Science.gov

Sample records for memory prevents scopolamine-induced

  1. Deer bone extract prevents against scopolamine-induced memory impairment in mice.

    PubMed

    Du, Chun Nan; Min, A Young; Kim, Hyun Jeong; Shin, Suk Kyung; Yu, Ha Ni; Sohn, Eun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun; Kim, Mee Ree

    2015-02-01

    Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aβ1-42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine. PMID:25546299

  2. Deer bone extract prevents against scopolamine-induced memory impairment in mice.

    PubMed

    Du, Chun Nan; Min, A Young; Kim, Hyun Jeong; Shin, Suk Kyung; Yu, Ha Ni; Sohn, Eun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun; Kim, Mee Ree

    2015-02-01

    Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aβ1-42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine.

  3. Deer Bone Extract Prevents Against Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Du, Chun Nan; Min, A Young; Kim, Hyun Jeong; Shin, Suk Kyung; Yu, Ha Ni; Sohn, Eun Jeong; Ahn, Chang-Won; Jung, Sung Ug; Park, Soo-Hyun

    2015-01-01

    Abstract Deer bone has been used as a health-enhancing food as well as an antiaging agent in traditional Oriental medicine. Recently, the water extract of deer bone (DBE) showed a neuroprotective action against glutamate or Aβ1–42-induced cell death of mouse hippocampal cells by exerting antioxidant activity through the suppression of MAP kinases. The present study is to examine whether DBE improves memory impairment induced by scopolamine. DBE (50, 100 or 200 mg/kg) was administered orally to mice for 14 days, and then scopolamine (2 mg/kg, i.p.) was administered together with DBE for another 7 days. Memory performance was evaluated in the Morris water maze (MWM) test and passive avoidance test. Also, brain acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activity, biomarkers of oxidative stress and the loss of neuronal cells in the hippocampus, was evaluated by histological examinations. Administration of DBE significantly restored memory impairments induced by scopolamine in the MWM test (escape latency and number of crossing platform area), and in the passive avoidance test. Treatment with DBE inhibited the AChE activity and increased the ChAT activity in the brain of memory-impaired mice induced by scopolamine. Additionally, the administration of DBE significantly prevented the increase of lipid peroxidation and the decrease of glutathione level in the brain of mice treated with scopolamine. Also, the DBE treatment restored the activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase to control the level. Furthermore, scopolamine-induced oxidative damage of neurons in hippocampal CA1 and CA3 regions were prevented by DBE treatment. It is suggested that DBE may be useful for memory improvement through the regulation of cholinergic marker enzyme activities and the suppression of oxidative damage of neurons in the brain of mice treated with scopolamine. PMID:25546299

  4. Dipeptide preparation Noopept prevents scopolamine-induced deficit of spatial memory in BALB/c mice.

    PubMed

    Belnik, A P; Ostrovskaya, R U; Poletaeva, I I

    2007-04-01

    The effect of original nootropic preparation Noopept on learning and long-term memory was studied with BALB/c mice. Scopolamine (1 mg/kg) impaired long-term memory trace, while Noopept (0.5 mg/kg) had no significant effect. Noopept completely prevented the development of cognitive disorders induced by scopolamine (blockade of muscarinic cholinergic receptors). Our results confirmed the presence of choline-positive effect in dipeptide piracetam analogue Noopept on retrieval of learned skill of finding a submerged platform (spatial memory). We conclude that the effectiveness of this drug should be evaluated in patients with Alzheimer's disease. PMID:18214292

  5. Comparative protective action of curcumin, memantine and diclofenac against scopolamine-induced memory dysfunction.

    PubMed

    Ali, Elham H A; Arafa, Nadia M S

    2011-06-01

    The comparative preventive effect of curcumin, memantine, and diclofenac on scopolamine-induced memory dysfunction was investigated in a controlled study. A group of male and female rats was treated with one of these compounds for 15 days, after which a single dosage of scopolamine was administered. The preventive activity of curcumin on memory dysfunction was higher than that of diclofenac or memantine, that was, however, administered at lower dosages. Gender differences were observed.

