has been suggested that the right and left mesial temporal lobes are specialized for processing different types of information for long-term memory (LTM). Although findings have been consistent in regard to the dominant role of the left mesial temporal lobe (MTL) in verbal memory, the role of the right MTL in non-verbal memory remains…

  8. A Comparison of Normal Forgetting, Psychopathology, and Information-Processing Models of Reported Amnesia for Recent Sexual Trauma

    PubMed Central

    Mechanic, Mindy B.; Resick, Patricia A.; Griffin, Michael G.

    2010-01-01

    This study assessed memories for sexual trauma in a nontreatment-seeking sample of recent rape victims and considered competing explanations for failed recall. Participants were 92 female rape victims assessed within 2 weeks of the rape; 62 were also assessed 3 months postassault. Memory deficits for parts of the rape were common 2 weeks postassault (37%) but improved over the 3-month window studied (16% still partially amnesic). Hypotheses evaluated competing models of explanation that may account for reported recall deficits. Results are most consistent with information-processing models of traumatic memory. PMID:9874908

  9. The importance of ignoring: Alpha oscillations protect selectivity.

    PubMed

    Payne, Lisa; Sekuler, Robert

    2014-06-01

    Selective attention is often thought to entail an enhancement of some task-relevant stimulus or attribute. We discuss the perspective that ignoring irrelevant, distracting information plays a complementary role in information processing. Cortical oscillations within the alpha (8-14 Hz) frequency band have emerged as a marker of sensory suppression. This suppression is linked to selective attention for visual, auditory, somatic, and verbal stimuli. Inhibiting processing of irrelevant input makes responses more accurate and timely. It also helps protect material held in short-term memory against disruption. Furthermore, this selective process keeps irrelevant information from distorting the fidelity of memories. Memory is only as good as the perceptual representations on which it is based, and on whose maintenance it depends. Modulation of alpha oscillations can be exploited as an active, purposeful mechanism to help people pay attention and remember the things that matter.

  10. Oversimplification in the study of emotional memory

    PubMed Central

    Bennion, Kelly A.; Ford, Jaclyn H.; Murray, Brendan D.; Kensinger, Elizabeth A.

    2014-01-01

    This Short Review critically evaluates three hypotheses about the effects of emotion on memory: First, emotion usually enhances memory. Second, when emotion does not enhance memory, this can be understood by the magnitude of physiological arousal elicited, with arousal benefiting memory to a point but then having a detrimental influence. Third, when emotion facilitates the processing of information, this also facilitates the retention of that same information. For each of these hypotheses, we summarize the evidence consistent with it, present counter-evidence suggesting boundary conditions for the effect, and discuss the implications for future research. PMID:24007950

  11. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems

    PubMed Central

    Fernández, Rodrigo S.; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E.

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence. PMID:28066212

  12. Interference Conditions of the Reconsolidation Process in Humans: The Role of Valence and Different Memory Systems.

    PubMed

    Fernández, Rodrigo S; Bavassi, Luz; Kaczer, Laura; Forcato, Cecilia; Pedreira, María E

    2016-01-01

    Following the presentation of a reminder, consolidated memories become reactivated followed by a process of re-stabilization, which is referred to as reconsolidation. The most common behavioral tool used to reveal this process is interference produced by new learning shortly after memory reactivation. Memory interference is defined as a decrease in memory retrieval, the effect is generated when new information impairs an acquired memory. In general, the target memory and the interference task used are the same. Here we investigated how different memory systems and/or their valence could produce memory reconsolidation interference. We showed that a reactivated neutral declarative memory could be interfered by new learning of a different neutral declarative memory. Then, we revealed that an aversive implicit memory could be interfered by the presentation of a reminder followed by a threatening social event. Finally, we showed that the reconsolidation of a neutral declarative memory is unaffected by the acquisition of an aversive implicit memory and conversely, this memory remains intact when the neutral declarative memory is used as interference. These results suggest that the interference of memory reconsolidation is effective when two task rely on the same memory system or both evoke negative valence.

  13. Short-term memory for order but not for item information is impaired in developmental dyslexia.

    PubMed

    Hachmann, Wibke M; Bogaerts, Louisa; Szmalec, Arnaud; Woumans, Evy; Duyck, Wouter; Job, Remo

    2014-07-01

    Recent findings suggest that people with dyslexia experience difficulties with the learning of serial order information during the transition from short- to long-term memory (Szmalec et al. Journal of Experimental Psychology: Learning, Memory, & Cognition 37(5): 1270-1279, 2011). At the same time, models of short-term memory increasingly incorporate a distinction of order and item processing (Majerus et al. Cognition 107: 395-419, 2008). The current study is aimed to investigate whether serial order processing deficiencies in dyslexia can be traced back to a selective impairment of short-term memory for serial order and whether this impairment also affects processing beyond the verbal domain. A sample of 26 adults with dyslexia and a group of age and IQ-matched controls participated in a 2 × 2 × 2 experiment in which we assessed short-term recognition performance for order and item information, using both verbal and nonverbal material. Our findings indicate that, irrespective of the type of material, participants with dyslexia recalled the individual items with the same accuracy as the matched control group, whereas the ability to recognize the serial order in which those items were presented appeared to be affected in the dyslexia group. We conclude that dyslexia is characterized by a selective impairment of short-term memory for serial order, but not for item information, and discuss the integration of these findings into current theoretical views on dyslexia and its associated dysfunctions.

  14. A learnable parallel processing architecture towards unity of memory and computing

    NASA Astrophysics Data System (ADS)

    Li, H.; Gao, B.; Chen, Z.; Zhao, Y.; Huang, P.; Ye, H.; Liu, L.; Liu, X.; Kang, J.

    2015-08-01

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named “iMemComp”, where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped “iMemComp” with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on “iMemComp” can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  15. A learnable parallel processing architecture towards unity of memory and computing.

    PubMed

    Li, H; Gao, B; Chen, Z; Zhao, Y; Huang, P; Ye, H; Liu, L; Liu, X; Kang, J

    2015-08-14

    Developing energy-efficient parallel information processing systems beyond von Neumann architecture is a long-standing goal of modern information technologies. The widely used von Neumann computer architecture separates memory and computing units, which leads to energy-hungry data movement when computers work. In order to meet the need of efficient information processing for the data-driven applications such as big data and Internet of Things, an energy-efficient processing architecture beyond von Neumann is critical for the information society. Here we show a non-von Neumann architecture built of resistive switching (RS) devices named "iMemComp", where memory and logic are unified with single-type devices. Leveraging nonvolatile nature and structural parallelism of crossbar RS arrays, we have equipped "iMemComp" with capabilities of computing in parallel and learning user-defined logic functions for large-scale information processing tasks. Such architecture eliminates the energy-hungry data movement in von Neumann computers. Compared with contemporary silicon technology, adder circuits based on "iMemComp" can improve the speed by 76.8% and the power dissipation by 60.3%, together with a 700 times aggressive reduction in the circuit area.

  16. Sensory processing patterns predict the integration of information held in visual working memory.

    PubMed

    Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne

    2016-02-01

    Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  17. The fate of memory: Reconsolidation and the case of Prediction Error.

    PubMed

    Fernández, Rodrigo S; Boccia, Mariano M; Pedreira, María E

    2016-09-01

    The ability to make predictions based on stored information is a general coding strategy. A Prediction-Error (PE) is a mismatch between expected and current events. It was proposed as the process by which memories are acquired. But, our memories like ourselves are subject to change. Thus, an acquired memory can become active and update its content or strength by a labilization-reconsolidation process. Within the reconsolidation framework, PE drives the updating of consolidated memories. Moreover, memory features, such as strength and age, are crucial boundary conditions that limit the initiation of the reconsolidation process. In order to disentangle these boundary conditions, we review the role of surprise, classical models of conditioning, and their neural correlates. Several forms of PE were found to be capable of inducing memory labilization-reconsolidation. Notably, many of the PE findings mirror those of memory-reconsolidation, suggesting a strong link between these signals and memory process. Altogether, the aim of the present work is to integrate a psychological and neuroscientific analysis of PE into a general framework for memory-reconsolidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Differential effects of ADORA2A gene variations in pre-attentive visual sensory memory subprocesses.

    PubMed

    Beste, Christian; Stock, Ann-Kathrin; Ness, Vanessa; Epplen, Jörg T; Arning, Larissa

    2012-08-01

    The ADORA2A gene encodes the adenosine A(2A) receptor that is highly expressed in the striatum where it plays a role in modulating glutamatergic and dopaminergic transmission. Glutamatergic signaling has been suggested to play a pivotal role in cognitive functions related to the pre-attentive processing of external stimuli. Yet, the precise molecular mechanism of these processes is poorly understood. Therefore, we aimed to investigate whether ADORA2A gene variation has modulating effects on visual pre-attentive sensory memory processing. Studying two polymorphisms, rs5751876 and rs2298383, in 199 healthy control subjects who performed a partial-report paradigm, we find that ADORA2A variation is associated with differences in the efficiency of pre-attentive sensory memory sub-processes. We show that especially the initial visual availability of stimulus information is rendered more efficiently in the homozygous rare genotype groups. Processes related to the transfer of information into working memory and the duration of visual sensory (iconic) memory are compromised in the homozygous rare genotype groups. Our results show a differential genotype-dependent modulation of pre-attentive sensory memory sub-processes. Hence, we assume that this modulation may be due to differential effects of increased adenosine A(2A) receptor signaling on glutamatergic transmission and striatal medium spiny neuron (MSN) interaction. Copyright © 2011 Elsevier B.V. and ECNP. All rights reserved.

  19. Source memory that encoding was self-referential: the influence of stimulus characteristics

    PubMed Central

    Durbin, Kelly A.; Mitchell, Karen J.; Johnson, Marcia K.

    2017-01-01

    Decades of research suggest that encoding information with respect to the self improves memory (self-reference effect, SRE) for items (item SRE). The current study focused on how processing information in reference to the self affects source memory for whether an item was self-referentially processed (a source SRE). Participants self-referentially or non-self-referentially encoded words (Experiment 1) or pictures (Experiment 2) that varied in valence (positive, negative, neutral). Relative to non-self-referential processing, self-referential processing enhanced item recognition for all stimulus types (an item SRE), but it only enhanced source memory for positive words (a source SRE). In fact, source memory for negative and neutral pictures was worse for items processed self-referentially than non-self-referentially. Together, the results suggest that item SRE and source SRE (e.g., remembering an item was encoded self-referentially) are not necessarily the same across stimulus types (e.g., words, pictures; positive, negative). While an item SRE may depend on the overall likelihood the item generates any association, the enhancing effects of self-referential processing on source memory for self-referential encoding may depend on how embedded a stimulus becomes in one’s self-schema, and that depends, in part, on the stimulus’ valence and format. Self-relevance ratings during encoding provide converging evidence for this interpretation. PMID:28276984

  20. How Semantic and Episodic Memory Contribute to Autobiographical Memory. Commentary on Burt

    ERIC Educational Resources Information Center

    Tendolkar, Indira

    2008-01-01

    In his article, Chris Burt focuses on the relationship between time and autobiographical memory. The question Burt puts forward is whether temporal markers in reports on autobiographic memories reflect specific temporal information or result from rather complex cognitive processing of time-relevant knowledge. The aspect of time is inherent to the…

  1. Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength

    ERIC Educational Resources Information Center

    Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan

    2010-01-01

    The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…

  2. The Interaction of Color Realism and Pictorial Recall Memory.

    ERIC Educational Resources Information Center

    Berry, Louis H.

    This study investigated the interaction of variations in color realism on pictorial recall memory in order to better understand the effects of variations in color realism, and to draw comparisons between visual recall memory and visual recognition memory in terms of color information processing. Stimulus materials used were three sets of slides,…

  3. Emotion and working memory: evidence for domain-specific processes for affective maintenance.

    PubMed

    Mikels, Joseph A; Reuter-Lorenz, Patricia A; Beyer, Jonathan A; Fredrickson, Barbara L

    2008-04-01

    Working memory is comprised of separable subsystems for visual and verbal information, but what if the information is affective? Does the maintenance of affective information rely on the same processes that maintain nonaffective information? The authors address this question using a novel delayed-response task developed to investigate the short-term maintenance of affective memoranda. Using selective interference methods the authors find that a secondary emotion-regulation task impaired affect intensity maintenance, whereas secondary cognitive tasks disrupted brightness intensity maintenance, but facilitated affect maintenance. Additionally, performance on the affect maintenance task depends on the valence of the maintained feeling, further supporting the domain-specific nature of the task. The importance of affect maintenance per se is further supported by demonstrating that the observed valence effects depend on a memory delay and are not evident with simultaneous presentation of stimuli. These findings suggest that the working memory system may include domain-specific components that are specialized for the maintenance of affective memoranda. (Copyright) 2008 APA.

  4. Source monitoring 15 years later: What have we learned from fMRI about the neural mechanisms of source memory?

    PubMed Central

    Mitchell, Karen J.; Johnson, Marcia K.

    2009-01-01

    The systematic study of source memory provides a useful approach to investigating the features that give memories their episodic character, the associative, organizational, or binding processes that connect features, and the access and evaluation processes involved in attributing current mental experiences to memories of past events. This review illustrates how neuroimaging is contributing to our understanding of the brain mechanisms involved in source memory. Focusing primarily on functional magnetic resonance imaging (fMRI), we review evidence regarding the roles of various subregions of the medial temporal lobes, prefrontal cortex, posterior representational areas, and parietal cortex in source memory. We also consider relevant studies assessing the qualitative characteristics of episodic memories, the encoding and remembering of emotional information, and false memories, as well as studies of several populations that show disrupted source memory (older adults, individuals with depression, posttraumatic stress disorder, or schizophrenia). Although there is still substantial work to be done, functional neuroimaging is making good on its promise to advance our understanding of source memory. A continued two-way interaction between cognitive theory, as illustrated by the Source Monitoring Framework (Johnson, Hashtroudi, & Lindsay, 1993), and evidence from systematic cognitive neuroimaging studies should help further clarify our conceptualization of cognitive processes (e.g., feature binding, retrieval, monitoring), prior knowledge (e.g., semantics, schemas), and specific features (e.g., perceptual and emotional information), and of how they combine to create true and false memories. PMID:19586165

  5. Sensitive maintenance: a cognitive process underlying individual differences in memory for threatening information.

    PubMed

    Peters, Jan H; Hock, Michael; Krohne, Heinz Walter

    2012-01-01

    Dispositional styles of coping with threat influence memory for threatening information. In particular, sensitizers excel over repressors in their memory for threatening information after long retention intervals, but not after short ones. We therefore suggested that sensitizers, but not repressors, employ active maintenance processes during the retention interval to selectively retain threatening material. Sensitive maintenance was studied in 2 experiments in which participants were briefly exposed to threatening and nonthreatening pictures (Experiment 1, N = 128) or words (Experiment 2, N = 145). Following, we administered unannounced recognition tests before and after an intervening task that generated either high or low cognitive load, assuming that high cognitive load would impede sensitizers' memory maintenance of threatening material. Supporting our hypotheses, the same pattern of results was obtained in both experiments: Under low cognitive load, sensitizers forgot less threat material than repressors did; no such differences were observed under high cognitive load.

  6. Intrusive Memories of Distressing Information: An fMRI Study

    PubMed Central

    Battaglini, Eva; Liddell, Belinda; Das, Pritha; Malhi, Gin; Felmingham, Kim

    2016-01-01

    Although intrusive memories are characteristic of many psychological disorders, the neurobiological underpinning of these involuntary recollections are largely unknown. In this study we used functional magentic resonance imaging (fMRI) to identify the neural networks associated with encoding of negative stimuli that are subsequently experienced as intrusive memories. Healthy partipants (N = 42) viewed negative and neutral images during a visual/verbal processing task in an fMRI context. Two days later they were assessed on the Impact of Event Scale for occurrence of intrusive memories of the encoded images. A sub-group of participants who reported significant intrusions (n = 13) demonstrated stronger activation in the amygdala, bilateral ACC and parahippocampal gyrus during verbal encoding relative to a group who reported no intrusions (n = 13). Within-group analyses also revealed that the high intrusion group showed greater activity in the dorsomedial (dmPFC) and dorsolateral prefrontal cortex (dlPFC), inferior frontal gyrus and occipital regions during negative verbal processing compared to neutral verbal processing. These results do not accord with models of intrusions that emphasise visual processing of information at encoding but are consistent with models that highlight the role of inhibitory and suppression processes in the formation of subsequent intrusive memories. PMID:27685784

  7. The Trouble with Levels: A Reexamination of Craik and Lockhart's Framework for Memory Research

    ERIC Educational Resources Information Center

    Baddeley, Alan D.

    1978-01-01

    Begins by discussing a number of problems in applying a levels-of-processing approach to memory as proposed in the late 1960s and then revised in 1972 by Craik and Lockhart, suggests that some of the basic assumptions are false, and argues for information-processing models devised to study working memory and reading, which aim to explore the…

  8. Neuroanatomic organization of sound memory in humans.

    PubMed

    Kraut, Michael A; Pitcock, Jeffery A; Calhoun, Vince; Li, Juan; Freeman, Thomas; Hart, John

    2006-11-01

    The neural interface between sensory perception and memory is a central issue in neuroscience, particularly initial memory organization following perceptual analyses. We used functional magnetic resonance imaging to identify anatomic regions extracting initial auditory semantic memory information related to environmental sounds. Two distinct anatomic foci were detected in the right superior temporal gyrus when subjects identified sounds representing either animals or threatening items. Threatening animal stimuli elicited signal changes in both foci, suggesting a distributed neural representation. Our results demonstrate both category- and feature-specific responses to nonverbal sounds in early stages of extracting semantic memory information from these sounds. This organization allows for these category-feature detection nodes to extract early, semantic memory information for efficient processing of transient sound stimuli. Neural regions selective for threatening sounds are similar to those of nonhuman primates, demonstrating semantic memory organization for basic biological/survival primitives are present across species.

  9. Coherent-state information concentration and purification in atomic memory

    NASA Astrophysics Data System (ADS)

    Herec, Jiří; Filip, Radim

    2006-12-01

    We propose a feasible method of coherent-state information concentration and purification utilizing quantum memory. The method allows us to optimally concentrate and purify information carried by many noisy copies of an unknown coherent state (randomly distributed in time) to a single copy. Thus nonclassical resources and operations can be saved, if we compare information processing with many noisy copies and a single copy with concentrated and purified information.

  10. Beyond the Memory Mechanism: Person-Selective and Nonselective Processes in Recognition of Personally Familiar Faces

    ERIC Educational Resources Information Center

    Sugiura, Motoaki; Mano, Yoko; Sasaki, Akihiro; Sadato, Norihiro

    2011-01-01

    Special processes recruited during the recognition of personally familiar people have been assumed to reflect the rich episodic and semantic information that selectively represents each person. However, the processes may also include person nonselective ones, which may require interpretation in terms beyond the memory mechanism. To examine this…

  11. Surface Information Loss in Comprehension

    PubMed Central

    Gernsbacher, Morton Ann

    2014-01-01

    Shortly after a sentence has been comprehended, information about its exact surface form (e.g., its word order) becomes less available. The present research demonstrated this phenomenon during the comprehension of nonverbal stimuli (picture stories). In Experiment 1, significantly more surface (left/right orientation) information was lost after comprehending several picture stories than just one; in Experiment 2, more was lost after comprehending an entire picture story than half of one. In Experiment 3, subjects segmented the picture stories into their constituents; in Experiment 4, significantly more surface information was lost after crossing these constituents’ boundaries than before. The present research also investigated why surface information is lost. Four explanations were considered: Surface information loss is the result of performing grammatical transformations (the linguistic hypothesis), exceeding short-term memory limitations (the memory limitations hypothesis), integrating information into gist (the integration hypothesis), shifting from building one substructure to initiating another (the processing shift hypothesis). The linguistic and memory limitations hypotheses were considered inadequate; the integration and the processing shift hypotheses were tested in the last set of experiments. In Experiment 5 (using nonverbal stimuli), the predictions made by the processing shift hypothesis were confirmed; in Experiment 6 (using verbal stimuli), these results were replicated. Other implications of the processing shift hypothesis concerning surface information loss are discussed. PMID:25308975

  12. Fuzzy-Trace Theory and False Memory: New Frontiers.

    ERIC Educational Resources Information Center

    Reyna, Valerie F.; Brainerd, C. J.

