Sample records for memory prevents scopolamine-induced

  1. Deer Bone Extract Prevents Against Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Du, Chun Nan; Min, A Young; Kim, Hyun Jeong; Shin, Suk Kyung; Yu, Ha Ni; Sohn, Eun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun

    2015-01-01

    Abstract Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aβ1–42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine. PMID:25546299

  2. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    PubMed

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  3. Willughbeia cochinchinensis prevents scopolamine-induced deficits in memory, spatial learning, and object recognition in rodents.

    PubMed

    Can, Mao Van; Tran, Anh Hai; Pham, Dam Minh; Dinh, Bao Quoc; Le, Quan Van; Nguyen, Ba Van; Nguyen, Mai Thanh Thi; Nguyen, Hai Xuan; Nguyen, Nhan Trung; Nishijo, Hisao

    2018-03-25

    Willughbeia cochinchinensis (WC) has been used in Vietnamese traditional medicine for the treatment of dementia as well as diarrhea, heartburn, and cutaneous abscess and as a diuretic. Alzheimer's disease (AD) is one of the most prevalent diseases in elderly individuals. Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors have been widely used to treat patients with AD. In the present study, we investigated anti-AChE and anti-BChE activities of a natural product, WC, for its potential applications in therapies to prevent/treat dementia. First, compounds extracted from WC were tested for their AChE and BChE inhibitory activities in vitro. Second, in vivo behavioral experiments were performed to investigate the effects of WC at doses of 100, 150, and 200mg/kg on scopolamine (1.5mg/kg)-induced memory and cognitive deficits in mice. The behavior of mice treated with and without WC and/or scopolamine was tested using the Y-maze, Morris water maze, and novel object recognition task. The results of the in vitro assay demonstrated anti-AChE and anti-BChE activities of the compounds extracted from WC. The results of behavioral experiments showed that the administration of WC prevented 1) scopolamine-induced decrease in spontaneous alternation (%) behavior in the Y-maze, 2) scopolamine-induced deficits in spatial learning and memory in the Morris water maze, and 3) scopolamine-induced deficits in novel object recognition. These results indicate that WC prevents cognitive and memory deficits induced by scopolamine injection. Our findings suggest that WC may represent a novel candidate for the treatment of memory and cognitive deficits in humans with dementia. Copyright © 2017. Published by Elsevier B.V.

  4. Dipeptide preparation Noopept prevents scopolamine-induced deficit of spatial memory in BALB/c mice.

    PubMed

    Belnik, A P; Ostrovskaya, R U; Poletaeva, I I

    2007-04-01

    The effect of original nootropic preparation Noopept on learning and long-term memory was studied with BALB/c mice. Scopolamine (1 mg/kg) impaired long-term memory trace, while Noopept (0.5 mg/kg) had no significant effect. Noopept completely prevented the development of cognitive disorders induced by scopolamine (blockade of muscarinic cholinergic receptors). Our results confirmed the presence of choline-positive effect in dipeptide piracetam analogue Noopept on retrieval of learned skill of finding a submerged platform (spatial memory). We conclude that the effectiveness of this drug should be evaluated in patients with Alzheimer's disease.

  5. Loganin enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    PubMed

    Hwang, Eun-Sang; Kim, Hyun-Bum; Lee, Seok; Kim, Min-Ji; Lee, Sung-Ok; Han, Seung-Moo; Maeng, Sungho; Park, Ji-Ho

    2017-03-15

    Although the incidence rate of dementia is rapidly growing in the aged population, therapeutic and preventive reagents are still suboptimal. Various model systems are used for the development of such reagents in which scopolamine is one of the favorable pharmacological tools widely applied. Loganin is a major iridoid glycoside obtained from Corni fructus (Cornusofficinalis et Zucc) and demonstrated to have anti-inflammatory, anti-tumor and osteoporosis prevention effects. It has also been found to attenuate Aβ-induced inflammatory reactions and ameliorate memory deficits induced by scopolamine. However, there has been limited information available on how loganin affects learning and memory both electrophysiologically and behaviorally. To assess its effect on learning and memory, we investigated the influence of acute loganin administration on long-term potentiation (LTP) using organotypic cultured hippocampal tissues. In addition, we measured the effects of loganin on the behavior performance related to avoidance memory, short-term spatial navigation memory and long-term spatial learning and memory in the passive avoidance, Y-maze, and Morris water maze learning paradigms, respectively. Loganin dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In accordance with these findings, loganin behaviorally attenuated scopolamine-induced shortening of step-through latency in the passive avoidance test, reduced the percent alternation in the Y-maze, and increased memory retention in the Morris water maze test. These results indicate that loganin can effectively block cholinergic muscarinic receptor blockade -induced deterioration of LTP and memory related behavioral performance. Based on these findings, loganin may aid in the prevention and treatment of Alzheimer's disease and learning and memory-deficit disorders in the future. Copyright © 2017 Elsevier

  6. Aqueous extracts from asparagus stems prevent memory impairments in scopolamine-treated mice.

    PubMed

    Sui, Zifang; Qi, Ce; Huang, Yunxiang; Ma, Shufeng; Wang, Xinguo; Le, Guowei; Sun, Jin

    2017-04-19

    Aqueous extracts from Asparagus officinalis L. stems (AEAS) are rich in polysaccharides, gamma-amino butyric acid (GABA), and steroidal saponin. This study was designed to investigate the effects of AEAS on learning, memory, and acetylcholinesterase-related activity in a scopolamine-induced model of amnesia. Sixty ICR mice were randomly divided into 6 groups (n = 10) including the control group (CT), scopolamine group (SC), donepezil group (DON), low, medium, and high dose groups of AEAS (LS, MS, HS; 1.6 mL kg -1 , 8 mL kg -1 , 16 mL kg -1 ). The results showed that 8 mL kg -1 of AEAS used in this study significantly reversed scopolamine-induced cognitive impairments in mice in the novel object recognition test (P < 0.05) and the Y-maze test (P < 0.05), and also improved the latency to escape in the Morris water maze test (P < 0.05). Moreover, it significantly increased acetylcholine and inhibited acetylcholinesterase activity in the hippocampus, which was directly related to the reduction in learning and memory impairments. It also reversed scopolamine-induced reduction in the hippocampal brain-derived neurotrophic factor (BDNF) and the cAMP response element-binding protein (CREB) mRNA expression. AEAS protected against scopolamine-induced memory deficits. In conclusion, AEAS protected learning and memory function in mice by enhancing the activity of the cholinergic nervous system, and increasing BDNF and CREB expression. This suggests that AEAS has the potential to prevent cognitive impairments in age-related diseases, such as Alzheimer's disease.

  7. Sulforaphane alleviates scopolamine-induced memory impairment in mice.

    PubMed

    Lee, Siyoung; Kim, Jisung; Seo, Sang Gwon; Choi, Bo-Ryoung; Han, Jung-Soo; Lee, Ki Won; Kim, Jiyoung

    2014-07-01

    Sulforaphane, an organosulfur compound present in cruciferous vegetables, has been shown to exert neuroprotective effects in experimental in vitro and in vivo models of neurodegeneration. To determine whether sulforaphane can preserve cognitive function, we examined its effects on scopolamine-induced memory impairment in mice using the Morris water maze test. Sulforaphane (10 or 50mg/kg) was administered to C57BL/6 mice by oral gavage for 14 days (days 1-14), and memory impairment was induced by intraperitoneal injection of scopolamine (1mg/kg) for 7 days (days 8-14). Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity in the hippocampus and frontal cortex, as indicated by a decreased acetylcholine (ACh) level and an increased acetylcholinesterase (AChE) activity. Sulforaphane significantly attenuated the scopolamine-induced memory impairment and improved cholinergic system reactivity, as indicated by an increased ACh level, decreased AChE activity, and increased choline acetyltransferase (ChAT) expression in the hippocampus and frontal cortex. These effects of sulforaphane on cholinergic system reactivity were confirmed in vitro. Sulforaphane (10 or 20μM) increased the ACh level, decreased the AChE activity, and increased ChAT expression in scopolamine-treated primary cortical neurons. These observations suggest that sulforaphane might exert a significant neuroprotective effect on cholinergic deficit and cognitive impairment. Copyright © 2014. Published by Elsevier Ltd.

  8. Rubus coreanus Miquel ameliorates scopolamine-induced memory impairments in ICR mice.

    PubMed

    Choi, Mi-Ran; Lee, Min Young; Hong, Ji Eun; Kim, Jeong Eun; Lee, Jae-Yong; Kim, Tae Hwan; Chun, Jang Woo; Shin, Hyun Kyung; Kim, Eun Ji

    2014-10-01

    The present study investigated the effect of Rubus coreanus Miquel (RCM) on scopolamine-induced memory impairments in ICR mice. Mice were orally administrated RCM for 4 weeks and scopolamine was intraperitoneally injected into mice to induce memory impairment. RCM improved the scopolamine-induced memory impairment in mice. The increase of acetylcholinesterase activity caused by scopolamine was significantly attenuated by RCM treatment. RCM increased the levels of acetylcholine in the brain and serum of mice. The expression of choline acetyltransferase, phospho-cyclic AMP response element-binding protein, and phospho-extracellular signal-regulated kinase was significantly increased within the brain of mice treated with RCM. The brain antioxidant enzyme activity decreased by scopolamine was increased by RCM. These results demonstrate that RCM exerts a memory-enhancing effect via the improvement of cholinergic function and the potentiated antioxidant activity in memory-impaired mice. The results suggest that RCM may be a useful agent for improving memory impairment.

  9. Activation of endocannabinoid system in the rat basolateral amygdala improved scopolamine-induced memory consolidation impairment.

    PubMed

    Nedaei, Seyed Ershad; Rezayof, Ameneh; Pourmotabbed, Ali; Nasehi, Mohammad; Zarrindast, Mohammad-Reza

    2016-09-15

    The current study was designed to examine the involvement of cannabinoid CB1 receptors in the basolateral amygdala (BLA) in scopolamine-induced memory impairment in adult male Wistar rats. The animals were bilaterally implanted with the cannulas in the BLA and submitted to a step-through type passive avoidance task to measure the memory formation. The results showed that intraperitoneal (i.p.) administration of different doses of scopolamine (0.5-1.5mg/kg) immediately after the training phase (post-training) impaired memory consolidation. Bilateral microinjection of the cannabinoid CB1 receptor agonist, arachydonilcyclopropylamide (ACPA; 1-4ng/rat), into the BLA significantly improved scopolamine-induced memory consolidation impairment. On the other hand, co-administration of AM251, a cannabinoid CB1 receptor antagonist (0.25-1ng/rat, intra-BLA), with an ineffective dose of scopolamine (0.5mg/kg, i.p.), significantly impaired memory consolidation and mimicked the response of a higher dose of scopolamine. It is important to note that post-training intra-BLA microinjections of the same doses of ACPA or AM251 alone had no effect on memory consolidation. Moreover, the blockade of the BLA CB1 receptors by 0.3ng/rat of AM251 prevented ACPA-induced improvement of the scopolamine response. In view of the known actions of the drugs used, the present data pointed to the involvement of the BLA CB1 receptors in scopolamine-induced memory consolidation impairment. Furthermore, it seems that a functional interaction between the BLA endocannabinoid and cholinergic muscarinic systems may be critical for memory formation. Copyright © 2016. Published by Elsevier B.V.

  10. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    PubMed

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  11. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-01-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer’s disease. PMID:27133261

  12. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  13. Anthriscus nemorosa essential oil inhalation prevents memory impairment, anxiety and depression in scopolamine-treated rats.

    PubMed

    Bagci, Eyup; Aydin, Emel; Ungureanu, Eugen; Hritcu, Lucian

    2016-12-01

    Anthriscus nemorosa (Bieb.) Sprengel is used for medicinal purposes in traditional medicine around the world, including Turkey. Ethnobotanical studies suggest that Anthriscus essential oil could improve memory in Alzheimer's disease. The current study was hypothesized to investigate the beneficial effects of inhaled Anthriscus nemorosa essential oil on memory, anxiety and depression in scopolamine-treated rats. Anthriscus nemorosa essential oil was administered by inhalation in the doses of 1% and 3% for 21 continuous days and scopolamine (0.7mg/kg) was injected intraperitoneally 30min before the behavioral testing. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by elevated plus-maze and forced swimming tests. As expected, the scopolamine alone-treated rats exhibited the following: decrease the percentage of the spontaneous alternation in Y-maze test, increase the number of working and reference memory errors in radial arm-maze test, decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. However, dual scopolamine and Anthriscus nemorosa essential oil-treated rats showed significant improvement of memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. These results suggest that Anthriscus nemorosa essential oil inhalation can prevent scopolamine-induced memory impairment, anxiety and depression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. The antioxidant activity of Beta vulgaris leaf extract in improving scopolamine-induced spatial memory disorders in rats.

    PubMed

    Hajihosseini, Shadieh; Setorki, Mahbubeh; Hooshmandi, Zahra

    2017-01-01

    Medicinal plants have attracted global attention due to their safety as well as their considerable antioxidant content that helps to prevent or ameliorate various disorders including memory impairments. This study was conducted to investigate the effect of beet root ( Beta vulgaris ) leaf extract on scopolamine-induced spatial memory impairments in male Wistar rats. Male Wistar rats were randomly divided into 5 groups (n=10): Control (C), scopolamine 1 mg/kg/day (S), scopolamine+50 mg/kg B. vulgaris leaf extract (S+B 50), scopolamine+100 mg/kg B. vulgaris leaf extract (S+B 100) and scopolamine+200 mg/kg B. vulgaris leaf extract (S+B 200). Morris water maze task was used to assess spatial memory. Serum antioxidant capacity and malondialdehyde (MDA) level were also measured. Group S spent significantly less time in the target quadrant compared to the control group, and the administration of B. vulgaris leaf extract (100 and 200 mg/kg) significantly increased this time (p<0.05). Scopolamine decreased serum antioxidant capacity and increased serum MDA level yet insignificantly. B. vulgaris extract (200 mg/kg) significantly increased the antioxidant capacity and decreased serum MDA level in scopolamine-treated rats (p<0.05). Our results suggested that B. vulgaris leaf extract could ameliorate the memory impairments and exhibited protective effects against scopolamine-induced oxidation. Further investigation is needed to isolate specific antioxidant compounds from B. vulgaris leaf extract with protective effect against brain and memory impairments.

  15. Transcriptional co-repressor SIN3A silencing rescues decline in memory consolidation during scopolamine-induced amnesia.

    PubMed

    Srivas, Sweta; Thakur, Mahendra K

    2018-05-01

    Epigenetic modifications through methylation of DNA and acetylation of histones modulate neuronal gene expression and regulate long-term memory. Earlier we demonstrated that scopolamine-induced decrease in memory consolidation is correlated with enhanced expression of hippocampal DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in mice. DNMT1 and HDAC2 act together by recruiting a co-repressor complex and deacetylating the chromatin. The catalytic activity of HDACs is mainly dependent on its incorporation into multiprotein co-repressor complexes, among which SIN3A-HDAC2 co-repressor is widely studied to regulate synaptic plasticity. However, the involvement of co-repressor complex in regulating memory loss or amnesia is unexplored. This study examines the role of co-repressor SIN3A in scopolamine-induced amnesia through epigenetic changes in the hippocampus. Scopolamine treatment remarkably enhanced hippocampal SIN3A expression in mice. To prevent such increase in SIN3A expression, we used hippocampal infusion of SIN3A-siRNA and assessed the effect of SIN3A silencing on scopolamine-induced amnesia. Silencing of SIN3A in amnesic mice reduced the binding of HDAC2 at neuronal immediate early genes (IEGs) promoter, but did not change the expression of HDAC2. Furthermore, it increased acetylation of H3K9 and H3K14 at neuronal IEGs (Arc, Egr1, Homer1 and Narp) promoter, prevented scopolamine-induced down-regulation of IEGs and improved consolidation of memory during novel object recognition task. These findings together suggest that SIN3A has a critical role in regulation of synaptic plasticity and might act as a potential therapeutic target to rescue memory decline during amnesia and other neuropsychiatric pathologies. © 2018 International Society for Neurochemistry.

  16. Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice

    PubMed Central

    Saraf, Manish Kumar; Prabhakar, Sudesh; Khanduja, Krishan Lal; Anand, Akshay

    2011-01-01

    Scopolamine, an anticholinergic, is an attractive amnesic agent for discerning the action of candidate antiamnesic drugs. Bacopa monniera Linn (Syn. Brahmi) is one such antiamnesic agent that is frequently used in the ancient Indian medical system. We have earlier reported the reversal of diazepam-induced amnesia with B. monniera. In this study we wanted to test if scopolamine-induced impairment of spatial memory can also be ameliorated by B. monniera using water maze mouse model. The objective of study was to study the effect of B. monniera on scopolamine-induced amnesia. We employed Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rotarod test was conducted to screen muscle coordination activity of mice. Scopolamine significantly impaired the acquisition and retrieval of memory producing both anterograde and retrograde amnesia. Bacopa monniera extract was able to reverse both anterograde and retrograde amnesia. We propose that B. monniera's effects on cholinergic system may be helpful for developing alternative therapeutic approaches for the treatment of Alzheimer's disease. PMID:21607013

  17. Canagliflozin prevents scopolamine-induced memory impairment in rats: Comparison with galantamine hydrobromide action.

    PubMed

    Arafa, Nadia M S; Ali, Elham H A; Hassan, Mohamed Kamel

    2017-11-01

    Canagliflozin (CAN) is a sodium-glucose co-transporter 2 (SGLT2) inhibitor indicated to improve glycemic control in adults with type 2 diabetes mellitus. There is a little information about its effect on the cholinergic system that proposed mechanism for memory improvement occurring by SGLT2 drugs. This study aimed to estimate the effect of CAN as compared to galantamine (GAL) treatments for two weeks on scopolamine hydrobromide (SCO)-induced memory dysfunction in experimental rats. Animals divided into six groups; control (CON), CAN, GAL, SCO, SCO + CAN and SCO + GAL. Results indicated significant decrease in body weights of the CAN groups as compared to control values. Moreover, in the SCO + CAN and SCO + GAL the number of arm entry and number of correct alternation in Y maze task increased and showed improvement in the water maze task, acetylcholinesterase (AChE) activities decreased significantly, while monoamines levels significantly increased compared with the SCO group values. Results also recorded acetylcholine M1 receptor (M1 mAChR) in SCO + CAN or SCO + GAL groups in comparison with the SCO group. The study suggested that canagliflozin might improve memory dysfunction induced by scopolamine hydrobromide via cholinergic and monoamines system. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Scopolamine-Induced Memory Impairment Is Alleviated by Xanthotoxin: Role of Acetylcholinesterase and Oxidative Stress Processes.

    PubMed

    Skalicka-Wozniak, Krystyna; Budzynska, Barbara; Biala, Grazyna; Boguszewska-Czubara, Anna

    2018-05-16

    Xanthotoxin, popularly occurring furanocoumarin, which can be found in plants from the Apiaceae family, was isolated from fruits of Pastinaca sativa L. by mean of high-performance countercurrent chromatography, and its effects on the scopolamine-induced cognitive deficits in male Swiss mice using the passive avoidance (PA) test were evaluated. To measure the acquisition of memory processes, xanthotoxin (1, 2.5, 5 mg/kg) was administered 30 min before PA test and scopolamine was administered 10 min after xanthotoxin. To measure the consolidation of memory processes, xanthotoxin (1 and 2.5 mg/kg) was injected immediately after removing the mouse from the apparatus and 10 min after scopolamine was administered. In subchronic experiments, mice were injected with xanthotoxin (1 mg/kg) or saline, 6 days, twice daily. At 24 h after the last injection of the drugs, the hippocampus and the prefrontal cortex were removed for biochemical assays. The results demonstrated that either single (2.5 and 5 mg/kg) or repeatable (1 mg/kg) administration of xanthotoxin significantly increased index of latency (IL) in both acquisition and consolidation of memory processes, showing some procognitive effects. The behavioral tests also showed that an acute (2.5 mg/kg) and subchronic (1 mg/kg) administration of xanthotoxin prevent memory impairment induced by injection of scopolamine (1 mg/kg). Observed effects could be due to the inhibition of acetylcholinesterase activities and amelioration of oxidative stress processes in the hippocampus and the prefrontal cortex. It was suggested that xanthotoxin could show neuroprotective effect in scopolamine-induced cognitive impairment connected to cholinergic neurotransmission and oxidative stress in the brain structures.

  19. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats.

    PubMed

    Hasanein, Parisa; Mahtaj, Azam Kazemian

    2015-01-12

    Rosmarinic acid (RA) is a natural phenol that exerts different biological activities, such as antioxidant activity and neuroprotective effects. In this study, we hypothesized that administration of RA (8, 16, and 32 mg/kg, p.o.) for 7 days would effect on scopolamine-induced cognitive dysfunction as an extensively used model of cognitive impairment. The rats were divided into 10 groups. The acquisition trial was done 1h after the last administration of RA. Animals were divided into control, RA (8, 16, and 32 mg/kg) and donepezil (2 mg/kg) treated controls, scopolamine, RA (8, 16, and 32 mg/kg), and donepezil (2 mg/kg) treated scopolamine groups. Memory impairment was induced by scopolamine treatment (1 mg/kg, i.p.) 30 min after the administration of RA, donepezil, or saline. Scopolamine administration caused cognition deficits in the PAL and memory paradigm. While orally RA administration (16 and 32 mg/kg) improved learning and memory in control rats, it reversed learning and memory deficits of scopolamine received groups. Administration of RA at the dose of 8 mg/kg did not alter cognitive function in control and scopolamine treated groups. The combination of anticholinesterase, neuroprotective, and antioxidant properties of RA may all be responsible for the observed effects. These results indicate the beneficial effects of subchronic RA administration in passive avoidance learning and memory in control rats as well as in a pharmacological model of cholinergic deficit which continue to expand the knowledge base in creating new treatment strategies for cognition deficits and dementia. Of course, further studies are warranted for clinical use of RA in the management of demented subjects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Neuroprotective effect of ipriflavone against scopolamine-induced memory impairment in rats.

    PubMed

    Hafez, Hani S; Ghareeb, Doaa A; Saleh, Samar R; Abady, Mariam M; El Demellawy, Maha A; Hussien, Hend; Abdel-Monem, Nihad

    2017-10-01

    Alzheimer's disease is an age-related neurodegenerative disorder characterized clinically by a progressive loss of memory and cognitive functions resulting in severe dementia. Ipriflavone (IPRI) is a non-hormonal, semi-synthetic isoflavone, clinically used in some countries for the treatment and prevention of postmenopausal osteoporosis. Moreover, ipriflavone is a non-peptidomimetic small molecule AChE inhibitor with an improved bioavailability after systemic administration, due to its efficient blood-brain barrier permeability in comparison with peptidomimetic inhibitors. The present study aimed to evaluate the possible enhancing effects of IPRI on memory impairments caused by scopolamine administration. Male rats were administered IPRI (50 mg/kg, oral) 2 h before scopolamine injection (2 mg/kg, intraperitoneally injected) daily for 4 weeks. Effects of IPRI on acetylcholinesterase activity, amyloid-β precursor processing, and neuroplasticity in the rats' hippocampus were investigated. Daily administration of IPRI reverted memory impairment caused by scopolamine as measured by the reduction of the escape latency. IPRI significantly alleviated the oxidative stress and restored the mRNA expression of both cAMP-response element-binding protein and brain-derived neurotrophic factor in the hippocampus. Furthermore, it significantly increased the expression of ADAM10 and ADAM17 (two putative α-secretase enzymes) and phosphorylated extracellular signal-regulated kinase 1/2 (pERK1/2) that associated with decreased expression of β-secretase (BACE) in the hippocampus. Finally, both the amyloid-β (Aβ) and Tau pathologies were reduced. IPRI showed promising neuroprotective effects against scopolamine-induced memory dysfunction in rats. These findings contributed to the stimulation of α-secretase enzymes, the activation of MAPK/ERK1/2, and the alleviation of oxidative stress.

  1. Water-soluble derivative of propolis mitigates scopolamine-induced learning and memory impairment in mice.

    PubMed

    Chen, Juan; Long, Yuan; Han, Min; Wang, Ting; Chen, Qiang; Wang, Rui

    2008-09-01

    The water-soluble derivative of propolis (WSDP) was prepared from fresh Chinese propolis. Its major constituents were identified by high performance liquid chromatography (HPLC) analysis. It has been reported that propolis possessed a broad spectrum of biological activities but including few studies on learning and memory by now. Thus, this study was aimed to investigate the effect of WSDP on scopolamine-induced learning and memory impairment in mice. WSDP (50 mg/kg, 100 mg/kg) was given by intragastric administration (i.g.) 40 min prior to the intraperitoneal (i.p.) injection of scopolamine (1 mg/kg). The effect on amnesia was investigated with both hidden-platform acquisition training and probe trial testing in Morris water maze test. The results from 100 mg/kg WSDP group showed significant mitigation scopolamine-induced amnesia in mice. Furthermore, WSDP's effect on the acetylcholinesterase (AChE) activity in the cerebral cortex and hippocampus was also assayed. As a result, WSDP (100 mg/kg) significantly inhibited AChE activity in the hippocampus of scopolamine-treated mice. These results indicated that WSDP may mitigate amnesia in vivo through inhibition of AChE activity in the hippocampus, which suggested propolis may have potential as a pharmaceutical of brain protection with elderly population for preventing Alzheimer's disease (AD) and other neurodegenerative diseases.

  2. The Effects of Inhaled Pimpinella peregrina Essential Oil on Scopolamine-Induced Memory Impairment, Anxiety, and Depression in Laboratory Rats.

    PubMed

    Aydin, Emel; Hritcu, Lucian; Dogan, Gulden; Hayta, Sukru; Bagci, Eyup

    2016-11-01

    In the present study, we identified the effects of inhaled Pimpinella peregrina essential oil (1 and 3 %, for 21 continuous days) on scopolamine-induced memory impairment, anxiety, and depression in laboratory rats. Y-maze and radial arm-maze tests were used for assessing memory processes. Also, the anxiety and depressive responses were studied by means of the elevated plus-maze and forced swimming tests. The scopolamine alone-treated rats exhibited the following: decrease of the spontaneous alternation percentage in Y-maze test, increase of the number of working and reference memory errors in radial arm-maze test, along with decrease of the exploratory activity, the percentage of the time spent and the number of entries in the open arm within elevated plus-maze test and decrease of swimming time and increase of immobility time within forced swimming test. Inhalation of the P. peregrina essential oil significantly improved memory formation and exhibited anxiolytic- and antidepressant-like effects in scopolamine-treated rats. Our results suggest that the P. peregrina essential oil inhalation ameliorates scopolamine-induced memory impairment, anxiety, and depression. Moreover, studies on the P. peregrina essential oil may open a new therapeutic window for the prevention of neurological abnormalities closely related to Alzheimer's disease.

  3. Vinpocetine Improves Scopolamine Induced Learning and Memory Dysfunction in C57 BL/6J Mice.

    PubMed

    Shang, Yu; Wang, Lei; Li, Yue; Gu, Pei-Fei

    2016-09-01

    Vinpocetine is an inhibitor of phosphodiesterase type 1 (PDE1), which has been used for treating stroke for over 40 years. However, according to current clinical dosage and treatment period, its direct effect on memory is unclear. In this study, we investigated whether vinpocetine could reverse the scopolamine (SCO)-induced cognitive deficits in animals. Behavioral experiments, including open field, Y-maze, and fear conditioning tests were used to determine the possible role of vinpocetine on scopolamine-induced memory dysfunction. In the open field and Y-maze tests, there were significant differences between the control (CON) group and SCO group. Vinpocetine (4 mg/kg) administration for consecutive 28 d significantly improved the scopolamine-induced memory dysfunction. In the fear conditioning test, vinpocetine (2, 4 mg/kg) administration had certain beneficial effect on emotional memory. Our results suggest that vinpocetine could improve cognitive function in memory deficient mice and high clinic dosage might be better.

  4. Enhanced Cognitive Effects of Demethoxycurcumin, a Natural Derivative of Curcumin on Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Lim, Dong Wook; Son, Hyun Jung; Um, Min Young; Kim, In-Ho; Han, Daeseok; Cho, Suengmok; Lee, Chang-Ho

    2016-08-05

    In the present study, we examined the ameliorating effects of demethoxycurcumin (DMC) on memory impairment induced by scopolamine using passive avoidance and Morris water maze tests in mice. Moreover, to determine the neurobiological effects underlying the ameliorating effects of the DMC, choline acetyltransferase (ChAT) immunoreactivity was evaluated in mice exposed to scopolamine. Our results demonstrated that chronic oral administration (28 days) of DMC (10 mg/kg) improved scopolamine-induced learning impairment in the passive avoidance task and memory impairment in the Morris water maze. Moreover, Choline acetyltransferase (ChAT) activity in the DMC-treated group was significantly increased to 33.03% compared with the control group. Our present finding suggests that DMC ameliorates memory impairments induced by scopolamine treatment through reversing the reduction of hippocampal ChAT expression in mice.

  5. Antiamnesic and Antioxidants Effects of Ferulago angulata Essential Oil Against Scopolamine-Induced Memory Impairment in Laboratory Rats.

    PubMed

    Hritcu, Lucian; Bagci, Eyup; Aydin, Emel; Mihasan, Marius

    2015-09-01

    Ferulago angulata (Apiaceae) is a shrub indigenous to western Iran, Turkey and Iraq. In traditional medicine, F. angulata is recommended for treating digestive pains, hemorrhoids, snake bite, ulcers and as sedative. In the present study, the effects of inhaled F. angulata essential oil (1 and 3%, daily, for 21 days) on spatial memory performance were assessed in scopolamine-treated rats. Scopolamine-induced memory impairments were observed, as measured by the Y-maze and radial arm-maze tasks. Decreased activities of superoxide dismutase, glutathione peroxidase and catalase along with increase of acetylcholinesterase activity and decrease of total content of reduced glutathione were observed in the rat hippocampal homogenates of scopolamine-treated animals as compared with control. Production of protein carbonyl and malondialdehyde significantly increased in the rat hippocampal homogenates of scopolamine-treated animals as compared with control, as a consequence of impaired antioxidant enzymes activities. Additionally, in scopolamine-treated rats exposure to F. angulata essential oil significantly improved memory formation and decreased oxidative stress, suggesting memory-enhancing and antioxidant effects. Therefore, our results suggest that multiple exposures to F. angulata essential oil ameliorate scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  6. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment.

    PubMed

    Singh, Padmanabh; Konar, Arpita; Kumar, Ashish; Srivas, Sweta; Thakur, Mahendra K

    2015-08-01

    The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of

  7. The effect of GABA transporter 1 (GAT1) inhibitor, tiagabine, on scopolamine-induced memory impairments in mice.

    PubMed

    Sałat, Kinga; Podkowa, Adrian; Mogilski, Szczepan; Zaręba, Paula; Kulig, Katarzyna; Sałat, Robert; Malikowska, Natalia; Filipek, Barbara

    2015-12-01

    GABAergic neurotransmission is involved in long-term potentiation, a neurophysiological basis for learning and memory. On the other hand, GABA-enhancing drugs may impair memory and learning in humans and animals. The present study aims at investigating the effect of GAT1 inhibitor tiagabine on memory and learning. Albino Swiss (CD-1) and C57BL/6J mice were used in the passive avoidance (PA), Morris water maze (MWM) and radial arm water maze (RAWM) tasks. Scopolamine (1mg/kg ip) was applied to induce cognitive deficits. In the retention trial of PA scopolamine reduced step-through latency as compared to vehicle-treated mice, and pretreatment with tiagabine did not have any influence on this effect. In MWM the results obtained for vehicle-treated mice, scopolamine-treated group and combined scopolamine+tiagabine-treated mice revealed variable learning abilities in these groups. Tiagabine did not impair learning in the acquisition trial. In RAWM on day 1 scopolamine-treated group made nearly two-fold more errors than vehicle-treated mice and mice that received combined scopolamine and tiagabine. Learning abilities in the latter group were similar to those of vehicle-treated mice in the corresponding trial block on day 1, except for the last trial block, during which tiagabine+scopolamine-injected mice made more errors than control mice and the scopolamine-treated group. In all groups a complete reversal of memory deficits was observed in the last trial block of day 2. The lack of negative influence of tiagabine on cognitive functions in animals with scopolamine-induced memory impairments may be relevant for patients treated with this drug. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  8. Involvement of Antioxidant System in the Amelioration of Scopolamine-Induced Memory Impairment by Grains of Paradise (Aframomum melegueta K. Schum.) Extract.

    PubMed

    Ishola, I O; Awoyemi, A A; Afolayan, G O

    2016-09-01

    Background: Grains of paradise ( Aframomum melegueta ) K. Schum is used to flavour foods and used as memory enhancer and anti-aging in traditional African medicine. This study examine the influence of ethanolic seed extract of Aframomum melegueta (AFM) on cognitive impairment induced by scopolamine in rodents. Methods: AFM (6.25, 12.5 or 25 mg/kg, p.o .) or tacrine (5 mg/kg, i.p .) was administered for 3 consecutive days, 1 h post-treatment on day 3, scopolamine (3 mg/kg, i.p .) was given, 5 min later, cognition was evaluated in the Y-maze and elevated plus maze (EPM) tests in mice as well as the Morris water maze (MWM) paradigm in rats. Biomarkers of oxidative stress in the prefrontal cortex, striatum and hippocampus of rats were evaluated after the MWM task. The antioxidant capacity of AFM was evaluated in vitro using the 1,1-diphenyl-2-picrylhydrazyl (DPPH), nitric oxide (NO) and ferric ion reducing power (FRAP) assays. Results: Scopolamine significantly reduced (38.72%) spontaneous alternation behavior in the Y-maze and increase in transfer latency in the EPM test on day 2, which was ameliorated by AFM (25 mg/kg; 49.86%, 71.55%, respectively) in mice. In addition, AFM prevented the spatial learning deficit induced by scopolamine in the MWM task. Similarly, scopolamine-induced oxidative-nitrosative stress was attenuated by AFM treatment, evidenced in decreased malondialdehyde and nitrite levels, restoration of glutathione and superoxide dismutase levels. Interestingly, AFM exhibited notable scavenging activities against DPPH, NO and FRAP radicals. Conclusion: These results showed that A. melegueta seed extract prevented scopolamine-induced memory impairments through enhancement of antioxidant defense systems. © Georg Thieme Verlag KG Stuttgart · New York.

  9. The protective effect of fermented Curcuma longa L. on memory dysfunction in oxidative stress-induced C6 gliomal cells, proinflammatory-activated BV2 microglial cells, and scopolamine-induced amnesia model in mice.

    PubMed

    Eun, Cheong-Su; Lim, Jong-Soon; Lee, Jihye; Lee, Sam-Pin; Yang, Seun-Ah

    2017-07-17

    Curcuma longa L. is a well-known medicinal plant that has been used for its anti-cancer, neuroprotective, and hepatoprotective effects. However, the neuroprotective effect of fermented C. longa (FCL) has not been reported. Therefore, in this study, the effectiveness of FCL for the regulation of memory dysfunction was investigated in two brain cell lines (rat glioma C6 and murine microglia BV2) and scopolamine-treated mice. C. longa powder was fermented by 5% Lactobacillus plantarum K154 containing 2% (w/v) yeast extract at 30 °C for 72 h followed by sterilization at 121 °C for 15 min. The protective effects of fermented C. longa (FCL) on oxidative stress induced cell death were analyzed by MTT assay in C6 cells. The anti-inflammatory effects of FCL were investigated by measuring the production of nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) as well as the expression levels of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated BV2 cells. The step-through passive avoidance test, Morris water maze test, acetylcholinesterase (AChE) activity, and expression of cAMP response element-binding protein (CREB) and brain-derived neurotropic factor (BDNF) were employed to determine the effects of FCL on scopolamine-induced memory deficit in mice. The contents of curcuminoids were analyzed through LC/MS. Pretreatment with FCL effectively prevented the cell death induced by oxidative stress in C6 cells. Moreover, FCL inhibited the production NO and PGE 2 via the inhibition of iNOS and COX-2 expression in BV2 cells. FCL significantly attenuated scopolamine-induced memory impairment in mice and prevented scopolamine-induced AChE activity in the hippocampus. Additionally, FCL reversed the reduction of CREB and BDNF expression. The curcuminoids content in FCL was 1.44%. FCL pretreatment could alleviate scopolamine-induced memory impairment in mice, as well as oxidative stress and inflammation in C6 and BV2 cells, respectively. Thus, FCL might be a

  10. Estrogen levels modify scopolamine-induced amnesia in gonadally intact rats.

    PubMed

    de Macêdo Medeiros, André; Izídio, Geison Souza; Sousa, Diego Silveira; Macedo, Priscila Tavares; Silva, Anatildes Feitosa; Shiramizu, Victor Kenji Medeiros; Cabral, Alicia; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2014-08-04

    Previous studies suggested that estrogen plays a role in cognitive function by modulating the cholinergic transmission. However, most of the studies dealing with this subject have been conducted using ovariectomized rats. In the present study we evaluated the effects of physiological and supra-physiological variation of estrogen levels on scopolamine-induced amnesia in gonadally intact female rats. We used the plus-maze discriminative avoidance task (PMDAT) in order to evaluate anxiety levels and motor activity concomitantly to the memory performance. In experiment 1, female Wistar rats in each estrous cycle phase received scopolamine (1 mg/kg) or saline i.p. 20 min before the training session in the PMDAT. In experiment 2, rats in diestrus received estradiol valerate (1 mg/kg) or sesame oil i.m., and scopolamine (1 mg/kg) or saline i.p., 45 min and 20 min before the training, respectively. In experiment 3, rats in diestrus received scopolamine (1 mg/kg) or saline i.p. 20 min before the training, and estradiol valerate (1 mg/kg) or sesame oil i.m. immediately after the training session. In all experiments, a test session was performed 24 h later. The main results showed that: (1) scopolamine impaired retrieval and induced anxiolytic and hyperlocomotor effects in all experiments; (2) this cholinergic antagonist impaired acquisition only in animals in diestrus; (3) acute administration of estradiol valerate prevented the learning impairment induced by scopolamine and (4) interfered with memory consolidation process. The results suggest that endogenous variations in estrogen levels across the estrous cycle modulate some aspects of memory mediated by the cholinergic system. Indeed, specifically in diestrus, a stage with low estrogen levels, the impairment produced by scopolamine on the acquisition was counteracted by exogenous administration of the hormone, whereas the posttraining treatment potentiated the negative effects of scopolamine during the consolidation phase

  11. Beneficial effect of commercial Rhodiola extract in rats with scopolamine-induced memory impairment on active avoidance.

    PubMed

    Vasileva, Liliya V; Getova, Damianka P; Doncheva, Nina D; Marchev, Andrey S; Georgiev, Milen I

    2016-12-04

    Rhodiola rosea L., family Crassulaceae also known as Golden Root or Arctic root is one of the most widely used medicinal plants with effect on cognitive dysfunction, psychological stress and depression. The aim of the study was to examine the effect of a standardized commercial Rhodiola extract on learning and memory processes in naive rats as well as its effects in rats with scopolamine-induced memory impairment. Sixty male Wistar rats were used in the study. The experiment was conducted in two series - on naive rats and on rats with scopolamine-induced model of impaired memory. The active avoidance test was performed in an automatic conventional shuttle box set-up. The criteria used were the number of conditional stimuli (avoidances), the number of unconditioned stimuli (escapes) as well as the number of intertrial crossings. The chemical fingerprinting of the standardized commercial Rhodiola extract was performed by means of nuclear magnetic resonance (NMR). Naive rats treated with standardized Rhodiola extract increased the number of avoidances during the learning session and memory retention test compared to the controls. Rats with scopolamine-induced memory impairment treated with Rhodiola extract showed an increase in the number of avoidances during the learning session and on the memory tests compared to the scopolamine group. The other two parameters were not changed in rats treated with the extract of Rhodiola in the two series. It was found that the studied Rhodiola extract exerts a beneficial effect on learning and memory processes in naive rats and rats with scopolamine-induced memory impairment. The observed effect is probably due to multiple underlying mechanisms including its modulating effect on acetylcholine levels in the brain and MAO-inhibitory activity leading to stimulation of the monoamines' neurotransmission. In addition the pronounced stress-protective properties of Rhodiola rosea L. could also play a role in the improvement of cognitive

  12. Protection against brain tissues oxidative damage as a possible mechanism for the beneficial effects of Rosa damascena hydroalcoholic extract on scopolamine induced memory impairment in rats.

    PubMed

    Mohammadpour, Toktam; Hosseini, Mahmoud; Naderi, Asieh; Karami, Reza; Sadeghnia, Hamid Reza; Soukhtanloo, Mohammad; Vafaee, Farzaneh

    2015-10-01

    Hypnotic, analgesic, anticonvulsant, and antioxidant effects of Rosa damascena have been reported. This study, investigated the effect of R. damascena hydroalcoholic extract on memory performance in a scopolamine-induced memory impairment model. The rats were divided into control group received just saline; scopolamine group was treated by saline for 2 weeks, but was injected by scopolamine 30 minutes before each trial in Morris water maze test; treatment groups (scopolamine + extract 50; Sco + Ext 50) and (scopolamine + extract 250; Sco + Ext 250) were daily treated by 50 and 250 mg/kg of R. damascena extract (2 weeks) and were finally injected by scopolamine before each trial in Morris water maze. The brains were removed for biochemical measurements. Time latency and path length in the scopolamine group were higher than control (P < 0.01 to <0.001). Both treatment groups showed shorter traveled distance and time latency compared with scopolamine group (P < 0.05 to <0.001). Time spent in target quadrant by scopolamine group was lower than control (P < 0.05), while Sco + Ext 250 group spent longer time in target quadrant than scopolamine group (P < 0.05). Malondialdehyde concentrations in hippocampal and cortical tissues of scopolamine group were higher, while thiol concentrations were lower than control ones (P < 0.001). Treatment by both doses of the extract decreased the malondialdehyde concentration, while increased the thiol concentration (P < 0.05 to <0.001). The results of this study showed that the hydroalcoholic extract of R. damascena prevents scopolamine-induced memory deficits. This finding suggests that memory improvement may be in part due to the antioxidant effects.

  13. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice.

    PubMed

    Rubio, Julio; Dang, Haixia; Gong, Mengjuan; Liu, Xinmin; Chen, Shi-Lin; Gonzales, Gustavo F

    2007-10-01

    Lepidium meyenii Walp. (Brassicaceae), known as Maca, is a Peruvian hypocotyl growing exclusively between 4,000 and 4,500 m altitude in the central Peruvian Andes, particularly in Junin plateau. Previously, Black variety of Maca showed to be more beneficial than other varieties of Maca on learning and memory in ovariectomized mice on the water finding test. The present study aimed to test two different doses of aqueous (0.50 and 2.00 g/kg) and hydroalcoholic (0.25 and 1.00 g/kg) extracts of Black Maca administered for 35 days on memory impairment induced by scopolamine (1mg/kg body weight i.p.) in male mice. Memory and learning were evaluated using the water Morris maze and the step-down avoidance test. Brain acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities in brain were also determined. Both extracts of Black Maca significantly ameliorated the scopolamine-induced memory impairment as measured in both the water Morris maze and the step-down avoidance tests. Black Maca extracts inhibited AChE activity, whereas MAO activity was not affected. These results indicate that Black Maca improves scopolamine-induced memory deficits.

  14. Effects of dimethylaminoethanol pyroglutamate (DMAE p-Glu) against memory deficits induced by scopolamine: evidence from preclinical and clinical studies.

    PubMed

    Blin, Olivier; Audebert, Christine; Pitel, Séverine; Kaladjian, Arthur; Casse-Perrot, Catherine; Zaim, Mohammed; Micallef, Joelle; Tisne-Versailles, Jacky; Sokoloff, Pierre; Chopin, Philippe; Marien, Marc

    2009-12-01

    Dimethylaminoethanol pyroglutamate (DMAE p-Glu) is a compound resulting from the reaction between dimethylaminoethanol (an indirect precursor of acetylcholine) and pyroglutamic acid (a cyclic derivative of glutamic acid having procholinergic properties and promnesic effects in both animals and man). The present study undertook preclinical and clinical evaluations to test a potential therapeutic utility for DMAE p-Glu in cognitive impairments related to central cholinergic deficit. In preclinical study, DMAE p-Glu was studied in rats by intracerebral microdialysis in conscious freely moving animals, on performance of rats in the Morris water maze test of spatial memory, and on the deficit in passive avoidance behavior induced by scopolamine. The clinical study examined the effect of DMAE p-Glu on cognitive deficits induced by an intravenous injection of scopolamine in healthy young male subjects. In rat experiments, DMAE p-Glu increased the extracellular levels of choline and acetylcholine in the medial prefrontal cortex, as assessed by intracerebral microdialysis, improved performance in a test of spatial memory, and reduced scopolamine-induced memory deficit in passive avoidance behavior. Clinical study results show that scopolamine induced a memory deficit and that DMAE p-Glu produced a significant positive effect on scores in the Buschke test, as well as a slight but significant difference on choice reaction time. These results indicate that DMAE p-Glu reduces the deleterious effect of scopolamine on long-term memory in healthy volunteers and suggest that DMAE p-Glu might be effective in reducing memory deficits in patients with cognitive impairment.

  15. Neutral and emotional episodic memory: global impairment after lorazepam or scopolamine.

    PubMed

    Kamboj, Sunjeev K; Curran, H Valerie

    2006-11-01

    Benzodiazepines and anticholinergic drugs have repeatedly been shown to impair episodic memory for emotionally neutral material in humans. However, their effect on memory for emotionally laden stimuli has been relatively neglected. We sought to investigate the effects of the benzodiazepine, lorazepam, and the anticholinergic, scopolamine, on incidental episodic memory for neutral and emotional components of a narrative memory task in humans. A double-blind, placebo-controlled independent group design was used with 48 healthy volunteers to examine the effects of these drugs on emotional and neutral episodic memory. As expected, the emotional memory advantage was retained for recall and recognition memory under placebo conditions. However, lorazepam and scopolamine produced anterograde recognition memory impairments on both the neutral and emotional components of the narrative, although floor effects were obtained for recall memory. Furthermore, compared with placebo, recognition memory for both central (gist) and peripheral (detail) aspects of neutral and emotional elements of the narrative was poorer after either drug. Benzodiazepine-induced GABAergic enhancement or scopolamine-induced cholinergic hypofunction results in a loss of the enhancing effect of emotional arousal on memory. Furthermore, lorazepam- and scopolamine-induced memory impairment for both gist (which is amygdala dependent) and detail raises the possibility that their effects on emotional memory do not depend only on the amygdala. We discuss the results with reference to potential clinical/forensic implications of processing emotional memories under conditions of globally impaired episodic memory.

  16. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice

    PubMed Central

    Zhou, Juan; Yang, Wu-shuang; Suo, Da-qin; Li, Ying; Peng, Lu; Xu, Lan-xi; Zeng, Kai-yue; Ren, Tong; Wang, Ying; Zhou, Yu; Zhao, Yun; Yang, Li-chao; Jin, Xin

    2018-01-01

    The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE) on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM) tests. MSE (250 or 500 mg/kg) was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg) for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways. PMID:29740317

  17. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice.

    PubMed

    Zhou, Juan; Yang, Wu-Shuang; Suo, Da-Qin; Li, Ying; Peng, Lu; Xu, Lan-Xi; Zeng, Kai-Yue; Ren, Tong; Wang, Ying; Zhou, Yu; Zhao, Yun; Yang, Li-Chao; Jin, Xin

    2018-01-01

    The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE) on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM) tests. MSE (250 or 500 mg/kg) was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg) for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.

  18. P7C3 Attenuates the Scopolamine-Induced Memory Impairments in C57BL/6J Mice.

    PubMed

    Jiang, Bo; Song, Lu; Huang, Chao; Zhang, Wei

    2016-05-01

    Memory impairment is the most common symptom in patients with Alzheimer's disease. The purpose of this study is to evaluate the memory enhancing effects of P7C3, a recently identified compound with robust proneurogenic and neuroprotective effects, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. Different behavior tests including the Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. Scopolamine significantly decreased the spontaneous alternation and step-through latency of C57BL/6J mice in Y-maze test and passive avoidance test, whereas increased the time of mice spent to find the hidden platform in Morris water maze test. Importantly, intraperitoneal administration of P7C3 effectively reversed those Scopolamine-induced cognitive impairments in C57BL/6J mice. Furthermore, P7C3 treatment significantly enhanced the level of brain-derived neurotrophic factor (BDNF) signaling pathway in the cortex and hippocampus, and the usage of selective BDNF signaling inhibitor fully blocked the anti-amnesic effects of P7C3. Therefore, these findings suggest that P7C3 could improve the scopolamine-induced learning and memory impairment possibly through activation of BDNF signaling pathway, thereby exhibiting a cognition-enhancing potential.

  19. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    PubMed

    Kim, Hyun-Bum; Lee, Seok; Hwang, Eun-Sang; Maeng, Sungho; Park, Ji-Ho

    2017-10-21

    Due to the improvement of medical level, life expectancy increased. But the increased incidence of cognitive disorders is an emerging social problem. Current drugs for dementia treatment can only delay the progress rather than cure. p-Coumaric acid is a phenylpropanoic acid derived from aromatic amino acids and known as a precursor for flavonoids such as resveratrol and naringenin. It was shown to reduce oxidative stress, inhibit genotoxicity and exert neuroprotection. Based on these findings, we evaluated whether p-coumaric acid can protect scopolamine induced learning and memory impairment by measuring LTP in organotypic hippocampal slice and cognitive behaviors in rats. p-Coumaric acid dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In addition, while scopolamine shortened the step-through latency in the passive avoidance test and prolonged the latency as well as reduced the latency in the target quadrant in the Morris water maze test, co-treatment of p-coumaric acid improved avoidance memory and long-term retention of spatial memory in behavioral tests. Since p-coumaric acid improved electrophysiological and cognitive functional deterioration by scopolamine, it may have regulatory effects on central cholinergic synapses and is expected to improve cognitive problems caused by abnormality of the cholinergic nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Z-Guggulsterone Improves the Scopolamine-Induced Memory Impairments Through Enhancement of the BDNF Signal in C57BL/6J Mice.

    PubMed

    Chen, Zhuo; Huang, Chao; Ding, Wenbin

    2016-12-01

    Memory impairment is a common symptom in patients with neurodegenerative disorders, and its suppression could be beneficial to improve the quality of life of those patients. Z-guggulsterone, a compound extracted from the resin of plant Commiphora whighitii, exhibits numerous pharmacological effects in clinical practice, such as treatment of inflammation, arthritis, obesity and lipid metabolism disorders. However, the role and possible mechanism of Z-guggulsterone on brain-associated memory impairments are largely unknown. This issue was addressed in the present study in a memory impairment model induced by scopolamine, a muscarinic acetylcholine receptor antagonist, using the passive avoidance, Y-maze and Morris water maze tests. Results showed that scopolamine significantly decreased the step-through latency and spontaneous alternation of C57BL/6J mice in passive avoidance and Y-maze test, whereas increased the mean escape latency and decreased the swimming time in target quadrant in Morris water maze test. Pretreatment of mice with Z-guggulsterone at doses of 30 and 60 mg/kg effectively reversed the scopolamine-induced memory impairments. Mechanistic studies revealed that Z-guggulsterone pretreatment reversed the scopolamine-induced increase in acetylcholinesterase (AchE) activity, as well as decreases in brain-derived neurotrophic factor (BDNF) protein expression and cAMP response element-binding protein (CREB), extracellular regulated kinase 1/2 (ERK1/2) and protein kinase B (Akt) phosphorylation levels in the hippocampus and cortex. Inhibition of the BDNF signal, however, blocked the memory-enhancing effect of Z-guggulsterone. Therefore, these findings demonstrate that Z-guggulsterone attenuates the scopolamine-induced memory impairments mainly through activation of the CREB-BDNF signaling pathway, thereby exhibiting memory-improving effects.

  1. Cognitive-Enhancing Effect of Aronia melanocarpa Extract against Memory Impairment Induced by Scopolamine in Mice

    PubMed Central

    Lee, Hyeon Yong; Weon, Jin Bae; Jung, Youn Sik; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2016-01-01

    Aronia melanocarpa (A. melanocarpa) berries are a fruit with a marked antioxidant effect. The objective of this study was to confirm the effect of A. melanocarpa berries extract against scopolamine-induced memory impairment in mice using the Morris water maze and passive avoidance test. Moreover, we determined a possible mechanism of the cognitive-enhancing effect involving AChE activity and BDNF and p-CREB expression in the hippocampus of mice. A. melanocarpa berries extract attenuated the learning and memory impairment induced by scopolamine in the Morris water maze (79.3 ± 0.8 s of 200 mg/kg and 64.4 ± 10.7 s of 400 mg/kg on day 4) and passive avoidance tests (46.0 ± 41.1 s of 200 mg/kg and 25.6 ± 18.7 s of 400 mg/kg). A. melanocarpa berries extract reduced the acetylcholinesterase level in the hippocampus of scopolamine-injected mice and increased BDNF and p-CREB expression in the hippocampus. The major compound, cyanidin-3-O-galactoside, also reversed memory impairment. These results showed that A. melanocarpa berries extract improved memory impairment by inhibiting AChE and increasing BDNF and p-CREB expression, and cyanidin-3-O-galactoside may be responsible for the effect of A. melanocarpa berries extract. PMID:27239211

  2. Cognitive-Enhancing Effect of Aronia melanocarpa Extract against Memory Impairment Induced by Scopolamine in Mice.

    PubMed

    Lee, Hyeon Yong; Weon, Jin Bae; Jung, Youn Sik; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2016-01-01

    Aronia melanocarpa (A. melanocarpa) berries are a fruit with a marked antioxidant effect. The objective of this study was to confirm the effect of A. melanocarpa berries extract against scopolamine-induced memory impairment in mice using the Morris water maze and passive avoidance test. Moreover, we determined a possible mechanism of the cognitive-enhancing effect involving AChE activity and BDNF and p-CREB expression in the hippocampus of mice. A. melanocarpa berries extract attenuated the learning and memory impairment induced by scopolamine in the Morris water maze (79.3 ± 0.8 s of 200 mg/kg and 64.4 ± 10.7 s of 400 mg/kg on day 4) and passive avoidance tests (46.0 ± 41.1 s of 200 mg/kg and 25.6 ± 18.7 s of 400 mg/kg). A. melanocarpa berries extract reduced the acetylcholinesterase level in the hippocampus of scopolamine-injected mice and increased BDNF and p-CREB expression in the hippocampus. The major compound, cyanidin-3-O-galactoside, also reversed memory impairment. These results showed that A. melanocarpa berries extract improved memory impairment by inhibiting AChE and increasing BDNF and p-CREB expression, and cyanidin-3-O-galactoside may be responsible for the effect of A. melanocarpa berries extract.

  3. Effects of scopolamine on morphine-induced conditioned place preference in mice.

    PubMed

    Tan, Hua; Liu, Ning; Wilson, Fraser A W; Ma, Yuanye

    2007-09-01

    It is well known that the cholinergic system plays a crucial role in learning and memory. Psychopharmacological studies in humans and animals have shown that a systemic cholinergic blockade may induce deficits in learning and memory. Accumulated studies have indicated that learning and memory play an important role in drug addition. In the present study, in order to get a further understanding about the functions of the cholinergic system in drug-related learning and memory, we examined the effects of scopolamine (0.5, 1.0 and 2.0 mg/kg) on morphine-induced conditioned place preference (CPP). Two kinds of morphine exposure durations (4 days and 12 days) were used. The main finding was that all doses of scopolamine enhanced the extinction of morphine-induced CPP in mice treated with morphine for 12 days. However, in mice treated with morphine for 4 days, all doses of scopolamine did not inhibit morphine-induced CPP. The highest dose (2.0 mg/kg) of scopolamine even significantly delayed the extinction of morphine-induced CPP. Our results suggest that the effects of a systemic cholinergic blockade on morphine-induced CPP depend on the morphine exposure time.

  4. Influence of age on cognition and scopolamine induced memory impairment in rats measured in the radial maze paradigm.

    PubMed

    Appenroth, Dorothea; Fleck, Christian

    2010-01-01

    The influence of age on (1) cognition and (2) scopolamine (CAS 51-34-3) induced memory impairment in female rats was measured in the radial maze paradigm (RAM). (1) First training trials were done with 3 and 12 months old rats. Rats were trained to find all eight food baits in the RAM without errors and within 1 min. Both 3- and 12-month old rats need about 15 trials for the first-time learning of the RAM task. After intervals of 3 6 months, respectively, initially young rats were re-trained with an age of 6 and 12 months. Surprisingly, re-trained rats successfully completed the maze runs already after one re-training trial. Thus the phenomenon of preserved spatial memory was approved for female rats. (2) Memory impairment by scopolamine in the RAM was tested for the time in rats with an age of 3 months. first rats with thesame After a control run,the rats received an i.p. injection of either scopolamine hydrochloride (0.05 mg/100 g b. wt.) or saline vehicle. The effect of scopolamine on working memory was measured 20 min after administration. Training procedure and scopolamine administration were repeated at an age of 6, 12, 18, and 24 months in the same manner. The cognition impairment after scopolamine (number of errors: control: <1; scopolamine: 5-6) remains constant between 3 and 24 months of age. The only significant difference was the increase in run time in rats older than 18 months caused by degenerative changes developing with age.

  5. Effects of intra-hippocampal microinjection of vitamin B12 on the orofacial pain and memory impairments induced by scopolamine and orofacial pain in rats.

    PubMed

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Nemati, Shaghayegh

    2017-03-01

    In the present study, we investigated the effects of microinjection of vitamin B 12 into the hippocampus on the orofacial pain and memory impairments induced by scopolamine and orofacial pain. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50μl) into the right vibrissa pad, and the durations of face rubbing were recorded at 3-min blocks for 45min. Morris water maze (MWM) was used for evaluation of learning and memory. Finally, locomotor activity was assessed using an open-field test. Vitamin B 12 attenuated both phases of formalin-induced orofacial pain. Prior administration of naloxone and naloxonazine, but not naltrindole and nor-binaltorphimine, prevented this effect. Vitamin B 12 and physostigmine decreased latency time as well as traveled distance in Morris water maze. In addition, these chemicals improved scopolamine-induced memory impairment. The memory impairment induced by orofacial pain was improved by vitamin B 12 and physostigmine used alone. Naloxone prevented, whereas physostigmine enhanced the memory improving effect of vitamin B 12 in the pain-induced memory impairment. All the above-mentioned chemicals did not alter locomotor activity. The results of the present study showed that at the level of the dorsal hippocampus, vitamin B 12 modulated orofacial pain through a mu-opioid receptor mechanism. In addition, vitamin B 12 contributed to hippocampal cholinergic system in processing of memory. Moreover, cholinergic and opioid systems may be involved in improving effect of vitamin B 12 on pain-induced memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Ameliorative effect of kolaviron, a biflavonoid complex from Garcinia kola seeds against scopolamine-induced memory impairment in rats: role of antioxidant defense system.

    PubMed

    Ishola, Ismail O; Adamson, Folasade M; Adeyemi, Olufunmilayo O

    2017-02-01

    In Alzheimer's disease (AD) basal forebrain cholinergic neurons appear to be targeted primarily in early stages of the disease. Scopolamine (muscarinic receptor antagonist) has been used for decades to induce working and reference memory impairment in rodents. In this study, we evaluated the protective effect of kolaviron, a biflavonoid complex isolated from Garcinia kola seeds extract against scopolamine-induced memory impairment/oxidative stress. Rats were pretreated with kolaviron (25, 50 or 100 mg/kg p.o.) for 3 consecutive days, scopolamine (3 mg/kg, i.p.) was administered 1 h post-treatment on day 3. Five minutes post-scopolamine injection, memory function was assessed using the Y-maze or Morris water maze tests (MWM) in rats. The rats were sacrificed and brains isolated on the 8th day after the MWM test for estimation of acetylcholinesterase activity and nitrosative/oxidative stress status. Scopolamine injection induced deficit (P < 0.05) in percentage alternation behaviour in the Y-maze test indicating memory impairment which was ameliorated by kolaviron in a dose-dependent manner. Also, pre-training treatment with kolaviron significantly improved spatial learning evidenced in the session-dependent and more efficient localization of the hidden platform in the MWM test. Moreover, scopolamine injection induced significant increase in lipid peroxidation (prefrontal cortex), nitrite generation (striatum and hippocampus) and a decrease in glutathione (prefrontal cortex, striatum and hippocampus) and superoxide dismutase (striatum and hippocampus) level which was attenuated by kolaviron pre-treatment. These findings showed that kolaviron possesses cognition enhancing effect through enhancement of antioxidant defense and cholinergic systems.

  7. Vanillin improves scopolamine-induced memory impairment through restoration of ID1 expression in the mouse hippocampus

    PubMed Central

    Lee, Jae-Chul; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Shin, Bich Na; Yan, Bing Chun; Kim, Jong-Dai; Jeon, Yong Hwan; Lee, Young Joo; Won, Moo-Ho; Kang, Il Jun

    2018-01-01

    4-Hydroxy-3-methoxybenzaldehyde (vanillin), contained in a number of species of plant, has been reported to display beneficial effects against brain injuries. In the present study, the impact of vanillin on scopolamine-induced alterations in cognition and the expression of DNA binding protein inhibitor ID-1 (ID1), one of the inhibitors of DNA binding/differentiation proteins that regulate gene transcription, in the mouse hippocampus. Mice were treated with 1 mg/kg scopolamine with or without 40 mg/kg vanillin once daily for 4 weeks. Scopolamine-induced cognitive impairment was observed from 1 week and was deemed to be severe 4 weeks following the administration of scopolamine. However, treatment with vanillin in scopolamine-treated mice markedly attenuated cognitive impairment 4 weeks following treatment with scopolamine. ID1-immunoreactive cells were revealed in the hippocampus of vehicle-treated mice, and were hardly detected 4 weeks following treatment with scopolamine. However, treatment with vanillin in scopolamine-treated mice markedly restored ID1-immunoreactive cells and expression 4 weeks subsequent to treatment. The results of the present study suggested that vanillin may be beneficial for cognitive impairment, by preventing the reduction of ID1 expression which may be associated with cognitive impairment. PMID:29328430

  8. Effects of ginseol k-g3, an Rg3-enriched fraction, on scopolamine-induced memory impairment and learning deficit in mice

    PubMed Central

    Peña, Ike dela; Yoon, Seo Young; Kim, Hee Jin; Park, Sejin; Hong, Eun Young; Ryu, Jong Hoon; Park, Il Ho; Cheong, Jae Hoon

    2013-01-01

    Background Although ginsenosides such as Rg1, Rb1 and Rg3 have shown promise as potential nutraceuticals for cognitive impairment, their use has been limited due to high production cost and low potency. In particular, the process of extracting pure Rg3 from ginseng is laborious and expensive. Methods We described the methods in preparing ginseol k-g3, an Rg3-enriched fraction, and evaluated its effects on scopolamine-induced memory impairment in mice. Results Ginseol k-g3 (25–200 mg/kg) significantly reversed scopolamine-induced cognitive impairment in the passive avoidance, but not in Y-maze testing. Ginseol k-g3 (50 and 200 mg/kg) improved escape latency in training trials and increased swimming times within the target zone of the Morris water maze. The effect of ginseol k-g3 on the water maze task was more potent than that of Rg3 or Red ginseng. Acute or subchronic (6 d) treatment of ginseol k-g3 did not alter normal locomotor activity of mice in an open field. Ginseol k-g3 did not inhibit acetylcholinesterase activity, unlike donezepil, an acetylcholinesterase inhibitor. Rg3 enrichment through the ginseol k-g3 fraction enhanced the efficacy of Rg3 in scopolamine-induced memory impairment in mice as demonstrated in the Morris water maze task. Conclusion The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity. PMID:24558303

  9. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist.

    PubMed

    Newman, L A; Gold, P E

    2016-03-01

    Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist-to decrease scopolamine-induced increases in acetylcholine output or to decrease postsynaptic acetylcholine receptor activation-may mediate the negative effects on memory of muscarinic antagonists.

  10. Attenuation in rats of impairments of memory by scopolamine, a muscarinic receptor antagonist, by mecamylamine, a nicotinic receptor antagonist

    PubMed Central

    Newman, L. A.

    2015-01-01

    Rationale Scopolamine, a muscarinic antagonist, impairs learning and memory for many tasks, supporting an important role for the cholinergic system in these cognitive functions. The findings are most often interpreted to indicate that a decrease in postsynaptic muscarinic receptor activation mediates the memory impairments. However, scopolamine also results in increased release of acetylcholine in the brain as a result of blocking presynaptic muscarinic receptors. Objectives The present experiments assess whether scopolamine-induced increases in acetylcholine release may impair memory by overstimulating postsynaptic cholinergic nicotinic receptors, i.e., by reaching the high end of a nicotinic receptor activation inverted-U dose-response function. Results Rats tested in a spontaneous alternation task showed dose-dependent working memory deficits with systemic injections of mecamylamine and scopolamine. When an amnestic dose of scopolamine (0.15 mg/kg) was co-administered with a subamnestic dose of mecamylamine (0.25 mg/kg), this dose of mecamylamine significantly attenuated the scopolamine-induced memory impairments. We next assessed the levels of acetylcholine release in the hippocampus in the presence of scopolamine and mecamylamine. Mecamylamine injections resulted in decreased release of acetylcholine, while scopolamine administration caused a large increase in acetylcholine release. Conclusions These findings indicate that a nicotinic antagonist can attenuate impairments in memory produced by a muscarinic antagonist. The nicotinic antagonist may block excessive activation of nicotinic receptors postsynaptically or attenuate increases in acetylcholine release presynaptically. Either effect of a nicotinic antagonist—to decrease scopolamine-induced increases in acetylcholine output or to decrease post-synaptic acetylcholine receptor activation—may mediate the negative effects on memory of muscarinic antagonists. PMID:26660295

  11. Epigenetic regulation of neuronal immediate early genes is associated with decline in their expression and memory consolidation in scopolamine-induced amnesic mice.

    PubMed

    Srivas, Sweta; Thakur, Mahendra K

    2017-09-01

    Recently, we reported a correlation of scopolamine mediated decline in memory consolidation with increase in the expression of DNA methyltransferase 1 (DNMT1) and histone deacetylase 2 (HDAC2) in the mouse hippocampus. Memory consolidation is a protein synthesis-dependent process which involves the expression of synaptic plasticity genes, particularly neuronal immediate early genes (IEGs). However, the mechanism of regulation of these genes during decline in memory is poorly understood. Therefore, we have studied the epigenetic regulation of expression of neuronal IEGs in scopolamine-induced amnesic mice. Scopolamine significantly impaired memory consolidation as tested by radial arm maze, and the expression of neuronal IEGs was downregulated in the hippocampus as revealed by qRT-PCR and Western blotting. Further, methylated DNA immunoprecipitation (MeDIP) analysis showed increase in DNA methylation, while chromatin immunoprecipitation (ChIP) revealed decrease in H3K9/14 acetylation at the promoter of neuronal IEGs. Taken together, the present study shows that increased DNA methylation and decreased histone acetylation at the promoter of neuronal IEGs are associated with decline in their expression and memory consolidation during scopolamine-induced amnesia. These findings suggest that the epigenetic regulation through altered DNA methylation and histone acetylation might be explored further to develop potential therapeutic interventions for amnesia.

  12. Enduring amnesia induced by ICV scopolamine is reversed by sesame oil in male rats.

    PubMed

    Tabari, Shabnam-Sadat Seyedi; Babri, Shirin; Mirzaie, Fariba; Farajdokht, Fereshteh; Mohaddes, Gisou

    2016-08-01

    To evaluated the long-term effect of scopolamine and sesame oil on spatial memory. Memory impairment induced by Intracerebroventricular (ICV) injection of scopolamine hydrochloride (10 μg/ rat). Animals were gavaged for 4 weeks with saline, sesame oil (0.5, 1, or 2 mL/kg/day), or 3 weeks with memantine (30 mg/kg/day) in advance to induction of amnesia. Morris water maze (MWM) test was conducted 6 days after microinjection of scopolamine. Then, blood and brain samples were collected and evaluated for the malondialdehyde (MDA) levels, superoxide dismutase (SOD) and glutathione peroxidase (GPX) activities, and total antioxidant status (TAS) and ferric reducing ability of plasma (FRAP). Scopolamine significantly decreased traveled distance and time spent in target quadrant in probe test. Pretreatment of rats with sesame oil (0.5 mg/kg) mitigated scopolamine-induced behavioral alterations. Measurement of MDA, SOD, and GPX in brain tissue, and FRAP and TAS in blood showed little changes in animals which had received scopolamine or sesame oil. Intracerebroventricular injection of scopolamine has a residual effect on memory after six days. Sesame oil has an improving effect on spatial memory; however this effect is possibly mediated by mechanisms other than antioxidant effect of sesame oil.

  13. Beneficial effects of Urtica dioica on scopolamine-induced memory impairment in rats: protection against acetylcholinesterase activity and neuronal oxidative damage.

    PubMed

    Ghasemi, Simagol; Moradzadeh, Malihe; Hosseini, Mahmoud; Beheshti, Farimah; Sadeghnia, Hamid Reza

    2018-05-10

    This study was conducted to investigate protective effects of Urtica dioica extract on acetylcholinesterase (AChE) activity and the oxidative damage of brain tissues in scopolamine-induced memory impairment model. The rats were treated with (1) saline (control), (2) scopolamine, and (3-5) the plant extract (20, 50, or 100 mg/kg) before scopolamine. The traveled distance and the latency to find the platform in Morris water maze (MWM) by scopolamine-treated group were longer while the time spent in target quadrant was shorter than those of the control. Scopolamine decreased the latency to enter the dark in passive avoidance test. Besides, it also increased AChE activity and malondialdehyde (MDA) concentration in the hippocampal and cortical tissues while decreased thiols content and superoxide dismutase (SOD) and catalase (CAT) activities in the brain (p < 0.01-p <0.001). Treatment by the extract reversed all the effects of scopolamine (p < 0.05-p <0.001). According to the results of present study, the beneficial effects of U. dioica on memory can be attributed to its protective effects on oxidative damage of brain tissue and AChE activity.

  14. Time gradient for post-test vulnerability to scopolamine-induced amnesia following the initial acquisition session of a spatial reference memory task in mice.

    PubMed

    Toumane, A; Durkin, T P

    1993-09-01

    The time course for vulnerability to the amnestic effects of the cholinergic antagonist, scopolamine, during the postacquisition period has been investigated. We have examined the effects of post-test injections of scopolamine (1 mg/kg ip) given at different times from 30 s for up to 6 h following the end of the first acquisition session of a concurrent spatial discrimination (reference memory) protocol in an 8-arm radial maze on subsequent long-term (24 h) retention performance in C57BL/6 mice. Results show that the immediate (30 s) post-test injection of scopolamine-HCl on Day 1 produces marked perturbation (amnesia) of long-term retention as attested to by significant deficits in various indices of spatial discrimination performance gain on Day 2 as compared to control subjects injected either with scopolamine-MBr or saline. The severity of this scopolamine-induced amnesia declines only slightly as a function of the treatment period 30 s-3 h post-test. However, no evidence for amnesia is observed if scopolamine-HCl injections are delayed for 6 h postsession. This important latter observation attests to the absence of any significant proactive effects of scopolamine on the ability of mice to perform the retention test via possible long-term effects on attention, motivation, or locomotor performance. These results thus constitute evidence for the existence of a limited (30 s-3 h) time gradient for vulnerability of the early memory trace to disruption by scopolamine. The present results are discussed in relation to our previous direct neurochemical observations describing the differential time courses of intervention of the ascending septohippocampal and nBM-cortical cholinergic pathways in the postlearning period. In particular, the presently observed time window concerning post-test vulnerability to scopolamine-induced amnesia corresponds more closely to the time course of the acute activation of the nBM-cortical cholinergic pathway, induced by testing with the

  15. Scopolamine impairs memory recall in Octopus vulgaris.

    PubMed

    Fiorito, G; Agnisola, C; d'Addio, M; Valanzano, A; Calamandrei, G

    1998-09-04

    The involvement of the central cholinergic system in predatory performance, and on the recall of individual and observational memory in Octopus vulgaris was studied by treating the animals with the muscarinic antagonist scopolamine (2 mg/kg). The absence of the effects of the injection of scopolamine on blood circulation was also checked. Scopolamine did not affect the ability of octopuses to prey on live crabs. However, it interfered significantly with memory recall. In fact, the ability to solve the jar problem was impaired within the first hour after injection (short-term effects) and was only partially recovered after 24 h (long-term). Moreover, both individual and observational learning of a visual discrimination were significantly reduced at the short- and long-term testing. These results support a role of the cholinergic system in the processes of memory recall of O. vulgaris.

  16. Verapamil Blocks Scopolamine Enhancement Effect on Memory Consolidation in Passive Avoidance Task in Rats

    PubMed Central

    Giménez De Béjar, Verónica; Caballero Bleda, María; Popović, Natalija; Popović, Miroljub

    2017-01-01

    Our recent data have indicated that scopolamine, a non-selective muscarinic receptor antagonist, improves memory consolidation, in a passive avoidance task, tested in rats. It has been found that verapamil, a phenylalkylamine class of the L-type voltage-dependent calcium channel antagonist, inhibits [3H] N-methyl scopolamine binding to M1 muscarinic receptors. However, there are no data about the effect of verapamil on memory consolidation in the passive avoidance task, in rats. The purpose of the present study was to examine the effects of verapamil (0.5, 1.0, 2.5, 5.0, 10, or 20 mg/kg i.p.) as well as the interaction between scopolamine and verapamil on memory consolidation in the step-through passive avoidance task, in Wistar rats. Our results showed that verapamil (1.0 and 2.5 mg/kg) administered immediately after the acquisition task significantly increased the latency of the passive avoidance response, on the 48 h retested trial, improving memory consolidation. On the other hand, verapamil in a dose of 5 mg/kg, that per se does not affect memory consolidation, significantly reversed the memory consolidation improvement induced by scopolamine (1 mg/kg, i.p., administered immediately after verapamil treatment) but did not change the passive avoidance response in rats treated by an ineffective dose of scopolamine (30 mg/kg). In conclusion, the present data suggest that (1) the post-training administration of verapamil, dose-dependently, improves the passive avoidance response; (2) verapamil, in ineffective dose, abolished the improvement of memory consolidation effect of scopolamine; and (3) exists interaction between cholinergic muscarinic receptors and calcium homeostasis-related mechanisms in the consolidation of emotional memory. PMID:28878678

  17. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p < 0.05). Moreover, the phosphorylation level of CREB was also significantly increased compared with the control group by the administration of EEAK (200 mg/kg) (p < 0.05). The present study suggests that EEAK ameliorates the cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer

  18. Alantolactone and Isoalantolactone Prevent Amyloid β25-35 -induced Toxicity in Mouse Cortical Neurons and Scopolamine-induced Cognitive Impairment in Mice.

    PubMed

    Seo, Ji Yeon; Lim, Soon Sung; Kim, Jiyoung; Lee, Ki Won; Kim, Jong-Sang

    2017-05-01

    Given the evidence for detoxifying/antioxidant enzyme-inducing activities by alantolactone (AL) and isoalantolactone (IAL), the purpose of this study was to investigate the effects of AL and IAL on Aβ 25-35 -induced cell death in mouse cortical neuron cells and to determine their effects on scopolamine-induced amnesia in mice. Our data demonstrated that both compounds effectively attenuated the cytotoxicity of Aβ 25-35 (10 μM) in neuronal cells derived from the mouse cerebral cortex. It was also found that the production of intracellular reactive oxygen species, including superoxide anion induced by Aβ 25-35 , was inhibited. Moreover, the administration of the sesquiterpenes reversed scopolamine-induced cognitive impairments as assessed by Morris water, Y-maze, and the passive avoidance tests, and the compounds decreased acetylcholinesterase (AChE) activities in a dose-dependent manner. Interestingly, AL and IAL did not improve scopolamine-induced cognitive deficit in Nrf2 -/- mice, suggesting that memory improvement by sesquiterpenes was mediated not only by the activation of the Nrf2 signaling pathway but also by their inhibitory activity against AChE. In conclusion, our results showed that AL and IAL had neuroprotective effects and reversed cognitive impairments induced by scopolamine in a mouse model. Therefore, AL and IAL deserve further study as potential therapeutic agents for reactive oxygen species-related neurodegenerative diseases. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  19. DADS Analogues Ameliorated the Cognitive Impairments of Alzheimer-Like Rat Model Induced by Scopolamine.

    PubMed

    Manral, Apra; Meena, Poonam; Saini, Vikas; Siraj, Fouzia; Shalini, Shruti; Tiwari, Manisha

    2016-10-01

    The development of agents that affect two or more relevant targets has drawn considerable attention in treatment of AD. Diallyl disulfide (DADS), an active principle of garlic, has been reported to prevent APP processing by amyloidogenic pathway. Recently, we have reported a new series of DADS derivatives and our findings revealed that compound 7k and 7l could provide good templates for developing new multifunctional agents for AD treatment. Thus, the present study was constructed to investigate the neuroprotective effect of DADS analogues (7k and 7l) against Aβ-induced neurotoxicity in SH-SY5Y human neuroblastoma cells and in ameliorating the cognition deficit induced by scopolamine in rat model. The results indicated that compound 7k and 7l significantly inhibited Aβ1-42-induced neuronal cell death by inhibiting ROS generation. Moreover, they prevented apoptosis, in response to ROS, by restoring normal Bax/Bcl-2 ratio. Furthermore, it was observed that scopolamine-induced memory impairment was coupled by alterations in neurotransmitters, acetylcholinesterase activity and oxidative stress markers. Histological analysis revealed severe damaging effects of scopolamine on the structure of cerebral cortex and hippocampus. Administration of compounds 7k and 7l at 5 mg/kg significantly reversed scopolamine-induced behavioural, biochemical, neurochemical and histological changes in a manner comparable to standard donepezil. Together the present findings and previous studies indicate that compounds 7k and 7l have neuroprotective and cognition-enhancing effects, which makes them a promising multi-target candidate for addressing the complex nature of AD.

  20. Cognitive enhancing of pineapple extract and juice in scopolamine-induced amnesia in mice

    PubMed Central

    Momtazi-borojeni, Amir Abbas; Sadeghi-Aliabadi, Hojjat; Rabbani, Mohammed; Ghannadi, Alireza; Abdollahi, Elham

    2017-01-01

    The objective of the present study was to evaluate the cognitive enhancing of pineapple juice and ethanolic extract in scopolamine-induced cognitive deficit mice. The ethanolic extract of pineapple (Ananas comosus (L.) Merr.) was prepared by maceration method and its juice was obtained by a homogenizer. Object recognition task was used to evaluate the mice memory. Exploration time in the first and second trial was recorded. The differences in exploration time between a familiar and a novel object in the second trial were taken as a memory index. Animals were randomly assigned into 15 groups of 6 each including: control group (normal saline + vehicle), positive control group (scopolamine + rivastigmine), seven experimental groups (received scopolamine alone or scopolamine + ethanolic extract of pineapple in different doses), six other experimental groups were treated by ethanolic extract or juice of pineapple in different doses. Scopolamine (100 μL, 1 mg/kg, i.p.) and pineapple juice or extract (50, 75 and 100 mg/kg, i.p.) were administered 40 and 30 min before starting the second trial in the experimental groups. Object discrimination was impaired after scopolamine administration. Results showed that juice and ethanolic extract of pineapple significantly restored object recognition ability in mice treated with scopolamine. These finding suggested that pineapple had a protective role against scopolamine-induced amnesia, indicating its ability in management of cognitive disorders. PMID:28626484

  1. Effect of pregabalin on fear-based conditioned avoidance learning and spatial learning in a mouse model of scopolamine-induced amnesia.