  6. Antiamnesic Effects of Walnuts Consumption on Scopolamine-Induced Memory Impairments in Rats

    PubMed Central

    Harandi, Shaahin; Golchin, Leila; Ansari, Mehdi; Moradi, Alireza; Shabani, Mohammad; Sheibani, Vahid

    2015-01-01

    Introduction: Alzheimer’s disease (AD) is an age-related neurodegenerative disease, which impairs memory and cognitive function. Walnuts are a dietary source of polyphenols, antioxidants and other compounds with health beneficial effects. These characteristic of walnuts make them perfect candidates for evaluation of their possible effects on neurodegenerative diseases. Therefore the present study was designed to investigate the effects of walnuts consumption (2%, 6% and 9% walnut diets) on memory enhancement and acetylcholinesterase (AChE) activity of brain in scopolamine-induced amnesic rats. Methods: Learning, memory and locomotor activity parameters were evaluated using Morris water maze (MWM), passive avoidance and rotarod tests. Results: Our results showed that consumption of walnuts at doses of 6% and 9% significantly restored the scopolamine-induced memory impairments in the MWM and passive avoidance tests. Moreover, the potential of walnuts to prevent scopolamine neurotoxicity was also reflected by the decreased AChE activity in the whole brain in comparison with the scopolamine group. Discussion: These results suggest that walnuts may be useful against memory impairment and it may exert these anti-amnesic activities via inhibition of AChE activity in the brain. It would be worthwhile to explore the potential of this nut and its active components in the management of the AD. PMID:27307953

  7. Rubus coreanus Miquel ameliorates scopolamine-induced memory impairments in ICR mice.

    PubMed

    Choi, Mi-Ran; Lee, Min Young; Hong, Ji Eun; Kim, Jeong Eun; Lee, Jae-Yong; Kim, Tae Hwan; Chun, Jang Woo; Shin, Hyun Kyung; Kim, Eun Ji

    2014-10-01

    The present study investigated the effect of Rubus coreanus Miquel (RCM) on scopolamine-induced memory impairments in ICR mice. Mice were orally administrated RCM for 4 weeks and scopolamine was intraperitoneally injected into mice to induce memory impairment. RCM improved the scopolamine-induced memory impairment in mice. The increase of acetylcholinesterase activity caused by scopolamine was significantly attenuated by RCM treatment. RCM increased the levels of acetylcholine in the brain and serum of mice. The expression of choline acetyltransferase, phospho-cyclic AMP response element-binding protein, and phospho-extracellular signal-regulated kinase was significantly increased within the brain of mice treated with RCM. The brain antioxidant enzyme activity decreased by scopolamine was increased by RCM. These results demonstrate that RCM exerts a memory-enhancing effect via the improvement of cholinergic function and the potentiated antioxidant activity in memory-impaired mice. The results suggest that RCM may be a useful agent for improving memory impairment.

  8. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    PubMed

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease. PMID:26780350

  9. The Effects of Loranthus parasiticus on Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Weon, Jin Bae; Lee, Jiwoo; Eom, Min Rye; Jung, Youn Sik; Ma, Choong Je

    2014-01-01

    This study is undertaken to evaluate cognitive enhancing effect and neuroprotective effect of Loranthus parasiticus. Cognitive enhancing effect of Loranthus parasiticus was investigated on scopolamine-induced amnesia model in Morris water maze test and passive avoidance test. We also examined the neuroprotective effect on glutamate-induced cell death in HT22 cells by MTT assay. These results of Morris water maze test and passive avoidance test indicated that 10 and 50 mg/kg of Loranthus parasiticus reversed scopolamine-induced memory deficits. Loranthus parasiticus also protected against glutamate-induced cytotoxicity in HT22 cells. As a result of in vitro test for elucidating possible mechanism, Loranthus parasiticus inhibited AChE activity, ROS production, and Ca2+ accumulation. Loranthus parasiticus showed memory enhancing effect and neuroprotective effect and these effects may be related to inhibition of AChE activity, ROS level, and Ca2+ influx. PMID:25045391

  10. Comparative Effect of Lisinopril and Fosinopril in Mitigating Learning and Memory Deficit in Scopolamine-Induced Amnesic Rats.

    PubMed

    Deb, Debasree; Bairy, K L; Nayak, Veena; Rao, Mohandas

    2015-01-01

    Lisinopril and fosinopril were compared on scopolamine-induced learning and memory deficits in rats. A total of eighty-four male Wistar rats were divided into seven groups. Group I received 2% gum acacia orally for 4 weeks, group II received normal saline, and group III received scopolamine (2 mg/kg/ip) as single dose. Groups IV and V received lisinopril ( 0.225 mg/kg and 0.45 mg/kg), while Groups VI and VII received fosinopril (0.90 mg/kg and 1.80 mg/kg), respectively, orally for four weeks, followed by scopolamine (2 mg/kg/ip) given 45 minutes prior to experimental procedure. Evaluation of learning and memory was assessed by using passive avoidance, Morris water maze, and elevated plus maze tests followed by analysis of hippocampal morphology and quantification of the number of surviving neurons. Scopolamine induced marked impairment of memory in behavioral tests which correlated with morphological changes in hippocampus. Pretreatment with fosinopril 1.80 mg/kg was found to significantly ameliorate the memory deficits and hippocampal degeneration induced by scopolamine. Fosinopril exhibits antiamnesic activity, indicating its possible role in preventing memory deficits seen in dementia though the precise mechanism underlying this effect needs to be further evaluated. PMID:26300914