    1998-01-01

    Describes the origins of fuzzy-trace theory, including Piagetian, interference, information-processing, and judgment and decision-making influences. Discusses similarities and differences between fuzzy-trace theory and other approaches to memory falsification. Considers the theory's predictions regarding age differences in memory falsification and…

  13. 77 FR 22760 - Proposed Information Collection; Comment Request; Southeast Region Gulf of Mexico Electronic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-17

    ... electronic logbook memory chip will be removed from the unit and downloaded at the contractor site in College Station, Texas. A new logbook memory chip will replace the removed memory chip, a process taking less than...

  14. A fast low-power optical memory based on coupled micro-ring lasers

    NASA Astrophysics Data System (ADS)

    Hill, Martin T.; Dorren, Harmen J. S.; de Vries, Tjibbe; Leijtens, Xaveer J. M.; den Besten, Jan Hendrik; Smalbrugge, Barry; Oei, Yok-Siang; Binsma, Hans; Khoe, Giok-Djan; Smit, Meint K.

    2004-11-01

    The increasing speed of fibre-optic-based telecommunications has focused attention on high-speed optical processing of digital information. Complex optical processing requires a high-density, high-speed, low-power optical memory that can be integrated with planar semiconductor technology for buffering of decisions and telecommunication data. Recently, ring lasers with extremely small size and low operating power have been made, and we demonstrate here a memory element constructed by interconnecting these microscopic lasers. Our device occupies an area of 18 × 40µm2 on an InP/InGaAsP photonic integrated circuit, and switches within 20ps with 5.5fJ optical switching energy. Simulations show that the element has the potential for much smaller dimensions and switching times. Large numbers of such memory elements can be densely integrated and interconnected on a photonic integrated circuit: fast digital optical information processing systems employing large-scale integration should now be viable.

  15. Hippocampal activation during retrieval of spatial context from episodic and semantic memory.

    PubMed

    Hoscheidt, Siobhan M; Nadel, Lynn; Payne, Jessica; Ryan, Lee

    2010-10-15

    The hippocampus, a region implicated in the processing of spatial information and episodic memory, is central to the debate concerning the relationship between episodic and semantic memory. Studies of medial temporal lobe amnesic patients provide evidence that the hippocampus is critical for the retrieval of episodic but not semantic memory. On the other hand, recent neuroimaging studies of intact individuals report hippocampal activation during retrieval of both autobiographical memories and semantic information that includes historical facts, famous faces, and categorical information, suggesting that episodic and semantic memory may engage the hippocampus during memory retrieval in similar ways. Few studies have matched episodic and semantic tasks for the degree to which they include spatial content, even though spatial content may be what drives hippocampal activation during semantic retrieval. To examine this issue, we conducted a functional magnetic resonance imaging (fMRI) study in which retrieval of spatial and nonspatial information was compared during an episodic and semantic recognition task. Results show that the hippocampus (1) participates preferentially in the retrieval of episodic memories; (2) is also engaged by retrieval of semantic memories, particularly those that include spatial information. These data suggest that sharp dissociations between episodic and semantic memory may be overly simplistic and that the hippocampus plays a role in the retrieval of spatial content whether drawn from a memory of one's own life experiences or real-world semantic knowledge. Published by Elsevier B.V.

  16. Visual representation of spatiotemporal structure

    NASA Astrophysics Data System (ADS)

    Schill, Kerstin; Zetzsche, Christoph; Brauer, Wilfried; Eisenkolb, A.; Musto, A.

    1998-07-01

    The processing and representation of motion information is addressed from an integrated perspective comprising low- level signal processing properties as well as higher-level cognitive aspects. For the low-level processing of motion information we argue that a fundamental requirement is the existence of a spatio-temporal memory. Its key feature, the provision of an orthogonal relation between external time and its internal representation, is achieved by a mapping of temporal structure into a locally distributed activity distribution accessible in parallel by higher-level processing stages. This leads to a reinterpretation of the classical concept of `iconic memory' and resolves inconsistencies on ultra-short-time processing and visual masking. The spatial-temporal memory is further investigated by experiments on the perception of spatio-temporal patterns. Results on the direction discrimination of motion paths provide evidence that information about direction and location are not processed and represented independent of each other. This suggests a unified representation on an early level, in the sense that motion information is internally available in form of a spatio-temporal compound. For the higher-level representation we have developed a formal framework for the qualitative description of courses of motion that may occur with moving objects.

  17. De Novo mRNA Synthesis Is Required for Both Consolidation and Reconsolidation of Fear Memories in the Amygdala

    ERIC Educational Resources Information Center

    Duvarci, Sevil; Nader, Karim; LeDoux, Joseph E.

    2008-01-01

    Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in…

  18. Unconditional room-temperature quantum memory

    NASA Astrophysics Data System (ADS)

    Hosseini, M.; Campbell, G.; Sparkes, B. M.; Lam, P. K.; Buchler, B. C.

    2011-10-01

    Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionizing computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80°C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. To unambiguously verify that our memory beats the quantum no-cloning limit we employ state-independent verification using conditional variance and signal-transfer coefficients.

  19. Neural systems and time course of proactive interference in working memory.

    PubMed

    Du, Yingchun; Zhang, John X; Xiao, Zhuangwei; Wu, Renhua

    2007-01-01

    The storage of information in working memory suffers as a function of proactive interference. Many works using neuroimaging technique have been done to reveal the brain mechanism of interference resolution. However, less is yet known about the time course of this process. Event-related potential method(ERP) and standardized Low Resolution Brain Electromagnetic Tomography method (sLORETA) were used in this study to discover the time course of interference resolution in working memory. The anterior P2 was thought to reflect interference resolution and if so, this process occurred earlier in working memory than in long-term memory.

  20. Idiothetic input into object-place configuration as the contribution to memory of the monkey and human hippocampus: a review.

    PubMed

    Gaffan, D

    1998-11-01

    Memory for object-place configurations appears to be a common function of the hippocampus in the human and monkey brain. The nature of the spatial information which enters into these object-configural memories in the primate, and the location of the memories themselves, have remained obscure, however. In the rat, much evidence indicates that the hippocampus processes idiothetic spatial information, an estimate of the animal's current environmental location derived from path integration. I propose that in primates the hippocampus provides idiothetic information about the environmental location of body parts, and that the main function of this information in the primate brain is to become configured with object-identity information provided by temporal lobe cortex outside the hippocampus.

  1. The emotional startle effect is disrupted by a concurrent working memory task.

    PubMed

    King, Rosemary; Schaefer, Alexandre

    2011-02-01

    Working memory (WM) processes are often thought to play an important role in the cognitive regulation of negative emotions. However, little is known about how they influence emotional processing. We report two experiments that tested whether a concurrent working memory task could modulate the emotional startle eyeblink effect, a well-known index of emotional processing. In both experiments, emotionally negative and neutral pictures were viewed in two conditions: a "cognitive load" (CL) condition, in which participants had to actively maintain information in working memory (WM) while viewing the pictures, and a control "no load" (NL) condition. Picture-viewing instructions were identical across CL and NL. In both experiments, results showed a significant reduction of the emotional modulation of the startle eyeblink reflex in the CL condition compared to the NL condition. These findings suggest that a concurrent WM task disrupts emotional processing even when participants are directing visual focus on emotionally relevant information. Copyright © 2010 Society for Psychophysiological Research.

  2. False memory for context and true memory for context similarly activate the parahippocampal cortex.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2017-06-01

    The role of the parahippocampal cortex is currently a topic of debate. One view posits that the parahippocampal cortex specifically processes spatial layouts and sensory details (i.e., the visual-spatial processing view). In contrast, the other view posits that the parahippocampal cortex more generally processes spatial and non-spatial contexts (i.e., the general contextual processing view). A large number of studies have found that true memories activate the parahippocampal cortex to a greater degree than false memories, which would appear to support the visual-spatial processing view as true memories are typically associated with greater visual-spatial detail than false memories. However, in previous studies, contextual details were also greater for true memories than false memories. Thus, such differential activity in the parahippocampal cortex may have reflected differences in contextual processing, which would challenge the visual-spatial processing view. In the present functional magnetic resonance imaging (fMRI) study, we employed a source memory paradigm to investigate the functional role of the parahippocampal cortex during true memory and false memory for contextual information to distinguish between the visual-spatial processing view and the general contextual processing view. During encoding, abstract shapes were presented to the left or right of fixation. During retrieval, old shapes were presented at fixation and participants indicated whether each shape was previously on the "left" or "right" followed by an "unsure", "sure", or "very sure" confidence rating. The conjunction of confident true memories for context and confident false memories for context produced activity in the parahippocampal cortex, which indicates that this region is associated with contextual processing. Furthermore, the direct contrast of true memory and false memory produced activity in the visual cortex but did not produce activity in the parahippocampal cortex. The present evidence suggests that the parahippocampal cortex is associated with general contextual processing rather than only being associated with visual-spatial processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Selective attention supports working memory maintenance by modulating perceptual processing of distractors.

    PubMed

    Sreenivasan, Kartik K; Jha, Amishi P

    2007-01-01

    Selective attention has been shown to bias sensory processing in favor of relevant stimuli and against irrelevant or distracting stimuli in perceptual tasks. Increasing evidence suggests that selective attention plays an important role during working memory maintenance, possibly by biasing sensory processing in favor of to-be-remembered items. In the current study, we investigated whether selective attention may also support working memory by biasing processing against irrelevant and potentially distracting information. Event-related potentials (ERPs) were recorded while subjects (n = 22) performed a delayed-recognition task for faces and shoes. The delay period was filled with face or shoe distractors. Behavioral performance was impaired when distractors were congruent with the working memory domain (e.g., face distractor during working memory for faces) relative to when distractors were incongruent with the working memory domain (e.g., face distractor during shoe working memory). If attentional biasing against distractor processing is indeed functionally relevant in supporting working memory maintenance, perceptual processing of distractors is predicted to be attenuated when distractors are more behaviorally intrusive relative to when they are nonintrusive. As such, we predicted that perceptual processing of distracting faces, as measured by the face-sensitive N170 ERP component, would be reduced in the context of congruent (face) working memory relative to incongruent (shoe) working memory. The N170 elicited by distracting faces demonstrated reduced amplitude during congruent versus incongruent working memory. These results suggest that perceptual processing of distracting faces may be attenuated due to attentional biasing against sensory processing of distractors that are most behaviorally intrusive during working memory maintenance.

  4. Modifying Memory for a Museum Tour in Older Adults: Reactivation-Related Updating that Enhances and Distorts Memory is Reduced in Aging

    PubMed Central

    St Jacques, Peggy L.; Montgomery, Daniel; Schacter, Daniel L.

    2015-01-01

    Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here, we examined age-related changes in the quality of memory reactivation on subsequent memory. Young and older adults reactivated memories for museum stops immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that aging alters reactivation-related updating processes that allow memories to be strengthened and updated with new information-consequently reducing memory distortions in older compared to young adults. PMID:24993055

  5. Modifying memory for a museum tour in older adults: Reactivation-related updating that enhances and distorts memory is reduced in ageing.

    PubMed

    St Jacques, Peggy L; Montgomery, Daniel; Schacter, Daniel L

    2015-01-01

    Memory reactivation, the activation of a latent memory trace when we are reminded of a past experience, strengthens memory but can also contribute to distortions if new information present during reactivation is integrated with existing memory. In a previous study in young adults we found that the quality of memory reactivation, manipulated using the principle of encoding specificity and indexed by recollection ratings, modulated subsequent true and false memories for events experienced during a museum tour. Here in this study, we examined age-related changes in the quality of memory reactivation on subsequent memory. Memories of museum stops in young and older adults were reactivated and then immediately followed by the presentation of a novel lure photo from an alternate tour version (i.e., reactivation plus new information). There was an increase in subsequent true memories for reactivated targets and for subsequent false memories for lures that followed reactivated targets, when compared to baseline target and lure photos. However, the influence of reactivation on subsequent memories was reduced in older adults. These data reveal that ageing alters reactivation-related updating processes that allow memories to be strengthened and updated with new information, consequently reducing memory distortions in older adults compared to young adults.

  6. [Cortical potentials evoked to response to a signal to make a memory-guided saccade].

    PubMed

    Slavutskaia, M V; Moiseeva, V V; Shul'govskiĭ, V V

    2010-01-01

    The difference in parameters of visually guided and memory-guided saccades was shown. Increase in the memory-guided saccade latency as compared to that of the visually guided saccades may indicate the deceleration of saccadic programming on the basis of information extraction from the memory. The comparison of parameters and topography of evoked components N1 and P1 of the evoked potential on the signal to make a memory- or visually guided saccade suggests that the early stage of the saccade programming associated with the space information processing is performed predominantly with top-down attention mechanism before the memory-guided saccade and bottom-up mechanism before the visually guided saccade. The findings show that the increase in the latency of the memory-guided saccades is connected with decision making at the central stage of the saccade programming. We proposed that wave N2, which develops in the middle of the latent period of the memory-guided saccades, is correlated with this process. Topography and spatial dynamics of components N1, P1 and N2 testify that the memory-guided saccade programming is controlled by the frontal mediothalamic system of selective attention and left-hemispheric brain mechanisms of motor attention.

  7. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings.

    PubMed Central

    Tulving, E; Kapur, S; Craik, F I; Moscovitch, M; Houle, S

    1994-01-01

    Data are reviewed from positron emission tomography studies of encoding and retrieval processes in episodic memory. These data suggest a hemispheric encoding/retrieval asymmetry model of prefrontal involvement in encoding and retrieval of episodic memory. According to this model, the left and right prefrontal lobes are part of an extensive neuronal network that subserves episodic remembering, but the two prefrontal hemispheres play different roles. Left prefrontal cortical regions are differentially more involved in retrieval of information from semantic memory and in simultaneously encoding novel aspects of the retrieved information into episodic memory. Right prefrontal cortical regions, on the other hand, are differentially more involved in episodic memory retrieval. PMID:8134342

  8. Processing and Memory of Color, Contour, and Pattern Found in Computer Digitized Color Pictures for Elementary Children.

    ERIC Educational Resources Information Center

    Marschalek, Douglas G.

    1988-01-01

    Describes study of children in grades one, three, and five that examined their active processing and short term memory (STM) of color, contour, and interior pattern of shapes found in computer digitized pictures. Age-related differences are examined, and the role of processing visual information in the learning process is discussed. (12…

  9. The Influence of Learning Strategies in the Acquisition, Retention, and Transfer of a Procedural Task.

    DTIC Science & Technology

    1979-08-01

    Lockhart , R. S. Levels of processing : A framework for memory research. Journal of Verbal Learning and Verbal Behavior, 1972, 11, 671-684. Craik , F. I. M...learning and memory research. In F. I. f. Craik & L. S. Cermak (Eds.), Levels of processing and theories of memory. Hillsdale, N. J.: Erlbaum, 1978...R. N., Gerson, R. F., & Kim, K. Information processing capabilities in performers differing in levels of motor skill. (Tech. Rep. TR-79-A4). a

  10. An evaluation of nonclinical dissociation utilizing a virtual environment shows enhanced working memory and attention.

    PubMed

    Saidel-Goley, Isaac N; Albiero, Erin E; Flannery, Kathleen A

    2012-02-01

    Dissociation is a mental process resulting in the disruption of memory, perception, and sometimes identity. At a nonclinical level, only mild dissociative experiences occur. The nature of nonclinical dissociation is disputed in the literature, with some asserting that it is a beneficial information processing style and others positing that it is a psychopathological phenomenon. The purpose of this study was to further the understanding of nonclinical dissociation with respect to memory and attention, by including a more ecologically valid virtual reality (VR) memory task along with standard neuropsychological tasks. Forty-five undergraduate students from a small liberal arts college in the northeast participated for course credit. The participants completed a battery of tasks including two standard memory tasks, a standard attention task, and an experimental VR memory task; the VR task included immersion in a virtual apartment, followed by incidental object-location recall for objects in the virtual apartment. Support for the theoretical model portraying nonclinical dissociation as a beneficial information processing style was found in this study. Dissociation scores were positively correlated with working memory scores and attentional processing scores on the standard neuropsychological tasks. In terms of the VR task, dissociation scores were positively correlated with more false positive memories that could be the result of a tendency of nonclinical highly dissociative individuals to create more elaborative schemas. This study also demonstrates that VR paradigms add to the prediction of cognitive functioning in testing protocols using standard neuropsychological tests, while simultaneously increasing ecological validity.

  11. Functional Topography of the Cerebellum in Verbal Working Memory

    PubMed Central

    Desmond, John E.

    2010-01-01

    Speech—both overt and covert—facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms. PMID:20563894

  12. Functional topography of the cerebellum in verbal working memory.

    PubMed

    Marvel, Cherie L; Desmond, John E

    2010-09-01

    Speech-both overt and covert-facilitates working memory by creating and refreshing motor memory traces, allowing new information to be received and processed. Neuroimaging studies suggest a functional topography within the sub-regions of the cerebellum that subserve verbal working memory. Medial regions of the anterior cerebellum support overt speech, consistent with other forms of motor execution such as finger tapping, whereas lateral portions of the superior cerebellum support speech planning and preparation (e.g., covert speech). The inferior cerebellum is active when information is maintained across a delay, but activation appears to be independent of speech, lateralized by modality of stimulus presentation, and possibly related to phonological storage processes. Motor (dorsal) and cognitive (ventral) channels of cerebellar output nuclei can be distinguished in working memory. Clinical investigations suggest that hyper-activity of cerebellum and disrupted control of inner speech may contribute to certain psychiatric symptoms.

  13. Compression in Working Memory and Its Relationship with Fluid Intelligence

    ERIC Educational Resources Information Center

    Chekaf, Mustapha; Gauvrit, Nicolas; Guida, Alessandro; Mathy, Fabien

    2018-01-01

    Working memory has been shown to be strongly related to fluid intelligence; however, our goal is to shed further light on the process of information compression in working memory as a determining factor of fluid intelligence. Our main hypothesis was that compression in working memory is an excellent indicator for studying the relationship between…

  14. No Recovery of Memory When Cognitive Load Is Decreased

    ERIC Educational Resources Information Center

    Ricker, Timothy J.; Vergauwe, Evie; Hinrichs, Garrett A.; Blume, Christopher L.; Cowan, Nelson

    2015-01-01

    There is substantial debate in the field of short-term memory (STM) as to whether the process of active maintenance occurs through memory-trace reactivation or repair. A key difference between these 2 potential mechanisms is that a repair mechanism should lead to recovery of forgotten information. The ability to recover forgotten memories would be…

  15. Working Memory and Strategy Use Contribute to Gender Differences in Spatial Ability

    ERIC Educational Resources Information Center

    Wang, Lu; Carr, Martha

    2014-01-01

    In this review, a new model that is grounded in information-processing theory is proposed to account for gender differences in spatial ability. The proposed model assumes that the relative strength of working memory, as expressed by the ratio of visuospatial working memory to verbal working memory, influences the type of strategies used on spatial…

  16. Memory and cognitive control circuits in mathematical cognition and learning.

    PubMed

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  17. Memory and cognitive control circuits in mathematical cognition and learning

    PubMed Central

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  18. Does reactivation trigger episodic memory change? A meta-analysis.