    PubMed

    Sałat, Kinga; Podkowa, Adrian; Malikowska, Natalia; Trajer, Jędrzej

    2017-03-01

    Cognitive deficits are one of the frequent symptoms accompanying epilepsy or its treatment. In this study, the effect on cognition of intraperitoneally administered antiepileptic drug, pregabalin (10 mg/kg), was investigated in scopolamine-induced memory-impaired mice in the passive avoidance task and Morris water maze task. The effect of scopolamine and pregabalin on animals' locomotor activity was also studied. In the retention phase of the passive avoidance task, pregabalin reversed memory deficits induced by scopolamine (p < 0.05). During the acquisition phase of the Morris water maze pregabalin-treated memory-impaired mice performed the test with longer escape latencies than the vehicle-treated mice (significant at p < 0.05 on Day 5, and at p < 0.001 on Day 6). There were no differences in this parameter between the scopolamine-treated control group and pregabalin-treated memory-impaired mice, which indicated that pregabalin had no influence on spatial learning in this task. During the probe trial a significant difference (p < 0.05) was observed in terms of the mean number of target crossings between vehicle-treated mice and pregabalin-treated memory-impaired mice but there was no difference between the scopolamine-treated control group and mice treated with pregabalin + scopolamine. Pregabalin did not influence locomotor activity increased by scopolamine. In passive avoidance task, pregabalin reversed learning deficits induced by scopolamine. In the Morris water maze, pregabalin did not influence spatial learning deficits induced by scopolamine. These results are relevant for epileptic patients treated with pregabalin and those who use it for other therapeutic indications (anxiety, pain).

  2. Anti-amnesic effect of extract and alkaloid fraction from aerial parts of Peganum harmala on scopolamine-induced memory deficits in mice.

    PubMed

    Liu, Wei; Zhu, Yudan; Wang, Yongli; Qi, Shenglan; Wang, Yuwen; Ma, Chao; Li, Shuping; Jiang, Bo; Cheng, Xuemei; Wang, Zhengtao; Xuan, Zhenyu; Wang, Changhong

    2017-05-23

    Aerial parts of Peganum harmala Linn (APP) is used as traditional medical herb for treatment of forgetfulness in Uighur medicine in China. But, the active ingredients and underlying mechanisms are unclear. The present study was undertaken to investigate the improvement effects of extract and alkaloid fraction from APP on scopolamine-induced cognitive dysfunction and to elucidate their underlying mechanisms of action, and to support its folk use with scientific evidence, and lay a foundation for its further researches. The acetylcholinesterase (AChE) inhibitory activities of extract (EXT), alkaloid fraction (ALK) and flavonoid fraction (FLA) from APP were evaluated in normal male C57BL/6 mice. The anti-amnesic effects of EXT and ALK from APP were measured in scopolamine-induced memory deficits mice by the Morris water maze (MWM) tasks. The levels of biomarkers, enzyme activity and protein expression of cholinergic system were determined in brain tissues. The AChE activity was significantly decreased and the content of neurotransmitter acetylcholine (ACh) was significantly increased in normal mice cortex and hippocampus by treatment with donepezil at dosage of 8mg/kg, EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10, 30, 90mg/kg (P<0.05), and the AChE activity and the content of ACh were not significantly changed in cortex and hippocampus after treatment with FLA at dosages of 10, 30, 90mg/kg (P>0.05). In the MWM task, scopolamine-induced a decrease in both the swimming time within the target zone and the number of crossings where the platform had been placed were significantly reversed by treatment with EXT at dosages of 550, 1650mg/kg and ALK at dosages of 30, 90mg/kg (P<0.05). Moreover, the activity and protein expression of AChE was significantly decreased and the content of neurotransmitter ACh was significantly increased in cerebral cortex of scopolamine-induced mice by treatment with EXT at dosages of 183, 550, 1650mg/kg and ALK at dosages of 10

  3. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    PubMed

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease.

  4. Protective effects of cultured and fermented ginseng extracts against scopolamine-induced memory loss in a mouse model.

    PubMed

    Han, Song-Hee; Kim, Sung-June; Yun, Young Won; Nam, Sang Yoon; Lee, Hu-Jang; Lee, Beom-Jun

    2018-03-01

    This study was performed to investigate the effect of a concentrate of fermented wild ginseng root culture (HLJG0701) on memory improvement in the scopolamine (SPL)-induced memory-deficient mouse model. Eight-week-old male ICR mice were used to evaluate the protective effect of HLJG0701 against the SPL-induced memory loss animal model. The Morris water maze test, which measures hippocampus-dependent learning ability, and the Y-maze test, a short-term memory assessment test, were performed and related markers were analyzed. HLJG0701-treated groups displayed significantly reduced acetylcholinesterase activity and increased acetylcholine level compared with the SPL-administered group (SPL-G) ( P <0.05). In the Y-maze test, the spontaneous alternation in al HLJG0711-treated groups was significantly increased compared with that in SPL-G ( P <0.05). In the Morris water maze test, the escape latency and time spent in the target quadrant in all HLJG0701-treated groups were significantly decreased and increased, respectively, compared with those in SPL-G ( P <0.05). In addition, the brain-derived neurotrophic factor level in groups treated with HLJG0701 300 and 600 mg/kg body weight was significantly increased compared with that in SPL-G ( P <0.05). These results suggest that the HLJG0701 may protect against memory loss by inhibiting acetylcholinesterase activity and preventing acetylcholine deficiency.

  5. Gladiolus dalenii lyophilisate reverses scopolamine-induced amnesia and reduces oxidative stress in rat brain.

    PubMed

    Ngoupaye, Gwladys Temkou; Pahaye, David Bougolla; Ngondi, Judith; Moto, Fleur Clarisse Okomolo; Bum, Elisabeth Ngo

    2017-07-01

    Learning and memory are the most important executive functions performed by the human brain, the loss of which is a prominent feature in dementia. Gladiolus dalenii is traditionally used to treat a number of illnesses such as epilepsy and schizophrenia in Cameroon. This study aims to investigate the anti-amnesia effect of Gladiolus dalenii in scopolamine-induced amnesia in rats and its possible antioxidant properties in this model. Morris water maze, novel object location and recognition tasks were used to assess spatial and working memory. Male rats were treated for 12 days with saline, G. dalenii or Tacrine. Experimental animals were co-treated with scopolamine once daily from day 9 to 12. Acetylcholinesterase activity was measured in the prefrontal cortex and hippocampus. Malondialdehyde and glutathione levels were measured in the hippocampus. G. dalenii reversed memory impairment induced by scopolamine in the Morris water maze, novel object location and recognition tasks. It decreased acetylcholinesterase activity in the hippocampus and prefrontal cortex. It also decreased the level of malondialdehyde and increased the level of glutathione in the hippocampus. The results of this study show that G. dalenii ameliorates the cognitive impairment induced by scopolamine, through inhibition of oxidative stress and enhancement of cholinergic neurotransmission. It can therefore be useful for treatment of conditions associated with memory dysfunction as seen in dementia. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Premarin improves memory, prevents scopolamine-induced amnesia and increases number of basal forebrain choline acetyltransferase positive cells in middle-aged surgically menopausal rats.

    PubMed

    Acosta, Jazmin I; Mayer, Loretta; Talboom, Joshua S; Zay, Cynthia; Scheldrup, Melissa; Castillo, Jonathan; Demers, Laurence M; Enders, Craig K; Bimonte-Nelson, Heather A

    2009-03-01

    Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 microg), CEE-Medium (20 microg) or CEE-High (30 microg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 beta-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.

  7. Neuropeptide S enhances memory and mitigates memory impairment induced by MK801, scopolamine or Aβ₁₋₄₂ in mice novel object and object location recognition tasks.

    PubMed

    Han, Ren-Wen; Zhang, Rui-San; Xu, Hong-Jiao; Chang, Min; Peng, Ya-Li; Wang, Rui

    2013-07-01

    Neuropeptide S (NPS), the endogenous ligand of NPSR, has been shown to promote arousal and anxiolytic-like effects. According to the predominant distribution of NPSR in brain tissues associated with learning and memory, NPS has been reported to modulate cognitive function in rodents. Here, we investigated the role of NPS in memory formation, and determined whether NPS could mitigate memory impairment induced by selective N-methyl-D-aspartate receptor antagonist MK801, muscarinic cholinergic receptor antagonist scopolamine or Aβ₁₋₄₂ in mice, using novel object and object location recognition tasks. Intracerebroventricular (i.c.v.) injection of 1 nmol NPS 5 min after training not only facilitated object recognition memory formation, but also prolonged memory retention in both tasks. The improvement of object recognition memory induced by NPS could be blocked by the selective NPSR antagonist SHA 68, indicating pharmacological specificity. Then, we found that i.c.v. injection of NPS reversed memory disruption induced by MK801, scopolamine or Aβ₁₋₄₂ in both tasks. In summary, our results indicate that NPS facilitates memory formation and prolongs the retention of memory through activation of the NPSR, and mitigates amnesia induced by blockage of glutamatergic or cholinergic system or by Aβ₁₋₄₂, suggesting that NPS/NPSR system may be a new target for enhancing memory and treating amnesia. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Vitis labruscana leaf extract ameliorates scopolamine-induced impairments with activation of Akt, ERK and CREB in mice.

    PubMed

    Pariyar, Ramesh; Yoon, Chi-Su; Svay, Thida; Kim, Dae-Sung; Cho, Hyoung-Kwon; Kim, Sung Yeon; Oh, Hyuncheol; Kim, Youn-Chul; Kim, Jaehyo; Lee, Ho-Sub; Seo, Jungwon

    2017-12-01

    Grapes are among the most widely consumed plants and are used as a folk medicine. Vitis species have been traditionally used as anti-inflammatory, analgesic, and memory-enhancing agents, but, their biological activities of discarded grape leaves are not completely understood. We investigated the effects of alcoholic aqueous leaf extract of Vitis labruscana (LEVL) in a mouse model of memory impairment and tried to ascertain its mechanism. We also evaluated its effects in SH-SY5Y cells. LEVL (50, 100, and 150 mg/kg) was administered to ICR mice once daily for 7 days. Memory impairment was induced with intraperitoneal scopolamine injections (1 mg/kg) and measured with the Y-maze test and a passive avoidance task. LEVL-induced signaling was evaluated in SH-SY5Y cells and mouse hippocampi. We first identified quercetin-3-O-glucuronide as LEVL's major component. We then showed that LEVL promoted phosphorylation of Akt, extracellular regulated kinase (ERK), and cyclic AMP response element binding protein (CREB) and proliferation of SH-SY5Y cells. Oral LEVL administration (100 mg/kg) for 7 days significantly reversed scopolamine-induced reductions of spontaneous alternation in the Y-maze test and scopolamine-induced shortening of latency times in the passive avoidance task's retention trial. Consistent with the cell experiment results, LEVL restored scopolamine-decreased phosphorylation of Akt, ERK, and CREB and scopolamine-reduced expression of brain-derived neuroprotective factor expression in mouse hippocampi. Our results suggest that LEVL promotes phosphorylation of Akt, ERK, and CREB in the hippocampus and ameliorates scopolamine-induced memory impairment in mice. Copyright © 2017 Elsevier GmbH. All rights reserved.

  9. Time course of scopolamine effect on memory consolidation and forgetting in rats.

    PubMed

    Popović, Miroljub; Giménez de Béjar, Verónica; Popović, Natalija; Caballero-Bleda, María

    2015-02-01

    The effect of scopolamine on the consolidation and forgetting of emotional memory has not been completely elucidated yet. The aim of the present study was to investigate the time course of scopolamine effect on consolidation and forgetting of passive avoidance response. In a first experiment of the present study, we tested the effect of scopolamine (1mg/kg, i.p., immediately after acquisition), on 24h and 48h retention performance of the step-through passive avoidance task, in adult male Wistar rats. On the 24h retested trial, the latency of the passive avoidance response was significantly lower, while on the 48h retested trial it was significantly higher in scopolamine than in the saline-treated group. In a second experiment, we assessed the 24h time course of scopolamine (1mg/kg) effect on memory consolidation in passive avoidance task. We found that scopolamine administration only within the first six and half hours after acquisition improved memory consolidation in 48h retention performance. Finally, a third experiment was performed on the saline- and scopolamine-treated rats (given immediately after acquisition) that on the 48h retention test did not step through into the dark compartment during the cut-off time. These animals were retested weekly for up to first three months, and after that, every three months until the end of experiment (i.e., 15 months after acquisition). The passive avoidance response in the saline treated group lasted up to 6 weeks after acquisition, while in the scopolamine treated group 50% of animals conserved the initial level of passive avoidance response until the experiment end point. In conclusion, the present data suggest that (1) improving or impairment effect of scopolamine given in post-training periods depends on delay of retention trial, (2) memory consolidation process could be modify by scopolamine within first six and half hours after training and (3) scopolamine could delay forgetting of emotional memory. Copyright

  10. Neuroprotective and Antiamnesic Effects of Mitragyna inermis Willd (Rubiaceae) on Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Bum, Elisabeth Ngo; Taïwé, Germain Sotoing; Ngoupaye, Gwladys Temkou; Sidiki, Neteydji; Moto, Fleur Clarisse Okomolo; Kouemou, Nadège; Njapdounke, Stephanie Jacqueline Kameni; Nkantchoua, Gisele; Omam, Jean Pierre Omam; Mairaira, Veronique

    2017-01-01

    Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis) leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes—catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation—were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects. PMID:28386162

  11. Synergistic effects of galantamine and memantine in attenuating scopolamine-induced amnesia in mice.

    PubMed

    Busquet, Perrine; Capurro, Valeria; Cavalli, Andrea; Piomelli, Daniele; Reggiani, Angelo; Bertorelli, Rosalia

    2012-01-01

    We investigated a possible drug efficacy enhancement obtained by combining inactive doses of galantamine and memantine in the scopolamine-induced amnesia model in mice. We evaluated the effects of the two drugs, either alone or in combination, using the spontaneous alternation and object recognition tasks. In both tests, combination of low doses of galantamine (0.1 mg/kg, s.c.) and memantine (0.5 mg/kg, i.p.), which were sub-active per se, rescued the memory impairment induced by scopolamine (1 mg/kg, i.p.). The results suggest that combinations of galantamine and memantine might provide a more effective treatment of memory impairments in cognitive disorders than either drug used alone.

  12. Protective Role of Ashwagandha Leaf Extract and Its Component Withanone on Scopolamine-Induced Changes in the Brain and Brain-Derived Cells

    PubMed Central

    Singh, Rumani; Saxena, Nishant; Kaul, Sunil C.; Wadhwa, Renu; Thakur, Mahendra K.

    2011-01-01

    Background Scopolamine is a well-known cholinergic antagonist that causes amnesia in human and animal models. Scopolamine-induced amnesia in rodent models has been widely used to understand the molecular, biochemical, behavioral changes, and to delineate therapeutic targets of memory impairment. Although this has been linked to the decrease in central cholinergic neuronal activity following the blockade of muscarinic receptors, the underlying molecular and cellular mechanism(s) particularly the effect on neuroplasticity remains elusive. In the present study, we have investigated (i) the effects of scopolamine on the molecules involved in neuronal and glial plasticity both in vivo and in vitro and (ii) their recovery by alcoholic extract of Ashwagandha leaves (i-Extract). Methodology/Principal Findings As a drug model, scopolamine hydrobromide was administered intraperitoneally to mice and its effect on the brain function was determined by molecular analyses. The results showed that the scopolamine caused downregulation of the expression of BDNF and GFAP in dose and time dependent manner, and these effects were markedly attenuated in response to i-Extract treatment. Similar to our observations in animal model system, we found that the scopolamine induced cytotoxicity in IMR32 neuronal and C6 glioma cells. It was associated with downregulation of neuronal cell markers NF-H, MAP2, PSD-95, GAP-43 and glial cell marker GFAP and with upregulation of DNA damage- γH2AX and oxidative stress- ROS markers. Furthermore, these molecules showed recovery when cells were treated with i-Extract or its purified component, withanone. Conclusion Our study suggested that besides cholinergic blockade, scopolamine-induced memory loss may be associated with oxidative stress and Ashwagandha i-Extract, and withanone may serve as potential preventive and therapeutic agents for neurodegenerative disorders and hence warrant further molecular analyses. PMID:22096544

  13. Standardized extract of Lactuca sativa Linn. and its fractions abrogates scopolamine-induced amnesia in mice: A possible cholinergic and antioxidant mechanism.

    PubMed

    Malik, Jai; Kaur, Jagpreet; Choudhary, Sunayna

    2018-06-01

    The present study was designed to evaluate the efficacy of Lactuca sativa (LS) Linn. (Asteraceae) against scopolamine-induced amnesia and to validate its traditional claim as memory enhancer. Ethanol extract of fresh LS leaves (LSEE), standardized on the basis of quercetin content, was successively partitioned using various solvents viz., hexane, ethyl acetate, and n-butanol in increasing order of polarity. LSEE (50, 100, and 200 mg/kg) and its various fractions (at a dose equivalent to dose of LSEE exhibiting maximum activity), administered orally for 14 days, were evaluated for their memory enhancing effect against scopolamine-induced (1 mg/kg, i.p.) amnesia in 3-4 months old male Laca mice (n = 6 in each group). The memory enhancing effect was evaluated using behavioural (elevated plus maze, novel object recognition and Morris water maze tests) and biochemical parameters (acetylcholinesterase activity, malonaldehyde, superoxide dismutase, nitrite, catalase, and reduced gultathione content). The results of the test substances were compared with both scopolamine and donepezil that was used as a standard memory enhancer and acetylcholinesterase inhibitor. Scopolamine elicit marked deterioration of memory and alteration in biochemical parameters in comparison to the control group. LSEE and its n-butanol and aqueous fractions significantly (P < 0.05) attenuated the scopolamine-induced amnesia that was evident in all the behavioural and biochemical test parameters. LSEE (200 mg/kg) and n-butanol fraction (15 mg/kg) exhibited maximum anti-amnesic effect among various tested dose levels. The results exhibited that LS prophylaxis attenuated scopolamine-induced memory impairment through its acetylcholinesterase inhibitory and antioxidant activity validating its traditional claim.

  14. The impact of scopolamine pretreatment on 3-iodothyronamine (T1AM) effects on memory and pain in mice.

    PubMed

    Laurino, Annunziatina; Lucenteforte, Ersilia; De Siena, Gaetano; Raimondi, Laura

    2017-08-01

    We previously demonstrated that 3-iodothyronamine (T1AM), a by-product of thyroid hormone metabolism, pharmacologically administered to mice acutely stimulated learning and memory acquisition and provided hyperalgesia with a mechanism which remains to be defined. We now aimed to investigate whether the T1AM effect on memory and pain was maintained in mice pre-treated with scopolamine, a non-selective muscarinic antagonist expected to induce amnesia and, possibly, hyperalgesia. Mice were pre-treated with scopolamine and, after 20min, injected intracerebroventricularly (i.c.v.) with T1AM (0.13, 0.4, 1.32μg/kg). 15min after T1AM injection, the mice learning capacity or their pain threshold were evaluated by the light/dark box and by the hot plate test (51.5°C) respectively. Experiments in the light/dark box were repeated in mice receiving clorgyline (2.5mg/kg, i.p.), a monoamine oxidase (MAO) inhibitor administered 10min before scopolamine (0.3mg/kg). Our results demonstrated that 0.3mg/kg scopolamine induced amnesia without modifying the murine pain threshold. T1AM fully reversed scopolamine-induced amnesia and produced hyperalgesia at a dose as low as 0.13μg/kg. The T1AM anti-amnestic effect was lost in mice pre-treated with clorgyline. We report that the removal of muscarinic signalling increases T1AM pro learning and hyperalgesic effectiveness suggesting T1AM as a potential treatment as a "pro-drug" for memory dysfunction in neurodegenerative diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Methylthioninium chloride reverses cognitive deficits induced by scopolamine: comparison with rivastigmine.

    PubMed

    Deiana, Serena; Harrington, Charles R; Wischik, Claude M; Riedel, Gernot

    2009-01-01

    The cholinergic system is involved in cognition as well as in age-related cognitive decline and Alzheimer disease (AD). Cholinergic enhancers ameliorate AD symptoms and represent the main current therapy for AD. MTC (Methylthioninium chloride), an antioxidant with metabolism-enhancing properties may be a novel candidate with pro-cognitive capacities. This study was performed: (1) to assess the pro-cognitive efficacy of MTC and establish its dose-response; (2) to compare the efficacy of MTC with rivastigmine and (3) to determine the potential for combination therapy by co-administration of MTC and rivastigmine. Spatial cognition of female NMRI mice was tested in a reference memory water maze task. Subjects received intra-peritoneal injections of scopolamine (0.5 mg/kg) followed by vehicle, and/or MTC and/or rivastigmine (0.15-4 mg/kg MTC; 0.1-0.5 mg/kg rivastigmine) in mono or combination treatment. Scopolamine treatment prevented spatial learning in NMRI female mice and the deficit was reversed by both rivastigmine and MTC in a dose-dependent manner. Mono-therapy with high doses of rivastigmine (>0.5 mg/kg) caused severe side effects but MTC was safe up to 4 mg/kg. Co-administration of sub-effective doses of both drugs acted synergistically in reversing learning deficits and scopolamine-induced memory impairments. In our model, MTC reversed the spatial learning impairment. When combined with the ChEI rivastigmine, the effect of MTC appeared to be amplified indicating that combination therapy could potentially improve not only symptoms but also contribute beneficially to neuronal metabolism by minimising side effects at lower doses.

  16. Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice.

    PubMed

    Javadi-Paydar, Mehrak; Zakeri, Marjan; Norouzi, Abbas; Rastegar, Hossein; Mirazi, Naser; Dehpour, Ahmad Reza

    2012-01-06

    Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. COGNITIVE-ENHANCING PROPERTIES OF MORINDA LUCIDA (RUBIACEAE) AND PELTOPHORUM PTEROCARPUM (FABACEAE) IN SCOPOLAMINE-INDUCED AMNESIC MICE.

    PubMed

    O, Elufioye Taiwo; Halimah A, Hameed

    2017-01-01

    Cognitive disorders associated with aging have been successfully managed by African traditional medical practitioners using various plants. This study evaluated the cognitive enhancing potentials of Morinda lucida (L) Rubiaceae and Peltophorum pterocarpum (DC) ex. K Heyne in scopolamine induced amnesic animals. The anti-amnesic activity of the ethyl acetate extracts of Morinda lucida and Peltophorum pterocarpum at doses of 4 mg/kg, 6 mg/kg and 8 mg/kg were assessed in scopolamine induced amnesic mice using Morris water maze test model. Effect of the extracts on the histology of the hippocampus was also evaluated. The ethyl acetate extract of Morinda lucida and Peltophorum pterocarpum ameliorated scopolamine induced memory deficit in the animals under study. There was no effect of the extract on the histology of the hippocampus. However, there was an increase in the density of cells in the hippocampus of treated group as compared to the untreated. Morinda lucida and Peltophorum pterocarpum showed considerable enhancement of cognition in scopolamine induced amnesic mice.

  18. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway.

    PubMed

    Venkatesan, Ramu; Subedi, Lalita; Yeo, Eui-Ju; Kim, Sun Yeou

    2016-10-01

    Cholinergic activity plays a vital role in cognitive function, and is reduced in individuals with neurodegenerative diseases. Scopolamine, a muscarinic cholinergic antagonist, has been employed in many studies to understand, identify, and characterize therapeutic targets for Alzheimer's disease (AD). Scopolamine-induced dementia is associated with impairments in memory and cognitive function, as seen in patients with AD. The current study aimed to investigate the molecular mechanisms underlying scopolamine-induced cholinergic neuronal dysfunction and the neuroprotective effect of lactucopicrin, an inhibitor of acetylcholine esterase (AChE). We investigated apoptotic cell death, caspase activation, generation of reactive oxygen species (ROS), mitochondrial dysfunction, and the expression levels of anti- and pro-apoptotic proteins in scopolamine-treated C6 cells. We also analyzed the expression levels of antioxidant enzymes and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in C6 cells and neurite outgrowth in N2a neuroblastoma cells. Our results revealed that 1 h scopolamine pre-treatment induced cytotoxicity by increasing apoptotic cell death via oxidative stress-mediated caspase 3 activation and mitochondrial dysfunction. Scopolamine also downregulated the expression the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase, and the transcription factor NRF2. Lactucopicrin treatment protected C6 cells from scopolamine-induced toxicity by reversing the effects of scopolamine on those markers of toxicity. In addition, scopolamine attenuated the secretion of neurotrophic nerve growth factor (NGF) in C6 cells and neurite outgrowth in N2a cells. As expected, lactucopicrin treatment enhanced NGF secretion and neurite outgrowth. Our study is the first to show that lactucopicrin, a potential neuroprotective agent, ameliorates scopolamine-induced cholinergic dysfunction via NRF2 activation and subsequent expression of antioxidant enzymes

  19. Task- and Treatment Length–Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats

    PubMed Central

    Pehrson, Alan L.; Hillhouse, Todd M.; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H.; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine’s ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine’s effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine’s pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine’s moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine′s cognitive effects, which are observed under chronic dosing conditions in patients with MDD. PMID:27402279

  20. A Special Extract of Bacopa monnieri (CDRI-08) Restores Learning and Memory by Upregulating Expression of the NMDA Receptor Subunit GluN2B in the Brain of Scopolamine-Induced Amnesic Mice

    PubMed Central

    Rai, Rakesh; Singh, Hemant K.; Prasad, S.

    2015-01-01

    In the present communication, we have investigated effects of the CDRI-08, a well characterized extract of Bacopa monnieri, on expression of the GluN2B subunit of NMDAR in various brain regions of the scopolamine-induced amnesic mice. Our behavioral data reveal that scopolamine-treated amnesic mice exhibit significant decline in the spatial memory compared to the normal control mice. Our RT-PCR and immunoblotting data revealed that the scopolamine treatment resulted in a significant downregulation of the NMDAR GluN2B subunit expression in prefrontal cortex and hippocampus. Our enzyme assay data revealed that scopolamine caused a significant increase in the acetylcholinesterase activity in both the brain regions. Further, oral administration of the CDRI-08 to scopolamine-treated amnesic mice restored the spatial memory which was found to be associated with significant upregulation of the GluN2B subunit expression and decline in the acetylcholinesterase activity in prefrontal cortex as well as hippocampus towards their levels in the normal control mice. Our study provides the evidence for the mechanism underlying role of the Bacopa monnieri extract (CDRI-08) in restoring spatial memory in amnesic mice, which may have therapeutic implications. PMID:26413117

  1. Nootropic activity of Crataeva nurvala Buch-Ham against scopolamine induced cognitive impairment

    PubMed Central

    Bhattacharjee, Atanu; Shashidhara, Shastry Chakrakodi; Saha, Santanu

    2015-01-01

    Loss of cognition is one of the age related mental problems and a characteristic symptom of neurodegenerative disorders like Alzheimer’s. Crataeva nurvala Buch-Ham, a well explored traditional Indian medicinal plant of Westernghats, is routinely used as folkloric medicine to treat various ailments in particular urolithiasis and neurological disorders associated with cognitive dysfunction. The objective of the study was to evaluate the nootropic activity of Crataeva nurvala Buch-Ham stem bark in different learning and memory paradigm viz. Elevated plus maze and Y-maze against scopolamine induced cognitive impairment. Moreover, to elucidate possible mechanism, we studied the influence of Crataeva nurvala ethanolic extract on central cholinergic activity via estimating the whole brain acetyl cholinesterase enzyme. Ethanolic extracts of Crataeva nurvala (100, 200 and 400 mg/kg body weight) were administered to adult Wistar rats for successive seven days and the acquisition, retention and retrieval of spatial recognition memory was determined against scopolamine (1 mg/kg, i.p.) induced amnesia through exteroceptive behavioral models viz. Elevated plus maze and Y-maze models. Further, whole brain acetyl cholinesterase enzyme was estimated through Ellman’s method. Pretreatment with Crataeva nurvala ethanolic extract significantly improved spatial learning and memory against scopolamine induced amnesia. Moreover, Crataeva nurvala extract decreased rat brain acetyl cholinesterase activity in a dose dependent manner and comparable to the standard drug Piracetam. The results indicate that ethanolic extract of Crataeva nurvala might be a useful as nootropic agent to delay the onset and reduce the severity of symptoms associated with dementia and Alzheimer’s disease. The underlying mechanism of action of its nootropic potentiality might be attributed to its anticholinesterase property. PMID:27065767

  2. Post-training scopolamine treatment induced maladaptive behavior in open field habituation task in rats.

    PubMed

    Popović, Natalija; Caballero-Bleda, María; Popović, Miroljub

    2014-01-01

    The effects of scopolamine on memory consolidation are controversial and depend on several factors (i.e. site of administration, time of administration and testing, dose, cognitive task, experimental protocol, specie, strain, etc.). Generally, the range dose of systemic administered scopolamine, used in memory consolidation studies, has varied from 0.05 to 50 mg/kg. However, according to the literature, the most frequently used doses of scopolamine efficient on memory consolidation, are 1 and 30 mg/kg, low and high doses, respectively. In open field habituation studies only lower doses of scopolamine were used to test memory consolidation. Therefore, in the present study we compared the effects of low (1 mg/kg) and high (30 mg/kg) scopolamine dose, on the open field habituation task, in male Wistar rats. Scopolamine was administered immediately after the acquisition task and animals were retested 48 h later on. On the retested day, the ambulation and rearing in the open field decreased in the same manner in all tested groups. In saline- and 1 mg/kg scopolamine-treated animals, the time spent in grooming significantly decreased in the habituation task, while the same parameter significantly increased in animals treated with 30 mg/kg of scopolamine. The defecation rate significantly decreased (control group), maintained (1 mg/kg of scopolamine treated animals) or significantly increased (30 mg/kg of scopolamine treated group) on retention test. In conclusion, the present data suggest that post-training scopolamine administration does not affect locomotion neither exploration in the habituation to a novel environment, but increases defecation and grooming, two behaviours associated with fearful and stressful situations.

  3. Transdermal scopolamine in the prevention of motion sickness - Evaluation of the time course of efficacy

    NASA Technical Reports Server (NTRS)

    Homick, J. L.; Reschke, M. F.; Degioanni, J.; Cintron-Trevino, N. M.; Kohl, R. L.

    1983-01-01

    This study evaluated the time course of efficacy of transdermal scopolamine in the prevention of motion sickness induced by exposure to coriolis stimulation in a rotating chair. We measured levels of efficacy, quantified side effects and symptoms, and determined inter- and intra-subject variability following use of transdermal scopolamine. The response to transdermal scopolamine was highly variable, although overall we recorded a 40 percent improvement in test scores 16-72 h after application of the transdermal system. This variability could not be explained solely by the levels of scopolamine present in the blood. The improvement was not due to the artifactual repression by scopolamine of selected symptoms of motion sickness. An unexpectedly high incidence of side effects was reported. It was concluded that the therapeutic use of transdermal scopolamine be evaluated individually and that individuals be cautioned that subsequent usage may not always be effective.

  4. Melatonin attenuates scopolamine-induced cognitive impairment via protecting against demyelination through BDNF-TrkB signaling in the mouse dentate gyrus.

    PubMed

    Chen, Bai Hui; Park, Joon Ha; Lee, Tae-Kyeong; Song, Minah; Kim, Hyunjung; Lee, Jae Chul; Kim, Young-Myeong; Lee, Choong-Hyun; Hwang, In Koo; Kang, Il Jun; Yan, Bing Chun; Won, Moo-Ho; Ahn, Ji Hyeon

    2018-04-01

    Animal models of scopolamine-induced amnesia are widely used to study underlying mechanisms and treatment of cognitive impairment in neurodegenerative diseases such as Alzheimer's disease (AD). Previous studies have identified that melatonin improves cognitive dysfunction in animal models. In this study, using a mouse model of scopolamine-induced amnesia, we assessed spatial and short-term memory functions for 4 weeks, investigated the expression of myelin-basic protein (MBP) in the dentate gyrus, and examined whether melatonin and scopolamine cotreatment could keep cognitive function and MBP expression. In addition, to study functions of melatonin for keeping cognitive function and MBP expression, we examined expressions of brain-derived neurotrophic factor (BDNF) and tropomycin receptor kinase B (TrkB) in the mouse dentate gyrus. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were intraperitoneally treated for 2 and 4 weeks. Two and 4 weeks after scopolamine treatment, mice showed significant cognitive impairment; however, melatonin and scopolamine cotreatment recovered cognitive impairment. Two and 4 weeks of scopolamine treatment, the density of MBP immunoreactive myelinated nerve fibers was significantly decreased in the dentate gyrus; however, scopolamine and melatonin cotreatment significantly increased the scopolamine-induced reduction of MBP expression in the dentate gyrus. Furthermore, the cotreatment of scopolamine and melatonin significantly increased the scopolamine-induced decrease of BDNF and TrKB immunoreactivity in the dentate gyrus. Taken together, our results indicate that melatonin treatment exerts anti-amnesic effect and restores the scopolamine-induced reduction of MBP expression through increasing BDNF and TrkB expressions in the mouse dentate gyrus. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Cognition Enhancing Activity of Sulforaphane Against Scopolamine Induced Cognitive Impairment in Zebra Fish (Danio rerio).

    PubMed

    Rajesh, Venugopalan; Ilanthalir, Sakthivel

    2016-10-01

    Several epidemiological studies have shown that consumption of large quantities of vegetables especially cruciferous vegetables (Broccoli and Brussels sprouts) can protect against chronic diseases. Sulforaphane, an isothiocynate found in cruciferous vegetables has been demonstrated to have neuroprotective effects in several experimental paradigms. This study was undertaken to examine the effect of sulforaphane on cognitive impairment in zebra fish model using a novel method of fear conditioning. Initially, the normal behaviour of zebra fishes was studied in light-dark tank for 10 min daily for 10 days. Fishes were then divided into seven groups of twelve in each. Group I served as normal, group II served as fear conditioned control, group III and group IV were sulforaphane (25 µM/L) and piracetam (200 mg/L) treated respectively. Group V served as scopolamine (400 µM/L) induced memory impairment fishes. Group VI and VII were sulforaphane (25 µM/L) and piracetam (200 mg/L) treated scopolamine induced memory impairment groups respectively. In normal behavioural analysis, fishes preferred to stay in dark compartment. The average number of entries into the dark and time spent in dark were significantly more. Fishes in group II to VII were individually subjected to fear conditioning passive avoidance task and evaluated for learned task memory. It was observed that the average number of entries into dark and time spent in dark were significantly decreased. After exposure to respective treatment fishes in group III to VII were subjected to cognitive evaluation. There was no significant difference in cognition of group III and IV fishes exposed to sulforaphane and piracetam alone respectively. Fishes exposed to scopolamine showed a significant cognitive impairment. Sulforaphane exposure prior to scopolamine significantly retained the memory of learned task. These findings suggest that sulforaphane might be a promising therapeutic agent for cognitive enhancement in

  6. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice.

    PubMed

    Martini, Franciele; Pesarico, Ana P; Brüning, César A; Zeni, Gilson; Nogueira, Cristina W

    2018-02-05

    There is a well-known relationship between the cholinergic system and learning, memory, and other common cognitive processes. The process for researching and developing new drugs has lead researchers to repurpose older ones. This study investigated the effects of ebselen on the activity of acethylcholinesterase (AChE) isoforms in vitro and in an amnesia model induced by scopolamine in Swiss mice. In vitro, ebselen at concentrations equal or higher than 10 μM inhibited the activity of cortical and hippocampal G4/AChE, but not G1/AChE isoform. Treatment of mice with ebselen (50 mg/kg, i.p.) was effective against impairment of spatial recognition memory in both Y-maze and novel object recognition tests induced by scopolamine (1 mg/kg, i.p.). Ebselen (50 mg/kg) inhibited hippocampal AChE activity in mice. The present study demonstrates that ebselen inhibited the G4/AChE isoform in vitro and elicited an anti-amnesic effect in a mouse model induced by scopolamine. These findings reveal ebselen as a potential compound in terms of opening up valid therapeutic avenues for the treatment of memory impairment diseases. © 2018 Wiley Periodicals, Inc.

  7. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: a noninvasive biochemical approach.

    PubMed

    Koppula, Sushruta; Choi, Dong Kug

    2011-07-01

    Cuminum cyminum Linn. (Apiaceae), cumin, is a popular spice with a long history of medicinal use to treat various symptoms such as diarrhea, flatulence, gynecological, and respiratory diseases. To date, no scientific investigation was reported regarding memory-enhancing and antistress activity of cumin fruits. The present study deals with the memory-enhancing and antistress activities and further the antioxidant status via lipid peroxidation inhibition. Antistress activity was evaluated by inducing stress via forced swimming and the urinary vanillylmandelic acid (VMA) and ascorbic acid were estimated as biomarkers. Memory-enhancing activity was studied by conditioned avoidance response using Cook's pole climbing apparatus in normal and scopolamine-induced amnestic rats. Thiobarbituric acid reactive substances (TBARS) assay was used to evaluate the lipid peroxidation. Daily administration of cumin at doses of 100, 200, and 300 mg/kg body weight 1 h prior to induction of stress inhibited the stress-induced urinary biochemical changes in a dose-dependent manner without altering the levels in normal control groups. The cognition, as determined by the acquisition, retention, and recovery in rats, was observed to be dose-dependent. The extract also produced significant lipid peroxidation inhibition in comparison with known antioxidant ascorbic acid in both rat liver and brain. This study provides scientific support for the antistress, antioxidant, and memory-enhancing activities of cumin extract and substantiates that its traditional use as a culinary spice in foods is beneficial and scientific in combating stress and related disorders.

  8. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    PubMed

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-05

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Ameliorating effect of new constituents from the hooks of Uncaria rhynchophylla on scopolamine-induced memory impairment.

    PubMed

    Shin, Suk-Chul; Lee, Dong-Ung

    2013-07-01

    To study the chemical constituents and their anti-amnesic effect from the hooks of Uncaria rhynchophylla. The isolation of compounds was performed by chromatographic techniques and their structures were identified on the basis of spectral analysis. Their ameliorating effects on scopolamine-induced memory impairment in vivo using a Morris water-maze task and passive avoidance task system were evaluated. Activity-guided fractionation of the total extracts resulted in the isolation of four constituents, trans-anethole (1), p-anisaldehyde (2), estragole (3), and 3-oxo-olean-12-en-28-oic acid (4), which were found for the first time from this plant. Compound 1 exhibited a better memory enhancing effect than tacrine, a positive agent, at the same dose in the passive avoidance test and a similar property in the water-maze test, and its action may be mediated, in part, by the acetylcholine enhancing cholinergic nervous system. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Interactions between oxiracetam, aniracetam and scopolamine on behavior and brain acetylcholine.

    PubMed

    Spignoli, G; Pepeu, G

    1987-07-01

    The effect of cognition-enhancing agents oxiracetam and aniracetam on scopolamine-induced amnesia and brain acetylcholine decrease was investigated in the rat. Acetylcholine levels were measured by means of a gas-chromatographic method. Scopolamine (0.63 mg/kg IP 60 min before training) prevented the acquisition of a passive avoidance conditioned response ("step through": retest 30 min after training) and brought about a 64, 56 and 42% decrease in acetylcholine level in the cortex, hippocampus and striatum respectively. Oxiracetam (50 and 100 mg/kg IP) administered 30 min before scopolamine reduced the scopolamine-induced amnesic effect and decrease in acetylcholine level in the cortex and hippocampus, but not in the striatum. Lower and higher doses of oxiracetam were ineffective. Aniracetam (100 mg/kg PO) also prevented scopolamine-induced amnesia but attenuated acetylcholine decrease in the hippocampus only. Aniracetam (300 mg PO) reduced acetylcholine decrease in the hippocampus but did not prevent scopolamine-amnesia. In conclusion, oxiracetam and aniracetam exert a stimulatory effect on specific central cholinergic pathways. However, a direct relationship between cognition-enhancing properties and cholinergic activation needs further confirmation.

  11. Scopolamine into the anterior cingulate cortex diminishes nociception in a neuropathic pain model in the rat: an interruption of 'nociception-related memory acquisition'?

    PubMed

    Ortega-Legaspi, J Manuel; López-Avila, Alberto; Coffeen, Ulises; del Angel, Rosendo; Pellicer, Francisco

    2003-01-01

    The cingulate cortex plays a key role in the affective component related to pain perception. This structure receives cholinergic projections and also plays a role in memory processing. Therefore, we propose that the cholinergic system in the anterior cingulate cortex is involved in the nociceptive memory process. We used scopolamine (10 microg in 0.25 mircrol/saline) microinjected into the anterior cingulate cortex, either before thermonociception followed by a sciatic denervation, between thermonociception and denervation or after both procedures (n=10 each). The vehicle group (saline solution 0.9%, n=14) was microinjected before thermonociception. Chronic nociception was measured by the autotomy score, which onset and incidence were also determined. Group scopolamine-thermonociception-denervation (STD) presented the lowest autotomy score as compared to vehicle and group thermonociception-denervation-scopolamine (TDS) (vehicle vs. STD, p=0.002, STD vs. TDS, p=0.001). Group thermonociception-scopolamine-denervation (TSD) showed a diminished autotomy score when compared to TDS (p=0.053). STD group showed a delay in the onset of AB as compared to the rest of the groups. Group TSD presented a significative delay (p=0.048) in AB onset when compared to group TDS. There were no differences in the incidence between groups. The results show that nociception-related memory processed in the anterior cingulate cortex is susceptible of being modified by the cholinergic transmission blockade. When scopolamine is microinjected prior to the nociceptive stimuli, nociception-related memory acquisition is prevented. The evidence obtained in this study shows the role of the anterior cingulate cortex in the acquisition of nociception-related memory.

  12. Role of cholinergic receptors in locomotion induced by scopolamine and oxotremorine-M.

    PubMed

    Chintoh, Araba; Fulton, James; Koziel, Nicole; Aziz, Mariam; Sud, Manu; Yeomans, John S

    2003-08-01

    Mesopontine cholinergic neurons activate dopamine neurons important for reward-seeking and locomotor activity. The present studies tested whether cholinergic receptor blockade in the ventral tegmental area (VTA) altered locomotion induced by scopolamine (3 mg/kg i.p.) or by oxotremorine-M (0.1 microg bilaterally in the VTA). It was predicted that cholinergic blockers in the VTA would attenuate these cholinergic-induced locomotor increases. Locomotor activity was increased by scopolamine and oxotremorine-M administration in all treatments. When dihydro-beta-erythroidine (DHBE), a nicotinic receptor antagonist, was applied in VTA prior to oxotremorine-M, locomotion was reduced to slightly above saline baseline levels, but atropine, a muscarinic antagonist, had no effect. This suggests that the locomotor effect of oxotremorine-M at this dose was mediated mainly via nicotinic, not muscarinic, receptors. Intra-VTA injections of DHBE, however, did not attenuate scopolamine-induced locomotion indicating that scopolamine-induced locomotion is not mediated mainly via VTA cholinergic receptors. In mutant mice with a deletion in the M5 muscarinic receptor gene, scopolamine-induced locomotion was increased versus wild type mice after scopolamine injection. This suggests that the M5 receptor has an inhibitory effect on scopolamine-induced locomotion.

  13. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    PubMed

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Effects of a neurotensin analogue (PD149163) and antagonist (SR142948A) on the scopolamine-induced deficits in a novel object discrimination task.

    PubMed

    Azmi, Norazrina; Norman, Christine; Spicer, Clare H; Bennett, Geoffrey W

    2006-06-01

    Various lines of evidence suggest a role in cognition for the endogenous neuropeptide, neurotensin, involving an interaction with the central nervous system cholinergic pathways. A preliminary study has shown that central administration of neurotensin enhances spatial and nonspatial working memory in the presence of scopolamine, a muscarinic receptor antagonist which induces memory deficits. Utilizing similar methods, the present study employed a two-trial novel object discrimination task to determine the acute effect of a neurotensin peptide analogue with improved metabolic stability, PD149163, on recognition memory in Lister hooded rats. Consistent with previous findings with neurotensin, animals receiving an intracerebroventricular injection of PD149163 (3 microg) significantly discriminated the novel from familiar object during the choice trial. In addition, a similar dose of PD149163 restored the scopolamine-induced deficit in novelty recognition. The restoration effect on scopolamine-induced amnesia produced by PD149163 was blocked by SR142948A, a nonselective neurotensin receptor antagonist, at a dose of 1 mg/kg (intraperitonial) but not at 0.1 mg/kg. In conclusion, the present results confirm a role for neurotensin in mediating memory processes, possibly via central cholinergic mechanisms.

  15. Flammulina velutipes polysaccharides improve scopolamine-induced learning and memory impairment in mice by modulating gut microbiota composition.

    PubMed

    Su, Anxiang; Yang, Wenjian; Zhao, Liyan; Pei, Fei; Yuan, Biao; Zhong, Lei; Ma, Gaoxing; Hu, Qiuhui

    2018-03-01

    Flammulina velutipes polysaccharides (FVP) have been proved to be effective in improving learning and memory impairment in mice. However, their underlying mechanism remains unclear. The aim of this study was to investigate the relationship between memory improvement and gut microbiota regulation of FVP. The results showed a significant decrease in the relative abundances of Clostridia and Bacilli but a significant increase in Bacteroidia, Erysipelotrichia and Actinobacteria in the FVP-treated group versus the control group. Fecal microbiota transplantation of mice with 'FVP microbiota' derived from FVP-fed mice resulted in improved learning and memory function compared to colonization with 'common microbiota' derived from control individuals. FVP and 'FVP microbiota' significantly increased the numbers of platform crossings and the swimming distance of mice in the probe test and decreased the escape latency and total swimming distance of mice in the hidden platform test. Moreover, FVP and 'FVP microbiota' regulated cytokines, such as IL-1β, TNF-α, IL-6 and IL-10, suggesting a mechanism involving the suppression of neuroinflammation. This study indicated that the regulation of the gut microbiome may have a causal role in improving scopolamine-induced impairment of learning and memory.

  16. Reconstituted mother tinctures of Gelsemium sempervirens L. improve memory and cognitive impairment in mice scopolamine-induced dementia model.

    PubMed

    Palit, Partha; Mukherjee, Dhrubojyoti; Mandal, Subhash C

    2015-01-15

    Gelsemium sempervirens (L.) J.St.-Hil is a herb used for the treatment of various neuroses in both homeopathic and Ayurvedic systems. The present study examines whether Gelsemium reconstituted tincture can protect against scopolamine induced cognitive discrepancies in amnesic mouse model. In order to investigate the protective mechanism of Gelsemium against dementia, in vitro acetyl cholinesterase and β-secretase enzyme inhibition and estimation of glutathione level in mouse brain were carried out. The inhibition study on acetyl cholinesterase and β-secretase enzyme was conducted on brain homogenate supernatant spectrophotometrically using specific substrate. Cognitive enhancement activity was assessed by elevated plus maze and passive avoidance study in scopolamine induced dementia mouse model. Glutathione, an anti-oxidant, was measured spectrophotometrically from scopolamine induced amnesic mice brain supernatant using 5,5'-dithiobis 2-nitrobenzoic acid in the presence and absence of Gelsemium tincture. Significant inhibition was found with Gelsemium on AChE and β-secretase enzyme with an IC50 of 9.25 and 16.25 µg/ml, respectively, followed by increasing glutathione levels in comparison to the untreated dementia group. The effect of Gelsemium of scopolamine-induced cognitive deficits was determined by measuring the behavioral parameters and the antioxidant status of the brain after scopolamine (1mg/kg i.p.) injected amnesic mice. Gelsemium significantly demonstrated in vivo anti-dementia activity (60% protection) and increased exploratory behavior. Our investigations indicated that alkaloid, iridoids and coumarin enriched reconstituted Gelsemium tincture extract displays promising cognitive enhancement in adult mice after short-term oral treatment. Hence, Gelsemium can be a promising anti-dementia agent, mediating the protection against amnesia, attention disorders and learning dysfunctions through dual inhibition of both acetyl cholinesterases (no false

  17. SSP-002392, a new 5-HT4 receptor agonist, dose-dependently reverses scopolamine-induced learning and memory impairments in C57Bl/6 mice.

    PubMed

    Lo, Adrian C; De Maeyer, Joris H; Vermaercke, Ben; Callaerts-Vegh, Zsuzsanna; Schuurkes, Jan A J; D'Hooge, Rudi

    2014-10-01

    5-HT4 receptors (5-HT4R) are suggested to affect learning and memory processes. Earlier studies have shown that animals treated with 5-HT4R agonists, often with limited selectivity, show improved learning and memory with retention memory often being assessed immediately after or within 24 h after the last training session. In this study, we characterized the effect of pre-training treatment with the selective 5-HT4R agonist SSP-002392 on memory acquisition and the associated long-term memory retrieval in animal models of impaired cognition. Pre-training treatment with SSP-002392 (0.3 mg/kg, 1.5 mg/kg and 7.5 mg/kg p.o.) dose-dependently inhibited the cognitive deficits induced by scopolamine (0.5 mg/kg s.c.) in two different behavioral tasks: passive avoidance and Morris water maze. In the Morris water maze, spatial learning was significantly improved after treatment with SSP-002392 translating in an accelerated and more efficient localization of the hidden platform compared to scopolamine-treated controls. Moreover, retention memory was assessed 24 h (passive avoidance) and 72 h (Morris water maze) after the last training session of cognitive-impaired animals and this was significantly improved in animals treated with SSP-002392 prior to the training sessions. Furthermore, the effects of SSP-002392 were comparable to galanthamine hydrobromide. We conclude that SSP-002392 has potential as a memory-enhancing compound. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Protective effects of aerosolized scopolamine against soman-induced acute respiratory toxicity in guinea pigs.

    PubMed

    Perkins, Michael W; Pierre, Zdenka; Rezk, Peter; Song, Jian; Oguntayo, Samuel; Morthole, Venee; Sciuto, Alfred M; Doctor, Bhupendra P; Nambiar, Madhusoodana P

    2011-12-01

    The protective efficacy of the antimuscarinic agent scopolamine was evaluated against soman (o-pinacolyl methylphosphonofluoridate [GD])-induced respiratory toxicity in guinea pigs. Anesthetized animals were exposed to GD (841 mg/m(3)) by microinstillation inhalation exposure and treated 30 seconds later with endotracheally aerosolized scopolamine (0.25 mg/kg) and allowed to recover for 24 hours. Treatment with scopolamine significantly increased survival and reduced clinical signs of toxicity and body weight loss in GD-exposed animals. Analysis of bronchoalveolar lavage (BAL) fluid showed normalization of GD-induced increased cell death, total cell count, and protein following scopolamine treatment. The BAL fluid acetylcholinesterase and butyrylcholinesterase levels were also increased by scopolamine treatment. Respiratory dynamics parameters were normalized at 4 and 24 hours post-GD exposure in scopolamine-treated animals. Lung histology showed that scopolamine treatment reduced bronchial epithelial and subepithelial inflammation and multifocal alveolar septal edema. These results suggest that aerosolized scopolamine considerably protects against GD-induced respiratory toxicity.

  19. Effects of the Methanolic Extract of Vitellaria paradoxa Stem Bark Against Scopolamine-Induced Cognitive Dysfunction and Oxidative Stress in the Rat Hippocampus.

    PubMed

    Foyet, Harquin Simplice; Asongalem, Acha Emmanuel; Oben, Eyong Kenneth; Cioanca, Oana; Hancianu, Monica; Hritcu, Lucian

    2016-10-01

    Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  20. Effects of chronic scopolamine administration on spatial working memory and hippocampal receptors related to learning.

    PubMed

    Doguc, Duygu K; Delibas, Namik; Vural, Huseyin; Altuntas, Irfan; Sutcu, Recep; Sonmez, Yonca

    2012-12-01

    Scopolamine has been used in neuropsychopharmacology as a standard drug that leads to symptoms mimicking cognitive deficits seen during the aging process in healthy humans and animals. Scopolamine is known to be a nonselective muscarinic receptor blocker, but its chronic effect on the expression of certain hippocampal receptors is not clear. The aim of the present study was to determine the effect of chronic scopolamine administration on hippocampal receptor expression and spatial working memory in two different learning tasks, the water maze and the eight-arm radial maze. Male rats (8-12 months) were trained in both tasks. Subsequently, different groups received physiological saline or 0.1, 0.8, or 2 mg/kg scopolamine hydrobromide, respectively, for 15 days. After drug administration, the rats were retested for both tasks, and hippocampal expressions of NR2A, NR2B, nAChRα7, and mAChRM1 receptors were assessed by western blotting analysis. In both tasks, the spatial working memory was decreased dose dependently in all groups compared with the control group. In terms of receptor expressions, 0.8 and 2 mg/kg scopolamine administration significantly decreased NR2A protein expression, which corroborates suggestions of an interaction between cholinergic and glutamatergic receptors in the hippocampus.

  1. Pretreatment with 5-hydroxymethyl-2-furaldehyde blocks scopolamine-induced learning deficit in contextual and spatial memory in male mice.

    PubMed

    Lee, Younghwan; Gao, Qingtao; Kim, Eunji; Lee, Younghwa; Park, Se Jin; Lee, Hyung Eun; Jang, Dae Sik; Ryu, Jong Hoon

    2015-07-01

    5-Hydroxymethyl-2-furaldehyde (5-HMF) is a compound derived from the dehydration of certain sugars. The aim of the present study was to evaluate the effect of 5-HMF on the cognitive impairment induced by scopolamine, a muscarinic receptor antagonist. To measure various cognitive functions, we conducted the step-through passive avoidance task, the Y-maze task and the Morris water maze task. A single administration of 5-HMF (5 or 10mg/kg, p.o.) significantly attenuates scopolamine-induced cognitive impairment in these behavioral tasks without changes in locomotor activity, and the effect of 5-HMF on scopolamine-induced cognitive impairment was significantly reversed by a sub-effective dose of MK-801, an NMDA receptor antagonist. In addition, a single administration of 5-HMF (10mg/kg, p.o.) enhanced the cognitive performance of normal naïve mice in the passive avoidance task. Furthermore, Western blot analysis revealed that the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II-α (CaMKII) and extracellular signal-regulated kinases (ERK) were significantly enhanced by the single administration of 5-HMF in the hippocampal tissues. Taken together, the present study suggests that 5-HMF may block scopolamine-induced learning deficit and enhance cognitive function via the activation of NMDA receptor signaling, including CaMKII and ERK, and would be an effective candidate against cognitive disorders, such as Alzheimer's disease. Copyright © 2015. Published by Elsevier Inc.

  2. A novel synthetic phosphodiesterase 5 inhibitor, KJH-1002, ameliorates scopolamine-induced cognitive impairments in mice by activating the cGMP/CREB signaling pathway and attenuating oxidative damage.

    PubMed

    Zhang, Lijun; Seo, Jae Hong; Li, Huan; Nam, Ghilsoo; Yang, Hyun Ok

    2018-05-30

    Inhibition of PDE5 has been demonstrated to improve synaptic plasticity and memory via enhancing of cGMP expression, thus activating the cGMP/CREB signaling pathway. This study aimed to investigate the ameliorating effect of PDE5 inhibitor on scopolamine-induced cognitive dysfunction using memory-related behavioral tests and biochemical assays. After the mice were pretreated with PDE5 inhibitor, amnesia was induced by scopolamine administration. The learning and memory abilities of mice were tested using the Morris water maze test, the Y-maze test, the passive avoidance test and the novel object recognition test in sequence. Expression of memory-related bio-molecules and oxidative stress parameters in brain tissue were measured using western blot and spectrophotometry, respectively. KJH-1002, a novel inhibitor of phosphodiesterase 5 (PDE5), was synthesized (IC 50 of 0.059 ±0.04 nmol·L -1 ), and it markedly improved the memory performance impaired by scopolamine in the behavioral tests, indicating a restoration of cognitive function in the mice. Moreover, KJH-1002 increased the cGMP level in the cortex, the scopolamine-reduced expression of phosphorylated cAMP response element binding protein (CREB), extracellular-regulated kinase 1/2 (ERK 1/2), protein kinase B (Akt) and brain-derived neurotrophic factor (BDNF) in the cortex and hippocampus were reversed by KJH-1002 treatment. In addition, KJH-1002 administration increased the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GR), and decreased the level of malondialdehyde (MDA). KJH-1002 restored cognitive function in scopolamine-induced amnesia mice by activating the cGMP/CREB signaling pathway and attenuating oxidative stress. The beneficial effect of KJH-1002 on cognition suggests its potential as a therapeutic candidate for Alzheimer's disease. This article is protected by copyright. All rights reserved.

  3. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice.

    PubMed

    Zhou, Heng; Xue, Wei; Chu, Shi-Feng; Wang, Zhen-Zhen; Li, Chuang-Jun; Jiang, Yi-Na; Luo, Lin-Ming; Luo, Piao; Li, Gang; Zhang, Dong-Ming; Chen, Nai-Hong

    2016-08-01

    Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg(-1)·d(-1)) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg(-1)·d(-1)) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia.

  4. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice

    PubMed Central

    Zhou, Heng; Xue, Wei; Chu, Shi-feng; Wang, Zhen-zhen; Li, Chuang-jun; Jiang, Yi-na; Luo, Lin-ming; Luo, Piao; Li, Gang; Zhang, Dong-ming; Chen, Nai-hong

    2016-01-01

    Aim: Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Methods: Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Results: Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg−1·d−1) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg−1·d−1) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. Conclusion: PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia. PMID:27180981

  5. The Combination of Scopolamine and Psychostimulants for the Prevention of Severe Motion Sickness.

    PubMed

    Zhang, Li-Li; Liu, Hong-Qi; Yu, Xu-Hong; Zhang, Ying; Tian, Jia-Sheng; Song, Xu-Rui; Han, Bing; Liu, Ai-Jun

    2016-08-01

    Severe motion sickness is a huge obstacle for people conducting precise aviation, marine or emergency service tasks. The combination of scopolamine and d-amphetamine is most effective in preventing severe motion sickness. However, this combination is not included in any present pharmacopoeia due to the abuse liability of d-amphetamine. We wanted to find a combination to replace it for the treatment of severe motion sickness. We compared the efficacy of scopolamine, diphenhydramine, and granisetron (representing three classes of drugs) with different doses, and found that scopolamine was the most effective one. We also found scopolamine inhibited central nervous system at therapeutic doses and caused anxiety. Then, we combined it with different doses of psychostimulants (d-amphetamine, modafinil, caffeine) to find the best combination for motion sickness. The efficacy of scopolamine with modafinil (1 + 10 mg/kg) was equivalent to that of scopolamine with d-amphetamine (1 + 1 mg/kg); This combination also excited central nervous system and abolished the anxiety caused by scopolamine. The optimal dose ratio of scopolamine and modafinil is 1:10. This combination is beneficial for motion sickness and can abolish the side effects of scopolamine. So, it might be a good replacement of scopolamine and d-amphetamine for severe motion sickness. © 2016 John Wiley & Sons Ltd.

  6. Extinction and recovery of an avoidance memory impaired by scopolamine.

    PubMed

    Navarro, N M; Krawczyk, M C; Boccia, M M; Blake, M G

    2017-03-15

    Pre-training administration of scopolamine (SCP) resembles situations of cholinergic dysfunction, leading to memory impairment of mice trained in an inhibitory avoidance task. We suggest here that SCP does not impair memory formation, but acquisition is affected in a way that reduces the strength of the stored memory, thus making this memory less able to control behavior when tested. Hence, a memory trace is stored, but is poorly expressed during the test. Although weakly expressed, this memory shows extinction during successive tests, and can be strengthened by using a reminder. Our results indicate that memories stored under cholinergic dysfunction conditions seem absent or lost, but are in fact present and experience common memory processes, such as extinction, and could be even recovered by using appropriate protocols. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. PASS assisted prediction and pharmacological evaluation of hesperidin against scopolamine induced amnesia in mice.

    PubMed

    Habibyar, Ahmad Farid; Sharma, Neha; Khurana, Navneet

    2016-10-15

    Alzheimer's disease (AD) is a neurodegenerative disorder that leads to memory impairment. However, the exact etiology of AD is not clear but cholinergic dysfunction and oxidative stress are considered to play an important role in its pathogenesis. Because of this reason, antioxidant compounds are expected to play potential beneficial role in this disease. Among number of antioxidant compounds, hesperidin (HSD) was selected for this study on the basis of its reported antioxidant and neuroprotective effects. Moreover, it has shown higher probable activity value for scavenging free radical along with anti-dementia effects, predicted by PASS online computer program. Current study was designed to evaluate the nootropic and antioxidant effects of HSD. The different groups of animals received scopolamine (2mg/kg) along with co-treamtment of HSD (100, 200mg/kg) and donepezil HCl (3mg/kg) i.p. for consecutive 10 days. Behavioral tests were carried out, 30min after respective treatment on 2nd, 5th and 9th day for memory evaluation. On 10th day of treatment, the animals were sacrificed and the homogenates of brain hippocampus and cortex were used for biochemical estimation. Co-treatment with HSD at both doses significantly reversed the changes in memory and biochemical alterations, induced by scopolamine administration. It can be concluded that HSD has strong memory enhancing and anti-oxidant effects, therefore, it can be considered as a potential candidate for its further pharmacological evaluation for AD-induced dementia. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. The scopolamine-reversal paradigm in rats and monkeys: the importance of computer-assisted operant-conditioning memory tasks for screening drug candidates.

    PubMed

    Buccafusco, Jerry J; Terry, Alvin V; Webster, Scott J; Martin, Daniel; Hohnadel, Elizabeth J; Bouchard, Kristy A; Warner, Samantha E

    2008-08-01

    The scopolamine-reversal model is enjoying a resurgence of interest in clinical studies as a reversible pharmacological model for Alzheimer's disease (AD). The cognitive impairment associated with scopolamine is similar to that in AD. The scopolamine model is not simply a cholinergic model, as it can be reversed by drugs that are noncholinergic cognition-enhancing agents. The objective of the study was to determine relevance of computer-assisted operant-conditioning tasks in the scopolamine-reversal model in rats and monkeys. Rats were evaluated for their acquisition of a spatial reference memory task in the Morris water maze. A separate cohort was proficient in performance of an automated delayed stimulus discrimination task (DSDT). Rhesus monkeys were proficient in the performance of an automated delayed matching-to-sample task (DMTS). The AD drug donepezil was evaluated for its ability to reverse the decrements in accuracy induced by scopolamine administration in all three tasks. In the DSDT and DMTS tasks, the effects of donepezil were delay (retention interval)-dependent, affecting primarily short delay trials. Donepezil produced significant but partial reversals of the scopolamine-induced impairment in task accuracies after 2 mg/kg in the water maze, after 1 mg/kg in the DSDT, and after 50 microg/kg in the DMTS task. The two operant-conditioning tasks (DSDT and DMTS) provided data most in keeping with those reported in clinical studies with these drugs. The model applied to nonhuman primates provides an excellent transitional model for new cognition-enhancing drugs before clinical trials.

  9. Cognitive Improving Effects by Highbush Blueberry (Vaccinium crymbosum L.) Vinegar on Scopolamine-Induced Amnesia Mice Model.

    PubMed

    Hong, Seong Min; Soe, Kyong Hee; Lee, Taek Hwan; Kim, In Sook; Lee, Young Min; Lim, Beong Ou

    2018-01-10

    The present study aimed to evaluate the preventive effects of highbush blueberry (Vaccinium corymbosum L.) vinegar (BV) on cognitive functions in a scopolamine (Sco)-induced amnesia model in mice. In this study, Sco (1 mg/kg, intraperitoneal injection) was used to induce amnesia. ICR mice were orally administered donepezil (5 mg/kg), blueberry extract (120 mg/kg), and BV (120 mg/kg) for 7 days. After inducing cognitive impairment by Sco, a behavioral assessment using behavior tests (i.e., Y-maze and passive avoidance tests) was performed. The BV group showed significantly restored cognitive function in the behavioral tests. BV facilitated cholinergic activity by inhibiting acetylcholinesterase activity, and enhanced antioxidant enzyme activity. Furthermore, BV was found to be rehabilitated in the cornu ammonis 1 neurons of hippocampus. In our study, we demonstrated that the memory protection conferred by BV was linked to activation of brain-derived neurotrophic factor (BDNF)/cAMP response element binding protein (CREB)/serine-threonine kinase (AKT) signaling.

  10. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats.

    PubMed

    Pattanashetti, Laxmi Adiveppa; Taranalli, Ashok D; Parvatrao, Vinay; Malabade, Rohit H; Kumar, Dushyant

    2017-01-01

    The objective of this study was to evaluate the neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Five groups of adult male Wistar rats (12 months old) weighing 180-200 g ( n = 6) were used. The normal control group received normal saline and test group animals were pretreated orally with quercetin (25 mg/kg), donepezil (3 mg/kg), and a combination of quercetin (25 mg/kg) with donepezil (3 mg/kg), respectively, dosed at every 24 h interval for 14 consecutive days, afterward amnesia was induced by scopolamine (3 mg/kg) on the 14 th day through intraperitoneal route. Cognitive performance was assessed by the Morris water maze, elevated plus maze, and passive avoidance paradigm. Acetylcholinesterase enzyme (AchE) level, biochemical markers such as lipid peroxidase (LPO), glutathione (GSH), β amyloid 1-42 level, and histopathological study of rat brain were estimated. Statistical analysis was done by one-way analysis of variance, followed by Dunnett's post hoc test. P ≥ 0.05 was considered statistically significant. Pretreatment with quercetin, donepezil, and their combination showed a significant increase in escape latency, step-through latency, and decreased transfer latency in respective cognitive models of the Morris water maze, passive avoidance test, and elevated plus maze. Further coadministration significantly decreased AchE level, β amyloid 1-42 level as compared to individual therapy. Biochemical markers such as elevated GSH, decreased LPO were observed, and histopathological studies revealed the reversal of neuronal damage in the treatment group ( P < 0.05) as compared to scopolamine-treated control group. Pretreatment with quercetin potentiates the action of donepezil in scopolamine-induced amnesia in rats. The improved cognitive memory could be due to the synergistic effect of the drugs by decreasing AchE level, β amyloid 1-42 level, and antioxidant action in rat brain.

  11. Evaluation of neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats

    PubMed Central

    Pattanashetti, Laxmi Adiveppa; Taranalli, Ashok D.; Parvatrao, Vinay; Malabade, Rohit H.; Kumar, Dushyant

    2017-01-01

    Objective: The objective of this study was to evaluate the neuroprotective effect of quercetin with donepezil in scopolamine-induced amnesia in rats. Materials and Methods: Five groups of adult male Wistar rats (12 months old) weighing 180–200 g (n = 6) were used. The normal control group received normal saline and test group animals were pretreated orally with quercetin (25 mg/kg), donepezil (3 mg/kg), and a combination of quercetin (25 mg/kg) with donepezil (3 mg/kg), respectively, dosed at every 24 h interval for 14 consecutive days, afterward amnesia was induced by scopolamine (3 mg/kg) on the 14th day through intraperitoneal route. Cognitive performance was assessed by the Morris water maze, elevated plus maze, and passive avoidance paradigm. Acetylcholinesterase enzyme (AchE) level, biochemical markers such as lipid peroxidase (LPO), glutathione (GSH), β amyloid1-42level, and histopathological study of rat brain were estimated. Statistical analysis was done by one-way analysis of variance, followed by Dunnett's post hoc test. P ≥ 0.05 was considered statistically significant. Results: Pretreatment with quercetin, donepezil, and their combination showed a significant increase in escape latency, step-through latency, and decreased transfer latency in respective cognitive models of the Morris water maze, passive avoidance test, and elevated plus maze. Further coadministration significantly decreased AchE level, β amyloid1-42level as compared to individual therapy. Biochemical markers such as elevated GSH, decreased LPO were observed, and histopathological studies revealed the reversal of neuronal damage in the treatment group (P < 0.05) as compared to scopolamine-treated control group. Conclusion: Pretreatment with quercetin potentiates the action of donepezil in scopolamine-induced amnesia in rats. The improved cognitive memory could be due to the synergistic effect of the drugs by decreasing AchE level, β amyloid1-42level, and antioxidant action in rat

  12. Scopolamine-induced greater alterations in neurochemical profile and increased oxidative stress demonstrated a better model of dementia: A comparative study.

    PubMed

    Haider, Saida; Tabassum, Saiqa; Perveen, Tahira

    2016-10-01

    Cognitive decline is found to be a common feature of various neurological disorders like Alzheimer's disease (AD). In order to recapitulate AD associated cognitive deficits and to plan therapeutic strategies researchers have developed various preclinical dementia models to recapitulate different aspects of cognitive domains affected in AD brain. So, the present study was aimed to compare alterations in previously reported dementia models i.e. pharmacological (Scopolamine-induced and corticosterone-induced), Environmental (Aluminium-induced and noise-stress) and physiological (natural aging) models in rats in a single experimental study across three cognitive domains spatial, recognition, and associative memory and associated alterations in their oxidative status and neurochemical profile to select appropriate dementia model. All groups received their respective treatments for 14days after which behavioural analysis was performed including Open Field test to assess ambulatory activity, Novel Object Recognition test, Morris Water Maze test and Passive Avoidance test for the assessment of recognition, spatial and associative memory. After monitoring the behavioural activities, rats were decapitated and their brains and hippocampus samples were collected for analysis of oxidative status and neurochemical profile. Results showed significant decline in different aspects of memory function in all dementia models which was more significant in scopolamine-injected rats. A significant decline in levels of monoamines and acetylcholine was also observed. In addition, significant alterations were also seen in oxidative profile indicating that cognitive decline could be associated with increased oxidative stress. Therefore, present findings highlight that for planning therapeutic strategies against cognitive dysfunctions, scopolamine-induced dementia model is the most appropriate dementia model to reveal AD-related cognitive impairment profile. Copyright © 2016 Elsevier Inc

  13. Effects of scopolamine and dextroamphetamine on human performance

    NASA Technical Reports Server (NTRS)

    Schmedtje, John F., Jr.; Oman, Charles M.; Letz, Richard; Baker, Edward L.

    1988-01-01

    The effects of two drugs used to prevent symptoms of motion sickness in the operational environment were examined in this study of human performance as measured by computer-based tests of cognitive and psychomotor skills. Each subject was exposed repetitively to five tests: symbol-digit substitution, simple reaction time, pattern recognition, digit span memory, and pattern memory. Although there have been previous reports of decreases in human performance in similar testing with higher dosages of scopolamine or dextroamphetamine, no significant decrements were observed with the operational-level combined dose used in this study (0.4 mg oral scopolamine and 5.0 mg oral dextroamphetamine.) The controversy over the use of combination drug therapy in this environnment is discussed along with the indications for further research based on the findings.

  14. Biflorin Ameliorates Memory Impairments Induced by Cholinergic Blockade in Mice

    PubMed Central

    Jeon, Se Jin; Kim, Boseong; Ryu, Byeol; Kim, Eunji; Lee, Sunhee; Jang, Dae Sik; Ryu, Jong Hoon

    2017-01-01

    To examine the effect of biflorin, a component of Syzygium aromaticum, on memory deficit, we introduced a scopolamine-induced cognitive deficit mouse model. A single administration of biflorin increased latency time in the passive avoidance task, ameliorated alternation behavior in the Y-maze, and increased exploration time in the Morris water maze task, indicating the improvement of cognitive behaviors against cholinergic dysfunction. The biflorin-induced reverse of latency in the scopolamine-treated group was attenuated by MK-801, an NMDA receptor antagonist. Biflorin also enhanced cognitive function in a naïve mouse model. To understand the mechanism of biflorin for memory amelioration, we performed Western blot. Biflorin increased the activation of protein kinase C-ζ and its downstream signaling molecules in the hippocampus. These results suggest that biflorin ameliorates drug-induced memory impairment by modulation of protein kinase C-ζ signaling in mice, implying that biflorin could function as a possible therapeutic agent for the treatment of cognitive problems. PMID:27829270

  15. Molecular docking and antiamnesic effects of nepitrin isolated from Rosmarinus officinalis on scopolamine-induced memory impairment in mice.

    PubMed

    Karim, Nasiara; Khan, Imran; Abdelhalim, Abeer; Abdel-Halim, Heba; Hanrahan, Jane R

    2017-12-01

    Rosmarinus officinalis has long been known as the herb of remembrance. The present study was undertaken to investigate the anti-amnesic effects of nepitrin isolated from Rosmarinus officinalis using in-vivo models of Y-maze and novel object recognition test (NORT) along with in vitro antioxidant and acetylcholinesterase (AChE) and buterylcholinesterase (BuChE) inhibition potential. Nepitrin showed a concentration dependent inhibition of AChE and BuChE enzymes with IC 50 values of 65 and 72μg/mL, respectively and antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) with IC 50 values 270 and 210μg/mL, respectively. In mice, nepitrin reversed the amnesia induced by scopolamine as indicated by a dose-dependent increase in spontaneous alternation performance in the Y-maze task (p <0.05 versus scopolamine) and increase in the discrimination index in the novel object recognition test (NORT) comparable to the standard drug donepezil 2mg/kg. Molecular docking studies were performed and the GlideScore of nepitrin was consistent with its experimental AChE inhibitory activities. Nepitrin occupied the same binding site forming similar interactions to those formed by donepezil in the crystal structure. Thus, nepitrin could provide a lead for the development of therapeutic agent useful in cognition and memory disorders such as Alzheimer's disease. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Antidepressant and anxiolytic activity of Lavandula officinalis aerial parts hydroalcoholic extract in scopolamine-treated rats.

    PubMed

    Rahmati, Batool; Kiasalari, Zahra; Roghani, Mehrdad; Khalili, Mohsen; Ansari, Fariba

    2017-12-01

    Anxiety and depression are common in Alzheimer's disease (AD). Despite some evidence, it is difficult to confirm Lavandula officinalis Chaix ex Vill (Lamiaceae) as an anxiolytic and antidepressant drug. The effects of L. officinalis extract were studied in scopolamine-induced memory impairment, anxiety and depression-like behaviour. Male NMRI rats were divided into control, scopolamine alone-treated group received scopolamine (0.1 mg/kg) intraperitoneally (i.p.), daily and 30 min prior to performing behavioural testing on test day, for 12 continuous days and extract pretreated groups received aerial parts hydro alcoholic extract (i.p.) (100, 200 and 400 mg/kg), 30 min before each scopolamine injection. Memory impairment was assessed by Y-maze task, while, elevated plus maze and forced swimming test were used to measure anxiolytic and antidepressive-like activity. Spontaneous alternation percentage in Y maze is reduced by scopolamine (36.42 ± 2.60) (p ≤ 0.001), whereas lavender (200 and 400 mg/kg) enhanced it (83.12 ± 5.20 and 95 ± 11.08, respectively) (p ≤ 0.05). Also, lavender pretreatment in 200 and 400 mg/kg enhanced time spent on the open arms (15.4 ± 3.37 and 32.1 ± 3.46, respectively) (p ≤ 0.001). On the contrary, while immobility time was enhanced by scopolamine (296 ± 4.70), 100, 200 and 400 mg/kg lavender reduced it (193.88 ± 22.42, 73.3 ± 8.25 and 35.2 ± 4.22, respectively) in a dose-dependent manner (p ≤ 0.001). Lavender extracts improved scopolamine-induced memory impairment and also reduced anxiety and depression-like behaviour in a dose-dependent manner.

  17. A neuroanatomical analysis of the effects of a memory impairing dose of scopolamine in the rat brain using cytochrome c oxidase as principle marker.

    PubMed

    Hescham, Sarah; Temel, Yasin; Casaca-Carreira, João; Arslantas, Kemal; Yakkioui, Youssef; Blokland, Arjan; Jahanshahi, Ali

    2014-09-01

    Acetylcholine plays a role in mnemonic and attentional processes, but also in locomotor and anxiety-related behavior. Receptor blockage by scopolamine can therefore induce cognitive as well as motor deficits and increase anxiety levels. Here we show that scopolamine, at a dose that has previously been found to affect learning and memory performance (0.1 mg/kg i.p.), has a widespread effect on cytochrome c oxidase histochemistry in various regions of the rat brain. We found a down-regulation of cytochrome c oxidase in the nucleus basalis, in movement-related structures such as the primary motor cortex and the globus pallidus, memory-related structures such as the CA1 subfield of the hippocampus and perirhinal cortex and in anxiety-related structures like the amygdala, which also plays a role in memory. However choline acetyltransferase levels were only affected in the CA1 subfield of the hippocampus and both, choline acetyltransferase and c-Fos expression levels were decreased in the amygdala. These findings corroborate strong cognitive behavioral effects of this drug, but also suggest possible anxiety- and locomotor-related changes in subjects. Moreover, they present histochemical evidence that the effects of scopolamine are not ultimately restricted to cognitive parameters. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Adenosine A(2A) receptors are necessary and sufficient to trigger memory impairment in adult mice.

    PubMed

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-08-01

    Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer's disease, an effect mimicked by adenosine A2 A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. We determined whether A2 A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2 A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Scopolamine (1.0 mg·kg(-1) , i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2 A receptor antagonist (SCH 58261, 0.1-1.0 mg·kg(-1) , i.p.) and by the A1 receptor antagonist (DPCPX, 0.2-5.0 mg·kg(-1) , i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2 A receptors with CGS 21680 (0.1-0.5 mg·kg(-1) , i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg(-1) , i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. These results show that A2 A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. © 2015 The British Pharmacological Society.

  19. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    PubMed Central

    2018-01-01

    Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system. PMID:29736181

  20. Scopolamine Administration Modulates Muscarinic, Nicotinic and NMDA Receptor Systems

    PubMed Central

    Höger, Harald; Pollak, Arnold; Lubec, Gert

    2012-01-01

    Studies on the effect of scopolamine on memory are abundant but so far only regulation of the muscarinic receptor (M1) has been reported. We hypothesized that levels of other cholinergic brain receptors as the nicotinic receptors and the N-methyl-D-aspartate (NMDA) receptor, known to be involved in memory formation, would be modified by scopolamine administration. C57BL/6J mice were used for the experiments and divided into four groups. Two groups were given scopolamine 1 mg/kg i.p. (the first group was trained and the second group untrained) in the multiple T-maze (MTM), a paradigm for evaluation of spatial memory. Likewise, vehicle-treated mice were trained or untrained thus serving as controls. Hippocampal levels of M1, nicotinic receptor alpha 4 (Nic4) and 7 (Nic7) and subunit NR1containing complexes were determined by immunoblotting on blue native gel electrophoresis. Vehicle-treated trained mice learned the task and showed memory retrieval on day 8, while scopolamine-treatment led to significant impairment of performance in the MTM. At the day of retrieval, hippocampal levels for M1, Nic7 and NR1 were higher in the scopolamine treated groups than in vehicle-treated groups. The concerted action, i.e. the pattern of four brain receptor complexes regulated by the anticholinergic compound scopolamine, is shown. Insight into probable action mechanisms of scopolamine at the brain receptor complex level in the hippocampus is provided. Scopolamine treatment is a standard approach to test cognitive enhancers and other psychoactive compounds in pharmacological studies and therefore knowledge on mechanisms is of pivotal interest. PMID:22384146

  1. Learning and memory promoting effects of crude garlic extract.

    PubMed

    Mukherjee, Dhrubajyoti; Banerjee, Sugato

    2013-12-01

    Chronic administration of aged garlic extract has been shown to prevent memory impairment in mice. Acute and chronic (21 days) effects of marketed formulation of crude garlic extract (Lasuna) were evaluated on learning and memory in mice using step down latency (SDL) by passive avoidance response and transfer latency (TL) using elevated plus maze. Scopolamine (0.4 mg/kg, ip) was used to induce amnesia in mice and piracetam (200 mg/kg, ip) served as positive control. In the acute study, Lasuna (65 mg/kg, po) partially reversed the scopolamine-induced amnesia but failed to improve learning and memory in untreated animals. Chronic administration of Lasuna (40 mg/kg/day for 21 days) significantly improved learning both in control and scopolamine induced amnesic animals. Influence of Lasuna on central cholinergic activity and its antioxidant properties were also studied by estimating the cortical acetylcholinesterase (AchE) activity and reduced glutathione (GSH) levels respectively. Chronic administration of Lasuna inhibited AchE, while increasing GSH levels. Thus the results indicate that long-term administration of crude garlic extract may improve learning and memory in mice while the underlying mechanism of action may be attributed to the anti-AchE activity and anti-oxidant property of garlic.