  11. The Ameliorating Effect of Myrrh on Scopolamine-Induced Memory Impairments in Mice

    PubMed Central

    Baral, Samrat; Cho, Du-Hyong; Pariyar, Ramesh; Yoon, Chi-Su; Chang, Bo-yoon; Kim, Dae-Sung; Cho, Hyoung-Kwon; Kim, Sung Yeon; Oh, Hyuncheol; Kim, Youn-Chul; Kim, Jaehyo; Seo, Jungwon

    2015-01-01

    Myrrh has been used since ancient times for the treatment of various diseases such as inflammatory diseases, gynecological diseases, and hemiplegia. In the present study, we investigated the effects of aqueous extracts of myrrh resin (AEM) on scopolamine-induced memory impairments in mice. AEM was estimated with (2E,5E)-6-hydroxy-2,6-dimethylhepta-2,4-dienal as a representative constituent by HPLC. The oral administration of AEM for 7 days significantly reversed scopolamine-induced reduction of spontaneous alternation in the Y-maze test. In the passive avoidance task, AEM also restored the decreased latency time of the retention trial by scopolamine treatment. In addition, Western blot analysis and Immunohistochemistry revealed that AEM reversed scopolamine-decreased phosphorylation of Akt and extracellular signal-regulated kinase (ERK). Our study demonstrates for the first time that AEM ameliorates the scopolamine-induced memory impairments in mice and increases the phosphorylation of Akt and ERK in the hippocampus of mice brain. These results suggest that AEM has the therapeutic potential in memory impairments. PMID:26635888

  12. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-01-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer’s disease. PMID:27133261

  13. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  14. Modulation of adenosine signaling prevents scopolamine-induced cognitive impairment in zebrafish.

    PubMed

    Bortolotto, Josiane Woutheres; Melo, Gabriela Madalena de; Cognato, Giana de Paula; Vianna, Mônica Ryff Moreira; Bonan, Carla Denise

    2015-02-01

    Adenosine, a purine ribonucleoside, exhibits neuromodulatory and neuroprotective effects in the brain and is involved in memory formation and cognitive function. Adenosine signaling is mediated by adenosine receptors (A1, A2A, A2B, and A3); in turn, nucleotide and nucleoside-metabolizing enzymes and adenosine transporters regulate its levels. Scopolamine, a muscarinic cholinergic receptor antagonist, has profound amnesic effects in a variety of learning paradigms and has been used to induce cognitive deficits in animal models. This study investigated the effects of acute exposure to caffeine (a non-selective antagonist of adenosine receptors A1 and A2A), ZM 241385 (adenosine receptor A2A antagonist), DPCPX (adenosine receptor A1 antagonist), dipyridamole (inhibitor of nucleoside transporters) and EHNA (inhibitor of adenosine deaminase) in a model of pharmacological cognitive impairment induced by scopolamine in adult zebrafish. Caffeine, ZM 241385, DPCPX, dipyridamole, and EHNA were acutely administered independently via i.p. in zebrafish, followed by exposure to scopolamine dissolved in tank water (200μM). These compounds prevented the scopolamine-induced amnesia without impacting locomotor activity or social interaction. Together, these data support the hypothesis that adenosine signaling may modulate memory processing, suggesting that these compounds present a potential preventive strategy against cognitive impairment.