    PubMed

    Scully, Iiona D; Napper, Lucy E; Hupbach, Almut

    2017-07-01

    According to the reconsolidation hypothesis, long-term memories return to a plastic state upon their reactivation, leaving them vulnerable to interference effects and requiring re-storage processes or else these memories might be permanently lost. The present study used a meta-analytic approach to critically evaluate the evidence for reactivation-induced changes in human episodic memory. Results indicated that reactivation makes episodic memories susceptible to physiological and behavioral interference. When applied shortly after reactivation, interference manipulations altered the amount of information that could be retrieved from the original learning event. This effect was more pronounced for remote memories and memories of narrative structure. Additionally, new learning following reactivation reliably increased the number of intrusions from new information into the original memory. These findings support a dynamic view of long-term memory by showing that memories can be changed long after they were acquired. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. High-Dimensional Brain: A Tool for Encoding and Rapid Learning of Memories by Single Neurons.

    PubMed

    Tyukin, Ivan; Gorban, Alexander N; Calvo, Carlos; Makarova, Julia; Makarov, Valeri A

    2018-03-19

    Codifying memories is one of the fundamental problems of modern Neuroscience. The functional mechanisms behind this phenomenon remain largely unknown. Experimental evidence suggests that some of the memory functions are performed by stratified brain structures such as the hippocampus. In this particular case, single neurons in the CA1 region receive a highly multidimensional input from the CA3 area, which is a hub for information processing. We thus assess the implication of the abundance of neuronal signalling routes converging onto single cells on the information processing. We show that single neurons can selectively detect and learn arbitrary information items, given that they operate in high dimensions. The argument is based on stochastic separation theorems and the concentration of measure phenomena. We demonstrate that a simple enough functional neuronal model is capable of explaining: (i) the extreme selectivity of single neurons to the information content, (ii) simultaneous separation of several uncorrelated stimuli or informational items from a large set, and (iii) dynamic learning of new items by associating them with already "known" ones. These results constitute a basis for organization of complex memories in ensembles of single neurons. Moreover, they show that no a priori assumptions on the structural organization of neuronal ensembles are necessary for explaining basic concepts of static and dynamic memories.

  20. Effects of emotional content on working memory capacity.

    PubMed

    Garrison, Katie E; Schmeichel, Brandon J

    2018-02-13

    Emotional events tend to be remembered better than neutral events, but emotional states and stimuli may also interfere with cognitive processes that underlie memory performance. The current study investigated the effects of emotional content on working memory capacity (WMC), which involves both short term storage and executive attention control. We tested competing hypotheses in a preregistered experiment (N = 297). The emotional enhancement hypothesis predicts that emotional stimuli attract attention and additional processing resources relative to neutral stimuli, thereby making it easier to encode and store emotional information in WMC. The emotional impairment hypothesis, by contrast, predicts that emotional stimuli interfere with attention control and the active maintenance of information in working memory. Participants completed a common measure of WMC (the operation span task; Turner, M. L., & Engle, R. W. [1989]. Is working memory capacity task dependent? Journal of Memory and Language, 28, 127-154) that included either emotional or neutral words. Results revealed that WMC was reduced for emotional words relative to neutral words, consistent with the emotional impairment hypothesis.

  1. The Flynn effect and memory function.

    PubMed

    Baxendale, Sallie

    2010-08-01

    The Flynn effect refers to the steady increase in IQ that appears to date back at least to the inception of modern-day IQ tests. This study examined the possible Flynn effects on clinical memory tests involving the learning and recall of verbal and nonverbal material. Comparisons of the age-related norms on the list learning and design learning tasks from the Adult Memory and Information Processing Battery (AMIPB), published in 1985, and its successor, the BIRT (Brain Injury Rehabilitation Trust) Memory and Information Processing Battery (BMIPB) published in 2007, indicate that there is a significant Flynn effect on tests of memory function. This effect appears to be material specific with statistically significant improvements in all scores on tests involving the learning and recall of visual material in every age range evident over a 22-year period. Verbal memory abilities appear to be relatively stable with no significant differences between the scores in the majority of age ranges. The ramifications for the clinical interpretation of these tests are discussed.

  2. Auditory memory can be object based.

    PubMed

    Dyson, Benjamin J; Ishfaq, Feraz

    2008-04-01

    Identifying how memories are organized remains a fundamental issue in psychology. Previous work has shown that visual short-term memory is organized according to the object of origin, with participants being better at retrieving multiple pieces of information from the same object than from different objects. However, it is not yet clear whether similar memory structures are employed for other modalities, such as audition. Under analogous conditions in the auditory domain, we found that short-term memories for sound can also be organized according to object, with a same-object advantage being demonstrated for the retrieval of information in an auditory scene defined by two complex sounds overlapping in both space and time. Our results provide support for the notion of an auditory object, in addition to the continued identification of similar processing constraints across visual and auditory domains. The identification of modality-independent organizational principles of memory, such as object-based coding, suggests possible mechanisms by which the human processing system remembers multimodal experiences.

  3. Insights from child development on the relationship between episodic and semantic memory.

    PubMed

    Robertson, Erin K; Köhler, Stefan

    2007-11-05

    The present study was motivated by a recent controversy in the neuropsychological literature on semantic dementia as to whether episodic encoding requires semantic processing or whether it can proceed solely based on perceptual processing. We addressed this issue by examining the effect of age-related limitations in semantic competency on episodic memory in 4-6-year-old children (n=67). We administered three different forced-choice recognition memory tests for pictures previously encountered in a single study episode. The tests varied in the degree to which access to semantically encoded information was required at retrieval. Semantic competency predicted recognition performance regardless of whether access to semantic information was required. A direct relation between picture naming at encoding and subsequent recognition was also found for all tests. Our findings emphasize the importance of semantic encoding processes even in retrieval situations that purportedly do not require access to semantic information. They also highlight the importance of testing neuropsychological models of memory in different populations, healthy and brain damaged, at both ends of the developmental continuum.

  4. Memory and Language Improvements Following Cognitive Control Training

    ERIC Educational Resources Information Center

    Hussey, Erika K.; Harbison, J. Isaiah; Teubner-Rhodes, Susan E.; Mishler, Alan; Velnoskey, Kayla; Novick, Jared M.

    2017-01-01

    Cognitive control refers to adjusting thoughts and actions when confronted with conflict during information processing. We tested whether this ability is causally linked to performance on certain language and memory tasks by using cognitive control training to systematically modulate people's ability to resolve information-conflict across domains.…

  5. Human Performance on the Temporal Bisection Task

    ERIC Educational Resources Information Center

    Kopec, Charles D.; Brody, Carlos D.

    2010-01-01

    The perception and processing of temporal information are tasks the brain must continuously perform. These include measuring the duration of stimuli, storing duration information in memory, recalling such memories, and comparing two durations. How the brain accomplishes these tasks, however, is still open for debate. The temporal bisection task,…

  6. Adaptive Memory: Survival Processing Enhances Retention

    ERIC Educational Resources Information Center

    Nairne, James S.; Thompson, Sarah R.; Pandeirada, Josefa N. S.

    2007-01-01

    The authors investigated the idea that memory systems might have evolved to help us remember fitness-relevant information--specifically, information relevant to survival. In 4 incidental learning experiments, people were asked to rate common nouns for their survival relevance (e.g., in securing food, water, or protection from predators); in…

  7. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-08-12

    A data flow computer and method of computing are disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  8. Direct match data flow machine apparatus and process for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status but to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  9. A DNA-based pattern classifier with in vitro learning and associative recall for genomic characterization and biosensing without explicit sequence knowledge.

    PubMed

    Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo

    2014-01-01

    Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.

  10. Access to Attitude-Relevant Information in Memory as a Determinant of Persuasion: The Role of Message and Communicator Attributes.

    ERIC Educational Resources Information Center

    Wood, Wendy; And Others

    Research literature shows that people with access to attitude-relevant information in memory are able to draw on relevant beliefs and prior experiences when analyzing a persuasive message. This suggests that people who can retrieve little attitude-relevant information should be less able to engage in systematic processing. Two experiments were…

  11. The Interplay of Spatial Attentional Biases and Mental Codes in VSTM: Developmentally Informed Hypotheses

    ERIC Educational Resources Information Center

    Shimi, Andria; Scerif, Gaia

    2015-01-01

    What cognitive processes influence how well we maintain information in visual short-term memory (VSTM)? We used a developmentally informed design to delve into the interplay of top-down spatial biases with the nature of the internal memory codes, motivated by documented changes for both factors over childhood. Seven-year-olds, 11-year-olds, and…

  12. The effects of aging on the working memory processes of multimodal information.

    PubMed

    Solesio-Jofre, Elena; López-Frutos, José María; Cashdollar, Nathan; Aurtenetxe, Sara; de Ramón, Ignacio; Maestú, Fernando

    2017-05-01

    Normal aging is associated with deficits in working memory processes. However, the majority of research has focused on storage or inhibitory processes using unimodal paradigms, without addressing their relationships using different sensory modalities. Hence, we pursued two objectives. First, was to examine the effects of aging on storage and inhibitory processes. Second, was to evaluate aging effects on multisensory integration of visual and auditory stimuli. To this end, young and older participants performed a multimodal task for visual and auditory pairs of stimuli with increasing memory load at encoding and interference during retention. Our results showed an age-related increased vulnerability to interrupting and distracting interference reflecting inhibitory deficits related to the off-line reactivation and on-line suppression of relevant and irrelevant information, respectively. Storage capacity was impaired with increasing task demands in both age groups. Additionally, older adults showed a deficit in multisensory integration, with poorer performance for new visual compared to new auditory information.

  13. Long-term memory, neurogenesis, and signal novelty.

    PubMed

    Sokolov, E N; Nezlina, N I

    2004-10-01

    According to our suggested hypothesis, long-term memory is a collection of "gnostic units," selectively tuned to past events. The formation of long-term memory occurs with the involvement of constantly appearing new neurons which differentiate from stem cells during the process of neurogenesis, in particular in adults. Conversion of precursor neurons into "gnostic units" selective in relation to ongoing events, supplemented by the involvement of hippocampal "novelty neurons," which increase the flow of information needing to be fixed in long-term memory. "Gnostic units" form before the informational processes occurring in the ventral ("what?") and dorsal ("where?") systems. Formation of new "gnostic units" selectively tuned to a particular event results from the combination of excitation of the detector for stimulus characteristics and the novelty signal generated by "novelty neurons" in the hippocampus.

  14. Working memory load and the retro-cue effect: A diffusion model account.

    PubMed

    Shepherdson, Peter; Oberauer, Klaus; Souza, Alessandra S

    2018-02-01

    Retro-cues (i.e., cues presented between the offset of a memory array and the onset of a probe) have consistently been found to enhance performance in working memory tasks, sometimes ameliorating the deleterious effects of increased memory load. However, the mechanism by which retro-cues exert their influence remains a matter of debate. To inform this debate, we applied a hierarchical diffusion model to data from 4 change detection experiments using single item, location-specific probes (i.e., a local recognition task) with either visual or verbal memory stimuli. Results showed that retro-cues enhanced the quality of information entering the decision process-especially for visual stimuli-and decreased the time spent on nondecisional processes. Further, cues interacted with memory load primarily on nondecision time, decreasing or abolishing load effects. To explain these findings, we propose an account whereby retro-cues act primarily to reduce the time taken to access the relevant representation in memory upon probe presentation, and in addition protect cued representations from visual interference. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  15. Intracranial recordings and human memory.

    PubMed

    Johnson, Elizabeth L; Knight, Robert T

    2015-04-01

    Recent work involving intracranial recording during human memory performance provides superb spatiotemporal resolution on mnemonic processes. These data demonstrate that the cortical regions identified in neuroimaging studies of memory fall into temporally distinct networks and the hippocampal theta activity reported in animal memory literature also plays a central role in human memory. Memory is linked to activity at multiple interacting frequencies, ranging from 1 to 500Hz. High-frequency responses and coupling between different frequencies suggest that frontal cortex activity is critical to human memory processes, as well as a potential key role for the thalamus in neocortical oscillations. Future research will inform unresolved questions in the neuroscience of human memory and guide creation of stimulation protocols to facilitate function in the damaged brain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Material specific lateralization of medial temporal lobe function: An fMRI investigation.

    PubMed

    Dalton, Marshall A; Hornberger, Michael; Piguet, Olivier

    2016-03-01

    The theory of material specific lateralization of memory function posits that left and right MTL regions are asymmetrically involved in mnemonic processing of verbal and nonverbal material respectively. Lesion and functional imaging (fMRI) studies provide robust evidence for a left MTL asymmetry in the verbal memory domain. Evidence for a right MTL/nonverbal asymmetry is not as robust. A handful of fMRI studies have investigated this issue but have generally utilised nonverbal stimuli which are amenable to semantic elaboration. This fMRI study aimed to investigate the neural correlates of recognition memory processing in 20 healthy young adults (mean age = 26 years) for verbal stimuli and nonverbal stimuli that were specifically designed to minimize verbalisation. Analyses revealed that the neural correlates of recognition memory processing for verbal and nonverbal stimuli were differentiable and asymmetrically recruited the left and right MTL respectively. The right perirhinal cortex and hippocampus were preferentially involved in successful recognition memory of items devoid of semantic information. In contrast, the left anterior hippocampus was preferentially involved in successful recognition memory of stimuli which contained semantic meaning. These results suggest that the left MTL is preferentially involved in mnemonic processing of verbal/semantic information. In contrast, the right MTL is preferentially involved in visual/non-semantic mnemonic processing. We propose that during development, the left MTL becomes specialised for verbal mnemonic processing due to its proximity with left lateralised cortical language processing areas while visual/non-semantic mnemonic processing gets 'crowded out' to become predominantly, but not completely, the domain of the right MTL. © 2015 Wiley Periodicals, Inc.

  17. Cyclic Nucleotide-Gated Channels, Calmodulin, Adenylyl Cyclase, and Calcium/Calmodulin-Dependent Protein Kinase II Are Required for Late, but Not Early, Long-Term Memory Formation in the Honeybee

    ERIC Educational Resources Information Center

    Matsumoto, Yukihisa; Sandoz, Jean-Christophe; Devaud, Jean-Marc; Lormant, Flore; Mizunami, Makoto; Giurfa, Martin

    2014-01-01

    Memory is a dynamic process that allows encoding, storage, and retrieval of information acquired through individual experience. In the honeybee "Apis mellifera," olfactory conditioning of the proboscis extension response (PER) has shown that besides short-term memory (STM) and mid-term memory (MTM), two phases of long-term memory (LTM)…

  18. Asymmetric Spatial Processing Under Cognitive Load.

    PubMed

    Naert, Lien; Bonato, Mario; Fias, Wim

    2018-01-01

    Spatial attention allows us to selectively process information within a certain location in space. Despite the vast literature on spatial attention, the effect of cognitive load on spatial processing is still not fully understood. In this study we added cognitive load to a spatial processing task, so as to see whether it would differentially impact upon the processing of visual information in the left versus the right hemispace. The main paradigm consisted of a detection task that was performed during the maintenance interval of a verbal working memory task. We found that increasing cognitive working memory load had a more negative impact on detecting targets presented on the left side compared to those on the right side. The strength of the load effect correlated with the strength of the interaction on an individual level. The implications of an asymmetric attentional bias with a relative disadvantage for the left (vs the right) hemispace under high verbal working memory (WM) load are discussed.

  19. Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data

    NASA Astrophysics Data System (ADS)

    von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo

    2018-02-01

    Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which seem to belong to a more general class of stochastic processes, in which multiscale variance effects produce Hurst phenomena without long-range dependence. In our experimental data, the Hurst phenomenon and long-range memory appear as different system properties that should be estimated and interpreted independently.

  20. Memory Operations and Structures in Sentence Comprehension: Evidence from Ellipsis

    ERIC Educational Resources Information Center

    Martin, Andrea Eyleen

    2010-01-01

    Natural language often contains dependencies that span words, phrases, or even sentences. Thus, language comprehension relies on recovering recently processed information from memory for subsequent interpretation. This dissertation investigates the memory operations that subserve dependency resolution through the lens of "verb-phrase ellipsis"…

  1. Mnemonic Strategies: Creating Schemata for Learning Enhancement

    ERIC Educational Resources Information Center

    Goll, Paulette S.

    2004-01-01

    This article investigates the process of remembering and presents techniques to improve memory retention. Examples of association, clustering, imagery, location, mnemonic devices and visualization illustrate strategies that can be used to encode and recall information from the long-term memory. Several memory games offer the opportunity to test…

  2. Reconsolidation of a Well-Learned Instrumental Memory

    ERIC Educational Resources Information Center

    Exton-McGuinness, Marc T. J.; Patton, Rosemary C.; Sacco, Lawrence B.; Lee, Jonathan L. C.

    2014-01-01

    Once consolidated, memories are dynamic entities that go through phases of instability in order to be updated with new information, via a process of reconsolidation. The phenomenon of reconsolidation has been demonstrated in a wide variety of experimental paradigms. However, the memories underpinning instrumental behaviors are currently not…

  3. The role of the hippocampus in recognition memory.

    PubMed

    Bird, Chris M

    2017-08-01

    Many theories of declarative memory propose that it is supported by partially separable processes underpinned by different brain structures. The hippocampus plays a critical role in binding together item and contextual information together and processing the relationships between individual items. By contrast, the processing of individual items and their later recognition can be supported by extrahippocampal regions of the medial temporal lobes (MTL), particularly when recognition is based on feelings of familiarity without the retrieval of any associated information. These theories are domain-general in that "items" might be words, faces, objects, scenes, etc. However, there is mixed evidence that item recognition does not require the hippocampus, or that familiarity-based recognition can be supported by extrahippocampal regions. By contrast, there is compelling evidence that in humans, hippocampal damage does not affect recognition memory for unfamiliar faces, whilst recognition memory for several other stimulus classes is impaired. I propose that regions outside of the hippocampus can support recognition of unfamiliar faces because they are perceived as discrete items and have no prior conceptual associations. Conversely, extrahippocampal processes are inadequate for recognition of items which (a) have been previously experienced, (b) are conceptually meaningful, or (c) are perceived as being comprised of individual elements. This account reconciles findings from primate and human studies of recognition memory. Furthermore, it suggests that while the hippocampus is critical for binding and relational processing, these processes are required for item recognition memory in most situations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Role and Dynamic of Strengthening in the Reconsolidation Process in a Human Declarative Memory: What Decides the Fate of Recent and Older Memories?

    PubMed Central

    Pedreira, María E.

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening. PMID:23658614

  5. The role and dynamic of strengthening in the reconsolidation process in a human declarative memory: what decides the fate of recent and older memories?

    PubMed

    Forcato, Cecilia; Fernandez, Rodrigo S; Pedreira, María E

    2013-01-01

    Several reports have shown that after specific reminders are presented, consolidated memories pass from a stable state to one in which the memory is reactivated. This reactivation implies that memories are labile and susceptible to amnesic agents. This susceptibility decreases over time and leads to a re-stabilization phase usually known as reconsolidation. With respect to the biological role of reconsolidation, two functions have been proposed. First, the reconsolidation process allows new information to be integrated into the background of the original memory; second, it strengthens the original memory. We have previously demonstrated that both of these functions occur in the reconsolidation of human declarative memories. Our paradigm consisted of learning verbal material (lists of five pairs of nonsense syllables) acquired by a training process (L1-training) on Day 1 of our experiment. After this declarative memory is consolidated, it can be made labile by presenting a specific reminder. After this, the memory passes through a subsequent stabilization process. Strengthening creates a new scenario for the reconsolidation process; this function represents a new factor that may transform the dynamic of memories. First, we analyzed whether the repeated labilization-reconsolidation processes maintained the memory for longer periods of time. We showed that at least one labilization-reconsolidation process strengthens a memory via evaluation 5 days after its re-stabilization. We also demonstrated that this effect is not triggered by retrieval only. We then analyzed the way strengthening modified the effect of an amnesic agent that was presented immediately after repeated labilizations. The repeated labilization-reconsolidation processes made the memory more resistant to interference during re-stabilization. Finally, we evaluated whether the effect of strengthening may depend on the age of the memory. We found that the effect of strengthening did depend on the age of the memory. Forgetting may represent a process that weakens the effect of strengthening.