  2. Soybean supplementation helps reverse age- and scopolamine-induced memory deficits in mice.

    PubMed

    Bansal, Nitin; Parle, Milind

    2010-12-01

    Phytoestrogens are nonsteroidal plant compounds that are able to exert estrogenic effects. Soybean is a rich source of phytoestrogens, especially isoflavones. Soy isoflavones are utilized for estrogen replacement therapy. Estrogen is reported to influence several areas of brain that are involved in cognition and behavior. Therefore, the present study was undertaken to examine whether dietary supplementation with soybean improves the cognitive function of mice. Soybean was administered in three different concentrations (2%, 5% and 10% [wt/wt]) in the normal diet to young and mature mice for 60 successive days. The passive avoidance paradigm and the elevated plus maze served as the exteroceptive behavioral models, whereas scopolamine (1.4 mg/kg, i.p.) served as the interoceptive behavioral model. The brain acetylcholinesterase activity (AChE) activity, brain thiobarbituric acid-reactive substances (TBARS), reduced glutathione (GSH), and total blood cholesterol levels were also measured in the present study. The administration of soybean for 60 consecutive days protected (P < .05) the animals from developing memory impairment. Soybean administration also resulted in diminished brain AChE activity, decrease in brain TBARS, and increase in GSH levels, thereby indicating facilitated cholinergic transmission, reduced free radical generation, and enhanced scavenging of free radicals. Thus, soybean appears to be a useful remedy for improving memory and for the management of cognitive deficits owing to its pro-estrogenic, antioxidant, procholinergic, and/or neuroprotective properties.

  3. Lactobacillus helveticus-fermented milk improves learning and memory in mice.

    PubMed

    Ohsawa, Kazuhito; Uchida, Naoto; Ohki, Kohji; Nakamura, Yasunori; Yokogoshi, Hidehiko

    2015-07-01

    To investigate the effects of Calpis sour milk whey, a Lactobacillus helveticus-fermented milk product, on learning and memory. We evaluated improvement in scopolamine-induced memory impairment using the spontaneous alternation behaviour test, a measure of short-term memory. We also evaluated learning and working memory in mice using the novel object recognition test, which does not involve primary reinforcement (food or electric shocks). A total of 195 male ddY mice were used in the spontaneous alternation behaviour test and 60 in the novel object recognition test. Forced orally administered Calpis sour milk whey powder (200 and 2000 mg/kg) significantly improved scopolamine-induced cognitive impairments (P < 0.05 and P < 0.01, respectively) and object recognition memory (2000 mg/kg; P < 0.05). These results suggest that Calpis sour milk whey may be useful for the prevention of neurodegenerative disorders, such as Alzheimer's disease, and enhancing learning and memory in healthy human subjects; however, human clinical studies are necessary.

  4. Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat.

    PubMed

    Perry, Michelle L; Pratt, Wayne E; Baldo, Brian A

    2014-03-01

    Intra-striatal infusions of the muscarinic antagonist, scopolamine, markedly suppress feeding; however, the underlying mechanisms are unclear. Recent findings suggest that scopolamine influences opioid-dependent mechanisms of feeding modulation. Robust mu-opioid-mediated feeding responses are obtained in anterior, ventral sectors of the striatum with progressively weaker effects posteriorly and dorsally. One might therefore expect the effects of scopolamine to conform to similar boundaries, but a systematic mapping of scopolamine-induced feeding suppression has not yet been undertaken. This study aimed to assess the overlap between the striatal sites mediating scopolamine-induced feeding suppression and mu-opioid-induced hyperphagia. Dose-effect functions for scopolamine (0, 1, 5, and 10 μg) were obtained in the nucleus accumbens (Acb), anterior dorsal striatum (ADS), and posterior dorsal striatum (PDS) in three different groups of rats. In the same subjects, the mu-opioid receptor agonist (D-Ala2-N-MePhe4, Glyol)-enkephalin (DAMGO; 0.25 μg) was infused on a separate test day. The dependent variables were food and water intake, ambulation, and rearing. The greatest dose sensitivity for scopolamine-induced feeding suppression was observed in the Acb. Only the highest dose was effective in the ADS, and no effects were seen in the PDS. Water intake and general motor activity were not altered by scopolamine in any site. DAMGO infusions produced hyperphagia only in the Acb. These results support a model in which the behavioral effects of muscarinic blockade are limited by the same anatomical constraints that govern mu-opioid receptor-mediated control of feeding. These constraints are likely imposed by the topographic arrangement of feeding-related afferent inputs and efferent projections of the striatum.

  5. The effect of transdermal scopolamine for the prevention of postoperative nausea and vomiting.

    PubMed

    Antor, María A; Uribe, Alberto A; Erminy-Falcon, Natali; Werner, Joseph G; Candiotti, Keith A; Pergolizzi, Joseph V; Bergese, Sergio D

    2014-01-01

    Postoperative nausea and vomiting (PONV) is one of the most common and undesirable complaints recorded in as many as 70-80% of high-risk surgical patients. The current prophylactic therapy recommendations for PONV management stated in the Society of Ambulatory Anesthesia (SAMBA) guidelines should start with monotherapy and patients at moderate to high risk, a combination of antiemetic medication should be considered. Consequently, if rescue medication is required, the antiemetic drug chosen should be from a different therapeutic class and administration mode than the drug used for prophylaxis. The guidelines restrict the use of dexamethasone, transdermal scopolamine, aprepitant, and palonosetron as rescue medication 6 h after surgery. In an effort to find a safer and reliable therapy for PONV, new drugs with antiemetic properties and minimal side effects are needed, and scopolamine may be considered an effective alternative. Scopolamine is a belladonna alkaloid, α-(hydroxymethyl) benzene acetic acid 9-methyl-3-oxa-9-azatricyclo non-7-yl ester, acting as a non-selective muscarinic antagonist and producing both peripheral antimuscarinic and central sedative, antiemetic, and amnestic effects. The empirical formula is C17H21NO4 and its structural formula is a tertiary amine L-(2)-scopolamine (tropic acid ester with scopine; MW = 303.4). Scopolamine became the first drug commercially available as a transdermal therapeutic system used for extended continuous drug delivery during 72 h. Clinical trials with transdermal scopolamine have consistently demonstrated its safety and efficacy in PONV. Thus, scopolamine is a promising candidate for the management of PONV in adults as a first line monotherapy or in combination with other drugs. In addition, transdermal scopolamine might be helpful in preventing postoperative discharge nausea and vomiting owing to its long-lasting clinical effects.

  6. Pavlovian conditioning between co-administered drugs: elicitation of an apomorphine-induced antiparkinsonian response by scopolamine.

    PubMed

    Carey, R J

    1991-01-01

    Sprague-Dawley rats with unilateral 6-OHDA substantia nigra lesions were given combined scopolamine (0.5 mg/kg IP) and apomorphine (0.05 mg/kg SC) treatments. In this animal model, scopolamine, when administered separately, induces ipsilateral rotation and apomorphine, contralateral rotation. When these drugs are co-administered at 0.5 mg/kg and 0.05 mg/kg dose levels, respectively, animals rotate in the contralateral direction, creating the opportunity for the stimulus effect of scopolamine to become associated with the response effect of apomorphine. In tests with scopolamine (0.5 mg/kg), animals that previously had scopolamine and apomorphine co-administered rotated contralaterally in the test chamber, thereby behaving as if they had received apomorphine. Thus, scopolamine exhibited a functionally acquired conditioned stimulus (CS) property by eliciting the apomorphine response of contralateral rotation as a conditioned response. This acquired CS property was extinguished with separate scopolamine trials and reacquired following one scopolamine-apomorphine co-administration trial.

  7. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD).

    PubMed

    Javad-Moosavi, Bibi-Zahra; Vaezi, Gholamhassan; Nasehi, Mohammad; Haeri-Rouhani, Seyed-Ali; Zarrindast, Mohammad-Reza

    2017-10-03

    Despite different theories regarding sleep physiological function, an overall census indicates that sleep is useful for neural plasticity which eventually strengthens cognition and brain performance. Different studies show that sleep deprivation (SD) leads to impaired learning and hippocampus dependent memory. According to some studies, cholinergic system plays an important role in sleep (particularly REM sleep), learning, memory, and its retrieval. So this study has been designed to investigate the effect of CA1 Cholinergic Muscarinic Receptors on memory acquisition deficit induced by total sleep deprivation (TSD) and REM sleep deprivation (RSD). A modified water box (locomotor activity may be provide a limiting factor in this method of SD) or multiple platforms were used for induction of TSD or RSD, respectively. Inhibitory passive avoidance apparatus has been used to determine the effects of SD and its changes by physostigmine (as cholinesterase inhibitor) or scopolamine (muscarinic receptor antagonist) on memory formation. Because locomotor activity and pain perception induce critical roles in passive avoidance memory formation, we also measured these factors by open field and hot-plate instruments, respectively. The results showed that TSD and RSD for 24 hours impaired memory formation but they did not alter locomotor activity. TSD also induced analgesia effect, but RSD did not alter it. Intra-CA1 injection of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) did not alter memory acquisition in the sham-TSD or sham-RSD, by themselves. Moreover, intra-CA1 injection of sub-threshold dose of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) could restore the memory acquisition deficit induced by RSD, while scopolamine could restore TSD-induced amnesia. Both drugs reversed analgesia induced by TSD. None of previous interventions altered locomotor activity. According to this study, CA1 cholinergic muscarinic receptors play an important role in

  8. Restricted sedation and absence of cognitive impairments after administration of intranasal scopolamine.

    PubMed

    Weerts, Aurélie P; Pattyn, Nathalie; Putcha, Lakshmi; Hoag, Stephen W; Van Ombergen, Angelique; Hallgren, Emma; Van de Heyning, Paul H; Wuyts, Floris L

    2015-12-01

    Space motion sickness in astronauts during spaceflight causes significant discomfort, which might impede their functionality. Pharmacological treatment has been mainly restricted to promethazine. Transdermal and oral scopolamine have also been used in space; however, their use was reduced due to unpredictable effectiveness and side effects. Recently, intranasal scopolamine administration has gained much interest, since this route ensures fast and reliable absorption with a decreased incidence of undesirable side effects. The aim of this study was to evaluate the effect of intranasal scopolamine on cognitive performance and to determine its side effects. This double-blind, placebo controlled, repeated measures study evaluated vigilant attention, short-term memory, implicit memory and working memory. Side effects were reported on a 22-item questionnaire and sleepiness was assessed by the Karolinska, Stanford and Epworth Sleepiness Scales. Scopolamine had no effect on cognitive function. Only the Karolinska score was significantly increased for scopolamine compared to placebo. Participants reported a dry mouth and dizziness after receiving scopolamine. Results show that intranasal scopolamine did not impair cognitive performance. Intranasal scopolamine might be a good alternative to promethazine for the alleviation of space motion sickness, since the agent has minimal sedative effects and does not hamper cognitive performance. © The Author(s) 2015.

  9. Overlapping striatal sites mediate scopolamine-induced feeding suppression and mu-opioid-mediated hyperphagia in the rat

    PubMed Central

    Perry, Michelle L.; Pratt, Wayne E.; Baldo, Brian A.

    2013-01-01

    Rationale Intra-striatal infusions of the muscarinic antagonist, scopolamine, markedly suppress feeding; however, the underlying mechanisms are unclear. Recent findings suggest that scopolamine influences opioid-dependent mechanisms of feeding modulation. Robust mu-opioid-mediated feeding responses are obtained in anterior, ventral sectors of the striatum with progressively weaker effects posteriorly and dorsally. One might therefore expect the effects of scopolamine to conform to similar boundaries, but a systematic mapping of scopolamine-induced feeding suppression has not yet been undertaken. Objective This study aimed to assess the overlap between the striatal sites mediating scopolamine-induced feeding suppression and mu-opioid-induced hyperphagia. Methods Dose–effect functions for scopolamine (0, 1, 5, and 10 μg) were obtained in the nucleus accumbens (Acb), anterior dorsal striatum (ADS), and posterior dorsal striatum (PDS) in three different groups of rats. In the same subjects, the mu-opioid receptor agonist (d-Ala2-N-MePhe4, Glyol)-enkephalin (DAMGO; 0.25 μg) was infused on a separate test day. The dependent variables were food and water intake, ambulation, and rearing. Results The greatest dose sensitivity for scopolamine-induced feeding suppression was observed in the Acb. Only the highest dose was effective in the ADS, and no effects were seen in the PDS. Water intake and general motor activity were not altered by scopolamine in any site. DAMGO infusions produced hyperphagia only in the Acb. Conclusions These results support a model in which the behavioral effects of muscarinic blockade are limited by the same anatomical constraints that govern mu-opioid receptor-mediated control of feeding. These constraints are likely imposed by the topographic arrangement of feeding-related afferent inputs and efferent projections of the striatum. PMID:24190586

  10. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    PubMed

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  11. Pentoxifylline prevents post-traumatic stress disorder induced memory impairment.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Ahmed, Mohammed

    2018-05-01

    Posttraumatic stress disorder (PTSD) is a disabling prevalent and difficult-to-treat psychiatric disorder, which can develop after the exposure to severe traumatic events such as those occurring during wars and natural disasters. Pentoxifylline (PTX) is a potent antioxidant, which has an important role in prevention of cognitive dysfunctions. In the present study, the effect of PTX on memory impairment induced by PTSD was investigated using the rat animal model. PTSD-like behavior was induced in animals using a single-prolonged stress (SPS) rat model of PTSD (2 h restrain, 20 min forced swimming, 15 min rest, 1-2 min diethyl ether exposure). PTX was administered intraperitoneally at a dose of 100 mg/kg/day. Spatial learning and memory were assessed using the radial arm water maze (RAWM). Changes in oxidative stress biomarkers, brain derived neuroptrophic factor (BDNF), and epigenetics (histones) in the hippocampus following treatments were measured using enzymatic assays. The result revealed that SPS impaired both short- and long- term memory (P < 0.05). Use of PTX prevented memory impairment induced by SPS. Furthermore, PTX normalized SPS induced changes in the hippocampus GSH/GSSG ratio, activity of catalase, and glutathione peroxidase (GPx), BDNF, and certain histones levels. In conclusion, the SPS model of PTSD-like behavior induced memory impairment, whereas PTX prevented this impairment possibly through normalizing antioxidant mechanisms, BDNF and epigenetic changes in the hippocampus. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Low-dose systemic scopolamine disrupts context conditioning in rats.

    PubMed

    Luyten, Laura; Nuyts, Shauni; Beckers, Tom

    2017-06-01

    Cholinergic neurotransmission plays a key role in learning and memory. Prior research with rats indicated that a low dose of pre-training scopolamine (0.1 mg/kg), a cholinergic receptor antagonist, did not affect cued fear conditioning, but did block renewal when injected before extinguishing a conditioned tone, opening up opportunities to pharmacologically improve exposure therapy for anxiety patients. Before translating these findings to the clinic, it is important to carefully examine how scopolamine affects contextual fear memories. Here, we investigated the effects of scopolamine on encoding of contextual anxiety and its generalization in male Wistar rats. We found a profound disruption of context conditioning, suggesting that, even at a low dose, systemic scopolamine may influence contextual encoding in the hippocampus, particularly when the context is the best predictor for the presence of shocks.

  13. Interactions between scopolamine and muscarinic cholinergic agonists or cholinesterase inhibitors on spatial alternation performance in rats.

    PubMed

    Shannon, H E; Bemis, K G; Hendrix, J C; Ward, J S

    1990-12-01

    The effects on working memory of the muscarinic cholinergic agonists oxotremorine, arecoline, RS86 and pilocarpine, and the cholinesterase inhibitors physostigmine and tetrahydroaminoacadine were investigated in male F344 rats. Working memory was assessed by behavior maintained under a spatial alternation schedule of food presentation in which the interval between trials was varied from 2 to 32 sec. Under control conditions the percentage of correct responses decreased as the retention interval was varied from 2 to 32 sec. Administered alone the cholinergic agonists oxotremorine (0.01-0.1 mg/kg), arecoline (3-30 mg/kg), RS86 (0.3-3 mg/kg) and pilocarpine (0.3-3.0 mg/kg), and the cholinesterase inhibitors physostigmine (0.01-0.1 mg/kg) and tetrahydroaminoacridine (0.3-3.0 mg/kg) either had no effect on or produced dose-related deficits in working memory and decreases in response rates. The muscarinic antagonist scopolamine (0.1 mg/kg) produced retention interval-dependent decreases in the percentage of correct responding and rates of responding. The cholinergic agonists and tetrahydroaminoacridine failed to reverse the effects of scopolamine. However, physostigmine produced a dose-dependent reversal of the working-memory deficits and response-rate decreasing effects of scopolamine. The present results are consistent with the interpretation that drugs which primarily enhance M2 muscarinic cholinergic transmission are ineffective in enhancing working memory or in reversing scopolamine-induced deficits in working memory.

  14. Short-term and long-term effects of diazepam on the memory for discrimination and generalization of scopolamine.

    PubMed

    Casasola-Castro, C; Weissmann-Sánchez, L; Calixto-González, E; Aguayo-Del Castillo, A; Velázquez-Martínez, D N

    2017-10-01

    Benzodiazepines are among the most widely prescribed and misused psychopharmaceutical drugs. Although they are well-tolerated, they are also capable of producing amnestic effects similar to those observed after pharmacological or organic cholinergic dysfunction. To date, the effect of benzodiazepine diazepam on the memory for discrimination of anticholinergic drugs has not been reported. The aim of the present study was to analyze the immediate and long-term effects of diazepam on a drug discrimination task with scopolamine. Male Wistar rats were trained to discriminate between scopolamine and saline administration using a two-lever discrimination task. Once discrimination was acquired, the subjects were divided into three independent groups, (1) control, (2) diazepam, and (3) diazepam chronic administration (10 days). Subsequently, generalization curves for scopolamine were obtained. Additionally, the diazepam and control groups were revaluated after 90 days without having been given any other treatment. The results showed that diazepam produced a significant reduction in the generalization gradient for scopolamine, indicating an impairment of discrimination. The negative effect of diazepam persisted even 90 days after drug had been administered. Meanwhile, the previous administration of diazepam for 10 days totally abated the generalization curve and the general performance of the subjects. The results suggest that diazepam affects memory for the stimulus discrimination of anticholinergic drugs and does so persistently, which could be an important consideration during the treatment of amnesic patients with benzodiazepines.

  15. Antioxidant and acetylcholinesterase inhibitory activities in vitro of different fraction of Huperzia squarrosa (Forst.) Trevis extract and attenuation of scopolamine-induced cognitive impairment in mice.

    PubMed

    Tung, Bui Thanh; Hai, Nguyen Thanh; Thu, Dang Kim

    2017-02-23

    Huperzia squarrosa (Forst.) Trevis is used in traditional medicine for improving memory deficits. Alkaloids, triterpenoids, flavonoids are main bioactive compounds of Huperzia squarrosa (Forst.) Trevis. This study aimed to investigate the antioxidant, AChE inhibitory activities in vitro of differents fraction of Huperzia squarrosa (Forst.) Trevis extract and neuroprotective effects of EtOAc fraction on scopolamine-induced cognitive impairment in mice. Antioxidant activity was measured by DPPH assay. AChE inhibitory effect in vitro and detail kinetic inhibition mechanism was evaluated by Ellman's assay. For in vivo assay, mice were administrated orally EtOAc fraction (150 and 300mg/kg) for fourteen days, and injected scopolamine at a dose of 1mg/kg intraperitoneally for four days to induce memory injured. The memory behaviors were evaluated using the Morris water maze. ACh levels were measured in brain tissue. Superoxide dismutase (SOD), glutathione peroxidase (GPx) activities, malondialdehyde and protein thiol groups were also evaluated in the brains. Our data also demonstrated that EtOAc fraction had the strongest antioxidant with an IC 50 value of 9.35±1.68µg/mL and AChE inhibitory activity with an IC 50 value of 23.44±3.14μg/mL in a concentration-dependent manner. Kinetic inhibition analysis indicated that EtOAc fraction was mixed inhibition type with Ki (representing the affinity of the enzyme and inhibitor) was 34.75±1.42µg/mL. Scopolamine significantly increased the escape latency time, reduced the crossings number, and swimming time in the target quadrant, while EtOAc fraction reversed these scopolamine-induced effects. EtOAc fraction significantly increased levels of acetylcholine in the brain. EtOAc fraction also significantly decreased oxidative stress in mice. Our data suggest that EtOAc fraction of Huperzia squarrosa extract exhibited a strong neuroprotective effect on cognitive impairment, and may be a potential candidate for the treatment of

  16. Low-dose systemic scopolamine disrupts context conditioning in rats

    PubMed Central

    Luyten, Laura; Nuyts, Shauni; Beckers, Tom

    2017-01-01

    Cholinergic neurotransmission plays a key role in learning and memory. Prior research with rats indicated that a low dose of pre-training scopolamine (0.1 mg/kg), a cholinergic receptor antagonist, did not affect cued fear conditioning, but did block renewal when injected before extinguishing a conditioned tone, opening up opportunities to pharmacologically improve exposure therapy for anxiety patients. Before translating these findings to the clinic, it is important to carefully examine how scopolamine affects contextual fear memories. Here, we investigated the effects of scopolamine on encoding of contextual anxiety and its generalization in male Wistar rats. We found a profound disruption of context conditioning, suggesting that, even at a low dose, systemic scopolamine may influence contextual encoding in the hippocampus, particularly when the context is the best predictor for the presence of shocks. PMID:28417664

  17. Antidepressant-like effects of scopolamine in mice are enhanced by the group II mGlu receptor antagonist LY341495.

    PubMed

    Podkowa, Karolina; Podkowa, Adrian; Sałat, Kinga; Lenda, Tomasz; Pilc, Andrzej; Pałucha-Poniewiera, Agnieszka

    2016-12-01

    Clinical studies have shown that the muscarinic receptor antagonist scopolamine induces a potent and rapid antidepressant effect relative to conventional antidepressants. However, potential undesirable effects, including memory impairment, partially limit the use of scopolamine in psychiatry. In the present study, we propose to overcome these limitations and enhance the therapeutic effects of scopolamine via administration in combination with the group II metabotropic glutamate (mGlu) receptor antagonist, LY341495. Joint administration of sub-effective doses of scopolamine (0.03 or 0.1 mg/kg, i.p.) with a sub-effective dose of LY341495 (0.1 mg/kg, i.p.) induced a profound antidepressant effect in the tail suspension test (TST) and in the forced swim test (FST) in mice. This drug combination did not impair memory, as measured using the Morris water maze (MWM), and did not influence the locomotor activity of mice. Furthermore, we found that an AMPA receptor antagonist, NBQX (10 mg/kg), completely reversed the antidepressant-like activity of a mixture of scopolamine and LY341495 in the TST. However, this effect was not influenced by para-chlorophenylalanine (PCPA) pre-treatment, indicating a lack of involvement of serotonergic system activation in the antidepressant-like effects of jointly given scopolamine and LY341495. Therefore, the combined administration of low doses of the antimuscarinic drug scopolamine and the group II mGlu receptor antagonist LY341495 might be a new, effective and safe strategy in the therapy of depression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Analogous β-Carboline Alkaloids Harmaline and Harmine Ameliorate Scopolamine-Induced Cognition Dysfunction by Attenuating Acetylcholinesterase Activity, Oxidative Stress, and Inflammation in Mice

    PubMed Central

    Li, Shu-Ping; Wang, Yu-Wen; Qi, Sheng-Lan; Zhang, Yun-Peng; Deng, Gang; Ding, Wen-Zheng; Ma, Chao; Lin, Qi-Yan; Guan, Hui-Da; Liu, Wei; Cheng, Xue-Mei; Wang, Chang-Hong

    2018-01-01

    The analogous β-carboline alkaloids, harmaline (HAL) and harmine (HAR), possess a variety of biological properties, including acetylcholinesterase (AChE) inhibitory activity, antioxidant, anti-inflammatory, and many others, and have great potential for treating Alzheimer’s disease (AD). However, studies have showed that the two compounds have similar structures and in vitro AChE inhibitory activities but with significant difference in bioavailability. The objective of this study was to comparatively investigate the effects of HAL and HAR in memory deficits of scopolamine-induced mice. In the present study, mice were pretreated with HAL (2, 5, and 10 mg/kg), HAR (10, 20, and 30 mg/kg) and donepezil (5 mg/kg) by intragastrically for 7 days, and were daily intraperitoneal injected with scopolamine (1 mg/kg) to induce memory deficits and then subjected to behavioral evaluation by Morris water maze. To further elucidate the underlying mechanisms of HAL and HAR in improving learning and memory, the levels of various biochemical factors and protein expressions related to cholinergic function, oxidative stress, and inflammation were examined. The results showed that HAL and HAR could effectively ameliorate memory deficits in scopolamine-induced mice. Both of them exhibited an enhancement in cholinergic function by inhibiting AChE and inducing choline acetyltransferase (ChAT) activities, and antioxidant defense via increasing the antioxidant enzymes activities of superoxide dismutase and glutathione peroxidase, and reducing maleic diadehyde production, and anti-inflammatory effects through suppressing myeloperoxidase, tumor necrosis factor α, and nitric oxide as well as modulation of critical neurotransmitters such as acetylcholine (ACh), choline (Ch), L-tryptophan (L-Trp), 5-hydroxytryptamine (5-HT), γ-aminobutyric acid (γ-GABA), and L-glutamic acid (L-Glu). Furthermore, the regulations of HAL on cholinergic function, inflammation, and neurotransmitters were more

  19. Melatonin prevents memory impairment induced by high-fat diet: Role of oxidative stress.

    PubMed

    Alzoubi, Karem H; Mayyas, Fadia A; Mahafzah, Rania; Khabour, Omar F

    2018-01-15

    Consumption of high-fat diet (HFD) induces oxidative stress in the hippocampus that leads to memory impairment. Melatonin has antioxidant and neuroprotective effects. In this study, we hypothesized that chronic administration of melatonin can prevent memory impairment induced by consumption of HFD. Melatonin was administered to rats via oral gavage (100mg/kg/day) for 4 weeks. HFD was also instituted for the same duration. Behavioral studies were conducted to test spatial memory using the radial arm water maze. Additionally, oxidative stress biomarkers were assessed in the hippocampus. Results showed that HFD impaired both short- and long- term memory (P<0.05), while melatonin treatment prevented such effects. Furthermore, melatonin prevented HFD-induced reduction in levels of GSH, and ratio of GSH/GSSG, and increase in GSSG in the hippocampus. Melatonin also prevented reduction in the catalase activity in hippocampus of animals on HFD. In conclusion, HFD induced memory impairment and melatonin prevented this impairment probably by preventing alteration of oxidative stress in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus.

    PubMed

    Pandareesh, M D; Anand, T; Khanum, Farhath

    2016-05-01

    Cognition-enhancing activity of Bacopa monniera extract (BME) was evaluated against scopolamine-induced amnesic rats by novel object recognition test (NOR), elevated plus maze (EPM) and Morris water maze (MWM) tests. Scopolamine (2 mg/kg body wt, i.p.) was used to induce amnesia in rats. Piracetam (200 mg/kg body wt, i.p.) was used as positive control. BME at three different dosages (i.e., 10, 20 and 40 mg/kg body wt.) improved the impairment induced by scopolamine by increasing the discrimination index of NOR and by decreasing the transfer latency of EPM and escape latency of MWM tests. Our results further elucidate that BME administration has normalized the neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptamine, dopamine, 3,4 dihydroxyphenylacetic acid, norepinephrine) levels that were altered by scopolamine administration in hippocampus of rat brain. BME administration also ameliorated scopolamine effect by down-regulating AChE and up-regulating BDNF, muscarinic M1 receptor and CREB expression in brain hippocampus confirms the potent neuroprotective role and these results are in corroboration with the earlier in vitro studies. BME administration showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant and lipid peroxidation. These results indicate that, cognition-enhancing and neuromodulatory propensity of BME is through modulating the expression of AChE, BDNF, MUS-1, CREB and also by altering the levels of neurotransmitters in hippocampus of rat brain.

  1. Memantine improves memory impairment and depressive-like behavior induced by amphetamine withdrawal in rats.

    PubMed

    Marszalek-Grabska, M; Gibula-Bruzda, E; Jenda, M; Gawel, K; Kotlinska, J H

    2016-07-01

    Amphetamine (AMPH) induces deficits in cognition, and depressive-like behavior following withdrawal. The aim of the present study was to investigate whether pre-treatment with memantine (5mg/kg, i.p.), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist, attenuates memory impairment induced by withdrawal from a 1 day binge regimen of AMPH (2mg/kg, four times every 2h, i.p.), in the novel object recognition test in rats. Herein, the influence of scopolamine (0.1mg/kg), an antagonist of the muscarinic cholinergic receptors, and the impact of MK-801 (0.1mg/kg), an antagonist of the NMDA receptors, on the memantine effect, were ascertained. Furthermore, the impact of memantine (5; 10; 20mg/kg, i.p.) was measured on depression-like effects of abstinence, 14 days after the last AMPH treatment (2mg/kg×1×14 days), in the forced swim test. In this test, the efficacy of memantine was compared to that of tricyclic antidepressant imipramine (10; 20; 30mg/kg, i.p.). Our study indicated that withdrawal from a binge regimen of AMPH impaired recognition memory. This effect was attenuated by administration of memantine at both 72h and 7 days of withdrawal. Moreover, prior administration of scopolamine, but not MK-801, decreased the memantine-induced recognition memory improvement. In addition, memantine reversed the AMPH-induced depressive-like behavior in the forced swim test in rats. The antidepressant-like effects of memantine were stronger than those of imipramine. Our study indicates that memantine constitutes a useful approach towards preventing cognitive deficits induced by withdrawal from an AMPH binge regimen and by depressive-like behavior during AMPH abstinence. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Cross State-dependent Learning Interaction Between Scopolamine and Morphine in Mice: The Role of Dorsal Hippocampus

    PubMed Central

    Maleki, Morteza; Hassanpour-Ezatti, Majid; Navaeian, Majid

    2017-01-01

    Introduction: The current study aimed at investigating the existence of the cross state-dependent learning between morphine and scopolamine (SCO) in mice by passive avoidance method, pointing to the role of CA1 area. Methods: The effects of pre-training SCO (0.75, 1.5, and 3 μg, Intra-CA1), or morphine (1, 3, and 6 mg/kg, intraperitoneal (i.p.) was evaluated on the retrieval of passive avoidance learning using step-down task in mice (n=10). Then, the effect of pretest administration of morphine (1.5, 3, and 6 mg/kg, i.p.) was examined on passive avoidance retrieval impairment induced by pre-training SCO (3 μg/mice, Intra-CA1). Next, the effect of pretest Intra-CA1 injection of scopolamine (0.75, 1.5, and 3 μg/mice) was evaluated on morphine (6 mg/kg, i.p.) pre-training deficits in this task in mice. Results: The pre-training Intra-CA1 injection of scopolamine (1.5 and 3 μg/mouse), or morphine (3 and 6 mg/kg, i.p.) impaired the avoidance memory retrieval when it was tested 24 hours later. Pretest injection of both drugs improved its pre-training impairing effects on mice memory. Moreover, the amnesia induced by the pre-training injections of scopolamine (3 μg/mice) was restored significantly (P<0.01) by pretest injections of morphine (3 and 6 mg/kg, i.p.). Similarly, pretest injection of scopolamine (3 μg/mice) restored amnesia induced by the pre-training injections of morphine (6 mg/kg, i.p.), significantly (P<0.01). Conclusion: The current study findings indicated a cross state-dependent learning between SCO and morphine at CA1 level. Therefore, it seems that muscarinic and opioid receptors may act reciprocally on modulation of passive avoidance memory retrieval, at the level of dorsal hippocampus, in mice. PMID:28781727

  3. Scopolamine in Brugmansia suaveolens (Solanaceae): defense, allocation, costs, and induced response.

    PubMed

    Alves, Marcos Nopper; Sartoratto, Adilson; Trigo, José Roberto

    2007-02-01

    Brugmansia suaveolens (Solanaceae) contains tropane alkaloids (TAs), which can act as chemical defenses. Selective pressures might modulate the allocation of alkaloids within the plant, as postulated by optimal-defense theory. By tracing scopolamine, the most abundant TA in this species, we found that scopolamine in an artificial diet, in concentrations similar to those in leaves of B. suaveolens, increased mortality and prolonged developmental time of the larvae of the generalist noctuid moth Spodoptera frugiperda. A diet of undamaged leaves of B. suaveolens also showed a large negative effect on the growth of larvae of S. frugiperda compared to a diet of leaves of Ricinus communis, a species that did not have negative effects on this moth; more valuable plant parts, such as young leaves, flowers, and unripe fruits with seeds, have higher scopolamine concentrations than other tissues; leaves of B. suaveolens increase their content of scopolamine after artificial damage. The highest induction was found 24 hr after the damage, and after that, scopolamine content decreased to constitutive levels. This increase represented a cost, because in another experiment, a treatment with methyl jasmonate, an elicitor hormone, increased scopolamine production 9.5-fold and decreased leaf growth 2.3-fold; a diet of artificially damaged leaves of B. suaveolens showed a negative effect on the growth of larvae of S. furgiperda compared to undamaged leaves, suggesting that damage by herbivores induces resistance. Our data are in line with the optimal-defense theory, but experiments in the field with herbivores that share an evolutionary history with B. suaveolens must be undertaken to understand the dynamics of TA allocation in response to herbivory.

  4. 20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice.

    PubMed

    Lu, Cong; Dong, Liming; Lv, Jingwei; Wang, Yan; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-01-05

    20(S)-protopanaxadiol (PPD) possesses various biological properties, including anti-inflammatory, antitumor and anti-fatigue properties. Recent studies found that PPD functioned as a neurotrophic agent to ameliorate the sensory deficit caused by glutamate-induced excitotoxicity through its antioxidant effects and exhibited strong antidepressant-like effects in vivo. The objective of the present study was first to investigate the effect of PPD in scopolamine (SCOP)-induced memory deficit in mice and the potential mechanisms involved. In this study, mice were pretreated with PPD (20 and 40 μmol/kg) and donepezil (1.6 mg/kg) intraperitoneally (i.p) for 14 days. Then, open field test was used to assess the effect of PPD on the locomotor activity and mice were daily injected with SCOP (0.75 mg/kg) to induce cognitive deficits and then subjected to behavioral tests by object location recognition (OLR) experiment and Morris water maze (MWM) task. The cholinergic system function, oxidative stress biomarkers and protein expression of Egr-1, c-Fos, and c-Jun in mouse hippocampus were examined. PPD was found to significantly improve the performance of amnesia mice in OLR and MWM tests. PPD regulated cholinergic function by inhibiting SCOP-induced elevation of acetylcholinesterase (AChE) activity, decline of choline acetyltransferase (ChAT) activity and decrease of acetylcholine (Ach) level. PPD suppressed oxidative stress by increasing activities of antioxidant enzymes such as superoxide dismutase (SOD) and lowering maleic diadehyde (MDA) level. Additionally, PPD significantly elevated the expression of Egr-1, c-Fos, and c-Jun in hippocampus at protein level. Taken together, all these results suggested that 20(S)-protopanaxadiol (PPD) may be a candidate compound for the prevention against memory loss in some neurodegenerative diseases such as Alzheimer's disease (AD). Copyright © 2017. Published by Elsevier B.V.

  5. Scopolamine attenuates auditory cortex response.

    PubMed

    Deng, Anchun; Liang, Xiaojun; Sun, Yuchen; Xiang, Yanghong; Yang, Junjie; Yan, Jingjing; Sun, Wei

    2015-01-01

    Scopolamine, a tropane alkaloid drug that mainly acts as an antagonist of muscarinic acetylcholine receptors, was found to reduce the local field potentials (LFP) of auditory cortex (AC) evoked by tone and gap-offsets whose effects may compensate the cortical hyperexcitability related to tinnitus. To study the effects of scopolamine on the AC and the inferior colliculus (IC) of awake rats in order to understand scopolamine's effect on tinnitus and gap detection. Silent gaps (duration varied from 2-100 ms) embedded in otherwise continuous noise were used to elicit AC and IC response. Gap evoked AC and IC field potentials were recorded from awake rats before and after treatment of scopolamine (3 mg/kg, i.m.). Acute injection of scopolamine (3 mg/kg, i.m.) induced a significant reduction of the AC response, but not the IC response, to the offset of the gaps embedded in white noise. The results suggest that scopolamine may reduce AC neural synchrony.

  6. Lithium Prevents REM Sleep Deprivation-Induced Impairments on Memory Consolidation

    PubMed Central

    Ota, Simone M.; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M.; Tiba, Paula A.

    2013-01-01

    Background: Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. Objective: To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Design: Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Subjects: Wistar male rats weighing 300-400 g. Results: Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Conclusion: Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained. Citation: Ota SM; Moreira KDM; Suchecki D; Oliveira MGM; Tiba PA. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation. SLEEP 2013;36(11):1677-1684. PMID:24179301

  7. Decursin from Angelica gigas mitigates amnesia induced by scopolamine in mice.

    PubMed

    Kang, So Young; Lee, Ki Yong; Park, Mi Jung; Kim, Young Chul; Markelonis, George J; Oh, Tae H; Kim, Young Choong

    2003-01-01

    We previously reported that a total methanolic extract of the underground part of Angelica gigas Nakai (Umbelliferae) (here-in-after abbreviated AG) significantly inhibited acetylcholinesterase (AChE) activity. We characterized 12 coumarin derivatives including both decursin and decursinol from extracts of AG. In this study, we evaluated the anti-amnestic activity of decursin, a major coumarin constituent isolated from AG, in vivo using ICR mice with amnesia induced by scopolamine (1 mg/kg body weight, s.c.). Decursin, when administered to mice at 1 and 5 mg/kg body weight i.p., significantly ameliorated scopolamine-induced amnesia as measured in both the passive avoidance test and the Morris water maze test. Moreover, decursin significantly inhibited AChE activity by 34% in the hippocampus of treated mice. These results indicate that decursin may exert anti-amnestic activity in vivo through inhibition of AChE activity in the hippocampus.

  8. The Protective Role of Selenium on Scopolamine-Induced Memory Impairment, Oxidative Stress, and Apoptosis in Aged Rats: The Involvement of TRPM2 and TRPV1 Channels.

    PubMed

    Balaban, Hasan; Nazıroğlu, Mustafa; Demirci, Kadir; Övey, İshak Suat

    2017-05-01

    Inhibition of Ca 2+ entry into the hippocampus and dorsal root ganglion (DRG) through inhibition of N-methyl-D-aspartate (NMDA) receptor antagonist drugs is the current standard of care in neuronal diseases such as Alzheimer's disease, dementia, and peripheral pain. Oxidative stress activates Ca 2+ -permeable TRPM2 and TRPV1, and recent studies indicate that selenium (Se) is a potent TRPM2 and TRPV1 channel antagonist in the hippocampus and DRG. In this study, we investigated the neuroprotective properties of Se in primary hippocampal and DRG neuron cultures of aged rats when given alone or in combination with scopolamine (SCOP). Thirty-two aged (18-24 months old) rats were divided into four groups. The first and second groups received a placebo and SCOP (1 mg/kg/day), respectively. The third and fourth groups received intraperitoneal Se (1.5 mg/kg/ over day) and SCOP + Se, respectively. The hippocampal and DRG neurons also were stimulated in vitro with a TRPV1 channel agonist (capsaicin) and a TRPM2 channel agonist (cumene hydroperoxide). We found that Se was fully effective in reversing SCOP-induced TRPM2 and TRPV1 current densities as well as errors in working memory and reference memory. In addition, Se completely reduced SCOP-induced oxidative toxicity by modulating lipid peroxidation, reducing glutathione and glutathione peroxidase. The Se and SCOP + Se treatments also decreased poly (ADP-ribose) polymerase activity, intracellular free Ca 2+ concentrations, apoptosis, and caspase 3, caspase 9, and mitochondrial membrane depolarization values in the hippocampus. In conclusion, the current study reports on the cellular level for SCOP and Se on the different endocytotoxic cascades for the first time. Notably, the research indicates that Se can result in remarkable neuroprotective and memory impairment effects in the hippocampal neurons of rats. Graphical abstract Possible molecular pathways of involvement of selenium (Se) in scopolamine (SCOP) induced

  9. Improvement in Long-Term Memory following Chronic Administration of Eryngium planum Root Extract in Scopolamine Model: Behavioral and Molecular Study

    PubMed Central

    Ozarowski, Marcin; Thiem, Barbara; Mikolajczak, Przemyslaw L.; Piasecka, Anna; Kachlicki, Piotr; Szulc, Michal; Kaminska, Ewa; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Budzianowski, Jaromir; Kędziora, Izabela; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw; Bobkiewicz-Kozłowska, Teresa

    2015-01-01

    Eryngium planum L. (EP) is as a rare medicinal plant with a lot of potentials as pharmaceutical crops. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 70% ethanol extract of EP roots (200 mg/kg, p.o.) on behavioral and cognitive responses in Wistar rats linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex. On the last day of experiment, 30 min after the last dose of EP or Huperzine A (HU), scopolamine (SC) was given at a dose of 0.5 mg/kg b.w. intraperitoneally. The results of a passive avoidance test showed an improvement in long-term memory produced by the EP extract in both scopolamine-induced rats and control group. EP caused an insignificant inhibition of AChE and BuChE activities in the frontal cortex and the hippocampus. EP decreased mRNA AChE, BuChE, and BACE-1 levels, especially in the cortex. Our results suggest that the EP extract led to the improvement of the long-term memory in rats coupled with total saponin content. The mechanism of EP action is probably complicated, since HPLC-MS analysis showed 64 chemical compounds (phenolics, saponins) in the extract of EP roots. PMID:26483842

  10. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  11. Cognitive-enhancing and antioxidant activities of the aqueous extract from Markhamia tomentosa (Benth.) K. Schum. stem bark in a rat model of scopolamine.

    PubMed

    Ionita, Radu; Postu, Paula Alexandra; Beppe, Galba Jean; Mihasan, Marius; Petre, Brindusa Alina; Hancianu, Monica; Cioanca, Oana; Hritcu, Lucian

    2017-03-28

    Plants of the genus Markhamia have been traditionally used by different tribes in various parts of West African countries, including Cameroun. Markhamia tomentosa (Benth.) K. Schum. (Bignoniaceae) is used as an antimalarial, anti-inflammatory, analgesic, antioxidant and anti-Alzheimer agent. The current study was undertaken in order to investigate its anti-amnesic and antioxidant potential on scopolamine-induced cognitive impairment and to determine its possible mechanism of action. Rats were pretreated with the aqueous extract (50 and 200 mg/kg, p.o.), for 10 days, and received a single injection of scopolamine (0.7 mg/kg, i.p.) before training in Y-maze and radial arm-maze tests. The biochemical parameters in the rat hippocampus were also assessed to explore oxidative status. Statistical analyses were performed using two-way ANOVA followed by Tukey's post hoc test. F values for which p < 0.05 were regarded as statistically significant. In the scopolamine-treated rats, the aqueous extract improved memory in behavioral tests and decreased the oxidative stress in the rat hippocampus. Also, the aqueous extract exhibited anti-acetylcholinesterase activity. These results suggest that the aqueous extract ameliorates scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  12. Muscarinic Receptor Occupancy and Cognitive Impairment: A PET Study with [11C](+)3-MPB and Scopolamine in Conscious Monkeys

    PubMed Central

    Yamamoto, Shigeyuki; Nishiyama, Shingo; Kawamata, Masahiro; Ohba, Hiroyuki; Wakuda, Tomoyasu; Takei, Nori; Tsukada, Hideo; Domino, Edward F

    2011-01-01

    The muscarinic cholinergic receptor (mAChR) antagonist scopolamine was used to induce transient cognitive impairment in monkeys trained in a delayed matching to sample task. The temporal relationship between the occupancy level of central mAChRs and cognitive impairment was determined. Three conscious monkeys (Macaca mulatta) were subjected to positron emission tomography (PET) scans with the mAChR radioligand N-[11C]methyl-3-piperidyl benzilate ([11C](+)3-MPB). The scan sequence was pre-, 2, 6, 24, and 48 h post-intramuscular administration of scopolamine in doses of 0.01 and 0.03 mg/kg. Occupancy levels of mAChR were maximal 2 h post-scopolamine in cortical regions innervated primarily by the basal forebrain, thalamus, and brainstem, showing that mAChR occupancy levels were 43–59 and 65–89% in doses of 0.01 and 0.03 mg/kg, respectively. In addition, dose-dependent impairment of working memory performance was measured 2 h after scopolamine. A positive correlation between the mAChR occupancy and cognitive impairment 2 and 6 h post-scopolamine was the greatest in the brainstem (P<0.00001). Although cognitive impairment was not observed 24 h post-scopolamine, sustained mAChR occupancy (11–24%) was found with both doses in the basal forebrain and thalamus, but not in the brainstem. These results indicate that a significant degree of mAChRs occupancy is needed to produce cognitive impairment by scopolamine. Furthermore, the importance of the brainstem cholinergic system in working memory in monkey is described. PMID:21430646

  13. Aniracetam reverses memory impairment in rats.

    PubMed

    Martin, J R; Moreau, J L; Jenck, F

    1995-02-01

    The pyrrolidinone derivative aniracetam given orally immediately after acquisition of an inhibitory avoidance response reproducibly ameliorated scopolamine-induced amnesia in female rats in an extensive series of test sessions conducted over a 1-year period. In a dose-response experiment it was demonstrated that 50 mg kg-1 was the lowest oral dose of aniracetam to significantly ameliorate scopolamine-induced amnesia. Combined results from these numerous test sessions demonstrated that 50 mg kg-1 aniracetam administered to scopolamine-treated rats resulted in 53% of the animals exhibiting correct passive avoidance responding in the retention evaluation versus 9% of the scopolamine-treated rats given vehicle (in comparison, 64% of the rats injected with vehicle rather than scopolamine in this experimental situation exhibited correct responding in the retention test). There was minimal variation in this pattern of results over the successive 1-month blocks constituting the complete experimental period. Thus, the nootropic compound aniracetam replicably exhibited memory enhancing effects in this animal model of reduced cholinergic function.

  14. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    PubMed

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  15. Improvement of cationic albumin conjugated pegylated nanoparticles holding NC-1900, a vasopressin fragment analog, in memory deficits induced by scopolamine in mice.

    PubMed

    Xie, Yue-Ling; Lu, Wei; Jiang, Xin-Guo

    2006-10-02

    NC-1900, an active fragment analog of arginine vasopressin [arginine vasopressin-(4-9)], has proved to be capable of improving the spatial memory deficits and the impairments in passive avoidance test. In this study, a novel drug carrier for brain delivery, cationic bovine serum albumin conjugated pegylated nanoparticles (CBSA-NPs) holding NC-1900, was developed and its improvement on scopolamine-induced memory deficits was investigated in mice using the platform-jumping avoidance test. CBSA-NPs loaded with NC-1900 in spherical shape and uniform size below 100 nm were prepared by the double emulsion/solvent evaporation procedure, and the zeta potential of CBSA-NPs was about -8mV with the loading capacity of NC-1900 around 0.46%. The in vitro study showed that approximately 10% NC-1900 was released from CBSA-NPs in pH 7.4 phosphate buffer saline (PBS) during 56 h incubation with about 15% NC-1900 released in pH 4.0 PBS during 7 days, indicating the sustained release of this carrier. Furthermore, the half-life of NC-1900 loaded in CBSA-NPs in plasma was about 78 h, which was 4-fold longer than that of free NC-1900 (19 h). The active avoidance behavioral results showed that the s.c. administration of NC-1900 tended to improve memory deficits, but the difference did not present any statistical significance, whereas this peptide failed to produce any positive effects by i.v. administration. However, the i.v. injection of CBSA-NPs loaded with NC-1900 greatly improved memory impairments to a normal level, but the efficacy was slight if the loaded nanoparticles (NPs) were exclusive of the conjugation of CBSA, indicating that CBSA-NP was a promising brain delivery carrier for NC-1900 with CBSA as a potent brain targetor. It was concluded that CBSA-NP loaded with NC-1900 was potentially efficacious in the treatment of memory deficits via i.v. administration.

  16. Attenuation of scopolamine-induced and age-associated memory impairments by the sigma and 5-hydroxytryptamine(1A) receptor agonist OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethanesulfonate).

    PubMed

    Tottori, Katsura; Nakai, Masami; Uwahodo, Yasufumi; Miwa, Takashi; Yamada, Sakiko; Oshiro, Yasuo; Kikuchi, Tetsuro; Altar, C Anthony

    2002-04-01

    Sigma and 5-HT(1A) receptor stimulation can increase acetylcholine (ACh) release in the brain. Because ACh release facilitates learning and memory, we evaluated the degree to which OPC-14523 (1-[3-[4-(3-chlorophenyl)-1-piperazinyl]propyl]-5-methoxy-3,4-dihydro-2[1H]-quinolinone monomethane sulfonate), a novel sigma and 5-HT(1A) receptor agonist, can augment ACh release and improve learning impairments in rats due to cholinergic- or age-related deficits. Single oral administration of OPC-14523 improved scopolamine-induced learning impairments in the passive-avoidance task and memory impairment in the Morris water maze. The chronic oral administration of OPC-14523 attenuated age-associated impairments of learning acquisition in the water maze and in the conditioned active-avoidance response test. OPC-14523 did not alter basal locomotion or inhibit acetylcholinesterase (AChE) activity at concentrations up to 100 microM and, unlike AChE inhibitors, did not cause peripheral cholinomimetic responses. ACh release in the dorsal hippocampus of freely moving rats increased after oral delivery of OPC-14523 and after local delivery of OPC-14523 into the hippocampus. The increases in hippocampal ACh release were blocked by the sigma receptor antagonist NE-100 (N,N-dipropyl-2-[4-methoxy-3-(2-phenylethoxy)-phenyl]-ethylamine). Thus, OPC-14523 improves scopolamine-induced and age-associated learning and memory impairments by enhancing ACh release, due to a stimulation of sigma and probably 5-HT(1A) receptors. Combined sigma/5-HT(1A) receptor agonism may be a novel approach to ameliorate cognitive disorders associated with age-associated cholinergic deficits.

  17. Neonatal treatment with scopolamine butylbromide prevents metabolic dysfunction in male rats

    PubMed Central

    Malta, Ananda; Souza, Aline Amenencia de; Ribeiro, Tatiane Aparecida; Francisco, Flávio Andrade; Pavanello, Audrei; Prates, Kelly Valério; Tófolo, Laize Peron; Miranda, Rosiane Aparecida; Oliveira, Júlio Cezar de; Martins, Isabela Peixoto; Previate, Carina; Gomes, Rodrigo Mello; Franco, Claudinéia Conationi da Silva; Natali, Maria Raquel Marçal; Palma-Rigo, Kesia; Mathias, Paulo Cezar de Freitas

    2016-01-01

    We tested whether treatment with a cholinergic antagonist could reduce insulin levels in early postnatal life and attenuate metabolic dysfunctions induced by early overfeeding in adult male rats. Wistar rats raised in small litters (SLs, 3 pups/dam) and normal litters (NLs, 9 pups/dam) were used in models of early overfeeding and normal feeding, respectively. During the first 12 days of lactation, animals in the SL and NL groups received scopolamine butylbromide (B), while the controls received saline (S) injections. The drug treatment decreased insulin levels in pups from both groups, and as adults, these animals showed improvements in glucose tolerance, insulin sensitivity, vagus nerve activity, fat tissue accretion, insulinemia, leptinemia, body weight gain and food intake. Low glucose and cholinergic insulinotropic effects were observed in pancreatic islets from both groups. Low protein expression was observed for the muscarinic M3 acetylcholine receptor subtype (M3mAChR), although M2mAChR subtype expression was increased in SL-B islets. In addition, beta-cell density was reduced in drug-treated rats. These results indicate that early postnatal scopolamine butylbromide treatment inhibits early overfeeding-induced metabolic dysfunctions in adult rats, which might be caused by insulin decreases during lactation, associated with reduced parasympathetic activity and expression of M3mAChR in pancreatic islets. PMID:27561682

  18. Protective effect of lavender oil on scopolamine induced cognitive deficits in mice and H2O2 induced cytotoxicity in PC12 cells.

    PubMed

    Xu, Pan; Wang, Kezhu; Lu, Cong; Dong, Liming; Gao, Li; Yan, Ming; Aibai, Silafu; Liu, Xinmin

    2016-12-04

    Lavender essential oil (LO), an aromatic liquid extracted from Lavandula angustifolia Mill., has been traditionally used in the treatments of many nervous system diseases, and recently LO also reported to be effective for the Alzheimer's disease (AD). The improvement effect of lavender oil (LO) on the scopolamine-induced cognitive deficits in mice and H 2 O 2 induced cytotoxicity in PC12 cells have been evaluated. The relevant mechanism was also researched from the perspective of antioxidant effect and cholinergic system modulation. Cognitive deficits were induced in C57BL/6J mice treated with scopolamine (1mg/kg, i.p.) and were assessed by Morris water maze (MWM) and step-through passive avoidance tests. Then their hippocampus were removed for biochemical assays (acetylcholinesterase (AChE), superoxide dismutase (SOD), glutathione peroxidase (GPX) and malondialdehyde (MDA)). In vitro, the cytotoxicity were induced by 4h exposure to H 2 O 2 in PC12 and evaluated by cell viability (MTT), lactate dehydrogenase (LDH) level, nitric oxide (NO) release, reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP). The results demonstrated that LO (100mg/kg) could improve the cognitive performance of scopolamine induced mice in behavioral tests. Meanwhile, it significantly decreased the AChE activity, MDA level, and increase SOD and GPX activities of the model. Moreover, LO (12μg/mL) protected PC12 cells from H 2 O 2 induced cytotoxicity by reducing LDH, NO release, intracellular ROS accumulation and MMP loss. It was suggested that LO could show neuroprotective effect in AD model in vivo (scopolamine-treated mice) and in vitro (H 2 O 2 induced PC12 cells) via modulating oxidative stress and AChE activity. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Enhancing effects of nicotine and impairing effects of scopolamine on distinct aspects of performance in computerized attention and working memory tasks in marmoset monkeys.

    PubMed

    Spinelli, Simona; Ballard, Theresa; Feldon, Joram; Higgins, Guy A; Pryce, Christopher R

    2006-08-01

    With the CAmbridge Neuropsychological Test Automated Battery (CANTAB), computerized neuropsychological tasks can be presented on a touch-sensitive computer screen, and this system has been used to assess cognitive processes in neuropsychiatric patients, healthy volunteers, and species of non-human primate, primarily the rhesus macaque and common marmoset. Recently, we reported that the common marmoset, a small-bodied primate, can be trained to a high and stable level of performance on the CANTAB five-choice serial reaction time (5-CSRT) task of attention, and a novel task of working memory, the concurrent delayed match-to-position (CDMP) task. Here, in order to increase understanding of the specific cognitive demands of these tasks and the importance of acetylcholine to their performance, the effects of systemic delivery of the muscarinic receptor antagonist scopolamine and the nicotinic receptor agonist nicotine were studied. In the 5-CSRT task, nicotine enhanced performance in terms of increased sustained attention, whilst scopolamine led to increased omissions despite a high level of orientation to the correct stimulus location. In the CDMP task, scopolamine impaired performance at two stages of the task that differ moderately in terms of memory retention load but both of which are likely to require working memory, including interference-coping, abilities. Nicotine tended to enhance performance at the long-delay stage specifically but only against a background of relatively low baseline performance. These data are consistent with a dissociation of the roles of muscarinic and nicotinic cholinergic receptors in the regulation of both sustained attention and working memory in primates.

  20. Aerosolized scopolamine protects against microinstillation inhalation toxicity to sarin in guinea pigs.

    PubMed

    Che, Magnus M; Chanda, Soma; Song, Jian; Doctor, Bhupendra P; Rezk, Peter E; Sabnekar, Praveena; Perkins, Michael W; Sciuto, Alfred M; Nambiar, Madhusoodana P

    2011-07-01

    Sarin is a volatile nerve agent that has been used in the Tokyo subway attack. Inhalation is predicted to be the major route of exposure if sarin is used in war or terrorism. Currently available treatments are limited for effective postexposure protection against sarin under mass casualty scenario. Nasal drug delivery is a potential treatment option for mass casualty under field conditions. We evaluated the efficacy of endotracheal administration of muscarinic antagonist scopolamine, a secretion blocker which effectively crosses the blood-brain barrier for protection against sarin inhalation toxicity. Age and weight matched male Hartley guinea pigs were exposed to 677.4 mg/m³ or 846.5 mg/ m³ (1.2 × LCt₅₀) sarin by microinstillation inhalation exposure for 4 min. One minute later, the animals exposed to 846.5 mg/ m³ sarin were treated with endotracheally aerosolized scopolamine (0.25 mg/kg) and allowed to recover for 24 h for efficacy evaluation. The results showed that treatment with scopolamine increased the survival rate from 20% to 100% observed in untreated sarin-exposed animals. Behavioral symptoms of nerve agent toxicity including, convulsions and muscular tremors were reduced in sarin-exposed animals treated with scopolamine. Sarin-induced body weight loss, decreased blood O₂ saturation and pulse rate were returned to basal levels in scopolamine-treated animals. Increased bronchoalveolar lavage (BAL) cell death due to sarin exposure was returned to normal levels after treatment with scopolamine. Taken together, these data indicate that postexposure treatment with aerosolized scopolamine prevents respiratory toxicity and protects against lethal inhalation exposure to sarin in guinea pigs.

  1. Vitamin C prevents memory impairment induced by waterpipe smoke: role of oxidative stress.

    PubMed

    Alqudah, Mohammad A Y; Alzoubi, Karem H; Ma'abrih, Ghida'a M; Khabour, Omar F

    2018-05-22

    Waterpipe tobacco smoking (WTS) was previously shown to be associated with memory deficits, which were related to oxidative stress. Vitamin C (VitC) has established antioxidant properties against memory deficits associated with several diseases and conditions. In this study, the potential protective effect of VitC on memory impairment induced by WTS exposure was evaluated in a rat model. VitC was administered to animals via oral gavage (100 mg/kg/day, 6 days a week for 4 weeks). At the same period, animals were exposed to WTS for one hour/day, 6 days a week for 4 weeks. Using radial arm water maze (RAWM), behavioral tests were conducted to evaluate the spatial learning and memory. In addition, hippocampal levels of oxidative stress biomarkers were analyzed. WTS exposure impaired both short- and long-term memory (p < .05). On the other hand, VitC protected memory impairment induced by WTS (p < .05). Moreover, VitC prevented the reduction in hippocampus ratio of GSH/GSSG (p < .05) induced by WTS. Furthermore, WTS reduced hippocampus activity of glutathione peroxidase (GPx) and catalase, which were also normalized by VitC treatment. However, thiobarbituric acid reactive substance (TBARS) levels were not changed by WTS and/or by VitC (p > .05). In conclusion, WTS resulted in inducing memory impairment, which was prevented by VitC administration. This could be related to preserving hippocampus antioxidant mechanisms by VitC during WTS exposure.

  2. Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model.

    PubMed

    Viau, Sabrina; Maire, Marie-Annick; Pasquis, Bruno; Grégoire, Stéphane; Fourgeux, Cynthia; Acar, Niyazi; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne

    2008-06-01

    The aim of this study was to set up an animal model of dry eye showing disturbance in several components of the lacrimal functional unit, and to describe the time course of the appearance of clinical signs and inflammatory markers. Dry eye was induced in 6-week-old female Lewis rats by a systemic and continuous delivery of scopolamine via osmotic pumps implanted subcutaneously. We first determined the appropriate dose of scopolamine (6, 12.5, or 25 mg/day) for 28 days. In a second set of experiments, we determined markers after 1, 2, 3, 7, 10, 17, or 28 days of a 12.5-mg/day dose. Clinical signs of corneal dryness were evaluated in vivo using fluorescein staining. MHC II expression and mucin Muc5AC production were detected on the conjunctival epithelium using immunostaining. The level of IL-1beta, IL-6, TNF-alpha, and IFN-gamma mRNA was evaluated by real-time polymerase chain reaction in conjunctiva and exorbital lacrimal gland (LG). Lipids were extracted from the exorbital LG for fatty acid analysis. Daily scopolamine doses of 12.5 mg and 25 mg applied for a 28-day period induced keratitis, a decrease in Muc5AC immunostaining density in the conjunctival epithelium, and modifications in the fatty acid composition of the exorbital LG. Animals treated with a 12.5-mg/day dose of scopolamine exhibited an increase in corneal fluorescein staining after 2, 10, and 28 days. All animals exhibited unilateral or bilateral keratitis after 17 days. In the conjunctival epithelium, a significant decrease in Muc5AC immunostaining density was observed at early and late time points, and MHC II expression tended to be increased after 1, 7, 10, and 28 days, without reaching statistical significance. The levels of TNF-alpha, IL-1beta and IL-6 mRNA were increased with scopolamine treatment in both conjunctiva and exorbital LG. Arachidonic acid and the Delta5 desaturase index were significantly increased in the exorbital LG of dry eye animals at each time point. This systemic and

  3. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  4. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Piracetam prevents memory deficit induced by postnatal propofol exposure in mice.

    PubMed

    Wang, Yuan-Lin; Li, Feng; Chen, Xin

    2016-05-15

    Postnatal propofol exposure impairs hippocampal synaptic development and memory. However, the effective agent to alleviate the impairments was not verified. In this study, piracetam, a positive allosteric modulator of AMPA receptor was administered following a seven-day propofol regime. Two months after propofol administration, hippocampal long-term potentiation (LTP) and long-term memory decreased, while intraperitoneal injection of piracetam at doses of 100mg/kg and 50mg/kg following last propofol exposure reversed the impairments of memory and LTP. Mechanically, piracetam reversed propofol exposure-induced decrease of BDNF and phosphorylation of mTor. Similar as piracetam, BDNF supplementary also ameliorated propofol-induced abnormalities of synaptic plasticity-related protein expressions, hippocampal LTP and long-term memory. These results suggest that piracetam prevents detrimental effects of propofol, likely via activating BDNF synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    PubMed

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (P<0.05), whereas L-carnitine treatment protected against this effect. Furthermore, L-carnitine normalized chronic REM-sleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Ameliorative effects of amide derivatives of 1,3,4-thiadiazoles on scopolamine induced cognitive dysfunction.

    PubMed

    Kulshreshtha, Akanksha; Piplani, Poonam

    2016-10-21

    The present study reports the effect of amide derivatives of 1,3,4-thiadizoles on scopolamine induced deficit cholinergic neurotransmission and oxidative stress serving as promising leads for the therapeutics of cognitive dysfunction. Fourteen compounds (2c-8d) have been synthesised and evaluated against behavioural alterations using step down passive avoidance protocol and morris water maze and at a dose of 0.5 mg/kg with reference to the standard, Rivastigmine. All the synthesised compounds were evaluated for their in vitro acetylcholinesterase (AChE) inhibition at five different concentrations using mice brain homogenate as the source of the enzyme. Biochemical estimation of markers of oxidative stress (lipid peroxidation, superoxide dismutase, glutathione, plasma nitrite, catalase) has also been carried out to assess the role of synthesised molecules on the oxidative damage induced by scopolamine. The compounds 5c, 6c and 8c displayed appreciable activity with an IC50 value of 3 μM, 3.033 μM and 2.743 μM, respectively towards acetylcholinesterase inhibition. These compounds also decreased scopolamine induced oxidative stress, thus serving as promising leads for the amelioration of oxidative stress induced cognitive decline. The molecular docking study performed to predict the binding mode of the compounds also suggested that these compounds bind appreciably with the amino acids present in the active site of recombinant human acetylcholinesterase (rhAChE). The results indicated that these compounds could be further traversed as inhibitors of AChE and oxidative stress for the treatment of cognitive dysfunction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Trachyspermum ammi Seeds Supplementation Helps Reverse Scopolamine, Alprazolam and Electroshock Induced Amnesia.

    PubMed

    Soni, Kapil; Parle, Milind

    2017-05-01

    The present study was designed to explore the beneficial effects of successive 10 days administration of Trachyspermum ammi seed's powder (TASP) along with diet (at the dose of 0.5%, 1.0% and 2.0% w/w) on learning and memory of mice. A total of 306 mice divided in 51 equal groups were employed in the study. Passive avoidance paradigm (PAP) and Object recognition Task (ORT) were employed as exteroceptive models. The brain acetylcholinesterase activity (AChE), serum cholesterol, brain monoaldehyde (MDA), brain reduced glutathione (GSH) and brain nitrite were estimated and Alprazolam, Scopolamine and Electroshock induced amnesia was employed to describe the actions. Treatment of TASP significantly increased step down latency of PAA and significantly increased discrimination index of ORT in groups with or without amnesia when compared to respective control groups. Furthermore, TASP administration resulted in significant fall in brain AChE activity, brain MDA level and brain nitrite level with simultaneous rise in brain GSH level, thereby decreased oxidative damage. A significant decrease in serum cholesterol was also observed. Ajowan supplementation may prove a remedy for the management of cognitive disorders owing to have pro-cholinergic, antioxidant and hypo-lipidemic activities.

  9. Prevention of experimental motion sickness by scopolamine absorbed through the skin

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Knepton, J.; Shaw, J.

    1976-01-01

    A double-blind placebo-controlled study compared the efficacy of the antimotion sickness drug scopolamine when administered by oral or transdermal routes. A secondary purpose was to extend our bioassay involving fixed-dose combinations of the homergic drugs promethazine and ephedrine. After receiving 12 apparently identical drug-placebo treatments, eight normal male students were exposed in a slow rotation room to stressful accelerations generated by their execution of 40 head movements out of the plane of the room's rotation at 1 rpm and at 1-rpm increments until either symptoms were experienced (just short of frank motion sickness) or the 27-rpm ceiling on the test was reached. Efficacy of a drug was defined in terms of the placebo-range and categorized as beneficial, inconsequential, or detrimental. The only detrimental effect was with scopolamine given orally. It is concluded that the advantages of the transdermal scopolamine, which include minimal side effects and prolonged effectiveness, deserve full exploitation.

  10. Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex.

    PubMed

    Pezze, Marie-Astrid; Marshall, Hayley J; Cassaday, Helen J

    2017-06-28

    The muscarinic acetylcholine receptor is an important modulator of medial prefrontal cortex (mPFC) functions, such as the working memory required to bridge a trace interval in associative leaning. Aversive and appetitive trace conditioning procedures were used to examine the effects of scopolamine (0.1 and 0.5 mg/kg, i.p.) in male rats. Follow-up experiments tested the effects of microinfusion of 0.15 μg of scopolamine (0.075 μg of in 0.5 μl/side) in infralimbic (IL) versus prelimbic regions of rat mPFC, in appetitive trace and locomotor activity (LMA) procedures. Systemic scopolamine was without effect in an aversive trace conditioning procedure, but impaired appetitive conditioning at a 2 s trace interval. This effect was demonstrated as reduced responding during presentations of the conditioned stimulus (CS) and during the interstimulus interval (ISI). There was no such effect on responding during food (unconditioned stimulus, US) responding or in the intertrial interval (ITI). In contrast, systemic scopolamine dose-relatedly increased LMA. Trace conditioning was similarly impaired at the 2 s trace (shown as reduced responding to the CS and during the ISI, but not during US presentations or in the ITI) after infusion in mPFC, whereas LMA was increased (after infusion in IL only). Therefore, our results point to the importance of cholinergic modulation in mPFC for trace conditioning and show that the observed effects cannot be attributed to reduced activity. SIGNIFICANCE STATEMENT Events are very often separated in time, in which case working memory is necessary to condition their association in "trace conditioning." The present study used conditioning variants motivated aversively with foot shock and appetitively with food. The drug scopolamine was used to block muscarinic acetylcholine receptors involved in working memory. The results show that reduced cholinergic transmission in medial prefrontal cortex (mPFC) impaired appetitive trace conditioning at a 2 s

  11. Scopolamine Impairs Appetitive But Not Aversive Trace Conditioning: Role of the Medial Prefrontal Cortex

    PubMed Central

    Pezze, Marie-Astrid; Marshall, Hayley J.

    2017-01-01

    The muscarinic acetylcholine receptor is an important modulator of medial prefrontal cortex (mPFC) functions, such as the working memory required to bridge a trace interval in associative leaning. Aversive and appetitive trace conditioning procedures were used to examine the effects of scopolamine (0.1 and 0.5 mg/kg, i.p.) in male rats. Follow-up experiments tested the effects of microinfusion of 0.15 μg of scopolamine (0.075 μg of in 0.5 μl/side) in infralimbic (IL) versus prelimbic regions of rat mPFC, in appetitive trace and locomotor activity (LMA) procedures. Systemic scopolamine was without effect in an aversive trace conditioning procedure, but impaired appetitive conditioning at a 2 s trace interval. This effect was demonstrated as reduced responding during presentations of the conditioned stimulus (CS) and during the interstimulus interval (ISI). There was no such effect on responding during food (unconditioned stimulus, US) responding or in the intertrial interval (ITI). In contrast, systemic scopolamine dose-relatedly increased LMA. Trace conditioning was similarly impaired at the 2 s trace (shown as reduced responding to the CS and during the ISI, but not during US presentations or in the ITI) after infusion in mPFC, whereas LMA was increased (after infusion in IL only). Therefore, our results point to the importance of cholinergic modulation in mPFC for trace conditioning and show that the observed effects cannot be attributed to reduced activity. SIGNIFICANCE STATEMENT Events are very often separated in time, in which case working memory is necessary to condition their association in “trace conditioning.” The present study used conditioning variants motivated aversively with foot shock and appetitively with food. The drug scopolamine was used to block muscarinic acetylcholine receptors involved in working memory. The results show that reduced cholinergic transmission in medial prefrontal cortex (mPFC) impaired appetitive trace conditioning at a

  12. Validation and scopolamine-reversal of latent learning in the water maze utilizing a revised direct platform placement procedure.

    PubMed

    Malin, David H; Schaar, Krystal L; Izygon, Jonathan J; Nghiem, Duyen M; Jabitta, Sikirat Y; Henceroth, Mallori M; Chang, Yu-Hsuan; Daggett, Jenny M; Ward, Christopher P

    2015-08-01

    The Morris water maze is routinely used to explore neurobiological mechanisms of working memory. Humans can often acquire working memory relevant to performing a task by mere sensory observation, without having to actually perform the task followed by reinforcement. This can be modeled in the water maze through direct placement of a rat on the escape platform so that it can observe the location, and then assessing the subject's performance in swimming back to the platform. However, direct placement procedures have hardly been studied for two decades, reflecting a controversy about whether direct placement resulted in sufficiently rapid and direct swims back to the platform. In the present study, utilizing revised training methods, a more comprehensive measure of trajectory directness, a more rigorous sham-trained control procedure and an optimal placement-test interval, rats swam almost directly back to the platform in under 4s, significantly more quickly and directly than sham-trained subjects. Muscarinic cholinergic mechanisms, which are inactivated by scopolamine, are essential to memory for standard learning paradigms in the water maze. This experiment determined whether this would also be true for latent learning. ANOVA revealed significant negative effects of scopolamine on both speed and accuracy of trajectory, as well as significant positive effects of direct placement training vs. sham-training. In a probe trial, placement-trained animals without scopolamine spent significantly more time and path length in the target quadrant than trained rats with scopolamine and sham-trained rats without scopolamine. Scopolamine impairments are likely due to effects on memory, since the same dose had little effect on performance with a visible platform. The revised direct placement model offers a means of further comparing the neural mechanisms of latent learning with those of standard instrumental learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. The muscarinic antagonists scopolamine and atropine are competitive antagonists at 5-HT3 receptors.

    PubMed

    Lochner, Martin; Thompson, Andrew J

    2016-09-01

    Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [(3)H]granisetron (Ki = 6.76 μM) and G-FL (Ki = 4.90 μM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 μM, and competed with G-FL with a Ki of 7.94 μM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 μM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Intranasal scopolamine affects the semicircular canals centrally and peripherally.

    PubMed

    Weerts, Aurélie P; Putcha, Lakshmi; Hoag, Stephen W; Hallgren, Emma; Van Ombergen, Angelique; Van de Heyning, Paul H; Wuyts, Floris L

    2015-08-01

    Space motion sickness (SMS), a condition caused by an intravestibular conflict, remains an important obstacle that astronauts encounter during the first days in space. Promethazine is currently the standard treatment of SMS, but scopolamine is used by some astronauts to prevent SMS. However, the oral and transdermal routes of administration of scopolamine are known to have substantial drawbacks. Intranasal administration of scopolamine ensures a fast absorption and rapid onset of therapeutic effect, which might prove to be suitable for use during spaceflights. The aim of this study was to evaluate the effects of intranasally administered scopolamine (0.4 mg) on the semicircular canals (SCCs) and the otoliths. This double-blind, placebo-controlled study was performed on 19 healthy male subjects. The function of the horizontal SCC and the vestibulo-ocular reflex, as well as the saccular function and utricular function, were evaluated. Scopolamine turned out to affect mainly the SCCs centrally and peripherally but also the utricles to a lesser extent. Centrally, the most probable site of action is the medial vestibular nucleus, where the highest density of muscarinic receptors has been demonstrated and afferent fibers from the SCCs and utricles synapse. Furthermore, our results suggest the presence of muscarinic receptors in the peripheral vestibular system on which scopolamine has a suppressive effect. Given the depressant actions on the SCCs, it is suggested that the pharmacodynamic effect of scopolamine may be attributed to the obliteration of intravestibular conflict that arises during (S)MS. Copyright © 2015 the American Physiological Society.

  15. Memory Reactivation Enables Long-Term Prevention of Interference.

    PubMed

    Herszage, Jasmine; Censor, Nitzan

    2017-05-22

    The ability of the human brain to successively learn or perform two competing tasks constitutes a major challenge in daily function. Indeed, exposing the brain to two different competing memories within a short temporal offset can induce interference, resulting in deteriorated performance in at least one of the learned memories [1-4]. Although previous studies have investigated online interference and its effects on performance [5-13], whether the human brain can enable long-term prevention of future interference is unknown. To address this question, we utilized the memory reactivation-reconsolidation framework [2, 12] stemming from studies at the synaptic level [14-17], according to which reactivation of a memory enables its update. In a set of experiments, using the motor sequence learning task [18] we report that a unique pairing of reactivating the original memory (right hand) in synchrony with novel memory trials (left hand) prevented future interference between the two memories. Strikingly, these effects were long-term and observed a month following reactivation. Further experiments showed that preventing future interference was not due to practice per se, but rather specifically depended on a limited time window induced by reactivation of the original memory. These results suggest a mechanism according to which memory reactivation enables long-term prevention of interference, possibly by creating an updated memory trace integrating original and novel memories during the reconsolidation time window. The opportunity to induce a long-term preventive effect on memories may enable the utilization of strategies optimizing normal human learning, as well as recovery following neurological insults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The memory-ameliorating effects of Artemisia princeps var. orientalis against cholinergic dysfunction in mice.

    PubMed

    Liu, Xiaotong; Kim, Dong Hyun; Kim, Jong Min; Park, Se Jin; Cai, Mudan; Jang, Dae Sik; Ryu, Jong Hoon

    2012-01-01

    Artemisia princeps var. orientalis (Compositae) is widely distributed in China, Japan and Korea and is known to have anti-inflammatory and anti-oxidative activities. The ethyl acetate fraction of ethanolic extract of A. princeps var. orientalis (AEA) was found to inhibit acetylcholinesterase activity in a dose-dependent manner in vitro (IC(50) value: 541.4 ± 67.5 μg/ml). Therefore, we investigated the effects of AEA on scopolamine-induced learning and memory impairment using the passive avoidance, the Y-maze, and the Morris water maze tasks in mice. AEA (100 or 200 mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairments in the passive avoidance and Y-maze tasks (p < 0.05). In the Morris water maze task, AEA (200 mg/kg, p.o.) significantly shortened escape latencies in training trials and increased both swimming time spent in the target zone and probe crossing numbers during the probe trial as compared with scopolamine-treated mice (p < 0.05). Additionally, the ameliorating effect of AEA on scopolamine-induced memory impairment was antagonized by a subeffective dose of MK-801. These results suggest that AEA could be an effective treatment against cholinergic dysfunction and its effect is mediated by the enhancement of the cholinergic neurotransmitter system via NMDA receptor signaling or acetylcholinesterase inhibition.

  17. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    PubMed

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (P<0.001) and significantly decreased the acetylcholinesterase activity (P<0.001) at all doses compared to SCP treated mice. Also, PHL significantly elevated the activity of antioxidant enzymes viz. superoxide dismutase, catalase, reduced glutathione levels (P<0.001) and decreased malonaldehyde levels (P<0.001) in comparison with the SCP group. Immunohistochemistry revealed that PHL treatment dose dependently improved BDNF levels in the hippocampus which were found to be significantly depleted (P<0.001) in the SCP group. Additionally, PHL (10mg/kg) significantly enhanced the spatial memory formation (P<0.05) and neurotrophicity (P<0.001) compared to DON (1mg/kg). The aforementioned research

  18. (-)Epigallocatechin-3-gallate prevents the reserpine-induced impairment of short-term social memory in rats.

    PubMed

    Tseng, Hsiang-Chien; Wang, Mao-Hsien; Soung, Hung-Sheng; Chang, Yi; Chang, Kuo-Chi

    2015-12-01

    Reserpine has been confirmed to induce cognitive dysfunction and increase brain neural oxidative stress. Green tea catechins, particularly (-)epigallocatechin-3-gallate (EGCG), have strong antioxidative properties and can protect against numerous oxidative damages. In this study, we examined the possible protective effects of EGCG on reserpine-induced impairment of short-term memory in rats. Reserpine (1 mg/kg, intraperitoneal)-induced memory impairment was assessed using the social recognition task method; locomotor activity and the olfactory discrimination ability were not altered as measured by an open-field test and an olfactory discrimination test, respectively. EGCG treatment (100 and 300 mg/kg, intraperitoneal, for 7 days, starting 6 days before the reserpine injection) could improve the worsened social memory of reserpine-treated rats. Also, EGCG treatment reduced reserpine-induced lipid peroxidation and enhanced the antioxidation power in the hippocampi of reserpine-treated rats. These results suggest a protective effect of EGCG in treating reserpine-induced impairment of memory, most probably through its powerful antioxidative activities. Accordingly, EGCG may hold a clinically relevant value in preventing reserpine-induced cognitive dysfunction.

  19. Treatment of motion sickness in parabolic flight with buccal scopolamine

    NASA Technical Reports Server (NTRS)

    Norfleet, William T.; Degioanni, Joseph J.; Reschke, Millard F.; Bungo, Michael W.; Kutyna, Frank A.; Homick, Jerry L.; Calkins, D. S.