  15. Choline reverses scopolamine-induced memory impairment by improving memory reconsolidation.

    PubMed

    Blake, M G; Boccia, M M; Krawczyk, M C; Delorenzi, A; Baratti, C M

    2012-09-01

    It is widely known that pre-training systemic administration of the muscarinic antagonist scopolamine (SCP) (0.5mg/kg, i.p.) leads to anterograde memory impairment in retention tests. The administration of the α(7)-nicotinic receptor agonist choline (Ch) in the dorsal hippocampus (0.8μg/hippocampus) immediately after memory reactivation allowed recovery from scopolamine-induced memory impairment. This effect of Ch was time-dependent, and retention performance was not affected in drug-treated mice that were not subjected to memory reactivation, suggesting that the performance effects are not due to non-specific effects of the drug. The effects of Ch also depended on the age of the reactivated memory. Altogether, our results suggest that Ch exerts its effects by modulating memory reconsolidation, and that the memory impairment induced by low doses of SCP is a memory expression failure and not a storage deficit. Therefore, reconsolidation, among other functions, might serve to change memory expression in later tests. Summarizing, our results open new avenues about the behavioral significance and the physiological functions of memory reconsolidation, providing new strategies for recovering memories from some types of amnesia.

  16. Rubus coreanus Miquel ameliorates scopolamine-induced memory impairments in ICR mice.

    PubMed

    Choi, Mi-Ran; Lee, Min Young; Hong, Ji Eun; Kim, Jeong Eun; Lee, Jae-Yong; Kim, Tae Hwan; Chun, Jang Woo; Shin, Hyun Kyung; Kim, Eun Ji

    2014-10-01

    The present study investigated the effect of Rubus coreanus Miquel (RCM) on scopolamine-induced memory impairments in ICR mice. Mice were orally administrated RCM for 4 weeks and scopolamine was intraperitoneally injected into mice to induce memory impairment. RCM improved the scopolamine-induced memory impairment in mice. The increase of acetylcholinesterase activity caused by scopolamine was significantly attenuated by RCM treatment. RCM increased the levels of acetylcholine in the brain and serum of mice. The expression of choline acetyltransferase, phospho-cyclic AMP response element-binding protein, and phospho-extracellular signal-regulated kinase was significantly increased within the brain of mice treated with RCM. The brain antioxidant enzyme activity decreased by scopolamine was increased by RCM. These results demonstrate that RCM exerts a memory-enhancing effect via the improvement of cholinergic function and the potentiated antioxidant activity in memory-impaired mice. The results suggest that RCM may be a useful agent for improving memory impairment. PMID:25121635

  17. Vinpocetine Improves Scopolamine Induced Learning and Memory Dysfunction in C57 BL/6J Mice.

    PubMed

    Shang, Yu; Wang, Lei; Li, Yue; Gu, Pei-Fei

    2016-09-01

    Vinpocetine is an inhibitor of phosphodiesterase type 1 (PDE1), which has been used for treating stroke for over 40 years. However, according to current clinical dosage and treatment period, its direct effect on memory is unclear. In this study, we investigated whether vinpocetine could reverse the scopolamine (SCO)-induced cognitive deficits in animals. Behavioral experiments, including open field, Y-maze, and fear conditioning tests were used to determine the possible role of vinpocetine on scopolamine-induced memory dysfunction. In the open field and Y-maze tests, there were significant differences between the control (CON) group and SCO group. Vinpocetine (4 mg/kg) administration for consecutive 28 d significantly improved the scopolamine-induced memory dysfunction. In the fear conditioning test, vinpocetine (2, 4 mg/kg) administration had certain beneficial effect on emotional memory. Our results suggest that vinpocetine could improve cognitive function in memory deficient mice and high clinic dosage might be better.

  18. Procyanidins extracted from the lotus seedpod ameliorate scopolamine-induced memory impairment in mice.

    PubMed

    Xu, Jiqu; Rong, Shuang; Xie, Bijun; Sun, Zhida; Zhang, Li; Wu, Hailei; Yao, Ping; Zhang, Yunjian; Liu, Liegang

    2009-12-01

    The major purpose of this study was to determine the effect of procyanidins extracted from the lotus seedpod (LSPC) on the learning and memory impairments induced by scopolamine (1 mg/kg, i.p.) in mice. The capacities of memory and learning were evaluated by the Morris water maze and the step-down avoidance test. LSPC (50, 100, 150 mg/kg BW, p.o.) significantly reversed scopolamine-induced learning and memory impairments in the Morris water maze test, as evaluated by shortened escape latency and swimming distance. In the step-down avoidance test, LSPC (50, 100, 150 mg/kg BW, p.o.) treatment significantly reduced the number of errors and shortened latency compared with that of scopolamine. In addition, LSPC was also found to inhibit acetyl cholinesterase (AChE) activity. These results of this study suggest that LSPC may play a useful role in the treatment of cognitive impairment caused by AD and aging.