  6. Encoding of goal-relevant stimuli is strengthened by emotional arousal in memory.

    PubMed

    Lee, Tae-Ho; Greening, Steven G; Mather, Mara

    2015-01-01

    Emotional information receives preferential processing, which facilitates adaptive strategies for survival. However, the presence of emotional stimuli and the arousal they induce also influence how surrounding non-emotional information is processed in memory (Mather and Sutherland, 2011). For example, seeing a highly emotional scene often leads to forgetting of what was seen right beforehand, but sometimes instead enhances memory for the preceding information. In two studies, we examined how emotional arousal affects short-term memory retention for goal-relevant information that was just seen. In Study 1, participants were asked to remember neutral objects in spatially-cued locations (i.e., goal-relevant objects determined by specific location), while ignoring objects in uncued locations. After each set of objects were shown, arousal was manipulated by playing a previously fear-conditioned tone (i.e., CS+) or a neutral tone that had not been paired with shock (CS-). In Study 1, memory for the goal-relevant neutral objects from arousing trials was enhanced compared to those from the non-arousing trials. This result suggests that emotional arousal helps to increase the impact of top-down priority (i.e., goal-relevancy) on memory encoding. Study 2 supports this conclusion by demonstrating that when the goal was to remember all objects regardless of the spatial cue, emotional arousal induced memory enhancement in a more global manner for all objects. In sum, the two studies show that the ability of arousal to enhance memory for previously encoded items depends on the goal relevance initially assigned to those items.

  7. Memory and Common Ground Processes in Language Use

    PubMed Central

    Brown-Schmidt, Sarah; Duff, Melissa C.

    2018-01-01

    During communication, we form assumptions about what our communication partners know and believe. Information that is mutually known between the discourse partners—their common ground—serves as a backdrop for successful communication. Here we present an introduction to the focus of this topic, which is the role of memory in common ground and language use. Two types of questions emerge as central to understanding the relationship between memory and common ground, specifically questions having to do with the representation of common ground in memory, and the use of common ground during language processing. PMID:27797165

  8. The effects of sleep deprivation on item and associative recognition memory.

    PubMed

    Ratcliff, Roger; Van Dongen, Hans P A

    2018-02-01

    Sleep deprivation adversely affects the ability to perform cognitive tasks, but theories range from predicting an overall decline in cognitive functioning because of reduced stability in attentional networks to specific deficits in various cognitive domains or processes. We measured the effects of sleep deprivation on two memory tasks, item recognition ("was this word in the list studied") and associative recognition ("were these two words studied in the same pair"). These tasks test memory for information encoded a few minutes earlier and so do not address effects of sleep deprivation on working memory or consolidation after sleep. A diffusion model was used to decompose accuracy and response time distributions to produce parameter estimates of components of cognitive processing. The model assumes that over time, noisy evidence from the task stimulus is accumulated to one of two decision criteria, and parameters governing this process are extracted and interpreted in terms of distinct cognitive processes. Results showed that sleep deprivation reduces drift rate (evidence used in the decision process), with little effect on the other components of the decision process. These results contrast with the effects of aging, which show little decline in item recognition but large declines in associative recognition. The results suggest that sleep deprivation degrades the quality of information stored in memory and that this may occur through degraded attentional processes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Two processes support visual recognition memory in rhesus monkeys.

    PubMed

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-11-29

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans.

  10. Two processes support visual recognition memory in rhesus monkeys

    PubMed Central

    Guderian, Sebastian; Brigham, Danielle; Mishkin, Mortimer

    2011-01-01

    A large body of evidence in humans suggests that recognition memory can be supported by both recollection and familiarity. Recollection-based recognition is characterized by the retrieval of contextual information about the episode in which an item was previously encountered, whereas familiarity-based recognition is characterized instead by knowledge only that the item had been encountered previously in the absence of any context. To date, it is unknown whether monkeys rely on similar mnemonic processes to perform recognition memory tasks. Here, we present evidence from the analysis of receiver operating characteristics, suggesting that visual recognition memory in rhesus monkeys also can be supported by two separate processes and that these processes have features considered to be characteristic of recollection and familiarity. Thus, the present study provides converging evidence across species for a dual process model of recognition memory and opens up the possibility of studying the neural mechanisms of recognition memory in nonhuman primates on tasks that are highly similar to the ones used in humans. PMID:22084079

  11. Divided attention improves delayed, but not immediate retrieval of a consolidated memory.

    PubMed

    Kessler, Yoav; Vandermorris, Susan; Gopie, Nigel; Daros, Alexander; Winocur, Gordon; Moscovitch, Morris

    2014-01-01

    A well-documented dissociation between memory encoding and retrieval concerns the role of attention in the two processes. The typical finding is that divided attention (DA) during encoding impairs future memory, but retrieval is relatively robust to attentional manipulations. However, memory research in the past 20 years had demonstrated that retrieval is a memory-changing process, in which the strength and availability of information are modified by various characteristics of the retrieval process. Based on this logic, several studies examined the effects of DA during retrieval (Test 1) on a future memory test (Test 2). These studies yielded inconsistent results. The present study examined the role of memory consolidation in accounting for the after-effect of DA during retrieval. Initial learning required a classification of visual stimuli, and hence involved incidental learning. Test 1 was administered 24 hours after initial learning, and therefore required retrieval of consolidated information. Test 2 was administered either immediately following Test 1 or after a 24-hour delay. Our results show that the effect of DA on Test 2 depended on this delay. DA during Test 1 did not affect performance on Test 2 when it was administered immediately, but improved performance when Test 2 was given 24-hours later. The results are consistent with other findings showing long-term benefits of retrieval difficulty. Implications for theories of reconsolidation in human episodic memory are discussed.

  12. Transfer after process-based object-location memory training in healthy older adults.

    PubMed

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  13. Encoding-related brain activity during deep processing of verbal materials: a PET study.

    PubMed

    Fujii, Toshikatsu; Okuda, Jiro; Tsukiura, Takashi; Ohtake, Hiroya; Suzuki, Maki; Kawashima, Ryuta; Itoh, Masatoshi; Fukuda, Hiroshi; Yamadori, Atsushi

    2002-12-01

    The recent advent of neuroimaging techniques provides an opportunity to examine brain regions related to a specific memory process such as episodic memory encoding. There is, however, a possibility that areas active during an assumed episodic memory encoding task, compared with a control task, involve not only areas directly relevant to episodic memory encoding processes but also areas associated with other cognitive processes for on-line information. We used positron emission tomography (PET) to differentiate these two kinds of regions. Normal volunteers were engaged in deep (semantic) or shallow (phonological) processing of new or repeated words during PET. Results showed that deep processing, compared with shallow processing, resulted in significantly better recognition performance and that this effect was associated with activation of various brain areas. Further analyses revealed that there were regions directly relevant to episodic memory encoding in the anterior part of the parahippocampal gyrus, inferior frontal gyrus, supramarginal gyrus, anterior cingulate gyrus, and medial frontal lobe in the left hemisphere. Our results demonstrated that several regions, including the medial temporal lobe, play a role in episodic memory encoding.

  14. Modeling individual differences in working memory performance: a source activation account

    PubMed Central

    Daily, Larry Z.; Lovett, Marsha C.; Reder, Lynne M.

    2008-01-01

    Working memory resources are needed for processing and maintenance of information during cognitive tasks. Many models have been developed to capture the effects of limited working memory resources on performance. However, most of these models do not account for the finding that different individuals show different sensitivities to working memory demands, and none of the models predicts individual subjects' patterns of performance. We propose a computational model that accounts for differences in working memory capacity in terms of a quantity called source activation, which is used to maintain goal-relevant information in an available state. We apply this model to capture the working memory effects of individual subjects at a fine level of detail across two experiments. This, we argue, strengthens the interpretation of source activation as working memory capacity. PMID:19079561

  15. Adaptive memory: the comparative value of survival processing.

    PubMed

    Nairne, James S; Pandeirada, Josefa N S; Thompson, Sarah R

    2008-02-01

    We recently proposed that human memory systems are "tuned" to remember information that is processed for survival, perhaps as a result of fitness advantages accrued in the ancestral past. This proposal was supported by experiments in which participants showed superior memory when words were rated for survival relevance, at least relative to when words received other forms of deep processing. The current experiments tested the mettle of survival memory by pitting survival processing against conditions that are universally accepted as producing excellent retention, including conditions in which participants rated words for imagery, pleasantness, and self-reference; participants also generated words, studied words with the intention of learning them, or rated words for relevance to a contextually rich (but non-survival-related) scenario. Survival processing yielded the best retention, which suggests that it may be one of the best encoding procedures yet discovered in the memory field.

  16. Novelty-Sensitive Dopaminergic Neurons in the Human Substantia Nigra Predict Success of Declarative Memory Formation.

    PubMed

    Kamiński, Jan; Mamelak, Adam N; Birch, Kurtis; Mosher, Clayton P; Tagliati, Michele; Rutishauser, Ueli

    2018-05-07

    The encoding of information into long-term declarative memory is facilitated by dopamine. This process depends on hippocampal novelty signals, but it remains unknown how midbrain dopaminergic neurons are modulated by declarative-memory-based information. We recorded individual substantia nigra (SN) neurons and cortical field potentials in human patients performing a recognition memory task. We found that 25% of SN neurons were modulated by stimulus novelty. Extracellular waveform shape and anatomical location indicated that these memory-selective neurons were putatively dopaminergic. The responses of memory-selective neurons appeared 527 ms after stimulus onset, changed after a single trial, and were indicative of recognition accuracy. SN neurons phase locked to frontal cortical theta-frequency oscillations, and the extent of this coordination predicted successful memory formation. These data reveal that dopaminergic neurons in the human SN are modulated by memory signals and demonstrate a progression of information flow in the hippocampal-basal ganglia-frontal cortex loop for memory encoding. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Using Computers To Accommodate Learning Disabled Students in Mathematics Classes.

    ERIC Educational Resources Information Center

    Rapp, Rhonda H.; Gittinger, Dennis J.

    A person with a learning disability usually has average or above average intelligence, but has difficulty taking in, remembering, or expressing information. Learning disabilities can involve visual processing speed, short-term memory processing, fluid reasoning, and long-term memory retrieval. These disorders are intrinsic to the individual and…

  18. Distributed representations in memory: Insights from functional brain imaging

    PubMed Central

    Rissman, Jesse; Wagner, Anthony D.

    2015-01-01

    Forging new memories for facts and events, holding critical details in mind on a moment-to-moment basis, and retrieving knowledge in the service of current goals all depend on a complex interplay between neural ensembles throughout the brain. Over the past decade, researchers have increasingly leveraged powerful analytical tools (e.g., multi-voxel pattern analysis) to decode the information represented within distributed fMRI activity patterns. In this review, we discuss how these methods can sensitively index neural representations of perceptual and semantic content, and how leverage on the engagement of distributed representations provides unique insights into distinct aspects of memory-guided behavior. We emphasize that, in addition to characterizing the contents of memories, analyses of distributed patterns shed light on the processes that influence how information is encoded, maintained, or retrieved, and thus inform memory theory. We conclude by highlighting open questions about memory that can be addressed through distributed pattern analyses. PMID:21943171

  19. Temporal context memory in high-functioning autism.

    PubMed

    Gras-Vincendon, Agnès; Mottron, Laurent; Salamé, Pierre; Bursztejn, Claude; Danion, Jean-Marie

    2007-11-01

    Episodic memory, i.e. memory for specific episodes situated in space and time, seems impaired in individuals with autism. According to weak central coherence theory, individuals with autism have general difficulty connecting contextual and item information which then impairs their capacity to memorize information in context. This study investigated temporal context memory for visual information in individuals with autism. Eighteen adolescents and adults with high-functioning autism (HFA) or Asperger syndrome (AS) and age- and IQ-matched typically developing participants were tested using a recency judgement task. The performance of the autistic group did not differ from that of the control group, nor did the performance between the AS and HFA groups. We conclude that autism in high-functioning individuals does not impair temporal context memory as assessed on this task. We suggest that individuals with autism are as efficient on this task as typically developing subjects because contextual memory performance here involves more automatic than organizational processing.

  20. The neurobiology of the human memory.

    PubMed

    Fietta, Pierluigi; Fietta, Pieranna

    2011-01-01

    Memory can be defined as the ability to acquire, process, store, and retrieve information. Memory is indispensable for learning, adaptation, and survival of every living organism. In humans, the remembering process has acquired great flexibility and complexity, reaching close links with other mental functions, such as thinking and emotions. Changes in synaptic connectivity and interactions among multiple neural networks provide the neurobiological substrates for memory encoding, retention, and consolidation. Memory may be categorized as short-term and long-term memory (according to the storage temporal duration), as implicit and explicit memory (with respect to the consciousness of remembering), as declarative (knowing that [fact]) and procedural (knowing how [skill]) memory, or as sensory (echoic, iconic and haptil), semantic, and episodic memory (according to the various remembering domains). Significant advances have been obtained in understanding memory neurobiology, but much remains to be learned in its cognitive, psychological, and phenomenological aspects.

  1. Memory and pattern storage in neural networks with activity dependent synapses

    NASA Astrophysics Data System (ADS)

    Mejias, J. F.; Torres, J. J.

    2009-01-01

    We present recently obtained results on the influence of the interplay between several activity dependent synaptic mechanisms, such as short-term depression and facilitation, on the maximum memory storage capacity in an attractor neural network [1]. In contrast with the case of synaptic depression, which drastically reduces the capacity of the network to store and retrieve activity patterns [2], synaptic facilitation is able to enhance the memory capacity in different situations. In particular, we find that a convenient balance between depression and facilitation can enhance the memory capacity, reaching maximal values similar to those obtained with static synapses, that is, without activity-dependent processes. We also argue, employing simple arguments, that this level of balance is compatible with experimental data recorded from some cortical areas, where depression and facilitation may play an important role for both memory-oriented tasks and information processing. We conclude that depressing synapses with a certain level of facilitation allow to recover the good retrieval properties of networks with static synapses while maintaining the nonlinear properties of dynamic synapses, convenient for information processing and coding.

  2. An examination of iconic memory in children with autism spectrum disorders.

    PubMed

    McMorris, Carly A; Brown, Stephanie M; Bebko, James M

    2013-08-01

    Iconic memory is the ability to accurately recall a number of items after a very brief visual exposure. Previous research has examined these capabilities in typically developing (TD) children and individuals with intellectual disabilities (ID); however, there is limited research on these abilities in children with Autism Spectrum Disorders (ASD). Twenty-one TD and eighteen ASD children were presented with circular visual arrays of letters for 100 ms and were asked to recall as many letters as possible or a single letter that was cued for recall. Groups did not differ in the number of items recalled, the rate of information decay, or speed of information processing. These findings suggest that iconic memory is an intact skill for children with ASD, a result that has implications for subsequent information processing.

  3. Structural synaptic plasticity in the hippocampus induced by spatial experience and its implications in information processing.

    PubMed

    Carasatorre, M; Ramírez-Amaya, V; Díaz Cintra, S

    2016-10-01

    Long-lasting memory formation requires that groups of neurons processing new information develop the ability to reproduce the patterns of neural activity acquired by experience. Changes in synaptic efficiency let neurons organise to form ensembles that repeat certain activity patterns again and again. Among other changes in synaptic plasticity, structural modifications tend to be long-lasting which suggests that they underlie long-term memory. There is a large body of evidence supporting that experience promotes changes in the synaptic structure, particularly in the hippocampus. Structural changes to the hippocampus may be functionally implicated in stabilising acquired memories and encoding new information. Copyright © 2012 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Similarity-based interference in a working memory numerical updating task: age-related differences between younger and older adults.

    PubMed

    Pelegrina, Santiago; Borella, Erika; Carretti, Barbara; Lechuga, M Teresa

    2012-01-01

    Similarity among representations held simultaneously in working memory (WM) is a factor which increases interference and hinders performance. The aim of the current study was to investigate age-related differences between younger and older adults in a working memory numerical updating task, in which the similarity between information held in WM was manipulated. Results showed a higher susceptibility of older adults to similarity-based interference when accuracy, and not response times, was considered. It was concluded that older adults' WM difficulties appear to be due to the availability of stored information, which, in turn, might be related to the ability to generate distinctive representations and to the process of binding such representations to their context when similar information has to be processed in WM.

  5. Saving-enhanced memory: the benefits of saving on the learning and remembering of new information.

    PubMed

    Storm, Benjamin C; Stone, Sean M

    2015-02-01

    With the continued integration of technology into people's lives, saving digital information has become an everyday facet of human behavior. In the present research, we examined the consequences of saving certain information on the ability to learn and remember other information. Results from three experiments showed that saving one file before studying a new file significantly improved memory for the contents of the new file. Notably, this effect was not observed when the saving process was deemed unreliable or when the contents of the to-be-saved file were not substantial enough to interfere with memory for the new file. These results suggest that saving provides a means to strategically off-load memory onto the environment in order to reduce the extent to which currently unneeded to-be-remembered information interferes with the learning and remembering of other information. © The Author(s) 2014.

  6. A systematic review of the neurobiological aspects of memory in the aging process

    PubMed Central

    de Oliveira, Eduardo Moreira; Kissaki, Priscilla Tiemi; Ordonez, Tiago Nascimento; Lima-Silva, Thaís Bento

    2011-01-01

    A systematic review of the neuroanatomical literature was performed to determine the neuropharmacological aspects most relevant to the study of memory processes. Articles were retrieved using the search terms "biology of memory", "memory and aging", "memory impairment", "elderly and memory," and their equivalents in Portuguese. Of the studies surveyed, five studies dealt with epidemiological and demographic issues, 12 were clinical trials i.e. were based on testing and implementation of instruments in human subjects, 33 studies were basic research involving studies of mice, rats and non-human primates, and biochemical and in vitro trials and finally, 52 studies were literature reviews or book chapters which in our view, fell into this category. Conclusions The work sought to highlight which neural networks are most involved in processing information, as well as their location within brain regions and the way in which neurotransmitters interact with each other for the formation of these memories. Moreover, it was shown how memory changes during the normal human aging process, both positively and negatively, by analyzing the morphological alterations that occur in the brain of aging individuals. PMID:29213758

  7. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Associative properties of a multichannel photon echo and optical memory

    NASA Astrophysics Data System (ADS)

    Bikbov, I. S.; Zuikov, V. A.; Popov, I. I.; Popova, G. L.; Samartsev, V. V.

    1995-10-01

    An analysis is made of the results of an investigation of the physical principles underlying the operation of an associative optical memory and of processors utilising the photon (optical) echo phenomenon. The feasibility of constructing such optical memories is considered.

  8. Working Memory and Mathematics: A Review of Developmental, Individual Difference, and Cognitive Approaches

    ERIC Educational Resources Information Center

    Raghubar, Kimberly P.; Barnes, Marcia A.; Hecht, Steven A.