    1992-01-01

    Treatment of acute motion sickness induced by parabolic flight with a preparation of scopolamine placed in the buccal pouch was investigated. Twenty-one subjects flew aboard a KC-135 aircraft operated by NASA which performed parabolic maneuvers resulting in periods of 0-g, 1-g, and 1.8-g. Each subject flew once with a tablet containing scopolamine and once with a placebo in a random order, crossover design. Signs and symptoms of motion sickness were systematically recorded during each parabola by an investigator who was blind to the content of the tablet. Compared with flights using placebo, flights with buccal scopolamine resulted in significantly lower scores for nausea (31-35 percent reduction) and vomiting (50 percent reduction in number of parabolas with vomiting). Side effects of the drug during flight were negligible. It is concluded that buccal scopolamine is more effective than a placebo in treating ongoing motion sickness.

  20. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    PubMed

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Double dissociation of pharmacologically induced deficits in visual recognition and visual discrimination learning

    PubMed Central

    Turchi, Janita; Buffalari, Deanne; Mishkin, Mortimer

    2008-01-01

    Monkeys trained in either one-trial recognition at 8- to 10-min delays or multi-trial discrimination habits with 24-h intertrial intervals received systemic cholinergic and dopaminergic antagonists, scopolamine and haloperidol, respectively, in separate sessions. Recognition memory was impaired markedly by scopolamine but not at all by haloperidol, whereas habit formation was impaired markedly by haloperidol but only minimally by scopolamine. These differential drug effects point to differences in synaptic modification induced by the two neuromodulators that parallel the contrasting properties of the two types of learning, namely, fast acquisition but weak retention of memories versus slow acquisition but durable retention of habits. PMID:18685146

  2. Double dissociation of pharmacologically induced deficits in visual recognition and visual discrimination learning.

    PubMed

    Turchi, Janita; Buffalari, Deanne; Mishkin, Mortimer

    2008-08-01

    Monkeys trained in either one-trial recognition at 8- to 10-min delays or multi-trial discrimination habits with 24-h intertrial intervals received systemic cholinergic and dopaminergic antagonists, scopolamine and haloperidol, respectively, in separate sessions. Recognition memory was impaired markedly by scopolamine but not at all by haloperidol, whereas habit formation was impaired markedly by haloperidol but only minimally by scopolamine. These differential drug effects point to differences in synaptic modification induced by the two neuromodulators that parallel the contrasting properties of the two types of learning, namely, fast acquisition but weak retention of memories versus slow acquisition but durable retention of habits.

  3. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  4. Arginine vasopressin prevents against Abeta(25-35)-induced impairment of spatial learning and memory in rats.

    PubMed

    Pan, Yan-Fang; Chen, Xiao-Rong; Wu, Mei-Na; Ma, Cun-Gen; Qi, Jin-Shun

    2010-04-01

    Amyloid beta protein (Abeta) is thought to be responsible for loss of memory in Alzheimer's disease (AD). A significant decrease in [Arg(8)]-vasopressin (AVP) has been found in the AD brain and in plasma; however, it is unclear whether this decrease in AVP is involved in Abeta-induced impairment of spatial cognition and whether AVP can protect against Abeta-induced deficits in cognitive function. The present study examined the effects of intracerebroventricular (i.c.v.) injection of AVP on spatial learning and memory in the Morris water maze test and investigated the potential protective function of AVP against Abeta-induced impairment in spatial cognition. The results were as follows: (1) i.c.v. injection of 25 nmol Abeta(25-35) resulted in a significant decline in spatial learning and memory; (2) 1 nmol and 10 nmol, but not 0.1 nmol, AVP injections markedly improved learning and memory; (3) pretreatment with 1 nmol or 10 nmol, but not 0.1 nmol, AVP effectively reversed the impairment in spatial learning and memory induced by Abeta(25-35); and (4) none of the drugs, including Abeta(25-35) and different concentrations of AVP, affected the vision or swimming speed of the rats. These results indicate that Abeta(25-35) could significantly impair spatial learning and memory in rats, and pretreatment with AVP centrally can enhance spatial learning and effectively prevent the behavioral impairment induced by neurotoxic Abeta(25-35). Thus, the present study provides further insight into the mechanisms by which Abeta impairs spatial learning and memory, suggesting that up-regulation of central AVP might be beneficial in the prevention and treatment of AD. Copyright 2010 Elsevier Inc. All rights reserved.

  5. Anti-inflammatory and protective effects of MT-031, a novel multitarget MAO-A and AChE/BuChE inhibitor in scopolamine mouse model and inflammatory cells.

    PubMed

    Liu, Wei; Rabinovich, Alon; Nash, Yuval; Frenkel, Dan; Wang, Yuqiang; Youdim, Moussa B H; Weinreb, Orly

    2017-02-01

    Previous study demonstrated that the novel multitarget compound, MT-031 preserved in one molecule entity the beneficial properties of its parent drugs, rasagiline and rivastigmine, and exerted high dual potencies of monoamine oxidase-A (MAO-A) and cholinesterase (ChE) inhibition in acute-treated mice and neuroprotective effects against H 2 O 2 -induced neurotoxicity in human neuroblastoma SH-SY5Y cells. The present study aimed to further investigate the anti-inflammatory and protective effects of MT-031 in scopolamine mouse model and inflammatory cell cultures. Our findings demonstrated that once daily chronic administration of MT-031 (5-10 mg/kg) to mice antagonized scopolamine-induced memory and cognitive impairments, displayed brain selective MAO-A and AChE/BuChE inhibition, increased the levels of striatal dopamine (DA), serotonin (5-HT) and norepinephrine and prevented the metabolism of DA and 5-HT. In addition, MT-031 upregulated mRNA expression levels of Bcl-2, the neurotrophic factors, (e.g., brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and nerve growth factor (NGF)), the antioxidant enzyme catalase and the anti-inflammatory cytokine, neurotrophic tyrosine kinase receptor (Ntrk), and down-regulated the mRNA expression levels of the pro-inflammatory interleukin (IL)-6 in scopolamine-induced mice. In accordance, MT-031 was shown to reduce reactive oxygen species accumulation, increase the levels of anti-inflammatory cytokines, IL-10 and decrease the levels of the pro-inflammatory cytokines, IL-1β, IL-6, IL-17 and interferon-gamma (IFN-γ) in activated mouse splenocytes and microglial cells. Taken together, these pharmacological properties of MT-031 can be of clinical importance for developing this novel multitarget compound as a novel drug candidate for the treatment of Alzheimer's disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Inhibition of MDMA-induced increase in cortisol does not prevent acute impairment of verbal memory

    PubMed Central

    Kuypers, KPC; Torre, R; Farre, M; Pujadas, M; Ramaekers, JG

    2013-01-01

    Background Ecstasy use is commonly linked with memory deficits in abstinent ecstasy users. Similar impairments are being found during ecstasy intoxication after single doses of ± 3,4 metylenedioxymethamphetamine (MDMA). The concordance of memory impairments during intoxication and abstinence suggests a similar neuropharmacological mechanism underlying acute and chronic memory impairments. The mechanism underlying this impairment is to date not known. We hypothesized that cortisol might play an important role in this mechanism as cortisol, implicated in the regulation of memory performance, can be brought out of balance by stressors like MDMA. Methods In the present study, we aimed to block the MDMA-induced acute memory defect by giving participants a cortisol synthesis inhibitor (metyrapone) together with a single dose of MDMA. Seventeen polydrug MDMA users entered this placebo-controlled within subject study with four treatment conditions. The treatments consisted of MDMA (75 mg) and metyrapone (750 mg), alone and in combination, and double placebo. Pre-treatment with metyrapone or Placebo occurred 1 h prior to MDMA or Placebo administration. Memory performance was tested at peak drug concentrations by means of several memory tests. Cortisol levels were determined in blood and oral fluid; this served as a control measure to see whether manipulations were effective. Results Main findings indicated that whereas treatment with metyrapone blocked the expected MDMA-induced increase in cortisol levels in blood, it did not prevent the MDMA-induced memory deficit from happening. Conclusion We therefore conclude that MDMA-induced increments in cortisol concentrations are not related to MDMA-induced memory impairments. PMID:22946487

  7. Antidepressant Efficacy of the Antimuscarinic Drug Scopolamine

    PubMed Central

    Furey, Maura L.; Drevets, Wayne C.

    2010-01-01

    Context The need for improved therapeutic agents that more quickly and effectively treat depression is critical. In a pilot study we evaluated the role of the cholinergic system in cognitive symptoms of depression and unexpectedly observed rapid reductions in depression severity following the administration of the antimuscarinic drug scopolamine hydrobromide (4 μg/kg intravenously) compared with placebo (P=.002). Subsequently a clinical trial was designed to assess more specifically the antidepressant efficacy of scopolamine. Objective To evaluate scopolamine as a potential antidepressant agent. Design Two studies were conducted: a double-blind, placebo-controlled, dose-finding study followed by a double-blind, placebo-controlled, crossover clinical trial. Setting The National Institute of Mental Health. Patients Currently depressed outpatients aged 18 to 50 years meeting DSM-IV criteria for recurrent major depressive disorder or bipolar disorder. Of 39 eligible patients, 19 were randomized and 18 completed the trial. Interventions Multiple sessions including intravenous infusions of placebo or scopolamine hydrobromide (4 μg/kg). Individuals were randomized to a placebo/ scopolamine or scopolamine/placebo sequence (series of 3 placebo sessions and series of 3 scopolamine sessions). Sessions occurred 3 to 5 days apart. Main Outcome Measures Psychiatric evaluations using the Montgomery-Asberg Depression Rating Scale and the Hamilton Anxiety Rating Scale were performed to assess antidepressant and antianxiety responses to scopolamine. Results The placebo/scopolamine group showed no significant change during placebo infusion vs baseline; reductions in depression and anxiety rating scale scores (P<.001 for both) were observed after the administration of scopolamine compared with placebo. The scopolamine/placebo group also showed reductions in depression and anxiety rating scale scores (P<.001 for both) after the administration of scopolamine, relative to baseline, and

  8. Scopolamine effects on functional brain connectivity: a pharmacological model of Alzheimer's disease.

    PubMed

    Bajo, R; Pusil, S; López, M E; Canuet, L; Pereda, E; Osipova, D; Maestú, F; Pekkonen, E

    2015-07-01

    Scopolamine administration may be considered as a psychopharmacological model of Alzheimer's disease (AD). Here, we studied a group of healthy elderly under scopolamine to test whether it elicits similar changes in brain connectivity as those observed in AD, thereby verifying a possible model of AD impairment. We did it by testing healthy elderly subjects in two experimental conditions: glycopyrrolate (placebo) and scopolamine administration. We then analyzed magnetoencephalographic (MEG) data corresponding to both conditions in resting-state with eyes closed. This analysis was performed in source space by combining a nonlinear frequency band-specific measure of functional connectivity (phase locking value, PLV) with network analysis methods. Under scopolamine, functional connectivity between several brain areas was significantly reduced as compared to placebo, in most frequency bands analyzed. Besides, regarding the two complex network indices studied (clustering and shortest path length), clustering significantly decreased in the alpha band while shortest path length significantly increased also in alpha band both after scopolamine administration. Overall our findings indicate that both PLV and graph analysis are suitable tools to measure brain connectivity changes induced by scopolamine, which causes alterations in brain connectivity apparently similar to those reported in AD.

  9. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    PubMed

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  10. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    PubMed

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Brahmi rasayana Improves Learning and Memory in Mice

    PubMed Central

    Joshi, Hanumanthachar; Parle, Milind

    2006-01-01

    Cure of cognitive disorders such as amnesia, attention deficit and Alzheimer's disease is still a nightmare in the field of medicine. Nootropic agents such as piracetam, aniracetam and choline esterase inhibitors like Donepezil® are being used to improve memory, mood and behavior, but the resulting side effects associated with these agents have made their use limited. The present study was undertaken to assess the potential of Brahmi rasayana (BR) as a memory enhancer. BR (100 and 200 mg kg−1 p.o.) was administered for eight successive days to both young and aged mice. Elevated plus maze and passive-avoidance paradigm were employed to evaluate learning and memory parameters. Scopolamine (0.4 mg kg−1 i.p.) was used to induce amnesia in mice. The effect of BR on whole brain AChE activity was also assessed. Piracetam (200 mg kg−1 i.p.) was used as a standard nootropic agent. BR significantly improved learning and memory in young mice and reversed the amnesia induced by both scopolamine (0.4 mg kg−1 i.p.) and natural aging. BR significantly decreased whole brain acetyl cholinesterase activity. BR might prove to be a useful memory restorative agent in the treatment of dementia seen in elderly. PMID:16550227

  12. Epidemic of poisoning caused by scopolamine disguised as Rohypnol tablets.

    PubMed

    Vallersnes, Odd Martin; Lund, Cathrine; Duns, Anne Kathrine; Netland, Hallstein; Rasmussen, Inge-André

    2009-11-01

    An epidemic of scopolamine poisonings occurred in Oslo in 2008 among users of illicit drugs, caused by fake Rohypnol pills. The clinical features, diagnostic process, and handling of the epidemic are presented. Suspected cases of scopolamine poisoning were extracted by reviewing registration forms from an ongoing prospective clinical study of acute poisonings in Oslo. Medical records of extracted contacts were examined and cases included according to specified clinical criteria. Forty-four cases of probable scopolamine poisoning were registered. Main clinical features were mydriasis, visual hallucinations, plucking behavior, agitation, and coma. No clinical diagnosis of anticholinergic syndrome was made prior to forensic analysis of the tablets, the most frequent diagnosis up to this point being unspecified drug-induced psychosis. Later in the epidemic, scopolamine poisoning became the dominating diagnosis. Ten patients were admitted to psychiatric hospitals, the rest recovered in medical units, or left health care against medical advice. Scopolamine poisonings are rare, but the resulting anticholinergic syndrome is well described. The syndrome was not recognized until the forensic analysis result strikingly changed how the patients were diagnosed and handled. A unique aspect of this epidemic was the intoxicating agent being scopolamine-containing tablets looking like Rohypnol, sold and used under the impression of being the latter. Recognizing the anticholinergic syndrome is important to provide proper treatment. Forensic analysis was the key to correct diagnosis in this outbreak, demonstrating its importance in verifying an epidemic of poisoning by fake drugs.

  13. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Fernandez, Francesca; Dinh, Chi H L; Huang, Xu-Feng

    2015-06-03

    High fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to learning and memory impairments. Previous studies of oleanolic acid derivatives have found that these compounds can cross the blood-brain barrier to prevent neuronal cell death. We examined the hypothesis that the oleanolic acid derivative, bardoxolone methyl (BM) would prevent diet-induced cognitive deficits in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC) (5% of energy as fat), a HF (40% of energy as fat), or a HF diet supplemented with 10mg/kg/day BM orally for 21weeks. Recognition memory was assessed by performing a novel object recognition test on the treated mice. Downstream brain-derived neurotrophic factor (BDNF) signalling molecules were examined in the prefrontal cortex (PFC) and hippocampus of mice via Western blotting and N-methyl-d-aspartate (NMDA) receptor binding. BM treatment prevented HF diet-induced impairment in recognition memory (p<0.001). In HF diet fed mice, BM administration attenuated alterations in the NMDA receptor binding density in the PFC (p<0.05), however, no changes were seen in the hippocampus (p>0.05). In the PFC and hippocampus of the HF diet fed mice, BM administration improved downstream BDNF signalling as indicated by increased protein levels of BDNF, phosphorylated tropomyosin related kinase B (pTrkB) and phosphorylated protein kinase B (pAkt), and increased phosphorylated AMP-activated protein kinase (pAMPK) (p<0.05). BM administration also prevented the HF diet-induced increase in the protein levels of inflammatory molecules, phosphorylated c-Jun N-terminal kinase (pJNK) in the PFC, and protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus. In summary, these findings suggest that BM prevents HF diet-induced impairments in recognition memory by improving downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the PFC and hippocampus. Copyright © 2015 Elsevier Inc

  14. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning.

    PubMed

    Weed, Michael R; Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G; King, Dalton; Macor, John E; Zaczek, Robert; Olson, Richard; Bristow, Linda J

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer's disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03-1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task.

  15. Antidepressant Effects of the Muscarinic Cholinergic Receptor Antagonist Scopolamine: A Review

    PubMed Central

    Drevets, Wayne C.; Zarate, Carlos A.; Furey, Maura L.

    2014-01-01

    The muscarinic cholinergic receptor system has been implicated in the pathophysiology of depression, with physiological evidence indicating this system is overactive or hyperresponsive in depression and with genetic evidence showing that variation in genes coding for receptors within this system are associated with higher risk for depression. In studies aimed at assessing whether a reduction in muscarinic cholinergic receptor function would improve depressive symptoms, the muscarinic receptor antagonist scopolamine manifested antidepressant effects that were robust and rapid relative to conventional pharmacotherapies. Here, we review the data from a series of randomized, double-blind, placebo-controlled studies involving subjects with unipolar or bipolar depression treated with parenteral doses of scopolamine. The onset and duration of the antidepressant response are considered in light of scopolamine's pharmacokinetic properties and an emerging literature that characterizes scopolamine's effects on neurobiological systems beyond the cholinergic system that appear relevant to the neurobiology of mood disorders. Scopolamine infused at 4.0 μg/kg intravenously produced robust antidepressant effects versus placebo, which were evident within 3 days after the initial infusion. Placebo-adjusted remission rates were 56% and 45% for the initial and subsequent replication studies, respectively. While effective in male and female subjects, the change in depression ratings was greater in female subjects. Clinical improvement persisted more than 2 weeks following the final infusion. The timing and persistence of the antidepressant response to scopolamine suggest a mechanism beyond that of direct muscarinic cholinergic antagonism. These temporal relationships suggest that scopolamine-induced changes in gene expression and synaptic plasticity may confer the therapeutic mechanism. PMID:23200525

  16. Intranasal scopolamine preparation and method

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi (Inventor); Cintron, Nitza M. (Inventor)

    1991-01-01

    A new method and preparation for intranasal delivery of scopolamine provides a safe and effective treatment for motion sickness and other conditions requiring anticholinergic therapy. The preparation can be in the form of aqueous nasal drops, mist spray, gel or oinment. Intranasal delivery of scopolamine has similar bioavailability and effect of intravenous delivery and is far superior to oral dosage. Scopolamine is prepared in a buffered saline solution at the desired dosage rate for effective anticholinergic response.

  17. Further Evaluation of Mechanisms Associated with the Antidepressantlike Signature of Scopolamine in Mice.

    PubMed

    Martin, Anna E; Schober, Douglas A; Nikolayev, Alexander; Tolstikov, Vladimir V; Anderson, Wesley H; Higgs, Richard E; Kuo, Ming-Shang; Laksmanan, Anastasia; Catlow, John T; Li, Xia; Felder, Christian C; Witkin, Jeffrey M

    2017-01-01

    Conventional antidepressants lack efficacy for many patients (treatmentresistant depression or TRD) and generally take weeks to produce full therapeutic response in others. Emerging data has identified certain drugs such as ketamine as rapidly-acting antidepressants for major depressive disorder and TRD. Scopolamine, a drug used to treat motion sickness and nausea, has also been demonstrated to function as a rapidly-acting antidepressant. The mechanisms associated with efficacy in TRD patients and rapid onset of action have been suggested to involve a-Amino-3-hydroxy- 5-methyl-4-isoxazolepropionic acid (AMPA) receptor and mammalian target of rapamycin (mTOR) signaling. Since the work on these mechanisms with scopolamine has been limited, the present set of experiments was designed to further explore these mechanisms of action. Male, NIH Swiss mice demonstrated a robust and immediate antidepressant signature with ketamine or scopolamine when studied under the forced-swim test. The AMPA receptor antagonist NBQX prevented this antidepressant-like effect of scopolamine and ketamine. An orally-bioavilable mTOR inhibitor (AZD8055) also attenuated the antidepressant- like effects of scopolamine and ketamine. Scopolamine was also shown to augment the antidepressant- like effect of the selective serotonin reuptake inhibitor citalopram. When given in combination, scopolamine and ketamine acted synergistically to produce antidepressant-like effects. Although drug interaction data suggested that additional mechanisms might be at play, metabolomic analysis of frontal cortex and plasma from muscarinic M1+/+ and M1 -/- mice given scopolamine or vehicle did not reveal any hints as to the nature of these additional mechanisms of action. Overall, the data substantiate and extend the idea that AMPA and mTOR signaling pathways are necessary for the antidepressant-like effects of scopolamine and ketamine, mechanisms that appear to be of general significance for TRD therapeutic agents

  18. Amnesia of Inhibitory Avoidance by Scopolamine Is Overcome by Previous Openfield Exposure

    ERIC Educational Resources Information Center

    Colettis, Natalia C.; Snitcofsky, Marina; Kornisiuk, Edgar E.; Gonzalez, Emilio N.; Quillfeldt, Jorge A.; Jerusalinsky, Diana A.

    2014-01-01

    The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two…

  19. 6,7,4'-Trihydroxyisoflavone, a major metabolite of daidzein, improves learning and memory via the cholinergic system and the p-CREB/BDNF signaling pathway in mice.

    PubMed

    Ko, Yong-Hyun; Kim, Sun Yeou; Lee, Seok-Yong; Jang, Choon-Gon

    2018-05-05

    Daidzein is one of the major isoflavfones found in soy food and plants. Following ingestion, daidzein is readily converted to hydroxylated metabolites in the human body. 6,7,4'-Trihydroxyisoflavone (THIF), one of the metabolites of daidzein, has several pharmacological activities, including anti-cancer and anti-obesity properties. However, no reports exist on the effects of 6,7,4'-THIF for cognitive function in mice. The present study aimed to investigate the effects of 6,7,4'-THIF against scopolamine-induced learning and memory impairments using the Y-maze and passive avoidance test. A single administration of 6,7,4'-THIF significantly improved scopolamine-induced cognitive dysfunction in these in vivo tests. Moreover, treatment with 6,7,4'-THIF alone enhanced learning and memory performance in the same behavioral tests. Molecular studies showed that 6,7,4'-THIF significantly inhibited acetylcholinesterase and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus of scopolamine-induced mice. In addition, immunohistochemistry and Western blot results revealed that 6,7,4'-THIF significantly increased brain-derived neurotrophic factor (BDNF) and phosphor cAMP response element binding (CREB) in the hippocampus of mice. Taken together, these findings suggest that 6,7,4'-THIF improves cognitive dysfunction induced by scopolamine and enhances learning and memory by activation of the cholinergic system and the p-CREB/BDNF signaling pathway in mice. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Quantitative autoradiographic analysis of muscarinic receptor subtypes and their role in representational memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messer, W.S.

    1986-01-01

    Autoradiographic techniques were used to examine the distribution of muscarinic receptors in rat brain slices. Agonist and selective antagonist binding were examined by measuring the ability for unlabeled ligands to inhibit (/sup 3/H)-1-QNB labeling of muscarinic receptors. The distribution of high affinity pirenzepine binding sites (M/sub 1/ subtype) was distinct from the distribution of high affinity carbamylcholine sites, which corresponded to the M/sub 2/ subtype. In a separate assay, the binding profile for pirenzepine was shown to differ from the profile for scopolamine, a classical muscarinic antagonist. Muscarinic antagonists, when injected into the Hippocampus, impaired performance of a representational memorymore » task. Pirenzepine, the M/sub 1/ selective antagonist, produced representational memory deficits. Scopolamine, a less selective muscarinic antagonist, caused increases in running times in some animals which prevented a definitive interpretation of the nature of the impairment. Pirenzepine displayed a higher affinity for the hippocampus and was more effective in producing a selective impairment of representational memory than scopolamine. The data indicated that cholinergic activity in the hippocampus was necessary for representation memory function.« less

  1. Nicotinic alpha 7 receptor agonists EVP-6124 and BMS-933043, attenuate scopolamine-induced deficits in visuo-spatial paired associates learning

    PubMed Central

    Polino, Joseph; Signor, Laura; Bookbinder, Mark; Keavy, Deborah; Benitex, Yulia; Morgan, Daniel G.; King, Dalton; Macor, John E.; Zaczek, Robert; Olson, Richard; Bristow, Linda J.

    2017-01-01

    Agonists at the nicotinic acetylcholine alpha 7 receptor (nAChR α7) subtype have the potential to treat cognitive deficits in patients with Alzheimer’s disease (AD) or schizophrenia. Visuo-spatial paired associates learning (vsPAL) is a task that has been shown to reliably predict conversion from mild cognitive impairment to AD in humans and can also be performed by nonhuman primates. Reversal of scopolamine-induced impairment of vsPAL performance may represent a translational approach for the development of nAChR α7 agonists. The present study investigated the effect of treatment with the acetylcholinesterase inhibitor, donepezil, or three nAChR α7 agonists, BMS-933043, EVP-6124 and RG3487, on vsPAL performance in scopolamine-treated cynomolgus monkeys. Scopolamine administration impaired vsPAL performance accuracy in a dose- and difficulty- dependent manner. The impairment of eventual accuracy, a measure of visuo-spatial learning during the task, was significantly ameliorated by treatment with donepezil (0.3 mg/kg, i.m.), EVP-6124 (0.01 mg/kg, i.m.) or BMS-933043 (0.03, 0.1 and 0.3 mg/kg, i.m.). Both nAChR α7 agonists showed inverted-U shaped dose-effect relationships with EVP-6124 effective at a single dose only whereas BMS-933043 was effective across at least a 10 fold dose/exposure range. RG3487 was not efficacious in this paradigm at the dose range examined (0.03–1 mg/kg, i.m.). These results are the first demonstration that the nAChR α7 agonists, EVP-6124 and BMS-933043, can ameliorate scopolamine-induced cognitive deficits in nonhuman primates performing the vsPAL task. PMID:29261656

  2. Extract from Fructus cannabis activating calcineurin improved learning and memory in mice with chemical drug-induced dysmnesia.

    PubMed

    Luo, Jing; Yin, Jiang-Hua; Wu, He-Zhen; Wei, Qun

    2003-11-01

    To investigate the effects of extract from Fructus cannabis (EFC) that can activate calcineurin on learning and memory impairment induced by chemical drugs in mice. Bovine brain calcineurin and calmodulin were isolated from frozen tissues. The activity of calcineurin was assayed using p-nitrophenyl phosphate (PNPP) as the substrate. Step-down type passive avoidance test and water maze were used together to determine the effects of EFC on learning and memory dysfunction. EFC activated calcineurin activity at a concentration range of 0.01-100 g/L. The maximal value of EFC on calcineurin activity (35 %+/-5 %) appeared at a concentration of 10 g/L. The chemical drugs such as scopolamine, sodium nitrite, and 45 % ethanol, and sodium pentobarbital induced learning and memory dysfunction. EFC administration (0.2, 0.4, and 0.8 g/kg, igx7 d) prolonged the latency and decreased the number of errors in the step-down test. EFC, given for 7 d, enhanced the spatial resolution of amnesic mice in water maze test. EFC overcome amnesia of three stages of memory process at the dose of 0.2 g/kg. EFC with an activation role of calcineurin can improve the impaired learning and memory induced by chemical drugs in mice.

  3. Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice.

    PubMed

    Segu, Luis; Lecomte, Marie-José; Wolff, Mathieu; Santamaria, Julie; Hen, René; Dumuis, Aline; Berrard, Sylvie; Bockaert, Joël; Buhot, Marie-Christine; Compan, Valérie

    2010-03-04

    Patients suffering from dementia of Alzheimer's type express less serotonin 4 receptors (5-HTR(4)), but whether an absence of these receptors modifies learning and memory is unexplored. In the spatial version of the Morris water maze, we show that 5-HTR(4) knock-out (KO) and wild-type (WT) mice performed similarly for spatial learning, short- and long-term retention. Since 5-HTR(4) control mnesic abilities, we tested whether cholinergic system had circumvented the absence of 5-HTR(4). Inactivating muscarinic receptor with scopolamine, at an ineffective dose (0.8 mg/kg) to alter memory in WT mice, decreased long-term but not short-term memory of 5-HTR(4) KO mice. Other changes included decreases in the activity of choline acetyltransferase (ChAT), the required enzyme for acetylcholine synthesis, in the septum and the dorsal hippocampus in 5-HTR(4) KO under baseline conditions. Training- and scopolamine-induced increase and decrease, respectively in ChAT activity in the septum in WT mice were not detected in the 5-HTR(4) KO animals. Findings suggest that adaptive changes in cholinergic systems may circumvent the absence of 5-HTR(4) to maintain long-term memory under baseline conditions. In contrast, despite adaptive mechanisms, the absence of 5-HTR(4) aggravates scopolamine-induced memory impairments. The mechanisms whereby 5-HTR(4) mediate a tonic influence on ChAT activity and muscarinic receptors remain to be determined.

  4. Participation of muscarinic receptors in memory consolidation in passive avoidance learning.

    PubMed

    Dobryakova, Yulia V; Gurskaya, Olga; Markevich, Vladimir A

    2014-01-01

    It is well-known that the cholinergic system and the muscarinic cholinergic receptors are associated with cognitive functions. Here we examined whether a non-selective muscarinic receptor antagonist scopolamine affects learning performance and/or synaptic plasticity during the memory consolidation period. Adult male Wistar rats (250-300 g) were injected with scopolamine (2 mg/kg) or saline immediately after training in a "passive avoidance" task. Memory retention test was conducted 24 h after training. The changes in the latency of the first entry into a dark compartment of a test chamber was chosen as a criterion of learning. The efficacy of synaptic transmission was estimated by the changes in the basal level of focal potentials (fEPSP amplitude and slope ratio) before training (baseline), 90 min after the training (consolidation period), and 24 hour after the training (retention period). We found that foot-shock presentation by itself had no effect on fEPSP within the first 90 min after training, but in 24 hour fEPSPs were decreased. In untrained rats administration of scopolamine had no effect on the fEPSP amplitude within the first 90 min after the injection, but in 24 h we observed an increase in the fEPSP amplitude. In trained animals, scopolamine decreased the fEPSP amplitude in the hippocampal CA1 area during first 1.5 h after the injection. However, the drug had no effect on the memory retention in the passive avoidance task. Taken together our data suggest that scopolamine modifies the synaptic placticity of the hippocampal network but does not induce significant changes in the retention of the passive avoidance skill.

  5. Silver nano particles ameliorate learning and spatial memory of male Wistar rats by prevention of amyloid fibril-induced neurotoxicity.

    PubMed

    Ramshini, H; Moghaddasi, A-S; Aldaghi, L-S; Mollania, N; Ebrahim-Habibi, A

    2017-12-08

    Alzheimer's disease (AD) is a chronic degenerative disease characterized by the presence of amyloid plaques and neurofibrillary tangles (NFTs), which results into memory and learning impairments. In the present study, we showed that the aggregates formed by a protein that has no link with Alzheimer's disease, namely the hen egg white lysozyme (HEWL), were cytotoxic and decreased spatial learning and memory in rats. The effect of Ag-nano particles (Ag-NPs) was investigated on disruption of amyloid aggregation and preservation of cognitive behavior of rats. Twenty-four male Wistar rats were divided into 4 groups including a control group, and injected with either scopolamine, lysozyme or aggregates pre-incubated with Ag-NPs. Rats' behavior was monitored using Morris water maze (MWM) twenty days after injections. HEWL aggregation in the presence and absence of the Ag-NPs was assayed by Thioflavin T binding, atomic force microscopy and cell-based cytotoxicity assay. Ag-NPs were capable to directly disrupt HEWL oligomerization and the resulting aggregates were non-toxic. We also showed that rats of the Ag-NPs group found MWM test platform in less time and with less distance traveled, in comparison with lysozyme group. Ag-NPs also increased the percentage of time elapsed and the distance swum in the target quadrant in the rat model of AD, in probe test. These observations suggest that Ag-NPs improved spatial learning and memory by inhibiting amyloid fibril-induced neurotoxicity. Furthermore, we suggest using model proteins as a valid tool to investigate the pathogenesis of Alzheimer's disease.

  6. Effect of Scopolamine on Mice Motor Activity, Lick Behavior and Reversal Learning in the IntelliCage.

    PubMed

    Pelsőczi, Péter; Lévay, György

    2017-12-01

    Automated homecage monitoring systems are now widely recognized and used tools in cognitive neuroscience. However, few of these studies cover pharmacological interventions. Scopolamine, an anticholinergic memory disrupting agent is frequently used to study learning behavior. We studied the impact of scopolamine treatment in a relevant dose-range on activity, drinking behavior and reversal learning of C57BL/DJ mice in a homecage-like, social environment, using the IntelliCage. Naïve mice were first habituated to the IntelliCage, where they learned to nosepoke in any of the four corners in order to gain access to the water reward. Visits, nosepokes, lick numbers and durations were recorded. Mice were then trained to distinguish between a rewarded correct corner and punished, incorrect corners. Later, in the reversal learning phase, the assigned correct corner was rotated clockwise every 24 h. Upon s.c. administration of scopolamine general activity represented by visit and nosepoke numbers increased, but their durations were shorter. Surprisingly, general activity and lick behavior were drastically altered. Scopolamine also significantly reduced the ability to perform a reversal learning task. We not only found significant decline in reversal learning due to scopolamine treatment, but studied the method specific underlying behaviors: the general activity and lick behavior as well.

  7. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    PubMed

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Pharmacokinetic–pharmacodynamic relationships of central nervous system effects of scopolamine in healthy subjects

    PubMed Central

    Liem-Moolenaar, Marieke; de Boer, Peter; Timmers, Maarten; Schoemaker, Rik C; van Hasselt, J G Coen; Schmidt, Stephan; van Gerven, Joop M A

    2011-01-01

    AIM(S) Although scopolamine is a frequently used memory impairment model, the relationships between exposure and corresponding central nervous system (CNS) effects are mostly unknown. The aim of our study was to characterize these using pharmacokinetic–pharmacodynamic (PK–PD) modelling. METHODS In two double-blind, placebo-controlled, four-way crossover studies, 0.5-mg scopolamine was administered i.v. to 90 healthy male subjects. PK and PD/safety measures were monitored pre-dose and up to 8.5 h after administration. PK–PD relationships were modelled using non-linear mixed-effect modelling. RESULTS Most PD responses following scopolamine administration in 85 subjects differed significantly from placebo. As PD measures lagged behind the plasma PK profile, PK–PD relationships were modelled using an effect compartment and arbitrarily categorized according to their equilibration half-lives (t1/2keo; hysteresis measure). t1/2keo for heart rate was 17 min, saccadic eye movements and adaptive tracking 1–1.5 h, body sway, smooth pursuit, visual analogue scales alertness and psychedelic 2.5–3.5 h, pupil size, finger tapping and visual analogue scales feeling high more than 8 h. CONCLUSIONS Scopolamine affected different CNS functions in a concentration-dependent manner, which based on their distinct PK–PD characteristics seemed to reflect multiple distinct functional pathways of the cholinergic system. All PD effects showed considerable albeit variable delays compared with plasma concentrations. The t1/2keo of the central effects was longer than of the peripheral effects on heart rate, which at least partly reflects the long CNS retention of scopolamine, but possibly also the triggering of independent secondary mechanisms. PK–PD analysis can optimize scopolamine administration regimens for future research and give insight into the physiology and pharmacology of human cholinergic systems. PMID:21306419

  9. Preventive effect of theanine intake on stress-induced impairments of hippocamapal long-term potentiation and recognition memory.

    PubMed

    Tamano, Haruna; Fukura, Kotaro; Suzuki, Miki; Sakamoto, Kazuhiro; Yokogoshi, Hidehiko; Takeda, Atsushi

    2013-06-01

    Theanine, γ-glutamylethylamide, is one of the major amino acid components in green tea. On the basis of the preventive effect of theanine intake after birth on mild stress-induced attenuation of hippocamapal CA1 long-term potentiation (LTP), the present study evaluated the effect of theanine intake after weaning on stress-induced impairments of LTP and recognition memory. Young rats were fed water containing 0.3% theanine for 3 weeks after weaning and subjected to water immersion stress for 30min, which was more severe than tail suspension stress for 30s used previously. Serum corticosterone levels were lower in theanine-administered rats than in the control rats even after exposure to stress. CA1 LTP induced by a 100-Hz tetanus for 1s was inhibited in the presence of 2-amino-5-phosphonovalerate (APV), an N-methyl-d-aspartate (NMDA) receptor antagonist, in hippocampal slices from the control rats and was attenuated by water immersion stress. In contrast, CA1 LTP was not significantly inhibited in the presence of APV in hippocampal slices from theanine-administered rats and was not attenuated by the stress. Furthermore, object recognition memory was impaired in the control rats, but not in theanine-administered rats. The present study indicates the preventive effect of theanine intake after weaning on stress-induced impairments of hippocampal LTP and recognition memory. It is likely that the modification of corticosterone secretion after theanine intake is involved in the preventive effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.

    PubMed

    Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia

    2013-11-01

    The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5

  11. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa

    PubMed Central

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-01-01

    Background Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Methods Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Results Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. Conclusions The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis. PMID:27904421

  12. Cannabis-induced Moto-Cognitive Dysfunction in Wistar Rats: Ameliorative Efficacy of Nigella Sativa.

    PubMed

    Imam, Aminu; Ajao, Moyosore Saliu; Amin, Abdulbasit; Abdulmajeed, Wahab Imam; Ibrahim, Abdulmumin; Olajide, Olayemi Joseph; Ajibola, Musa Iyiola; Alli-Oluwafuyi, Abdulmusawir; Balogun, Wasiu Gbolahan

    2016-09-01

    Cannabis is a widely used illicit drug with various threats of personality syndrome, and Nigella sativa has been widely implicated as having therapeutic efficacy in many neurological diseases. The present study investigates the ameliorative efficacy of Nigella sativa oil (NSO) on cannabis-induced moto-cognitive defects. Scopolamine (1 mg/kg i.p.) was given to induce dementia as a standard base line for cannabis (20 mg/kg)-induced cognitive impairment, followed by an oral administration of NSO (1 ml/kg) for 14 consecutive days. The Morris water maze (MWM) paradigm was used to assess the memory index, the elevated plus maze was used for anxiety-like behaviour, and the open field test was used for locomotor activities; thereafter, the rats were sacrificed and their brains were removed for histopathologic studies. Cannabis-like Scopolamine caused memory impairment, delayed latency in the MWM, and anxiety-like behaviour, coupled with alterations in the cerebello-hippocampal neurons. The post-treatment of rats with NSO mitigated cannabis-induced cognitive dysfunction as with scopolamine and impaired anxiety-like behaviour by increasing open arm entry, line crossing, and histological changes. The observed ameliorative effects of NSO make it a promising agent against moto-cognitive dysfunction and cerebelo-hippocampal alterations induced by cannabis.

  13. Comparative Studies on Behavioral, Cognitive and Biomolecular Profiling of ICR, C57BL/6 and Its Sub-Strains Suitable for Scopolamine-Induced Amnesic Models

    PubMed Central

    Karthivashan, Govindarajan; Park, Shin-Young; Kim, Joon-Soo; Cho, Duk-Yeon

    2017-01-01

    Cognitive impairment and behavioral disparities are the distinctive baseline features to investigate in most animal models of neurodegenerative disease. However, neuronal complications are multifactorial and demand a suitable animal model to investigate their underlying basal mechanisms. By contrast, the numerous existing neurodegenerative studies have utilized various animal strains, leading to factual disparity. Choosing an optimal mouse strain for preliminary assessment of neuronal complications is therefore imperative. In this study, we systematically compared the behavioral, cognitive, cholinergic, and inflammatory impairments of outbred ICR and inbred C57BL/6 mice strains subject to scopolamine-induced amnesia. We then extended this study to the sub-strains C57BL/6N and C57BL/6J, where in addition to the above-mentioned parameters, their endogenous antioxidant levels and cAMP response-element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) protein expression were also evaluated. Compared with the ICR strain, the scopolamine-inflicted C57BL/6 strains exhibited a substantial reduction of spontaneous alternation and an approximately two-fold increase in inflammatory protein expression, compared to the control group. Among the sub-strains, scopolamine-treated C57BL/6N strains exhibited declined step-through latency, elevated acetylcholinesterase (AChE) activity and inflammatory protein expression, associated with reduced endogenous antioxidant levels and p-CREB/BDNF expression, compared to the control and tacrine-treated groups. This indicates that the C57BL/6N strains exhibit significantly enhanced scopolamine-induced neuronal impairment compared to the other evaluated strains. PMID:28792471

  14. Comparative Studies on Behavioral, Cognitive and Biomolecular Profiling of ICR, C57BL/6 and Its Sub-Strains Suitable for Scopolamine-Induced Amnesic Models.

    PubMed

    Karthivashan, Govindarajan; Park, Shin-Young; Kim, Joon-Soo; Cho, Duk-Yeon; Ganesan, Palanivel; Choi, Dong-Kug

    2017-08-09

    Cognitive impairment and behavioral disparities are the distinctive baseline features to investigate in most animal models of neurodegenerative disease. However, neuronal complications are multifactorial and demand a suitable animal model to investigate their underlying basal mechanisms. By contrast, the numerous existing neurodegenerative studies have utilized various animal strains, leading to factual disparity. Choosing an optimal mouse strain for preliminary assessment of neuronal complications is therefore imperative. In this study, we systematically compared the behavioral, cognitive, cholinergic, and inflammatory impairments of outbred ICR and inbred C57BL/6 mice strains subject to scopolamine-induced amnesia. We then extended this study to the sub-strains C57BL/6N and C57BL/6J, where in addition to the above-mentioned parameters, their endogenous antioxidant levels and cAMP response-element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) protein expression were also evaluated. Compared with the ICR strain, the scopolamine-inflicted C57BL/6 strains exhibited a substantial reduction of spontaneous alternation and an approximately two-fold increase in inflammatory protein expression, compared to the control group. Among the sub-strains, scopolamine-treated C57BL/6N strains exhibited declined step-through latency, elevated acetylcholinesterase (AChE) activity and inflammatory protein expression, associated with reduced endogenous antioxidant levels and p-CREB/BDNF expression, compared to the control and tacrine-treated groups. This indicates that the C57BL/6N strains exhibit significantly enhanced scopolamine-induced neuronal impairment compared to the other evaluated strains.

  15. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  16. MPTP-induced changes in hippocampal synaptic plasticity and memory are prevented by memantine through the BDNF-TrkB pathway

    PubMed Central

    Zhu, Guoqi; Li, Junyao; He, Ling; Wang, Xuncui; Hong, Xiaoqi

    2015-01-01

    Background and Purpose Mild cognitive deficit in early Parkinson's disease (PD) has been widely studied. Here we have examined the effects of memantine in preventing memory deficit in experimental PD models and elucidated some of the underlying mechanisms. Experimental Approaches I.p. injection of 1-methyl-4- phenyl-1,2,3,6-tetrahydro pyridine (MPTP) in C57BL/6 mice was used to produce models of PD. We used behavioural tasks to test memory. In vitro, we used slices of hippocampus, with electrophysiological, Western blotting, real time PCR, elisa and immunochemical techniques. Key Results Following MPTP injection, long-term memory was impaired and these changes were prevented by pre-treatment with memantine. In hippocampal slices from MPTP treated mice, long-term potentiation (LTP) –induced by θ burst stimulation (10 bursts, 4 pulses) was decreased, while long-term depression (LTD) induced by low-frequency stimulation (1 Hz, 900 pulses) was enhanced, compared with control values. A single dose of memantine (i.p., 10 mg·kg−1) reversed the decreased LTP and the increased LTD in this PD model. Activity-dependent changes in tyrosine kinase receptor B (TrkB), ERK and brain-derived neurotrophic factor (BDNF) expression were decreased in slices from mice after MPTP treatment. These effects were reversed by pretreatment with memantine. Incubation of slices in vitro with 1-methyl-4-phenylpyridinium (MPP+) decreased depolarization-induced expression of BDNF. This effect was prevented by pretreatment of slices with memantine or with calpain inhibitor III, suggesting the involvement of an overactivated calcium signalling pathway. Conclusions and Implications Memantine should be useful in preventing loss of memory and hippocampal synaptic plasticity in PD models. PMID:25560396

  17. Cholinergic manipulations bidirectionally regulate object memory destabilization

    PubMed Central

    Stiver, Mikaela L.; Jacklin, Derek L.; Mitchnick, Krista A.; Vicic, Nevena; Carlin, Justine; O'Hara, Matthew

    2015-01-01

    Consolidated memories can become destabilized and open to modification upon retrieval. Destabilization is most reliably prompted when novel information is present during memory reactivation. We hypothesized that the neurotransmitter acetylcholine (ACh) plays an important role in novelty-induced memory destabilization because of its established involvement in new learning. Accordingly, we investigated the effects of cholinergic manipulations in rats using an object recognition paradigm that requires reactivation novelty to destabilize object memories. The muscarinic receptor antagonist scopolamine, systemically or infused directly into the perirhinal cortex, blocked this novelty-induced memory destabilization. Conversely, systemic oxotremorine or carbachol, muscarinic receptor agonists, administered systemically or intraperirhinally, respectively, mimicked the destabilizing effect of novel information during reactivation. These bidirectional effects suggest a crucial influence of ACh on memory destabilization and the updating functions of reconsolidation. This is a hitherto unappreciated mnemonic role for ACh with implications for its potential involvement in cognitive flexibility and the dynamic process of long-term memory storage. PMID:25776038

  18. The effect of para-chlorophenylalanine and scopolamine on passive avoidance in chicks.

    PubMed

    Mattingly, B A; Zolman, J F

    1981-05-01

    Four-day-old Vantress x Arbor Acre chicks were treated for key-peck passive avoidance (PA) learning following intraperitoneal injections of parachlorophenylalanine (PCPA) and/or scopolamine. In Experiment 1, chicks were pre-treated with either three or five injections of PCPA (150 mg/kg) or saline across th first three posthatch days and then tested for PA learning on the fourth posthatch day. In Experiment 2, chicks were first pre-treated with three injections of PCPA (150 mg/kg) or saline, and then injected with either scopolamine (0.5 mg/kg) or saline 20 min prior to PA testing on the fourth posthatch day. Major findings were: (a) Chicks pre-treated with PCPA did not significantly differ from saline control chicks in either the acquisition or maintenance of response suppression during PA testing; (b) chicks injected with scopolamine were significantly disrupted in PA learning as compared to saline control chicks; and (c) PCPA pre-treatment did not significantly affect the scopolamine-induced disruption of PA learning. These findings, therefore, suggest that cholinergic, but not serotonergic, mechanisms are involved in PA learning of the young chick.

  19. Cholinergic dependence of taste memory formation: evidence of two distinct processes.

    PubMed

    Gutiérrez, Ranier; Rodriguez-Ortiz, Carlos J; De La Cruz, Vanesa; Núñez-Jaramillo, Luis; Bermudez-Rattoni, Federico

    2003-11-01

    Learning the aversive or positive consequences associated with novel taste solutions has a strong significance for an animal's survival. A lack of recognition of a taste's consequences could prevent ingestion of potential edibles or encounter death. We used conditioned taste aversion (CTA) and attenuation of neophobia (AN) to study aversive and safe taste memory formation. To determine if muscarinic receptors in the insular cortex participate differentially in both tasks, we infused the muscarinic antagonists scopolamine at distinct times before or after the presentation of a strong concentration of saccharin, followed by either an i.p. injection of a malaise-inducing agent or no injection. Our results showed that blockade of muscarinic receptors before taste presentation disrupts both learning tasks. However, the same treatment after the taste prevents AN but not CTA. These results clearly demonstrate that cortical cholinergic activity participates in the acquisition of both safe and aversive memory formation, and that cortical muscarinic receptors seem to be necessary for safe but not for aversive taste memory consolidation. These results suggest that the taste memory trace is processed in the insular cortex simultaneously by at least two independent mechanisms, and that their interaction would determine the degree of aversion or preference learned to a novel taste.

  20. Original nootropic drug noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade.

    PubMed

    Radionova, K S; Belnik, A P; Ostrovskaya, R U

    2008-07-01

    Antiamnesic activity of Noopept was studied on the original three-way model of conditioned passive avoidance response, which allows studying spatial component of memory. Cholinoceptor antagonists of both types (scopolamine and mecamylamine) decreased entry latency and reduced the probability for selection of the safe compartment. Noopept abolished the antiamnesic effect of cholinoceptor antagonists and improved spatial preference.

  1. 5-HT6 receptor agonists and antagonists enhance learning and memory in a conditioned emotion response paradigm by modulation of cholinergic and glutamatergic mechanisms

    PubMed Central

    Woods, S; Clarke, NN; Layfield, R; Fone, KCF

    2012-01-01

    BACKGROUND AND PURPOSE 5-HT6 receptors are abundant in the hippocampus, nucleus accumbens and striatum, supporting their role in learning and memory. Selective 5-HT6 receptor antagonists produce pro-cognitive effects in several learning and memory paradigms while 5-HT6 receptor agonists have been found to enhance and impair memory. EXPERIMENTAL APPROACH The conditioned emotion response (CER) paradigm was validated in rats. Then we examined the effect of the 5-HT6 receptor antagonist, EMD 386088 (10 mg·kg−1, i.p.), and agonists, E-6801 (2.5 mg·kg−1, i.p.) and EMD 386088 (5 mg·kg−1, i.p.) on CER-induced behaviour either alone or after induction of memory impairment by the muscarinic receptor antagonist, scopolamine (0.3 mg·kg−1, i.p) or the NMDA receptor antagonist, MK-801 (0.1 mg·kg−1, i.p). KEY RESULTS Pairing unavoidable foot shocks with a light and tone cue during CER training induced a robust freezing response, providing a quantitative index of contextual memory when the rat was returned to the shock chamber 24 h later. Pretreatment (−20 min pre-training) with scopolamine or MK-801 reduced contextual freezing 24 h after CER training, showing production of memory impairment. Immediate post-training administration of 5-HT6 receptor antagonist, SB-270146, and agonists, EMD 386088 and E-6801, had little effect on CER freezing when given alone, but all significantly reversed scopolamine- and MK-801-induced reduction in freezing. CONCLUSION AND IMPLICATIONS Both the 5-HT6 receptor agonists and antagonist reversed cholinergic- and glutamatergic-induced deficits in associative learning. These findings support the therapeutic potential of 5-HT6 receptor compounds in the treatment of cognitive dysfunction, such as seen in Alzheimer's disease and schizophrenia. PMID:22568655

  2. Detection of Scopolamine Hydrobromide via Surface-enhanced Raman Spectroscopy.

    PubMed

    Bao, Lin; Sha, Xuan-Yu; Zhao, Hang; Han, Si-Qin-Gao-Wa; Hasi, Wu-Li-Ji

    2017-01-01

    Surface-enhanced Raman spectroscopy (SERS) was used to measure scopolamine hydrobromide. First, the Raman characteristic peaks of scopolamine hydrobromide were assigned, and the characteristic peaks were determined. The optimal aggregation agent was potassium iodide based on a comparative experimental study. Finally, the SERS spectrum of scopolamine hydrobromide was detected in aqueous solution, and the semi-quantitative analysis and the recovery rate were determined via a linear fitting. The detection limit of scopolamine hydrobromide in aqueous solution was 0.5 μg/mL. From 0 - 10 μg/mL, the curve of the intensity of the Raman characteristic peak of scopolamine hydrobromide at 1002 cm -1 is y = 4017.76 + 642.47x. The correlation coefficient was R 2 = 0.983, the recovery was 98.5 - 109.7%, and the relative standard deviation (RSD) was about 5.5%. This method is fast, accurate, non-destructive and simple for the detection of scopolamine hydrobromide.

  3. Long-term administration of scopolamine interferes with nerve cell proliferation, differentiation and migration in adult mouse hippocampal dentate gyrus, but it does not induce cell death

    PubMed Central

    Yan, Bing Chun; Park, Joon Ha; Chen, Bai Hui; Cho, Jeong-Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Lee, Yun Lyul; Kang, Il-Jun; Won, Moo-Ho

    2014-01-01

    Long-term administration of scopolamine, a muscarinic receptor antagonist, can inhibit the survival of newly generated cells, but its effect on the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus remain poorly understood. In this study, we used immunohistochemistry and western blot methods to weekly detect the biological behaviors of nerve cells in the hippocampal dentate gyrus of adult mice that received intraperitoneal administration of scopolamine for 4 weeks. Expression of neuronal nuclear antigen (NeuN; a neuronal marker) and Fluoro-Jade B (a marker for the localization of neuronal degeneration) was also detected. After scopolamine treatment, mouse hippocampal neurons did not die, and Ki-67 (a marker for proliferating cells)-immunoreactive cells were reduced in number and reached the lowest level at 4 weeks. Doublecortin (DCX; a marker for newly generated neurons)-immunoreactive cells were gradually shortened in length and reduced in number with time. After scopolamine treatment for 4 weeks, nearly all of the 5-bromo-2′-deoxyuridine (BrdU)-labeled newly generated cells were located in the subgranular zone of the dentate gyrus, but they did not migrate into the granule cell layer. Few mature BrdU/NeuN double-labeled cells were seen in the subgranular zone of the dentate gyrus. These findings suggest that long-term administration of scopolamine interferes with the proliferation, differentiation and migration of nerve cells in the adult mouse hippocampal dentate gyrus, but it does not induce cell death. PMID:25422633

  4. Efficacy of a 2-month dietary supplementation with polyunsaturated fatty acids in dry eye induced by scopolamine in a rat model.

    PubMed

    Viau, Sabrina; Maire, Marie-Annick; Pasquis, Bruno; Grégoire, Stéphane; Acar, Niyazi; Bron, Alain M; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne

    2009-08-01

    This study was conducted to evaluate the efficacy of dietary n-6 and n-3 polyunsaturated fatty acids (PUFAs) in dry eye in a rat model. Female Lewis rats were fed with diets containing (1) gamma-linolenic acid (GLA), (2) eicosapentaenoic acid (EPA) + docosahexaenoic acid (DHA), or (3) GLA + EPA + DHA, for 2 months before the induction of dry eye using a continuous delivery of scopolamine and during scopolamine treatment. Two, 10 and 28 days after dry-eye induction, clinical signs of corneal dryness were evaluated in vivo using fluorescein staining. MHC II expression and mucin rMuc5AC production in the conjunctival epithelium were evaluated by immunostaining. Lipids and prostaglandins (PGs) E(1) and E(2) were analysed from the exorbital lacrimal gland (LG). Dietary PUFAs minimised the occurrence of corneal keratitis 28 days after induction of dry eye. The decrease in mucin production observed on the conjunctival epithelium was partially prevented by EPA + DHA supplementation after 2 days of scopolamine treatment, as well as by GLA and GLA + EPA + DHA diets after 10 days of treatment. The overexpression of MHC II in the conjunctival epithelium caused by dry eye induction was significantly reduced only with the GLA + EPA + DHA diet after 28 days of treatment. Dietary PUFAs were incorporated into phospholipids of the exorbital LG. Induction of dry eye was associated with a significant increase in PGE(1) and PGE(2) levels in the exorbital LG, which was inhibited by dietary EPA + DHA at 10 days (for PGE(2)) and 28 days (for PGE(1)). Dietary GLA, EPA and DHA significantly interfered with lipid homeostasis in the exorbital LG and partially prevented the course of dry eye. In particular, our results demonstrate the efficacy of the combination of n-6 and n-3 PUFAs.

  5. Left prefrontal cortex control of novel occurrences during recollection: a psychopharmacological study using scopolamine and event-related fMRI.

    PubMed

    Bozzali, M; MacPherson, S E; Dolan, R J; Shallice, T

    2006-10-15

    Recollection and familiarity represent two processes involved in episodic memory retrieval. We investigated how scopolamine (an antagonist of acetylcholine muscarinic receptors) influenced brain activity during memory retrieval, using a paradigm that separated recollection and familiarity. Eighteen healthy volunteers were recruited in a randomized, placebo-controlled, double-blind design using event-related fMRI. Participants were required to perform a verbal recognition memory task within the scanner, either under placebo or scopolamine conditions. Depending on the subcondition, participants were required to make a simple recognition decision (old/new items) or base their decision on more specific information related to prior experience (target/non-target/new items). We show a drug modulation in left prefrontal and perirhinal cortex during recollection. Such an effect was specifically driven by novelty and showed an inverse correlation with accuracy performance. Additionally, we show a direct correlation between drug-related signal change in left prefrontal and perirhinal cortices. We discuss the findings in terms of acetylcholine mediation of the familiarity/novelty signal through perirhinal cortex and the control of the relative signal strength through prefrontal cortex.

  6. Pharmaceutical Product Development: Intranasal Scopolamine (INSCOP) Metered Dose Spray

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Crady, Camille; Putcha, Lakshmi

    2012-01-01

    Motion sickness (MS) has been a problem associated with space flight, the modern military and commercial air and water transportation for many years. Clinical studies have shown that scopolamine is the most effective medication for the prevention of motion sickness (Dornhoffer et al, 2004); however, the two most common methods of administration (transdermal and oral) have performance limitations that compromise its utility. Intranasal administration offers a noninvasive treatment modality, and has been shown to counter many of the problems associated with oral and transdermal administration. With the elimination of the first pass effect by the liver, intranasal delivery achieves higher and more reliable bioavailability than an equivalent oral dose. This allows for the potential of enhanced efficacy at a reduced dose, thus minimizing the occurrence of untoward side effects. An Intranasal scopolamine (INSCOP) gel formulation was prepared and tested in four ground-based clinical trials under an active Investigational New Drug (IND) application with the Food and Drug Administration (FDA). Although there were early indicators that the intranasal gel formulation was effective, there were aspects of formulation viscosity and the delivery system that were less desirable. The INSCOP gel formulation has since been reformulated into an aqueous spray dosage form packaged in a precise, metered dose delivery system; thereby enhancing dose uniformity, increased user satisfaction and palatability, and a potentially more rapid onset of action. Recent reports of new therapeutic indications for scopolamine has prompted a wide spread interest in new scopolamine dosage forms. The novel dosage form and delivery system of INSCOP spray shows promise as an effective treatment for motion sickness targeted at the armed forces, spaceflight, and commercial sea, air, and space travel markets, as well as prospective psychotherapy for mental and emotional disorders.

  7. Scopolamine in racing horses: trace identifications associated with dietary or environmental exposure.

    PubMed

    Brewer, Kimberly; Dirikolu, Levent; Hughes, Charlie G; Tobin, Thomas

    2014-03-01

    Scopolamine (L-hyoscine) identifications, often in small-number clusters, have been reported worldwide in performance horses over the last 30 years. Scopolamine is an Association of Racing Commissioners International (ARCI) class 3, penalty class B, substance with potential to affect performance. As such, scopolamine identification(s) in race or performance horses can result in significant penalties for the connections of the horse(s). Reviewed here is the worldwide distribution of scopolamine containing plants (primarily Datura spp.), with estimates of their potential toxicity to horses through dietary and/or environmental exposure. Also reviewed are the basic pharmacology of scopolamine and its precursor, urinary concentrations following feedstuff exposure, and the probable pharmacological/forensic significance of such findings. Based on an overview of the world literature on scopolamine, the expected characteristics of inadvertent environmental exposure are also presented with a view to making clear the potential of scopolamine identifications, with or without atropine, as a direct and expected outcome of both the worldwide distribution of scopolamine-containing plants and the sensitivity of modern equine drug testing. It is of particular interest that only 2/30 reported post-event equine identifications of scopolamine have been associated with atropine, suggesting that failure to identify atropine is not a biomarker of pharmaceutical administration of scopolamine. Available quantitative information associated with scopolamine identifications is consistent with the 75 ng/mL regulatory threshold for scopolamine currently used in Louisiana racing in the USA and the 30 ng/mL reporting threshold in effect in European racing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Beneficial effect of prolyl oligopeptidase inhibition on spatial memory in young but not in old scopolamine-treated rats.

    PubMed

    Jalkanen, Aaro J; Puttonen, Katja A; Venäläinen, Jarkko I; Sinervä, Veijo; Mannila, Anne; Ruotsalainen, Sirja; Jarho, Elina M; Wallén, Erik A A; Männistö, Pekka T

    2007-02-01

    The effects of a novel prolyl oligopeptidase (POP) inhibitor KYP-2047 on spatial memory of young (3-month-old) and old (8- to 9-month-old) scopolamine-treated rats (0.4 mg/kg intraperitoneally) was investigated in the Morris water maze. In addition, the concentrations of promnesic neuropeptide substrates of POP, substance P and neurotensin in various brain areas after acute and chronic POP inhibition were measured in young rats. In addition, inositol-1,4,5-trisphosphate (IP(3)) levels were assayed in rat cortex and hippocampus after effective 2.5-day POP inhibition. KYP-2047 (1 or 5 mg/kg 30 min. before daily testing) dose-dependently improved the escape performance (i.e. latency to find the hidden platform and swimming path length) of the young but not the old rats in the water maze. POP inhibition had no consistent effect on substance P levels in cortex, hippocampus or hypothalamus, and only a modest increase in neurotensin concentration was observed in the hypothalamus after a single dose of KYP-2047. Moreover, IP(3) concentrations remained unaffected in cortex and hippocampus after POP inhibition. In conclusion, the behavioural data support the earlier findings of the promnesic action of POP inhibitors, but the mechanism of the memory-enhancing action remains unclear.

  9. Model-based exposure-response analysis to quantify age related differences in the response to scopolamine in healthy subjects.

    PubMed

    Alvarez-Jimenez, Ricardo; Groeneveld, Geert Jan; van Gerven, Joop M A; Goulooze, Sebastiaan C; Baakman, Anne Catrien; Hay, Justin L; Stevens, Jasper

    2016-10-01

    Subjects with increasing age are more sensitive to the effects of the anti-muscarinic agent scopolamine, which is used (among other indications) to induce temporary cognitive dysfunction in early phase drug studies with cognition enhancing compounds. The enhanced sensitivity has always been attributed to incipient cholinergic neuronal dysfunction, as a part of the normal aging process. The aim of the study was to correlate age-dependent pharmacodynamic neuro-physiologic effects of scopolamine after correcting for differences in individual exposure. We applied a pharmacokinetic and pharmacodynamic modelling approach to describe individual exposure and neurocognitive effects of intravenous scopolamine administration in healthy subjects. A two-compartment linear kinetics model best described the plasma concentrations of scopolamine. The estimated scopolamine population mean apparent central and peripheral volume of distribution was 2.66 ± 1.050 l and 62.10 ± 10.100 l, respectively and the clearance was 1.09 ± 0.096 l min(-1) . Age was not related to a decrease of performance in the tests following scopolamine administration in older subjects. Only the saccadic peak velocity showed a positive correlation between age and sensitivity to scopolamine. Age was, however, correlated at baseline with an estimated slower reaction time while performing the cognitive tests and to higher global δ and frontal θ frequency bands measured with the surface EEG. Most of the differences in response to scopolamine administration between young and older subjects could be explained by pharmacokinetic differences (lower clearance) and not to an enhanced sensitivity when corrected for exposure levels. © 2016 The British Pharmacological Society.

  10. Model‐based exposure‐response analysis to quantify age related differences in the response to scopolamine in healthy subjects

    PubMed Central

    Groeneveld, Geert Jan; van Gerven, Joop M. A.; Goulooze, Sebastiaan C.; Baakman, Anne Catrien; Hay, Justin L.; Stevens, Jasper

    2016-01-01

    Aim Subjects with increasing age are more sensitive to the effects of the anti‐muscarinic agent scopolamine, which is used (among other indications) to induce temporary cognitive dysfunction in early phase drug studies with cognition enhancing compounds. The enhanced sensitivity has always been attributed to incipient cholinergic neuronal dysfunction, as a part of the normal aging process. The aim of the study was to correlate age‐dependent pharmacodynamic neuro‐physiologic effects of scopolamine after correcting for differences in individual exposure. Methods We applied a pharmacokinetic and pharmacodynamic modelling approach to describe individual exposure and neurocognitive effects of intravenous scopolamine administration in healthy subjects. Results A two‐compartment linear kinetics model best described the plasma concentrations of scopolamine. The estimated scopolamine population mean apparent central and peripheral volume of distribution was 2.66 ± 1.050 l and 62.10 ± 10.100 l, respectively and the clearance was 1.09 ± 0.096 l min−1. Age was not related to a decrease of performance in the tests following scopolamine administration in older subjects. Only the saccadic peak velocity showed a positive correlation between age and sensitivity to scopolamine. Age was, however, correlated at baseline with an estimated slower reaction time while performing the cognitive tests and to higher global δ and frontal θ frequency bands measured with the surface EEG. Conclusions Most of the differences in response to scopolamine administration between young and older subjects could be explained by pharmacokinetic differences (lower clearance) and not to an enhanced sensitivity when corrected for exposure levels. PMID:27273555

  11. Dose escalation pharmacokinetics of intranasal scopolamine gel formulation.

    PubMed

    Wu, Lei; Boyd, Jason L; Daniels, Vernie; Wang, Zuwei; Chow, Diana S-L; Putcha, Lakshmi

    2015-02-01

    Astronauts experience Space Motion Sickness requiring treatment with an anti-motion sickness medication, scopolamine during space missions. Bioavailability after oral administration of scopolamine is low and variable, and absorption form transdermal patch is slow and prolonged. Intranasal administration achieves faster absorption and higher bioavailability of drugs that are subject to extrahepatic, first pass metabolism after oral dosing. We examined pharmacokinetics of 0.1, 0.2, and 0.4 mg doses of the Investigational New Drug formulation of intranasal scopolamine gel (INSCOP) in 12 healthy subjects using a randomized, double-blind cross-over study design. Subjects received one squirt of 0.1 g of gel containing either 0.1 mg or 0.2 mg/0.1 mL scopolamine or placebo in each nostril. Serial blood samples and total urine voids were collected after dosing and drug concentrations were determined using a modified LC-MS-MS method. Results indicate dose-linear pharmacokinetics of scopolamine with linear increases in Cmax and AUC within the dose range tested. Plasma drug concentrations were significantly lower in females than in males after administration of 0.4 dose. All three doses were well tolerated with no unexpected or serious adverse side effects reported. These results suggest that intranasal scopolamine gel formulation (INSCOP) offers a fast, reliable, and safe alternative for the treatment of motion sickness. © 2014, The American College of Clinical Pharmacology.

  12. Sesame indicum, a nutritional supplement, elicits antiamnesic effect via cholinergic pathway in scopolamine intoxicated mice.

    PubMed

    Chidambaram, Saravana Babu; Pandian, Anbarasi; Sekar, Sathiya; Haridass, Sumathy; Vijayan, Ranju; Thiyagarajan, Lakshmi Kantham; Ravindran, Jayasree; Balaji Raghavendran, Hanumantha Rao; Kamarul, Tunku

    2016-12-01

    Present study was undertaken to evaluate the antiamnesic effect of Sesamum indicum (S. indicum) seeds (standardized for sesamin, a lignan, content) in scopolamine, a muscarinic antagonist intoxicated mice. Male Swiss albino mice (18-22 g bw) were pretreated with methanolic extract of sesame seeds (MSSE) (100 and 200 mg/kg/day, p.o) for a period of 14 days. Scopolamine (0.3 mg/kg, i.p.) was injected on day 14, 45 ± 10 min after MSSE administration. Antiamnesic effect of MSSE was evaluated using step-down latency (SDL) on passive avoidance apparatus and transfer latency (TL) on an elevated plus maze. To unravel the mechanism of action, we examined the effects of MSSE on the genes such as acetyl cholinesterase (AChE), muscarinic receptor M1 subtype (mAChRM 1 ), and brain derived neurotrophic factor (BDNF) expression within hippocampus of experimental mice. Further, its effects on bax and bcl-2 were also evaluated. Histopathological examination of hippocampal CA 1 region was performed using cresyl violet staining. MSSE treatment produced a significant and dose dependent increase in step down latency in passive avoidance test and decrease in transfer latency in elevated plus maze in scopolamine intoxicated injected mice. MSSE down-regulated AChE and mAChRM 1 and up-regulated BDNF mRNA expression. Further, it significantly down-regulated the bax and caspase 3 and up-regulated bcl-2 expression in scopolamine intoxicated mice brains. Mice treated with MSSE showed increased neuronal counts in hippocampal CA 1 region when compared with scopolamine-vehicle treated mice. Sesame seeds have the ability to interact with cholinergic components involved in memory function/restoration and also an interesting candidate to be considered for future cognitive research. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1955-1963, 2016. © 2015 Wiley Periodicals, Inc.

  13. Muscarinic and nicotinic receptors synergistically modulate working memory and attention in humans.

    PubMed

    Ellis, Julia R; Ellis, Kathryn A; Bartholomeusz, Cali F; Harrison, Ben J; Wesnes, Keith A; Erskine, Fiona F; Vitetta, Luis; Nathan, Pradeep J

    2006-04-01

    Functional abnormalities in muscarinic and nicotinic receptors are associated with a number of disorders including Alzheimer's disease and schizophrenia. While the contribution of muscarinic receptors in modulating cognition is well established in humans, the effects of nicotinic receptors and the interactions and possible synergistic effects between muscarinic and nicotinic receptors have not been well characterized in humans. The current study examined the effects of selective and simultaneous muscarinic and nicotinic receptor antagonism on a range of cognitive processes. The study was a double-blind, placebo-controlled, repeated measures design in which 12 healthy, young volunteers completed cognitive testing under four acute treatment conditions: placebo (P); mecamylamine (15 mg) (M); scopolamine (0.4 mg i.m.) (S); mecamylamine (15 mg)/scopolamine (0.4 mg i.m.) (MS). Muscarinic receptor antagonism with scopolamine resulted in deficits in working memory, declarative memory, sustained visual attention and psychomotor speed. Nicotinic antagonism with mecamylamine had no effect on any of the cognitive processes examined. Simultaneous antagonism of both muscarinic and nicotinic receptors with mecamylamine and scopolamine impaired all cognitive processes impaired by scopolamine and produced greater deficits than either muscarinic or nicotinic blockade alone, particularly on working memory, visual attention and psychomotor speed. These findings suggest that muscarinic and nicotinic receptors may interact functionally to have synergistic effects particularly on working memory and attention and suggests that therapeutic strategies targeting both receptor systems may be useful in improving selective cognitive processes in a number of disorders.

  14. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    PubMed Central

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  15. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye.

    PubMed

    Viau, Sabrina; Pasquis, Bruno; Maire, Marie-Annick; Fourgeux, Cynthia; Grégoire, Stéphane; Acar, Niyazi; Bretillon, Lionel; Creuzot-Garcher, Catherine P; Joffre, Corinne

    2011-04-01

    Epidemiological studies suggest that dietary n-3 polyunsaturated fatty acids (PUFAs) may protect against dry eye. This study aimed to evaluate whether a dietary deficiency in n-3 PUFAs may increase the severity of the pathology in a scopolamine-induced model of dry eye in the rat. Lewis rats of three consecutive generations were bred under a balanced diet or a diet deprived of n-3 PUFAs. Dry eye was experimentally induced by continuous scopolamine delivery in female animals from the third generation of both groups. After 10 days of treatment, the clinical signs of ocular dryness were evaluated in vivo using fluorescein staining. MHC II and the rat mucin rMuc5AC were immunostained on ocular sphere cryosections. The transcript levels of the pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α and interferon (IFN)-γ were quantified in the exorbital lacrimal glands (LG) and in the conjunctiva using reverse transcription followed by polymerase chain reaction. Lipids were extracted from the exorbital LG for fatty acid analysis of the phospholipids using gas chromatography. When compared to control animals, the scopolamine treatment induced an increase in the cornea fluorescein staining score (from 0.5 ± 0.0 to 2.5 ± 1.0 arbitrary units (AU) for the balanced diet and from 1.2 ± 0.8 to 2.6 ± 0.5 AU for the n-3 PUFA-deficient diet); a decrease in rMuc5AC immunostaining in the conjunctival epithelium (-34% for the balanced diet and -23% for the n-3 PUFA-deficient diet); an increase in the LG transcript levels of TNF-α for the balanced diet and of TNF-α and IFN-γ for the deficient diet; an increase in the conjunctival transcript levels of IL-1β and IL-6 for the deficient diet; an increase in arachidonic acid (AA) and in the ∆5-desaturase index (ratio of AA to dihomo-gamma-linolenic acid) in the exorbital LG for both diets. When compared to the balanced diet, the n-3 PUFA-deficient diet induced an increase in the LG transcript levels

  16. Scopolamine provocation-based pharmacological MRI model for testing procognitive agents.

    PubMed

    Hegedűs, Nikolett; Laszy, Judit; Gyertyán, István; Kocsis, Pál; Gajári, Dávid; Dávid, Szabolcs; Deli, Levente; Pozsgay, Zsófia; Tihanyi, Károly

    2015-04-01

    There is a huge unmet need to understand and treat pathological cognitive impairment. The development of disease modifying cognitive enhancers is hindered by the lack of correct pathomechanism and suitable animal models. Most animal models to study cognition and pathology do not fulfil either the predictive validity, face validity or construct validity criteria, and also outcome measures greatly differ from those of human trials. Fortunately, some pharmacological agents such as scopolamine evoke similar effects on cognition and cerebral circulation in rodents and humans and functional MRI enables us to compare cognitive agents directly in different species. In this paper we report the validation of a scopolamine based rodent pharmacological MRI provocation model. The effects of deemed procognitive agents (donepezil, vinpocetine, piracetam, alpha 7 selective cholinergic compounds EVP-6124, PNU-120596) were compared on the blood-oxygen-level dependent responses and also linked to rodent cognitive models. These drugs revealed significant effect on scopolamine induced blood-oxygen-level dependent change except for piracetam. In the water labyrinth test only PNU-120596 did not show a significant effect. This provocational model is suitable for testing procognitive compounds. These functional MR imaging experiments can be paralleled with human studies, which may help reduce the number of false cognitive clinical trials. © The Author(s) 2015.

  17. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory.

    PubMed

    Lana, D; Di Russo, J; Mello, T; Wenk, G L; Giovannini, M G

    2017-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object-place learning and recall. Furthermore, our results are in accordance with previous reports that selective

  18. Rapamycin inhibits mTOR/p70S6K activation in CA3 region of the hippocampus of the rat and impairs long term memory

    PubMed Central

    Lana, D.; Di Russo, J.; Mello, T.; Wenk, G.L.; Giovannini, M.G.

    2016-01-01

    The present study was aimed at establishing whether the mTOR pathway and its downstream effector p70S6K in CA3 pyramidal neurons are under the modulation of the cholinergic input to trigger the formation of long term memories, similar to what we demonstrated in CA1 hippocampus. We performed in vivo behavioral experiments using the step down inhibitory avoidance test in adult Wistar rats to evaluate memory formation under different conditions. We examined the effects of rapamycin, an inhibitor of mTORC1 formation, scopolamine, a muscarinic receptor antagonist or mecamylamine, a nicotinic receptor antagonist, on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition was conducted 30 min after i.c.v. injection of rapamycin. Recall testing was performed 1h, 4h or 24h after acquisition. We found that (1) mTOR and p70S6K activation in CA3 pyramidal neurons were involved in long term memory formation; (2) rapamycin significantly inhibited mTOR and of p70S6K activation at 4h, and long term memory impairment 24h after acquisition; (3) scopolamine impaired short but not long term memory, with an early increase of mTOR/p70S6K activation at 1h followed by stabilization at longer times; (4) mecamylamine and scopolamine co-administration impaired short term memory at 1h and 4h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1h and 4h; (5) mecamylamine and scopolamine treatment did not impair long term memory formation; (6) unexpectedly, rapamycin increased mTORC2 activation in microglial cells. Our results demonstrate that in CA3 pyramidal neurons the mTOR/p70S6K pathway is under the modulation of the cholinergic system and is involved in long-term memory encoding, and are consistent with the hypothesis that the CA3 region of the hippocampus is involved in memory mechanisms based on rapid, one-trial object–place learning and recall. Furthermore, our results are in accordance with previous reports that selective

  19. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  20. BT-11 improves stress-induced memory impairments through increment of glucose utilization and total neural cell adhesion molecule levels in rat brains.

    PubMed

    Shin, Ki Young; Won, Beom Young; Heo, Chaejeong; Kim, Hee Jin; Jang, Dong-Pyo; Park, Cheol Hyoung; Kim, Seonghan; Kim, Hye-Sun; Kim, Young-Bo; Lee, Hyung Gun; Lee, Sang Hyung; Cho, Zang-Hee; Suh, Yoo-Hun

    2009-01-01

    In Oriental medicine, roots of Polygala tenuifolia Willdenow have been known to be an important herb that exhibits sedative effects in insomnia, palpitation with anxiety, restlessness, and disorientation in humans. We previously reported that BT-11, extracted from those roots, improved scopolamine-induced amnesia in rats and inhibited acetylcholinesterase activities in vitro. Therefore, we proposed that BT-11 could remedy stress-induced memory deficits in rats. In this study, the stress-induced memory impairments in rats were significantly reversed almost to the control level by BT-11 treatment. To seek an active component of BT-11 that plays an important role in antipsychotic effects, we compared BT-11 with 3,4,5-trimethoxycinnamic acid (TMCA), which is a constituent of those root extracts. However, the effects of TMCA were less or were not consistent with those of BT-11 in some of tests. In particular, BT-11 reversed the stress-induced reduction of glucose utilization by [(18)fluorodeoxyglucose]FDG-PET and the levels of neural cell adhesion molecule (NCAM) in rat brains to the control levels, whereas TMCA did not. Therefore, BT-11 improved stress-induced memory impairments through increment of glucose utilization and total NCAM levels in rat brains. In conclusion, BT-11 may be strongly effective against stress-induced amnesia in rats, through the combined effects of TMCA and other active components of BT-11. 2008 Wiley-Liss, Inc.

  1. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Tam, V.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials for an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP. METHODS: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model discrimination was performed, by minimizing the Akaike Information Criteria (AIC), maximizing the coefficient of determination (r²) and by comparison of the quality of fit plots. RESULTS: The best structural model to describe scopolamine disposition after INSCOP administration (minimal AIC =907.2) consisted of one compartment for plasma, saliva and urine respectively that were inter-connected with different rate constants. The estimated values of PK parameters were compiled in Table 1. The model fitting exercises revealed a nonlinear PK for scopolamine between plasma and saliva compartments for K21, Vmax and Km. CONCLUSION: PK model for INSCOP was developed and for the first time it satisfactorily predicted the PK of scopolamine in plasma, saliva and urine after INSCOP administration. Using non-linear PK yielded the best structural model to describe scopolamine disposition between plasma and saliva compartments, and inclusion of non-linear PK resulted in a significant improved model fitting. The model can be utilized to predict scopolamine plasma concentration using saliva and/or urine data that

  2. Scopolamine- and diazepam-induced amnesia are blocked by systemic and intraseptal administration of substance P and choline chloride.