  19. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia

    PubMed Central

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal’s learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity. PMID:27483466

  20. Gongjin-Dan Enhances Hippocampal Memory in a Mouse Model of Scopolamine-Induced Amnesia.

    PubMed

    Lee, Jin-Seok; Hong, Sung-Shin; Kim, Hyeong-Geug; Lee, Hye-Won; Kim, Won-Yong; Lee, Sam-Keun; Son, Chang-Gue

    2016-01-01

    We evaluated the neuropharmacological effects of Gongjin-Dan (GJD) on the memory impairment caused by scopolamine injection. BALB/c mice were orally treated with GJD (100, 200, or 400 mg/kg, daily) or tacrine (THA, 10 mg/kg) for 10 days, and scopolamine (2 mg/kg) was injected intraperitoneally. The radial arm maze and passive avoidance tests were performed to evaluate the animal's learning and memory. Scopolamine increased the task completing time, the number of total errors (reference and working memory error) in the radial arm maze task, and the latency time in the passive avoidance test, which were significantly ameliorated by treatment with GJD. The GJD treatment also attenuated the scopolamine-induced hyperactivation of acetylcholinesterase activity, and suppression of the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) and their receptors in the hippocampus. These effects of GJD were supported by both the doublecortin (DCX)-positive staining and Nissl staining, which were used to measure hippocampal neurogenesis and atrophy, respectively. These findings strongly suggest that GJD exerts a potent anti-amnesic effect, and its underlying mechanism might involve the modulation of cholinergic activity. PMID:27483466

  1. Antiamnesic activity of Syzygium cumini against scopolamine induced spatial memory impairments in rats.

    PubMed

    Alikatte, Kanaka Latha; Akondi, Butchi Raju; Yerragunta, Venu Gopal; Veerareddy, Prabhakar Reddy; Palle, Suresh

    2012-11-01

    We evaluated the Antiamnesic effects of methanolic extract of Syzygium cumini (MESC) on spatial memory impairments induced by scopolamine (1 mg/kg, i.p.), a muscarinic antagonist, using the Radial arm maze, Morris water maze, learned helpless ness tests. Effect of MESC was evaluated and compared to standard drug, piracetam (200 mg/kg, i.p.). The MESC significantly (p<0.05) improved the impairment of short term or working memory induced by scopolamine in the Radial arm maze test, and significantly (p<0.05) reversed cognitive impairments in rats as measured by the learned helplessness test. In addition, MESC decreased escape latencies in the Morris water maze test. The activity of acetylcholinesterase in the brain was inhibited significantly (p<0.05) by treatment with MESC to a level similar to that observed in rats treated with piracetam. Moreover treatment with MESC (200 and 400 mg/kg, p.o.) to scopolamine induced rats significantly (p<0.05) decreased TBARS levels which was accompanied by an increase in the activities of SOD and Catalase. MESC has dose dependent effect and 400 mg/kg dose shown more prominent results when compared to 200 mg/kg dose of MESC. These results indicate that MESC may exert anti-amnesic activity via inhibition of acetylcholinesterase and antioxidant mechanisms in the brain. PMID:22475379

  2. Ameliorative effect of rosmarinic acid on scopolamine-induced memory impairment in rats.

    PubMed

    Hasanein, Parisa; Mahtaj, Azam Kazemian

    2015-01-12

    Rosmarinic acid (RA) is a natural phenol that exerts different biological activities, such as antioxidant activity and neuroprotective effects. In this study, we hypothesized that administration of RA (8, 16, and 32 mg/kg, p.o.) for 7 days would effect on scopolamine-induced cognitive dysfunction as an extensively used model of cognitive impairment. The rats were divided into 10 groups. The acquisition trial was done 1h after the last administration of RA. Animals were divided into control, RA (8, 16, and 32 mg/kg) and donepezil (2 mg/kg) treated controls, scopolamine, RA (8, 16, and 32 mg/kg), and donepezil (2 mg/kg) treated scopolamine groups. Memory impairment was induced by scopolamine treatment (1 mg/kg, i.p.) 30 min after the administration of RA, donepezil, or saline. Scopolamine administration caused cognition deficits in the PAL and memory paradigm. While orally RA administration (16 and 32 mg/kg) improved learning and memory in control rats, it reversed learning and memory deficits of scopolamine received groups. Administration of RA at the dose of 8 mg/kg did not alter cognitive function in control and scopolamine treated groups. The combination of anticholinesterase, neuroprotective, and antioxidant properties of RA may all be responsible for the observed effects. These results indicate the beneficial effects of subchronic RA administration in passive avoidance learning and memory in control rats as well as in a pharmacological model of cholinergic deficit which continue to expand the knowledge base in creating new treatment strategies for cognition deficits and dementia. Of course, further studies are warranted for clinical use of RA in the management of demented subjects.