    2010-01-01

    Working memory refers to a mental workspace, involved in controlling, regulating, and actively maintaining relevant information to accomplish complex cognitive tasks (e.g. mathematical processing). Despite the potential relevance of a relation between working memory and math for understanding developmental and individual differences in…

  9. Modality Specificity and Integration in Working Memory: Insights from Visuospatial Bootstrapping

    ERIC Educational Resources Information Center

    Allen, Richard J.; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen

    2015-01-01

    The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the…

  10. Working Memory and Cognitive Styles in Adolescents' Attainment

    ERIC Educational Resources Information Center

    Packiam Alloway, Tracy; Banner, Gloria E.; Smith, Patrick

    2010-01-01

    Background: Working memory, the ability to store and process information, is strongly related to learning outcomes. Aims: The aim of the present study is to extend previous research on early learning and investigate the relationship between working memory, cognitive styles, and attainment in adolescents using both national curriculum tests and…

  11. Fabry-Perot confocal resonator optical associative memory

    NASA Astrophysics Data System (ADS)

    Burns, Thomas J.; Rogers, Steven K.; Vogel, George A.

    1993-03-01

    A unique optical associative memory architecture is presented that combines the optical processing environment of a Fabry-Perot confocal resonator with the dynamic storage and recall properties of volume holograms. The confocal resonator reduces the size and complexity of previous associative memory architectures by folding a large number of discrete optical components into an integrated, compact optical processing environment. Experimental results demonstrate the system is capable of recalling a complete object from memory when presented with partial information about the object. A Fourier optics model of the system's operation shows it implements a spatially continuous version of a discrete, binary Hopfield neural network associative memory.

  12. Development of a Handbook for Educators: Addressing Working Memory Capacity in Elementary Students

    ERIC Educational Resources Information Center

    Fernandez, Julie Marie

    2013-01-01

    Working Memory (WM) refers to a brain system that provides temporary storage and manipulation of the information necessary for complex cognitive tasks such as language comprehension, learning, and reasoning. WM also requires the simultaneous storage and processing of information. WM is directly related to academic performance in the classroom.…

  13. The Perceptual Root of Object-Based Storage: An Interactive Model of Perception and Visual Working Memory

    ERIC Educational Resources Information Center

    Gao, Tao; Gao, Zaifeng; Li, Jie; Sun, Zhongqiang; Shen, Mowei

    2011-01-01

    Mainstream theories of visual perception assume that visual working memory (VWM) is critical for integrating online perceptual information and constructing coherent visual experiences in changing environments. Given the dynamic interaction between online perception and VWM, we propose that how visual information is processed during visual…

  14. Selective Short-Term Memory Deficits Arise from Impaired Domain-General Semantic Control Mechanisms

    ERIC Educational Resources Information Center

    Hoffman, Paul; Jefferies, Elizabeth; Ehsan, Sheeba; Hopper, Samantha; Lambon Ralph, Matthew A.

    2009-01-01

    Semantic short-term memory (STM) patients have a reduced ability to retain semantic information over brief delays but perform well on other semantic tasks; this pattern suggests damage to a dedicated buffer for semantic information. Alternatively, these difficulties may arise from mild disruption to domain-general semantic processes that have…

  15. Adaptive memory: determining the proximate mechanisms responsible for the memorial advantages of survival processing.

    PubMed

    Burns, Daniel J; Burns, Sarah A; Hwang, Ana J

    2011-01-01

    J. S. Nairne, S. R. Thompson, and J. N. S. Pandeirada (2007) suggested that our memory systems may have evolved to help us remember fitness-relevant information and showed that retention of words rated for their relevance to survival is superior to that of words encoded under other deep processing conditions. The authors present 4 experiments that uncover the proximate mechanisms likely responsible. The authors obtained a recall advantage for survival processing compared with conditions that promoted only item-specific processing or only relational processing. This effect was eliminated when control conditions encouraged both item-specific and relational processing. Data from separate measures of item-specific and relational processing generally were consistent with the view that the memorial advantage for survival processing results from the encoding of both types of processing. Although the present study suggests the proximate mechanisms for the effect, the authors argue that survival processing may be fundamentally different from other memory phenomena for which item-specific and relational processing differences have been implicated. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  16. False memory in aging resulting from self-referential processing.

    PubMed

    Rosa, Nicole M; Gutchess, Angela H

    2013-11-01

    Referencing the self is known to enhance accurate memory, but less is known about how the strategy affects false memory, particularly for highly self-relevant information. Because older adults are more prone to false memories, we tested whether self-referencing increased false memories with age. In 2 studies, older and younger adults rated adjectives for self-descriptiveness and later completed a surprise recognition test comprised of words rated previously for self-descriptiveness and novel lure words. Lure words were subsequently rated for self-descriptiveness in order to assess the impact of self-relevance on false memory. Study 2 introduced commonness judgments as a control condition, such that participants completed a recognition test on adjectives rated for commonness in addition to adjectives in the self-descriptiveness condition. Across both studies, findings indicate an increased response bias to self-referencing that increased hit rates for both older and younger adults but also increased false alarms as information became more self-descriptive, particularly for older adults. Although the present study supports previous literature showing a boost in memory for self-referenced information, the increase in false alarms, especially in older adults, highlights the potential for memory errors, particularly for information that is strongly related to the self.

  17. `Unlearning' has a stabilizing effect in collective memories

    NASA Astrophysics Data System (ADS)

    Hopfield, J. J.; Feinstein, D. I.; Palmer, R. G.

    1983-07-01

    Crick and Mitchison1 have presented a hypothesis for the functional role of dream sleep involving an `unlearning' process. We have independently carried out mathematical and computer modelling of learning and `unlearning' in a collective neural network of 30-1,000 neurones. The model network has a content-addressable memory or `associative memory' which allows it to learn and store many memories. A particular memory can be evoked in its entirety when the network is stimulated by any adequate-sized subpart of the information of that memory2. But different memories of the same size are not equally easy to recall. Also, when memories are learned, spurious memories are also created and can also be evoked. Applying an `unlearning' process, similar to the learning processes but with a reversed sign and starting from a noise input, enhances the performance of the network in accessing real memories and in minimizing spurious ones. Although our model was not motivated by higher nervous function, our system displays behaviours which are strikingly parallel to those needed for the hypothesized role of `unlearning' in rapid eye movement (REM) sleep.

  18. The Influences of Emotion on Learning and Memory

    PubMed Central

    Tyng, Chai M.; Amin, Hafeez U.; Saad, Mohamad N. M.; Malik, Aamir S.

    2017-01-01

    Emotion has a substantial influence on the cognitive processes in humans, including perception, attention, learning, memory, reasoning, and problem solving. Emotion has a particularly strong influence on attention, especially modulating the selectivity of attention as well as motivating action and behavior. This attentional and executive control is intimately linked to learning processes, as intrinsically limited attentional capacities are better focused on relevant information. Emotion also facilitates encoding and helps retrieval of information efficiently. However, the effects of emotion on learning and memory are not always univalent, as studies have reported that emotion either enhances or impairs learning and long-term memory (LTM) retention, depending on a range of factors. Recent neuroimaging findings have indicated that the amygdala and prefrontal cortex cooperate with the medial temporal lobe in an integrated manner that affords (i) the amygdala modulating memory consolidation; (ii) the prefrontal cortex mediating memory encoding and formation; and (iii) the hippocampus for successful learning and LTM retention. We also review the nested hierarchies of circular emotional control and cognitive regulation (bottom-up and top-down influences) within the brain to achieve optimal integration of emotional and cognitive processing. This review highlights a basic evolutionary approach to emotion to understand the effects of emotion on learning and memory and the functional roles played by various brain regions and their mutual interactions in relation to emotional processing. We also summarize the current state of knowledge on the impact of emotion on memory and map implications for educational settings. In addition to elucidating the memory-enhancing effects of emotion, neuroimaging findings extend our understanding of emotional influences on learning and memory processes; this knowledge may be useful for the design of effective educational curricula to provide a conducive learning environment for both traditional “live” learning in classrooms and “virtual” learning through online-based educational technologies. PMID:28883804

  19. A constrained rasch model of trace redintegration in serial recall.

    PubMed

    Roodenrys, Steven; Miller, Leonie M

    2008-04-01

    The notion that verbal short-term memory tasks, such as serial recall, make use of information in long-term as well as in short-term memory is instantiated in many models of these tasks. Such models incorporate a process in which degraded traces retrieved from a short-term store are reconstructed, or redintegrated (Schweickert, 1993), through the use of information in long-term memory. This article presents a conceptual and mathematical model of this process based on a class of item-response theory models. It is demonstrated that this model provides a better fit to three sets of data than does the multinomial processing tree model of redintegration (Schweickert, 1993) and that a number of conceptual accounts of serial recall can be related to the parameters of the model.

  20. A Functional Examination of Intermediate Cognitive Processes.

    DTIC Science & Technology

    1986-01-01

    memory ) and a body of accumulated information referred to as " semantic memory ". In contrast with episodic memory (which most psychological experiments...referents of input signals. (p. 386) But as Eysenck (1984) points out, there is "no precise dividing line" betveen episodic and semantic memory and although...involve), Tulving suggests that semantic memory is the more crucial to 5. .P, 31 performing everyday tasks: It is a mental thesaurus, the

  1. The role of trauma-related distractors on neural systems for working memory and emotion processing in posttraumatic stress disorder

    PubMed Central

    Morey, Rajendra A.; Dolcos, Florin; Petty, Christopher M.; Cooper, Debra A.; Hayes, Jasmeet Pannu; LaBar, Kevin S.; McCarthy, Gregory

    2009-01-01

    The relevance of emotional stimuli to threat and survival confers a privileged role in their processing. In PTSD, the ability of trauma-related information to divert attention is especially pronounced. Information unrelated to the trauma may also be highly distracting when it shares perceptual features with trauma material. Our goal was to study how trauma-related environmental cues modulate working memory networks in PTSD. We examined neural activity in participants performing a visual working memory task while distracted by task-irrelevant trauma and non-trauma material. Recent post-9/11 veterans were divided into a PTSD group (n = 22) and a trauma-exposed control group (n = 20) based on the Davidson trauma scale. Using fMRI, we measured hemodynamic change in response to emotional (trauma-related) and neutral distraction presented during the active maintenance period of a delayed-response working memory task. The goal was to examine differences in functional networks associated with working memory (dorsolateral prefrontal cortex and lateral parietal cortex) and emotion processing (amygdala, ventrolateral prefrontal cortex, and fusiform gyrus). The PTSD group showed markedly different neural activity compared to the trauma-exposed control group in response to task-irrelevant visual distractors. Enhanced activity in ventral emotion processing regions was associated with trauma distractors in the PTSD group, whereas activity in brain regions associated with working memory and attention regions was disrupted by distractor stimuli independent of trauma content. Neural evidence for the impact of distraction on working memory is consistent with PTSD symptoms of hypervigilance and general distractibility during goal-directed cognitive processing. PMID:19091328

  2. Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation

    PubMed Central

    Lambon Ralph, Matthew A.; Kempkes, Marleen; Cousins, James N.; Lewis, Penelope A.

    2016-01-01

    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation. PMID:27030764

  3. Hemispheric asymmetries in discourse processing: evidence from false memories for lists and texts.

    PubMed

    Ben-Artzi, Elisheva; Faust, Miriam; Moeller, Edna

    2009-01-01

    Previous research suggests that the right hemisphere (RH) may contribute uniquely to discourse and text processing by activating and maintaining a wide range of meanings, including more distantly related meanings. The present study used the word-lists false memory paradigm [Roediger, H. L., III, & McDermott, K. B. (1995). Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 803-814.] to examine the hypothesis that difference between the two cerebral hemispheres in discourse processing may be due, at least partly, to memory representations for implicit text-related semantic information. Specifically, we tested the susceptibility of the left hemisphere (LH) and RH to unpresented target words following the presentation of semantically related words appearing in either word lists or short texts. Findings showed that the RH produced more false alarms than the LH for unpresented target words following either word lists or texts. These findings reveal hemispheric differences in memory for semantically related information and suggest that RH advantage in long-term maintenance of a wide range of text-related word meanings may be one aspect of its unique contribution to the construction of a discourse model. The results support the RH coarse semantic coding theory [Beeman, M. (1998). Coarse semantic coding and discourse comprehension. In M. Beeman & C. Chiarello (Eds.), Right hemisphere language comprehension: Perspectives from cognitive neuroscience (pp. 255-284). Mahwah, NJ: Erlbaum.] and suggest that hemispheric differences in semantic processing during language comprehension extend also to verbal memory.

  4. Functional brain microstate predicts the outcome in a visuospatial working memory task.

    PubMed

    Muthukrishnan, Suriya-Prakash; Ahuja, Navdeep; Mehta, Nalin; Sharma, Ratna

    2016-11-01

    Humans have limited capacity of processing just up to 4 integrated items of information in the working memory. Thus, it is inevitable to commit more errors when challenged with high memory loads. However, the neural mechanisms that determine the accuracy of response at high memory loads still remain unclear. High temporal resolution of Electroencephalography (EEG) technique makes it the best tool to resolve the temporal dynamics of brain networks. EEG-defined microstate is the quasi-stable scalp electrical potential topography that represents the momentary functional state of brain. Thus, it has been possible to assess the information processing currently performed by the brain using EEG microstate analysis. We hypothesize that the EEG microstate preceding the trial could determine its outcome in a visuospatial working memory (VSWM) task. Twenty-four healthy participants performed a high memory load VSWM task, while their brain activity was recorded using EEG. Four microstate maps were found to represent the functional brain state prior to the trials in the VSWM task. One pre-trial microstate map was found to determine the accuracy of subsequent behavioural response. The intracranial generators of the pre-trial microstate map that determined the response accuracy were localized to the visuospatial processing areas at bilateral occipital, right temporal and limbic cortices. Our results imply that the behavioural outcome in a VSWM task could be determined by the intensity of activation of memory representations in the visuospatial processing brain regions prior to the trial. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. The effect of time perspectives on mental health information processing and help-seeking attitudes and intentions in younger versus older adults.

    PubMed

    Erickson, Julie; Mackenzie, Corey S; Menec, Verena H; Bailis, Daniel S

    2017-03-01

    Socioemotional selectivity theory posits that changes in time perspective over the lifespan are associated with distinct goals and motivations. Time perspectives and their associated socioemotional motivations have been shown to influence information processing and memory, such that motivation-consistent information is more likely to be remembered and evaluated more positively. The aim of this study was to examine the effect of motivation-consistent mental health information on memory for and evaluations of this information, as well as help-seeking attitudes and intentions to seek mental health services. We randomly assigned an Internet-based sample of 160 younger (18-25) and 175 older (60-89) adults to read a mental health information pamphlet that emphasized time perspectives and motivations relevant to either young adulthood (future-focused) or late adulthood (present-focused). Participants completed measures assessing their time perspective, memory for and subjective evaluation of the pamphlet, and help-seeking attitudes and intentions. The time perspective manipulation had no effect on memory for pamphlet information or help-seeking attitudes and intentions. There was, however, a significant interaction between time perspective and pamphlet version on the rated liking of the pamphlet. Although motivation-consistent information only affected perceptions of that information for present-focused (mostly older) individuals, this finding has important implications for enhancing older adults' mental health literacy.

  6. Memory processing in great apes: the effect of time and sleep

    PubMed Central

    Martin-Ordas, Gema; Call, Josep

    2011-01-01

    Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference. PMID:21632621

  7. Memory processing in great apes: the effect of time and sleep.

    PubMed

    Martin-Ordas, Gema; Call, Josep

    2011-12-23

    Following encoding, memory remains temporarily vulnerable to disruption. Consolidation refers to offline time-dependent processes that continue after encoding and stabilize, transform or enhance the memory trace. Memory consolidation resulting from sleep has been reported for declarative and non-declarative memories in humans. We first investigated the temporal course of memory retrieval in chimpanzees, bonobos and orangutans. We found that the amount of retrieved information was time dependent: apes' performance degraded after 1 and 2 h, stabilized after 4 h, started to increase after 8 and 12 h and fully recovered after 24 h. Second, we show that although memories during wakefulness were highly vulnerable to interference from events similar to those witnessed during the original encoding event, an intervening period of sleep not only stabilized apes' memories into more permanent ones but also protected them against interference.

  8. Prior perceptual processing enhances the effect of emotional arousal on the neural correlates of memory retrieval

    PubMed Central

    Dew, Ilana T. Z.; Ritchey, Maureen; LaBar, Kevin S.; Cabeza, Roberto

    2014-01-01

    A fundamental idea in memory research is that items are more likely to be remembered if encoded with a semantic, rather than perceptual, processing strategy. Interestingly, this effect has been shown to reverse for emotionally arousing materials, such that perceptual processing enhances memory for emotional information or events. The current fMRI study investigated the neural mechanisms of this effect by testing how neural activations during emotional memory retrieval are influenced by the prior encoding strategy. Participants incidentally encoded emotional and neutral pictures under instructions to attend to either semantic or perceptual properties of each picture. Recognition memory was tested two days later. fMRI analyses yielded three main findings. First, right amygdalar activity associated with emotional memory strength was enhanced by prior perceptual processing. Second, prior perceptual processing of emotional pictures produced a stronger effect on recollection- than familiarity-related activations in the right amygdala and left hippocampus. Finally, prior perceptual processing enhanced amygdalar connectivity with regions strongly associated with retrieval success, including hippocampal/parahippocampal regions, visual cortex, and ventral parietal cortex. Taken together, the results specify how encoding orientations yield alterations in brain systems that retrieve emotional memories. PMID:24380867

  9. Locus Coeruleus Activity Strengthens Prioritized Memories Under Arousal.

    PubMed

    Clewett, David V; Huang, Ringo; Velasco, Rico; Lee, Tae-Ho; Mather, Mara

    2018-02-07

    Recent models posit that bursts of locus ceruleus (LC) activity amplify neural gain such that limited attention and encoding resources focus even more on prioritized mental representations under arousal. Here, we tested this hypothesis in human males and females using fMRI, neuromelanin MRI, and pupil dilation, a biomarker of arousal and LC activity. During scanning, participants performed a monetary incentive encoding task in which threat of punishment motivated them to prioritize encoding of scene images over superimposed objects. Threat of punishment elicited arousal and selectively enhanced memory for goal-relevant scenes. Furthermore, trial-level pupil dilations predicted better scene memory under threat, but were not related to object memory outcomes. fMRI analyses revealed that greater threat-evoked pupil dilations were positively associated with greater scene encoding activity in LC and parahippocampal cortex, a region specialized to process scene information. Across participants, this pattern of LC engagement for goal-relevant encoding was correlated with neuromelanin signal intensity, providing the first evidence that LC structure relates to its activation pattern during cognitive processing. Threat also reduced dynamic functional connectivity between high-priority (parahippocampal place area) and lower-priority (lateral occipital cortex) category-selective visual cortex in ways that predicted increased memory selectivity. Together, these findings support the idea that, under arousal, LC activity selectively strengthens prioritized memory representations by modulating local and functional network-level patterns of information processing. SIGNIFICANCE STATEMENT Adaptive behavior relies on the ability to select and store important information amid distraction. Prioritizing encoding of task-relevant inputs is especially critical in threatening or arousing situations, when forming these memories is essential for avoiding danger in the future. However, little is known about the arousal mechanisms that support such memory selectivity. Using fMRI, neuromelanin MRI, and pupil measures, we demonstrate that locus ceruleus (LC) activity amplifies neural gain such that limited encoding resources focus even more on prioritized mental representations under arousal. For the first time, we also show that LC structure relates to its involvement in threat-related encoding processes. These results shed new light on the brain mechanisms by which we process important information when it is most needed. Copyright © 2018 the authors 0270-6474/18/381558-17$15.00/0.

  10. Object representations in visual memory: evidence from visual illusions.

    PubMed

    Ben-Shalom, Asaf; Ganel, Tzvi

    2012-07-26

    Human visual memory is considered to contain different levels of object representations. Representations in visual working memory (VWM) are thought to contain relatively elaborated information about object structure. Conversely, representations in iconic memory are thought to be more perceptual in nature. In four experiments, we tested the effects of two different categories of visual illusions on representations in VWM and in iconic memory. Unlike VWM that was affected by both types of illusions, iconic memory was immune to the effects of within-object contextual illusions and was affected only by illusions driven by between-objects contextual properties. These results show that iconic and visual working memory contain dissociable representations of object shape. These findings suggest that the global properties of the visual scene are processed prior to the processing of specific elements.