    PubMed

    Costa, Joseane Carvalho; Costa, Kauê Machado; do Nascimento, José Luiz Martins

    2010-09-01

    Systemic (IP) and/or intraseptal (IS) administration of scopolamine (SCP) and diazepam (DZP) induce amnesia, whereas IP injection of the neuropeptide substance P (SP) and choline chloride (ChCl) produce memory facilitation. The septohippocampal cholinergic system has been pointed out as a possible site of SCP and DZP-induced amnesia as well as for the mnemonic effects induced by SP and ChCl. We performed a series of experiments in order to investigate the interactions between cholinergic and GABA/benzodiazepine (GABA/BZD) systems with the SPergic system on inhibitory avoidance retention. Male Wistar rats were trained and tested in a step-down inhibitory avoidance task (1.0 mA footshock). Animals received, pre-training, IP (1.0 mg/kg) or IS (1.0 nM/0.5 microl) injection of DZP, SCP (SCP; 1.0 mg/kg - IP or 0.5 microM/0.5 microl--IS) or vehicle (VEH). Immediately after training they received an IP or IS injections of SP 1-11 (50 microg/kg--IP or 1.0 nM/0.5 microl--IS), SP 1-7 (167 microg/kg--IP or 1.0 nM/0.5 microl--IS), ChCl (20 mg/kg--IP or 0.3 microM/0.5 microl--IS) or VEH. Rats pretreated with SCP and DZP showed amnesia. Post-trial treatments with SP 1-11, SP 1-7 or ChCl blocked the amnesic effects of SCP and DZP. These findings suggest an interaction between SPergic and cholinergic mechanisms with GABAergic systems in the modulation of inhibitory avoidance retention and that the effects of these treatments are mediated, at least in part, by interactions in the septohippocampal pathway. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Huperzine A: Behavioral and Pharmacological Evaluation in Rhesus Monkeys

    DTIC Science & Technology

    2008-06-01

    challenged with 30 ug/kg scopolamine . Doses of 1 and 10 ug/kg HUP improved choice accuracy on a previously learned delayed spatial memory task in the...elderly subjects, and doses of 10 and 100 ug/kg reversed the scopolamine -induced deficits in the younger monkeys. Unfortunately, no data regarding...interval) in the spatial memory task differentially modulated the drug effects on performance. Specifically, scopolamine impaired accuracy

  4. Ketamine impairs recognition memory consolidation and prevents learning-induced increase in hippocampal brain-derived neurotrophic factor levels.

    PubMed

    Goulart, B K; de Lima, M N M; de Farias, C B; Reolon, G K; Almeida, V R; Quevedo, J; Kapczinski, F; Schröder, N; Roesler, R

    2010-06-02

    The non-competitive N-methyl-d-aspartate (NMDA) glutamate receptor antagonist ketamine has been shown to produce cognitive deficits. However, the effects of ketamine on the consolidation phase of memory remain poorly characterized. Here we show that systemic administration of ketamine immediately after training dose-dependently impairs long-term retention of memory for a novel object recognition (NOR) task in rats. Control experiments showed that the impairing effects of ketamine could not be attributed to an influence on memory retrieval or sensorimotor effects. In addition, ketamine prevented the increase in hippocampal brain-derived neurotrophic factor (BDNF) levels induced by NOR learning. Our results show for the first time that ketamine disrupts the consolidation phase of long-term recognition memory. In addition, the findings suggest that the amnestic effects of ketamine might be at least partially mediated by an influence on BDNF signaling in the hippocampus. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Toxin-Induced Experimental Models of Learning and Memory Impairment

    PubMed Central

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson’s disease dementia and Alzheimer’s disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  6. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    PubMed

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  7. Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents.

    PubMed

    Cumin, R; Bandle, E F; Gamzu, E; Haefely, W E

    1982-01-01

    The effect of aniracetam (Ro 13-5057, 1-anisoyl-2-pyrrolidinone) was studied on various forms of experimentally impaired cognitive functions (learning and memory) in rodents and produced the following effects: (1) almost complete prevention of the incapacity to learn a discrete escape response in rats exposed to sublethal hypercapnia immediately before the acquisition session; (2) partial (rats) or complete (mice) prevention of the scopolamine-induced short-term amnesia for a passive avoidance task; (3) complete protection against amnesia for a passive avoidance task in rats submitted to electroconvulsive shock immediately after avoidance acquisition; (4) prevention of the long-term retention- or retrieval-deficit for a passive avoidance task induced in rats and mice by chloramphenicol or cycloheximide administered immediately after acquisition; (5) reversal, when administered as late as 1 h before the retention test, of the deficit in retention or retrieval of a passive avoidance task induced by cycloheximide injected 2 days previously; (6) prevention of the deficit in the retrieval of an active avoidance task induced in mice by subconvulsant electroshock or hypercapnia applied immediately before retrieval testing (24 h after acquisition). These improvements or normalizations of impaired cognitive functions were seen at oral aniracetam doses of 10-100 mg/kg. Generally, the dose-response curves were bell-shaped. The mechanisms underlying the activity of aniracetam and its 'therapeutic window' are unknown. Piracetam, another pyrrolidinone derivative was used for comparison. It was active only in six of nine tests and had about one-tenth the potency of aniracetam. The results indicate that aniracetam improves cognitive functions which are impaired by different procedure and in different phases of the learning and memory process.

  8. Efficacy comparison of scopolamine and diazepam against soman-induced debilitation in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, D.R.; Gennings, C.; Carter, W.H.

    1994-12-31

    The efficacy of diazepam (DZ) and scopolamine (SCP), in combination with atropine (ATR) + oxime therapy, against soman-induced seizure/convulsive activity and associated brain damage has been demonstrated, but the efficacy of each against the incapacitating effects of soman has not been addressed. Thus, the therapeutic efficacies of SCP (5 doses; 0-0.86 mg/kg) and DZ (5 doses; 0-5 mg/kg), when each was used in conjunction with ATR (3 doses; 0.5-8 mg/kg) + 2-PAM (25 mg/kg) therapy, were compared in groups of pyridostigmine pretreated guinea pigs exposed to 1.6, 2.0, 2.5, or 3.2 LD5Os of soman. Response surface methodology was employed tomore » describe the relationship between soman-induced incapacitation and the ATR/DZ or ATRISCP dosages. Incapacitation was measured by toxicity scores assigned by three graders to test animals at 60 min postsoman. Results show that as the dosage of SCP increased, the mean toxicity scores decreased. Also, within the indicated dose ranges used, the efficacy of SCP was not dependent on the presence of ATR. In contrast, ATR alone was found to be more effective than when combined with DZ at any dose, and indicates that DZ might be temporarily contributing to soman-induced incapacitation. These findings suggest that in guinea pigs, SCP could replace ATR or DZ, or both, as therapy against soman-induced incapacitation.« less

  9. Dexamethasone mimicks the antimotion sickness effects of amphetamine and scopolamine

    NASA Astrophysics Data System (ADS)

    Kohl, Randall Lee

    Based on preliminary suggestions that individual differences in susceptibility to stressful motion might be related to physiological differences in responses of the hypothalamic-pituitary-adrenal axis, we tested the efficacy of dexamethasone and metyrapone in subjects exposed to cross-coupled accelerative semicircular canal stimulation on a rotating chair. Subjects given 0.5 mg of dexamethasone every 6 h for 48 h could endure 80% more stressful motion ( P = 0.03) in a within-subjects design study, whereas, no improvement followed treatment with 750 mg of metryapone every 4 h for 24 h. The efficacy of dexamethasone might be explained in terms of its neurochemical actions on several neurotransmitter systems which are also modulated by such classical antimotion sickness drugs as amphetamine and scopolamine. Because dexamethasone induces adaptive changes within the central nervous system it may prove superior to scopolamine and amphetamine which possess significant side effects, are short acting, and rapidly tolerated.

  10. Dexamethasone mimicks the antimotion sickness effects of amphetamine and scopolamine

    NASA Technical Reports Server (NTRS)

    Kohl, Randall Lee

    1986-01-01

    Based on preliminary suggestions that individual differences in susceptibility to stressful motion might be related to physiological differences in responses of the hypothalamic-pituitary-adrenal axis, the efficacy of dexamethasone and metyrapone is tested in subjects exposed to cross-coupled accelerative semicircular canal stimulation on a rotating chair. Subjects given 0.5 mg of dexamethasone every 6 h for 48 h could endure 80 percent more stressful motion (P = 0.03) in a within-subjects design study, whereas, no improvement followed treatment with 750 mg of metryapone every 4 h for 24 h. The efficacy of dexamethasone might be explained in terms of its neurochemical actions on several neurotransmitter systems which are also modulated by such classical antimotion sickness drugs as amphetamine and scopolamine. Because dexamethasone induces adaptive changes within the central nervous system it may prove superior to scopolamine and amphetamine which possess significant side effects, are short acting, and rapidly tolerated.

  11. Toxicological results in a fatal and two non-fatal cases of scopolamine-facilitated robberies.

    PubMed

    Lusthof, K J; Bosman, I J; Kubat, B; Vincenten-van Maanen, M J

    2017-05-01

    The use of scopolamine as an incapacitating drug, in sexual crimes and robberies, has been known for many decades. However, blood concentrations and doses of scopolamine in those cases are largely unknown. Here we present the toxicological results of one fatal and two non-fatal cases in a series of scopolamine-facilitated robberies. In the fatal case, the concentration of scopolamine in heart blood was 0.30mg/L, about 3000 times higher than the average therapeutic level of 0.0001mg/L (for one dermal patch). In femoral blood, the concentration of scopolamine was much lower (0.0048mg/L), but still 50 times higher than therapeutic levels. The scopolamine concentration in the stomach was very high (20mg/kg) as compared to the heart blood and femoral blood, which explains the very high concentration in heart blood by postmortem leakage from the stomach. In the non-fatal case, the scopolamine concentration in serum, obtained 23h after the incident, was 0.00035mg/L. The estimated concentration of scopolamine at the time of the incident is 0.0035mg/L. In the other non-fatal case, scopolamine was detected in urine and in hair. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of pH and dose on nasal absorption of scopolamine hydrobromide in human subjects

    NASA Technical Reports Server (NTRS)

    Ahmed, S.; Sileno, A. P.; deMeireles, J. C.; Dua, R.; Pimplaskar, H. K.; Xia, W. J.; Marinaro, J.; Langenback, E.; Matos, F. J.; Putcha, L.; hide

    2000-01-01

    PURPOSE: The present study was conducted to evaluate the effects of formulation pH and dose on nasal absorption of scopolamine hydrobromide, the single most effective drug available for the prevention of nausea and vomiting induced by motion sickness. METHODS: Human subjects received scopolamine nasally at a dose of 0.2 mg/0.05 mL or 0.4 mg/0.10 mL, blood samples were collected at different time points, and plasma scopolamine concentrations were determined by LC-MS/MS. RESULTS: Following administration of a 0.2 mg dose, the average Cmax values were found to be 262+/-118, 419+/-161, and 488+/-331 pg/ mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At the 0.4 mg dose the average Cmax values were found to be 503+/-199, 933+/-449, and 1,308+/-473 pg/mL for pH 4.0, 7.0, and 9.0 formulations, respectively. At a 0.2 mg dose, the AUC values were found to be 23,208+/-6,824, 29,145+/-9,225, and 25,721+/-5,294 pg x min/mL for formulation pH 4.0, 7.0, and 9.0, respectively. At a 0.4 mg dose, the average AUC value was found to be high for pH 9.0 formulation (70,740+/-29,381 pg x min/mL) as compared to those of pH 4.0 (59,573+/-13,700 pg x min/mL) and pH 7.0 (55,298+/-17,305 pg x min/mL) formulations. Both the Cmax and AUC values were almost doubled with doubling the dose. On the other hand, the average Tmax, values decreased linearly with a decrease in formulation pH at both doses. For example, at a 0.4 mg dose, the average Tmax values were 26.7+/-5.8, 15.0+/-10.0, and 8.8+/-2.5 minutes at formulation pH 4.0, 7.0, and 9.0, respectively. CONCLUSIONS: Nasal absorption of scopolamine hydrobromide in human subjects increased substantially with increases in formulation pH and dose.

  13. Differential effects of scopolamine and amphetamine on microcomputer-based performance tests

    NASA Technical Reports Server (NTRS)

    Kennedy, Robert S.; Odenheimer, Robert C.; Baltzley, Dennis R.; Dunlap, William P.; Wood, Charles D.

    1990-01-01

    The effects of four weekly treatments with scopolamine (1.0 mg) and d-amphetamine (10 mg), separately or in combination, on human performance were investigated in 16 subjects undergoing nine performance tests from a menu of microcomputer-based tests administered after the treatment. It was d-amphetamine treatment that enhanced the results of motor and perceptual speed tests, while scopolamine had no effect on these tests. Two of the five cognitive tests showed reductions with scopolamine. The effects of scopolamine in this and other studies are considered in terms of a model which implies that the magnitude of the performance deficit depends on the performance type and the dosage level of the drug.

  14. Experimental motion sickness - Efficacy of transdermal scopolamine plus ephedrine

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Cramer, D. B.; Wood, C. D.

    1981-01-01

    A double-blind, placebo-controlled study compared the efficacy of transdermal therapeutic system-scopolamine administered alone and combined with ephedrine sulfate given orally in doses of 12.5, 25, and 50 mg. Eight normal male students were exposed to stressful accelerations in a slow-rotation room after receiving 10 apparently identical treatments comprising the four drugs and six placebos. Efficacy of the drug was defined in terms of the placebo range and categorized as beneficial, inconsequential, or detrimental. None of the effects was detrimental. Overall beneficial effects were 60% for transdermal therapeutic system-scopolamine (plus placebo) and 57% for the three transdermal therapeutic system-scopolamine plus ephedrine combinations.

  15. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats.

    PubMed

    Bortolatto, Cristiani Folharini; Guerra Souza, Ana Cristina; Wilhelm, Ethel Antunes; Nogueira, Cristina Wayne

    2013-01-01

    Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.

  16. Impact of Gender on Pharmocokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Lei, Wu.; S-L Chow, Diana

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS), which is commonly experienced by astronauts during space missions. The bioavailability and pharmacokinetics (PK) were evaluated under IND guidelines. Since information is lacking on the effect of gender on the PK of Scopolamine, we examined gender differences in PK parameters of INSCOP at three dose levels of 0.1, 0.2 and 0.4 mg. Methods: Plasma scopolamine concentrations as a function of time data were collected from twelve normal healthy human subjects (6 male/6 female) who participated in a fully randomized double blind crossover study. The PK parameters were derived using WinNonlin. Covariate analysis of PK profiles was performed using NONMEN and statistically compared using a likelihood ratio test on the difference of objective function value (OFV). Statistical significance for covariate analysis was set at P<0.05(?OFV=3.84). Results: No significant difference in PK parameters between male and female subjects was observed with 0.1 and 0.2 mg doses. However, CL and Vd were significantly different between male and female subjects at the 0.4 mg dose. Results from population covariate modeling analysis indicate that a onecompartment PK model with first-order elimination rate offers best fit for describing INSCOP concentration-time profiles. The inclusion of sex as a covariate enhanced the model fitting (?OFV=-4.1) owing to the genderdependent CL and Vd differences after the 0.4 mg dose. Conclusion: Statistical modeling of scopolamine concentration-time data suggests gender-dependent pharmacokinetics of scopolamine at the high dose level of 0.4 mg. Clearance of the parent compound was significantly faster and the volume of distribution was significantly higher in males than in females, As a result, including gender as a covariate to the pharmacokinetic model of scopolamine offers the best fit for PK modeling of the drug at dose

  17. An assessment and comparison of the effects of oxotremorine, D-cycloserine, and bicuculline on delayed matching-to-sample performance in rats.

    PubMed

    Harper, D N

    2000-05-01

    The effects of a muscarinic antagonist (scopolamine), a muscarinic agonist (oxotremorine), an agonist at the N-methyl-D-aspartate receptor site (D-cycloserine), and a GABAa antagonist (bicuculline) on working memory were compared using rats performing a delayed matching-to-sample task. When administered on their own, oxotremorine, D-cycloserine, and bicuculline had no effect on performance in the current task. When administered concurrently with scopolamine, oxotremorine (at 1 dose) and bicuculline (at 2 doses) improved accuracy (in terms of percentage correct) by ameliorating the scopolamine-induced increase in response bias. None of the drugs, however, were successful in ameliorating the scopolamine-induced impairment in bias-free recognition performance per se (as measured by Log d). Therefore, none of the drugs examined were able to fully ameliorate all aspects of the memory impairment caused by scopolamine.

  18. Transdermal Scopolamine and Acute Postoperative Urinary Retention in Pelvic Reconstructive Surgery.

    PubMed

    Propst, Katie; OʼSullivan, David M; Tulikangas, Paul K

    2016-01-01

    To evaluate the relationship between perioperative use of transdermal scopolamine and the rate of urinary retention after stress urinary incontinence and pelvic organ prolapse procedures in women. This is a retrospective, cohort study; the primary outcome is the rate of acute postoperative urinary retention. Study candidates were adult female patients who underwent pelvic reconstructive surgery at a tertiary care center. Subjects were excluded if preoperative postvoid residual urine volume was greater than 150 mL, preoperative urodynamic testing was not performed, or if a postoperative trial of void was not performed. Subjects were grouped based on preoperative use of transdermal scopolamine. Patients were selected consecutively until 138 subjects per group was reached. Differences in rates of acute postoperative urinary retention were evaluated using a chi-square test. Group demographics were evaluated using t tests and χ tests. Two hundred seventy-six subjects were included in the analysis, 138 received a transdermal scopolamine patch in the perioperative period and 138 did not. The overall rate of acute postoperative urinary retention was 25.3%. There was no significant difference in the rate of acute postoperative urinary retention between the study groups (scopolamine, 26.8%; no scopolamine, 23.9%; P = 0.580). Demographics of the 2 groups were compared; patients who received scopolamine patch were younger (P = 0.001), received a greater amount of intravenous fluids (P = 0.007), and underwent a greater percentage of incontinence procedures (P = 0.048). Otherwise, there were no differences between the groups. Transdermal scopolamine is not a risk factor for acute postoperative urinary retention after pelvic reconstructive procedures.

  19. Amnesia of inhibitory avoidance by scopolamine is overcome by previous open-field exposure

    PubMed Central

    Colettis, Natalia C.; Snitcofsky, Marina; Kornisiuk, Edgar E.; Gonzalez, Emilio N.; Quillfeldt, Jorge A.

    2014-01-01

    The muscarinic cholinergic receptor (MAChR) blockade with scopolamine either extended or restricted to the hippocampus, before or after training in inhibitory avoidance (IA) caused anterograde or retrograde amnesia, respectively, in the rat, because there was no long-term memory (LTM) expression. Adult Wistar rats previously exposed to one or two open-field (OF) sessions of 3 min each (habituated), behaved as control animals after a weak though over-threshold training in IA. However, after OF exposure, IA LTM was formed and expressed in spite of an extensive or restricted to the hippocampus MAChR blockade. It was reported that during and after OF exposure and reexposure there was an increase in both hippocampal and cortical ACh release that would contribute to “prime the substrate,” e.g., by lowering the synaptic threshold for plasticity, leading to LTM consolidation. In the frame of the “synaptic tagging and capture” hypothesis, plasticity-related proteins synthesized during/after the previous OF could facilitate synaptic plasticity for IA in the same structure. However, IA anterograde amnesia by hippocampal protein synthesis inhibition with anisomycin was also prevented by two OF exposures, strongly suggesting that there would be alternative interpretations for the role of protein synthesis in memory formation and that another structure could also be involved in this “OF effect.” PMID:25322799

  20. Polygalae Radix Extract Prevents Axonal Degeneration and Memory Deficits in a Transgenic Mouse Model of Alzheimer’s Disease

    PubMed Central

    Kuboyama, Tomoharu; Hirotsu, Keisuke; Arai, Tetsuya; Yamasaki, Hiroo; Tohda, Chihiro

    2017-01-01

    Memory impairments in Alzheimer’s disease (AD) occur due to degenerated axons and disrupted neural networks. Since only limited recovery is possible after the destruction of neural networks, preventing axonal degeneration during the early stages of disease progression is necessary to prevent AD. Polygalae Radix (roots of Polygala tenuifolia; PR) is a traditional herbal medicine used for sedation and amnesia. In this study, we aimed to clarify and analyze the preventive effects of PR against memory deficits in a transgenic AD mouse model, 5XFAD. 5XFAD mice demonstrated memory deficits at the age of 5 months. Thus, the water extract of Polygalae Radix (PR extract) was orally administered to 4-month-old 5XFAD mice that did not show signs of memory impairment. After consecutive administrations for 56 days, the PR extract prevented cognitive deficit and axon degeneration associated with the accumulation of amyloid β (Aβ) plaques in the perirhinal cortex of the 5XFAD mice. PR extract did not influence the formation of Aβ plaques in the brain of the 5XFAD mice. In cultured neurons, the PR extract prevented axonal growth cone collapse and axonal atrophy induced by Aβ. Additionally, it prevented Aβ-induced endocytosis at the growth cone of cultured neurons. Our previous study reported that endocytosis inhibition was enough to prevent Aβ-induced growth cone collapse, axonal degeneration, and memory impairments. Therefore, the PR extract possibly prevented axonal degeneration and memory impairment by inhibiting endocytosis. PR is the first preventive drug candidate for AD that inhibits endocytosis in neurons. PMID:29184495

  1. Aniracetam restores object recognition impaired by age, scopolamine, and nucleus basalis lesions.

    PubMed

    Bartolini, L; Casamenti, F; Pepeu, G

    1996-02-01

    Object recognition was investigated in adult and aging male rats in a two-trials, unrewarded, test that assessed a form of working-episodic memory. Exploration time in the first trial, in which two copies of the same object were presented, was recorded. In the second trial, in which one of the familiar objects and a new object were presented, the time spent exploring the two objects was separately recorded and a discrimination index was calculated. Adult rats explored the new object longer than the familiar object when the intertrial time ranged from 1 to 60 min. Rats older than 20 months of age did not discriminate between familiar and new objects. Object discrimination was lost in adult rats after scopolamine (0.2 mg/kg SC) administration and with lesions of the nucleus basalis, resulting in a 40% decrease in cortical ChAT activity. Both aniracetam (25, 50, 100 mg/kg os) and oxiracetam (50 mg/kg os) restored object recognition in aging rats, in rats treated with scopolamine, and with lesions of the nucleus basalis. In the rat, object discrimination appears to depend on the integrity of the cholinergic system, and nootropic drugs can correct its disruption.

  2. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    PubMed

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Effect of low-dose scopolamine on autonomic control of the heart

    NASA Technical Reports Server (NTRS)

    Raeder, E. A.; Stys, A.; Cohen, R. J.

    1997-01-01

    Background: In low doses, scopolamine paradoxically enhances parasympathetic outflow to the heart. The mechanisms which mediate this action are not fully understood. Moreover, there are conflicting data regarding the potential role of sympathetic activity. This study in 17 healthy individuals was designed to characterize the influence of low dose transdermal scopolamine on the gain of the baroreflex and respiratory heart rate reflex and to determine the role of sympathetic activity. Methods: The effect of scopolamine was analyzed in the time and frequency domain by computing heart rate variability indices. The gains of the respiratory heart rate reflex and the baroreflex were estimated simultaneously by means of a cardiovascular system identification approach using an optimized autoregressive moving average algorithm. Measurements were repeated in the upright posture to assess the influence of enhanced sympathetic activity. In six subjects ambulatory ECGs were recorded to determine whether there are diurnal variations of the effect of scopolamine. Results: Scopolamine enhances vagal modulation of heart rate through both the respiratory-heart rate reflex and the baroreflex, as the gains of both were augmented by the drug in the supine and in the upright postures. Conclusions: Scopolamine increases parasympathetic cardiac control by augmenting the gain of the respiratory-heart rate and baroreflex. This action is not attenuated in the upright posture when sympathetic tone is increased.

  4. Selection of nutrients for prevention or amelioration of lead-induced learning and memory impairment in rats.

    PubMed

    Fan, Guangqin; Feng, Chang; Li, Yu; Wang, Chunhong; Yan, Ji; Li, Wei; Feng, Jiangao; Shi, Xianglin; Bi, Yongyi

    2009-06-01

    We carried out animal experiments based on the orthogonal design L(8)(2(7)) setting seven factors with two different levels of each and 10 groups of rats. The nutrients tested were tyrosine, glycine, methionine, taurine, ascorbic acid, thiamine and zinc. The objective of this study was to explore the optimal combinations of nutrients for prevention or amelioration of lead-induced learning and memory impairment. Rats were supplemented with nutrients by gavage once a day in two experiments: one was simultaneous nutrient supplementation with lead acetate administration (800 mg l(-1)) for 8 weeks (prophylactic supplementation) and the other was nutrient supplementation for 4 weeks after the cessation of 4 weeks of lead administration (remedial supplementation). Morris water maze was initiated at ninth week. Rats were terminated for assays of levels of Pb in blood, activities of superoxide dismutase (SOD) and nitric oxide synthase (NOS) in hippocampus, levels of nitric oxide (NO) in hippocampus and expressions of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclic adenosine monophosphate (cAMP) response element-binding protein messenger RNA in hippocampus. Results showed that in prophylactic supplementation, methionine, taurine, zinc, ascorbic acid and glycine were the effective preventive factors for decreasing prolonged escape latency, increasing SOD and NOS activities and NO levels in the hippocampus, respectively. On the other hand, in remedial supplementation, taurine was the effective factor for reversing Pb-induced decrease in activities of SOD, NOS and levels of NO. In conclusion, the optimum combinations of nutrients appear to be methionine, taurine, zinc, ascorbic acid and glycine for the prevention of learning and memory impairment, while taurine and thiamine appear to be the effective factors for reversing Pb neurotoxicity.

  5. Scopolamine disrupts place navigation in rats and humans: a translational validation of the Hidden Goal Task in the Morris water maze and a real maze for humans.

    PubMed

    Laczó, Jan; Markova, Hana; Lobellova, Veronika; Gazova, Ivana; Parizkova, Martina; Cerman, Jiri; Nekovarova, Tereza; Vales, Karel; Klovrzova, Sylva; Harrison, John; Windisch, Manfred; Vlcek, Kamil; Svoboda, Jan; Hort, Jakub; Stuchlik, Ales

    2017-02-01

    Development of new drugs for treatment of Alzheimer's disease (AD) requires valid paradigms for testing their efficacy and sensitive tests validated in translational research. We present validation of a place-navigation task, a Hidden Goal Task (HGT) based on the Morris water maze (MWM), in comparable animal and human protocols. We used scopolamine to model cognitive dysfunction similar to that seen in AD and donepezil, a symptomatic medication for AD, to assess its potential reversible effect on this scopolamine-induced cognitive dysfunction. We tested the effects of scopolamine and the combination of scopolamine and donepezil on place navigation and compared their effects in human and rat versions of the HGT. Place navigation testing consisted of 4 sessions of HGT performed at baseline, 2, 4, and 8 h after dosing in humans or 1, 2.5, and 5 h in rats. Scopolamine worsened performance in both animals and humans. In the animal experiment, co-administration of donepezil alleviated the negative effect of scopolamine. In the human experiment, subjects co-administered with scopolamine and donepezil performed similarly to subjects on placebo and scopolamine, indicating a partial ameliorative effect of donepezil. In the task based on the MWM, scopolamine impaired place navigation, while co-administration of donepezil alleviated this effect in comparable animal and human protocols. Using scopolamine and donepezil to challenge place navigation testing can be studied concurrently in animals and humans and may be a valid and reliable model for translational research, as well as for preclinical and clinical phases of drug trials.

  6. Spirulina maxima Extract Prevents Neurotoxicity via Promoting Activation of BDNF/CREB Signaling Pathways in Neuronal Cells and Mice.

    PubMed

    Koh, Eun-Jeong; Seo, Young-Jin; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Kim, Kui-Jin; Lee, Boo-Yong

    2017-08-17

    Spirulina maxima is a microalgae which contains flavonoids and other polyphenols. Although Spirulina maxima 70% ethanol extract (SM70EE) has diverse beneficial effects, its effects on neurotoxicity have not been fully understood. In this study, we investigated the neuroprotective effects of SM70EE against trimethyltin (TMT)-induced neurotoxicity in HT-22 cells. SM70EE inhibited the cleavage of poly-ADP ribose polymerase (PARP). Besides, ROS production was decreased by down-regulating oxidative stress-associated enzymes. SM70EE increased the factors of brain-derived neurotrophic factor (BDNF)/cyclic AMPresponsive elementbinding protein (CREB) signalling pathways. Additionally, acetylcholinesterase (AChE) was suppressed by SM70EE. Furthermore, we investigated whether SM70EE prevents cognitive deficits against scopolamine-induced neurotoxicity in mice by applying behavioral tests. SM70EE increased step-through latency time and decreased the escape latency time. Therefore, our data suggest that SM70EE may prevent TMT neurotoxicity through promoting activation of BDNF/CREB neuroprotective signaling pathways in neuronal cells. In vivo study, SM70EE would prevent cognitive deficits against scopolamine-induced neurotoxicity in mice.

  7. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine

    PubMed Central

    Wohleb, Eric S.; Wu, Min; Gerhard, Danielle M.; Taylor, Seth R.; Picciotto, Marina R.; Alreja, Meenakshi; Duman, Ronald S.

    2016-01-01

    Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies. PMID:27270172

  8. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine.

    PubMed

    Wohleb, Eric S; Wu, Min; Gerhard, Danielle M; Taylor, Seth R; Picciotto, Marina R; Alreja, Meenakshi; Duman, Ronald S

    2016-07-01

    Major depressive disorder (MDD) is a recurring psychiatric illness that causes substantial health and socioeconomic burdens. Clinical reports have revealed that scopolamine, a nonselective muscarinic acetylcholine receptor antagonist, produces rapid antidepressant effects in individuals with MDD. Preclinical models suggest that these rapid antidepressant effects can be recapitulated with blockade of M1-type muscarinic acetylcholine receptors (M1-AChR); however, the cellular mechanisms underlying activity-dependent synaptic and behavioral responses to scopolamine have not been determined. Here, we demonstrate that the antidepressant-like effects of scopolamine are mediated by GABA interneurons in the medial prefrontal cortex (mPFC). Both GABAergic (GAD67+) interneurons and glutamatergic (CaMKII+) interneurons in the mPFC expressed M1-AChR. In mice, viral-mediated knockdown of M1-AChR specifically in GABAergic neurons, but not glutamatergic neurons, in the mPFC attenuated the antidepressant-like effects of scopolamine. Immunohistology and electrophysiology showed that somatostatin (SST) interneurons in the mPFC express M1-AChR at higher levels than parvalbumin interneurons. Moreover, knockdown of M1-AChR in SST interneurons in the mPFC demonstrated that M1-AChR expression in these neurons is required for the rapid antidepressant-like effects of scopolamine. These data indicate that SST interneurons in the mPFC are a promising pharmacological target for developing rapid-acting antidepressant therapies.

  9. Histaminergic response to Coriolis stimulation: implication for transdermal scopolamine therapy of motion sickness.

    PubMed

    Wang, E T; Zhou, D R; He, L H

    1992-07-01

    The blood levels of histamine and 5-hydroxytryptamine (5-HT) in 10 subjects, with or without administration of the transdermal therapeutic system of scopolamine (TTS-S), were measured following motion sickness (MS) induced by Coriolis stimulation. Histamine and 5-HT were assayed using the fluorometric method. The results demonstrated that the blood levels of histamine increased significantly following MS and were even higher in the subjects using TTS-S, but we found neither significant changes in the blood levels of 5-HT following MS nor any effect of TTS-S on it. The results suggest that histamine contributes to the development of MS, and scopolamine may exert its anti-MS action by affecting the histaminergic system as well as the acetylcholinergic system; there may not be a definite relation between 5-HT and the development of MS.

  10. Gender dependent contribution of muscarinic receptors in memory retrieval under sub-chronic stress.

    PubMed

    Rashid, Habiba; Ahmed, Touqeer

    2018-05-15

    Stress induces retrograde amnesia in humans and rodents. Muscarinic antagonism under normal physiological conditions causes gender dependent impairment in episodic memory retrieval. We aimed to explore the gender dependent role of muscarinic receptors in memory retrieval under sub-chronic stress condition. Male and female mice were trained for Morris water maze test and contextual fear conditioning, followed by 3 h restraint stress per day for five days. Stress was either given alone or in combination with a daily subcutaneous injection of scopolamine (1 mg/kg) or donepezil (1 mg/kg). Control mice were given saline without any stress. Sub-chronic stress (induced for five days) impaired spatial memory retrieval in males (P < 0.005) but not in females (P > 0.05). Stress induced spatial memory recall deficit in male mice was independent of muscarinic receptor activity (P > 0.05). However, stress induced contextual fear memory recall impairment was reversed by donepezil treatment in male (P < 0.005) and female (P < 0.0001) mice. These findings suggest that differential role of muscarinic activity in retrieving different types of memories under stress depends on gender of subjects. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. 78 FR 52939 - Prospective Grant of Exclusive Patent License: Use of Scopolamine to Treat Depression

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... to: ``The use of scopolamine for treatment of depression, including major depressive disorder... depression, including major depressive disorders (MDD). Although scopolamine has been employed in the... Exclusive Patent License: Use of Scopolamine to Treat Depression AGENCY: National Institutes of Health, HHS...

  12. Enriched environment prevents hypobaric hypoxia induced memory impairment and neurodegeneration: role of BDNF/PI3K/GSK3β pathway coupled with CREB activation.

    PubMed

    Jain, Vishal; Baitharu, Iswar; Prasad, Dipti; Ilavazhagan, Govindasamy

    2013-01-01

    Adverse environmental conditions such as hypobaric hypoxia (HH) cause memory impairment by affecting cellular machinery leading to neurodegeneration. Providing enriched environment (EE) is found to be beneficial for curing several neurodegenerative disorders. The protective role of EE in preventing HH induced neuronal death has been reported previously but the involved mechanism is still not clearly understood. The present study is an attempt to verify the impact of EE on spatial memory during HH and also to explore the possible role of neurotrophin in EE mediated neuroprotection. Signaling mechanism involved in neuroprotection was also explored. Male Sprague Dawley rats were simulated to HH condition in an Animal Decompression Chamber at an altitude of 25000 feet in standard and enriched cages for 7 days. Spatial memory was assessed through Morris Water Maze. Role of different neurotrophins was explored by gene silencing and inhibitors for their respective receptors. Further, using different blockers signaling pathway was also explored. Finding of the present study suggested that EE prevents HH mediated memory impairment and neurodegeneration. Also brain-derived neurotrophic factor (BDNF) plays a major role in EE mediated neuroprotection and it effectively prevented neurodegeneration by activating PI3K/AKT pathway resulting in GSK3β inactivation which further inhibits apoptosis. Moreover GSK3β phosphorylation and hence its inactivation upregulates CREB phosphorylation which may also accounts for activation of survival machinery in cells and provides neuroprotection. From these observations it can be postulated that EE has a therapeutic potential in amelioration of HH induced memory impairment and neurodegeneration. Hence it may be used as a non invasive and non pharmacological intervention against various neurological disorders.

  13. Enriched Environment Prevents Hypobaric Hypoxia Induced Memory Impairment and Neurodegeneration: Role of BDNF/PI3K/GSK3β Pathway Coupled with CREB Activation

    PubMed Central

    Jain, Vishal; Baitharu, Iswar; Prasad, Dipti; Ilavazhagan, Govindasamy

    2013-01-01

    Adverse environmental conditions such as hypobaric hypoxia (HH) cause memory impairment by affecting cellular machinery leading to neurodegeneration. Providing enriched environment (EE) is found to be beneficial for curing several neurodegenerative disorders. The protective role of EE in preventing HH induced neuronal death has been reported previously but the involved mechanism is still not clearly understood. The present study is an attempt to verify the impact of EE on spatial memory during HH and also to explore the possible role of neurotrophin in EE mediated neuroprotection. Signaling mechanism involved in neuroprotection was also explored. Male Sprague Dawley rats were simulated to HH condition in an Animal Decompression Chamber at an altitude of 25000 feet in standard and enriched cages for 7 days. Spatial memory was assessed through Morris Water Maze. Role of different neurotrophins was explored by gene silencing and inhibitors for their respective receptors. Further, using different blockers signaling pathway was also explored. Finding of the present study suggested that EE prevents HH mediated memory impairment and neurodegeneration. Also brain-derived neurotrophic factor (BDNF) plays a major role in EE mediated neuroprotection and it effectively prevented neurodegeneration by activating PI3K/AKT pathway resulting in GSK3β inactivation which further inhibits apoptosis. Moreover GSK3β phosphorylation and hence its inactivation upregulates CREB phosphorylation which may also accounts for activation of survival machinery in cells and provides neuroprotection. From these observations it can be postulated that EE has a therapeutic potential in amelioration of HH induced memory impairment and neurodegeneration. Hence it may be used as a non invasive and non pharmacological intervention against various neurological disorders. PMID:23704876

  14. Maternal administration of melatonin prevents spatial learning and memory deficits induced by developmental ethanol and lead co-exposure.

    PubMed

    Soleimani, Elham; Goudarzi, Iran; Abrari, Kataneh; Lashkarbolouki, Taghi

    2017-05-01

    Melatonin is a radical scavenger with the ability to remove reactive oxidant species. There is report that co-exposure to lead and ethanol during developmental stages induces learning and memory deficits and oxidative stress. Here, we studied the effect of melatonin, with strong antioxidant properties, on memory deficits induced by lead and ethanol co-exposure and oxidative stress in hippocampus. Pregnant rats in lead and ethanol co-exposure group received lead acetate of 0.2% in distilled drinking water and ethanol (4g/kg) by oral gavages once daily from the 5th day of gestation until weaning. Rats received 10mg/kg melatonin by oral gavages. On postnatal days (PD) 30, rats trained with six trials per day for 6 consecutive days in the water maze. On day 37, a probe test was done and oxidative stress markers in the hippocampus were evaluated. Results demonstrated lead and ethanol co-exposed rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency in probe trial test and had significantly higher malondialdehyde (MDA) levels, significantly lower superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities in the hippocampus. Melatonin treatment could improve memory deficits, antioxidants activity and reduced MDA levels in the hippocampus. We conclude, co-exposure to lead and ethanol impair memory and melatonin can prevent from it by oxidative stress modulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Influence of Light, Temperature, and Macronutrients on Growth and Scopolamine Biosynthesis in Duboisia species.

    PubMed

    Ullrich, Sophie Friederike; Rothauer, Andreas; Hagels, Hansjörg; Kayser, Oliver

    2017-07-01

    Scopolamine is used in the pharmaceutical industry as a precursor in the organic synthesis of different classes of important active substances and is extracted in large scale from field grown Duboisia plants. Previous research revealed that plant growth as well as production of scopolamine and its derivatives varies strongly depending on abiotic factors. However, only a small amount of systematic research has been done on the influence of environmental conditions on scopolamine and biomass production, so far. In order to extend knowledge in this field, plants of three different genotypes (wild type Duboisia myoporoides and hybrids of D. myoporoides and Duboisia leichhardtii ) were grown in climate chambers under controlled conditions in order to systematically analyse the influence of temperature (20, 24, 28 °C), light (50-300 µmol/m 2  × s, 12, 18, 24 h per day) and macronutrients (nitrogen, calcium, potassium) on growth and scopolamine biosynthesis. The data indicate that light intensity and daily exposure to light have a major impact on scopolamine production and plant development, whereas temperature only shows a minor influence. Nitrogen (N) positively affects biomass production with increasing levels up to 4 mM, but is negatively correlated with scopolamine content. Calcium (Ca) shows a negative influence on scopolamine biosynthesis at increased levels above 1 mM as well. Potassium (K) neither affects biomass nor scopolamine production within the tested concentration range (0.05-4 mM). All in all, it can be concluded that light intensity and nitrogen supply are especially important regulating variables that can be applied in a targeted manner for influencing scopolamine and biomass production. Georg Thieme Verlag KG Stuttgart · New York.

  16. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2015-01-01

    An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS). The bioavailability and pharmacokinetics (PK) were evaluated under IND (Investigational New Drug) guidelines. The aim of the project was to develop a PK model that can predict the relationships among plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial protocol with INSCOP. Twelve healthy human subjects were administered at three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min to 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. PK compartmental models, using actual dosing and sampling time, were established using Phoenix (version 1.2). Model selection was based on a likelihood ratio test on the difference of criteria (-2LL (i.e. log-likelihood ratio test)) and comparison of the quality of fit plots. The results: Predictable correlations among scopolamine concentrations in compartments of plasma, saliva and urine were established, and for the first time the model satisfactorily predicted the population and individual PK of INSCOP in plasma, saliva and urine. The model can be utilized to predict the INSCOP plasma concentration by saliva and urine data, and it will be useful for monitoring the PK of scopolamine in space and other remote environments using non-invasive sampling of saliva and/or urine.

  17. Triple Therapy with Scopolamine, Ondansetron, and Dexamethasone for Prevention of Postoperative Nausea and Vomiting in Moderate to High-Risk Patients Undergoing Craniotomy Under General Anesthesia: A Pilot Study.

    PubMed

    Bergese, Sergio D; Antor, Maria A; Uribe, Alberto A; Yildiz, Vedat; Werner, Joseph

    2015-01-01

    Postoperative nausea and vomiting (PONV) is one of the most common complaints from patients and clinicians after a surgical procedure. According to the current Society of Ambulatory Anesthesia Consensus Guidelines, the general incidence of vomiting and nausea is around 30 and 50%, respectively; and up to 80% in high-risk patients. In previous studies, the reported incidence of PONV at 24 h after craniotomy was 43-70%. The transdermal scopolamine (TDS) delivery system contains a 1.5-mg drug reservoir, which is designed to deliver a continuous slow release of scopolamine through intact skin during the first 72 h of patch application. Therefore, we designed this single arm, non-randomized, pilot study to assess the efficacy and safety of triple therapy with scopolamine, ondansetron, and dexamethasone to prevent PONV. In the preoperative area, subjects received an active TDS 1.5 mg that was applied to a hairless patch of skin in the mastoid area approximately 2 h prior to the operation. Immediately after anesthesia induction, all patients received a single 4 mg dose of ondansetron IV and a single 10 mg dose of dexamethasone IV. Patients who experienced nausea and/or vomiting received ondansetron 4 mg IV as the initial rescue medication. Postoperative nausea and vomiting assessments were performed for up to 120 h after surgery. A total of 36 subjects were analyzed. The overall incidence of PONV during the first 24 h after neurological surgery was 33% (n = 12). The incidence of nausea and emesis during the first 24 h after surgery was recorded as 33% (n = 12) and 16% (n = 6), respectively. Our data showed that this triple therapy regimen may be an efficient alternative regimen for PONV prophylaxis in patients undergoing neurological surgery with general anesthesia. Further studies using regimens affecting different receptor pathways should be performed to better prove the efficacy and safety in the prevention or delay of PONV.

  18. Learning and memory in the forced swimming test: effects of antidepressants having varying degrees of anticholinergic activity.

    PubMed

    Enginar, Nurhan; Yamantürk-Çelik, Pınar; Nurten, Asiye; Güney, Dilvin Berrak

    2016-07-01

    The antidepressant-induced reduction in immobility time in the forced swimming test may depend on memory impairment due to the drug's anticholinergic efficacy. Therefore, the present study evaluated learning and memory of the immobility response in rats after the pretest and test administrations of antidepressants having potent, comparatively lower, and no anticholinergic activities. Immobility was measured in the test session performed 24 h after the pretest session. Scopolamine and MK-801, which are agents that have memory impairing effects, were used as reference drugs for a better evaluation of the memory processes in the test. The pretest administrations of imipramine (15 and 30 mg/kg), amitriptyline (7.5 and 15 mg/kg), trazodone (10 mg/kg), fluoxetine (10 and 20 mg/kg), and moclobemide (10 and 20 mg/kg) were ineffective, whereas the pretest administrations of scopolamine (0.5 mg/kg) and MK-801 (0.1 mg/kg) decreased immobility time suggesting impaired "learning to be immobile" in the animals. The test administrations of imipramine (30 mg/kg), amitriptyline (15 mg/kg), moclobemide (10 mg/kg), scopolamine (0.5 and 1 mg/kg), and MK-801 (0.1 mg/kg) decreased immobility time, which suggested that the drugs exerted antidepressant activity or the animals did not recall that attempting to escape was futile. The test administrations of trazodone (10 mg/kg) and fluoxetine (10 and 20 mg/kg) produced no effect on immobility time. Even though the false-negative and positive responses made it somewhat difficult to interpret the findings, this study demonstrated that when given before the pretest antidepressants with or without anticholinergic activity seemed to be devoid of impairing the learning process in the test.

  19. Assessment of the pharmacodynamics of intranasal, intravenous and oral scopolamine

    NASA Technical Reports Server (NTRS)

    Tietze, Karen J.

    1990-01-01

    Space motion sickness is an important issue in the space medical sciences program. One of the objectives of the ongoing clinical experimental protocol Pharmacokinetics of Intranasal Scopolamine in Normal Subjects is to evaluate the pharmacodynamics of scopolamine using salivary flow rate and pH profiles and cognitive performance tests as pharmacodynamic parameters. Normal volunteers collected saliva and performed the NTI Multiresource Performance Battery tests at designed time intervals to establish control saliva flow rates, salivary pH profiles, and the characteristics of the learning curve for the performance program under normal conditions. In the clinical part of the study, saliva samples and performance test scores are collected from healthy nonsmoking subjects after receiving a single 0.4 mg dose of either intranasal, intravenous, or oral scopolamine.

  20. Effect of central muscarinic receptors on passive-avoidance learning deficits induced by prenatal pentylenetetrazol kindling in male offspring.

    PubMed

    Pourmotabbed, A; Mahmoodi, G; Mahmoodi, S; Mohammadi-Farani, A; Nedaei, S E; Pourmotabbed, T; Pourmotabbed, T

    2014-10-24

    Occurrence of the epileptic seizures during gestation might affect the neurodevelopment of the fetus resulting in cognitive problems for the child later in life. We have previously reported that prenatal pentylenetetrazol (PTZ)-kindling induces learning and memory deficits in the children born to kindled mothers, later in life but the mechanisms involved in this processes are unknown. The cholinergic system plays a major role in learning and memory. The present study was performed to investigate the possible involvement of central muscarinic cholinergic receptors on learning and memory deficits induced by prenatal PTZ-kindling in male offspring. Pregnant Wistar rats were kindled by repetitive i.p. injection of 25mg/kg of PTZ on day 13 of their pregnancy. The effect of intracerebroventricular (ICV) microinjection of scopolamine and pilocarpine, muscarinic cholinergic receptors antagonist and agonist, respectively on passive-avoidance learning of pups were tested at 12weeks of age using shuttle-box apparatus. Our data showed that the retention latencies of pups that received scopolamine (2 or 3μg) were significantly reduced compared to those received normal saline (p<0.05). Interestingly, post training ICV administration of pilocarpine (2μg) retrieved pups' memory deficits (p<0.001). These results demonstrate for the first time, the importance of the central muscarinic cholinergic receptors in learning and memory deficits in pups born to kindled dams and suggest a central mechanism for the cognitive and memory dysfunction, associated with seizures during pregnancy. Copyright © 2014. Published by Elsevier Ltd.

  1. Resveratrol prevents high-calorie diet-induced learning and memory dysfunction in juvenile C57BL/6J mice.

    PubMed

    Xu, Bao-Lei; Zhang, Hui; Ma, Li-Na; Dong, Wen; Zhao, Zhi-Wei; Zhang, Jing-Shuang; Wang, Yu-Lan; Zhang, Xu; Wang, Rong

    2018-05-24

    Because resveratrol (RSV) has been shown to improve learning and memory, so we investigated the potential benefit of RSV on learning and memory deficits in juvenile mice fed with a HC diet and explored the molecular mechanisms underlying this process. Six-week-old C57BL/6J mice were divided into three different diet groups: control, HC diet, and HC + RSV diet. Serum insulin and insulin-like growth factor 1 (IGF-1) levels were measured using enzyme-linked immunosorbent assays. Protein expression was examined by immunohistochemistry and western blotting. Administration of RSV daily (30 mg/kg) prevented the HC diet-induced increase in juvenile animal body weight but did not improve any other physiological conditions, including fasting blood glucose and serum cholesterol, triglyceride, insulin, and IGF-1 levels. However, RSV did prevent learning and memory deficits in the HC group. Peroxisome proliferator-activated receptor gamma (PPARγ) was downregulated in the CA1 region of the hippocampus in both the HC and HC + RSV groups, but the reduction was significantly greater in the HC + RSV group (P < .01 compared with the HC group). Moreover, although the HC diet reduced the number of p16-positive neurons, the HC + RSV diet significantly upregulated p16 expression in the CA1 region of the hippocampus (P < .01 compared with the HC group). RSV protected against learning and memory impairments in juvenile animals fed with a HC diet, possibly via upregulation of p16 or downregulation of PPARγ in the hippocampal CA1 region.

  2. Effects of scopolamine on autonomic profiles underlying motion sickness susceptibility

    NASA Technical Reports Server (NTRS)

    Uijtdehaage, Sebastian H. J.; Stern, Robert M.; Koch, Kenneth L.

    1993-01-01

    The purpose of this study was to examine the effects of scopolamine on the physiological patterns occurring prior to and during motion sickness stimulation. In addition, the use of physiological profiles in the prediction of motion sickness was evaluated. Sixty subjects ingested either 0.6 mg scopolamine, 2.5 mg methoscopolamine, or a placebo. Heart rate (HR), respiratory sinus arrhythmia (an index of vagal tone), and electrogastrograms were measured prior to and during the exposure to a rotating optokinetic drum. Compared to the other groups, the scopolamine group reported fewer motion sickness symptoms, and displayed lower HR, higher vagal tone, enhanced normal gastric myoelectric activity, and depressed gastric dysrhythmias before and during motion sickness induction. Distinct physiological profiles prior to drum rotation could reliably differentiate individuals who would develop gastric discomfort from those who would not. Symptom-free subjects were characterized by high levels of vagal tone and low HR across conditions, and by maintaining normal (3 cpm) electrogastrographic activity during drum rotation. It was concluded that scopolamine offered motion sickness protection by initiating a pattern of increased vagal tone and gastric myoelectric stability.

  3. Pharmacological evidence is consistent with a prominent role of spatial memory in complex navigation

    PubMed Central

    2016-01-01

    The ability to learn about the spatial environment plays an important role in navigation, migration, dispersal, and foraging. However, our understanding of both the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited. We tested the hypothesis that complex navigation is facilitated by spatial memory in a population of Chrysemys picta that navigate with extreme precision (±3.5 m) using specific routes that must be learned prior to age three. We used scopolamine, a muscarinic acetylcholine receptor antagonist, to manipulate the cognitive spatial abilities of free-living turtles during naturally occurring overland movements. Experienced adults treated with scopolamine diverted markedly from their precise navigation routes. Naive juveniles lacking experience (and memory) were not affected by scopolamine, and thereby served as controls for perceptual or non-spatial cognitive processes associated with navigation. Further, neither adult nor juvenile movement was affected by methylscopolamine, a form of scopolamine that does not cross the blood–brain barrier, a control for the peripheral effects of scopolamine. Together, these results are consistent with a role of spatial cognition in complex navigation and highlight a cellular mechanism that might underlie spatial cognition. Overall, our findings expand our understanding of the development of complex cognitive abilities of vertebrates and the neurological mechanisms of navigation. PMID:26865305

  4. Microdialysis pharmacokinetic study of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration.

    PubMed

    Wei, Yan; Ying, Mingzhen; Xu, Shuai; Wang, Feng; Zou, Aifeng; Cao, Shilei; Jiang, Xinguo; Wang, Yajie

    2016-01-01

    The purpose of this study was to investigate the microdialysis pharmacokinetic of scopolamine in plasma, olfactory bulb and vestibule after intranasal administration. The pharmacokinetic study of subcutaneous and oral administration was also performed in rats. From the in vivo results, scopolamine intranasal administration can avoid hepatic first-pass effect. Tmax plasma samples after intranasal administration were significantly faster than oral administration and subcutaneous injection. The relative bioavailability of intranasal administrations was 51.8-70% when compared with subcutaneous injection. Moreover, one can see that in comparison with scopolamine subcutaneous administration, scopolamine intranasal gel and solutions can increased drug target index (DTI) with olfactory bulb 1.69 and 2.05, vestibule 1.80 and 2.15, respectively. The results indicated that scopolamine can be absorbed directly through the olfactory mucosa into the olfactory bulb, and then transported to various brain tissue after intranasal administration, with the characteristics of brain drug delivery.

  5. Effects of different fatty acids composition of phosphatidylcholine on brain function of dementia mice induced by scopolamine.

    PubMed

    Zhou, Miao-Miao; Xue, Yong; Sun, Shu-Hong; Wen, Min; Li, Zhao-Jie; Xu, Jie; Wang, Jing-Feng; Yanagita, Teruyoshi; Wang, Yu-Ming; Xue, Chang-Hu

    2016-08-24

    Phosphatidylcholine (PC), the major source of dietary choline, has been demonstrated to improve the capability of learning and memory in rodent and the amelioration of long-chain n-3 polyunsaturated fatty acids (PUFA) on anti-aging and anti-oxidation is widely known as well. In this study, three kinds of PC were chose to demonstrate the role of different fatty acids composition on glycerol backbone in improving the brain function of mice induced by scopolamine which was used to impair cholinergic system and cause oxidative stress. Male BALB/c mice were randomly divided into 5 groups: model (M) group, control (Con) group, egg yolk lecithin (EL) group, squid PC (SQ-PC) group and sea cucumber PC (SC-PC) group. The intraperitoneal injection of scopolamine hydrobromide (5 mg/kg) was carried out on the 8(th) of group feeding and sustained daily until the end of test. Morris water maze test was used to evaluate the improvement of cognitive decline and the activity of acetylcholinesterase (AchE), superoxide dismutase (SOD) and monoamine oxidase (MAO) and malondialdehyde (MDA) content in brain were measured to assess the physiological changes. In behavior test, the latency of PC groups was significantly reduced, while number of crossing the platform and time in target quadrant were increased in comparison with M group and the improvements of SQ-PC and SC-PC were better than that of EL (P < 0.05). Similar trend was observed in physiological changes. The AchE activity was effectively decreased and the SOD activity increased in hippocampus, cortex and white matter when comparing PC groups with M group. SQ-PC, SC-PC and EL respectively showed 22.82, 28.80 and 11.81 % decrease in MDA level in brain compared with M group. The MAO activity in white matter of SQ-PC, SC-PC and EL group separately depressed 33.05, 33.64 and 19.73 % in comparison with M group. No significance between SQ-PC and SC-PC was found in these indicators except the SOD activity in hippocampus and white

  6. Scopolamine rapidly increases mTORC1 signaling, synaptogenesis, and antidepressant behavioral responses

    PubMed Central

    Voleti, Bhavya; Navarria, Andrea; Liu, Rong-Jian; Banasr, Mounira; Li, Nanxin; Terwilliger, Rose; Sanacora, Gerard; Eid, Tore; Aghajanian, George; Duman, Ronald S.

    2013-01-01

    Background Clinical studies report that scopolamine, an acetylcholine muscarinic receptor antagonist, produces rapid antidepressant effects in depressed patients, but the mechanisms underlying the therapeutic response have not been determined. The present study examines the role of the mammalian target of rapamycin complex 1 (mTORC1) and synaptogenesis, which have been implicated in the rapid actions of NMDA receptor antagonists. Methods The influence of scopolamine on mTORC1 signaling was determined by analysis of the phosphorylated and activated forms of mTORC1 signaling proteins in the prefrontal cortex (PFC). The numbers and function of spine synapses were analyzed by whole cell patch clamp recording and 2-photon image analysis of PFC neurons. The actions of scopolamine were examined in the forced swim test in the absence or presence of selective mTORC1 and AMPA receptor inhibitors. Results The results demonstrate that a single, low dose of scopolamine rapidly increases mTORC1 signaling and the number and function of spine synapses in layer V pyramidal neurons in the PFC. Scopolamine administration also produces an antidepressant response in the forced swim test that is blocked by pretreatment with the mTORC1 inhibitor or by a glutamate AMPA receptor antagonist. Conclusions Taken together, the results demonstrate that the antidepressant actions of scopolamine require mTORC1 signaling and are associated with increased glutamate transmission, and synaptogenesis, similar to NMDA receptor antagonists. These findings provide novel targets for safer and more efficacious rapid acting antidepressant agents. PMID:23751205

  7. Locomotor activating effects of cocaine and scopolamine combinations in rats: isobolographic analysis

    PubMed Central

    Thomsen, Morgane

    2014-01-01

    Muscarinic cholinergic receptors are receiving renewed interest as viable targets for treating various psychiatric disorders. Dopaminergic and muscarinic systems interact in complex ways. The goal of this study was to quantify the interaction of a systemically administered psychomotor stimulant and muscarinic antagonist at the behavioral level. Using isobolographic analysis of locomotor activity data, we assessed the effects of three cocaine/scopolamine mixtures in terms of deviation from simple dose addition (additivity), at four effect levels. All three mixtures produced some more-than-additive (synergistic) effects, as lower doses were needed to produce given effects relative to the calculated effect of additive doses. A mixture with comparable contributions from cocaine and scopolamine produced significantly more-than-additive effects at all but the lowest effect level examined. A mostly-cocaine mixture was more-than-additive at low effect levels only, while a mostly-scopolamine mixture produced effects more consistent with additivity, with only the highest effect level barely reaching significant synergism. Our study confirms and quantifies previous findings that suggested synergistic effects of stimulants and muscarinic antagonists. The synergism implies that cocaine and scopolamine stimulate locomotor activity through non-identical pathways, and was most pronounced for a mixture containing cocaine and scopolamine in comparable proportions. PMID:24769455

  8. Ferulic acid ameliorates memory impairment in d-galactose-induced aging mouse model.

    PubMed

    Yang, Honggai; Qu, Zhuo; Zhang, Jingze; Huo, Liqin; Gao, Jing; Gao, Wenyuan

    2016-11-01

    Ferulic acid (FA) acts as a powerful antioxidant against various age-related diseases. To investigate the effect and underlying mechanism of FA against d-galactose(d-gal)-induced memory deficit, mice were injected with d-gal to induce memory impairment and simultaneously treated with FA and donepezil. The behavioral results revealed that chronic FA treatment reversed d-gal-induced memory impairment. Further, FA treatment inhibited d-gal-induced AChE activity and oxidative stress via increase of superoxide dismutase activity and reduced glutathione content, as well as decrease of malondialdehyde and nitric oxide levels. We also observed that FA significantly inhibits inflammation in the brain through reduction of NF-κB and IL-1β by enzyme-linked immunosorbent assay. Additionally, FA treatment significantly reduces the caspase-3 level in the hippocampus of d-gal-treated mice. Hematoxylin and eosin and Nissl staining showed that FA prevents neurodegeneration induced by d-gal. These findings showed that FA inhibits d-gal-induced AChE activity, oxidative stress, neuroinflammation and neurodegeneration, and consequently ameliorates memory impairment.

  9. Pharmacokinetic Modeling of Intranasal Scopolamine in Plasma Saliva and Urine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V.; Chow, Diana S. L.; Putcha, Lakshmi

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND). The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trial with INSCOP.

  10. Determination of Scopolamine in Human Saliva Using Solid Phase Extraction and LC/MS/MS

    NASA Technical Reports Server (NTRS)

    Wang, Zuwei; Vaksman, Zalman; Boyd, Jason; Putcha, Lakshmi

    2007-01-01

    Purpose: Scopolamine is the preferred treatment for motion sickness during space flight because of its quick onset of action, short half-life and favorable side-effect profile. The dose administered depends on the mode of administration and usually ranges between 0.1 and 0.8 mg. Such small doses make it difficult to detect concentrations of scopolamine in biological fluids by using conventional HPLC methods. To measure scopolamine in saliva and thereby to evaluate the pharmacokinetics of scopolamine, we developed an LC/MS/MS method using off-line solid phase extraction. Method: Samples (0.5mL) were loaded onto Waters Oasis HLB co-polymer cartridges (10 mg, 1 mL) and eluted with 0.5 mL methanol without evaporation and reconstitution. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 4 minutes. The mobile phase for separation was 90:10 (v/v) methanol: ammonium acetate (2 mM) in water, pH 5.0 +/- 0.1. Concentrations of scopolamine were determined using a Micromass Quattro Micro(TM) mass spectrometer with electrospray ionization (ESI). ESI mass spectra were acquired in positive ion mode with multiple reaction monitoring for the determination of scopolamine m/z = 304.2 yields 138.1 and internal standard (IS) hyoscyamine m/z = 290.2 yields 124.1. Results: The method is rapid, reproducible, specific and has the following parameters: scopolamine and the IS are eluted at 1.7 and 3.2 min respectively. The linear range is 50-5000 pg/mL for scopolamine in saliva with correlation coefficients > 0.99 with a CV < 0.5 %. The intra-day and inter-day CVs are < 15 % for quality control samples with concentrations of 75, 300, 750 and 3000 pg/mL of scopolamine in human saliva. Conclusion: Solid phase extraction allows more rapid sample preparation and greater precision than liquid extraction. Furthermore, we increased the sensitivity and specificity by adjusting the LC mobile phase and using an MS

  11. Population Pharmacokinetics of Intranasal Scopolamine

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S. L.; Putcha, L.

    2013-01-01

    Introduction: An intranasal gel dosage formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness (SMS).The bioavailability and pharmacokinetics (PK) was evaluated using data collected in Phase II IND protocols. We reported earlier statistically significant gender differences in PK parameters of INSCOP at a dose level of 0.4 mg. To identify covariates that influence PK parameters of INSCOP, we examined population covariates of INSCOP PK model for 0.4 mg dose. Methods: Plasma scopolamine concentrations versus time data were collected from 20 normal healthy human subjects (11 male/9 female) after a 0.4 mg dose. Phoenix NLME was employed for PK analysis of these data using gender, body weight and age as covariates for model selection. Model selection was based on a likelihood ratio test on the difference of criteria (-2LL). Statistical significance for base model building and individual covariate analysis was set at P less than 0.05{delta(-2LL)=3.84}. Results: A one-compartment pharmacokinetic model with first-order elimination best described INSCOP concentration ]time profiles. Inclusion of gender, body weight and age as covariates individually significantly reduced -2LL by the cut-off value of 3.84(P less than 0.05) when tested against the base model. After the forward stepwise selection and backward elimination steps, gender was selected to add to the final model which had significant influence on absorption rate constant (ka) and the volume of distribution (V) of INSCOP. Conclusion: A population pharmacokinetic model for INSCOP has been identified and gender was a significant contributing covariate for the final model. The volume of distribution and Ka were significantly higher in males than in females which confirm gender-dependent pharmacokinetics of scopolamine after administration of a 0.4 mg dose.

  12. S-Adenosylmethionine Prevents Mallory Denk Body Formation in Drug-Primed Mice by Inhibiting the Epigenetic Memory

    PubMed Central

    Li, Jun; Bardag-Gorce, Fawzia; Dedes, Jennifer; French, Barbara Alan; Amidi, Fataneh; Oliva, Joan; French, Samuel William

    2010-01-01

    In previous studies, microarray analysis of livers from mice fed diethyl-1,4-dihydro-2,4,6-trimethyl-3,5-pyridine decarboxylate (DDC) for 10 weeks followed by 1 month of drug withdrawal (drug-primed mice) and then 7 days of drug refeeding showed an increase in the expression of numerous genes referred to here as the molecular cellular memory. This memory predisposes the liver to Mallory Denk body formation in response to drug refeeding. In the current study, drug-primed mice were refed DDC with or without a daily dose of S-adenosylmethionine (SAMe; 4 g/kg of body weight). The livers were studied for evidence of oxidative stress and changes in gene expression with microarray analysis. SAMe prevented Mallory Denk body formation in vivo. The molecular cellular memory induced by DDC refeeding lasted for 4 months after drug withdrawal and was not manifest when SAMe was added to the diet in the in vivo experiment. Liver cells from drug-primed mice spontaneously formed Mallory Denk bodies in primary tissue cultures. SAMe prevented Mallory Denk bodies when it was added to the culture medium. Conclusion SAMe treatment prevented Mallory Denk body formation in vivo and in vitro by preventing the expression of a molecular cellular memory induced by prior DDC feeding. No evidence for the involvement of oxidative stress in induction of the memory was found. The molecular memory included the up-regulation of the expression of genes associated with the development of liver cell preneoplasia. PMID:18098314

  13. Double Dissociation of Pharmacologically Induced Deficits in Visual Recognition and Visual Discrimination Learning

    ERIC Educational Resources Information Center

    Turchi, Janita; Buffalari, Deanne; Mishkin, Mortimer

    2008-01-01

    Monkeys trained in either one-trial recognition at 8- to 10-min delays or multi-trial discrimination habits with 24-h intertrial intervals received systemic cholinergic and dopaminergic antagonists, scopolamine and haloperidol, respectively, in separate sessions. Recognition memory was impaired markedly by scopolamine but not at all by…

  14. Rapid Antidepressant Actions of Scopolamine: Role of Medial Prefrontal Cortex and M1-subtype Muscarinic Acetylcholine Receptors

    PubMed Central

    Navarria, Andrea; Wohleb, Eric S.; Voleti, Bhavya; Ota, Kristie T.; Dutheil, Sophie; Lepack, Ashley E.; Dwyer, Jason M.; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S.

    2015-01-01

    Clinical studies demonstrate that scopolamine, a nonselective muscarinic acetycholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1) in the medial prefrontal cortex (mPFC). The present study extends these findings to determine the role of the mPFC and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. Administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that systemic administration of a selective M1-AChR antagonist, VU0255035 produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions, and found that scopolamine or VU0255035 administration blocked the anhedonic response caused by CUS, an effect that requires chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine, and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. PMID:26102021

  15. Rapid antidepressant actions of scopolamine: Role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors.

    PubMed

    Navarria, Andrea; Wohleb, Eric S; Voleti, Bhavya; Ota, Kristie T; Dutheil, Sophie; Lepack, Ashley E; Dwyer, Jason M; Fuchikami, Manabu; Becker, Astrid; Drago, Filippo; Duman, Ronald S

    2015-10-01

    Clinical studies demonstrate that scopolamine, a non-selective muscarinic acetylcholine receptor (mAchR) antagonist, produces rapid therapeutic effects in depressed patients, and preclinical studies report that the actions of scopolamine require glutamate receptor activation and the mechanistic target of rapamycin complex 1 (mTORC1). The present study extends these findings to determine the role of the medial prefrontal cortex (mPFC) and specific muscarinic acetylcholine receptor (M-AchR) subtypes in the actions of scopolamine. The administration of scopolamine increases the activity marker Fos in the mPFC, including the infralimbic (IL) and prelimbic (PrL) subregions. Microinfusions of scopolamine into either the IL or the PrL produced significant antidepressant responses in the forced swim test, and neuronal silencing of IL or PrL blocked the antidepressant effects of systemic scopolamine. The results also demonstrate that the systemic administration of a selective M1-AChR antagonist, VU0255035, produced an antidepressant response and stimulated mTORC1 signaling in the PFC, similar to the actions of scopolamine. Finally, we used a chronic unpredictable stress model as a more rigorous test of rapid antidepressant actions and found that a single dose of scopolamine or VU0255035 blocked the anhedonic response caused by CUS, an effect that requires the chronic administration of typical antidepressants. Taken together, these findings indicate that mPFC is a critical mediator of the behavioral actions of scopolamine and identify the M1-AChR as a therapeutic target for the development of novel and selective rapid-acting antidepressants. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Interleukin-1β-induced memory reconsolidation impairment is mediated by a reduction in glutamate release and zif268 expression and α-melanocyte-stimulating hormone prevented these effects.

    PubMed

    Machado, Ivana; Gonzalez, Patricia V; Vilcaes, Alejandro; Carniglia, Lila; Schiöth, Helgi B; Lasaga, Mercedes; Scimonelli, Teresa N

    2015-05-01

    The immune system is an important modulator of learning, memory and neural plasticity. Interleukin 1β (IL-1β), a pro-inflammatory cytokine, significantly affects several cognitive processes. Previous studies by our group have demonstrated that intrahippocampal administration of IL-1β impairs reconsolidation of contextual fear memory. This effect was reversed by the melanocortin alpha-melanocyte-stimulating hormone (α-MSH). The mechanisms underlying the effect of IL-1β on memory reconsolidation have not yet been established. Therefore, we examined the effect of IL-1β on glutamate release, ERK phosphorylation and the activation of the transcription factor zinc finger- 268 (zif268) during reconsolidation. Our results demonstrated that IL-1β induced a significant decrease of glutamate release after reactivation of the fear memory and this effect was related to calcium concentration in hippocampal synaptosomes. IL-1β also reduced ERK phosphorylation and zif268 expression in the hippocampus. Central administration of α-MSH prevented the decrease in glutamate release, ERK phosphorylation and zif268 expression induced by IL-1β. Our results establish possible mechanisms involved in the detrimental effect of IL-1β on memory reconsolidation and also indicate that α-MSH may exert a beneficial modulatory role in preventing IL-1β effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Transdermal scopolamine: an alternative to ondansetron and droperidol for the prevention of postoperative and postdischarge emetic symptoms.

    PubMed

    White, Paul F; Tang, Jun; Song, Dajun; Coleman, Jayne E; Wender, Ronald H; Ogunnaike, Babatunde; Sloninsky, Alexander; Kapu, Rajani; Shah, Mary; Webb, Tom

    2007-01-01

    Given the controversy regarding the use of droperidol and the high cost of the 5-HT3 antagonists, a cost-effective alternative for routine use as a prophylactic antiemetic would be desirable. We designed two parallel, randomized, double-blind sham and placebo-controlled studies to compare the early and late antiemetic efficacy and adverse event profile of transdermal scopolamine (TDS) 1.5 mg, to ondansetron 4 mg IV, and droperidol 1.25 mg IV for antiemetic prophylaxis as part of a multimodal regimen in "at risk" surgical populations. A total of 150 patients undergoing major laparoscopic (n = 80) or plastic (n = 70) surgery procedures received either an active TDS patch (containing scopolamine 1.5 mg) or a similar appearing sham patch 60 min before entering the operating room. All patients received a standardized general anesthetic technique. A second study medication was administered in a 2-mL numbered syringe containing either saline (for the two active TDS groups), droperidol, 1.25 mg, or ondansetron, 4 mg (for the sham patch groups), and was administered IV near the end of the procedure. The occurrence of postoperative nausea and vomiting/retching, need for rescue antiemetics, and the complete response rates (i.e., absence of protracted nausea or repeated episodes of emesis requiring antiemetic rescue medication) was reported. In addition, complaints of visual disturbances, dry mouth, drowsiness, and restlessness were noted up to 72 h after surgery. There were no significant differences in any of the emetic outcomes or need for rescue antiemetics among the TDS, droperidol, and ondansetron groups in the first 72 h after surgery. The complete response rates varied from 41% to 51%, and did not significantly differ among the treatment groups. The overall incidence of dry mouth was significantly more frequent in the TDS groups than in the droperidol and ondansetron groups (21% vs 3%). Premedication with TDS was as effective as droperidol (1.25 mg) or ondansetron (4

  18. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats.

    PubMed

    Almaguer-Melian, William; Bergado-Rosado, Jorge; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Mercerón-Martínez, Daymara; Frey, Julietta U

    2012-01-17

    Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.

  19. Selenium attenuates apoptosis, inflammation and oxidative stress in the blood and brain of aged rats with scopolamine-induced dementia.

    PubMed

    Demirci, Kadir; Nazıroğlu, Mustafa; Övey, İshak Suat; Balaban, Hasan

    2017-04-01

    A potent antioxidant, selenium might modulate dementia-induced progression of brain and blood oxidative and apoptotic injuries. The present study explores whether selenium protects against experimental dementia (scopolamine, SCOP)-induced brain, and blood oxidative stress, apoptosis levels, and cytokine production in rats. Thirty-two rats were equally divided into four groups. The first group was used as an untreated control. The second group was treated with SCOP to induce dementia. The third and fourth groups received 1.5 mg/kg selenium (sodium selenite) and SCOP + selenium, respectively. Dementia was induced in the second and forth groups by intraperitoneal SCOP (1 mg/kg) administration. Brain, plasma, and erythrocyte lipid peroxidation levels as well as plasma TNF-α, interleukin (IL)-1β, and IL-4 levels were high in the SCOP group though they were low in selenium treatments. Selenium and selenium + SCOP treatments increased the lowered glutathione peroxidase activity, reduced glutathione, vitamins A and E concentrations in the brain, erythrocytes and plasma of the SCOP group. Apoptotic value expressions as active caspase-3, procaspase-9, and PARP were also increased by SCOP, while they were decreased by selenium and selenium + SCOP treatments. In conclusion, selenium induced protective effects against experimental dementia-induced brain, and blood oxidative injuries and apoptosis through regulation of cytokine production, vitamin E, glutathione concentrations, and glutathione peroxidase activity.

  20. Efficacy of Intranasal Scopolamine Gel for Motion Sickness Treatment in Aviation Candidates

    DTIC Science & Technology

    2009-04-13

    Baseline 15 25 80 115 145 190 M ea n B lo o d P re ss u re (m m H g ) 0 20 40 60 80 100 120 140 Systolic BP P Systolic BPIN Diastolic BPP Diastolic...scopolamine when compared to placebo, p < .05. BPP = Blood Pressure, Placebo, BPIN = Blood Pressure, Intranasal Scopolamine 31 Time (min) Baseline 15 25 80

  1. Liquid-Spray Formulation Of Scopolamine

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Cintron, Nitza M.

    1992-01-01

    Scopolamine, fast-acting anticholinergic drug, formulated into drops administered intranasally. Formulation very useful for people who need immediate relief from motion sickness, and they can administer it to themselves. Also used in other clinical situations in which fast-acting anticholinergic medication required. Modified into such other forms as gel preparation, aqueous-base ointment, or aerosol spray or mist; also dispensed in metered-dose delivery system.

  2. Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats

    PubMed Central

    Lapmanee, Sarawut; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2017-01-01

    Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment. PMID:29099859

  3. Agomelatine, venlafaxine, and running exercise effectively prevent anxiety- and depression-like behaviors and memory impairment in restraint stressed rats.

    PubMed

    Lapmanee, Sarawut; Charoenphandhu, Jantarima; Teerapornpuntakit, Jarinthorn; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2017-01-01

    Several severe stressful situations, e.g., natural disaster, infectious disease out break, and mass casualty, are known to cause anxiety, depression and cognitive impairment, and preventive intervention for these stress complications is worth exploring. We have previously reported that the serotonin-norepinephrine-dopamine reuptake inhibitor, venlafaxine, as well as voluntary wheel running are effective in the treatment of anxiety- and depression-like behaviors in stressed rats. But whether they are able to prevent deleterious consequences of restraint stress in rats, such as anxiety/depression-like behaviors and memory impairment that occur afterward, was not known. Herein, male Wistar rats were pre-treated for 4 weeks with anti-anxiety/anti-depressive drugs, agomelatine and venlafaxine, or voluntary wheel running, followed by 4 weeks of restraint-induced stress. During the stress period, rats received neither drug nor exercise intervention. Our results showed that restraint stress induced mixed anxiety- and depression-like behaviors, and memory impairment as determined by elevated plus-maze, elevated T-maze, open field test (OFT), forced swimming test (FST), and Morris water maze (MWM). Both pharmacological pre-treatments and running successfully prevented the anxiety-like behavior, especially learned fear, in stressed rats. MWM test suggested that agomelatine, venlafaxine, and running could prevent stress-induced memory impairment, but only pharmacological treatments led to better novel object recognition behavior and positive outcome in FST. Moreover, western blot analysis demonstrated that venlafaxine and running exercise upregulated brain-derived neurotrophic factor (BDNF) expression in the hippocampus. In conclusion, agomelatine, venlafaxine as well as voluntary wheel running had beneficial effects, i.e., preventing the restraint stress-induced anxiety/depression-like behaviors and memory impairment.

  4. Effects of clonidine and scopolamine on multiple target detection in rapid serial visual presentation.

    PubMed

    Brown, Stephen B R E; Slagter, Heleen A; van Noorden, Martijn S; Giltay, Erik J; van der Wee, Nic J A; Nieuwenhuis, Sander

    2016-01-01

    The specific role of neuromodulator systems in regulating rapid fluctuations of attention is still poorly understood. In this study, we examined the effects of clonidine and scopolamine on multiple target detection in a rapid serial visual presentation task to assess the role of the central noradrenergic and cholinergic systems in temporal attention. Eighteen healthy volunteers took part in a crossover double-dummy study in which they received clonidine (150/175 μg), scopolamine (1.2 mg), and placebo by mouth in counterbalanced order. A dual-target attentional blink task was administered at 120 min after scopolamine intake and 180 min after clonidine intake. The electroencephalogram was measured during task performance. Clonidine and scopolamine both impaired detection of the first target (T1). For clonidine, this impairment was accompanied by decreased amplitudes of the P2 and P3 components of the event-related potential. The drugs did not impair second-target (T2) detection, except if T2 was presented immediately after T1. The attentional blink for T2 was not affected, in line with a previous study that found no effect of clonidine on the attentional blink. These and other results suggest that clonidine and scopolamine may impair temporal attention through a decrease in tonic alertness and that this decrease in alertness can be temporarily compensated by a phasic alerting response to a salient stimulus. The comparable behavioral effects of clonidine and scopolamine are consistent with animal studies indicating close interactions between the noradrenergic and cholinergic neuromodulator systems.

  5. Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: evidence from fMRI in healthy subjects.

    PubMed

    Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J

    2012-06-01

    The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.

  6. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory.

    PubMed

    Xue, Wei; Hu, Jin-feng; Yuan, Yu-he; Sun, Jian-dong; Li, Bo-yu; Zhang, Dong-ming; Li, Chuang-jun; Chen, Nai-hong

    2009-09-01

    The aim of this study was to investigate the cognition-enhancing activity and underlying mechanisms of a triterpenoid saponin (polygalasaponin XXXII, PGS32) isolated from the roots of Polygala tenuifolia Willd. The Morris water maze was used to evaluate the spatial learning and memory of mice. To detect the basic properties of synaptic transmission and long-term potentiation (LTP) in the dentate gyrus of rats, electrophysiological recordings were made of evoked potentials. Western blotting analysis and immunofluorescence assays were used to determine the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), synapsin I and the expression of brain derived neurotrophic factor (BDNF). When administered at 0.125, 0.5, or 2 mg/kg, PGS32 could significantly prevent scopolamine-induced cognitive impairments in mice. Intracerebroventricular (icv) administration of PGS32 greatly enhanced basic synaptic transmission in the dentate gyrus of rats and induced LTP. In primary hippocampal neurons, as well as in the hippocampus of maze-trained mice, PGS32 activated the mitogen-activated protein (MAP) kinase cascade by promoting phosphorylation of ERK, CREB and synapsin I. The expression of BDNF was also greatly enhanced in the hippocampus. Our findings suggest that PGS32 can improve hippocampus-dependent learning and memory, possibly through improvement of synaptic transmission, activation of the MAP kinase cascade and enhancement of the level of BDNF. Therefore, PGS32 shows promise as a potential cognition-enhancing therapeutic drug.

  7. Polygalasaponin XXXII from Polygala tenuifolia root improves hippocampal-dependent learning and memory

    PubMed Central

    Xue, Wei; Hu, Jin-feng; Yuan, Yu-he; Sun, Jian-dong; Li, Bo-yu; Zhang, Dong-ming; Li, Chuang-jun; Chen, Nai-hong

    2009-01-01

    Aim: The aim of this study was to investigate the cognition-enhancing activity and underlying mechanisms of a triterpenoid saponin (polygalasaponin XXXII, PGS32) isolated from the roots of Polygala tenuifolia Willd. Methods: The Morris water maze was used to evaluate the spatial learning and memory of mice. To detect the basic properties of synaptic transmission and long-term potentiation (LTP) in the dentate gyrus of rats, electrophysiological recordings were made of evoked potentials. Western blotting analysis and immunofluorescence assays were used to determine the phosphorylation of extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), synapsin I and the expression of brain derived neurotrophic factor (BDNF). Results: When administered at 0.125, 0.5, or 2 mg/kg, PGS32 could significantly prevent scopolamine-induced cognitive impairments in mice. Intracerebroventricular (icv) administration of PGS32 greatly enhanced basic synaptic transmission in the dentate gyrus of rats and induced LTP. In primary hippocampal neurons, as well as in the hippocampus of maze-trained mice, PGS32 activated the mitogen-activated protein (MAP) kinase cascade by promoting phosphorylation of ERK, CREB and synapsin I. The expression of BDNF was also greatly enhanced in the hippocampus. Conclusion: Our findings suggest that PGS32 can improve hippocampus-dependent learning and memory, possibly through improvement of synaptic transmission, activation of the MAP kinase cascade and enhancement of the level of BDNF. Therefore, PGS32 shows promise as a potential cognition-enhancing therapeutic drug. PMID:19684611

  8. The effect of scopolamine on matching behavior and the estimation of relative reward magnitude.

    PubMed

    Leon, Matthew I; Rodriguez-Barrera, Vanessa; Amaya, Aldo

    2017-10-01

    We investigated the behavioral effects of scopolamine on rats that bar pressed for trains of electrically stimulating pulses under concurrent variable interval schedules of reward. For the first half of the session (30 min) a 1:4 ratio in the programmed number of stimulation trains delivered at each option was in effect. At the start of the second half of the session, an unsignaled reversal in the relative train number (4:1) occurred. We tracked the relative magnitude of reward estimated for each contiguous pair of reinforced visits to competing options. Scopolamine hydrobromide led to a reduction in the relative magnitude of reward. A similar result was obtained in a follow-up test in which relative magnitude was manipulated by varying the pulse frequency of stimulation, while equating the train number at each option. The effect of scopolamine hydrobromide could not be attributed to undermatching, side bias, nor to an effect of scopolamine on the reward integration process. When the same rats were treated with scopolamine methylbromide, no effects on matching behavior were observed. Our results suggest a cholinergic basis for the computation of choice variables related to matching behavior. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. The selective positive allosteric M1 muscarinic receptor modulator PQCA attenuates learning and memory deficits in the Tg2576 Alzheimer's disease mouse model.

    PubMed

    Puri, Vanita; Wang, Xiaohai; Vardigan, Joshua D; Kuduk, Scott D; Uslaner, Jason M

    2015-01-01

    We have recently shown that the M1 muscarinic receptor positive allosteric modulator, PQCA, improves cognitive performance in rodents and non-human primates administered the muscarinic receptor antagonist scopolamine. The purpose of the present experiments was to characterize the effects of PQCA in a model more relevant to the disease pathology of Alzheimer's disease. Tg2576 transgenic mice that have elevated Aβ were tested in the novel object recognition task to characterize recognition memory as a function of age and treatment with the PQCA. The effects of PQCA were compared to the acetylcholinesterase inhibitor donepezil, the standard of care for Alzheimer's disease. In addition, the effect of co-administering PQCA and donepezil was evaluated. Aged Tg2576 mice demonstrated a deficit in recognition memory that was significantly attenuated by PQCA. The positive control donepezil also reversed the deficit. Furthermore, doses of PQCA and donepezil that were inactive on their own were found to improve recognition memory when given together. These studies suggest that M1 muscarinic receptor positive allosteric modulation can ameliorate memory deficits in disease relevant models of Alzheimer's disease. These data, combined with our previous findings demonstrating PQCA improves scopolamine-induced cognitive deficits in both rodents and non-human primates, suggest that M1 positive allosteric modulators have therapeutic potential for the treatment of Alzheimer's disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Amygdala response to explicit sad face stimuli at baseline predicts antidepressant treatment response to scopolamine in major depressive disorder.

    PubMed

    Szczepanik, Joanna; Nugent, Allison C; Drevets, Wayne C; Khanna, Ashish; Zarate, Carlos A; Furey, Maura L

    2016-08-30

    The muscarinic antagonist scopolamine produces rapid antidepressant effects in individuals with major depressive disorder (MDD). In healthy subjects, manipulation of acetyl-cholinergic transmission modulates attention in a stimulus-dependent manner. This study tested the hypothesis that baseline amygdalar activity in response to emotional stimuli correlates with antidepressant treatment response to scopolamine and could thus potentially predict treatment outcome. MDD patients and healthy controls performed an attention shifting task involving emotional faces while undergoing functional magnetic resonance imaging (fMRI). We found that blood oxygenation level dependent (BOLD) signal in the amygdala acquired while MDD patients processed sad face stimuli correlated positively with antidepressant response to scopolamine. Amygdalar response to sad faces in MDD patients who did not respond to scopolamine did not differ from that of healthy controls. This suggests that the pre-treatment task elicited amygdalar activity that may constitute a biomarker of antidepressant treatment response to scopolamine. Furthermore, in MDD patients who responded to scopolamine, we observed a post-scopolamine stimulus processing shift towards a pattern demonstrated by healthy controls, indicating a change in stimulus-dependent neural response potentially driven by attenuated cholinergic activity in the amygdala. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Differential proteome profiling in the hippocampus of amnesic mice.

    PubMed

    Baghel, Meghraj Singh; Thakur, Mahendra Kumar

    2017-08-01

    Amnesia or memory loss is associated with brain aging and several neurodegenerative pathologies including Alzheimer's disease (AD). This can be induced by a cholinergic antagonist scopolamine but the underlying molecular mechanism is poorly understood. This study of proteome profiling in the hippocampus could provide conceptual insights into the molecular mechanisms involved in amnesia. To reveal this, mice were administered scopolamine to induce amnesia and memory impairment was validated by novel object recognition test. Using two-dimensional gel electrophoresis coupled with MALDI-MS/MS, we have analyzed the hippocampal proteome and identified 18 proteins which were differentially expressed. Out of these proteins, 11 were downregulated and 7 were upregulated in scopolamine-treated mice as compared to control. In silico analysis showed that the majority of identified proteins are involved in metabolism, catalytic activity, and cytoskeleton architectural functions. STRING interaction network analysis revealed that majority of identified proteins exhibit common association with Actg1 cytoskeleton and Vdac1 energy transporter protein. Furthermore, interaction map analysis showed that Fascin1 and Coronin 1b individually interact with Actg1 and regulate the actin filament dynamics. Vdac1 was significantly downregulated in amnesic mice and showed interaction with other proteins in interaction network. Therefore, we silenced Vdac1 in the hippocampus of normal young mice and found similar impairment in recognition memory of Vdac1 silenced and scopolamine-treated mice. Thus, these findings suggest that Vdac1-mediated disruption of energy metabolism and cytoskeleton architecture might be involved in scopolamine-induced amnesia. © 2017 Wiley Periodicals, Inc.

  12. Oral scopolamine augmentation in moderate to severe major depressive disorder: a randomized, double-blind, placebo-controlled study.

    PubMed

    Khajavi, Danial; Farokhnia, Mehdi; Modabbernia, Amirhossein; Ashrafi, Mandana; Abbasi, Seyed-Hesammedin; Tabrizi, Mina; Akhondzadeh, Shahin

    2012-11-01

    To evaluate the antidepressant effect of oral scopolamine as an adjunct to citalopram. In this randomized double-blind placebo-controlled study, patients were assessed in the outpatient clinics of 2 large hospitals from November 2011 to January 2012. Forty patients (18-55 years) with major depressive disorder (DSM-IV-TR criteria) and 17-Item Hamilton Depression Rating Scale (HDRS) score ≥ 22 were randomly assigned to scopolamine hydrobromide (1 mg/d) (n = 20) or placebo (n = 20) in addition to citalopram for 6 weeks. HDRS score was measured at baseline and days 4, 7, 14, 28, and 42. The primary outcome measure was HDRS score change from baseline to week 6 in the scopolamine group versus the placebo group. Response was defined as ≥ 50% decrease in HDRS score; remission, as HDRS score ≤ 7. Augmentation with scopolamine was significantly more effective than placebo (F(1,38) = 5.831, P = .021). Patients receiving scopolamine showed higher rates of response (65%, 13/20 at week 4) and remission (65%, 13/20 at week 6) than the placebo group (30%, 6/20 and 20%, 4/20, respectively; P = .027, P = .004, respectively). Patients in the scopolamine group showed higher rates of dry mouth, blurred vision, and dizziness than the placebo group. Oral scopolamine is a safe and effective adjunct for treatment of patients with moderate to severe major depressive disorder. Iranian Registry of Clinical Trials identifier: IRCT201201181556N31. © Copyright 2012 Physicians Postgraduate Press, Inc.

  13. Parecoxib mitigates spatial memory impairment induced by sevoflurane anesthesia in aged rats.

    PubMed

    Gong, M; Chen, G; Zhang, X M; Xu, L H; Wang, H M; Yan, M

    2012-05-01

    Inflammation in brain plays a critical role in the pathogenesis of cognitive impairment. Anti-inflammatory therapy may thus constitute a novel approach for associated cognitive dysfunction. The present study investigated the effects of parecoxib in the prevention of cognitive impairments induced by sevoflurane in aged rats. Sixty-six aged rats were divided randomly into three groups: control group (n = 22, sham anesthesia), sevoflurane group (n = 22, received 2% sevoflurane for 5 h) and parecoxib group (n = 22, received intraperitoneal injections of 10 mg/kg parecoxib and then exposed to 2% sevoflurane for 5 h). Spatial learning performance was tested by Morris water maze. The expression of cyclooxygenase-2 protein and ultrastructure of synapse in hippocampus were measured. Sevoflurane anesthesia impaired the spatial learning and memory in aged rats. Compared with sevoflurane group, parecoxib group showed shorter escape latency and more number of crossings over the previous platform area. Furthermore, parecoxib treatment also significantly prevented the synaptic changes induced by sevoflurane. Parecoxib mitigates spatial memory impairment induced by sevoflurane anesthesia in aged rats. The synaptic morphometry change may be one of the mechanisms involved in learning and memory deficit. © 2012 The Authors. Acta Anaesthesiologica Scandinavica © 2012 The Acta Anaesthesiologica Scandinavica Foundation.

  14. Transdermal Scopolamine Withdrawal Syndrome Case Report in the Pediatric Cerebral Palsy Population.

    PubMed

    Chowdhury, Nasim A; Sewatsky, Mary Laura; Kim, Heakyung

    2017-08-01

    Sialorrhea in children with cerebral palsy (CP) results in aspiration, decreased social integration, and poor quality of life. Management options include transdermal anticholinergics such as the scopolamine patch. A controlled clinical trial has proven botulinum toxin (BTX) injections into the salivary glands are an effective alternative to transdermal anticholinergics with a safer side effect profile. Multiple studies of the injections in diverse populations demonstrate reduction in saliva production with improvement in quality of life and decrease in hospitalization-associated costs. The authors describe a 15-year-old boy with spastic quadriplegic CP who developed emesis, nausea, and lethargy 1 day after the first injection of botulinum toxin A (BTX-A) to his salivary glands for sialorrhea management. The authors ascribed his symptoms to scopolamine withdrawal. Given the lack of exposure in the medical literature, there is minimal awareness of the withdrawal syndrome from transdermal scopolamine in children with or without CP, resulting in delayed diagnosis and potential complications. Treatment of the withdrawal syndrome has been successful with meclizine though safety and efficacy has not been established in children younger than 12 despite frequent clinical and over-the-counter use. Prompt diagnosis of the transdermal scopolamine withdrawal syndrome can result in quicker treatment and a shorter hospital stay.

  15. No Neuromuscular Side-Effects of Scopolamine in Sensorimotor Control and Force-Generating Capacity Among Parabolic Fliers

    NASA Astrophysics Data System (ADS)

    Ritzmann, Ramona; Freyler, Kathrin; Krause, Anne; Gollhofer, Albert

    2016-10-01

    Scopolamine is used to counteract motion sickness in parabolic flight (PF) experiments. Although the drug's anticholinergic properties effectively impede vomiting, recent studies document other sensory side-effects in the central nervous system that may considerably influence sensorimotor performance. This study aimed to quantify such effects in order to determine if they are of methodological and operational significance for sensorimotor control. Ten subjects of a PF campaign received a weight-sex-based dose of a subcutaneous scopolamine injection. Sensorimotor performance was recorded before medication, 20min, 2h and 4h after injection in four space-relevant paradigms: balance control in one-leg stance with eyes open (protocol 1) and closed as well as force-generating capacity in countermovement jumps and hops (protocol 2). Postural sway, forces and joint angles were recorded. Neuromuscular control was assessed by electromyography and peripheral nerve stimulation; H-reflexes and M-waves were used to monitor spinal excitability of the Ia afferent reflex circuitry and maximal motor output. (1) H-reflex amplitudes, latencies and functional reflexes remained unchanged after scopolamine injection. (2) M-waves, neuromuscular activation intensities and antagonistic muscle coordination did not change with scopolamine administration. (3) Balance performance and force-generating capacity were not impeded by scopolamine. We found no evidence for changes in sensorimotor control in response to scopolamine injection. Sensory processing of daily relevant reflexes, spinal excitability, maximal motor output and performance parameters were not sensitive to the medication. We conclude that scopolamine administration can be used to counteract motion sickness in PF without methodological and operational concerns or interference regarding sensorimotor skills associated with neuromuscular control.

  16. A Modified LC/MS/MS Method with Enhanced Sensitivity for the Determination of Scopolamine in Human Plasma

    NASA Technical Reports Server (NTRS)

    Wang, Zuwei; Vaksman, Zalman; Putcha, Lakshmi

    2008-01-01

    Intranasal scopolamine is a choice drug for the treatment of motion sickness during space flight because of its quick onset of action, short half-life and favorable sideeffects profile. The dose administered usually ranges between 0.1 and 0.4 mg. Such small doses make it difficult to detect concentrations of scopolamine in biological fluids using existing sensitive LC/MS/MS method, especially when the biological sample volumes are limited. To measure scopolamine in human plasma to facilitate pharmacokinetic evaluation of the drug, we developed a sensitive LC/MS/MS method using 96 well micro elution plates for solid phase extraction (SPE) of scopolamine in human plasma. Human plasma (100-250 micro L) were loaded onto Waters Oasis HLB 96 well micro elution plate and eluted with 50 L of organic solvent without evaporation and reconstitution. HPLC separation of the eluted sample was performed using an Agilent Zorbax SB-CN column (50 x 2.1 mm) at a flow rate of 0.2 mL/min for 3 minutes. The mobile phase for separation was 80:20 (v/v) methanol: ammonium acetate (30 mM) in water. Concentrations of scopolamine were determined using a Micromass Quattro Micro(TM) mass spectrometer with electrospray ionization (ESI). ESI mass spectra were acquired in positive ion mode with multiple reaction monitoring for the determination of scopolamine m/z = 304.2 right arrow 138.1 and internal standard hyoscyamine m/z = 290.2 right arrow 124.1. The method is rapid, reproducible, specific and has the following parameters: scopolamine and the IS are eluted at about 1.1 and 1.7 min respectively. The linear range is 25-10000 pg/mL for scopolamine in human plasma with correlation coefficients greater than 0.99 and CV less than 0.5%. The intra-day and inter-day CVs are less than 15% for quality control samples with concentrations of 75,300, and 750 pg/mL of scopolamine in human plasma. SPE using 96 well micro elution plates allows rapid sample preparation and enhanced sensitivity for the LC

  17. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine

    PubMed Central

    Wohleb, Eric S.; Gerhard, Danielle; Thomas, Alex; Duman, Ronald S.

    2017-01-01

    Major depressive disorder (MDD) is a prevalent neuropsychiatric disease that causes profound social and economic burdens. The impact of MDD is compounded by the limited therapeutic efficacy and delay of weeks to months of currently available medications. These issues highlight the need for more efficacious and faster-acting treatments to alleviate the burdens of MDD. Recent breakthroughs demonstrate that certain drugs, including ketamine and scopolamine, produce rapid and long-lasting antidepressant effects in MDD patients. Moreover, preclinical work has shown that the antidepressant actions of ketamine and scopolamine in rodent models are caused by an increase of extracellular glutamate, elevated BDNF, activation of the mammalian target of rapamycin complex 1 (mTORC1) cascade, and increased number and function of spine synapses in the prefrontal cortex (PFC). Here we review studies showing that both ketamine and scopolamine elicit rapid antidepressant effects through converging molecular and cellular mechanisms in the PFC. In addition, we discuss evidence that selective antagonists of NMDA and muscarinic acetylcholine (mACh) receptor subtypes (i.e., NR2B and M1-AChR) in the PFC produce comparable antidepressant responses. Furthermore, we discuss evidence that ketamine and scopolamine antagonize inhibitory interneurons in the PFC leading to disinhibition of pyramidal neurons and increased extracellular glutamate that promotes the rapid antidepressant responses to these agents. Collectively, these studies indicate that specific NMDA and mACh receptor subtypes on GABAergic interneurons are promising targets for novel rapid-acting antidepressant therapies. PMID:26955968

  18. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2

    PubMed Central

    2011-01-01

    Background Betaine (glycine betaine or trimethylglycine) plays important roles as an osmolyte and a methyl donor in animals. While betaine is reported to suppress expression of proinflammatory molecules and reduce oxidative stress in aged rat kidney, the effects of betaine on the central nervous system are not well known. In this study, we investigated the effects of betaine on lipopolysaccharide (LPS)-induced memory impairment and on mRNA expression levels of proinflammatory molecules, glial markers, and GABA transporter 2 (GAT2), a betaine/GABA transporter. Methods Mice were continuously treated with betaine for 13 days starting 1 day before they were injected with LPS, or received subacute or acute administration of betaine shortly before or after LPS injection. Then, their memory function was evaluated using Y-maze and novel object recognition tests 7 and 10-12 days after LPS injection (30 μg/mouse, i.c.v.), respectively. In addition, mRNA expression levels in hippocampus were measured by real-time RT-PCR at different time points. Results Repeated administration of betaine (0.163 mmol/kg, s.c.) prevented LPS-induced memory impairment. GAT2 mRNA levels were significantly increased in hippocampus 24 hr after LPS injection, and administration of betaine blocked this increase. However, betaine did not affect LPS-induced increases in levels of mRNA related to inflammatory responses. Both subacute administration (1 hr before, and 1 and 24 hr after LPS injection) and acute administration (1 hr after LPS injection) of betaine also prevented LPS-induced memory impairment in the Y-maze test. Conclusions These data suggest that betaine has protective effects against LPS-induced memory impairment and that prevention of LPS-induced changes in GAT2 mRNA expression is crucial to this ameliorating effect. PMID:22053950

  19. Inhibition of Hippocampal β-Adrenergic Receptors Impairs Retrieval But Not Reconsolidation of Cocaine-Associated Memory and Prevents Subsequent Reinstatement

    PubMed Central

    Otis, James M; Fitzgerald, Michael K; Mueller, Devin

    2014-01-01

    Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment. PMID:23907403

  20. Inhibition of hippocampal β-adrenergic receptors impairs retrieval but not reconsolidation of cocaine-associated memory and prevents subsequent reinstatement.

    PubMed

    Otis, James M; Fitzgerald, Michael K; Mueller, Devin

    2014-01-01

    Retrieval of drug-associated memories is critical for maintaining addictive behaviors, as presentation of drug-associated cues can elicit drug seeking and relapse. Recently, we and others have demonstrated that β-adrenergic receptor (β-AR) activation is necessary for retrieval using both rat and human memory models. Importantly, blocking retrieval with β-AR antagonists persistently impairs retrieval and provides protection against subsequent reinstatement. However, the neural locus at which β-ARs are required for maintaining retrieval and subsequent reinstatement is unclear. Here, we investigated the necessity of dorsal hippocampus (dHipp) β-ARs for drug-associated memory retrieval. Using a cocaine conditioned place preference (CPP) model, we demonstrate that local dHipp β-AR blockade before a CPP test prevents CPP expression shortly and long after treatment, indicating that dHipp β-AR blockade induces a memory retrieval disruption. Furthermore, this retrieval disruption provides long-lasting protection against cocaine-induced reinstatement. The effects of β-AR blockade were dependent on memory reactivation and were not attributable to reconsolidation disruption as blockade of β-ARs immediately after a CPP test had little effect on subsequent CPP expression. Thus, cocaine-associated memory retrieval is mediated by β-AR activity within the dHipp, and disruption of this activity could prevent cue-induced drug seeking and relapse long after treatment.

  1. Subclinical Doses of ATP-Sensitive Potassium Channel Modulators Prevent Alterations in Memory and Synaptic Plasticity Induced by Amyloid-β.

    PubMed

    Salgado-Puga, Karla; Rodríguez-Colorado, Javier; Prado-Alcalá, Roberto A; Peña-Ortega, Fernando

    2017-01-01

    In addition to coupling cell metabolism and excitability, ATP-sensitive potassium channels (KATP) are involved in neural function and plasticity. Moreover, alterations in KATP activity and expression have been observed in Alzheimer's disease (AD) and during amyloid-β (Aβ)-induced pathology. Thus, we tested whether KATP modulators can influence Aβ-induced deleterious effects on memory, hippocampal network function, and plasticity. We found that treating animals with subclinical doses (those that did not change glycemia) of a KATP blocker (Tolbutamide) or a KATP opener (Diazoxide) differentially restrained Aβ-induced memory deficit, hippocampal network activity inhibition, and long-term synaptic plasticity unbalance (i.e., inhibition of LTP and promotion of LTD). We found that the protective effect of Tolbutamide against Aβ-induced memory deficit was strong and correlated with the reestablishment of synaptic plasticity balance, whereas Diazoxide treatment produced a mild protection against Aβ-induced memory deficit, which was not related to a complete reestablishment of synaptic plasticity balance. Interestingly, treatment with both KATP modulators renders the hippocampus resistant to Aβ-induced inhibition of hippocampal network activity. These findings indicate that KATP are involved in Aβ-induced pathology and they heighten the potential role of KATP modulation as a plausible therapeutic strategy against AD.

  2. Scopolamine effects on visual discrimination: modifications related to stimulus control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, H.L.

    1975-01-01

    Stumptail monkeys (Macaca arctoides) performed a discrete trial, three-choice visual discrimination. The discrimination behavior was controlled by the shape of the visual stimuli. Strength of the stimuli in controlling behavior was systematically related to a physical property of the stimuli, luminance. Low luminance provided weak control, resulting in a low accuracy of discrimination, a low response probability and maximal sensitivity to scopolamine (7.5-60 ..mu..g/kg). In contrast, high luminance provided strong control of behavior and attenuated the effects of scopolamine. Methylscopolamine had no effect in doses of 30 to 90 ..mu..g/kg. Scopolamine effects resembled the effects of reducing stimulus control inmore » undrugged monkeys. Since behavior under weak control seems to be especially sensitive to drugs, manipulations of stimulus control may be particularly useful whenever determination of the minimally-effective dose is important, as in behavioral toxicology. Present results are interpreted as specific visual effects of the drug, since nonsensory factors such as base-line response rate, reinforcement schedule, training history, motor performance and motivation were controlled. Implications for state-dependent effects of drugs are discussed.« less

  3. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin.

    PubMed

    Nuseir, Khawla Q; Alzoubi, Karem H; Alhusban, Ahmed; Bawaane, Areej; Al-Azzani, Mohammed; Khabour, Omar F

    2017-10-01

    Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    PubMed

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. [Effects of rapamycin on amyloid β-protein induced impairments of working memory and synaptic plasticity in rats].

    PubMed

    Hao, Ming; Tong, Jia-qing; Zhang, Jun; Wu, Mei-na; Qi, Jin-shun

    2016-01-01

    The present study investigated the effects of rapamycin on Aβ1-42-induced deficits in working memory and synaptic plasticity. After bilateral hippocampal injection of Aβ1-42 and rapamycinin rats, spontaneous alternation in Y-maze and in vivo hippocampal long-term potentiation (LTP) of rats were recorded. All data were analized by two-way repeated measures analysis of variance (ANOVA). (Hippocampal injection of Aβ1-42 alone impaired working memory of rats; (2) Rapamycin did not affect working memory of rats, but alleviated Aβ1-42-induced working memory deficits, compared with Aβ1-42 alone group; (Aβ1-42 remarkably suppressed in vivo hippocampal LTP of fEPSPs in the CA1 region; (4) Pretreatment with rapamycin prevented Aβ1-42-induced suppression of LTP. These data indicates that rapamycin could protect against Aβ1-42-induced impairments in working memory and synaptic plasticity in rats.

  6. 5-HT7 receptor activation: procognitive and antiamnesic effects.

    PubMed

    Meneses, A; Perez-Garcia, G; Liy-Salmeron, G; Ponce-López, T; Lacivita, E; Leopoldo, M

    2015-02-01

    The serotonin (5-hydroxytryptamine (5-HT)) 5-HT7 receptor is localized in brain areas mediating memory; however, the role of this receptor on memory remains little explored. First, demonstrating the associative nature of Pavlovian/instrumental autoshaping (P/I-A) task, rats were exposed (three sessions) to CS-US (Pavlovian autoshaping), truly random control, free operant, and presentations of US or CS, and they were compared with rats trained-tested for one session to the P/I-A procedure. Also, effects of the 5-HT7 receptor agonist LP-211 administered intraperitoneally after training was determined on short- (1.5 h) and long-term memory 24 and 48 h) and on scopolamine-induced memory impairment and cAMP production. Autoshaping and its behavioral controls were studied. Other animals were subjected to an autoshaping training session and immediately afterwards were given (intraperitoneal) vehicle or LP-211 (0.1-10 mg/kg) and/or scopolamine (0.2 mg/kg) and tested for short-term memory (STM) and long-term memory (LTM); their brains were extracted for the cAMP ELISA immunoassay. P/I-A group produced the higher %CR. LP-211 did not affect STM; nonetheless, at 0.5 and 1.0 mg/kg, it improved LTM. The 5-HT7 receptor antagonist SB-269970 (SB; 10.0 mg/kg) alone had no effect; nevertheless, the LP-211 (1.0 mg/kg) LTM facilitation was reversed by SB. The scopolamine (0.2 mg/kg) induced-decrement in CR was accompanied by significant increased cAMP production. The scopolamine-induced decrement in CR and increments in cAMP were significantly attenuated by LP-211. Autoshaping is a reliable associative learning task whose consolidation is facilitated by the 5-HT7 receptor agonist LP-211.

  7. Effects of microdialyzed oxotremorine, carbachol, epibatidine, and scopolamine on intraspinal release of acetylcholine in the rat.

    PubMed

    Höglund, A U; Hamilton, C; Lindblom, L

    2000-10-01

    Intrathecally administered cholinergic agonists such as oxotremorine (muscarinic), carbachol (mixed nicotinic and muscarinic agonist), and epibatidine (nicotinic) have all been shown to reduce nociception in behavioral studies. Thus, there is substantial evidence for a role of acetylcholine (ACh) in the control of nociception in the spinal cord, but the mechanisms regulating ACh release are not known. The present study was initiated to establish a rat model to study which mechanisms are involved in the control of ACh release. Spinal microdialysis probes were inserted intraspinally at the C1-C5 spinal level in isoflurane-anesthetized rats. The probes were perfused with Ringer's solution containing 10 microM neostigmine to prevent degradation of ACh. Oxotremorine, carbachol, epibatidine, and scopolamine, dissolved in Ringer's solution, were administered intraspinally via dialysis and 30 microliter/10-min samples of dialysate were collected for HPLC analysis of ACh content. The release of ACh was found to be constant in the control (Ringer's only) situation during the experimental period of 150 min. Oxotremorine (100-1000 microM), carbachol (1 mM), and epibatidine (50-5000 microM) enhanced but scopolamine (50-200 nM) decreased the intraspinal release of ACh. Oxotremorine (ED(50) = 118 microM) and epibatidine (ED(50) = 175 microM) were found to produce a dose-dependent increase of ACh release. Cholinergic agonists caused an increase of intraspinal ACh and the antagonist scopolamine caused a decreased release of ACh. The data do not support an autoreceptor function of either nicotinic or muscarinic receptors in the spinal cord, contrary to what has been observed in the brain.

  8. (-)Epigallocatechin-3-gallate decreases the stress-induced impairment of learning and memory in rats.

    PubMed

    Soung, Hung-Sheng; Wang, Mao-Hsien; Tseng, Hsiang-Chien; Fang, Hsu-Wei; Chang, Kuo-Chi

    2015-08-18

    Stress induces reactive oxygen species (ROS) and causes alterations in brain cytoarchitecture and cognition. Green tea has potent antioxidative properties especially the tea catechin (-) epigallocatechin-3-gallate (EGCG). These powerful antioxidative properties are able to protect against various oxidative damages. In this study we investigated the impact of stress on rats' locomotor activity, learning and memory. Many tea catechins, including EGCG, were examined for their possible therapeutic effects in treating stress-induced impairment. Our results indicated that locomotor activity was decreased, and the learning and memory were impaired in stressed rats (SRs). EGCG treatment was able to prevent the decreased locomotor activity as well as improve the learning and memory in SRs. EGCG treatment was also able to reduce the increased oxidative status in SRs' hippocampi. The above results suggest a therapeutic effect of EGCG in treating stress-induced impairment of learning and memory, most likely by means of its powerful antioxidative properties. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Maltreatment increases spontaneous false memories but decreases suggestion-induced false memories in children.

    PubMed

    Otgaar, Henry; Howe, Mark L; Muris, Peter

    2017-09-01

    We examined the creation of spontaneous and suggestion-induced false memories in maltreated and non-maltreated children. Maltreated and non-maltreated children were involved in a Deese-Roediger-McDermott false memory paradigm where they studied and remembered negative and neutral word lists. Suggestion-induced false memories were created using a misinformation procedure during which both maltreated and non-maltreated children viewed a negative video (i.e., bank robbery) and later received suggestive misinformation concerning the event. Our results showed that maltreated children had higher levels of spontaneous negative false memories but lower levels of suggestion-induced false memories as compared to non-maltreated children. Collectively, our study demonstrates that maltreatment both increases and decreases susceptibility to memory illusions depending on the type of false memory being induced. Statement of contribution What is already known on this subject? Trauma affects memory. It is unclear how trauma affects false memory. What does this study add? This study focuses on two types of false memories. © 2017 The Authors. British Journal of Developmental Psychology published by John Wiley & Sons Ltd on behalf of British Psychological Society.

  10. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents.

    PubMed

    Shin, Chang Yell; Kim, Hae-Sun; Cha, Kwang-Ho; Won, Dong Han; Lee, Ji-Yun; Jang, Sun Woo; Sohn, Uy Dong

    2018-05-01

    A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.

  11. The effects of sigma (σ1) receptor-selective ligands on muscarinic receptor antagonist-induced cognitive deficits in mice

    PubMed Central

    Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R

    2015-01-01

    Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilat, E.; Kadar, T.; Levy, A.

    Centrally mediated seizures and convulsions are common consequences of exposure to organophosphates (OPs). These seizures rapidly progress to status epilepticus (SE) and contribute to profound brain injury. Effective management of these seizures is critical for minimization of brain damage. Nasal application of midazolam (1.5 mg/kg) after 5 min of sarin-induced electrographic seizure activity (EGSA) ameliorated EGSA and convulsive behavior (238 {+-} 90 s). Identical treatment after 30 min was not sufficient to ameliorate ECoG paradoxical activity and convulsive behavior. Nasal midazolam (1.5 mg/kg), together with scopolamine (1 mg/kg, im) after 5 min of EGSA, exerted a powerful and rapid anticonvulsantmore » effect (53 {+-} 10 s). Delaying the same treatment to 30 min of EGSA leads to attenuation of paroxysmal ECoG activity in all cases but total cessation of paroxysmal activity was not observed in most animals tested. Cognitive tests utilizing the Morris Water Maze demonstrated that nasal midazolam alone or together with scopolamine (im), administered after 5 min of convulsions, abolished the effect of sarin on learning. Both these treatments, when given after 30 min of convulsions, only decreased the sarin-induced learning impairments. Whereas rats which were not subject to the anticonvulsant agents did not show any memory for the platform location, both treatments (at 5 min as well as at 30 min) completely abolished the memory deficits. Both treatments equally blocked the impairment of reversal learning when given at 5 min. However, when administered after 30 min, midazolam alone reversed the impairments in reversal learning, while midazolam with scopolamine did not. Rats exposed to sarin and treated with the therapeutic regimen with the exclusion of midazolam exhibited severe brain lesions that encountered the hippocampus, pyriform cortex, and thalamus. Nasal midazolam at 5 min prevented brain damage, while delaying the midazolam treatment to 30 min of EGSA

  13. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex

    PubMed Central

    Tinsley, Chris J.; Fontaine-Palmer, Nadine S.; Vincent, Maria; Endean, Emma P.E.; Aggleton, John P.; Brown, Malcolm W.; Warburton, E. Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive. PMID:21693636

  14. Differing time dependencies of object recognition memory impairments produced by nicotinic and muscarinic cholinergic antagonism in perirhinal cortex.

    PubMed

    Tinsley, Chris J; Fontaine-Palmer, Nadine S; Vincent, Maria; Endean, Emma P E; Aggleton, John P; Brown, Malcolm W; Warburton, E Clea

    2011-01-01

    The roles of muscarinic and nicotinic cholinergic receptors in perirhinal cortex in object recognition memory were compared. Rats' discrimination of a novel object preference test (NOP) test was measured after either systemic or local infusion into the perirhinal cortex of the nicotinic receptor antagonist methyllycaconitine (MLA), which targets alpha-7 (α7) amongst other nicotinic receptors or the muscarinic receptor antagonists scopolamine, AFDX-384, and pirenzepine. Methyllycaconitine administered systemically or intraperirhinally before acquisition impaired recognition memory tested after a 24-h, but not a 20-min delay. In contrast, all three muscarinic antagonists produced a similar, unusual pattern of impairment with amnesia after a 20-min delay, but remembrance after a 24-h delay. Thus, the amnesic effects of nicotinic and muscarinic antagonism were doubly dissociated across the 20-min and 24-h delays. The same pattern of shorter-term but not longer-term memory impairment was found for scopolamine whether the object preference test was carried out in a square arena or a Y-maze and whether rats of the Dark Agouti or Lister-hooded strains were used. Coinfusion of MLA and either scopolamine or AFDX-384 produced an impairment profile matching that for MLA. Hence, the antagonists did not act additively when coadministered. These findings establish an important role in recognition memory for both nicotinic and muscarinic cholinergic receptors in perirhinal cortex, and provide a challenge to simple ideas about the role of cholinergic processes in recognition memory: The effects of muscarinic and nicotinic antagonism are neither independent nor additive.

  15. Pharmacological Blockade of Serotonin 5-HT7 Receptor Reverses Working Memory Deficits in Rats by Normalizing Cortical Glutamate Neurotransmission

    PubMed Central

    Bonaventure, Pascal; Aluisio, Leah; Shoblock, James; Boggs, Jamin D.; Fraser, Ian C.; Lord, Brian; Lovenberg, Timothy W.; Galici, Ruggero

    2011-01-01

    The role of 5-HT7 receptor has been demonstrated in various animal models of mood disorders; however its function in cognition remains largely speculative. This study evaluates the effects of SB-269970, a selective 5-HT7 antagonist, in a translational model of working memory deficit and investigates whether it modulates cortical glutamate and/or dopamine neurotransmission in rats. The effect of SB-269970 was evaluated in the delayed non-matching to position task alone or in combination with MK-801, a non-competitive NMDA receptor antagonist, and, in separate experiments, with scopolamine, a non-selective muscarinic antagonist. SB-269970 (10 mg/kg) significantly reversed the deficits induced by MK-801 (0.1 mg/kg) but augmented the deficit induced by scopolamine (0.06 mg/kg). The ability of SB-269970 to modulate MK-801-induced glutamate and dopamine extracellular levels was separately evaluated using biosensor technology and microdialysis in the prefrontal cortex of freely moving rats. SB-269970 normalized MK-801 -induced glutamate but not dopamine extracellular levels in the prefrontal cortex. Rat plasma and brain concentrations of MK-801 were not affected by co-administration of SB-269970, arguing for a pharmacodynamic rather than a pharmacokinetic mechanism. These results indicate that 5-HT7 receptor antagonists might reverse cognitive deficits associated with NMDA receptor hypofunction by selectively normalizing glutamatergic neurotransmission. PMID:21701689

  16. β1-Adrenoceptor in the Central Amygdala Is Required for Unconditioned Stimulus-Induced Drug Memory Reconsolidation

    PubMed Central

    Zhu, Huiwen; Zhou, Yiming; Liu, Zhiyuan; Chen, Xi; Li, Yanqing; Liu, Xing; Ma, Lan

    2018-01-01

    retrieval manipulation can prevent drug memory reconsolidation and relapse to cocaine, thus providing a potential strategy for the prevention of substance addiction. Significance Statement It is well known that drug memories become labile and reconsolidated upon retrieval by the presentation of conditioned stimulus (CS) or unconditioned stimulus (US). Whether CS and US retrieval trigger different memory reconsolidation processes is unknown. In this study, we found that US retrieval, but not CS retrieval, triggered memory reconsolidation of cocaine-conditioned place preference dependent on β1-AR and de novo protein synthesis in the central amygdala. Furthermore, cocaine priming-induced reinstatement was impaired with post US retrieval manipulation in contrast to the relapse behavior with post CS retrieval manipulation. In cocaine self-administration, β1-AR antagonism after US retrieval also impaired reconsolidation and reinstatement. Our study indicates that reconsolidation of cocaine reward memory triggered by US retrieval is distinct from CS retrieval. US retrieval induced reconsolidation of cocaine reward memory depends on β1-adrenergic signaling in the central amygdala. PMID:29216351

  17. Dopamine D1 receptors are responsible for stress-induced emotional memory deficit in mice.

    PubMed

    Wang, Yongfu; Wu, Jing; Zhu, Bi; Li, Chaocui; Cai, Jing-Xia

    2012-03-01

    It is established that stress impairs spatial learning and memory via the hypothalamus-pituitary-adrenal axis response. Dopamine D1 receptors were also shown to be responsible for a stress-induced deficit of working memory. However, whether stress affects the subsequent emotional learning and memory is not elucidated yet. Here, we employed the well-established one-trial step-through task to study the effect of an acute psychological stress (induced by tail hanging for 5, 10, or 20 min) on emotional learning and memory, and the possible mechanisms as well. We demonstrated that tail hanging induced an obvious stress response. Either an acute tail-hanging stress or a single dose of intraperitoneally injected dopamine D1 receptor antagonist (SCH23390) significantly decreased the step-through latency in the one-trial step-through task. However, SCH23390 prevented the acute tail-hanging stress-induced decrease in the step-through latency. In addition, the effects of tail-hanging stress and/or SCH23390 on the changes in step-through latency were not through non-memory factors such as nociceptive perception and motor function. Our data indicate that the hyperactivation of dopamine D1 receptors mediated the stress-induced deficit of emotional learning and memory. This study may have clinical significance given that psychological stress is considered to play a role in susceptibility to some mental diseases such as depression and post-traumatic stress disorder.

  18. Pre-training Catechin gavage prevents memory impairment induced by intracerebroventricular streptozotocin in rats.

    PubMed

    Zamani, Marzieh; Rohampour, Kambiz; Zeraati, Maryam; Hosseinmardi, Narges; Kazemian, Mostafa M

    2015-07-01

    To evaluate the effects of Catechin (CAT) on memory acquisition and retrieval in the animal model of sporadic alzheimer`s disease (sAD) induced by intracerebroventricular (icv) injection of streptozotocin (STZ) in passive avoidance memory test. Thirty adult rats were divided into 5 experimental groups (n=6). Animals were treated by icv saline/STZ (3 mg/kg) injection at day one and 3 after cannulation. The STZ+CAT group received 40 mg/kg CAT by daily gavages for 10 days, after icv STZ treatment and before training. The step-through latency (STL) and time spent in the dark compartment (TDC) were evaluated to examine the memory acquisition and retrieval. All tests were performed in Qom University of Medical Sciences, Qom, Iran, from April to December 2013. The STZ treatment significantly decreased STL and increased the number of entries to the dark compartment on the training day. It also increased TDC, on day one and 7 after training. Pre-training gavage of CAT reversed the STL significantly (p=0.027). The CAT treatment also decreased the TDC in both early and late retrieval, in respect to STZ group. This data suggests that CAT as an antioxidant could improve both memory acquisition and retrieval in the animal model of sAD.

  19. Bacopa monniera leaf extract ameliorates hypobaric hypoxia induced spatial memory impairment.

    PubMed

    Hota, Sunil Kumar; Barhwal, Kalpana; Baitharu, Iswar; Prasad, Dipti; Singh, Shashi Bala; Ilavazhagan, Govindasamy

    2009-04-01

    Hypobaric hypoxia induced memory impairment has been attributed to several factors including increased oxidative stress, depleted mitochondrial bioenergetics, altered neurotransmission and apoptosis. This multifactorial response of the brain to hypobaric hypoxia limits the use of therapeutic agents that target individual pathways for ameliorating hypobaric hypoxia induced memory impairment. The present study aimed at exploring the therapeutic potential of a bacoside rich leaf extract of Bacopa monniera in improving the memory functions in hypobaric conditions. The learning ability was evaluated in male Sprague Dawley rats along with memory retrieval following exposure to hypobaric conditions simulating an altitude of 25,000 ft for different durations. The effect of bacoside administration on apoptosis, cytochrome c oxidase activity, ATP levels, and oxidative stress markers and on plasma corticosterone levels was investigated. Expression of NR1 subunit of N-methyl-d-aspartate receptors, neuronal cell adhesion molecules and was also studied along with CREB phosphorylation to elucidate the molecular mechanisms of bacoside action. Bacoside administration was seen to enhance learning ability in rats along with augmentation in memory retrieval and prevention of dendritic atrophy following hypoxic exposure. In addition, it decreased oxidative stress, plasma corticosterone levels and neuronal degeneration. Bacoside administration also increased cytochrome c oxidase activity along with a concomitant increase in ATP levels. Hence, administration of bacosides could be a useful therapeutic strategy in ameliorating hypobaric hypoxia induced cognitive dysfunctions and other related neurological disorders.

  20. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys

    PubMed Central

    Wu, Wei; Saunders, Richard C.; Mishkin, Mortimer; Turchi, Janita

    2012-01-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. PMID:22561485

  1. Differential effects of m1 and m2 receptor antagonists in perirhinal cortex on visual recognition memory in monkeys.

    PubMed

    Wu, Wei; Saunders, Richard C; Mishkin, Mortimer; Turchi, Janita

    2012-07-01

    Microinfusions of the nonselective muscarinic antagonist scopolamine into perirhinal cortex impairs performance on visual recognition tasks, indicating that muscarinic receptors in this region play a pivotal role in recognition memory. To assess the mnemonic effects of selective blockade in perirhinal cortex of muscarinic receptor subtypes, we locally infused either the m1-selective antagonist pirenzepine or the m2-selective antagonist methoctramine in animals performing one-trial visual recognition, and compared these scores with those following infusions of equivalent volumes of saline. Compared to these control infusions, injections of pirenzepine, but not of methoctramine, significantly impaired recognition accuracy. Further, similar doses of scopolamine and pirenzepine yielded similar deficits, suggesting that the deficits obtained earlier with scopolamine were due mainly, if not exclusively, to blockade of m1 receptors. The present findings indicate that m1 and m2 receptors have functionally dissociable roles, and that the formation of new visual memories is critically dependent on the cholinergic activation of m1 receptors located on perirhinal cells. Published by Elsevier Inc.

  2. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    PubMed

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  3. Perindopril Attenuates Lipopolysaccharide-Induced Amyloidogenesis and Memory Impairment by Suppression of Oxidative Stress and RAGE Activation.

    PubMed

    Goel, Ruby; Bhat, Shahnawaz Ali; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2016-02-17

    Clinical and preclinical studies account hypertension as a risk factor for dementia. We reported earlier that angiotensin-converting enzyme (ACE) inhibition attenuated the increased vulnerability to neurodegeneration in hypertension and prevented lipopolysaccharide (LPS)-induced memory impairment in normotensive wistar rats (NWRs) and spontaneously hypertensive rats (SHRs). Recently, a receptor for advanced glycation end products (RAGE) has been reported to induce amyloid beta (Aβ1-42) deposition and memory impairment in hypertensive animals. However, the involvement of ACE in RAGE activation and amyloidogenesis in the hypertensive state is still unexplored. Therefore, in this study, we investigated the role of ACE on RAGE activation and amyloidogenesis in memory-impaired NWRs and SHRs. Memory impairment was induced by repeated (on days 1, 4, 7, and 10) intracerebroventricular (ICV) injections of LPS in SHRs (25 μg) and NWRs (50 μg). Our data showed that SHRs exhibited increased oxidative stress (increased gp91-phox/NOX-2 expression and ROS generation), RAGE, and β-secretase (BACE) expression without Aβ1-42 deposition. LPS (25 μg, ICV) further amplified oxidative stress, RAGE, and BACE activation, culminating in Aβ1-42 deposition and memory impairment in SHRs. Similar changes were observed at the higher dose of LPS (50 μg, ICV) in NWRs. Further, LPS-induced oxidative stress was associated with endothelial dysfunction and reduction in cerebral blood flow (CBF), more prominently in SHRs than in NWRs. Finally, we showed that perindopril (0.1 mg/kg, 15 days) prevented memory impairment by reducing oxidative stress, RAGE activation, amyloidogenesis, and improved CBF in both SHRs and NWRs. These findings suggest that perindopril might be used as a therapeutic strategy for the early stage of dementia.

  4. Inhibition of Lactate Transport Erases Drug Memory and Prevents Drug Relapse.

    PubMed

    Zhang, Yan; Xue, Yanxue; Meng, Shiqiu; Luo, Yixiao; Liang, Jie; Li, Jiali; Ai, Sizhi; Sun, Chengyu; Shen, Haowei; Zhu, Weili; Wu, Ping; Lu, Lin; Shi, Jie

    2016-06-01

    Drug memories that associate drug-paired stimuli with the effects of abused drugs contribute to relapse. Exposure to drug-associated contexts causes consolidated drug memories to be in a labile state, during which manipulations can be given to impair drug memories. Although substantial evidence demonstrates the crucial role of neuronal signaling in addiction, little is known about the contribution of astrocyte-neuron communication. Rats were trained for cocaine-induced conditioned place preference (CPP) or self-administration and microinjected with the glycogen phosphorylation inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol into the basolateral amygdala (BLA) immediately after retrieval. The concentration of lactate was measured immediately after retrieval via microdialysis, and the CPP score and number of nosepokes were recorded 24 hours later. Furthermore, we used antisense oligodeoxynucleotides to disrupt the expression of astrocytic lactate transporters (monocarboxylate transporters 1 and 2) in the BLA after retrieval, tested the expression of CPP 1 day later, and injected L-lactate into the BLA 15 minutes before retrieval to rescue the effects of the oligodeoxynucleotides. Injection of 1,4-dideoxy-1,4-imino-D-arabinitol into the BLA immediately after retrieval prevented the subsequent expression of cocaine-induced CPP, decreased the concentration of lactate in the BLA, and reduced the number of nosepokes for cocaine self-administration. Disrupting the expression of monocarboxylate transporters 1 and 2 in the BLA also caused subsequent deficits in the expression of cocaine-induced CPP, which was rescued by pretreatment with L-lactate. Our results suggest that astrocyte-neuron lactate transport in the BLA is critical for the reconsolidation of cocaine memory. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Experimentally-induced dissociation impairs visual memory.

    PubMed

    Brewin, Chris R; Mersaditabari, Niloufar

    2013-12-01

    Dissociation is a phenomenon common in a number of psychological disorders and has been frequently suggested to impair memory for traumatic events. In this study we explored the effects of dissociation on visual memory. A dissociative state was induced experimentally using a mirror-gazing task and its short-term effects on memory performance were investigated. Sixty healthy individuals took part in the experiment. Induced dissociation impaired visual memory performance relative to a control condition; however, the degree of dissociation was not associated with lower memory scores in the experimental group. The results have theoretical and practical implications for individuals who experience frequent dissociative states such as patients with posttraumatic stress disorder (PTSD). Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Comparison of two hyoscyamine 6β-hydroxylases in engineering scopolamine biosynthesis in root cultures of Scopolia lurida.

    PubMed

    Lan, Xiaozhong; Zeng, Junlan; Liu, Ke; Zhang, Fangyuan; Bai, Ge; Chen, Min; Liao, Zhihua; Huang, Luqi

    2018-02-26

    Scopolia lurida, a medicinal plant native to the Tibetan Plateau, is among the most effective producers of pharmaceutical tropane alkaloids (TAs). The hyoscyamine 6β-hydroxylase genes of Hyoscyamus niger (HnH6H) and S. lurida (SlH6H) were cloned and respectively overexpressed in hairy root cultures of S. lurida, to compare their effects on promoting the production of TAs, especially the high-value scopolamine. Root cultures with SlH6H/HnH6H overexpression were confirmed by PCR and real-time quantitative PCR, suggesting that the enzymatic steps defined by H6H were strongly elevated at the transcriptional level. Tropane alkaloids, including hyoscyamine, anisodamine and scopolamine, were analyzed by HPLC. Scopolamine and anisodamine contents were remarkably elevated in the root cultures overexpressing SlH6H/HnH6H, whereas that of hyoscyamine was more or less reduced, when compared with those of the control. These results also indicated that SlH6H and HnH6H promoted anisodamine production at similar levels in S. lurida root cultures. More importantly, HnH6H-overexpressing root cultures had more scopolamine in them that did SlH6H-overexpressing root cultures. This study not only provides a feasible way of overexpressing H6H to produce high-value scopolamine in engineered root cultures of S. lurida but also found that HnH6H was better than SlH6H for engineering scopolamine production. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest

    NASA Technical Reports Server (NTRS)

    Putcha, L.; Du, B.; Daniels, V.

    2010-01-01

    Space Motion Sickness (SMS) is experienced during early flight days of space missions and on reduced gravity simulation flights which require treatment with medications. Oral administration of scopolamine tablets is still a common practice to prevent SMS symptoms. Bioavailability of medications taken by mouth for SMS is often low and variable. Intranasal (IN) administration of medications has been reported to achieve higher and more reliable bioavailability than from an equivalent oral dose. In this FDA reviewed phase II clinical trial, we evaluated pharmacokinetics of an investigative new drug formulation, INSCOP during ambulatory (AMB) and antiorthostatic bedrest (HBR), a ground-based microgravity analog. Twelve subjects including 6 males and 6 females received 0.2 and 0.4 mg doses of INSCOP on separate days during AMB and ABR in a randomized, double blind cross over experimental design. Blood samples were collected at regular time intervals for 24 h post dose and analyzed for free scopolamine concentrations by an LC-MS-MS method. Pharmacokinetic parameters were calculated using concentration versus time data and compared between AMB and ABR conditions. Results indicated that maximum concentration and relative bioavailability increased marginally during ABR compared to AMB; differences in PK parameters between AMB and ABR were greater with 0.2 mg than with 0.4 mg dose. Gender specific differences in PK parameters was observed both during AMB and ABR with differences higher in females between the two conditions than in males. A significant observation is that while gender differences in PK appear to exist, the differences in primary PK parameters between AMB and ABR after IN administration, unlike oral administration, are minimal and may not be clinically significant for both genders.

  8. The optimal timing of stimulation to induce long-lasting positive effects on episodic memory in physiological aging.

    PubMed

    Manenti, Rosa; Sandrini, Marco; Brambilla, Michela; Cotelli, Maria

    2016-09-15

    Episodic memory displays the largest degree of age-related decline. A noninvasive brain stimulation technique that can be used to modulate memory in physiological aging is transcranial Direct Current Stimulation (tDCS). However, an aspect that has not been adequately investigated in previous studies is the optimal timing of stimulation to induce long-lasting positive effects on episodic memory function. Our previous studies showed episodic memory enhancement in older adults when anodal tDCS was applied over the left lateral prefrontal cortex during encoding or after memory consolidation with or without a contextual reminder. Here we directly compared the two studies to explore which of the tDCS protocols would induce longer-lasting positive effects on episodic memory function in older adults. In addition, we aimed to determine whether subjective memory complaints would be related to the changes in memory performance (forgetting) induced by tDCS, a relevant issue in aging research since individuals with subjective memory complaints seem to be at higher risk of later memory decline. The results showed that anodal tDCS applied after consolidation with a contextual reminder induced longer-lasting positive effects on episodic memory, conceivably through reconsolidation, than anodal tDCS during encoding. Furthermore, we reported, providing new data, a moderate negative correlation between subjective memory complaints and forgetting when anodal tDCS was applied after consolidation with a contextual reminder. This study sheds light on the best-suited timing of stimulation to induce long-lasting positive effects on memory function and might help the clinicians to select the most effective tDCS protocol to prevent memory decline. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Reverse translation of the rodent 5C-CPT reveals that the impaired attention of people with schizophrenia is similar to scopolamine-induced deficits in mice

    PubMed Central

    Young, J W; Geyer, M A; Rissling, A J; Sharp, R F; Eyler, L T; Asgaard, G L; Light, G A

    2013-01-01

    Attentional dysfunction in schizophrenia (SZ) is a core deficit that contributes to multiple cognitive deficits and the resulting functional disability. However, developing procognitive therapeutics for neuropsychiatric disorders have been limited by a ‘translational gap'—a lack of cognitive paradigms having cross-species translational validity and relevance. The present study was designed to perform an initial validation of the cross-species homology of the 5-choice Continuous Performance Test (5C-CPT) in healthy nonpsychiatric comparison subjects (NCS), SZ patients and mice under pharmacologic challenge. The 5C-CPT performance in SZ patients (n=20) was compared with age-matched NCS (n=23). The effects of the general muscarinic receptor antagonist scopolamine on mice (n=21) performing the 5C-CPT were also assessed. SZ subjects exhibited significantly impaired attention in the 5C-CPT, driven by reduced target detection over time and nonsignificantly increased impulsive responding. Similarly, scopolamine significantly impaired attention in mice, driven by reduced target detection and nonsignificantly increased impulsive responding. Scopolamine also negatively affected accuracy and speed of responding in mice, although these measures failed to differentiate SZ vs NCS. Thus, mice treated with scopolamine exhibited similar impairments in vigilance as seen in SZ, although the differences between the behavioral profiles warrant further study. The availability of rodent and human versions of this paradigm provides an opportunity to: (1) investigate the neuroanatomic, neurochemical and genomic architecture of abnormalities in attention observed in clinical populations such as SZ; (2) develop and refine animal models of cognitive impairments; and (3) improve cross-species translational testing for the development of treatments for these impairments. PMID:24217494

  10. Pharmacokinetics of Intranasal Scopolamine Gel Formulation (Inscop)

    NASA Technical Reports Server (NTRS)

    Boyd, Jason L.; Du, Brian; Daniels, Vernie; Simmons, Rita; Buckey, Jay; Putcha, Lakshmi

    2009-01-01

    Space Motion Sickness (SMS) is commonly experienced by astronauts and often requires treatment with medications during early flight days of space missions. Orally administered scopolamine is commonly used by astronauts to prevent SMS. Bioavailability of oral (PO) SMS medications is often low and highly variable. Intranasal (IN) administration of medications achieves higher and more reliable bioavailability than from an equivalent PO dose. Methods: To test the safety and reliability of INSCOP, two clinical studies were performed, a dose escalation study and a comparison study administering INSCOP during normal ambulation and head down tilt bedrest. Efficacy was evaluated by testing INSCOP with two, different motion sickness inducing paradigms. Results: Preliminary results indicate that INSCOP demonstrates linear pharmacokinetics and a low side effect profile. In head down tilt bedrest, relative bioavailability of INSCOP was increased for females at both doses (0.2 and 0.4 mg) and for males at the higher dose (0.4 mg) but is reduced at the lower dose (0.2 mg) compared to normal ambulation. INSCOP displays gender specific differences during ABR. One of the treatment efficacy trials conducted at Dartmouth Hitchcock Medical Center demonstrated that INSCOP is efficacious at both doses (0.2 and 0.4 mg) in suppressing motion sickness symptoms as indicated by longer chair ride times with INSCOP administration than with placebo, and efficacy increases with dose. Similar results were seen using another motion sickness simulator, the motion simulator dome, at the Naval Aerospace Medical Research Laboratory, with significantly increased time in the dome in motion-susceptible subjects when using INSCOP compared to untreated controls. Conclusion: Higher bioavailability, linear pharmacokinetics, a low incidence of side effects, and a favorable efficacy profile make INSCOP a desirable formulation for prophylactic and rescue treatment of astronauts in space and military personnel on

  11. [Interest of scopolamine as a treatment of major depressive disorder].

    PubMed

    Rigal, A; Mouchabac, S; Peretti, C S

    2016-12-01

    The number of patients with depression in the world is 350 millions according to estimates. The search for new treatments, particularly in forms of resistant depression, is necessary given the growing number of patients experiencing treatment failure and resistance. Scopolamine, an anticholinergic antimuscarinic molecule, is one of the treatments under evaluation. It falls within the assumptions of cholinergic disruption of the pathophysiology of depression, at different levels (genetic, receptorial [muscarinic and glutamate receptors], hormonal, synaptic…). In 2006, a pilot study made to evaluate the role of the cholinergic system in cognitive symptoms of depression found unexpected results regarding the antidepressant effect of scopolamine in depressive patients. Since that time other studies have been conducted to evaluate the benefits of treatment with intravenous injections of scopolamine. Our main objective was to evaluate the interest of scopolamine as an antidepressant treatment in depressed populations. We conducted a literature review with the aim of assessing the effectiveness of treatment with scopolamine in uni- and bipolar patients with depressive symptoms. The protocol consisted of two injection blocks (each block consisting of three injections spaced fifteen minutes apart within three to five days) of active ingredient or placebo crossover. The selected patients were between 18 and 45years and had the DSM-IV major depressive disorder or bipolar disorder criteria. Regarding the methods of measurement, the primary endpoint was the reduction in scores of the Montgomery Asberg Depression Rating Scale (MADRS) with a total response defined by a decrease of more than 50 % of the score and remission corresponding to a MADRS score<10. Seven sessions of evaluations were performed. The published results are promising in terms of efficiency with rapid antidepressant effect, a total response rate ranging from 59-64% and a remission rate of between 37 and 55

  12. Oral administration of the 5-HT6 receptor antagonists SB-357134 and SB-399885 improves memory formation in an autoshaping learning task.

    PubMed

    Perez-García, Georgina; Meneses, Alfredo

    2005-07-01

    In this work we aimed to re-examine the 5-HT6 receptor role, by testing the selective antagonists SB-357134 (1-30 mg/kg p.o.) and SB-399885 (1-30 mg/kg p.o.) during memory consolidation of conditioned responses (CR%), in an autoshaping Pavlovian/instrumental learning task. Bioavailability, half-life and minimum effective dose to induce inappetence for SB-357134 were 65%, 3.4 h, and 30 mg/kg p.o., and for SB-399885 were 52%, 2.2 h, and 50 mg/kg p.o., respectively. Oral acute and chronic administration of either SB-357134 or SB-399885 improved memory consolidation compared to control groups. Acute administration of SB-357134, at 1, 3, 10 and 30 mg/kg, produced a CR% inverted-U curve, eliciting the latter dose a 7-fold increase relative to saline group. Acute injection of SB-399885 produced significant CR% increments, being 1 mg/kg the most effective dose. Repeated administration (7 days) of either SB-357134 (10 mg/kg) or SB-399885 (1 mg/kg) elicited the most significant CR% increments. Moreover, modeling the potential therapeutic benefits of 5-HT6 receptor blockade, acute or repeated administration of SB-399885, at 10 mg/kg reversed memory deficits produced by scopolamine or dizocilpine, and SB-357134 (3 and 10 mg/kg) prevented amnesia and even improved performance. These data support the notion that endogenously 5-HT acting, via 5-HT6 receptor, improves memory consolidation.

  13. Pretreatment Differences in BOLD Response to Emotional Faces Correlate with Antidepressant Response to Scopolamine.

    PubMed

    Furey, Maura L; Drevets, Wayne C; Szczepanik, Joanna; Khanna, Ashish; Nugent, Allison; Zarate, Carlos A

    2015-03-28

    Faster acting antidepressants and biomarkers that predict treatment response are needed to facilitate the development of more effective treatments for patients with major depressive disorders. Here, we evaluate implicitly and explicitly processed emotional faces using neuroimaging to identify potential biomarkers of treatment response to the antimuscarinic, scopolamine. Healthy participants (n=15) and unmedicated-depressed major depressive disorder patients (n=16) participated in a double-blind, placebo-controlled crossover infusion study using scopolamine (4 μg/kg). Before and following scopolamine, blood oxygen-level dependent signal was measured using functional MRI during a selective attention task. Two stimuli comprised of superimposed pictures of faces and houses were presented. Participants attended to one stimulus component and performed a matching task. Face emotion was modulated (happy/sad) creating implicit (attend-houses) and explicit (attend-faces) emotion processing conditions. The pretreatment difference in blood oxygen-level dependent response to happy and sad faces under implicit and explicit conditions (emotion processing biases) within a-priori regions of interest was correlated with subsequent treatment response in major depressive disorder. Correlations were observed exclusively during implicit emotion processing in the regions of interest, which included the subgenual anterior cingulate (P<.02) and middle occipital cortices (P<.02). The magnitude and direction of differential blood oxygen-level- dependent response to implicitly processed emotional faces prior to treatment reflect the potential to respond to scopolamine. These findings replicate earlier results, highlighting the potential for pretreatment neural activity in the middle occipital cortices and subgenual anterior cingulate to inform us about the potential to respond clinically to scopolamine. Published by Oxford University Press on behalf of CINP 2015. This work is written by (a

  14. Protective effect of tetrahydropalmatine against d-galactose induced memory impairment in rat.

    PubMed

    Qu, Zhuo; Zhang, Jingze; Yang, Honggai; Huo, Liqin; Gao, Jing; Chen, Hong; Gao, Wenyuan

    2016-02-01

    Aging is associated with Alzheimer's disease (AD), cardiovascular disease and cancer. Oxidative stress is considered as a major factor that accelerates the aging process. d-galactose (d-gal), a reducing sugar, induces oxidative stress resulting in alteration in mitochondrial dynamics and apoptosis of neurons. To understand the ability of tetrahydropalmatine (THP) to ameliorate memory impairment caused by aging, we investigated the effect of THP on d-gal induced memory impairment in rats. Subcutaneous injection of d-gal (100mg/kg/d) for 8weeks caused memory loss as detected by the Morris water maze and morphologic abnormalities of neurons in the hippocampus regions and cortex of rat brain. THP treatment ameliorated d-gal induced memory impairment associated with the decrease of malondialdehyde (MDA) and nitric oxide (NO) contents, as well as the increase of glutathione (GSH) levels, superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities. THP treatment was also found to reverse the abnormality of acetylcholine (ACh) levels and acetylcholinesterase (AChE) activities. In addition, treatment with THP could decrease the expression of nuclear factor κ (NF-κB) and glial fibrillary acidic protein (GFAP) which prevented the neuroinflammation and memory impairment in the d-gal treated rats. Taken together, these results clearly demonstrated that subcutaneous injection of d-gal produced memory deficits, meanwhile THP could protect neuron from d-gal insults and improve cognition. This study provided an experimental basis for clinical application of THP in AD therapy. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    PubMed

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  16. Cerebralcare Granule(®), a Chinese Herb Compound Preparation, Attenuates D-Galactose Induced Memory Impairment in Mice.

    PubMed

    Qu, Zhuo; Yang, Honggai; Zhang, Jingze; Huo, Liqin; Chen, Hong; Li, Yuming; Liu, Changxiao; Gao, Wenyuan

    2016-09-01

    Cerebralcare granule(®) (CG) is a preparation of Traditional Chinese Medicine that widely used in China. It was approved by the China State Food and Drug Administration for treatment of headache and dizziness associated with cerebrovascular diseases. In the present study, we aimed to investigate whether CG had protective effect against D-galactose (gal)-induced memory impairment and to explore the mechanism of its action. D-gal was administered (100 mg/kg, subcutaneously) once daily for 8 weeks to induced memory deficit and neurotoxicity in the brain of aging mouse and CG (7.5, 15, and 30 g/kg) were simultaneously administered orally. The present study demonstrates that CG can alleviate aging in the mouse brain induced by D-gal through improving behavioral performance and reducing brain cell damage in the hippocampus. CG prevents aging mainly via suppression of oxidative stress response, such as decreasing NO and MDA levels, renewing activities of SOD, CAT, and GPx, as well as decreasing AChE activity in the brain of D-gal-treated mice. In addition, CG prevents aging through inhibiting NF-κB-mediated inflammatory response and caspase-3-medicated neurodegeneration in the brain of D-gal treated mice. Taken together, these data clearly demonstrates that subcutaneous injection of D-gal produced memory deficit, meanwhile CG can protect neuron from D-gal insults and improve memory ability.

  17. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  18. Ameliorative effect of Noni fruit extract on streptozotocin-induced memory impairment in mice.

    PubMed

    Pachauri, Shakti D; Verma, Priya Ranjan P; Dwivedi, Anil K; Tota, Santoshkumar; Khandelwal, Kiran; Saxena, Jitendra K; Nath, Chandishwar

    2013-08-01

    This study evaluated the effects of a standardized ethyl acetate extract of Morinda citrifolia L. (Noni) fruit on impairment of memory, brain energy metabolism, and cholinergic function in intracerebral streptozotocin (STZ)-treated mice. STZ (0.5 mg/kg) was administered twice at an interval of 48 h. Noni (50 and 100 mg/kg, postoperatively) was administered for 21 days following STZ administration. Memory function was evaluated using Morris Water Maze and passive avoidance tests, and brain levels of cholinergic function, oxidative stress, energy metabolism, and brain-derived neurotrophic factor (BDNF) were estimated. STZ caused memory impairment in Morris Water Maze and passive avoidance tests along with reduced brain levels of ATP, BDNF, and acetylcholine and increased acetylcholinesterase activity and oxidative stress. Treatment with Noni extract (100 mg/kg) prevented the STZ-induced memory impairment in both behavioral tests along with reduced oxidative stress and acetylcholinesterase activity, and increased brain levels of BDNF, acetylcholine, and ATP level. The study shows the beneficial effects of Noni fruit against STZ-induced memory impairment, which may be attributed to improved brain energy metabolism, cholinergic neurotransmission, BDNF, and antioxidative action.

  19. Abuse of the over-the-counter antispasmodic butylscopolamine for the home synthesis of psychoactive scopolamine.

    PubMed

    Kummer, Sebastian; Rickert, Annette; Daldrup, Thomas; Mayatepek, Ertan

    2016-07-01

    We report on two patients who ingested psychoactive scopolamine that was synthesized at home from butylscopolamine (Buscopan®), which is available as over-the-counter antispasmodic in nearly 100 countries worldwide. Patient 1 presented with severe central anticholinergic toxidrome, while patient 2 suffered from minor symptoms. An empty blister of Buscopan® was found in the patients' home, but initially was not suspected to be causative for the observed central anticholinergic symptoms, as Buscopan® is not able to pass the blood-brain barrier in its native form. Only later, the information by third parties and a Google search helped to identify homemade scopolamine derived from Buscopan® as the responsible agent in these two cases. Retrospectively, scopolamine could be detected in serum and urine of both patients, while it was absent in one control after ingestion of native Buscopan®. Over-the-counter drugs can be used to synthesize psychoactives with means that are available in every household. Such knowledge can spread via social media and internet discussion boards long before appearing in medical literature. While typical clinical presentation often enables clinicians to adequately identify and treat specific toxidromes, these sources of information need to be increasingly taken into account by medical professionals for identification of its causative agent. This potential of Buscopan® might gain importance as an easily accessible source of psychoactive scopolamine. • Substances with central anticholinergic effects are known for their hallucinogenic potential and may be used as psychoactives. What is New: • The over-the-counter antispasmodic butylscopolamine (Buscopan®) can be abused to synthesize anticholinergic, psychoactive scopolamine at home with means that are available in every household.

  20. Comparison of pro-amnesic efficacy of scopolamine, biperiden, and phencyclidine by using passive avoidance task in CD-1 mice.

    PubMed

    Malikowska, Natalia; Sałat, Kinga; Podkowa, Adrian

    2017-07-01

    Memory disorders accompany numerous diseases and therapies, and this is becoming a growing medical issue worldwide. Currently, various animal models of memory impairments are available; however, many of them require high financial outlay and/or are time-consuming. A simple way to achieve an efficient behavioral model of cognitive disorders is to inject defined drug that has pro-amnesic properties. Since the involvement of cholinergic and glutamatergic neurotransmission in cognition is well established, the utilization of a nonselective muscarinic receptor antagonist, scopolamine (SCOP), a selective M1 muscarinic receptor antagonist, biperiden (BIP), and a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist, phencyclidine (PCP) seems to be reliable tools to induce amnesia. As the determination of their effective doses remains vague and the active doses vary significantly in laboratory settings and in mouse species being tested, the aim of this study was to compare these three models of amnesia in CD-1 mice. Male Swiss Albino mice were used in passive avoidance (PA) test. All the compounds were administered intraperitoneally (ip) at doses 1mg/kg, 5mg/kg, and 10mg/kg (SCOP and BIP), and 1mg/kg, 3mg/kg, and 6mg/kg (PCP). In the retention trial of the PA task, SCOP and PCP led to the reduction of step-through latency at all the tested doses as compared to control, but BIP was effective only at the dose of 10mg/kg. This study revealed the effectiveness of SCOP, PCP, and BIP as tools to induce amnesia, with the PCP model being the most efficacious and SCOP being the only model that demonstrates a clear dose-response relationship. Copyright © 2017. Published by Elsevier Inc.

  1. Determination of tropane alkaloids atropine and scopolamine by liquid chromatography-mass spectrometry in plant organs of Datura species.

    PubMed

    Jakabová, Silvia; Vincze, Lajos; Farkas, Agnes; Kilár, Ferenc; Boros, Borbála; Felinger, Attila

    2012-04-06

    Hyoscyamine (atropine) and scopolamine are the predominant tropane alkaloids in the Datura genus, occurring in all plant organs. The assessment of the alkaloid content of various plant parts is essential from the viewpoint of medical use, but also as a potential risk of toxicity for humans and animals. Therefore, a reliable method for the determination of tropane alkaloid content is of high importance. The present work aimed at the elaboration of a rapid method for determination of the most abundant Datura alkaloids by LC-MS technique using a new generation of core-shell particle packed column. Tropane alkaloid content was investigated in various plant organs of four Datura taxa (D. innoxia, D. metel, D. stramonium, and D. stramonium var. tatula), grown under the same conditions, in two developmental stages. We have developed a rapid LC-MS method for the quantitative determination of atropine and scopolamine, which was successfully applied to quantify the alkaloids in different plant organs (leaves, flowers, stems, seeds) of thorn apples after a simple sample preparation step. Elaboration and validation of the method and analysis of plant extracts were done by UFLC-MS technique, employing an Ascentis Express C18 column. Detection was done in positive ionization mode (ESI+) and the method suitability was evaluated by several validation characteristics. Quantitation limits are 333 and 167 pgmL(-1) for scopolamine and atropine, respectively, and the method shows very good repeatability. The analysis of Datura extracts revealed significant differences depending on the species, the organ and the sampling period. Atropine was found to be dominant over scopolamine in three out of the four taxa investigated. D. innoxia showed the highest concentrations of scopolamine in all organs examined, whereas D. metel accumulated the lowest scopolamine levels. Hyoscyamine, measured as atropine, was the highest in D. stramonium var. tatula, and the lowest in D. innoxia. Samples

  2. In vitro and ex-vivo cellular antioxidant protection and cognitive enhancing effects of an extract of Polygonum minus Huds (Lineminus™) demonstrated in a Barnes Maze animal model for memory and learning

    PubMed Central

    2014-01-01

    Background Polygonum minus Huds.is a culinary flavouring that is common in South East Asian cuisine and as a remedy for diverse maladies ranging from indigestion to poor eyesight. The leaves of this herb have been reported to be high in antioxidants. Flavonoids which have been associated with memory, cognition and protection against neurodegeneration were found in P. minus. Method This study examined a P. minus aqueous extract (Lineminus™) for its antioxidant activity using the Oxygen Radical Absorbance Capacity (ORAC) assay, the ex vivo Cellular Antioxidant Protection of erythrocytes (CAP-e) assays and for potential anticholinesterase activity in vitro. Cognitive function and learning of Lineminus™ was evaluated using scopolamine induced cognition deficits in a Barnes maze, rodent model of cognition. Results The extract displayed in vitro antioxidant activity with a total ORAC value of 16,964 μmole TE/gram. Cellular antioxidant protection from free radical damage using the CAP-e assay, with an IC50 of 0.58 g/L for inhibition of cellular oxidative damage, was observed. The extract inhibited cholinesterase activity with an IC50 of 0.04 mg/ml with a maximum inhibition of 68%. In a rodent model of cognition using scopolamine induced cognition deficits in the Barnes maze, the extract attenuated scopolamine induced disruptions in learning at the higher dose of 100 mg/kg. Conclusion These data shows that P. minus possesses antioxidant and anticholinesterase activity and demonstrated enhanced cognition in vivo. The data suggest neuroprotective properties of the extract. PMID:24886679

  3. Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Aβ 1-42 oligomer injection.

    PubMed

    Choi, Jin Gyu; Moon, Minho; Kim, Hyo Geun; Mook-Jung, Inhee; Chung, Sun Yong; Kang, Tong Ho; Kim, Sun Yeou; Lee, Eunjoo H; Oh, Myung Sook

    2011-09-01

    Soluble oligomeric forms of amyloid beta (AβO) are regarded as a main cause of synaptic and cognitive dysfunction in Alzheimer's disease (AD) and have been a primary target in the development of drug treatments for AD. The present study utilized a mouse model of AD induced by intrahippocampal injection of AβO (10 μM) to investigate the effects of Gami-Chunghyuldan (GCD), a standardized multi-herbal medicinal formula, on the presentation of memory deficits and neurohistological pathogenesis. GCD (10 and 50mg/kg/day, 5 days, p.o.) improved AβO-induced memory impairment as well as reduced neuronal cell death, astrogliosis, and microgliosis in the hippocampus. In addition, GCD prevented AβO-triggered synaptic disruption and cholinergic fiber loss. These results suggest that GCD may be useful in the prevention and treatment of AD. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. An anti-nicotinic cognitive challenge model using mecamylamine in comparison with the anti-muscarinic cognitive challenge using scopolamine.

    PubMed

    Baakman, Anne Catrien; Alvarez-Jimenez, Ricardo; Rissmann, Robert; Klaassen, Erica S; Stevens, Jasper; Goulooze, Sebastiaan C; den Burger, Jeroen C G; Swart, Eleonora L; van Gerven, Joop M A; Groeneveld, Geert Jan

    2017-08-01

    The muscarinic acetylcholine receptor antagonist scopolamine is often used for proof-of-pharmacology studies with pro-cognitive compounds. From a pharmacological point of view, it would seem more rational to use a nicotinic rather than a muscarinic anticholinergic challenge to prove pharmacology of a nicotinic acetylcholine receptor agonist. This study aims to characterize a nicotinic anticholinergic challenge model using mecamylamine and to compare it to the scopolamine model. In this double-blind, placebo-controlled, four-way cross-over trial, 12 healthy male subjects received oral mecamylamine 10 and 20 mg, intravenous scopolamine 0.5 mg and placebo. Pharmacokinetics were analysed using non-compartmental analysis. Pharmacodynamic effects were measured with a multidimensional test battery that includes neurophysiological, subjective, (visuo)motor and cognitive measurements. All treatments were safe and well tolerated. Mecamylamine had a t max of 2.5 h and a C max of 64.5 ng ml -1 for the 20 mg dose. Mecamylamine had a dose-dependent effect decreasing the adaptive tracking performance and VAS alertness, and increasing the finger tapping and visual verbal learning task performance time and errors. Scopolamine significantly affected almost all pharmacodynamic tests. This study demonstrated that mecamylamine causes nicotinic receptor specific temporary decline in cognitive functioning. Compared with the scopolamine model, pharmacodynamic effects were less pronounced at the dose levels tested; however, mecamylamine caused less sedation. The cognitive effects of scopolamine might at least partly be caused by sedation. Whether the mecamylamine model can be used for proof-of-pharmacology of nicotinic acetylcholine receptor agonists remains to be established. © 2017 The British Pharmacological Society.

  5. Validation of a Best-Fit Pharmacokinetic Model for Scopolamine Disposition after Intranasal Administration

    NASA Technical Reports Server (NTRS)

    Wu, L.; Chow, D. S-L.; Tam, V.; Putcha, L.

    2015-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Motion Sickness. Bioavailability and pharmacokinetics (PK) were determined per Investigative New Drug (IND) evaluation guidance by the Food and Drug Administration. Earlier, we reported the development of a PK model that can predict the relationship between plasma, saliva and urinary scopolamine (SCOP) concentrations using data collected from an IND clinical trial with INSCOP. This data analysis project is designed to validate the reported best fit PK model for SCOP by comparing observed and model predicted SCOP concentration-time profiles after administration of INSCOP.

  6. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    PubMed

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment. © 2013 Elsevier B.V. All rights reserved.

  7. Chronic rhein treatment improves recognition memory in high-fat diet-induced obese male mice.

    PubMed

    Wang, Sen; Huang, Xu-Feng; Zhang, Peng; Wang, Hongqin; Zhang, Qingsheng; Yu, Shijia; Yu, Yinghua

    2016-10-01

    High-fat (HF) diet modulates gut microbiota and increases plasma concentration of lipopolysaccharide (LPS) which is associated with obesity and its related low-grade inflammation and cognitive decline. Rhein is the main ingredient of the rhubarb plant which has been used as an anti-inflammatory agent for several millennia. However, the potential effects of rhein against HF diet-induced obesity and its associated alteration of gut microbiota, inflammation and cognitive decline have not been studied. In this study, C57BL/6J male mice were fed an HF diet for 8 weeks to induce obesity, and then treated with oral rhein (120 mg/kg body weight/day in HF diet) for a further 6 weeks. Chronic rhein treatment prevented the HF diet-induced recognition memory impairment assessed by the novel object recognition test, neuroinflammation and brain-derived neurotrophic factor (BDNF) deficits in the perirhinal cortex. Furthermore, rhein inhibited the HF diet-induced increased plasma LPS level and the proinflammatory macrophage accumulation in the colon and alteration of microbiota, including decreasing Bacteroides-Prevotella spp. and Desulfovibrios spp. DNA and increasing Bifidobacterium spp. and Lactobacillus spp. DNA. Moreover, rhein also reduced body weight and improved glucose tolerance in HF diet-induced obese mice. In conclusion, rhein improved recognition memory and prevented obesity in mice on a chronic HF diet. These beneficial effects occur via the modulation of microbiota, hypoendotoxinemia, inhibition of macrophage accumulation, anti-neuroinflammation and the improvement of BDNF expression. Therefore, supplementation with rhein-enriched food or herbal medicine could be beneficial as a preventive strategy for chronic HF diet-induced cognitive decline, microbiota alteration and neuroinflammation. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Rapamycin prevents drug seeking via disrupting reconsolidation of reward memory in rats.