  11. Reconsolidation Allows Fear Memory to Be Updated to a Less Aversive Level through the Incorporation of Appetitive Information

    PubMed Central

    Haubrich, Josue; Crestani, Ana P; Cassini, Lindsey F; Santana, Fabiana; Sierra, Rodrigo O; Alvares, Lucas de O; Quillfeldt, Jorge A

    2015-01-01

    The capacity to adapt to new situations is one of the most important features of memory. When retrieved, memories may undergo a labile state that is sensitive to modification. This process, called reconsolidation, can lead to memory updating through the integration of new information into a previously consolidated memory background. Thus reconsolidation provides the opportunity to modify an undesired fear memory by updating its emotional valence to a less aversive level. Here we evaluated whether a fear memory can be reinterpreted by the concomitant presentation of an appetitive stimulus during its reactivation, hindering fear expression. We found that memory reactivation in the presence of appetitive stimuli resulted in the suppression of a fear response. In addition, fear expression was not amenable to reinstatement, spontaneous recovery, or rapid reacquisition. Such effect was prevented by either systemic injection of nimodipine or intra-hippocampal infusion of ifenprodil, indicating that memory updating was mediated by a reconsolidation mechanism relying on hippocampal neuronal plasticity. Taken together, this study shows that reconsolidation allows for a ‘re-signification' of unwanted fear memories through the incorporation of appetitive information. It brings a new promising cognitive approach to treat fear-related disorders. PMID:25027331

  12. Repeated Labilization-Reconsolidation Processes Strengthen Declarative Memory in Humans

    PubMed Central

    Forcato, Cecilia; Rodríguez, María L. C.; Pedreira, María E.

    2011-01-01

    The idea that memories are immutable after consolidation has been challenged. Several reports have shown that after the presentation of a specific reminder, reactivated old memories become labile and again susceptible to amnesic agents. Such vulnerability diminishes with the progress of time and implies a re-stabilization phase, usually referred to as reconsolidation. To date, the main findings describe the mechanisms associated with the labilization-reconsolidation process, but little is known about its functionality from a biological standpoint. Indeed, two functions have been proposed. One suggests that destabilization of the original memory after the reminder allows the integration of new information into the background of the original memory (memory updating), and the other suggests that the labilization-reconsolidation process strengthens the original memory (memory strengthening). We have previously reported the reconsolidation of human declarative memories, demonstrating memory updating in the framework of reconsolidation. Here we deal with the strengthening function attributed to the reconsolidation process. We triggered labilization-reconsolidation processes successively by repeated presentations of the proper reminder. Participants learned an association between five cue-syllables and their respective response-syllables. Twenty-four hours later, the paired-associate verbal memory was labilized by exposing the subjects to one, two or four reminders. The List-memory was evaluated on Day 3 showing that the memory was improved when at least a second reminder was presented in the time window of the first labilization-reconsolidation process prompted by the earlier reminder. However, the improvement effect was revealed on Day 3, only when at least two reminders were presented on Day2 and not as a consequence of only retrieval. Therefore, we propose central concepts for the reconsolidation process, emphasizing its biological role and the parametrical constrains for this function to be operative. PMID:21850268

  13. Memories for life: a review of the science and technology

    PubMed Central

    O'Hara, Kieron; Morris, Richard; Shadbolt, Nigel; Hitch, Graham J; Hall, Wendy; Beagrie, Neil

    2006-01-01

    This paper discusses scientific, social and technological aspects of memory. Recent developments in our understanding of memory processes and mechanisms, and their digital implementation, have placed the encoding, storage, management and retrieval of information at the forefront of several fields of research. At the same time, the divisions between the biological, physical and the digital worlds seem to be dissolving. Hence, opportunities for interdisciplinary research into memory are being created, between the life sciences, social sciences and physical sciences. Such research may benefit from immediate application into information management technology as a testbed. The paper describes one initiative, memories for life, as a potential common problem space for the various interested disciplines. PMID:16849265

  14. Strategic and Nonstrategic Information Acquisition.

    ERIC Educational Resources Information Center

    Berger, Charles R.

    2002-01-01

    Uses dual-process theories and research concerned with automaticity and the role conceptual short-term memory plays in visual information processing to illustrate both the ubiquity of nonstrategic information acquisition during interpersonal communication and its potential consequences on judgments and behavior. Discusses theoretical and…

  15. The Salience of the Self: Self-referential Processing and Internalizing Problems in Children and Adolescents with Autism Spectrum Disorder

    PubMed Central

    Burrows, Catherine A.; Usher, Lauren V.; Mundy, Peter C.; Henderson, Heather A.

    2016-01-01

    Scientific Abstract Children and adolescents with autism spectrum disorder (ASD) demonstrate atypical processing of, and memory for, self-referenced information, which may contribute to the heightened rates of co-occurring internalizing problems. We assessed affective and cognitive aspects of self-referential processing in verbally-fluent children with ASD (N=79), and an age-matched comparison sample (COM, N=73) of children without an autism diagnosis. We examined group differences in these two aspects of the self-system, and their joint contributions to individual differnces in internalizing problems. Using a self-referenced memory (SRM) task, participants indicated whether a series of positive and negative trait adjectives described themselves and a well-known fictional character. Participants were then surprised with a recognition memory test on the same adjectives. Overall, individuals with ASD showed a reduction in the extent to which they preferentially endorsed positive over negative trait adjectives about themselves, and a reduction in their preferential memory for self- over other-referenced information. Across the full sample, these two aspects of self-referential processing jointly predicted self-reported internalizing problems. Specifically, self-evaluations were strongly and inversely associated with internalizing problems but only for children with relatively high self-referenced memory. These findings suggest that the salience of the self influences the extent to which affective self-evaluations impact emotional functioning for youth both with and without ASD. Implications for basic (e.g., developmental) and translational (e.g., intervention) research are discussed. Lay Abstract Children with autism spectrum disorder (ASD) think about themselves differently than typically developing children do. Specifically, children with ASD think less positively of themselves than is typical, which can lead to anxiety and depression. Their system for remembering information about themselves is also altered. Usually, individuals relate new information to things they know about themselves to aid memory. However, individuals with ASD do not show better memory when they think about themselves, compared to when they think about another person, which is called preferential self-referenced memory (SRM). We examined what children with ASD (N=79), and an age-matched comparison sample (COM, N=73) think of themselves, and how well they remember information about themselves. Participants answered whether trait adjectives described themselves, and later were surprised with a memory test on those same adjectives. Overall, youth with ASD viewed themselves less positively than COM participants. Children with ASD also remembered fewer self-relevant relative to other-relevant adjectives. For all children, having strong memory for self-referenced information meant that positive self-evaluations were highly protective against symptoms of anxiety and depression. Self-referenced memory might tell us how much an individual focuses on what they think of themselves, for better or for worse. These differences could influence social skills and mental health in children with ASD. Differences in how individuals with ASD think about themselves may be important to address in treatment. PMID:27868365

  16. Do subjective memory complaints predict cognitive dysfunction over time? A six-year follow-up of the Maastricht Aging Study.

    PubMed

    Mol, Martine E M; van Boxtel, Martin P J; Willems, Dick; Jolles, Jelle

    2006-05-01

    Middle-aged and older people often worry that their perceived diminishing memory function may indicate incipient dementia. The present study addresses questions regarding subjective memory complaints as a predictor of lower performance on cognitive tasks. Also, in participants with subjective memory complaints it was investigated, whether trying to keep mentally active improved memory function. Characteristics of the participants who were and were not interested in an intervention to decrease worries and to improve memory in daily life were determined. Data were obtained from a large longitudinal study: the Maastricht Aging Study, involving 557 participants aged 55 to 85 years. Follow-up measurement was performed after 6 years. Outcome variables were simple, complex and general information processing speed and immediate and delayed recall. At baseline, forgetfulness was associated with a slower general information processing and delayed recall. At the six-year follow-up, being forgetful was not associated with a significant change in cognitive performance. Taking steps to remain cognitively active was not a predictor of better performance on cognitive tasks at baseline or at the six-year follow-up. Being forgetful might be an indicator of slower general information processing speed and delayed recall at baseline but does not predict cognitive change over 6 years in older adults. However, the effects are rather small and cannot directly be generalized to applications in clinical settings. Other factors, such as depression and anxiety might also underlie the cause of the forgetfulness.

  17. The cortical basis of true memory and false memory for motion.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2014-02-01

    Behavioral evidence indicates that false memory, like true memory, can be rich in sensory detail. By contrast, there is fMRI evidence that true memory for visual information produces greater activity in earlier visual regions than false memory, which suggests true memory is associated with greater sensory detail. However, false memory in previous fMRI paradigms may have lacked sufficient sensory detail to recruit earlier visual processing regions. To investigate this possibility in the present fMRI study, we employed a paradigm that produced feature-specific false memory with a high degree of visual detail. During the encoding phase, moving or stationary abstract shapes were presented to the left or right of fixation. During the retrieval phase, shapes from encoding were presented at fixation and participants classified each item as previously "moving" or "stationary" within each visual field. Consistent with previous fMRI findings, true memory but not false memory for motion activated motion processing region MT+, while both true memory and false memory activated later cortical processing regions. In addition, false memory but not true memory for motion activated language processing regions. The present findings indicate that true memory activates earlier visual regions to a greater degree than false memory, even under conditions of detailed retrieval. Thus, the dissociation between previous behavioral findings and fMRI findings do not appear to be task dependent. Future work will be needed to assess whether the same pattern of true memory and false memory activity is observed for different sensory modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Interfering with memory for faces: The cost of doing two things at once.

    PubMed

    Wammes, Jeffrey D; Fernandes, Myra A

    2016-01-01

    We inferred the processes critical for episodic retrieval of faces by measuring susceptibility to memory interference from different distracting tasks. Experiment 1 examined recognition of studied faces under full attention (FA) or each of two divided attention (DA) conditions requiring concurrent decisions to auditorily presented letters. Memory was disrupted in both DA relative to FA conditions, a result contrary to a material-specific account of interference effects. Experiment 2 investigated whether the magnitude of interference depended on competition between concurrent tasks for common processing resources. Studied faces were presented either upright (configurally processed) or inverted (featurally processed). Recognition was completed under FA, or DA with one of two face-based distracting tasks requiring either featural or configural processing. We found an interaction: memory for upright faces was lower under DA when the distracting task required configural than featural processing, while the reverse was true for memory of inverted faces. Across experiments, the magnitude of memory interference was similar (a 19% or 20% decline from FA) regardless of whether the materials in the distracting task overlapped with the to-be-remembered information. Importantly, interference was significantly larger (42%) when the processing demands of the distracting and target retrieval task overlapped, suggesting a processing-specific account of memory interference.

  19. Analysis of Memory Formation during General Anesthesia (Propofol/Remifentanil) for Elective Surgery Using the Process-dissociation Procedure.

    PubMed

    Hadzidiakos, Daniel; Horn, Nadja; Degener, Roland; Buchner, Axel; Rehberg, Benno

    2009-08-01

    There have been reports of memory formation during general anesthesia. The process-dissociation procedure has been used to determine if these are controlled (explicit/conscious) or automatic (implicit/unconscious) memories. This study used the process-dissociation procedure with the original measurement model and one which corrected for guessing to determine if more accurate results were obtained in this setting. A total of 160 patients scheduled for elective surgery were enrolled. Memory for words presented during propofol and remifentanil general anesthesia was tested postoperatively by using a word-stem completion task in a process-dissociation procedure. To assign possible memory effects to different levels of anesthetic depth, the authors measured depth of anesthesia using the BIS XP monitor (Aspect Medical Systems, Norwood, MA). Word-stem completion performance showed no evidence of memory for intraoperatively presented words. Nevertheless, an evaluation of these data using the original measurement model for process-dissociation data suggested an evidence of controlled (C = 0.05; 95% confidence interval [CI] 0.02-0.08) and automatic (A = 0.11; 95% CI 0.09-0.12) memory processes (P < 0.01). However, when the data were evaluated with an extended measurement model taking base rates into account adequately, no evidence for controlled (C = 0.00; 95% CI -0.04 to 0.04) or automatic (A = 0.00; 95% CI -0.02 to 0.02) memory processes was obtained. The authors report and discuss parallel findings for published data sets that were generated by using the process-dissociation procedure. Patients had no memories for auditory information presented during propofol/remifentanil anesthesia after midazolam premedication. The use of the process-dissociation procedure with the original measurement model erroneously detected memories, whereas the extended model, corrected for guessing, correctly revealed no memory.

  20. Synthetic Analog and Digital Circuits for Cellular Computation and Memory

    PubMed Central

    Purcell, Oliver; Lu, Timothy K.

    2014-01-01

    Biological computation is a major area of focus in synthetic biology because it has the potential to enable a wide range of applications. Synthetic biologists have applied engineering concepts to biological systems in order to construct progressively more complex gene circuits capable of processing information in living cells. Here, we review the current state of computational genetic circuits and describe artificial gene circuits that perform digital and analog computation. We then discuss recent progress in designing gene circuits that exhibit memory, and how memory and computation have been integrated to yield more complex systems that can both process and record information. Finally, we suggest new directions for engineering biological circuits capable of computation. PMID:24794536

  1. Cholinergic manipulations bidirectionally regulate object memory destabilization

    PubMed Central

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage. PMID:25776038

  2. The Event Related Brain Potential as an Index of Information Processing, Cognitive Activity, and Skill Acquisition: A Program of Basic Research.

    DTIC Science & Technology

    1983-10-01

    representations in memory as multidimensional "traces" containing infqrmation on both semantic and nonsemantic attributes. Isolation in this study results...effect and induced amnesia : Production by manipulation of sound intensity. Journal of Experimental Psychology: Human Learning and Memory , 1, 614-628...Thomson, D.M. (1973). Encoding specificity and retrieval processes in episodic memory . Psychological Review, 80, 352-373. .. -- "V- - ’. 4 -- .7 ’. ... . n

  3. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Circulatory fibre-optic memory loop with a built-in service channel

    NASA Astrophysics Data System (ADS)

    Pilipovich, V. A.; Esman, A. K.; Goncharenko, I. A.; Posed'ko, V. S.; Solonovich, I. F.

    1995-10-01

    A method for increasing the information capacity and enhancing the reliability of information storage in a dynamic fibre-optic memory is proposed. An additional built-in channel with counterpropagating circulation of signals is provided for this purpose. This additional channel can be used to transmit both information and service signals, such as address words, clock signals, correcting sequences, etc. The possibility of compensating the attenuation of an information signal by stimulated Raman scattering is considered.

  4. Processing and Memory of Information Presented in Narrative or Expository Texts

    ERIC Educational Resources Information Center

    Wolfe, Michael B. W.; Woodwyk, Joshua M.

    2010-01-01

    Background: Previous research suggests that narrative and expository texts differ in the extent to which they prompt students to integrate to-be-learned content with relevant prior knowledge during comprehension. Aims: We expand on previous research by examining on-line processing and representation in memory of to-be-learned content that is…

  5. Common data buffer

    NASA Technical Reports Server (NTRS)

    Byrne, F.

    1981-01-01

    Time-shared interface speeds data processing in distributed computer network. Two-level high-speed scanning approach routes information to buffer, portion of which is reserved for series of "first-in, first-out" memory stacks. Buffer address structure and memory are protected from noise or failed components by error correcting code. System is applicable to any computer or processing language.

  6. Respecting Relations: Memory Access and Antecedent Retrieval in Incremental Sentence Processing

    ERIC Educational Resources Information Center

    Kush, Dave W.

    2013-01-01

    This dissertation uses the processing of anaphoric relations to probe how linguistic information is encoded in and retrieved from memory during real-time sentence comprehension. More specifically, the dissertation attempts to resolve a tension between the demands of a linguistic processor implemented in a general-purpose cognitive architecture and…

  7. Neuroscientific Insights: Attention, Working Memory, and Inhibitory Control

    ERIC Educational Resources Information Center

    Raver, C. Cybele; Blair, Clancy

    2016-01-01

    In this article, Cybele Raver and Clancy Blair explore a group of cognitive processes called executive function (EF)--including the flexible control of attention, the ability to hold information through working memory, and the ability to maintain inhibitory control. EF processes are crucial for young children's learning. On the one hand, they can…

  8. Sequential Processes in Image Generation: An Objective Measure. Technical Report #6.

    ERIC Educational Resources Information Center

    Kosslyn, Stephen M.; And Others

    This paper investigates the processes by which visual mental images--the precept-like short-term memory representations--are created from information stored in long-term memory. It also presents a new method for studying image generation. Three experiments were conducted using college students as subjects. In the first experiment, a Podgorny and…

  9. Storage and executive processes in the frontal lobes.

    PubMed

    Smith, E E; Jonides, J

    1999-03-12

    The human frontal cortex helps mediate working memory, a system that is used for temporary storage and manipulation of information and that is involved in many higher cognitive functions. Working memory includes two components: short-term storage (on the order of seconds) and executive processes that operate on the contents of storage. Recently, these two components have been investigated in functional neuroimaging studies. Studies of storage indicate that different frontal regions are activated for different kinds of information: storage for verbal materials activates Broca's area and left-hemisphere supplementary and premotor areas; storage of spatial information activates the right-hemisphere premotor cortex; and storage of object information activates other areas of the prefrontal cortex. Two of the fundamental executive processes are selective attention and task management. Both processes activate the anterior cingulate and dorsolateral prefrontal cortex.

  10. Lesions affecting the right hippocampal formation differentially impair short-term memory of spatial and nonspatial associations.

    PubMed

    Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J

    2011-03-01

    Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.

  11. Radiative bistability and thermal memory.

    PubMed

    Kubytskyi, Viacheslav; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2014-08-15

    We predict the existence of a thermal bistability in many-body systems out of thermal equilibrium which exchange heat by thermal radiation using insulator-metal transition materials. We propose a writing-reading procedure and demonstrate the possibility to exploit the thermal bistability to make a volatile thermal memory. We show that this thermal memory can be used to store heat and thermal information (via an encoding temperature) for arbitrary long times. The radiative thermal bistability could find broad applications in the domains of thermal management, information processing, and energy storage.

  12. The Magical Mystery Four: How is Working Memory Capacity Limited, and Why?

    PubMed Central

    Cowan, Nelson

    2009-01-01

    Working memory storage capacity is important because cognitive tasks can be completed only with sufficient ability to hold information as it is processed. The ability to repeat information depends on task demands but can be distinguished from a more constant, underlying mechanism: a central memory store limited to 3 to 5 meaningful items in young adults. I will discuss why this central limit is important, how it can be observed, how it differs among individuals, and why it may occur. PMID:20445769

  13. Quantifying Age-Related Differences in Information Processing Behaviors When Viewing Prescription Drug Labels

    PubMed Central

    Sundar, Raghav Prashant; Becker, Mark W.; Bello, Nora M.; Bix, Laura

    2012-01-01

    Adverse drug events (ADEs) are a significant problem in health care. While effective warnings have the potential to reduce the prevalence of ADEs, little is known about how patients access and use prescription labeling. We investigated the effectiveness of prescription warning labels (PWLs, small, colorful stickers applied at the pharmacy) in conveying warning information to two groups of patients (young adults and those 50+). We evaluated the early stages of information processing by tracking eye movements while participants interacted with prescription vials that had PWLs affixed to them. We later tested participants’ recognition memory for the PWLs. During viewing, participants often failed to attend to the PWLs; this effect was more pronounced for older than younger participants. Older participants also performed worse on the subsequent memory test. However, when memory performance was conditionalized on whether or not the participant had fixated the PWL, these age-related differences in memory were no longer significant, suggesting that the difference in memory performance between groups was attributable to differences in attention rather than differences in memory encoding or recall. This is important because older adults are recognized to be at greater risk for ADEs. These data provide a compelling case that understanding consumers’ attentive behavior is crucial to developing an effective labeling standard for prescription drugs. PMID:22719955

  14. The development of visuo-spatial working memory.

    PubMed

    Pickering, S J

    2001-01-01

    Children's performance on tests of visuo-spatial working memory improves with age, although relatively little is known about why this happens. One explanation concerns the development of the ability to recode visually presented information into phonological form. This process appears to be used from around 8 years of age and is a major contributor to tasks in which stimuli can be verbally labelled. However, evidence suggests that phonological recoding cannot account for all of the age-related change in performance on visuo-spatial working memory tasks. In this review, four other mechanisms (knowledge, processing strategies, processing speed, and attentional capacity) are considered in terms of their contribution to children's visuo-spatial working memory development.