    PubMed

    Lin, Jue; Liu, Lingqi; Wen, Quan; Zheng, Chunming; Gao, Yang; Peng, Shuxian; Tan, Yalun; Li, Yanqin

    2014-01-01

    The maladaptive drug memory developed between the drug-rewarding effect and environmental cues contributes to difficulty in preventing drug relapse. Established reward memories can be disrupted by pharmacologic interventions following their reactivation. Rapamycin, an inhibitor of mammalian target of rapamycin (mTOR) kinase, has been proved to be involved in various memory consolidation. However, it is less well characterized in drug memory reconsolidation. Using a conditioned place preference (CPP) procedure, we examined the effects of systemically administered rapamycin on reconsolidation of drug memory in rats. We found that systemically administered rapamycin (0.1 or 10 mg/kg, i.p.) after re-exposure to drug-paired environment, dose dependently decreased the expression of CPP 1 d later, and the effect lasted for up to 14 d and could not be reversed by a priming injection of morphine. The effect of rapamycin on morphine-associated memory was specific to drug-paired context, and rapamycin had no effect on subsequent CPP expression when rats were exposed to saline-paired context or homecage. These results indicated that systemic administration of rapamycin after memory reactivation can persistently inhibit the drug seeking behaviour via disruption of morphine memory reconsolidation in rats. Additionally, the effect of rapamycin on memory reconsolidation was reproduced in cocaine CPP and alcohol CPP. Furthermore, rapamycin did not induce conditioned place aversion and had no effect on locomotor activity and anxiety behaviour. These findings suggest that rapamycin could erase the acquired drug CPP in rats, and that mTOR activity plays an important role in drug reconsolidation and is required for drug relapse.

  9. Negative modulation of α5 GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion

    PubMed Central

    Stamenić, Tamara Timić; Joksimović, Srdjan; Biawat, Poonam; Stanković, Tamara; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2016-01-01

    Reportedly, negative modulation of α5 GABAA receptors may improve cognition in normal and pharmacologically-impaired animals, and such modulation has been proposed as an avenue for treatment of cognitive symptoms in schizophrenia. This study assessed the actions of PWZ-029, administered at doses (2, 5 and 10 mg/kg) at which it reached micromolar concentrations in brain tissue with estimated free concentrations adequate for selective modulation of α5 GABAA receptors, in three cognitive tasks in male Wistar rats acutely treated with the noncompetitive N-methyl-D-aspartate – receptor antagonist, MK-801 (0.1 mg/kg), as well in tests of locomotor activity potentiated by MK-801 (0.2 mg/kg) or amphetamine (0.5 mg/kg). In a hormetic-like manner, only 5 mg/kg PWZ-029 reversed MK-801-induced deficits in novel object recognition test (visual recognition memory), whereas in the Morris water maze, the 2 mg/kg dose of PWZ-029 exerted partial beneficial effects on spatial learning impairment. PWZ-029 did not affect recognition memory deficits in social novelty discrimination procedure. Motor hyperactivity induced with MK-801 or amphetamine was not preventable by PWZ-029. Our results show that certain MK-801-induced memory deficits can be ameliorated by negative modulation of α5 GABAA receptors, and point to the need for further elucidation of their translational relevance to cognitive deterioration in schizophrenia. PMID:26105958

  10. Negative modulation of α₅ GABAA receptors in rats may partially prevent memory impairment induced by MK-801, but not amphetamine- or MK-801-elicited hyperlocomotion.

    PubMed

    Timić Stamenić, Tamara; Joksimović, Srdjan; Biawat, Poonam; Stanković, Tamara; Marković, Bojan; Cook, James M; Savić, Miroslav M

    2015-09-01

    Reportedly, negative modulation of α5 GABAA receptors may improve cognition in normal and pharmacologically-impaired animals, and such modulation has been proposed as an avenue for treatment of cognitive symptoms in schizophrenia. This study assessed the actions of PWZ-029, administered at doses (2, 5, and 10 mg/kg) at which it reached micromolar concentrations in brain tissue with estimated free concentrations adequate for selective modulation of α5 GABAA receptors, in three cognitive tasks in male Wistar rats acutely treated with the noncompetitive N-methyl-d-aspartate receptor antagonist, MK-801 (0.1 mg/kg), as well in tests of locomotor activity potentiated by MK-801 (0.2 mg/kg) or amphetamine (0.5 mg/kg). In a hormetic-like manner, only 5 mg/kg PWZ-029 reversed MK-801-induced deficits in novel object recognition test (visual recognition memory), whereas in the Morris water maze, the 2 mg/kg dose of PWZ-029 exerted partial beneficial effects on spatial learning impairment. PWZ-029 did not affect recognition memory deficits in social novelty discrimination procedure. Motor hyperactivity induced with MK-801 or amphetamine was not preventable by PWZ-029. Our results show that certain MK-801-induced memory deficits can be ameliorated by negative modulation of α5 GABAA receptors, and point to the need for further elucidation of their translational relevance to cognitive deterioration in schizophrenia. © The Author(s) 2015.

  11. Promoting scopolamine biosynthesis in transgenic Atropa belladonna plants with pmt and h6h overexpression under field conditions.

    PubMed

    Xia, Ke; Liu, Xiaoqiang; Zhang, Qiaozhuo; Qiang, Wei; Guo, Jianjun; Lan, Xiaozhong; Chen, Min; Liao, Zhihua

    2016-09-01

    Atropa belladonna is one of the most important plant sources for producing pharmaceutical tropane alkaloids (TAs). T1 progeny of transgenic A. belladonna, in which putrescine N-methyltransferase (EC. 2.1.1.53) from Nicotiana tabacum (NtPMT) and hyoscyamine 6β-hydroxylase (EC. 1.14.11.14) from Hyoscyamus niger (HnH6H) were overexpressed, were established to investigate TA biosynthesis and distribution in ripe fruits, leaves, stems, primary roots and secondary roots under field conditions. Both NtPMT and HnH6H were detected at the transcriptional level in transgenic plants, whereas they were not detected in wild-type plants. The transgenes did not influence the root-specific expression patterns of endogenous TA biosynthetic genes in A. belladonna. All four endogenous TA biosynthetic genes (AbPMT, AbTRI, AbCYP80F1 and AbH6H) had the highest/exclusive expression levels in secondary roots, suggesting that TAs were mainly synthesized in secondary roots. T1 progeny of transgenic A. belladonna showed an impressive scopolamine-rich chemotype that greatly improved the pharmaceutical value of A. belladonna. The higher efficiency of hyoscyamine conversion was found in aerial than in underground parts. In aerial parts of transgenic plants, hyoscyamine was totally converted to downstream alkaloids, especially scopolamine. Hyoscyamine, anisodamine and scopolamine were detected in underground parts, but scopolamine and anisodamine were more abundant than hyoscyamine. The exclusively higher levels of anisodamine in roots suggested that it might be difficult for its translocation from root to aerial organs. T1 progeny of transgenic A. belladonna, which produces scopolamine at very high levels (2.94-5.13 mg g(-1)) in field conditions, can provide more valuable plant materials for scopolamine production. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  12. Who is the boss? Individual recognition memory and social hierarchy formation in crayfish.

    PubMed

    Jiménez-Morales, Nayeli; Mendoza-Ángeles, Karina; Porras-Villalobos, Mercedes; Ibarra-Coronado, Elizabeth; Roldán-Roldán, Gabriel; Hernández-Falcón, Jesús

    2018-01-01

    Under laboratory conditions, crayfish establish hierarchical orders through agonistic encounters whose outcome defines the dominant one and one, or more, submissive animals. These agonistic encounters are ritualistic, based on threats, pushes, attacks, grabs, and avoidance behaviors that include retreats and escape responses. Agonistic behavior in a triad of unfamiliar, size-matched animals is intense on the first day of social interaction and the intensity fades on daily repetitions. The dominant animal keeps its status for long periods, and the submissive ones seem to remember 'who the boss is'. It has been assumed that animals remember and recognize their hierarchical status by urine signals, but the putative substance mediating this recognition has not been reported. The aim of this work was to characterize this hierarchical recognition memory. Triads of unfamiliar crayfish (male animals, size and weight-matched) were faced during standardized agonistic protocols for five consecutive days to analyze memory acquisition dynamics (Experiment 1). In Experiment 2, dominant crayfish were shifted among triads to disclose whether hierarchy depended upon individual recognition memory or recognition of status. The maintenance of the hierarchical structure without behavioral reinforcement was assessed by immobilizing the dominant animal during eleven daily agonistic encounters, and considering any shift in the dominance order (Experiment 3). Standard amnesic treatments (anisomycin, scopolamine or cold-anesthesia) were given to all members of the triads immediately after the first interaction session to prevent individual recognition memory consolidation and evaluate its effect on the hierarchical order (Experiment 4). Acquisition of hierarchical recognition occurs at the first agonistic encounter and agonistic behavior gradually diminishes in the following days; animals keep their hierarchical order despite the inability of the dominant crayfish to attack the submissive

  13. Retrieval-Induced Inhibition in Short-Term Memory.

    PubMed

    Kang, Min-Suk; Choi, Joongrul

    2015-07-01

    We used a visual illusion called motion repulsion as a model system for investigating competition between two mental representations. Subjects were asked to remember two random-dot-motion displays presented in sequence and then to report the motion directions for each. Remembered motion directions were shifted away from the actual motion directions, an effect similar to the motion repulsion observed during perception. More important, the item retrieved second showed greater repulsion than the item retrieved first. This suggests that earlier retrieval exerted greater inhibition on the other item being held in short-term memory. This retrieval-induced motion repulsion could be explained neither by reduced cognitive resources for maintaining short-term memory nor by continued inhibition between short-term memory representations. These results indicate that retrieval of memory representations inhibits other representations in short-term memory. We discuss mechanisms of retrieval-induced inhibition and their implications for the structure of memory. © The Author(s) 2015.

  14. Effects of Chronic Scopolamine Treatment on Cognitive Impairments and Myelin Basic Protein Expression in the Mouse Hippocampus.

    PubMed

    Park, Joon Ha; Choi, Hyun Young; Cho, Jeong-Hwi; Kim, In Hye; Lee, Tae-Kyeong; Lee, Jae-Chul; Won, Moo-Ho; Chen, Bai Hui; Shin, Bich-Na; Ahn, Ji Hyeon; Tae, Hyun-Jin; Choi, Jung Hoon; Chung, Jin-Young; Lee, Choong-Hyun; Cho, Jun Hwi; Kang, Il Jun; Kim, Jong-Dai

    2016-08-01

    Myelin plays an important role in learning and memory, and degradation of myelin is a key feature in the pathogenesis of neurological disorders involving cognitive dysfunction. Myelin basic protein (MBP) is one of the most abundant structural proteins in myelin and is essential for myelin formation and compaction. In this study, we first examined changes in the distribution of MBP-immunoreactive myelinated fibers and MBP levels according to hippocampal subregion in mice following chronic systemic treatment with 1 mg/kg scopolamine (SCO) for 4 weeks. We found that SCO-induced cognitive impairments, as assayed by the water maze and passive avoidance tests, were significantly reduced 1 week after SCO treatment and the impairments were maintained without any hippocampal neuronal loss. MBP-immunoreactive myelinated fibers were easily detected in the stratum radiatum and lacunosum-moleculare of the hippocampus proper (CA1-3 region) and in the molecular and polymorphic layers of the dentate gyrus. The distribution of MBP-immunoreactive myelinated fibers was not altered 1 week after SCO treatment. However, the density of MBP-immunoreactive myelinated fibers was significantly decreased 2 weeks after SCO treatment; thereafter, the density gradually, though not significantly, decreased with time. In addition, the changing pattern of MBP levels in the hippocampus following SCO treatment corresponded to immunohistochemical changes. In brief, this study shows that chronic systemic treatment with SCO induced significant degradation of MBP in the hippocampus without neuronal loss at least 2 weeks after SCO treatment, although cognitive impairments occurred 1 week after SCO treatment.

  15. The Garrett Lee Smith Memorial Suicide Prevention Program

    ERIC Educational Resources Information Center

    Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.

    2010-01-01

    In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs…

  16. Recognition-induced forgetting of faces in visual long-term memory.

    PubMed

    Rugo, Kelsi F; Tamler, Kendall N; Woodman, Geoffrey F; Maxcey, Ashleigh M

    2017-10-01

    Despite more than a century of evidence that long-term memory for pictures and words are different, much of what we know about memory comes from studies using words. Recent research examining visual long-term memory has demonstrated that recognizing an object induces the forgetting of objects from the same category. This recognition-induced forgetting has been shown with a variety of everyday objects. However, unlike everyday objects, faces are objects of expertise. As a result, faces may be immune to recognition-induced forgetting. However, despite excellent memory for such stimuli, we found that faces were susceptible to recognition-induced forgetting. Our findings have implications for how models of human memory account for recognition-induced forgetting as well as represent objects of expertise and consequences for eyewitness testimony and the justice system.

  17. Nimodipine prevents memory impairment caused by nitroglycerin-induced hypotension in adult mice.

    PubMed

    Bekker, Alex; Haile, Michael; Li, Yong-Sheng; Galoyan, Samuel; Garcia, Edwardo; Quartermain, David; Kamer, Angela; Blanck, Thomas

    2009-12-01

    Hypotension and a resultant decrease in cerebral blood flow have been implicated in the development of cognitive dysfunction. We tested the hypothesis that nimodipine (NIMO) administered at the onset of nitroglycerin (NTG)-induced hypotension would preserve long-term associative memory. The passive avoidance (PA) paradigm was used to assess memory retention. For PA training, latencies (seconds) were recorded for entry from a suspended platform into a Plexiglas tube where a shock was automatically delivered. Latencies were recorded 48 h later for a testing trial. Ninety-six Swiss-Webster mice (30-35 g, 6-8 wk), were randomized into 6 groups 1) saline (control), 2) NTG immediately after learning, 3) NTG 3 h after learning, 4) NTG and NIMO, 5) vehicle, and 6) NIMO alone. The extent of hypotension and changes in brain tissue oxygenation (PbtO(2)) and in cerebral blood flow were studied in a separate group of animals. All groups exhibited similar training latencies (17.0 +/- 4.6 s). Mice subjected to hypotensive episodes showed a significant decrease in latency time (178 +/- 156 s) compared with those injected with saline, NTG + NIMO, or delayed NTG (580 +/- 81 s, 557 +/- 67 s, and 493 +/- 146 s, respectively). A Kruskal-Wallis 1-way analysis of variance indicated a significant difference among the 4 treatment groups (H = 15.34; P < 0.001). In a separate group of mice not subjected to behavioral studies, the same dose of NTG (n = 3) and NTG + NIMO (n = 3) caused mean arterial blood pressure to decrease from 85.9 +/- 3.8 mm Hg sem to 31.6 +/- 0.8 mm Hg sem and from 86.2 +/- 3.7 mm Hg sem to 32.6 +/- 0.2 mm Hg sem, respectively. Mean arterial blood pressure in mice treated with NIMO alone decreased from 88.1 +/- 3.8 mm Hg to 80.0 +/- 2.9 mm Hg. The intergroup difference was statistically significant (P < 0.05). PbtO(2) decreased from 51.7 +/- 4.5 mm Hg sem to 33.8 +/- 5.2 mm Hg sem in the NTG group and from 38.6 +/- 6.1 mm Hg sem to 25.4 +/- 2.0 mm Hg sem in the NTG

  18. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory

    PubMed Central

    Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared. Given the sensitivity of memory to loss of details, the present study sought to investigate factors that mediate the forgetting of different types of information from naturalistic episodic memories in young healthy adults. The study investigated (1) time-dependent loss of “central” and “peripheral” details from episodic memories, (2) the effectiveness of cuing with reminders to reinstate memory details, and (3) the role of retrieval in preventing forgetting. Over the course of 7 d, memory for naturalistic events (film clips) underwent a time-dependent loss of peripheral details, while memory for central details (the core or gist of events) showed significantly less loss. Giving brief reminders of the clips just before retrieval reinstated memory for peripheral details, suggesting that loss of details is not always permanent, and may reflect both a storage and retrieval deficit. Furthermore, retrieving a memory shortly after it was encoded prevented loss of both central and peripheral details, thereby promoting retention over time. We consider the implications of these results for behavioral and neurobiological models of retention and forgetting. PMID:26773100

  19. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory.

    PubMed

    Sekeres, Melanie J; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-02-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared. Given the sensitivity of memory to loss of details, the present study sought to investigate factors that mediate the forgetting of different types of information from naturalistic episodic memories in young healthy adults. The study investigated (1) time-dependent loss of "central" and "peripheral" details from episodic memories, (2) the effectiveness of cuing with reminders to reinstate memory details, and (3) the role of retrieval in preventing forgetting. Over the course of 7 d, memory for naturalistic events (film clips) underwent a time-dependent loss of peripheral details, while memory for central details (the core or gist of events) showed significantly less loss. Giving brief reminders of the clips just before retrieval reinstated memory for peripheral details, suggesting that loss of details is not always permanent, and may reflect both a storage and retrieval deficit. Furthermore, retrieving a memory shortly after it was encoded prevented loss of both central and peripheral details, thereby promoting retention over time. We consider the implications of these results for behavioral and neurobiological models of retention and forgetting. © 2016 Sekeres et al.; Published by Cold Spring Harbor Laboratory Press.

  20. Cannabinoids Ameliorate Impairments Induced by Chronic Stress to Synaptic Plasticity and Short-Term Memory

    PubMed Central

    Abush, Hila; Akirav, Irit

    2013-01-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders. PMID:23426383

  1. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    PubMed

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  2. Degrading emotional memories induced by a virtual reality paradigm.

    PubMed

    Cuperus, Anne A; Laken, Maarten; van den Hout, Marcel A; Engelhard, Iris M

    2016-09-01

    In Eye Movement and Desensitization and Reprocessing (EMDR) therapy, a dual-task approach is used: patients make horizontal eye movements while they recall aversive memories. Studies showed that this reduces memory vividness and/or emotionality. A strong explanation is provided by working memory theory, which suggests that other taxing dual-tasks are also effective. Experiment 1 tested whether a visuospatial task which was carried out while participants were blindfolded taxes working memory. Experiment 2 tested whether this task degrades negative memories induced by a virtual reality (VR) paradigm. In experiment 1, participants responded to auditory cues with or without simultaneously carrying out the visuospatial task. In experiment 2, participants recalled negative memories induced by a VR paradigm. The experimental group simultaneously carried out the visuospatial task, and a control group merely recalled the memories. Changes in self-rated memory vividness and emotionality were measured. The slowing down of reaction times due to the visuospatial task indicated that its cognitive load was greater than the load of the eye movements task in previous studies. The task also led to reductions in emotionality (but not vividness) of memories induced by the VR paradigm. Weaknesses are that only males were tested in experiment 1, and the effectiveness of the VR fear/trauma induction was not assessed with ratings of mood or intrusions in experiment 2. The results suggest that the visuospatial task may be applicable in clinical settings, and the VR paradigm may provide a useful method of inducing negative memories. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway.

    PubMed

    Canas, Paula M; Porciúncula, Lisiane O; Cunha, Geanne M A; Silva, Carla G; Machado, Nuno J; Oliveira, Jorge M A; Oliveira, Catarina R; Cunha, Rodrigo A

    2009-11-25

    Alzheimer's disease (AD) is characterized by memory impairment, neurochemically by accumulation of beta-amyloid peptide (namely Abeta(1-42)) and morphologically by an initial loss of nerve terminals. Caffeine consumption prevents memory dysfunction in different models, which is mimicked by antagonists of adenosine A(2A) receptors (A(2A)Rs), which are located in synapses. Thus, we now tested whether A(2A)R blockade prevents the early Abeta(1-42)-induced synaptotoxicity and memory dysfunction and what are the underlying signaling pathways. The intracerebral administration of soluble Abeta(1-42) (2 nmol) in rats or mice caused, 2 weeks later, memory impairment (decreased performance in the Y-maze and object recognition tests) and a loss of nerve terminal markers (synaptophysin, SNAP-25) without overt neuronal loss, astrogliosis, or microgliosis. These were prevented by pharmacological blockade [5-amino-7-(2-phenylethyl)-2-(2-furyl)-pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine (SCH58261); 0.05 mg . kg(-1) . d(-1), i.p.; for 15 d] in rats, and genetic inactivation of A(2A)Rs in mice. Moreover, these were synaptic events since purified nerve terminals acutely exposed to Abeta(1-42) (500 nm) displayed mitochondrial dysfunction, which was prevented by A(2A)R blockade. SCH58261 (50 nm) also prevented the initial synaptotoxicity (loss of MAP-2, synaptophysin, and SNAP-25 immunoreactivity) and subsequent loss of viability of cultured hippocampal neurons exposed to Abeta(1-42) (500 nm). This A(2A)R-mediated control of neurotoxicity involved the control of Abeta(1-42)-induced p38 phosphorylation and was independent from cAMP/PKA (protein kinase A) pathway. Together, these results show that A(2A)Rs play a crucial role in the development of Abeta-induced synaptotoxicity leading to memory dysfunction through a p38 MAPK (mitogen-activated protein kinase)-dependent pathway and provide a molecular basis for the benefits of caffeine consumption in AD.

  4. Pharmacological characterization of memoquin, a multi-target compound for the treatment of Alzheimer's disease.

    PubMed

    Capurro, Valeria; Busquet, Perrine; Lopes, Joao Pedro; Bertorelli, Rosalia; Tarozzo, Glauco; Bolognesi, Maria Laura; Piomelli, Daniele; Reggiani, Angelo; Cavalli, Andrea

    2013-01-01

    Alzheimer's disease (AD) is characterized by progressive loss of cognitive function, dementia and altered behavior. Over 30 million people worldwide suffer from AD and available therapies are still palliative rather than curative. Recently, Memoquin (MQ), a quinone-bearing polyamine compound, has emerged as a promising anti-AD lead candidate, mainly thanks to its multi-target profile. MQ acts as an acetylcholinesterase and β-secretase-1 inhibitor, and also possesses anti-amyloid and anti-oxidant properties. Despite this potential interest, in vivo behavioral studies with MQ have been limited. Here, we report on in vivo studies with MQ (acute and sub-chronic treatments; 7-15 mg/kg per os) carried out using two different mouse models: i) scopolamine- and ii) beta-amyloid peptide- (Aβ-) induced amnesia. Several aspects related to memory were examined using the T-maze, the Morris water maze, the novel object recognition, and the passive avoidance tasks. At the dose of 15 mg/kg, MQ was able to rescue all tested aspects of cognitive impairment including spatial, episodic, aversive, short and long-term memory in both scopolamine- and Aβ-induced amnesia models. Furthermore, when tested in primary cortical neurons, MQ was able to fully prevent the Aβ-induced neurotoxicity mediated by oxidative stress. The results support the effectiveness of MQ as a cognitive enhancer, and highlight the value of a multi-target strategy to address the complex nature of cognitive dysfunction in AD.

  5. Pharmacological Characterization of Memoquin, a Multi-Target Compound for the Treatment of Alzheimer's Disease

    PubMed Central

    Capurro, Valeria; Busquet, Perrine; Lopes, Joao Pedro; Bertorelli, Rosalia; Tarozzo, Glauco; Bolognesi, Maria Laura; Piomelli, Daniele; Reggiani, Angelo; Cavalli, Andrea

    2013-01-01

    Alzheimer's disease (AD) is characterized by progressive loss of cognitive function, dementia and altered behavior. Over 30 million people worldwide suffer from AD and available therapies are still palliative rather than curative. Recently, Memoquin (MQ), a quinone-bearing polyamine compound, has emerged as a promising anti-AD lead candidate, mainly thanks to its multi-target profile. MQ acts as an acetylcholinesterase and β-secretase-1 inhibitor, and also possesses anti-amyloid and anti-oxidant properties. Despite this potential interest, in vivo behavioral studies with MQ have been limited. Here, we report on in vivo studies with MQ (acute and sub-chronic treatments; 7–15 mg/kg per os) carried out using two different mouse models: i) scopolamine- and ii) beta-amyloid peptide- (Aβ-) induced amnesia. Several aspects related to memory were examined using the T-maze, the Morris water maze, the novel object recognition, and the passive avoidance tasks. At the dose of 15 mg/kg, MQ was able to rescue all tested aspects of cognitive impairment including spatial, episodic, aversive, short and long-term memory in both scopolamine- and Aβ-induced amnesia models. Furthermore, when tested in primary cortical neurons, MQ was able to fully prevent the Aβ-induced neurotoxicity mediated by oxidative stress. The results support the effectiveness of MQ as a cognitive enhancer, and highlight the value of a multi-target strategy to address the complex nature of cognitive dysfunction in AD. PMID:23441223

  6. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs.

    PubMed

    Abdel-Salam, Omar M E; Salem, Neveen A; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ(9)-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  7. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs

    PubMed Central

    Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  8. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.

    PubMed

    Kaczmarczyk, Melissa M; Machaj, Agnieszka S; Chiu, Gabriel S; Lawson, Marcus A; Gainey, Stephen J; York, Jason M; Meling, Daryl D; Martin, Stephen A; Kwakwa, Kristin A; Newman, Andrew F; Woods, Jeffrey A; Kelley, Keith W; Wang, Yanyan; Miller, Michael J; Freund, Gregory G

    2013-09-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. A Population Pharmacokinetic Model for Disposition in Plasma, Saliva and Urine of Scopolamine after Intranasal Administration to Healthy Human Subjects

    NASA Technical Reports Server (NTRS)

    Wu, L.; Tam, V. H.; Chow, D. S. L.; Putcha, L.

    2014-01-01

    An intranasal gel formulation of scopolamine (INSCOP) was developed for the treatment of Space Motion Sickness. The bioavailability and pharmacokinetics (PK) were evaluated under the Food and Drug Administration guidelines for clinical trials with an Investigative New Drug (IND) protocol. The aim of this project was to develop a PK model that can predict the relationship between plasma, saliva and urinary scopolamine concentrations using data collected from the IND clinical trials with INSCOP. Methods: Twelve healthy human subjects were administered three dose levels (0.1, 0.2 and 0.4 mg) of INSCOP. Serial blood, saliva and urine samples were collected between 5 min and 24 h after dosing and scopolamine concentrations were measured by using a validated LC-MS-MS assay. Pharmacokinetic Compartmental models, using actual dosing and sampling times, were built using Phoenix (version 1.2). Model selection was based on the likelihood ratio test on the difference of criteria (-2LL) and comparison of the quality of fit plots. Results: The best structural model for INSCOP (minimal -2LL= 502.8) was established. It consisted of one compartment each for plasma, saliva and urine, respectively, which were connected with linear transport processes except the nonlinear PK process from plasma to saliva compartment. The best-fit estimates of PK parameters from individual PK compartmental analysis and Population PK model analysis were shown in Tables 1 and 2, respectively. Conclusion: A population PK model that could predict population and individual PK of scopolamine in plasma, saliva and urine after dosing was developed and validated. Incorporating a non-linear transfer from plasma to saliva compartments resulted in a significantly improved model fitting. The model could be used to predict scopolamine plasma concentrations from salivary and urinary drug levels, allowing non-invasive therapeutic monitoring of scopolamine in space and other remote environments.

  10. Bacopa monnieri ameliorates memory deficits in olfactory bulbectomized mice: possible involvement of glutamatergic and cholinergic systems.

    PubMed

    Le, Xoan Thi; Pham, Hang Thi Nguyet; Do, Phuong Thi; Fujiwara, Hironori; Tanaka, Ken; Li, Feng; Van Nguyen, Tai; Nguyen, Khoi Minh; Matsumoto, Kinzo

    2013-10-01

    This study investigated the effects of alcoholic extract of Bacopa monnieri (L.) Wettst. (BM) on cognitive deficits using olfactory bulbectomized (OBX) mice and the underlying molecular mechanisms of its action. OBX mice were treated daily with BM (50 mg/kg, p.o.) or a reference drug, tacrine (2.5 mg/kg, i.p.), 1 week before and continuously 3 days after OBX. Cognitive performance of the animals was analyzed by the novel object recognition test, modified Y maze test, and fear conditioning test. Brain tissues of OBX animals were used for neurochemical and immunohistochemical studies. OBX impaired non-spatial short-term memory, spatial working memory, and long-term fair memory. BM administration ameliorated these memory disturbances. The effect of BM on short-term memory deficits was abolished by a muscarinic receptor antagonist, scopolamine. OBX downregulated phosphorylation of synaptic plasticity-related signaling proteins: NR1 subunit of N-methyl-D-aspartate receptor, glutamate receptor 1 (GluR1), and calmodulin-dependent kinase II but not cyclic AMP-responsive element binding protein (CREB), and reduced brain-derived neurotrophic factor (BDNF) mRNA in the hippocampus. OBX also reduced choline acetyltransferase in the hippocampus and cholinergic neurons in the medial septum, and enlarged the size of lateral ventricle. BM administration reversed these OBX-induced neurochemical and histological alterations, except the decrease of GluR1 phosphorylation, and enhanced CREB phosphorylation. Moreover, BM treatment inhibited ex vivo activity of acetylcholinesterase in the brain. These results indicate that BM treatment ameliorates OBX-induced cognition dysfunction via a mechanism involving enhancement of synaptic plasticity-related signaling and BDNF transcription and protection of cholinergic systems from OBX-induced neuronal damage.

  11. Automatic recording of mediating behavior in delayed matching- and nonmatching-to-position procedures in rats.

    PubMed

    Panlilio, Leigh V; Yasar, Sevil; Thorndike, Eric B; Goldberg, Steven R; Schindler, Charles W

    2011-03-01

    Delayed matching-to-position and nonmatching-to-position procedures are widely used to model working memory in rodents. Mediating behavior-which enhances performance but is not explicitly required by the task-is generally considered an obstacle to the measurement of memory, but often occurs despite attempts to prevent it. The ubiquitous nature of mediating behavior suggests it might be analogous to rehearsal, an important component of learning and memory in humans. The aim was to study an easily recordable, rehearsal-like mediating response in rats under baseline conditions and after treatment with amnestic drugs [scopolamine (0.1-0.3 mg/kg) and delta-9-tetrahydrocannabinol (THC; 1-5.6 mg/kg)]. Lighted nosepoke holes were used to present position cues and record delayed matching or nonmatching responses. Performance of a distractor task was required to prevent simply waiting at the correct choice, but the nosepoke holes were left accessible during the delay. Each rat trained with the nonmatching task exhibited one of two mediating "strategies" that increased the odds of a correct choice: responding in the to-be-correct hole during the delay or responding in the opposite hole during the delay. Rats trained with the matching task all showed the former strategy. Treatment with scopolamine disrupted performance of the mediating response. Scopolamine and THC both decreased the effectiveness of the mediating response, increasing errors even on trials when the "appropriate" mediating behavior did occur. The procedures and data analysis approach used here provide an objective, automated means of measuring mediating behavior, which might be useful as an animal model of memory rehearsal.

  12. Tartary buckwheat improves cognition and memory function in an in vivo amyloid-β-induced Alzheimer model.

    PubMed

    Choi, Ji Yeon; Cho, Eun Ju; Lee, Hae Song; Lee, Jeong Min; Yoon, Young-Ho; Lee, Sanghyun

    2013-03-01

    Protective effects of Tartary buckwheat (TB) and common buckwheat (CB) on amyloid beta (Aβ)-induced impairment of cognition and memory function were investigated in vivo in order to identify potential therapeutic agents against Alzheimer's disease (AD) and its associated progressive memory deficits, cognitive impairment, and personality changes. An in vivo mouse model of AD was created by injecting the brains of ICR mice with Aβ(25-35), a fragment of the full-length Aβ protein. Damage of mice recognition ability through following Aβ(25-35) brain injections was confirmed using the T-maze test, the object recognition test, and the Morris water maze test. Results of behavior tests in AD model showed that oral administration of the methanol (MeOH) extracts of TB and CB improved cognition and memory function following Aβ(25-35) injections. Furthermore, in groups receiving the MeOH extracts of TB and CB, lipid peroxidation was significantly inhibited, and nitric oxide levels in tissue, which are elevated by injection of Aβ(25-35), were also decrease. In particular, the MeOH extract of TB exerted a stronger protective activity than CB against Aβ(25-35)-induced memory and cognition impairment. The results indicate that TB may play a promising role in preventing or reversing memory and cognition loss associated with Aβ(25-35)-induced AD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Activation of the α7 nicotinic ACh receptor induces anxiogenic effects in rats which is blocked by a 5-HT1a receptor antagonist

    PubMed Central

    Pandya, Anshul A.; Yakel, Jerrel L.

    2013-01-01

    The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in different regions of the brain and is associated with cognitive function as well as anxiety. Agonists and positive allosteric modulators (PAMs) of the α7 subtype of nAChRs have been shown to improve cognition. Previously nicotine, which activates both α7 and non-α7 subtypes of nAChRs, has been shown to have an anxiogenic effect in behavioral tests. In this study, we compared the effects of the α7-selective agonist (PNU-282987) and PAM (PNU-120596) in a variety of behavioral tests in Sprague Dawley rats to look at their effects on learning and memory as well as anxiety. We found that neither PNU-282987 nor PNU-120596 improved spatial-learning or episodic memory by themselves. However when cognitive impairment was induced in the rats with scopolamine (1 mg/kg), both PNU-120596 and PNU-282987 were able to reverse this memory impairment and restore it back to normal levels. While PNU-120596 reversed the scopolamine-induced cognitive impairment, it did not have any adverse effect on anxiety. PNU-282987 on the other hand displayed an increase in anxiety-like behavior at a higher dose (10 mg/kg) that was significantly reduced by the serotonin 5-HT1a receptor antagonist WAY-100135. However the α7 receptor antagonist methyllycaconitine was unable to reverse these anxiety-like effects seen with PNU-282987. These results suggest that α7 nAChR PAMs are pharmacologically advantageous over agonists, and should be considered for further development as therapeutic drugs targeting the α7 receptors. PMID:23321689

  14. Scopolamine Reduces Electrophysiological Indices of Distractor Suppression: Evidence from a Contingent Capture Task

    PubMed Central

    Laube, Inga; Matthews, Natasha; Dean, Angela J.; O’Connell, Redmond G.; Mattingley, Jason B.; Bellgrove, Mark A.

    2017-01-01

    Limited resources for the in-depth processing of external stimuli make it necessary to select only relevant information from our surroundings and to ignore irrelevant stimuli. Attentional mechanisms facilitate this selection via top-down modulation of stimulus representations in the brain. Previous research has indicated that acetylcholine (ACh) modulates this influence of attention on stimulus processing. However, the role of muscarinic receptors as well as the specific mechanism of cholinergic modulation remains unclear. Here we investigated the influence of ACh on feature-based, top-down control of stimulus processing via muscarinic receptors by using a contingent capture paradigm which specifically tests attentional shifts toward uninformative cue stimuli which display one of the target defining features In a double-blind, placebo controlled study we measured the impact of the muscarinic receptor antagonist scopolamine on behavioral and electrophysiological measures of contingent attentional capture. The results demonstrated all the signs of functional contingent capture, i.e., attentional shifts toward cued locations reflected in increased amplitudes of N1 and N2Pc components, under placebo conditions. However, scopolamine did not affect behavioral or electrophysiological measures of contingent capture. Instead, scopolamine reduced the amplitude of the distractor-evoked Pd component which has recently been associated with active suppression of irrelevant distractor information. The findings suggest a general cholinergic modulation of top-down control during distractor processing. PMID:29270112

  15. Resveratrol ameliorates spatial learning memory impairment induced by Aβ1-42 in rats.

    PubMed

    Wang, Rui; Zhang, Yu; Li, Jianguo; Zhang, Ce

    2017-03-06

    β-amyloid (Aβ) deposition is considered partially responsible for cognitive dysfunction in Alzheimer's disease (AD). Recently, resveratrol has been reported to play a potential role as a neuroprotective biofactor by modulating Aβ pathomechanisms, including through anti-neuronal apoptotic, anti-oxidative stress, and anti-neuroinflammatory effects. In addition, SIRT1 has been demonstrated to modulate learning and memory function by regulating the expression of cAMP response binding protein (CREB), which involves in modulating the expression of SIRT1. However, whether resveratrol can alleviate Aβ-induced cognitive dysfunction, whether SIRT1 expression and CREB phosphorylation in the hippocampus are affected by Aβ, and whether resveratrol influences these effects remain unknown. In the present study, we used a hippocampal injection model in rats to investigate the effects of resveratrol on Aβ 1-42 -induced impairment of spatial learning, memory and synaptic plasticity as well as on alterations of SIRT1 expression and CREB phosphorylation. We found that resveratrol significantly reversed the water maze behavioral impairment and the attenuation of long-term potentiation (LTP) in area CA1 that were induced by hippocampal injection of Aβ 1-42 . Interestingly, resveratrol also prevented the Aβ 1-42 -induced reductions in SIRT1 expression and CREB phosphorylation in rat hippocampus. In conclusion, in rats, resveratrol protects neurons against Aβ 1-42 -induced disruption of spatial learning, memory and hippocampal LTP. The mechanisms underlying the neuroprotective effects may involve rescue of SIRT1 expression and CREB phosphorylation. Copyright © 2016. Published by Elsevier Ltd.

  16. Intranasal Insulin Prevents Anesthesia-Induced Cognitive Impairment and Chronic Neurobehavioral Changes.

    PubMed

    Chen, Yanxing; Dai, Chun-Ling; Wu, Zhe; Iqbal, Khalid; Liu, Fei; Zhang, Baorong; Gong, Cheng-Xin

    2017-01-01

    General anesthesia increases the risk for cognitive impairment post operation, especially in the elderly and vulnerable individuals. Recent animal studies on the impact of anesthesia on postoperative cognitive impairment have provided some valuable insights, but much remains to be understood. Here, by using mice of various ages and conditions, we found that anesthesia with propofol and sevoflurane caused significant deficits in spatial learning and memory, as tested using Morris Water Maze (MWM) 2-6 days after anesthesia exposure, in aged (17-18 months old) wild-type (WT) mice and in adult (7-8 months old) 3xTg-AD mice (a triple transgenic mouse model of Alzheimer's disease (AD)), but not in adult WT mice. Anesthesia resulted in long-term neurobehavioral changes in the fear conditioning task carried out 65 days after exposure to anesthesia in 3xTg-AD mice. Importantly, daily intranasal administration of insulin (1.75 U/mouse/day) for only 3 days prior to anesthesia completely prevented the anesthesia-induced deficits in spatial learning and memory and the long-term neurobehavioral changes tested 65 days after exposure to anesthesia in 3xTg-AD mice. These results indicate that aging and AD-like brain pathology increase the vulnerability to cognitive impairment after anesthesia and that intranasal treatment with insulin can prevent anesthesia-induced cognitive impairment.

  17. Acute effect of essential oil of Eugenia caryophyllata on cognition and pain in mice.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2012-06-01

    The essential oil of Eugenia caryophyllata (clove oil; Family: Myrtaceae) is used in dental care as an antiseptic and analgesic. The study aims to evaluate the effect of clove oil on experimental models of pain and cognition in mice. To observe the acute effects of clove oil at different doses, the elevated plus maze was used for the assessment of cognition, and the tail flick and formalin tests were used for the study of pain. The formalin test showed that clove oil (0.1 ml/kg, i.p.) demonstrated significantly reduced pain response in both the phases. The lower doses (0.025 and 0.05 ml/kg, i.p.) reduced the formalin-induced pain response significantly in the second phase only. The tail-flick test showed variable response. The dose 0.1 ml/kg, clove oil, significantly decreased the tail-flick latency at 30 min and this effect was reversed by naloxone (1 mg/kg). On the contrary, the dose 0.025 ml/kg of clove oil, at 30 and 60 min increased the mean tail-flick latency compared to control group, but this effect was not statistically significant. Yet naloxone significantly (p < 0.05) reversed the effect of clove oil 0.025 ml/kg at 30 min. Clove oil (0.025 and 0.05 ml/kg, i.p.) significantly reversed the scopolamine-induced retention memory deficit induced by scopolamine, but clove oil (0.1 ml/kg, i.p.) significantly reversed both acquisition as well as retention deficits in elevated plus maze induced by the scopolamine. Clove oil exhibits reduced pain response by a predominantly peripheral action as evidenced by formalin test and the tail flick test showed the involvement of opioid receptors. Clove oil also significantly improved scopolamine-induced retention memory deficit at all doses.

  18. Critical Role of Endoplasmic Reticulum Stress in Chronic Intermittent Hypoxia-Induced Deficits in Synaptic Plasticity and Long-Term Memory

    PubMed Central

    Xu, Lin-Hao; Xie, Hui; Shi, Zhi-Hui; Du, Li-Da; Wing, Yun-Kwok; Li, Albert M.

    2015-01-01

    Abstract Aims: This study examined the role of endoplasmic reticulum (ER) stress in mediating chronic intermittent hypoxia (IH)-induced neurocognitive deficits. We designed experiments to demonstrate that ER stress is initiated in the hippocampus under chronic IH and determined its role in apoptotic cell death, impaired synaptic structure and plasticity, and memory deficits. Results: Two weeks of IH disrupted ER fine structure and upregulated ER stress markers, glucose-regulated protein 78, caspase-12, and C/EBP homologous protein, in the hippocampus, which could be suppressed by ER stress inhibitors, tauroursodeoxycholic acid (TUDCA) and 4-phenylbutyric acid. Meanwhile, ER stress induced apoptosis via decreased Bcl-2, promoted reactive oxygen species production, and increased malondialdehyde formation and protein carbonyl, as well as suppressed mitochondrial function. These effects were largely prevented by ER stress inhibitors. On the other hand, suppression of oxidative stress could reduce ER stress. In addition, the length of the synaptic active zone and number of mature spines were reduced by IH. Long-term recognition memory and spatial memory were also impaired, which was accompanied by reduced long-term potentiation in the Schaffer collateral pathway. These effects were prevented by coadministration of the TUDCA. Innovation and Conclusion: These results show that ER stress plays a critical role in underlying memory deficits in obstructive sleep apnea (OSA)-associated IH. Attenuators of ER stress may serve as novel adjunct therapeutic agents for ameliorating OSA-induced neurocognitive impairment. Antioxid. Redox Signal. 23, 695–710. PMID:25843188

  19. No effect of odor-induced memory reactivation during REM sleep on declarative memory stability

    PubMed Central

    Cordi, Maren J.; Diekelmann, Susanne; Born, Jan; Rasch, Björn

    2014-01-01

    Memory reactivations in hippocampal brain areas are critically involved in memory consolidation processes during sleep. In particular, specific firing patterns of hippocampal place cells observed during learning are replayed during subsequent sleep and rest in rodents. In humans, experimentally inducing hippocampal memory reactivations during slow-wave sleep (but not during wakefulness) benefits consolidation and immediately stabilizes declarative memories against future interference. Importantly, spontaneous hippocampal replay activity can also be observed during rapid eye movement (REM) sleep and some authors have suggested that replay during REM sleep is related to processes of memory consolidation. However, the functional role of reactivations during REM sleep for memory stability is still unclear. Here, we reactivated memories during REM sleep and examined its consequences for the stability of declarative memories. After 3 h of early, slow-wave sleep (SWS) rich sleep, 16 healthy young adults learned a 2-D object location task in the presence of a contextual odor. During subsequent REM sleep, participants were either re-exposed to the odor or to an odorless vehicle, in a counterbalanced within subject design. Reactivation was followed by an interference learning task to probe memory stability after awakening. We show that odor-induced memory reactivation during REM sleep does not stabilize memories against future interference. We propose that the beneficial effect of reactivation during sleep on memory stability might be critically linked to processes characterizing SWS including, e.g., slow oscillatory activity, sleep spindles, or low cholinergic tone, which are required for a successful redistribution of memories from medial temporal lobe regions to neocortical long-term stores. PMID:25225474

  20. Sucrose-induced analgesia during early life modulates adulthood learning and memory formation.

    PubMed

    Nuseir, Khawla Q; Alzoubi, Karem H; Alabwaini, Jehad; Khabour, Omar F; Kassab, Manal I

    2015-06-01

    This study is aimed at examining the long-term effects of chronic pain during early life (postnatal day 0 to 8weeks), and intervention using sucrose, on cognitive functions during adulthood in rats. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution or paracetamol was administered for analgesia before the paw prick. Control groups include tactile stimulation to account for handling and touching the paws, and sucrose alone was used. All treatments were started on day one of birth and continued for 8weeks. At the end of the treatments, behavioral studies were conducted to test the spatial learning and memory using radial arm water maze (RAWM), as well as pain threshold via foot-withdrawal response to a hot plate apparatus. Additionally, the hippocampus was dissected, and blood was collected. Levels of neurotrophins (BDNF, IGF-1 and NT-3) and endorphins were assessed using ELISA. The results show that chronic noxious stimulation resulted in comparable foot-withdrawal latency between noxious and tactile groups. On the other hand, pretreatment with sucrose or paracetamol increased pain threshold significantly both in naive rats and noxiously stimulated rats (P<0.05). Chronic pain during early life impaired short-term memory, and sucrose treatment prevented such impairment (P<0.05). Sucrose significantly increased serum levels of endorphin and enkephalin. Chronic pain decreased levels of BDNF in the hippocampus and this decrease was prevented by sucrose and paracetamol treatments. Hippocampal levels of NT-3 and IGF-1 were not affected by any treatment. In conclusion, chronic pain induction during early life induced short memory impairment, and pretreatment with sucrose prevented this impairment via mechanisms that seem to involve BDNF. As evident in the results, sucrose, whether alone or in the presence of pre-noxious stimulation, increases pain threshold in such circumstances; most likely via a mechanism that involves an increase in endogenous

  1. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Ming-Huan; Institute of Neuroscience, National Changchi University, Taipei, Taiwan; Chung, Shiang-Sheng

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDAmore » receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced

  2. Cue-induced alcohol-seeking behaviour is reduced by disrupting the reconsolidation of alcohol-related memories.

    PubMed

    von der Goltz, Christoph; Vengeliene, Valentina; Bilbao, Ainhoa; Perreau-Lenz, Stephanie; Pawlak, Cornelius R; Kiefer, Falk; Spanagel, Rainer

    2009-08-01

    In humans, the retrieval of memories associated with an alcohol-related experience frequently evokes alcohol-seeking behaviour. The reconsolidation hypothesis states that a consolidated memory could again become labile and susceptible to disruption after memory retrieval. The aim of our study was to examine whether retrieval of alcohol-related memories undergoes a reconsolidation process. For this purpose, male Wistar rats were trained to self-administer ethanol in the presence of specific conditioned stimuli. Thereafter, animals were left undisturbed in their home cages for the following 21 days. Memory retrieval was performed in a single 5-min exposure to all alcohol-associated stimuli. The protein synthesis inhibitor anisomycin, the non-competitive N-methyl-D: -aspartate (NMDA) receptor antagonist MK-801 and acamprosate, a clinically used drug known to reduce a hyper-glutamatergic state, were given immediately after retrieval of alcohol-related memories. The impact of drug treatment on cue-induced alcohol-seeking behaviour was measured on the following day and 7 days later. Administration of both anisomycin and MK-801 reduced cue-induced alcohol-seeking behaviour, showing that memory reconsolidation was disrupted by these compounds. However, acamprosate had no effect on the reconsolidation process, suggesting that this process is not dependent on a hyper-glutamatergic state but is more related to protein synthesis and NMDA receptor activity. Pharmacological disruption of reconsolidation of alcohol-associated memories can be achieved by the use of NMDA antagonists and protein synthesis inhibitors and may thus provide a potential new therapeutic strategy for the prevention of relapse in alcohol addiction.

  3. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    PubMed

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIα Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation

    PubMed Central

    Rich, Matthew T.; Abbott, Thomas B.; Chung, Lisa; Gulcicek, Erol E.; Stone, Kathryn L.; Colangelo, Christopher M.; Lam, TuKiet T.; Nairn, Angus C.; Taylor, Jane R.

    2016-01-01

    Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. SIGNIFICANCE STATEMENT Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance

  5. Phosphoproteomic Analysis Reveals a Novel Mechanism of CaMKIIα Regulation Inversely Induced by Cocaine Memory Extinction versus Reconsolidation.

    PubMed

    Rich, Matthew T; Abbott, Thomas B; Chung, Lisa; Gulcicek, Erol E; Stone, Kathryn L; Colangelo, Christopher M; Lam, TuKiet T; Nairn, Angus C; Taylor, Jane R; Torregrossa, Mary M

    2016-07-20

    Successful addiction treatment depends on maintaining long-term abstinence, making relapse prevention an essential therapeutic goal. However, exposure to environmental cues associated with drug use often thwarts abstinence efforts by triggering drug using memories that drive craving and relapse. We sought to develop a dual approach for weakening cocaine memories through phosphoproteomic identification of targets regulated in opposite directions by memory extinction compared with reconsolidation in male Sprague-Dawley rats that had been trained to self-administer cocaine paired with an audiovisual cue. We discovered a novel, inversely regulated, memory-dependent phosphorylation event on calcium-calmodulin-dependent kinase II α (CaMKIIα) at serine (S)331. Correspondingly, extinction-associated S331 phosphorylation inhibited CaMKIIα activity. Intra-basolateral amygdala inhibition of CaMKII promoted memory extinction and disrupted reconsolidation, leading to a reduction in subsequent cue-induced reinstatement. CaMKII inhibition had no effect if the memory was neither retrieved nor extinguished. Therefore, inhibition of CaMKII represents a novel mechanism for memory-based addiction treatment that leverages both extinction enhancement and reconsolidation disruption to reduce relapse-like behavior. Preventing relapse to drug use is an important goal for the successful treatment of addictive disorders. Relapse-prevention therapies attempt to interfere with drug-associated memories, but are often hindered by unintentional memory strengthening. In this study, we identify phosphorylation events that are bidirectionally regulated by the reconsolidation versus extinction of a cocaine-associated memory, including a novel site on CaMKIIα. Additionally, using a rodent model of addiction, we show that CaMKII inhibition in the amygdala can reduce relapse-like behavior. Together, our data supports the existence of mechanisms that can be used to enhance current strategies for

  6. Optical quantum memory based on electromagnetically induced transparency

    PubMed Central

    Ma, Lijun; Slattery, Oliver

    2017-01-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems. PMID:28828172

  7. Optical quantum memory based on electromagnetically induced transparency.

    PubMed

    Ma, Lijun; Slattery, Oliver; Tang, Xiao

    2017-04-01

    Electromagnetically induced transparency (EIT) is a promising approach to implement quantum memory in quantum communication and quantum computing applications. In this paper, following a brief overview of the main approaches to quantum memory, we provide details of the physical principle and theory of quantum memory based specifically on EIT. We discuss the key technologies for implementing quantum memory based on EIT and review important milestones, from the first experimental demonstration to current applications in quantum information systems.

  8. The Garrett Lee Smith memorial suicide prevention program.

    PubMed

    Goldston, David B; Walrath, Christine M; McKeon, Richard; Puddy, Richard W; Lubell, Keri M; Potter, Lloyd B; Rodi, Michael S

    2010-06-01

    In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs (including gatekeeper training), screening activities, infrastructure for improved linkages to services, crisis hotlines, and community partnerships. Through participation in both local- and cross-site evaluations, GLS grantees are generating data regarding the local context, proximal outcomes, and implementation of programs, as well as opportunities for improvement of suicide prevention efforts.

  9. The Garrett Lee Smith Memorial Suicide Prevention Program

    PubMed Central

    Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.

    2011-01-01

    Responding to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act to date has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs including gatekeeper training, screening activities, infrastructure for improved linkages to services, crisis hotlines, and community partnerships. Through participation in both local- and cross-site evaluations, GLS grantees are generating data regarding the local context, proximal outcomes, and implementation of programs, as well as opportunities for improvement of suicide prevention efforts. PMID:20560746

  10. Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory

    ERIC Educational Resources Information Center

    Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.

    2015-01-01

    Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…

  11. Antimotion-sickness efficacy of scopolamine 12 and 72 hours after transdermal administration

    NASA Technical Reports Server (NTRS)

    Graybiel, A.; Cramer, D. B.; Wood, C. D.

    1982-01-01

    The antimotion sickness remedy, transdermal therapeutic system-scopolamine, administered in this experiment was scheduled to deliver 1.0 mg of scopolamine over a period of 3 d, and this paper compares its efficacy 12 and 72 h after administration. In a double-blind study, six male college students were individually exposed to a standardized provocative test in a slow rotation room after six apparently identical treatments comprising four placebos and two medications. Efficacy was categorized as beneficial, inconsequential, or detrimental. None of the responses was detrimental. Following the first administration of the therapeutic system, there were four beneficial responses after 12 h but none was beneficial after 72 h. Following the second treatment regimen, there were four beneficial responses after 12 h and three beneficial responses after 72 h. Great individual differences were demonstrated, two subjects accounting for six beneficial responses and two accounting for only one beneficial response. The difference in efficacy after 12 and 72 h has practical and theoretical significance.

  12. Isolation of atropine and scopolamine from plant material using liquid-liquid extraction and EXtrelut® columns.

    PubMed

    Śramska, Paula; Maciejka, Artur; Topolewska, Anna; Stepnowski, Piotr; Haliński, Łukasz P

    2017-02-01

    Tropane alkaloids are toxic secondary metabolites produced by Solanaceae plants. Among them, plants from Datura genus produce significant amounts of scopolamine and hyoscyamine; the latter undergoes racemization to atropine during isolation. Because of their biological importance, toxic properties and commonly reported food and animal feed contamination by different Datura sp. organs, there is a constant need for reliable methods for the analysis of tropane alkaloids in many matrices. In the current study, three extraction and sample-clean up procedures for the determination of scopolamine and atropine in plant material were compared in terms of their effectiveness and repeatability. Standard liquid-liquid extraction (LLE) and EXtrelut ® NT 3 columns were used for the sample clean-up. Combined ultrasound-assisted extraction and 24h static extraction using ethyl acetate, followed by multiple LLE steps was found the most effective separation method among tested. However, absolute extraction recovery was relatively low and reached 45-67% for atropine and 52-73% for scopolamine, depending on the compound concentration. The same method was also the most effective one for the isolation of target compounds from Datura stramonium leaves. EXtrelut ® columns, on the other hand, displayed relatively low effectiveness in isolating atropine and scopolamine from such a complex matrix and hence could not be recommended. The most effective method was also applied to the extraction of alkaloids from roots and stems of D. stramonium. Quantitative analyses were performed using validated method based on gas chromatography with flame ionization detector (GC-FID). Based on the results, the importance of the proper selection of internal standards in the analysis of tropane alkaloids was stressed out. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. False memories for dissonance inducing events.

    PubMed

    Rodriguez, Dario N; Strange, Deryn

    2015-01-01

    Memories serve as a "database" of the self and people often produce distorted memories that support their self-concepts. One, surprisingly untested, possibility is that cognitive dissonance may be one mechanism by which people may misremember their past. We tested this hypothesis using an induced-compliance paradigm: participants either chose or were forced to write a counterattitudinal essay supporting a tuition increase and were afforded the opportunity to reduce dissonance via attitude shift or denial of responsibility. They then reported their memories for the experimental instructions and their initial attitudes (assessed two days prior to the laboratory session). Participants who chose to write the essay exhibited the predicted attitude-shift effect, and were more likely to misremember their initial attitudes and the experimental instruction than those who were forced to write the essay. Overall, our results provide evidence that cognitive dissonance may yield memory distortion, filling a significant gap in the motivated cognition and memory literatures.

  14. Clozapine blockade of MK-801-induced learning/memory impairment in the mEPM: Role of 5-HT1A receptors and hippocampal BDNF levels.

    PubMed

    López Hill, Ximena; Richeri, Analía; Scorza, María Cecilia

    2017-10-01

    Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT 1A receptor (5-HT 1A -R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT 1A -R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT 1A -R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT 1A -R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Effects of D-cycloserine and aniracetam on spatial learning in rats with entorhinal cortex lesions.

    PubMed

    Zajaczkowski, W; Danysz, W

    1997-01-01

    A great body of behavioural and neurophysiological evidence suggests that excitatory amino acids are involved in mechanisms of learning and memory. Moreover, degeneration of glutamatergic pathways may underlie the cognitive deficits seen in various disorders such as Alzheimer's dementia. As direct stimulation of glutamatergic receptors with agonists may increase the risk of toxicity and accelerate neuropathological changes, a more valid approach seems to be positive modulation of glutamatergic receptors that may reverse the symptoms with a lower risk of excitotoxic effects. Such a possibility offered by partial agonists of the strychnine-insensitive glycine site of the NMDA receptor (Gly-B site) or positive modulators of AMPA receptors, such as aniracetam. In the present study, the effects of d-cycloserine and aniracetam were tested in two animal models of cognitive deficits (entorhinal cortex lesion-induced deficits evaluated in the radial maze and scopolamine-induced amnesia evaluated in passive avoidance test). D-cycloserine (6 mg/kg, for 10 days) had no effect on spatial working memory deficit induced by entorhinal cortex lesions. It did, however, reverse scopolamine-induced deficits in the passive avoidance test when given acutely at the same dose. In contrast, aniracetam (50 mg/kg, for 10 days) produced beneficial effects in the radial maze test in rats with entorhinal cortex lesions, but given at the same dose acutely did not influence scopolamine-induced amnesia. The positive effect of d-cycloserine against scopolamine-induced amnesia may be probably related to the cholinergic-glutamatergic interaction in the hippocampus. The negative data obtained with d-cycloserine in the model of entorhinal cortex lesions-induced cognitive deficits could be taken as a hint that it is probably not suitable for the symptomatological therapy of Alzheimer's disease. The mechanism of positive action of aniracetam cannot be explained on the basis of AMPA receptor modulation

  16. Transdermal delivery of scopolamine by natural submicron injectors: in-vivo study in pig.

    PubMed

    Shaoul, Esther; Ayalon, Ari; Tal, Yossi; Lotan, Tamar

    2012-01-01

    Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with T(max) of 30 minutes and C(max) 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery.

  17. Transdermal Delivery of Scopolamine by Natural Submicron Injectors: In-Vivo Study in Pig

    PubMed Central

    Shaoul, Esther; Ayalon, Ari; Tal, Yossi; Lotan, Tamar

    2012-01-01

    Transdermal drug delivery has made a notable contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. While transdermal delivery systems would appear to provide an attractive solution for local and systemic drug delivery, only a limited number of drugs can be delivered through the outer layer of the skin. The most difficult to deliver in this way are hydrophilic drugs. The aquatic phylum Cnidaria, which includes sea anemones, corals, jellyfish and hydra, is one of the most ancient multicellular phyla that possess stinging cells containing organelles (cnidocysts), comprising a sophisticated injection system. The apparatus is folded within collagenous microcapsules and upon activation injects a thin tubule that immediately penetrates the prey and delivers its contents. Here we show that this natural microscopic injection system can be adapted for systemic transdermal drug delivery once it is isolated from the cells and uploaded with the drug. Using a topically applied gel containing isolated natural sea anemone injectors and the muscarinic receptor antagonist scopolamine, we found that the formulated injectors could penetrate porcine skin and immediately deliver this hydrophilic drug. An in-vivo study in pigs demonstrated, for the first time, rapid systemic delivery of scopolamine, with Tmax of 30 minutes and Cmax 5 times higher than in controls treated topically with a scopolamine-containing gel without cnidocysts. The ability of the formulated natural injection system to penetrate a barrier as thick as the skin and systemically deliver an exogenous compound presents an intriguing and attractive alternative for hydrophilic transdermal drug delivery. PMID:22363770

  18. Postconditioning Effectively Prevents Trimethyltin Induced Neuronal Damage in the Rat Brain.

    PubMed

    Lalkovicova, Maria; Burda, Jozef; Nemethova, Miroslava; Burda, Rastislav; Danielisova, Viera

    Trimethyltin (TMT) is a toxic substance formerly used as a catalyst in the production of organic substances, as well as in industry and agriculture. TMT poisoning has caused death or severe injury in many dozens of people. The toxicity of TMT is mediated by dose dependent selective damage to the limbic system in humans and other animals, specifically the degeneration of CA1 neurons in the hippocampus. The typical symptoms include memory loss and decreased learning ability. Using knowledge gained in previous studies of global ischaemia, we used delayed postconditioning after TMT intoxication (8 mg/kg i.p.), consisting of applying a stressor (BR, bradykinin 150 μg/kg i.p.) 24 or 48 hours after the injection of TMT. We found that BR had preventive effects on neurodegenerative changes as well as learning and memory deficits induced by TMT intoxication.

  19. Caspase-6 activity in the CA1 region of the hippocampus induces age-dependent memory impairment

    PubMed Central

    LeBlanc, A C; Ramcharitar, J; Afonso, V; Hamel, E; Bennett, D A; Pakavathkumar, P; Albrecht, S

    2014-01-01

    Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease. PMID:24413155

  20. [Pharmacokinetics of scopolamine hydrobromide oral disintegrative microencapsule tablets in Beagle dogs determined with LC-MS/MS].

    PubMed

    Xia, Tian; Liu, De-Ding; Shi, Li-Fu; Hu, Jin-Hong

    2011-08-01

    The study aims to elucidate the characteristics of pharmacokinetics of scopolamine hydrobromide oral disintegrative microencapsule tablets in healthy Beagle dogs. Chromatographic separation was performed on a C18 column (100 mm x 3.0 mm, 3.5 microm) with methanol - 2 mmol x L(-1) ammonium formate (25 : 75) as the mobile phase. A trip-quadrupole tandem mass spectrum with the electrospray ionization (ESI) source was applied and positive ion multiple reaction monitoring mode was operated. Six Beagle dogs were randomly devided into two groups. They received oral single dose of scopolamine hydrobromide oral disintegrative microencapsule tablets 0.6 mg (test tablet) or scopolamine hydrobromide normal tablets (reference tablet). Plasma samples were collected at designed time. Plasma concentration of scopolamine hydrobromide was determined by LC-MS/MS and pharmacokinetic parameters were calculated. The pharmacokinetic parameters of test tablet vs reference tablet were as follows: C(max): (8.16 +/- 0.67) ng x mL(-1) vs (3.54 +/- 0.64) ng x mL(-1); t1/2: (2.83 +/- 0.45) h vs (3.85 +/- 0.82) h; t(max): (1.25 +/- 0.27) h vs (0.42 +/- 0.09) h; AUC(0-12h): (25.06 +/- 3.75) h x ng x mL(-1) vs (9.59 +/- 1.02) h x ng x mL(-1); AUC(0-infinity): (26.30 +/- 3.92) h x ng x mL(-1) vs (10.80 +/- 1.45) h x ng x mL(-1); MRT(0-12h): (3.38 +/- 0.34) h vs (3.86 +/- 0.26) h; MRT(0-infinity): (3.98 +/- 0.63) h vs (5.37 +/- 1.00) h. The absorption rate and AUC of test tablet is different from that of reference tablet. The bioavailability of test tablet is better than those of reference tablet.

  1. Phencyclidine and Scopolamine for Modeling Amnesia in Rodents: Direct Comparison with the Use of Barnes Maze Test and Contextual Fear Conditioning Test in Mice.

    PubMed

    Malikowska-Racia, Natalia; Podkowa, Adrian; Sałat, Kinga

    2018-04-21

    Nowadays cognitive impairments are a growing unresolved medical issue which may accompany many diseases and therapies, furthermore, numerous researchers investigate various neurobiological aspects of human memory to find possible ways to improve it. Until any other method is discovered, in vivo studies remain the only available tool for memory evaluation. At first, researchers need to choose a model of amnesia which may strongly influence observed results. Thereby a deeper insight into a model itself may increase the quality and reliability of results. The most common method to impair memory in rodents is the pretreatment with drugs that disrupt learning and memory. Taking this into consideration, we compared the activity of agents commonly used for this purpose. We investigated effects of phencyclidine (PCP), a non-competitive NMDA receptor antagonist, and scopolamine (SCOP), an antagonist of muscarinic receptors, on short-term spatial memory and classical fear conditioning in mice. PCP (3 mg/kg) and SCOP (1 mg/kg) were administrated intraperitoneally 30 min before behavioral paradigms. To assess the influence of PCP and SCOP on short-term spatial memory, the Barnes maze test in C57BL/J6 mice was used. Effects on classical conditioning were evaluated using contextual fear conditioning test. Additionally, spontaneous locomotor activity of mice was measured. These two tests were performed in CD-1 mice. Our study reports that both tested agents disturbed short-term spatial memory in the Barnes maze test, however, SCOP revealed a higher activity. Surprisingly, learning in contextual fear conditioning test was impaired only by SCOP. Graphical Abstract ᅟ.

  2. GLYX-13 (rapastinel) ameliorates subchronic phencyclidine- and ketamine-induced declarative memory deficits in mice

    PubMed Central

    Rajagopal, Lakshmi; Burgdorf, Jeffrey S.; Moskal, Joseph R.; Meltzer, Herbert Y.

    2016-01-01

    GLYX-13 (rapastinel), a tetrapeptide (Thr-Pro-Pro-Thr-amide), has been reported to have fast acting antidepressant properties in man based upon its N-methyl-d-aspartate receptor (NMDAR) glycine site functional partial agonism. Ketamine, a non-competitive NMDAR antagonist, also reported to have fast acting antidepressant properties, produces cognitive impairment in rodents and man, whereas rapastinel has been reported to have cognitive enhancing properties in rodents, without impairing cognition in man, albeit clinical testing has been limited. The goal of this study was to compare the cognitive impairing effects of rapastinel and ketamine in novel object recognition (NOR), a measure of declarative memory, in male C57BL/6J mice treated with phencyclidine (PCP), another NMDAR noncompetitive antagonist known to severely impair cognition, in both rodents and man. C57BL/6J mice given a single dose or subchronic ketamine (30 mg/kg. i.p.) showed acute or persistent deficits in NOR, respectively. Acute i.v. rapastinel (1.0 mg/kg), did not induce NOR deficit. Pre-treatment with rapastinel significantly prevented acute ketamine-induced NOR deficit. Rapastinel (1.0 mg/kg, but not 0.3 mg/kg, iv) significantly reversed both subchronic ketamine- and subchronic PCP-induced NOR deficits. Rapastinel also potentiated the atypical antipsychotic drug with antidepressant properties, lurasidone, to restore NOR in subchronic ketamine-treated mice. These findings indicate that rapastinel, unlike ketamine, does not induce a declarative memory deficit in mice, and can prevent or reverse the ketamine-induced NOR deficit. Further study is required to determine if these differences translate during clinical use of ketamine and rapastinel as fast acting antidepressant drugs and if rapastinel could have non-ionotropic effects as an add-on therapy with antipsychotic/antidepressant medications. PMID:26632337

  3. Effects of repeated administration of (-)-nicotine on AF64A-induced learning and memory impairment in rats.

    PubMed

    Hiramatsu, M; Yamatsu, T; Kameyama, T; Nabeshima, T

    2002-03-01

    It has been reported that pretreatment with (-)-nicotine prevents glutamate- and amyloid beta protein (Abeta)-induced cytotoxicity in vitro. However, few studies on the neuroprotective effects of (-)-nicotine in vivo have been reported. We examined whether repeated administration of (-)-nicotine exhibits neuroprotective effects in AF64A-treated rats. (-)-Nicotine (0.1 and 0.2 mg/kg, s.c.) was administered once a day for 28 days. On day 14, AF64A (2.5 nmol/side) was injected bilaterally into the hippocampus. Intrahippocampal injection of AF64A showed severe impairment of learning and memory in rats in the water maze and passive avoidance tests. Repeated administration of (-)-nicotine (0.1 and 0.2 mg/kg, s.c.) did not reverse the impairment of memory induced by AF64A in the water maze test. Interestingly, the (-)-nicotine (0.1 and 0.2 mg/kg, s.c.)-treated group showed weak impairment of learning and memory after AF64A treatment compared to the (AF64A + saline)-treated group in the passive avoidance test. These results suggested that (-)-nicotine may have neuroprotective effects against the neurotoxicity induced by AF64A.

  4. Amyloid-β Peptide Is Needed for cGMP-Induced Long-Term Potentiation and Memory.

    PubMed

    Palmeri, Agostino; Ricciarelli, Roberta; Gulisano, Walter; Rivera, Daniela; Rebosio, Claudia; Calcagno, Elisa; Tropea, Maria Rosaria; Conti, Silvia; Das, Utpal; Roy, Subhojit; Pronzato, Maria Adelaide; Arancio, Ottavio; Fedele, Ernesto; Puzzo, Daniela

    2017-07-19

    High levels of amyloid-β peptide (Aβ) have been related to Alzheimer's disease pathogenesis. However, in the healthy brain, low physiologically relevant concentrations of Aβ are necessary for long-term potentiation (LTP) and memory. Because cGMP plays a key role in these processes, here we investigated whether the cyclic nucleotide cGMP influences Aβ levels and function during LTP and memory. We demonstrate that the increase of cGMP levels by the phosphodiesterase-5 inhibitors sildenafil and vardenafil induces a parallel release of Aβ due to a change in the approximation of amyloid precursor protein (APP) and the β-site APP cleaving enzyme 1. Moreover, electrophysiological and behavioral studies performed on animals of both sexes showed that blocking Aβ function, by using anti-murine Aβ antibodies or APP knock-out mice, prevents the cGMP-dependent enhancement of LTP and memory. Our data suggest that cGMP positively regulates Aβ levels in the healthy brain which, in turn, boosts synaptic plasticity and memory. SIGNIFICANCE STATEMENT Amyloid-β (Aβ) is a key pathogenetic factor in Alzheimer's disease. However, low concentrations of endogenous Aβ, mimicking levels of the peptide in the healthy brain, enhance hippocampal long-term potentiation (LTP) and memory. Because the second messenger cGMP exerts a central role in LTP mechanisms, here we studied whether cGMP affects Aβ levels and function during LTP. We show that cGMP enhances Aβ production by increasing the APP/BACE-1 convergence in endolysosomal compartments. Moreover, the cGMP-induced enhancement of LTP and memory was disrupted by blockade of Aβ, suggesting that the physiological effect of the cyclic nucleotide on LTP and memory is dependent upon Aβ. Copyright © 2017 the authors 0270-6474/17/376926-12$15.00/0.

  5. [The protection of hydrogen-rich saline on a rat dry eye model induced by scopolamine hydrobromide].

    PubMed

    Chu, Y Y; Hua, N; Ru, Y S; Zhao, S Z

    2017-05-11

    Objective: To evaluate the effect of hydrogen-rich saline (HRS) on dry eye rats induced by subcutaneous injection of scopolamine hydrobromide. Methods: Experiment research. Thirty female Wistar rats at about six weeks old were randomly divided into the normal group, dry eye group, HRS eyedrops group, normal saline eyedrops group (NS), HRS intraperitoneal injection group and NS intraperitoneal injection group, with 5 rats in each group. The dry eye was induced by subcutaneous injection of scopolamine hydrobromide in the latter five groups. The clinical signs of dry eye such as tear volume (SⅠt), tear break-up time (BUT) and corneal epithelial fluorescein staining scores were evaluated on day 7, 14, 21 and 28. On the 28th day, ten eyes in each group were enucleated and processed for paraffin sections for HE, PAS and immunohistochemistry stainings. Analysis of variance was used to test the data, and independent samples t -test was used for comparison between the two groups. Two-way repeated measure ANOVA was used to compare the difference among groups at different time points, one-way ANOVA was used to test the comparisons of the clinical signs at one time, and LSD was used to for comparison between two groups. Results: Before and after the experiment of the day 7, 14, 21, 28, the values of SIt in HRS eyedrops group and HRS intraperitoneal injection group were respectively:(3.625±1.157),(3.313±0.704),(3.250±0.535),(3.313±0.372), (3.375±0.582)mm and (3.500±1.019), (2.893±0.656), (3.321±0.668), (3.179±0.575), (3.214±0.871)mm. The values of BUT were respectively: (2.750±0.707), (2.688±0.594), (2.813±0.753), (3.000±0.756), (2.750±0.707)s and (3.000±0.679), (2.321±0.464), (2.750±0.753), (3.214±0.699), (2.679±0.608)s. The values of fluorescein staining score were respectively: (6.250±0.707), (8.875±0.641), (8.750±0.707), (9.250±0.463), (8.250±1.282) and (6.000±0.679), (9.143±1.027), (8.857±0.770), (9.143±0.949), (8.500±0.760). The difference

  6. Revealing past memories: proactive interference and ketamine-induced memory deficits.

    PubMed

    Chrobak, James J; Hinman, James R; Sabolek, Helen R

    2008-04-23

    Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.

  7. Hippocampal Protein Kinase C Signaling Mediates the Short-Term Memory Impairment Induced by Delta9-Tetrahydrocannabinol.

    PubMed

    Busquets-Garcia, Arnau; Gomis-González, Maria; Salgado-Mendialdúa, Victòria; Galera-López, Lorena; Puighermanal, Emma; Martín-García, Elena; Maldonado, Rafael; Ozaita, Andrés

    2018-04-01

    Cannabis affects cognitive performance through the activation of the endocannabinoid system, and the molecular mechanisms involved in this process are poorly understood. Using the novel object-recognition memory test in mice, we found that the main psychoactive component of cannabis, delta9-tetrahydrocannabinol (THC), alters short-term object-recognition memory specifically involving protein kinase C (PKC)-dependent signaling. Indeed, the systemic or intra-hippocampal pre-treatment with the PKC inhibitors prevented the short-term, but not the long-term, memory impairment induced by THC. In contrast, systemic pre-treatment with mammalian target of rapamycin complex 1 inhibitors, known to block the amnesic-like effects of THC on long-term memory, did not modify such a short-term cognitive deficit. Immunoblot analysis revealed a transient increase in PKC signaling activity in the hippocampus after THC treatment. Thus, THC administration induced the phosphorylation of a specific Ser residue in the hydrophobic-motif at the C-terminal tail of several PKC isoforms. This significant immunoreactive band that paralleled cognitive performance did not match in size with the major PKC isoforms expressed in the hippocampus except for PKCθ. Moreover, THC transiently enhanced the phosphorylation of the postsynaptic calmodulin-binding protein neurogranin in a PKC dependent manner. These data demonstrate that THC alters short-term object-recognition memory through hippocampal PKC/neurogranin signaling.

  8. Deoxyelephantopin ameliorates lipopolysaccharides (LPS)-induced memory impairments in rats: Evidence for its anti-neuroinflammatory properties.

    PubMed

    Andy, Shathiswaran N; Pandy, Vijayapandi; Alias, Zazali; Kadir, Habsah Abdul

    2018-08-01

    Neuroinflammation is a critical pathogenic mechanism of most neurodegenerative disorders especially, Alzheimer's disease (AD). Lipopolysaccharides (LPS) are known to induce neuroinflammation which is evident from significant upsurge of pro-inflammatory mediators in in vitro BV-2 microglial cells and in vivo animal models. In present study, we investigated anti-neuroinflammatory properties of deoxyelephantopin (DET) isolated from Elephantopus scaber in LPS-induced neuroinflammatory rat model. In this study, DET (0.625. 1.25 and 2.5 mg/kg, i.p.) was administered in rats for 21 days and those animals were challenged with single injection of LPS (250 μg/kg, i.p.) for 7 days. Cognitive and behavioral assessment was carried out for 7 days followed by molecular assessment on brain hippocampus. Statistical significance was analyzed with one-way analysis of variance followed by Dunnett's test to compare the treatment groups with the control group. DET ameliorated LPS-induced neuroinflammation by suppressing major pro-inflammatory mediators such as iNOS and COX-2. Furthermore, DET enhanced the anti-inflammatory cytokines and concomitantly suppressed the pro-inflammatory cytokines and chemokine production. DET treatment also reversed LPS-induced behavioral and memory deficits and attenuated LPS-induced elevation of the expression of AD markers. DET improved synaptic-functionality via enhancing the activity of pre- and post-synaptic markers, like PSD-95 and SYP. DET also prevented LPS-induced apoptotic neurodegeneration via inhibition of PARP-1, caspase-3 and cleaved caspase-3. Overall, our studies suggest DET can prevent neuroinflammation-associated memory impairment and neurodegeneration and it could be developed as a therapeutic agent for the treatment of neuroinflammation-mediated and neurodegenerative disorders, such as AD. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. National Memorial Institute for the Prevention of Terrorism

    NASA Astrophysics Data System (ADS)

    Reimer, Dennis J.; Houghton, Brian K.; Powell, Ellen L.

    2004-09-01

    The National Memorial Institute for the Prevention of Terrorism (MIPT) in Oklahoma City is a living memorial to the victims, survivors, family members and rescue workers affected by the April 19, 1995 bombing of the Murrah Federal Building. The Institute conducts research into the development of technologies to counter biological, nuclear and chemical weapons of mass destruction and cyberterrorism, as well as research into the social and political causes and effects of terrorism. This paper describes MIPT funded research in areas of detection, decontamination, personal protective equipment, attack simulations, treatments, awareness, improved public communication during and after an incident, as well as lessons learned from terrorist incidents.

  10. National Memorial Institute for the Prevention of Terrorism

    NASA Astrophysics Data System (ADS)

    Reimer, Dennis J.; Houghton, Brian K.; Ellis, James O., III

    2003-09-01

    The National Memorial Institute for the Prevention of Terrorism in Oklahoma City is a living memorial to the victims, survivors, family members and rescue workers affected by the April 19, 1995 bombing of the Murrah Federal Building. The Institute conducts research into the development of technologies to counter biological, nuclear and chemical weapons of mass destruction and cyberterrorism, as well as research into the social and political causes and effects of terrorism. This paper describes MIPT funded research in areas of detection, decontamination, personal protective equipment, attack simulations, treatments, awareness, improved public communication during and after an incident, as well as lessons learned from terrorist incidents.

  11. Anthocyanins Improve Hippocampus-Dependent Memory Function and Prevent Neurodegeneration via JNK/Akt/GSK3β Signaling in LPS-Treated Adult Mice.

    PubMed

    Khan, Muhammad Sohail; Ali, Tahir; Kim, Min Woo; Jo, Myeung Hoon; Chung, Jong Il; Kim, Myeong Ok

    2018-05-19

    Microglia plays a critical role in the brain and protects neuronal cells from toxins. However, over-activation of microglia leads to deleterious effects. Lipopolysaccharide (LPS) has been reported to affect neuronal cells via activation of microglia as well as directly to initiate neuroinflammation. In the present study, we evaluated the anti-inflammatory and anti-oxidative effect of anthocyanins against LPS-induced neurotoxicity in an animal model and in cell cultures. Intraperitoneal injections of LPS (250 μg/kg/day for 1 week) induce ROS production and promote neuroinflammation and neurodegeneration which ultimately leads to memory impairment. However, anthocyanins treatment at a dose of 24 mg/kg/day for 2 weeks (1 week before and 1 week co-treated with LPS) prevented ROS production, inhibited neuroinflammation and neurodegeneration, and improved memory functions in LPS-treated mice. Both histological and immunoblot analysis indicated that anthocyanins reversed the activation of JNK, prevented neuroinflammation by lowering the levels of inflammatory markers (p-NF-kB, TNF-α, and IL-1β), and reduced neuronal apoptosis by reducing the expression of Bax, cytochrome c, cleaved caspase-3, and cleaved PARP-1, while increasing the level of survival proteins p-Akt, p-GSK3β, and anti-apoptotic Bcl-2 protein. Anthocyanins treatment increased the levels of memory-related pre- and post-synaptic proteins and improved the hippocampus-dependent memory in the LPS-treated mice. Overall, this data suggested that consumption of naturally derived anti-oxidant agent such as anthocyanins ameliorated several pathological events in the LPS-treated animal model and we believe that anthocyanins would be a safe therapeutic agent for slowing the inflammation-induced neurodegeneration in the brain against several diseases such as Alzheimer's disease and Parkinson's disease.

  12. Hyperoside protects against chronic mild stress-induced learning and memory deficits.

    PubMed

    Gong, Yeli; Yang, Youhua; Chen, Xiaoqing; Yang, Min; Huang, Dan; Yang, Rong; Zhou, Lianying; Li, Changlei; Xiong, Qiuju; Xiong, Zhe

    2017-07-01

    Hyperoside (quercetin-3-O-b-d-galactosidepyranose) is a plant-derived flavonoid mainly found in fruits, fruit juices (most notably flavanols, flavanones, and anthocyanins) and Chinese traditional medicines. It has been applied to relieve pain and improve cardiovascular functions in clinic. However, the effects of hyperoside on cognitive impairment induced by chronic stress and the underlying molecular mechanisms remain unclear. In the current study, we used chronic mild stress (CMS) rats to investigate the effects of hyperoside on learning and memory and further explore the possible mechanisms. Our results demonstrated that hyperoside reduced the escape latency and the swimming distance of CMS rats in Morris water maze test and reversed depressive symptoms in forced swim test (FST) and sucrose preference test. In addition, hyperoside increased the expression of brain-derived neurotrophic factor (BDNF) in hippocampus of CMS rats without influencing the corticosterone (CORT) level in blood plasma. Furthermore, K252a, an inhibitor of the BDNF receptor TrkB, prevented the protective effects of hyperoside on learning and memory in CMS rats. Taken together, these results indicate that hyperoside reverses the cognitive impairment induced by CMS, which is associated with the regulation of BDNF signaling pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Dendrobium alkaloids prevent Aβ25–35-induced neuronal and synaptic loss via promoting neurotrophic factors expression in mice

    PubMed Central

    Nie, Jing; Tian, Yong; Zhang, Yu; Lu, Yan-Liu; Li, Li-Sheng

    2016-01-01

    Background Neuronal and synaptic loss is the most important risk factor for cognitive impairment. Inhibiting neuronal apoptosis and preventing synaptic loss are promising therapeutic approaches for Alzheimer’s disease (AD). In this study, we investigate the protective effects of Dendrobium alkaloids (DNLA), a Chinese medicinal herb extract, on β-amyloid peptide segment 25–35 (Aβ25-35)-induced neuron and synaptic loss in mice. Method Aβ25–35(10 µg) was injected into the bilateral ventricles of male mice followed by an oral administration of DNLA (40 mg/kg) for 19 days. The Morris water maze was used for evaluating the ability of spatial learning and memory function of mice. The morphological changes were examined via H&E staining and Nissl staining. TUNEL staining was used to check the neuronal apoptosis. The ultrastructure changes of neurons were observed under electron microscope. Western blot was used to evaluate the protein expression levels of ciliary neurotrophic factor (CNTF), glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex. Results DNLA significantly attenuated Aβ25–35-induced spatial learning and memory impairments in mice. DNLA prevented Aβ25–35-induced neuronal loss in the hippocampus and cortex, increased the number of Nissl bodies, improved the ultrastructural injury of neurons and increased the number of synapses in neurons. Furthermore, DNLA increased the protein expression of neurotrophic factors BDNF, CNTF and GDNF in the hippocampus and cortex. Conclusions DNLA can prevent neuronal apoptosis and synaptic loss. This effect is mediated at least in part via increasing the expression of BDNF, GDNF and CNTF in the hippocampus and cortex; improving Aβ-induced spatial learning and memory impairment in mice. PMID:27994964

  14. Protective Effects of Lithium on Sumatriptan-Induced Memory Impairment in Mice.

    PubMed

    Nikoui, Vahid; Javadi-Paydar, Mehrak; Salehi, Mahtab; Behestani, Selda; Dehpour, Ahmad-Reza

    2016-04-01

    Lithium is a drug used for the treatment of bipolar disorder. It has several mechanisms of action, and recently it is shown that lithium can antagonize the 5-HT1B/1D serotonin receptors. Sumatriptan is a 5-HT1B/1D receptor agonist used for the treatment of cluster headaches and migraine which might cause memory impairment as a potential side effect. In this study, effects of lithium on sumatriptan-induced memory impairment have been determined in a two-trial recognition Y-maze and passive avoidance tests. Male mice weighing 25-30 g were divided into several groups randomly. In Y-maze test, effects of lithium (1,5,10,20,40,80 mg/kg) and sumatriptan (1,5,10 mg/kg) were assessed on memory acquisition, then lithium (0.1,1,10 mg/kg) and sumatriptan (1,10 mg/kg) were studied in passive avoidance test. Effects of lithium (1mg/kg) on sumatriptan (10 mg/kg)-induced memory impairment were studied in both of tests. The present study demonstrated that sumatriptan impaired memory in Y-maze and passive avoidance tests (P<0.05, P<0.01, respectively). Lithium did not show any significant effect on memory function compared to saline-treated control group in both tests (P>0.05), but significantly reversed sumatriptan-induced memory impairment in Y-maze and passive avoidance tests (P<0.001, P<0.05, respectively). It is concluded that lithium reverses the sumatriptan-induced memory impairment probably through 5-HT1B/1D receptors antagonism.

  15. A Memory Retrieval-Extinction Procedure to Prevent Drug Craving and Relapse

    PubMed Central

    Xue, Yan-Xue; Luo, Yi-Xiao; Wu, Ping; Shi, Hai-Shui; Xue, Li-Fen; Chen, Chen; Zhu, Wei-Li; Ding, Zeng-Bo; Bao, Yan-ping; Shi, Jie; Epstein, David H.; Shaham, Yavin; Lu, Lin

    2013-01-01

    Drug use and relapse involve learned associations between drug-associated environmental cues and drug effects. Extinction procedures in the clinic can suppress conditioned responses to drug cues, but the extinguished responses typically reemerge after exposure to the drug itself (reinstatement), the drug-associated environment (renewal), or the passage of time (spontaneous recovery). We describe a memory retrieval-extinction procedure that decreases conditioned drug effects and drug seeking in rat models of relapse, and drug craving in abstinent heroin addicts. In rats, daily retrieval of drug-associated memories 10 minutes or 1 hour but not 6 hours before extinction sessions attenuated drug-induced reinstatement, spontaneous recovery, and renewal of conditioned drug effects and drug seeking. In heroin addicts, retrieval of drug-associated memories 10 minutes before extinction sessions attenuated cue-induced heroin craving 1, 30, and 180 days later. The memory retrieval-extinction procedure is a promising nonpharmacological method for decreasing drug craving and relapse during abstinence. PMID:22499948

  16. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    PubMed

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Efficacy comparison of scopolamine (SCP) and diazepam (DZ) against soman-induced lethality in guinea pigs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, L.W.; Gennings, C.; Carter, W.H.

    1994-12-31

    Diazepam (DZ) and scopolamine (SCP) are known to be beneficial when each is used in combination with atropine (AT) + oxime therapy against intoxication by soman, but the efficacy of each might be expected to vary with the dosage of AT. Thus, the therapeutic efficacy of SCP (5 doses; 0 - 0.86 mg/kg) versus DZ (5 doses; 0 - 5 mg/kg), when used in conjunction with AT (3 doses; 0.5 - S mg/kg) + 2-PAM (25 mg/kg) therapy, was tested in groups of pyridostigmine pretreated guinea pigs exposed to 1.6, 2.0, 2.5 or 3.2 LD5Os of soman. Response surface methodologymore » was employed to describe the relationship between lethality and the AT/DZ or AT/SCP dosages. Results show that within the indicated dose ranges used, the efficacy of SCP is not dependent on the presence of AT, whereas AT is needed for DZ to maintain the lowest probability of death. These findings suggest that in guinea pigs SCP could supplement AT or replace DZ as therapy against nerve agent intoxication.« less

  18. NMR Identification and MS Conformation of the Scopolamine Neurotoxin

    DTIC Science & Technology

    2007-11-01

    8217, Cm and Cm’ (labeled, respectively, as I-h, I-h’, l -m(eq) and I-W’(eq)), all with very similar intensities, suggest that the methyl group occurs at a...trimethylsilyl)- l - propane-sulfonic acid, were purchased from Sigma-Aldrich (St. Louis, MO). HPLC grade 8 ethanol and H20, and (-)-scopolamine hydrochloride...be bound directly to three, magnetically equivalent protons (1 in Figure 4), clearly representing a single methyl group. 15 g,h&il c, d&e f h&j kJ m m

  19. Anxiolytic effects of environmental enrichment attenuate sex-related anxiogenic effects of scopolamine in rats.

    PubMed

    Hughes, Robert N; Otto, Maria T

    2013-01-10

    In groups of four same-sexed animals, PVG/c hooded rats were housed for 4.5 months in standard or enriched cages containing several objects that could be explored and manipulated. On separate occasions, each rat then experienced two consecutive daily trials in an open field, a light-dark box or a Y maze with arm inserts that enabled an acquisition trial comprising one black and one white arm to be changed for a retention trial consisting of two black arms. Before their trials in the open field and light-dark box, and following each acquisition trial in the Y maze, the rats received an intraperitoneal injection of 2 mg/kg scopolamine or isotonic saline. In the open field, enrichment led to higher levels of ambulation, walking, rearing and occupancy of the center of the apparatus and shorter emergence latencies from the dark into the light compartment of the light-dark box accompanied by more entries of this compartment. Enrichment also increased entries of and time spent in the changed (or novel) Y-maze arm only for male rats treated with scopolamine. The drug decreased rearing and increased grooming in the open field as well as increasing emergence latencies and decreasing entries of and the time spent on the light compartment of the light-dark box. The main results were interpreted as enrichment having attenuated anxiogenic effects of the behavioral testing and the action of scopolamine for male (but not female) rats in their choices of the novel arm in the Y maze. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats

    PubMed Central

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-01-01

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals. PMID:26218751

  1. Vacuum-induced quantum memory in an opto-electromechanical system

    NASA Astrophysics Data System (ADS)

    Qin, Li-Guo; Wang, Zhong-Yang; Wu, Shi-Chao; Gong, Shang-Qing; Ma, Hong-Yang; Jing, Jun

    2018-03-01

    We propose a scheme to implement electrically controlled quantum memory based on vacuum-induced transparency (VIT) in a high-Q tunable cavity, which is capacitively coupled to a mechanically variable capacitor by a charged mechanical cavity mirror as an interface. We analyze the changes of the cavity photons arising from vacuum-induced-Raman process and discuss VIT in an atomic ensemble trapped in the cavity. By slowly adjusting the voltage on the capacitor, the VIT can be adiabatically switched on or off, meanwhile, the transfer between the probe photon state and the atomic spin state can be electrically and adiabatically modulated. Therefore, we demonstrate a vacuum-induced quantum memory by electrically manipulating the mechanical mirror of the cavity based on electromagnetically induced transparency mechanism.

  2. N-acetyl-L-tryptophan, a substance-P receptor antagonist attenuates aluminum-induced spatial memory deficit in rats.

    PubMed

    Fernandes, Joylee; Mudgal, Jayesh; Rao, Chamallamudi Mallikarjuna; Arora, Devinder; Basu Mallik, Sanchari; Pai, K S R; Nampoothiri, Madhavan

    2018-06-01

    Neuroinflammation plays an important role in the pathophysiology of Alzheimer's disease. Neurokinin substance P is a key mediator which modulates neuroinflammation through neurokinin receptor. Involvement of substance P in Alzheimer's disease is still plausible and various controversies exist in this hypothesis. Preventing the deleterious effects of substance P using N-acetyl-L-tryptophan, a substance P antagonist could be a promising therapeutic strategy. This study was aimed to evaluate the effect of N-acetyl-L-tryptophan on aluminum induced spatial memory alterations in rats. Memory impairment was induced using aluminum chloride (AlCl 3 ) at a dose of 10 mg/kg for 42 d. After induction of dementia, rats were exposed to 30 and 50 mg/kg of N-acetyl-L-tryptophan for 28 d. Spatial memory alterations were measured using Morris water maze. Acetylcholinesterase activity and antioxidant enzyme glutathione level were assessed in hippocampus, frontal cortex and striatum. The higher dose of N-acetyl-L-tryptophan (50 mg/kg) significantly improved the aluminum induced memory alterations. N-acetyl-L-tryptophan exposure resulted in significant increase in acetylcholinesterase activity and glutathione level in hippocampus. The neuroprotective effect of N-acetyl-L-tryptophan could be due to its ability to block substance P mediated neuroinflammation, reduction in oxidative stress and anti-apoptotic properties. To conclude, N-acetyl-L-tryptophan may be considered as a novel neuroprotective therapy in Alzheimer's disease.

  3. Ginger fermented with Schizosaccharomyces pombe alleviates memory impairment via protecting hippocampal neuronal cells in amyloid beta1-42 plaque injected mice.

    PubMed

    Huh, Eugene; Lim, Soonmin; Kim, Hyo Geun; Ha, Sang Keun; Park, Ho-Young; Huh, Youngbuhm; Oh, Myung Sook

    2018-01-24

    Ginger, which has been widely used for dietary condiment, has been reported to improve memory dysfunction in an animal model of Alzheimer's disease (AD). Recently, a few trials have been carried out to enhance the effects of ginger by improving the bioavailability of its relevant components via fermentation. Some reports have suggested that the fermented ginger has the ability to affect the AD in vitro systems; however, its anti-amnesic effects on an in vivo model still remain to be investigated. In the present study, we aimed to investigate the neuroprotective effects of ginger fermented with Schizosaccharomyces pombe (FG) in the in vivo models of AD. The neuroprotective effects were investigated by employing behavioral, western blotting, and immunohistochemical assays. The administration of FG improved recognition memory, impaired by scopolamine injection, than that of non-fermented ginger. In addition, FG ameliorated memory impairment in amyloid beta 1-42 (Aβ 1-42 ) plaque-injected mice via protecting neuronal cells in the CA3 area of the mouse hippocampus. Moreover, FG reinstated the pre- and postsynaptic protein levels decreased by Aβ 1-42 plaque-toxicity. Overall, these data suggest that FG attenuates memory impairment in Aβ 1-42 plaque-induced AD mice through inhibition of neuronal cell loss and synaptic disruption.

  4. Successful Vaccination Induces Multifunctional Memory T-Cell Precursors Associated with Early Control of Hepatitis C Virus

    PubMed Central

    Park, Su-Hyung; Shin, Eui-Cheol; Capone, Stefania; Caggiari, Laura; De Re, Valli; Nicosia, Alfredo; Folgori, Antonella; Rehermann, Barbara

    2012-01-01

    Background & Aims T cells are an important component for development of a vaccine against hepatitis C virus (HCV), but little is known about the features of successful vaccine-induced T cells. Methods We compared the phenotype, function, and kinetics of vaccine-induced and infection-induced T cells in chimpanzees with HCV infection using multicolor flow cytometry and real-time PCR. Results In chimpanzees successfully vaccinated with recombinant adenovirus and DNA against HCV NS3-NS5, HCV-specific T cells appeared earlier, maintained better functionality, and persisted at higher frequencies, for a longer time after HCV-challenge, than those of mock-vaccinated chimpanzees. Vaccine-induced T cells displayed higher levels of CD127, a marker of memory precursors, and lower levels of programmed death (PD)-1 than infection-induced T cells. Vaccine-induced, but not infection-induced T cells, were multifunctional; their ability to secrete interferon-γ and tumor necrosis factor-α correlated with early expression of CD127 but not PD-1. Based on a comparison of vaccine-induced and infection-induced T cells from the same chimpanzee, the CD127+ memory precursor phenotype was induced by the vaccine itself, rather than by low viremia. In contrast, PD-1 induction correlated with viremia, and levels of intrahepatic PD-1, PD-L1, and 2,5-OAS-1 mRNAs correlated with peak titers of HCV. Conclusions Compared with infection, vaccination induced HCV-specific CD127+ T cells with high functionality that persisted at higher levels for a longer time. Control of viremia prevented upregulation of PD-1 on T cells, and induction of PD-1, PD-L1, and 2,5-OAS-1 in the liver. Early development of a memory T-cell phenotype and, via control of viremia, attenuation of the inhibitory PD1–PD-L1 pathway might be necessary components of successful vaccine-induced protection against HCV. PMID:22705008

  5. Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory

    PubMed Central

    Otis, James M.; Dashew, Kidane B.; Mueller, Devin

    2013-01-01

    Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents NE-induced potentiation of PL-mPFC pyramidal and GABAergic neuronal excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse. PMID:23325262

  6. Neurobiological dissociation of retrieval and reconsolidation of cocaine-associated memory.

    PubMed

    Otis, James M; Dashew, Kidane B; Mueller, Devin

    2013-01-16

    Drug use is provoked by the presentation of drug-associated cues, even following long periods of abstinence. Disruption of these learned associations would therefore limit relapse susceptibility. Drug-associated memories are susceptible to long-term disruption during retrieval and shortly after, during memory reconsolidation. Recent evidence reveals that retrieval and reconsolidation are dependent on β-adrenergic receptor (β-AR) activation. Despite this, whether retrieval and reconsolidation are dependent on identical or distinct neural mechanisms is unknown. The prelimbic medial prefrontal cortex (PL-mPFC) and basolateral amygdala (BLA) have been implicated in the expression and reconsolidation of associative memories. Therefore, we investigated the necessity of β-AR activation within the PL-mPFC and BLA for cocaine-associated memory retrieval and reconsolidation in rats. Before or immediately after a cocaine-induced conditioned place preference (CPP) retrieval trial, β-AR antagonists were infused into the PL-mPFC or BLA, followed by daily testing. PL-mPFC infusions before, but not after, a CPP trial disrupted CPP memory retrieval and induced a persistent deficit in retrieval during subsequent trials. In contrast, BLA β-AR blockade had no effect on initial CPP memory retrieval, but prevented CPP expression during subsequent trials indicative of reconsolidation disruption. Our results reveal a distinct dissociation between the neural mechanisms required for cocaine-associated memory retrieval and reconsolidation. Using patch-clamp electrophysiology, we also show that application of a β-AR antagonist prevents norepinephrine-induced potentiation of PL-mPFC pyramidal cell and γ-aminobutyric-acid (GABA) interneuron excitability. Thus, targeted β-AR blockade could induce long-term deficits in drug-associated memory retrieval by reducing neuronal excitability, providing a novel method of preventing cue-elicited drug seeking and relapse.

  7. Memory and mood during MDMA intoxication, with and without memantine pretreatment.

    PubMed

    de Sousa Fernandes Perna, E B; Theunissen, E L; Kuypers, K P C; Heckman, P; de la Torre, R; Farre, M; Ramaekers, J G

    2014-12-01

    Previous studies have shown that single doses of MDMA can affect mood and impair memory in humans. The neuropharmacological mechanisms involved in MDMA-induced memory impairment are not clear. Memantine, an NMDA and alpha 7 nicotinic acetylcholine (ACh) receptor antagonist, was able to reverse MDMA-induced memory impairment in rats. This study investigated whether treatment with memantine can prevent MDMA-induced memory impairment in humans. 15 subjects participated in a double-blind, placebo controlled, within-subject design. Subjects received both pre-treatment (placebo/memantine 20 mg) (T1) and treatment (placebo/MDMA 75 mg) (T2) on separate test days. T1 preceded T2 by 120 min. Memory function was assessed 90 min after T2 by means of a Visual Verbal Learning Task, a Prospective Memory Task, the Sternberg Memory Task and the Abstract Visual Pattern Learning Task. Profile of Mood State and psychomotor performance were also assessed to control whether MDMA and memantine interactions would selectively pertain to memory or transfer to other domains as well. MDMA significantly impaired performance in the visual verbal learning task and abstract visual pattern learning task. Pre-treatment with memantine did not prevent MDMA-induced memory impairment in these two tasks. Both positive (vigour, arousal, elation) and negative mood effects (anxiety) were increased by MDMA. The responses were not altered by pretreatment with memantine which had no effect on memory or mood when given alone. These preliminary results suggest that memantine does not reverse MDMA-induced memory impairment and mood in humans. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of Housing on Methamphetamine-Induced Neurotoxicity and Spatial Learning and Memory.

    PubMed

    Gutierrez, Arnold; Jablonski, Sarah A; Amos-Kroohs, Robyn M; Barnes, Anna C; Williams, Michael T; Vorhees, Charles V

    2017-07-19

    Severe stress potentiates methamphetamine (MA) neurotoxicity. However, whether moderate stress increases or decreases the neurotoxic effects of MA is unknown. We assessed the effects of MA (4 × 10 mg/kg at 2 h intervals) in combination with prior barren-cage housing in adult male Sprague-Dawley rats on monoamines and glial fibrillary acid protein (GFAP) in one cohort and spatial learning and memory in the Morris water maze in another cohort. MA reduced dopamine (DA) and serotonin (5-HT) in the neostriatum and nucleus accumbens, 5-HT in the hippocampus, and increased GFAP in neostriatum and nucleus accumbens compared with saline controls. In neostriatum, barren-cage housing protected against MA-induced increases in GFAP, but it did not prevent DA and 5-HT reductions, although it did increase hippocampal norepinephrine. MA impaired spatial learning during acquisition, reversal, and shift phases and impaired reference memory on reversal and shift probe trials. Barren-cage housing enhanced performance during acquisition but not during reversal or shift or on probe trials. The data indicate that prior barren-cage housing moderates MA-induced neostriatal astrogliosis and initial spatial learning, but has no protective effect when the platform is smaller and relocated and therefore requires cognitive flexibility in relearning.

  9. Agmatine protects against intracerebroventricular streptozotocin-induced water maze memory deficit, hippocampal apoptosis and Akt/GSK3β signaling disruption.

    PubMed

    Moosavi, Maryam; Zarifkar, Amir Hossein; Farbood, Yaghoub; Dianat, Mahin; Sarkaki, Alireza; Ghasemi, Rasoul

    2014-08-05

    Centrally administered streptozotocin (STZ), is known to cause Alzheimer׳s like memory deterioration. It mainly affects insulin signaling pathways such as PI3/Akt and GSK-3β which are involved in cell survival. Previous studies indicate that STZ increases the ratio of Bax/Bcl-2 and thereby induces caspase-3 activation and apoptosis. Agmatine, a polyamine derived from l-arginine decarboxylation, is recently shown to exert some neuroprotective effects. This study aimed to assess if agmatine reverses STZ-induced memory deficits, hippocampal Akt/GSK-3β signaling disruption and caspase-3 activation. Adult male Sprague-Dawely rats weighing 200-250 g were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3 mg/kg) and agmatine treatment (40 or 80 mg/kg) was started from day 4 and continued in an every other day manner till day 14. The animal׳s learning and memory capability was assessed on days 15-18 using Morris water maze. After complement of behavioral studies the hippocampi was isolated and the amounts of hippocampal cleaved caspase-3 (the landmark of apoptosis), Bax/Bcl-2 ratio, total and phosphorylated forms of GSK-3β and Akt were analyzed by western blot. The results showed that agmatine in 80 but not 40 mg/kg reversed the memory deterioration induced by STZ. Western blot analysis revealed that STZ prompted elevation of caspase-3; Bax/Bcl-2 ratio and disrupted Akt/GSK-3β signaling in the hippocampus. Agmatine treatment prevented apoptosis and Akt/GSK-3β signaling impairment induced by STZ. This study disclosed that agmatine treatment averts not only STZ-induced memory deterioration but also hippocampal apoptosis and Akt/GSK-3β signaling disruption. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Differential Effects of Olanzapine and Haloperidol on MK-801-induced Memory Impairment in Mice

    PubMed Central

    Song, Jae Chun; Seo, Mi Kyoung; Park, Sung Woo; Lee, Jung Goo; Kim, Young Hoon

    2016-01-01

    Objective We investigated the differential effects of the antipsychotic drugs olanzapine and haloperidol on MK-801-induced memory impairment and neurogenesis in mice. Methods MK-801 (0.1 mg/kg) was administered 20 minutes prior to behavioral testing over 9 days. Beginning on the sixth day of MK-801 treatment, either olanzapine (0.05 mg/kg) or haloperidol (0.05 mg/kg) was administered 40 minutes prior to MK-801 for the final 4 days. Spatial memory performance was measured using a Morris water maze (MWM) test for 9 days (four trials/day). Immunohistochemistry with bromodeoxyuridine (BrdU) was used to identify newborn cells labeled in tissue sections from the dentate gyrus of the hippocampus. Results MK-801 administration over 9 days significantly impaired memory performance in the MWM test compared to untreated controls (p<0.05) and these deficits were blocked by treatment with olanzapine (p<0.05) but not haloperidol. The administration of MK-801 also resulted in a decrease in the number of BrdU-labeled cells in the dentate gyrus (28.6%; p<0.01), which was prevented by treatment with olanzapine (p<0.05) but not haloperidol. Conclusion These results suggest that olanzapine has a protective effect against cognitive impairments induced by MK-801 in mice via the stimulating effects of neurogenesis. PMID:27489382

  11. Do explicit memory manipulations affect the memory blocking effect?

    PubMed

    Landau, Joshua D; Leynes, P Andrew

    2006-01-01

    The memory blocking effect (MBE) occurs when people are prevented from completing word fragments because they studied orthographically similar words. Across 3 experiments, we investigated how manipulations that influence explicit memory tasks would influence the MBE. Although a significant MBE was observed in all 3 experiments, manipulating depth of processing (Experiment 1), time to complete the fragments (Experiment 2), and awareness of the MBE (Experiment 3) did not change the magnitude of the MBE. We discuss these results in the context of a suppression mechanism involved in retrieval-induced forgetting.

  12. Studies of short and long memory in mining-induced seismic processes

    NASA Astrophysics Data System (ADS)

    Węglarczyk, Stanisław; Lasocki, Stanisław

    2009-09-01

    Memory of a stochastic process implies its predictability, understood as a possibility to gain information on the future above the random guess level. Here we search for memory in the mining-induced seismic process (MIS), that is, a process induced or triggered by mining operations. Long memory is investigated by means of the Hurst rescaled range analysis, and the autocorrelation function estimate is used to test for short memory. Both methods are complemented with result uncertainty analyses based on different resampling techniques. The analyzed data comprise event series from Rudna copper mine in Poland. The studies show that the interevent time and interevent distance processes have both long and short memory. MIS occurrences and locations are internally interrelated. Internal relations among the sizes of MIS events are apparently weaker than those of other two studied parameterizations and are limited to long term interactions.

  13. PKMζ Inhibition Reverses Learning-Induced Increases in Hippocampal Synaptic Strength and Memory during Trace Eyeblink Conditioning

    PubMed Central

    Madroñal, Noelia; Gruart, Agnès; Sacktor, Todd C.; Delgado-García, José M.

    2010-01-01

    A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning. PMID:20454458

  14. Insulin potentiates the therapeutic effect of memantine against central STZ-induced spatial learning and memory deficit.

    PubMed

    Bahramian, Abbas; Rastegar, Karim; Namavar, Mohammad Reza; Moosavi, Maryam

    2016-09-15

    Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Memantine has been approved for moderate to severe AD, but evidence indicates that it does not modify disease progression. Recently insulin has been found to exert some beneficial effects on cognition. This study aimed to compare the protective effects of memantine and insulin in an animal model of memory deficit. It also evaluated the effects of combination therapy of these drugs. Adult male Sprague-Dawely rats approximately 8-10 weeks old were used. The canules were implanted bilaterally into lateral ventricles. STZ was administered on days 1 and 3 (3mg/kg in divided doses) and Memantine (5 or 10mg/kg/ip) or/and Insulin (3 or 6mU/icv) were started from day 4 and continued till day 13. The animal's learning and memory capability was assessed on days 14-16 using Morris water maze. On day 17 a visible platform test was done to assess the animals' visuomotor ability. After completion of behavioral studies the brain sections were stained with hematoxylin and eosin for routine histological evaluation. The results show that memantine in doses 5 and 10mg/kg improved memory at day 3 of training and memantine 5mg/kg was more potent than memantine 10mg/kg. Insulin in dose 3mU, but not 6 mU, reversed STZ-induced memory deficit from day 2 of training. When insulin was added to memantine, it increased the potency of memantine 5mg/kg in preventing a memory deficit, but surprisingly was not successful in impeding STZ-induced amnesia, in combination with memantine 10mg/kg. This research work revealed that insulin act more efficiently than memantine in reversing STZ-induced memory impairment. Additionally combination of insulin and memantine seems to act better than memantine alone, providing that a dose adjustment has been done. This study suggests considering the combination therapy of memantine and insulin in dementia and AD. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Intra- and inter-laboratory validation of a dipstick immunoassay for the detection of tropane alkaloids hyoscyamine and scopolamine in animal feed.

    PubMed

    Mulder, Patrick P J; von Holst, Christoph; Nivarlet, Noan; van Egmond, Hans P

    2014-01-01

    Tropane alkaloids (TAs) are toxic secondary metabolites produced by plants of, inter alia, the genera Datura (thorn apple) and Atropa (deadly nightshade). The most relevant TAs are (-)-L-hyoscyamine and (-)-L-scopolamine, which act as antagonists of acetylcholine muscarinic receptors and can induce a variety of distinct toxic syndromes in mammals (anti-cholinergic poisoning). The European Union has regulated the presence of seeds of Datura sp. in animal feeds, specifying that the content should not exceed 1000 mg kg(-1) (Directive 2002/32/EC). For materials that have not been ground, visual screening methods are often used to comply with these regulations, but these cannot be used for ground materials and compound feeds. Immunological assays, preferably in dipstick format, can be a simple and cost-effective approach to monitor feedstuffs in an HACCP setting in control laboratories. So far no reports have been published on immunoassays that are capable of detecting both hyoscyamine and scopolamine with equal sensitivity and that can be used, preferably in dipstick format, for application as a fast screening tool in feed analysis. This study presents the results obtained for the in-house and inter-laboratory validation of a dipstick immunoassay for the detection of hyoscyamine and scopolamine in animal feed. The target level was set at 800 µg kg(-1) for the sum of both alkaloids. By using a representative set of compound feeds during validation and a robust study design, a reliable impression of the relevant characteristics of the assay could be obtained. The dipstick test displayed similar sensitivity towards the two alkaloids and it could be concluded that the test has a very low probability of producing a false-positive result at blank level or a false-negative result at target level. The assay can be used for monitoring of TAs in feedstuffs, but has also potential as a quick screening tool in food- or feed-related poisonings.

  16. Nicotinic agonist-induced improvement of vigilance in mice in the 5-choice continuous performance test

    PubMed Central

    YOUNG, Jared W; MEVES, Jessica M; GEYER, Mark A

    2012-01-01

    Impaired attentional processing is prevalent in numerous neuropsychiatric disorders and may negatively impact other cognitive and functional domains. Nicotine – a nonspecific nicotinic acetylcholine receptor (nAChR) agonist – improves vigilance in healthy subjects and schizophrenia patients as measured by continuous performance tests (CPTs), but the nAChR mediating this effect remains unclear. Here we examine the effects of: a) nicotine; b) the selective α7 nAChR agonist PNU 282987; and c) the selective α4β2 nAChR agonist ABT-418 alone and in combination with scopolamine-induced disruption of mouse 5-choice (5C-)CPT performance. This task requires the inhibition of responses to non-target stimuli as well as active responses to target stimuli, consistent with human CPTs. C57BL/6N mice were trained to perform the 5C-CPT. Drug effects were examined in extended session and variable stimulus-duration challenges of performance. Acute drug effects on scopolamine-induced disruption in performance were also investigated. Nicotine and ABT-418 subtly but significantly improved performance of normal mice and attenuated scopolamine-induced disruptions in the 5C-CPT. PNU 282–987 had no effects on performance. The similarity of nicotine and ABT-418 effects provides support for an α4β2 nAChR mechanism of action for nicotine-induced improvement in attention/vigilance. Moreover, the data provide pharmacological predictive validation for the 5C-CPT because nicotine improved and scopolamine disrupted normal performance of the task, consistent with healthy humans in the CPT. Future studies using more selective agonists may result in more robust improvements in performance. PMID:23201359

  17. The Pharmacokinetics and Efficacy of a Low-dose, Aqueous, Intranasal Scopolamine Spray

    DTIC Science & Technology

    2017-09-27

    In this study , we found no correlation between plasma levels at any time point and the number of head tilts tolerated. However, there was a positive... study protocol was approved by the Naval Medical Research Unit Dayton Institutional Review Board in compliance with all applicable Federal...The study examined both the pharmacokinetic properties and efficacy of a low-dose, aqueous, intranasal scopolamine spray (INSCOP) as an anti-motion

  18. Pharmacokinetics of Scopolamine Intranasal Gel Formulation (INSCOP) During Antiorthostatic Bedrest

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Boyd, J. L.; Du, B.; Daniels, V.; Crady, C.

    2011-01-01

    Space Motion sickness (SMS) is an age old problem for space travelers on short and long duration space flight Oral antiemetics are not very effective in space due to poor bioavailability. Scopolamine (SCOP) is the most frequently used drug by recreational travelers V patch, tablets available on the market. Common side effects of antiemetics, in general, include drowsiness, sedation, dry mouth and reduced psychomotor performance. Severity and persistence of side effects are often dose related Side effects can be detrimental in high performance demanding settings, e.g. space flight, military.

  19. Catecholaminergic responses to stressful motion stimuli, scopolamine plus amphetamine, and dexamethasone

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.; Chelen, W. E.

    1992-01-01

    Peripheral levels of epinephrine (EPI) and neoepinephrine (NE) generally rise following stressful motion stimuli. Effective anti-motion sickness drugs, scopolamine plus, d-amphetamine (S/D) and dexamthasone (DEX) modulate release of EPI and NE. This modulation may be of etiological relevance. Methods: Severe nausea was induced by exposure to coriolis simulation using a rotating chair. Chronic administration of S/D (0.4 and 5 mg/da) DEX (3 mg/day) and placebo preceded coriolis simulation. EPI and NE were measured immediately before and after simulation. A double-blind crossover design was used. Results: Nausea-induced elevations of EPI (2.5 fold, p less than .01) and NE were not diminished upon repeated exposure and adaptation to the stressor. Subjects with more pronounced elevations of EPI following simulation displayed higher resistance to stressful motion (p less .05). Alteration of peripheral catechlomaine levels following drug suggested that motion sickness was not mediated by peripheral catechlolamine receptor simulation. EPI and NE levels were 2.8 and 3.6-fold higher (p less than .03 and .01) after nausea without DEX treatment. DEX loading halved pre-stress levels of EPI and NE (p less than .05). Conclusions: Marked differences were noted in individual responses to drug and systematic responses of EPI and NE. It is possible that the responses of EPI to motion sickness may predict resistance to stressful motion and represent a peripheral manifestation of some as yet unknown central event of etiologic relevance.

  20. Erasing fear memories with extinction training

    PubMed Central

    Quirk, Gregory J.; Paré, Denis; Richardson, Rick; Herry, Cyril; Monfils, Marie H.; Schiller, Daniela; Vicentic, Aleksandra

    2012-01-01

    Decades of behavioral studies have confirmed that extinction does not erase classically-conditioned fear memories. For this reason, research efforts have focused on the mechanisms underlying the development of extinction-induced inhibition within fear circuits. However, recent studies in rodents have uncovered mechanisms that stabilize and destabilize fear memories, opening the possibility that extinction might be used to erase fear memories. This symposium focuses on several of these new developments, which involve the timing of extinction training. Extinction-induced erasure of fear occurs in very young rats, but is lost with the development of perineuronal nets in the amygdala that render fear memories impervious to extinction. Moreover, extinction administered during the reconsolidation phase, when fear memory is destabilized, updates the fear association as safe, thereby preventing the return of fear, in both rats and humans. The use of modified extinction protocols to eliminate fear memories complements existing pharmacological strategies for strengthening extinction. PMID:21068303

  1. Role of cholinergic receptors in memory retrieval depends on gender and age of memory.

    PubMed

    Rashid, Habiba; Mahboob, Aamra; Ahmed, Touqeer

    2017-07-28

    The phenomenon of utilizing information acquired in the past to make decision and performance in present depends on memory retrieval, which is affected in retrograde amnesia. Role of cholinergic receptors in memory retrieval is not much explored. In this study we evaluated the gender specific role of cholinergic receptors, i.e. muscarinic and nicotinic receptors, in memory retrieval in young Balb/c mice. Acute (only one injection, 30min before test) and sub-chronic (five days) muscarinic blockade (using scopolamine=1mg/kg) before test impaired retrieval of contextual fear memory in male (31.45±5.39% and 33.36±3.78% respectively) and female mice (22.88±5.73%; P<0.05), except sub-chronically treated female group (33.31±4.90%; P>0.05). Only sub-chronic nicotinic receptor antagonism (using methyllycaconitine MLA=87.5μg/kg and dihydro β erythroidine DHβE=1mg/kg) in female showed significantly higher freezing response than control during contextual fear memory retrieval (60.85±7.71% and 40.91±7.53% respectively; P<0.001). Acute and sub-chronic muscarinic antagonism (but not nicotinic antagonism) impaired spatial memory retrieval in male (P<0.05) but not in female mice (P>0.05). There was no effect of acute and sub-chronic cholinergic receptor antagonism on discriminating novel object from the familiar one in male and female mice, however, nicotinic receptor blockade affected the working memory of all male and female mice on test day compared to the training sessions. Our results suggested that cholinergic receptors involvement in retrieving spatial and fear memories depends on the age of the memory and gender. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Intranasal cotinine improves memory, and reduces depressive-like behavior, and GFAP+ cells loss induced by restraint stress in mice.

    PubMed

    Perez-Urrutia, Nelson; Mendoza, Cristhian; Alvarez-Ricartes, Nathalie; Oliveros-Matus, Patricia; Echeverria, Florencia; Grizzell, J Alex; Barreto, George E; Iarkov, Alexandre; Echeverria, Valentina

    2017-09-01

    Posttraumatic stress disorder (PTSD), chronic psychological stress, and major depressive disorder have been found to be associated with a significant decrease in glial fibrillary acidic protein (GFAP) immunoreactivity in the hippocampus of rodents. Cotinine is an alkaloid that prevents memory impairment, depressive-like behavior and synaptic loss when co-administered during restraint stress, a model of PTSD and stress-induced depression, in mice. Here, we investigated the effects of post-treatment with intranasal cotinine on depressive- and anxiety-like behaviors, visual recognition memory as well as the number and morphology of GFAP+ immunoreactive cells, in the hippocampus and frontal cortex of mice subjected to prolonged restraint stress. The results revealed that in addition to the mood and cognitive impairments, restraint stress induced a significant decrease in the number and arborization of GFAP+ cells in the brain of mice. Intranasal cotinine prevented these stress-derived symptoms and the morphological abnormalities GFAP+ cells in both of these brain regions which are critical to resilience to stress. The significance of these findings for the therapy of PTSD and depression is discussed. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Extracts and constituents of Leontopodium alpinum enhance cholinergic transmission: Brain ACh increasing and memory improving properties

    PubMed Central

    Hornick, Ariane; Schwaiger, Stefan; Rollinger, Judith M.; Vo, Nguyen Phung; Prast, Helmut; Stuppner, Hermann

    2012-01-01

    Leontopodium alpinum (‘Edelweiss’) was phytochemically investigated for constituents that might enhance cholinergic neurotransmission. The potency to increase synaptic availability of acetylcholine (ACh) in rat brain served as key property for the bioguided isolation of cholinergically active compounds using different chromatographic techniques. The dichlormethane (DCM) extract of the root, fractions and isolated constituents were injected i.c.v. and the effect on brain ACh was detected via the push–pull technique. The DCM extract enhanced extracellular ACh concentration in rat brain and inhibited acetylcholinesterase (AChE) in vitro. The extracellular level of brain ACh was significantly increased by the isolated sesquiterpenes, isocomene and 14-acetoxyisocomene, while silphiperfolene acetate and silphinene caused a small increasing tendency. Only silphiperfolene acetate showed in vitro AChE inhibitory activity, thus suggesting the other sesquiterpenes to stimulate cholinergic transmission by an alternative mechanism of action. Isocomene was further investigated with behavioural tasks in mice. It restored object recognition in scopolamine-impaired mice and showed nootropic effects in the T-maze alternation task in normal and scopolamine-treated mice. Additionally, this sesquiterpene reduced locomotor activity of untreated mice in the open field task, while the activity induced by scopolamine was abolished. The enhancement of synaptic availability of ACh, the promotion of alternation, and the amelioration of scopolamine-induced deficit are in accordance with a substance that amplifies cholinergic transmission. Whether the mechanism of action is inhibition of AChE or another pro-cholinergic property remains to be elucidated. Taken together, isocomene and related constituents of L. alpinum deserve further interest as potential antidementia agents in brain diseases associated with cholinergic deficits. PMID:18541221

  4. Event-induced theta responses as a window on the dynamics of memory.

    PubMed

    Bastiaansen, Marcel; Hagoort, Peter

    2003-01-01

    An important, but often ignored distinction in the analysis of EEG signals is that between evoked activity and induced activity. Whereas evoked activity reflects the summation of transient post-synaptic potentials triggered by an event, induced activity, which is mainly oscillatory in nature, is thought to reflect changes in parameters controlling dynamic interactions within and between brain structures. We hypothesize that induced activity may yield information about the dynamics of cell assembly formation, activation and subsequent uncoupling, which may play a prominent role in different types of memory operations. We then describe a number of analysis tools that can be used to study the reactivity of induced rhythmic activity, both in terms of amplitude changes and of phase variability. We briefly discuss how alpha, gamma and theta rhythms are thought to be generated, paying special attention to the hypothesis that the theta rhythm reflects dynamic interactions between the hippocampal system and the neocortex. This hypothesis would imply that studying the reactivity of scalp-recorded theta may provide a window on the contribution of the hippocampus to memory functions. We review studies investigating the reactivity of scalp-recorded theta in paradigms engaging episodic memory, spatial memory and working memory. In addition, we review studies that relate theta reactivity to processes at the interface of memory and language. Despite many unknowns, the experimental evidence largely supports the hypothesis that theta activity plays a functional role in cell assembly formation, a process which may constitute the neural basis of memory formation and retrieval. The available data provide only highly indirect support for the hypothesis that scalp-recorded theta yields information about hippocampal functioning. It is concluded that studying induced rhythmic activity holds promise as an additional important way to study brain function.

  5. Rapamycin Reverses Status Epilepticus-Induced Memory Deficits and Dendritic Damage

    PubMed Central

    Brewster, Amy L.; Lugo, Joaquin N.; Patil, Vinit V.; Lee, Wai L.; Qian, Yan; Vanegas, Fabiola; Anderson, Anne E.

    2013-01-01

    Cognitive impairments are prominent sequelae of prolonged continuous seizures (status epilepticus; SE) in humans and animal models. While often associated with dendritic injury, the underlying mechanisms remain elusive. The mammalian target of rapamycin complex 1 (mTORC1) pathway is hyperactivated following SE. This pathway modulates learning and memory and is associated with regulation of neuronal, dendritic, and glial properties. Thus, in the present study we tested the hypothesis that SE-induced mTORC1 hyperactivation is a candidate mechanism underlying cognitive deficits and dendritic pathology seen following SE. We examined the effects of rapamycin, an mTORC1 inhibitor, on the early hippocampal-dependent spatial learning and memory deficits associated with an episode of pilocarpine-induced SE. Rapamycin-treated SE rats performed significantly better than the vehicle-treated rats in two spatial memory tasks, the Morris water maze and the novel object recognition test. At the molecular level, we found that the SE-induced increase in mTORC1 signaling was localized in neurons and microglia. Rapamycin decreased the SE-induced mTOR activation and attenuated microgliosis which was mostly localized within the CA1 area. These findings paralleled a reversal of the SE-induced decreases in dendritic Map2 and ion channels levels as well as improved dendritic branching and spine density in area CA1 following rapamycin treatment. Taken together, these findings suggest that mTORC1 hyperactivity contributes to early hippocampal-dependent spatial learning and memory deficits and dendritic dysregulation associated with SE. PMID:23536771

  6. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling

    PubMed Central

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M.; Xu, Ying

    2016-01-01

    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling. PMID:26980711

  7. Retrieval-Induced Forgetting in Perceptually Driven Memory Tests

    ERIC Educational Resources Information Center

    Bajo, M. Teresa; Gomez-Ariza, Carlos J.; Fernandez, Angel; Marful, Alejandra

    2006-01-01

    Recent data (T. J. Perfect, C. J. A. Moulin, M. A. Conway, & E. Perry, 2002) have suggested that retrieval-induced forgetting (RIF) depends on conceptual memory because the effect is not found in perceptually driven tasks. In 3 experiments, the authors aimed to show that the presence of RIF depends on whether the procedure induces appropriate…

  8. Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin

    PubMed Central

    Chang, Lan; Cui, Wei; Yang, Yong; Xu, Shujun; Zhou, Wenhua; Fu, Hongjun; Hu, Shengquan; Mak, Shinghung; Hu, Juwei; Wang, Qin; Pui-Yan Ma, Victor; Chung-lit Choi, Tony; Dik-lung Ma, Edmond; Tao, Liang; Pang, Yuanping; Rowan, Michael J.; Anwyl, Roger; Han, Yifan; Wang, Qinwen

    2015-01-01

    β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer’s disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD. PMID:26194093

  9. Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance.

    PubMed

    Jaques, Jeandre Augusto dos Santos; Doleski, Pedro Henrique; Castilhos, Lívia Gelain; da Rosa, Michelle Melgarejo; Souza, Viviane do Carmo Gonçalves; Carvalho, Fabiano Barbosa; Marisco, Patrícia; Thorstenberg, Maria Luiza Prates; Rezer, João Felipe Peres; Ruchel, Jader Betch; Coradini, Karine; Beck, Ruy Carlos Ruver; Rubin, Maribel Antonello; Schetinger, Maria Rosa Chitolina; Leal, Daniela Bitencourt Rosa

    2013-02-01

    Cigarette smoke-exposure promotes neurobiological changes associated with neurocognitive abnormalities. Curcumin, a natural polyphenol, have shown to be able to prevent cigarette smoke-induced cognitive impairment. Here, we investigated possible mechanisms involved in curcumin protection against cigarette smoke-induced cognitive impairment and, due to its poor bioavailability, we investigated the potential of using curcumin-loaded lipid-core nanocapsules (C-LNC) suspension. Rats were treated with curcumin and cigarette smoke, once a day, 5 days each week, for 30 days. Animals were divided into ten groups: I, control (vehicle/corn oil); II, curcumin 12.5mg/kg; III, curcumin 25mg/kg; IV, curcumin 50mg/kg; V, C-LNC 4 mg/kg; VI, tobacco exposed; VII, curcumin 12.5mg/kg along with tobacco exposure; VIII, curcumin 25mg/kg along with tobacco exposure; IX, curcumin 50mg/kg along with tobacco exposure; X, C-LNC 4 mg/kg along with tobacco exposure. Cigarette smoke-exposure impaired object recognition memory (P<0.001), indicated by the low recognition index, increased biomarkers of oxidative/nitrosative stress such as TBARS (P<0.05) and NOx (P<0.01), decreased antioxidant defenses such as NPSH content (P<0.01) and SOD activity (P<0.01) and inhibited the activities of enzymes involved in ion homeostasis such as Na(+),K(+)-ATPase and Ca(2+)-ATPase. Both curcumin formulations (free and nanoencapsulated) prevented the memory impairment, the redox imbalance and the alterations observed in the ATPases activities. Maintenance of ion homeostasis and redox balance is involved in the protective mechanism of curcumin against tobacco-induced cognitive impairment. Our results suggest that curcumin is a potential therapeutic agent for neurocognition and that C-LNC may be an alternative to its poor bioavailability. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Possibility of "superfast" consolidation of long-term memory.

    PubMed

    Podolski IYa

    1998-01-01

    Two new behavioural tests in rats are described which demonstrate the fast consolidation of the long-term memory (LTM) in a dangerous natural situation (water escape). It is shown that after one-trial learning of the motor skill (jumping out of the water), long-term memory traces are retained without forgetting and are resistant to the blockade of M-cholinoreceptors by scopolamine (2 mg/kg) and of D1/D2 dopamine receptors by haloperidol (10 mg/kg) as well as electroconvulsive shock applied tank wall, learning of necessary motor skills, automatization and minimization of the skilled movements in 1.5-3.0 min, after 5 to 7 trials at two-second intervals (superfast learning) is demonstrated. It is suggested that the superfast consolidation of LTM (several minutes) is possible in life-threatening situations, the necessary time being 1-2 orders of magnitude less than it is generally accepted in the modern theories of memory. The proposed behavioural models may be helpful in investigation of some fundamental physiological and molecular mechanisms of stable neuronal interactions, as a basis for LTM consolidation.

  11. How sodium arsenite improve amyloid β-induced memory deficit?

    PubMed

    Nassireslami, Ehsan; Nikbin, Parmida; Amini, Elham; Payandemehr, Borna; Shaerzadeh, Fatemeh; Khodagholi, Fariba; Yazdi, Behnoosh Bonakdar; Kebriaeezadeh, Abbas; Taghizadeh, Ghorban; Sharifzadeh, Mohammad

    2016-09-01

    Evidence has shown that arsenic exposure, besides its toxic effects results in impairment of learning and memory, but its molecular mechanisms are not fully understood. In the present study, we examined sodium arsenite (1, 5, 10, 100nM) effects on contextual and tone memory of male rats in Pavlovian fear conditioning paradigm alone and in co-administration with β-amyloid. We detected changes in the level of caspase-3, nuclear factor kappa-B (NF-κB), cAMP response element-binding (CREB), heme oxygenase-1 and NF-E2-related factor-2 (Nrf2) by Western blot. Sodium arsenite in high doses induced significant memory impairment 9 and 16days after infusion. By contrast, low doses of sodium arsenite attenuate memory deficit in Aβ injected rats after 16days. Our data revealed that treatment with high concentration of sodium arsenite increased caspase-3 cleavage and NF-κB level, 9days after injection. Whereas, low doses of sodium arsenite cause Nrf2 and HO-1 activation and increased CREB phosphorylation in the hippocampus. These findings suggest the concentration dependent effects of sodium arsenite on contextual and tone memory. Moreover, it seems that the neuroprotective effects of ultra-low concentrations of sodium arsenite on Aβ-induced memory impairment is mediated via an increase Nrf2, HO-1 and CREB phosphorylation levels and decrease caspase-3 and NF-κB amount. Copyright © 2016. Published by Elsevier Inc.

  12. Postoperative Anticholinergic Poisoning: Concealed Complications of a Commonly Used Medication.

    PubMed

    Zhang, Xiao Chi; Farrell, Natalija; Haronian, Thomas; Hack, Jason

    2017-10-01

    Scopolamine is a potent anticholinergic compound used commonly for the prevention of postoperative nausea and vomiting. Scopolamine can cause atypical anticholinergic syndromes due to its prominent central antimuscarinic effects. A 47-year-old female presented to the emergency department (ED) 20 h after hospital discharge for a right-knee meniscectomy, with altered mental status (AMS) and dystonic extremity movements that began 12 h after her procedure. Her vital signs were normal and physical examination revealed mydriasis, visual hallucinations, hyperreflexia, and dystonic movements. Laboratory data, lumbar puncture, and computed tomography were unrevealing. The sustained AMS prompted a re-evaluation that revealed urinary overflow with 500 mL of retained urine discovered on ultrasound and a scopolamine patch hidden behind her ear. Her mental status improved shortly after patch removal and physostigmine, with complete resolution after 24 h with discharge diagnosis of scopolamine-induced anticholinergic toxicity. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Although therapeutically dosed scopolamine transdermal patches rarely cause complications, incomplete toxidromes can be insidiously common in polypharmacy settings. Providers should thoroughly evaluate the skin of intoxicated patients for additional adherent medications that may result in a delay in ED diagnosis and curative therapies. Our case, as well as rare case reports of therapeutic scopolamine-induced anticholinergic toxicity, demonstrates that peripheral anticholinergic effects, such as tachycardia, dry mucous membranes, and hyperpyrexia are often not present, and incremental doses of physostigmine may be required to reverse scopolamine's long duration of action. This further complicates identification of the anticholinergic toxidrome and diagnosis. Published by Elsevier Inc.

  13. Can improving working memory prevent academic difficulties? A school based randomised controlled trial.

    PubMed

    Roberts, Gehan; Quach, Jon; Gold, Lisa; Anderson, Peter; Rickards, Field; Mensah, Fiona; Ainley, John; Gathercole, Susan; Wake, Melissa

    2011-06-20

    Low academic achievement is common and is associated with adverse outcomes such as grade repetition, behavioural disorders and unemployment. The ability to accurately identify these children and intervene before they experience academic failure would be a major advance over the current 'wait to fail' model. Recent research suggests that a possible modifiable factor for low academic achievement is working memory, the ability to temporarily store and manipulate information in a 'mental workspace'. Children with working memory difficulties are at high risk of academic failure. It has recently been demonstrated that working memory can be improved with adaptive training tasks that encourage improvements in working memory capacity. Our trial will determine whether the intervention is efficacious as a selective prevention strategy for young children at risk of academic difficulties and is cost-effective. This randomised controlled trial aims to recruit 440 children with low working memory after a school-based screening of 2880 children in Grade one. We will approach caregivers of all children from 48 participating primary schools in metropolitan Melbourne for consent. Children with low working memory will be randomised to usual care or the intervention. The intervention will consist of 25 computerised working memory training sessions, which take approximately 35 minutes each to complete. Follow-up of children will be conducted at 6, 12 and 24 months post-randomisation through child face-to-face assessment, parent and teacher surveys and data from government authorities. The primary outcome is academic achievement at 12 and 24 months, and other outcomes include child behaviour, attention, health-related quality of life, working memory, and health and educational service utilisation. A successful start to formal learning in school sets the stage for future academic, psychological and economic well-being. If this preventive intervention can be shown to be efficacious, then

  14. Effect of traditional medicine brahmi vati and bacoside A-rich fraction of Bacopa monnieri on acute pentylenetetrzole-induced seizures, amphetamine-induced model of schizophrenia, and scopolamine-induced memory loss in laboratory animals.

    PubMed

    Mishra, Amrita; Mishra, Arun K; Jha, Shivesh

    2018-03-01

    Brahmi vati (BV) is an Ayurvedic polyherbal formulation used since ancient times and has been prescribed in seizures associated with schizophrenia and related memory loss by Ayurvedic practitioners in India. The aim of the study was to investigate these claims by evaluation of anticonvulsant, antischizophreniac, and memory-enhancing activities. Antioxidant condition of brain was determined by malondialdehyde (MDA) and reduced glutathione (GSH) levels estimations. Acetylcholinesterase (AChE) was quantitatively estimated in the brain tissue. Brahmi vati was prepared in-house by strictly following the traditional Ayurvedic formula. Bacoside A rich fraction (BA) of Bacopa monnieri was prepared by extraction and fractionation. It was than standardized by High Performance Liquid Chromatography (HPLC) and given in the dose of 32.5mg/kg body weight to the different groups of animals for 7days. On the seventh day, activities were performed adopting standard procedures. Brahmi vati showed significant anticonvulsant, memory-enhancing and antischizophrenia activities, when compared with the control groups and BA. It cause significantly higher brain glutathione levels. Acetylcholinesterase activity was found to be significantly low in BV-treated group. The finding of the present study suggests that BV may be used to treat seizures associated with schizophrenia and related memory loss. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Retrieval Does Not Induce Reconsolidation of Inhibitory Avoidance Memory

    ERIC Educational Resources Information Center

    Medina, Jorge H.; Izquierdo, Ivan; Cammarota, Martin; Bevilaqua, Lia R. M.

    2004-01-01

    It has been suggested that retrieval during a nonreinforced test induces reconsolidation instead of extinction of the mnemonic trace. Reconsolidation would preserve the original memory from the labilization induced by its nonreinforced recall through a hitherto uncharacterized mechanism requiring protein synthesis. Given the importance that such a…

  16. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  17. Propranolol–induced Impairment of Contextual Fear Memory Reconsolidation in Rats: A similar Effect on Weak and Strong Recent and Remote Memories

    PubMed Central

    Taherian, Fatemeh; Vafaei, Abbas Ali; Vaezi, Gholam Hassan; Eskandarian, Sharaf; Kashef, Adel; Rashidy-Pour, Ali

    2014-01-01

    Introduction Previous studies have demonstrated that the β-adrenergic receptor antagonist propranolol impairs fear memory reconsolidation in experimental animals. There are experimental parameters such as the age and the strength of memory that can interact with pharmacological manipulations of memory reconsolidation. In this study, we investigated the ability of the age and the strength of memory to influence the disrupting effects of propranolol on fear memory reconsolidation in rats. Methods The rats were trained in a contextual fear conditioning using two (weak training) or five (strong training) footshocks (1mA). Propranolol (10mg/kg) injection was immediately followed retrieval of either a one-day recent (weak or strong) or 36-day remote (weak or strong) contextual fear memories. Results We found that propranolol induced a long-lasting impairment of subsequent expression of recent and remote memories with either weak or strong strength. We also found no memory recovery after a weak reminder shock. Furthermore, no significant differences were found on the amount of memory deficit induced by propranolol among memories with different age and strength. Discussion Our data suggest that the efficacy of propranolol in impairing fear memory reconsolidation is not limited to the age or strength of the memory. PMID:25337385

  18. Simultaneous determination of atropine and scopolamine in buckwheat and related products using modified QuEChERS and liquid chromatography tandem mass spectrometry.

    PubMed

    Chen, Hongping; Marín-Sáez, Jesús; Romero-González, Roberto; Garrido Frenich, Antonia

    2017-03-01

    A method was developed for the determination of atropine and scopolamine in buckwheat and related products. A modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure was evaluated. Dispersive solid phase extraction (d-SPE) was studied as clean-up step, using graphitized black carbon (GBC) and primary secondary amine (PSA). The extract was diluted with water (50:50, v/v) prior to chromatographic analysis. The method was validated and recoveries (except chia samples spiked at 10μg/kg) ranged from 75% to 92%. Intra and inter-day precision was lower than or equal to 17%. The limit of quantification of atropine and scopolamine was 0.4 and 2μg/kg, respectively. Eight types of samples (buckwheat, wheat, soy, buckwheat flour, buckwheat noodle, amaranth grain, chia seeds and peeled millet) were analyzed. Target compounds were not found above the detection limits of the method, but three transformation products of scopolamine (norscopine, hydroscopolamine and dihydroxyscopolamine) were putative identified in the tested samples using high resolution mass spectrometry (Exactive-Orbitrap). Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. The effects of DHEA, 3beta-hydroxy-5alpha-androstane-6,17-dione, and 7-amino-DHEA analogues on short term and long term memory in the mouse.

    PubMed

    Bazin, Marc-Antoine; El Kihel, Laïla; Boulouard, Michel; Bouët, Valentine; Rault, Sylvain

    2009-11-01

    Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7beta-aminoDHEA and 7beta-amino-17-ethylenedioxy-DHEA), and a new one (3beta-hydroxy-5alpha-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300-1.350-6.075 microM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 microM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.

  20. Prevention and Treatment of Noise-Induced Tinnitus

    DTIC Science & Technology

    2014-09-01

    Tinnitus PRINCIPAL INVESTIGATOR: Dr. Richard A. Altschuler CONTRACTING ORGANIZATION: University of Michigan REPORT DATE: 2014...3 Ju 2014 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Prevention and Treatment of Noise-Induced Tinnitus 5b. GRANT NUMBER 5c. PROGRAM...prevent or treat noise induced tinnitus . Our studies showed a military relevant small arms fire-like noise will induce tinnitus in approximately 33

  1. Chemical memory reactions induced bursting dynamics in gene expression.

    PubMed

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  2. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse.

    PubMed

    Lim, Soonmin; Moon, Minho; Oh, Hyein; Kim, Hyo Geun; Kim, Sun Yeou; Oh, Myung Sook

    2014-10-01

    Ginger (the rhizome of Zingiber officinale Roscoe) has been used worldwide for many centuries in cooking and for treatment of several diseases. The main pharmacological properties of ginger include anti-inflammatory, antihyperglycemic, antiarthritic, antiemetic and neuroprotective actions. Recent studies demonstrated that ginger significantly enhances cognitive function in various cognitive disorders as well as in healthy brain. However, the biochemical mechanisms underlying the ginger-mediated enhancement of cognition have not yet been studied in normal or diseased brain. In the present study, we assessed the memory-enhancing effects of dried ginger extract (GE) in a model of scopolamine-induced memory deficits and in normal animals by performing a novel object recognition test. We found that GE administration significantly improved the ability of mice to recognize novel objects, indicating improvements in learning and memory. Furthermore, to elucidate the mechanisms of GE-mediated cognitive enhancement, we focused on nerve growth factor (NGF)-induced signaling pathways. NGF enzyme-linked immunosorbent assay analysis revealed that GE administration led to elevated NGF levels in both the mouse hippocampus and rat glioma C6 cells. GE administration also resulted in phosphorylation of extracellular-signal-regulated kinase (ERK) and cyclic AMP response element-binding protein (CREB), as revealed by Western blotting analysis. Neutralization of NGF with a specific NGF antibody inhibited GE-triggered activation of ERK and CREB in the hippocampus. Also, GE treatment significantly increased pre- and postsynaptic markers, synaptophysin and PSD-95, which are related to synapse formation in the brain. These data suggest that GE has a synaptogenic effect via NGF-induced ERK/CREB activation, resulting in memory enhancement. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Investigation of anti-motion sickness drugs in the squirrel monkey

    NASA Technical Reports Server (NTRS)

    Cheung, B. S.; Money, K. E.; Kohl, R. L.; Kinter, L. B.

    1992-01-01

    Early attempts to develop an animal model for anti-motion sickness drugs, using dogs and cats; were unsuccessful. Dogs did not show a beneficial effect of scopolamine (probably the best single anti-motion sickness drug for humans thus far) and the findings in cats were not definitive. The authors have developed an animal model using the squirrel monkey (Saimiri sciureus) of the Bolivian phenotype. Unrestrained monkeys in a small lucite cage were tested in an apparatus that induces motion sickness by combining vertical oscillation and horizontal rotation in a visually unrestricted laboratory environment. Signs of motion sickness were scored using a rating scale. Ten susceptible monkeys (weighing 800-1000 g) were given a total of five tests each, to establish the baseline susceptibility level. Based on the anticholinergic activity of scopolamine, the sensitivity of squirrel monkey to scopolamine was investigated, and the appropriate dose of scopolamine for this species was determined. Then various anti-motion sickness preparations were administered in subsequent tests: 100 ug scopolamine per monkey; 140 ug dexedrine; 50 ug scopolamine plus 70 ug dexedrine; 100 ug scopolamine plus 140 ug dexedrine; 3 mg promethazine; 3 mg promethazine plus 3 mg ephedrine. All these preparations were significantly effective in preventing motion sickness in the monkeys. Ephedrine, by itself, which is marginally effective in humans, was ineffective in the monkeys at the doses tried (0.3-6.0 mg). The squirrel monkey appears to be a good animal model for antimotion sickness drugs. Peripherally acting antihistamines such as astemizole and terfenadine were found to be ineffective, whereas flunarizine, and an arginine vasopressin V1 antagonist, showed significant activity in preventing motion sickness.

  4. Dorsal CA1 interneurons contribute to acute stress-induced spatial memory deficits.

    PubMed

    Yu, Jing-Ying; Fang, Ping; Wang, Chi; Wang, Xing-Xing; Li, Kun; Gong, Qian; Luo, Ben-Yan; Wang, Xiao-Dong

    2018-06-01

    Exposure to severely stressful experiences disrupts the activity of neuronal circuits and impairs declarative memory. GABAergic interneurons coordinate neuronal network activity, but their involvement in stress-evoked memory loss remains to be elucidated. Here, we provide evidence that interneurons in area CA1 of the dorsal hippocampus partially modulate acute stress-induced memory deficits. In adult male mice, both acute forced swim stress and restraint stress impaired hippocampus-dependent spatial memory and increased the density of c-fos-positive interneurons in the dorsal CA1. Selective activation of dorsal CA1 interneurons by chemogenetics disrupted memory performance in the spatial object recognition task. In comparison, anxiety-related behavior, spatial working memory and novel object recognition memory remained intact when dorsal CA1 interneurons were overactivated. Moreover, chemogenetic activation of dorsal CA1 interneurons suppressed the activity of adjacent pyramidal neurons, whereas a single exposure to forced swim stress but not restraint stress increased the activity of CA1 pyramidal neurons. However, chemogenetic inhibition of dorsal CA1 interneurons led to spatial memory impairments and failed to attenuate acute stress-induced memory loss. These findings suggest that acute stress may overactivate interneurons in the dorsal CA1, which reduces the activity of pyramidal neurons and in turn disrupts long-term memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Activity-induced histone modifications govern Neurexin-1 mRNA splicing and memory preservation.

    PubMed

    Ding, Xinlu; Liu, Sanxiong; Tian, Miaomiao; Zhang, Wenhao; Zhu, Tao; Li, Dongdong; Wu, Jiawei; Deng, HaiTeng; Jia, Yichang; Xie, Wei; Xie, Hong; Guan, Ji-Song

    2017-05-01

    Epigenetic mechanisms regulate the formation, consolidation and reconsolidation of memories. However, the signaling path from neuronal activation to epigenetic modifications within the memory-related brain circuit remains unknown. We report that learning induces long-lasting histone modifications in hippocampal memory-activated neurons to regulate memory stability. Neuronal activity triggers a late-onset shift in Nrxn1 splice isoform choice at splicing site 4 by accumulating a repressive histone marker, H3K9me3, to modulate the splicing process. Activity-dependent phosphorylation of p66α via AMP-activated protein kinase recruits HDAC2 and Suv39h1 to establish repressive histone markers and changes the connectivity of the activated neurons. Removal of Suv39h1 abolished the activity-dependent shift in Nrxn1 splice isoform choice and reduced the stability of established memories. We uncover a cell-autonomous process for memory preservation in which memory-related neurons initiate a late-onset reduction of their rewiring capacities through activity-induced histone modifications.

  6. A single dose of inactivated hepatitis A vaccine promotes HAV-specific memory cellular response similar to that induced by a natural infection.

    PubMed

    Melgaço, Juliana Gil; Morgado, Lucas Nóbrega; Santiago, Marta Almeida; Oliveira, Jaqueline Mendes de; Lewis-Ximenez, Lia Laura; Hasselmann, Bárbara; Cruz, Oswaldo Gonçalves; Pinto, Marcelo Alves; Vitral, Claudia Lamarca

    2015-07-31

    Based on current studies on the effects of single dose vaccines on antibody production, Latin American countries have adopted a single dose vaccine program. However, no data are available on the activation of cellular response to a single dose of hepatitis A. Our study investigated the functional reactivity of the memory cell phenotype after hepatitis A virus (HAV) stimulation through administration of the first or second dose of HAV vaccine and compared the response to that of a baseline group to an initial natural infection. Proliferation assays showed that the first vaccine dose induced HAV-specific cellular response; this response was similar to that induced by a second dose or an initial natural infection. Thus, from the first dose to the second dose, increase in the frequencies of classical memory B cells, TCD8 cells, and central memory TCD4 and TCD8 cells were observed. Regarding cytokine production, increased IL-6, IL-10, TNF, and IFNγ levels were observed after vaccination. Our findings suggest that a single dose of HAV vaccine promotes HAV-specific memory cell response similar to that induced by a natural infection. The HAV-specific T cell immunity induced by primary vaccination persisted independently of the protective plasma antibody level. In addition, our results suggest that a single dose immunization system could serve as an alternative strategy for the prevention of hepatitis A in developing countries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression

    PubMed Central

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679

  8. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    PubMed

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  9. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model.

    PubMed

    Ali, Tahir; Badshah, Haroon; Kim, Tae Hyun; Kim, Myeong Ok

    2015-01-01

    Melatonin acts as a pleiotropic agent in various age-related neurodegenerative diseases. In this study, we examined the underlying neuroprotective mechanism of melatonin against D-galactose-induced memory and synaptic dysfunction, elevated reactive oxygen species (ROS), neuroinflammation and neurodegeneration. D-galactose was administered (100 mg/kg intraperitoneally (i.p.)) for 60 days. After 30 days of D-galactose administration, vehicle (same volume) or melatonin (10 mg/kg, i.p.) was administered for 30 days. Our behavioral (Morris water maze and Y-maze test) results revealed that chronic melatonin treatment alleviated D-galactose-induced memory impairment. Additionally, melatonin treatment reversed D-galactose-induced synaptic disorder via increasing the level of memory-related pre-and postsynaptic protein markers. We also determined that melatonin enhances memory function in the D-galactose-treated mice possibly via reduction of elevated ROS and receptor for advanced glycation end products (RAGE). Furthermore, Western blot and morphological results showed that melatonin treatment significantly reduced D-galactose-induced neuroinflammation through inhibition of microgliosis (Iba-1) and astrocytosis (GFAP), and downregulating other inflammatory mediators such as p-IKKβ, p-NF-K B65, COX2, NOS2, IL-1β, and TNFα. Moreover, melatonin lowered the oxidative stress kinase p-JNK which suppressed various apoptotic markers, that is, cytochrome C, caspase-9, caspase-3 and PARP-1, and prevent neurodegeneration. Hence, melatonin attenuated the D-galactose-induced memory impairment, neuroinflammation and neurodegeneration possibly through RAGE/NF-K B/JNK pathway. Taken together, our data suggest that melatonin could be a promising, safe and endogenous compatible antioxidant candidate for age-related neurodegenerative diseases such as Alzheimer's disease (AD). © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Pheromone-Induced Olfactory Memory in Newborn Rabbits: Involvement of Consolidation and Reconsolidation Processes

    ERIC Educational Resources Information Center

    Coureaud, Gerard; Languille, Solene; Schaal, Benoist; Hars, Bernard

    2009-01-01

    Mammary pheromone (MP)-induced odor memory is a new model of appetitive memory functioning early in a mammal, the newborn rabbit. Some properties of this associative memory are analyzed by the use of anisomycin as an amnesic agent. Long-term memory (LTM) was impaired by anisomycin delivered immediately, but not 4 h after either acquisition or…

  11. Xylitol prevents NEFA-induced insulin resistance in rats

    PubMed Central

    Kishore, P.; Kehlenbrink, S.; Hu, M.; Zhang, K.; Gutierrez-Juarez, R.; Koppaka, S.; El-Maghrabi, M. R.

    2013-01-01

    Aims/hypothesis Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. Methods We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic–hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. Results Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. Conclusions/interpretation We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects. PMID:22460760

  12. Role of 5-HT1-7 receptors in short- and long-term memory for an autoshaping task: intrahippocampal manipulations.

    PubMed

    Liy-Salmeron, Gustavo; Meneses, Alfredo

    2007-05-25

    It was previously reported that brain areas containing serotonin (5-hydroxytryptamine, 5-HT) receptors mediate memory consolidation as well as short (STM)- and long-term memory (LTM). Here the effects of systemic and intrahippocampal administration of 5-HT agonists and antagonists on an autoshaping learning task were explored, which requires hippocampal translation and transduction as well as 5-HT receptors expression. As previously reported ketamine (glutamatergic antagonist) and two well-known amnesic drugs, scopolamine (cholinergic antagonist) and dizocilpine (NMDA antagonist) impaired STM but not LTM; dizocilpine even improved the latter. Since ketamine produces hallucinations and impairs memory in humans, we address the question if well-known antipsychotic haloperidol and clozapine might affect STM deficit. Indeed, systemic administration of clozapineinduced deficit was blocked by 8-OHDPAT (5-HT(1A/7) agonist) and SB-399885 (a 5-HT(6) antagonist) but not by 5-HT(1B), 5-HT(2) and 5-HT(7) antagonists, thus implicating 5-HT(1A/7) and 5-HT(6) receptors. These data also suggest that ketamine (at 10 mg/kg) represents a reliable pharmacological tool to explore memory deficits related to hippocampus and schizophrenia.

  13. Uncovering Camouflage: Amygdala Activation Predicts Long-Term Memory of Induced Perceptual Insight

    PubMed Central

    Ludmer, Rachel; Dudai, Yadin; Rubin, Nava

    2012-01-01

    What brain mechanisms underlie learning of new knowledge from single events? We studied encoding in long-term memory of a unique type of one-shot experience, induced perceptual insight. While undergoing an fMRI brain scan, participants viewed degraded images of real-world pictures where the underlying objects were hard to recognize (‘camouflage’), followed by brief exposures to the original images (‘solution’), which led to induced insight (“Aha!”). A week later, participants’ memory was tested; a solution image was classified as ‘remembered’ if detailed perceptual knowledge was elicited from the camouflage image alone. During encoding, subsequently remembered images enjoyed higher activity in mid-level visual cortex and medial frontal cortex, but most pronouncedly in the amygdala, whose activity could be used to predict which solutions will remain in long-term memory. Our findings extend the known roles of amygdala in memory to include promoting of long-term memory of the sudden reorganization of internal representations. PMID:21382558

  14. Beneficial effect of etazolate on depression-like behavior and, learning, and memory impairment in a model of Parkinson's disease.

    PubMed

    Alzoubi, Karem H; Mokhemer, Enas; Abuirmeileh, Amjad N

    2018-09-17

    The aim of this study was to evaluate etazolate against depression-like behavior and, learning and memory impairment induced by 6- hydroxydopamine (6-OHDA) rat model of Parkinson's disease (PD). This aim was achieved through comparing 6-OHDA lesioned rats in the presence and absence of etazolate. The 6-OHDA was used to induce lesion as a model of PD. Etazolate was administered at a dose of 1 mg/kg/day for 14 days, starting 7 days after lesion induction. Apomorphine-induced rotation test was used to evaluate 6-OHDA-induced motor deficits, tail suspension test was used to assess depression-like symptoms, and the radial arms water maze (RAWM) was used to evaluate special learning and memory functions. Antioxidant biomarkers and BDNF protein levels were assessed in the hippocampus. Results revealed that etazolate administration significantly improved 6-OHDA-induced PD related symptoms including motor deficits, depression-like behavior and impairment of both short- and long- term memory. Moreover, etazolate significantly prevented 6-OHDA-induced reduction in oxidative stress biomarkers (GSH/GSSG ratio, GPx) and BDNF levels. In conclusion, motor dysfunction, depressive- like behavior, and learning and memory deficits in the 6-OHDA rat model of PD can be significantly prevented by etazolate. This prevention could be attributed to etazolate's ability to prevent reduction in antioxidative stress biomarkers and BDNF levels. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Evaluation of nootropic potential of Ocimum sanctum Linn. in mice.

    PubMed

    Joshi, Hanumanthachar; Parle, Milind

    2006-02-01

    Dementia is one of the age related mental problems and a characteristic symptom of various neurodegenerative disorders including Alzheimer's disease. Certain drugs like diazepam, barbiturates and alcohol disrupt learning and memory in animals and man. However, a new class of drugs known as nootropic agents is now used in situations where there is organic disorder in learning abilities. The present work was undertaken to assess the potential of O. sanctum extract as a nootropic and anti-amnesic agent in mice. Aqueous extract of dried whole plant of O. sanctum ameliorated the amnesic effect of scopolamine (0.4 mg/kg), diazepam (1 mg/kg) and aging induced memory deficits in mice. Elevated plus maze and passive avoidance paradigm served as the exteroceptive behavioral models. O. sanctum extract decreased transfer latency and increased step down latency, when compared to control (piracetam treated), scopolamine and aged groups of mice significantly. O. sanctum preparations could of beneficial in the treatment of cognitive disorders such as dementia and Alzheimer's disease.

  16. Memory-induced nonlinear dynamics of excitation in cardiac diseases.

    PubMed

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  17. Memory-induced nonlinear dynamics of excitation in cardiac diseases

    NASA Astrophysics Data System (ADS)

    Landaw, Julian; Qu, Zhilin

    2018-04-01

    Excitable cells, such as cardiac myocytes, exhibit short-term memory, i.e., the state of the cell depends on its history of excitation. Memory can originate from slow recovery of membrane ion channels or from accumulation of intracellular ion concentrations, such as calcium ion or sodium ion concentration accumulation. Here we examine the effects of memory on excitation dynamics in cardiac myocytes under two diseased conditions, early repolarization and reduced repolarization reserve, each with memory from two different sources: slow recovery of a potassium ion channel and slow accumulation of the intracellular calcium ion concentration. We first carry out computer simulations of action potential models described by differential equations to demonstrate complex excitation dynamics, such as chaos. We then develop iterated map models that incorporate memory, which accurately capture the complex excitation dynamics and bifurcations of the action potential models. Finally, we carry out theoretical analyses of the iterated map models to reveal the underlying mechanisms of memory-induced nonlinear dynamics. Our study demonstrates that the memory effect can be unmasked or greatly exacerbated under certain diseased conditions, which promotes complex excitation dynamics, such as chaos. The iterated map models reveal that memory converts a monotonic iterated map function into a nonmonotonic one to promote the bifurcations leading to high periodicity and chaos.

  18. Thrombin-induced microglial activation impairs hippocampal neurogenesis and spatial memory ability in mice.

    PubMed

    Yang, Yuan; Zhang, Meikui; Kang, Xiaoni; Jiang, Chen; Zhang, Huan; Wang, Pei; Li, Jingjing

    2015-09-26

    To investigate the effects of microglia/macrophages activation induced by intrastriatal thrombin injection on dentate gyrus neurogenesis and spatial memory ability in mice. The male C57BL/6 mice were divided into 4 groups of 10: sham, intracerebral hemorrhage (ICH), ICH + hirudin (thrombin inhibitor), and ICH + indometacin (Indo, an anti-inflammation drug). ICH model was created by intrastriatal thrombin (1U) injection. BrdU (50 mg/kg) was administrated on the same day after surgery for 6 consecutive days. Motor functions were evaluated with rotarod and beam walking tests. The spatial memory deficit was measured with Morris water maze (MWM). Cell quantification was performed for doublecortin (DCX, immature neuron), BrdU (S-phase proliferating cell population) and CD68 (activated microglia/macrophage) immune-reactive cells. Microglia/macrophages activation induced by intrastriatal thrombin injection reduced hippocampal neurogenesis and impaired spatial memory ability, but did not affect the motor function at 3 and 5 days post-injury. Both hirudin and indometacin reduced microglia/macrophages activation, enhanced hippocampal neurogenesis, and improved spatial memory ability in mice. Microglia/macrophages activation induced by intrastriatal thrombin injection might be responsible for the spatial memory deficit. Targeting both thrombin and inflammation systems in acute phase of ICH might be important in alleviating the significant spatial memory deficits.

  19. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency

    NASA Astrophysics Data System (ADS)

    Hsiao, Ya-Fen; Tsai, Pin-Ju; Chen, Hung-Shiue; Lin, Sheng-Xiang; Hung, Chih-Chiao; Lee, Chih-Hsi; Chen, Yi-Hsin; Chen, Yong-Fan; Yu, Ite A.; Chen, Ying-Cheng

    2018-05-01

    Quantum memory is an important component in the long-distance quantum communication based on the quantum repeater protocol. To outperform the direct transmission of photons with quantum repeaters, it is crucial to develop quantum memories with high fidelity, high efficiency and a long storage time. Here, we achieve a storage efficiency of 92.0 (1.5)% for a coherent optical memory based on the electromagnetically induced transparency scheme in optically dense cold atomic media. We also obtain a useful time-bandwidth product of 1200, considering only storage where the retrieval efficiency remains above 50%. Both are the best record to date in all kinds of schemes for the realization of optical memory. Our work significantly advances the pursuit of a high-performance optical memory and should have important applications in quantum information science.

  20. The Effect of Divided Attention on Emotion-Induced Memory Narrowing

    PubMed Central

    Steinmetz, Katherine R. Mickley; Waring, Jill D.; Kensinger, Elizabeth A.

    2014-01-01

    Individuals are more likely to remember emotional than neutral information, but this benefit does not always extend to the surrounding background information. This memory narrowing is theorized to be linked to the availability of attentional resources at encoding. In contrast to the predictions of this theoretical account, altering participants’ attentional resources at encoding, by dividing attention, did not affect the emotion-induced memory narrowing. Attention was divided using three separate manipulations: a digit ordering task (Experiment 1), an arithmetic task (Experiment 2), and an auditory discrimination task (Experiment 3). Across all three experiments, divided attention decreased memory across-the-board but did not affect the degree of memory narrowing. These findings suggest that theories to explain memory narrowing must be expanded to include other potential mechanisms beyond limitations of attentional resources. PMID:24295041