  15. Working memory training improves visual short-term memory capacity.

    PubMed

    Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H

    2016-01-01

    Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.

  16. Social influence and mental routes to the production of authentic false memories and inauthentic false memories.

    PubMed

    Wagner, Michael F; Skowronski, John J

    2017-05-01

    Two studies assessed the extent to which people incorporated false facts provided by bogus others into their own recognition memory reports, and how these false memory reports were affected by: (a) truth of the information in others' summaries supporting the false facts, (b) motivation to process stories and summaries, (c) source credibility, and (d) ease of remembering original facts. False memory report frequency increased when false facts in a summary were supported by true information and varied inversely with the ease with which original facts could be remembered. Results from a measure probing participants' memory perceptions suggest that some false memories are authentic: People sometimes lack awareness of both the incorporation of false facts into their memory reports and where the false facts came from. However, many false memories are inauthentic: Despite reporting a false memory, people sometimes retain knowledge of the original stimulus and/or the origin of false facts. Copyright © 2017. Published by Elsevier Inc.

  17. The Roles of Working Memory and Cognitive Load in Geoscience Learning

    ERIC Educational Resources Information Center

    Jaeger, Allison J.; Shipley, Thomas F.; Reynolds, Stephen J.

    2017-01-01

    Working memory is a cognitive system that allows for the simultaneous storage and processing of active information. While working memory has been implicated as an important element for success in many science, technology, engineering, and mathematics (STEM) fields, its specific role in geoscience learning is not fully understood. The major goal of…

  18. A Mobile Technology Framework for the Dissemination of Cultural Memory

    ERIC Educational Resources Information Center

    Kammas, Stavros

    2009-01-01

    The current research proposes a mobile technology framework in cultural heritage setting for the dissemination of cultural memory among its visitors. The framework studies the complex concept of human memory and attempts to adopt the human information perception, as a learning process, on a mobile framework that will allow their users to interact…

  19. Recognition Decisions from Visual Working Memory Are Mediated by Continuous Latent Strengths

    ERIC Educational Resources Information Center

    Ricker, Timothy J.; Thiele, Jonathan E.; Swagman, April R.; Rouder, Jeffrey N.

    2017-01-01

    Making recognition decisions often requires us to reference the contents of working memory, the information available for ongoing cognitive processing. As such, understanding how recognition decisions are made when based on the contents of working memory is of critical importance. In this work we examine whether recognition decisions based on the…

  20. Tone Series and the Nature of Working Memory Capacity Development

    ERIC Educational Resources Information Center

    Clark, Katherine M.; Hardman, Kyle O.; Schachtman, Todd R.; Saults, J. Scott; Glass, Bret A.; Cowan, Nelson

    2018-01-01

    Recent advances in understanding visual working memory, the limited information held in mind for use in ongoing processing, are extended here to examine auditory working memory development. Research with arrays of visual objects has shown how to distinguish the capacity, in terms of the "number" of objects retained, from the…

  1. Working Memory Encoding Delays Top-Down Attention to Visual Cortex

    ERIC Educational Resources Information Center

    Scalf, Paige E.; Dux, Paul E.; Marois, Rene

    2011-01-01

    The encoding of information from one event into working memory can delay high-level, central decision-making processes for subsequent events [e.g., Jolicoeur, P., & Dell'Acqua, R. The demonstration of short-term consolidation. "Cognitive Psychology, 36", 138-202, 1998, doi:10.1006/cogp.1998.0684]. Working memory, however, is also believed to…

  2. The role of controlled attention on recall in major depression

    PubMed Central

    Ellis, Alissa J.; Wells, Tony T.; Vanderlind, W. Michael; Beevers, Christopher G.

    2013-01-01

    Information processing biases are hallmark features of major depressive disorder (MDD). Depressed individuals display biased memory and attention for negative material. Given that memory is highly dependent on attention for initial encoding, understanding the interplay of these processes may provide important insight into mechanisms that produce memory biases in depression. In particular, attentional control—the ability to selectively attend to task-relevant information by both inhibiting the processing of irrelevant information and disengaging attention from irrelevant material—may be one area of impairment in MDD. In the current study, clinically depressed (MDD: n = 15) and never depressed (non- MDD: n = 22) participants’ line of visual gaze was assessed while participants viewed positive and negative word pairs. For each word pair, participants were instructed to attend to one word (target) and ignore one word (distracter). Free recall of study stimuli was then assessed. Depressed individuals displayed greater recall of negatively valenced target words following the task. Although there were no group differences in attentional control in the context of negative words, attention to negative targets mediated the relationship between depression status and recall of negative words. Results suggest a stronger link between attention and memory for negative material in MDD. PMID:24006889

  3. Why do Alzheimer patients have difficulty with pronouns? Working memory, semantics, and reference in comprehension and production in Alzheimer's disease.

    PubMed

    Almor, A; Kempler, D; MacDonald, M C; Andersen, E S; Tyler, L K

    1999-05-01

    Three experiments investigated the extent to which semantic and working-memory deficits contribute to Alzheimer patients' impairments in producing and comprehending referring expressions. In Experiment 1, the spontaneous speech of 11 patients with Alzheimer's disease (AD) contained a greater ratio of pronouns to full noun phrases than did the spontaneous speech produced by 9 healthy controls. Experiments 2 and 3 used a cross-modal naming methodology to compare reference comprehension in another group of 10 patients and 10 age-matched controls. In Experiment 2, patients were less sensitive than healthy controls to the grammatical information necessary for processing pronouns. In Experiment 3, patients were better able to remember referent information in short paragraphs when reference was maintained with full noun phrases rather than pronouns, but healthy controls showed the reverse pattern. Performance in all three experiments was linked to working memory performance but not to word finding difficulty. We discuss these findings in terms of a theory of reference processing, the Informational Load Hypothesis, which views referential impairments in AD as the consequence of normal discourse processing in the context of a working memory impairment. Copyright 1999 Academic Press.

  4. The role of controlled attention on recall in major depression.

    PubMed

    Ellis, Alissa J; Wells, Tony T; Vanderlind, W Michael; Beevers, Christopher G

    2014-04-01

    Information processing biases are hallmark features of major depressive disorder (MDD). Depressed individuals display biased memory and attention for negative material. Given that memory is highly dependent on attention for initial encoding, understanding the interplay of these processes may provide important insight into mechanisms that produce memory biases in depression. In particular, attentional control-the ability to selectively attend to task-relevant information by both inhibiting the processing of irrelevant information and disengaging attention from irrelevant material-may be one area of impairment in MDD. In the current study, clinically depressed (MDD: n = 15) and never depressed (non-MDD: n = 22) participants' line of visual gaze was assessed while participants viewed positive and negative word pairs. For each word pair, participants were instructed to attend to one word (target) and ignore one word (distracter). Free recall of study stimuli was then assessed. Depressed individuals displayed greater recall of negatively valenced target words following the task. Although there were no group differences in attentional control in the context of negative words, attention to negative targets mediated the relationship between depression status and recall of negative words. Results suggest a stronger link between attention and memory for negative material in MDD.

  5. Another look at retroactive and proactive interference: a quantitative analysis of conversion processes.

    PubMed

    Blank, Hartmut

    2005-02-01

    Traditionally, the causes of interference phenomena were sought in "real" or "hard" memory processes such as unlearning, response competition, or inhibition, which serve to reduce the accessibility of target items. I propose an alternative approach which does not deny the influence of such processes but highlights a second, equally important, source of interference-the conversion (Tulving, 1983) of accessible memory information into memory performance. Conversion is conceived as a problem-solving-like activity in which the rememberer tries to find solutions to a memory task. Conversion-based interference effects are traced to different conversion processes in the experimental and control conditions of interference designs. I present a simple theoretical model that quantitatively predicts the resulting amount of interference. In two paired-associate learning experiments using two different types of memory tests, these predictions were corroborated. Relations of the present approach to traditional accounts of interference phenomena and implications for eyewitness testimony are discussed.

  6. Cocaine, Appetitive Memory and Neural Connectivity

    PubMed Central

    Ray, Suchismita

    2013-01-01

    This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental literature, no study has examined both implicit and explicit memory processes involving cocaine related visual information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) none of the previous imaging studies has examined connectivity between the memory system and craving system in the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. PMID:25009766

  7. Activation and binding in verbal working memory: a dual-process model for the recognition of nonwords.

    PubMed

    Oberauer, Klaus; Lange, Elke B

    2009-02-01

    The article presents a mathematical model of short-term recognition based on dual-process models and the three-component theory of working memory [Oberauer, K. (2002). Access to information in working memory: Exploring the focus of attention. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 411-421]. Familiarity arises from activated representations in long-term memory, ignoring their relations; recollection retrieves bindings in the capacity-limited component of working memory. In three experiments participants encoded two short lists of nonwords for immediate recognition, one of which was then cued as irrelevant. Probes from the irrelevant list were rejected more slowly than new probes; this was also found with probes recombining letters of irrelevant nonwords, suggesting that familiarity arises from individual letters independent of their relations. When asked to accept probes whose letters were all in the relevant list, regardless of their conjunction, participants accepted probes preserving the original conjunctions faster than recombinations, showing that recollection accessed feature bindings automatically. The model fit the data best when familiarity depended only on matching letters, whereas recollection used binding information.

  8. Coarse-to-fine construction for high-resolution representation in visual working memory.

    PubMed

    Gao, Zaifeng; Ding, Xiaowei; Yang, Tong; Liang, Junying; Shui, Rende

    2013-01-01

    This study explored whether the high-resolution representations created by visual working memory (VWM) are constructed in a coarse-to-fine or all-or-none manner. The coarse-to-fine hypothesis suggests that coarse information precedes detailed information in entering VWM and that its resolution increases along with the processing time of the memory array, whereas the all-or-none hypothesis claims that either both enter into VWM simultaneously, or neither does. We tested the two hypotheses by asking participants to remember two or four complex objects. An ERP component, contralateral delay activity (CDA), was used as the neural marker. CDA is higher for four objects than for two objects when coarse information is primarily extracted; yet, this CDA difference vanishes when detailed information is encoded. Experiment 1 manipulated the comparison difficulty of the task under a 500-ms exposure time to determine a condition in which the detailed information was maintained. No CDA difference was found between two and four objects, even in an easy-comparison condition. Thus, Experiment 2 manipulated the memory array's exposure time under the easy-comparison condition and found a significant CDA difference at 100 ms while replicating Experiment 1's results at 500 ms. In Experiment 3, the 500-ms memory array was blurred to block the detailed information; this manipulation reestablished a significant CDA difference. These findings suggest that the creation of high-resolution representations in VWM is a coarse-to-fine process.

  9. DESIGN PRINCIPLES FOR AN ON-LINE INFORMATION RETRIEVAL SYSTEM. TECHNICAL REPORT.

    ERIC Educational Resources Information Center

    LOWE, THOMAS C.

    AREAS INVESTIGATED INCLUDE SLOW MEMORY DATA STORAGE, THE PROBLEM OF DECODING FROM AN INDEX TO A SLOW MEMORY ADDRESS, THE STRUCTURE OF DATA LISTS AND DATA LIST OPERATORS, COMMUNICATIONS BETWEEN THE HUMAN USER AND THE SYSTEM, PROCESSING OF RETRIEVAL REQUESTS, AND THE USER'S CONTROL OVER THE RETURN OF INFORMATION RETRIEVED. LINEAR, LINKED AND…

  10. Memory and Common Ground Processes in Language Use.

    PubMed

    Brown-Schmidt, Sarah; Duff, Melissa C

    2016-10-01

    During communication, we form assumptions about what our communication partners know and believe. Information that is mutually known between the discourse partners-their common ground-serves as a backdrop for successful communication. Here we present an introduction to the focus of this topic, which is the role of memory in common ground and language use. Two types of questions emerge as central to understanding the relationship between memory and common ground, specifically questions having to do with the representation of common ground in memory, and the use of common ground during language processing. Copyright © 2016 Cognitive Science Society, Inc.

  11. The Role of Anterior Nuclei of the Thalamus: A Subcortical Gate in Memory Processing: An Intracerebral Recording Study.

    PubMed

    Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan

    2015-01-01

    To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.

  12. Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress

    PubMed Central

    Ritchey, Maureen; McCullough, Andrew M.; Ranganath, Charan; Yonelinas, Andrew P.

    2016-01-01

    Acute stress has been shown to modulate memory for recently learned information, an effect attributed to the influence of stress hormones on medial temporal lobe (MTL) consolidation processes. However, little is known about which memories will be affected when stress follows encoding. One possibility is that stress interacts with encoding processes to selectively protect memories that had elicited responses in the hippocampus and amygdala, two MTL structures important for memory formation. There is limited evidence for interactions between encoding processes and consolidation effects in humans, but recent studies of consolidation in rodents have emphasized the importance of encoding “tags” for determining the impact of consolidation manipulations on memory. Here, we used fMRI in humans to test the hypothesis that the effects of post-encoding stress depend on MTL processes observed during encoding. We found that changes in stress hormone levels were associated with an increase in the contingency of memory outcomes on hippocampal and amygdala encoding responses. That is, for participants showing high cortisol reactivity, memories became more dependent on MTL activity observed during encoding, thereby shifting the distribution of recollected events toward those that had elicited relatively high activation. Surprisingly, this effect was generally larger for neutral, compared to emotionally negative, memories. The results suggest that stress does not uniformly enhance memory, but instead selectively preserves memories tagged during encoding, effectively acting as mnemonic filter. PMID:27774683

  13. Audiovisual speech facilitates voice learning.

    PubMed

    Sheffert, Sonya M; Olson, Elizabeth

    2004-02-01

    In this research, we investigated the effects of voice and face information on the perceptual learning of talkers and on long-term memory for spoken words. In the first phase, listeners were trained over several days to identify voices from words presented auditorily or audiovisually. The training data showed that visual information about speakers enhanced voice learning, revealing cross-modal connections in talker processing akin to those observed in speech processing. In the second phase, the listeners completed an auditory or audiovisual word recognition memory test in which equal numbers of words were spoken by familiar and unfamiliar talkers. The data showed that words presented by familiar talkers were more likely to be retrieved from episodic memory, regardless of modality. Together, these findings provide new information about the representational code underlying familiar talker recognition and the role of stimulus familiarity in episodic word recognition.

  14. Cognitive Theory within the Framework of an Information Processing Model and Learning Hierarchy: Viable Alternative to the Bloom-Mager System.

    ERIC Educational Resources Information Center

    Stahl, Robert J.

    This review of the current status of the human information processing model presents the Stahl Perceptual Information Processing and Operations Model (SPInPrOM) as a model of how thinking, memory, and the processing of information take place within the individual learner. A related system, the Domain of Cognition, is presented as an alternative to…

  15. Operator Performance Measures for Assessing Voice Communication Effectiveness

    DTIC Science & Technology

    1989-07-01

    performance and work- load assessment techniques have been based.I Broadbent (1958) described a limited capacity filter model of human information...INFORMATION PROCESSING 20 3.1.1. Auditory Attention 20 3.1.2. Auditory Memory 24 3.2. MODELS OF INFORMATION PROCESSING 24 3.2.1. Capacity Theories 25...Learning 0 Attention * Language Specialization • Decision Making• Problem Solving Auditory Information Processing Models of Processing Ooemtor

  16. Reduced effects of pictorial distinctiveness on false memory following dynamic visual noise.

    PubMed

    Parker, Andrew; Kember, Timothy; Dagnall, Neil

    2017-07-01

    High levels of false recognition for non-presented items typically occur following exposure to lists of associated words. These false recognition effects can be reduced by making the studied items more distinctive by the presentation of pictures during encoding. One explanation of this is that during recognition, participants expect or attempt to retrieve distinctive pictorial information in order to evaluate the study status of the test item. If this involves the retrieval and use of visual imagery, then interfering with imagery processing should reduce the effectiveness of pictorial information in false memory reduction. In the current experiment, visual-imagery processing was disrupted at retrieval by the use of dynamic visual noise (DVN). It was found that effects of DVN dissociated true from false memory. Memory for studied words was not influenced by the presence of an interfering noise field. However, false memory was increased and the effects of picture-induced distinctiveness was eliminated. DVN also increased false recollection and remember responses to unstudied items.

  17. How the Brain Learns: A Classroom Teacher's Guide. Second Edition.

    ERIC Educational Resources Information Center

    Sousa, David A.

    This book presents information to help teachers turn research on brain function into practical classroom activities and lessons, offering: brain facts; information on how the brain processes information; tips on maximizing retention; an information processing model that reflects new terminology regarding the memory systems; new research on how the…

  18. A trade-off between local and distributed information processing associated with remote episodic versus semantic memory.

    PubMed

    Heisz, Jennifer J; Vakorin, Vasily; Ross, Bernhard; Levine, Brian; McIntosh, Anthony R

    2014-01-01

    Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.

  19. Effects of medial prefrontal cortex lesions in rats on the what-where-when memory of a fear conditioning event.

    PubMed

    Li, Jay-Shake; Hsiao, Kun-Yuan; Chen, Wei-Min

    2011-03-17

    Previous animal studies have defined the ability to remember the details of what, where, and when of an event as an episodic-like memory to be used to model episodic memory in humans. Numerous findings indicate that the hippocampal-frontal cortical circuitry plays a major part in its neural mechanism. Researchers have intensively studied roles of diverse hippocampus sub-regions using animal models. By contrast, the impact of prefrontal cortex lesions on episodic-like memory in animals is still unknown. Here we show that Wistar rats with bilateral medial prefrontal cortex lesions failed to use the temporal-contextual information to retrieve memory of a fear-conditioning event, indicating impairments in their episodic-like memory. Subsequent experiments excluded alternative interpretations that the manipulation impaired the fear-conditioning per se, or interfered with the sensory preconditioning process. We concluded that damages in this area might impair temporal information processing, or interfere with integrating temporal and contextual elements of fear-conditioning events to form a conjunctive entity. These findings can help understand how the medial prefrontal cortex contributes to episodic-like memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. Working memory capacity in social anxiety disorder: Revisiting prior conclusions.

    PubMed

    Waechter, Stephanie; Moscovitch, David A; Vidovic, Vanja; Bielak, Tatiana; Rowa, Karen; McCabe, Randi E

    2018-04-01

    In one of the few studies examining working memory processes in social anxiety disorder (SAD), Amir and Bomyea (2011) recruited participants with and without SAD to complete a working memory span task with neutral and social threat words. Those with SAD showed better working memory performance for social threat words compared to neutral words, suggesting an enhancement in processing efficiency for socially threatening information in SAD. The current study sought to replicate and extend these findings. In this study, 25 participants with a principal diagnosis of SAD, 24 anxious control (AC) participants with anxiety disorders other than SAD, and 27 healthy control (HC) participants with no anxiety disorder completed a working memory task with social threat, general threat, and neutral stimuli. The groups in the current study demonstrated similar working memory performance within each of the word type conditions, thus failing to replicate the principal findings of Amir and Bomyea (2011). Post hoc analyses revealed a significant association between higher levels of anxiety symptomatology and poorer overall WM performance. These results inform our understanding of working memory in the anxiety disorders and support the importance of replication in psychological research. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Rapid Forgetting Results From Competition Over Time Between Items in Visual Working Memory

    PubMed Central

    2016-01-01

    Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is interference between stored items that leads to loss of information or simply temporal decay. Here we show that both factors are essential and interact in a highly specific manner. Although a single item can be maintained in memory with high fidelity, multiple items compete in working memory, progressively degrading each other’s representations as time passes. Specifically, interaction between items is associated with both worsening precision and increased reporting errors of object features over time. Importantly, during the period of maintenance, although items are no longer visible, maintenance resources can be selectively redeployed to protect the probability to recall the correct feature and the precision with which cued items can be recalled, as if it was the only item in memory. These findings reveal that the biased competition concept could be applied not only to perceptual processes but also to active maintenance of working memory representations over time. PMID:27668485

  2. Cognitive and neural consequences of memory suppression in major depressive disorder.

    PubMed

    Sacchet, Matthew D; Levy, Benjamin J; Hamilton, J Paul; Maksimovskiy, Arkadiy; Hertel, Paula T; Joormann, Jutta; Anderson, Michael C; Wagner, Anthony D; Gotlib, Ian H

    2017-02-01

    Negative biases in cognition have been documented consistently in major depressive disorder (MDD), including difficulties in the ability to control the processing of negative material. Although negative information-processing biases have been studied using both behavioral and neuroimaging paradigms, relatively little research has been conducted examining the difficulties of depressed persons with inhibiting the retrieval of negative information from long-term memory. In this study, we used the think/no-think paradigm and functional magnetic resonance imaging to assess the cognitive and neural consequences of memory suppression in individuals diagnosed with depression and in healthy controls. The participants showed typical behavioral forgetting effects, but contrary to our hypotheses, there were no differences between the depressed and nondepressed participants or between neutral and negative memories. Relative to controls, depressed individuals exhibited greater activity in right middle frontal gyrus during memory suppression, regardless of the valence of the suppressed stimuli, and differential activity in the amygdala and hippocampus during memory suppression involving negatively valenced stimuli. These findings indicate that depressed individuals are characterized by neural anomalies during the suppression of long-term memories, increasing our understanding of the brain bases of negative cognitive biases in MDD.

  3. Short-term effects of glucose and sucrose on cognitive performance and mood in elderly people.

    PubMed

    van der Zwaluw, Nikita L; van de Rest, Ondine; Kessels, Roy P C; de Groot, Lisette C P G M

    2014-01-01

    In this study we determined the short-term effects of a glucose drink and a sucrose drink compared to a placebo on cognitive performance and mood in elderly people with subjective, mild memory complaints using a randomized crossover study design. In total, 43 nondiabetic older adults with self-reported memory complaints were included. Drinks consisted of 250 ml with dissolved glucose (50 g), sucrose (100 g), or a mixture of artificial sweeteners (placebo). Multiple neuropsychological tests were performed and were combined by means of z scores into four cognitive domains: episodic memory, working memory, attention and information (processing speed), and executive functioning. Mood was assessed with the short Profile of Mood Status (s-POMS) questionnaire. Blood glucose concentrations were measured at five time points to divide participants into those with a better or poorer blood glucose recovery. Performance on the domain of attention and information processing speed was significantly better after consuming the sucrose drink (domain score of 0.06, SD = 0.91) than after the placebo drink (-0.08, SD = 0.92, p = .04). Sucrose had no effect on the other three domains, and glucose had no effect on any of the domains compared to the placebo. When dividing participants into poorer or better glucose recoverers, the beneficial effect of sucrose on attention and information processing speed was only seen in participants with a poorer recovery. After sucrose consumption, depressive feelings and tension were slightly higher than after the placebo. To conclude, 100 g sucrose, but not 50 g glucose, optimized attention and information processing speed in the short term in this study in elderly people with subjective, mild memory complaints.

  4. The longevity of adaptive memory: evidence for mnemonic advantages of survival processing 24 and 48 hours later.

    PubMed

    Raymaekers, Linsey H C; Otgaar, Henry; Smeets, Tom

    2014-01-01

    Prior studies have convincingly demonstrated that survival-related processing of information enhances its subsequent retention. This phenomenon, known as the survival recall advantage, generalises to other stimuli, memory domains, and research populations, thereby underscoring its reliability. As previous studies used only short retention intervals between survival processing and the memory test, an important yet hitherto unanswered issue is whether this effect persists over time. The present experiment therefore examined whether survival processing also produces mnemonic benefits when retention is tested after longer delay periods. Participants (N =81) rated the relevance of words according to a survival and a moving scenario, and were then randomly assigned to the typical immediate (3-minute delay) retention test condition or conditions that included a 24- or 48-hour interval between survival processing and memory testing. In each of these conditions survival processing led to higher surprise free recall and recognition rates than processing words according to the moving scenario. Thus this study provides evidence that illustrates the longevity of survival processing advantages on memory performance.

  5. Effects of language dominance on item and order memory in free recall, serial recall and order reconstruction.

    PubMed

    Francis, Wendy S; Baca, Yuzeth

    2014-01-01

    Spanish-English bilinguals (N = 144) performed free recall, serial recall and order reconstruction tasks in both English and Spanish. Long-term memory for both item and order information was worse in the less fluent language (L2) than in the more fluent language (L1). Item scores exhibited a stronger disadvantage for the L2 in serial recall than in free recall. Relative order scores were lower in the L2 for all three tasks, but adjusted scores for free and serial recall were equivalent across languages. Performance of English-speaking monolinguals (N = 72) was comparable to bilingual performance in the L1, except that monolinguals had higher adjusted order scores in free recall. Bilingual performance patterns in the L2 were consistent with the established effects of concurrent task performance on these memory tests, suggesting that the cognitive resources required for processing words in the L2 encroach on resources needed to commit item and order information to memory. These findings are also consistent with a model in which item memory is connected to the language system, order information is processed by separate mechanisms and attention can be allocated differentially to these two systems.

  6. Retrograde and anterograde memory following selective damage to the dorsolateral entorhinal cortex.

    PubMed

    Gervais, Nicole J; Barrett-Bernstein, Meagan; Sutherland, Robert J; Mumby, Dave G

    2014-12-01

    Anatomical and electrophysiological evidence suggest the dorsolateral entorhinal cortex (DLEC) is involved in processing spatial information, but there is currently no consensus on whether its functions are necessary for normal spatial learning and memory. The present study examined the effects of excitotoxic lesions of the DLEC on retrograde and anterograde memory on two tests of allocentric spatial learning: a hidden fixed-platform watermaze task, and a novelty-preference-based dry-maze test. Deficits were observed on both tests when training occurred prior to but not following n-methyl d-aspartate (NMDA) lesions of DLEC, suggesting retrograde memory impairment in the absence of anterograde impairments for the same information. The retrograde memory impairments were temporally-graded; rats that received DLEC lesions 1-3 days following training displayed deficits, while those that received lesions 7-10 days following training performed like a control group that received sham surgery. The deficits were not attenuated by co-infusion of tetrodotoxin, suggesting they are not due to disruption of neural processing in structures efferent to the DLEC, such as the hippocampus. The present findings provide evidence that the DLEC is involved in the consolidation of allocentric spatial information. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding

    PubMed Central

    Maass, Anne; Schütze, Hartmut; Speck, Oliver; Yonelinas, Andrew; Tempelmann, Claus; Heinze, Hans-Jochen; Berron, David; Cardenas-Blanco, Arturo; Brodersen, Kay H.; Enno Stephan, Klaas; Düzel, Emrah

    2014-01-01

    The ability to form long-term memories for novel events depends on information processing within the hippocampus (HC) and entorhinal cortex (EC). The HC–EC circuitry shows a quantitative segregation of anatomical directionality into different neuronal layers. Whereas superficial EC layers mainly project to dentate gyrus (DG), CA3 and apical CA1 layers, HC output is primarily sent from pyramidal CA1 layers and subiculum to deep EC layers. Here we utilize this directionality information by measuring encoding activity within HC/EC subregions with 7 T high resolution functional magnetic resonance imaging (fMRI). Multivariate Bayes decoding within HC/EC subregions shows that processing of novel information most strongly engages the input structures (superficial EC and DG/CA2–3), whereas subsequent memory is more dependent on activation of output regions (deep EC and pyramidal CA1). This suggests that while novelty processing is strongly related to HC–EC input pathways, the memory fate of a novel stimulus depends more on HC–EC output. PMID:25424131

  8. The relative contributions of processing speed and cognitive load to working memory accuracy in multiple sclerosis.

    PubMed

    Leavitt, Victoria M; Lengenfelder, Jean; Moore, Nancy B; Chiaravalloti, Nancy D; DeLuca, John

    2011-06-01

    Cognitive symptoms of multiple sclerosis (MS) include processing-speed deficits and working memory impairment. The precise manner in which these deficits interact in individuals with MS remains to be explicated. We hypothesized that providing more time on a complex working memory task would result in performance benefits for individuals with MS relative to healthy controls. Fifty-three individuals with clinically definite MS and 36 matched healthy controls performed a computerized task that systematically manipulated cognitive load. The interval between stimuli presentations was manipulated to provide increasing processing time. The results confirmed that individuals with MS who have processing-speed deficits significantly improve in performance accuracy when given additional time to process the information in working memory. Implications of these findings for developing appropriate cognitive rehabilitation interventions are discussed.

  9. The different oscillation patterns of alpha band in the early and later stages of working memory maintenance.

    PubMed

    Xie, Yuanjun; Feng, Zhengquan; Xu, Yuanyuan; Bian, Chen; Li, Min

    2016-10-28

    A putative functional role for alpha oscillations in working memory remains controversial. However, recent evidence suggests that such oscillation may reflect distinct phases of working memory processing. The present study investigated alpha band (8-13Hz) activity during the maintenance stage of working memory using a modified Sternberg working memory task. Our results reveal that alpha power was concentrated primarily in the occipital cortex and was decreased during the early stage of maintenance (0-600ms), and subsequently increased during the later stage of maintenance (1000-1600ms). We suggest that reduced alpha power may be involved in focused attention during the working memory maintenance, whereas increased alpha power may reflect suppression of visual stimuli to facilitate internal processing related to the task. This interpretation is generally consistent with recent reports suggesting that variations in alpha power are associated with the representation and processing of information in the discrete time intervals during the working memory maintenance. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Emotional Modulation of Learning and Memory: Pharmacological Implications.

    PubMed

    LaLumiere, Ryan T; McGaugh, James L; McIntyre, Christa K

    2017-07-01

    Memory consolidation involves the process by which newly acquired information becomes stored in a long-lasting fashion. Evidence acquired over the past several decades, especially from studies using post-training drug administration, indicates that emotional arousal during the consolidation period influences and enhances the strength of the memory and that multiple different chemical signaling systems participate in this process. The mechanisms underlying the emotional influences on memory involve the release of stress hormones and activation of the basolateral amygdala, which work together to modulate memory consolidation. Moreover, work suggests that this amygdala-based memory modulation occurs with numerous types of learning and involves interactions with many different brain regions to alter consolidation. Additionally, studies suggest that emotional arousal and amygdala activity in particular influence synaptic plasticity and associated proteins in downstream brain regions. This review considers the historical understanding for memory modulation and cellular consolidation processes and examines several research areas currently using this foundational knowledge to develop therapeutic treatments. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  11. Napping and the Selective Consolidation of Negative Aspects of Scenes

    PubMed Central

    Payne, Jessica D.; Kensinger, Elizabeth A.; Wamsley, Erin; Spreng, R. Nathan; Alger, Sara; Gibler, Kyle; Schacter, Daniel L.; Stickgold, Robert

    2018-01-01

    After information is encoded into memory, it undergoes an offline period of consolidation that occurs optimally during sleep. The consolidation process not only solidifies memories, but also selectively preserves aspects of experience that are emotionally salient and relevant for future use. Here, we provide evidence that an afternoon nap is sufficient to trigger preferential memory for emotional information contained in complex scenes. Selective memory for negative emotional information was enhanced after a nap compared to wakefulness in two control conditions designed to carefully address interference and time-of-day confounds. Although prior evidence has connected negative emotional memory formation to rapid eye movement (REM) sleep physiology, we found that non-REM delta activity and the amount of slow wave sleep (SWS) in the nap were robustly related to the selective consolidation of negative information. These findings suggest that the mechanisms underlying memory consolidation benefits associated with napping and nighttime sleep are not always the same. Finally, we provide preliminary evidence that the magnitude of the emotional memory benefit conferred by sleep is equivalent following a nap and a full night of sleep, suggesting that selective emotional remembering can be economically achieved by taking a nap. PMID:25706830

  12. A neuromathematical model of human information processing and its application to science content acquisition

    NASA Astrophysics Data System (ADS)

    Anderson, O. Roger

    The rate of information processing during science learning and the efficiency of the learner in mobilizing relevant information in long-term memory as an aid in transmitting newly acquired information to stable storage in long-term memory are fundamental aspects of science content acquisition. These cognitive processes, moreover, may be substantially related in tempo and quality of organization to the efficiency of higher thought processes such as divergent thinking and problem-solving ability that characterize scientific thought. As a contribution to our quantitative understanding of these fundamental information processes, a mathematical model of information acquisition is presented and empirically evaluated in comparison to evidence obtained from experimental studies of science content acquisition. Computer-based models are used to simulate variations in learning parameters and to generate the theoretical predictions to be empirically tested. The initial tests of the predictive accuracy of the model show close agreement between predicted and actual mean recall scores in short-term learning tasks. Implications of the model for human information acquisition and possible future research are discussed in the context of the unique theoretical framework of the model.

  13. Age-related differences in the use of spatial and categorical relationships in a visuo-spatial working memory task.

    PubMed

    Dai, Ruizhi; Thomas, Ayanna K; Taylor, Holly A

    2018-01-30

    Research examining object identity and location processing in visuo-spatial working memory (VSWM) has yielded inconsistent results on whether age differences exist in VSWM. The present study investigated whether these inconsistencies may stem from age-related differences in VSWM sub-processes, and whether processing of component VSWM information can be facilitated. In two experiments, younger and older adults studied 5 × 5 grids containing five objects in separate locations. In a continuous recognition paradigm, participants were tested on memory for object identity, location, or identity and location information combined. Spatial and categorical relationships were manipulated within grids to provide trial-level facilitation. In Experiment 1, randomizing trial types (location, identity, combination) assured that participants could not predict the information that would be queried. In Experiment 2, blocking trials by type encouraged strategic processing. Thus, we manipulated the nature of the task through object categorical relationship and spatial organization, and trial blocking. Our findings support age-related declines in VSWM. Additionally, grid organizations (categorical and spatial relationships), and trial blocking differentially affected younger and older adults. Younger adults used spatial organizations more effectively whereas older adults demonstrated an association bias. Our finding also suggests that older adults may be less efficient than younger adults in strategically engaging information processing.

  14. False Memories for Suggestions: The Impact of Conceptual Elaboration

    PubMed Central

    Zaragoza, Maria S.; Mitchell, Karen J.; Payment, Kristie; Drivdahl, Sarah

    2010-01-01

    Relatively little attention has been paid to the potential role that reflecting on the meaning and implications of suggested events (i.e., conceptual elaboration) might play in promoting the creation of false memories. Two experiments assessed whether encouraging repeated conceptual elaboration, would, like perceptual elaboration, increase false memory for suggested events. Results showed that conceptual elaboration of suggested events more often resulted in high confidence false memories (Experiment 1) and false memories that were accompanied by the phenomenal experience of remembering them (Experiment 2) than did surface-level processing. Moreover, conceptual elaboration consistently led to higher rates of false memory than did perceptual elaboration. The false memory effects that resulted from conceptual elaboration were highly dependent on the organization of the postevent interview questions, such that conceptual elaboration only increased false memory beyond surface level processing when participants evaluated both true and suggested information in relation to the same theme or dimension. PMID:21103451

  15. Cognitive Control Mechanisms, Emotion & Memory: A neural perspective with implications for psychopathology

    PubMed Central

    Banich, Marie T.; Mackiewicz, Kristen L.; Depue, Brendan E.; Whitmer, Anson; Miller, Gregory A.; Heller, Wendy

    2009-01-01

    In this paper we provide a focused review of the literature examining neural mechanisms involved in cognitive control over memory processes that can influence, and in turn are influenced, by emotional processes. The review is divided into two parts, the first focusing on working memory and the second on long-term memory. With regard to working memory, we discuss the neural bases of 1) control mechanisms that can select against distracting emotional information, 2) mechanisms that can regulate emotional reactions or responses, 3) how mood state influences cognitive control, and 4) individual differences in control mechanisms. For long-term memory, we briefly review 1) the neural substrates of emotional memory, 2) the cognitive and neural mechanisms that are involved in controlling emotional memories and 3) how these systems are altered in post-traumatic stress disorder. Finally, we consider tentative generalizations that can be drawn from this relatively unexplored conjunction of research endeavors. PMID:18948135

  16. The Event-Related Brain Potential as an Index of Information Processing and Cognitive Activity: A Program of Basic Research.

    DTIC Science & Technology

    1988-02-29

    reciprocity: An event- related brain potentials analysis. Acta Psychologica. Submitted for publication. 21. Stolar, N., Sparenborg, S., Donchin, E...in press) argued that it is a manifestation of a process related to the updating of models of the environment or context in working memory. Such an...suggemng " ees ud e may involve working memory, but they do am hold any privileged relation to working memory.u However, he immedi- ately proceeds to narrow

  17. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    PubMed

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  18. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    PubMed Central

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  19. Acute, low-dose methamphetamine administration improves attention/information processing speed and working memory in methamphetamine-dependent individuals displaying poorer cognitive performance at baseline

    PubMed Central

    Mahoney, James J.; Jackson, Brian J.; Kalechstein, Ari D.; De La Garza, Richard; Newton, Thomas F.

    2012-01-01

    Abstinent methamphetamine (Meth) dependent individuals demonstrate poorer performance on tests sensitive to attention/information processing speed, learning and memory, and working memory when compared to non-Meth dependent individuals. The poorer performance on these tests may contribute to the morbidity associated with Meth-dependence. In light of this, we sought to determine the effects of acute, low-dose Meth administration on attention, working memory, and verbal learning and memory in 19 non-treatment seeking, Meth-dependent individuals. Participants were predominantly male (89%), Caucasian (63%), and cigarette smokers (63%). Following a four day, drug-free washout period, participants were given a single-blind intravenous infusion of saline, followed the next day by 30 mg of Meth. A battery of neurocognitive tasks was administered before and after each infusion, and performance on measures of accuracy and reaction time were compared between conditions. While acute Meth exposure did not affect test performance for the entire sample, participants who demonstrated relatively poor performance on these tests at baseline, identified using a median split on each test, showed significant improvement on measures of attention/information processing speed and working memory when administered Meth. Improved performance was seen on the following measures of working memory: choice reaction time task (p≤0.04), a 1-back task (p≤0.01), and a 2-back task (p≤0.04). In addition, those participants demonstrating high neurocognitive performance at baseline experienced similar or decreased performance following Meth exposure. These findings suggest that acute administration of Meth may temporarily improve Meth-associated neurocognitive performance in those individuals experiencing lower cognitive performance at baseline. As a result, stimulants may serve as a successful treatment for improving cognitive functioning in those Meth-dependent individuals experiencing neurocognitive impairment. PMID:21122811

  20. Domain-Specific Control of Selective Attention

    PubMed Central

    Lin, Szu-Hung; Yeh, Yei-Yu

    2014-01-01

    Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977

Top