  3. Ondansetron and arecoline prevent scopolamine-induced cognitive deficits in the marmoset.

    PubMed

    Carey, G J; Costall, B; Domeney, A M; Gerrard, P A; Jones, D N; Naylor, R J; Tyers, M B

    1992-05-01

    The cognitive-enhancing potential of the 5-hydroxytryptamine (5-HT) selective 5-HT3 receptor antagonist, ondansetron, was investigated in a model of cognitive impairment induced by the muscarinic receptor antagonist, scopolamine. For this purpose, marmosets were trained in an object discrimination task utilizing the Wisconsin General Test Apparatus. Administration of scopolamine (0.01-0.04 mg/kg, SC) caused a dose-dependent impairment in the acquisition of the object discrimination task in that marmosets required more trials to reach criterion, made more errors, and took longer to choose the objects. Administration of arecoline (0.06-0.1 mg/kg, SC) or 1,2,3,9-tetrahydro-9-methyl-3-[(2-methyl-1H-imidazol- 1-yl)methyl]-4H-carbazol-4-one,HCl.2H2O (ondansetron) (0.1-1 micrograms/kg, SC) prevented the scopolamine-induced impairment in task acquisition in that the performance of marmosets was indistinguishable from that of saline-treated animals and was significantly better than that following scopolamine/saline. From these studies, we conclude that ondansetron prevents impairment in the cognitive performance of marmosets induced by administration of scopolamine.

  4. Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice.

    PubMed

    Kwon, Seung-Hwan; Ma, Shi-Xun; Joo, Hyun-Joong; Lee, Seok-Yong; Jang, Choon-Gon

    2013-11-01

    Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.

  5. P7C3 Attenuates the Scopolamine-Induced Memory Impairments in C57BL/6J Mice.

    PubMed

    Jiang, Bo; Song, Lu; Huang, Chao; Zhang, Wei

    2016-05-01

    Memory impairment is the most common symptom in patients with Alzheimer's disease. The purpose of this study is to evaluate the memory enhancing effects of P7C3, a recently identified compound with robust proneurogenic and neuroprotective effects, on the cognitive impairment induced by scopolamine, a muscarinic acetylcholine receptor antagonist. Different behavior tests including the Y-maze, Morris water maze, and passive avoidance tests were performed to measure cognitive functions. Scopolamine significantly decreased the spontaneous alternation and step-through latency of C57BL/6J mice in Y-maze test and passive avoidance test, whereas increased the time of mice spent to find the hidden platform in Morris water maze test. Importantly, intraperitoneal administration of P7C3 effectively reversed those Scopolamine-induced cognitive impairments in C57BL/6J mice. Furthermore, P7C3 treatment significantly enhanced the level of brain-derived neurotrophic factor (BDNF) signaling pathway in the cortex and hippocampus, and the usage of selective BDNF signaling inhibitor fully blocked the anti-amnesic effects of P7C3. Therefore, these findings suggest that P7C3 could improve the scopolamine-induced learning and memory impairment possibly through activation of BDNF signaling pathway, thereby exhibiting a cognition-enhancing potential.

  6. Improvement of scopolamine-induced memory impairment by Z-ajoene in the water maze in mice.

    PubMed

    Yamada, N; Hattori, A; Hayashi, T; Nishikawa, T; Fukuda, H; Fujino, T

    2004-08-01

    Z-ajoene, a major compound containing sulfur in oil-macerated garlic products, exhibited inhibitory effects against scopolamine-induced memory impairment in mice using the Morris water maze test. The effects of Z-ajoene were observed dose-dependently (0.25-25 mg/kg). At the highest dosage, the memory performance of mice was improved compared to normal mice. The acetylcholinesterase (AChE) activity in the brain was reduced by administration of Z-ajoene dose-dependently. However, alliin and diallyl disulfide, organosulfur compounds from garlic, did not improve memory performance nor AChE inhibitory effect. These results suggest that Z-ajoene may act on the cholinergic system and on memory impairment caused by excess activity of AChE.

  7. Hippocampal chromatin-modifying enzymes are pivotal for scopolamine-induced synaptic plasticity gene expression changes and memory impairment.

    PubMed

    Singh, Padmanabh; Konar, Arpita; Kumar, Ashish; Srivas, Sweta; Thakur, Mahendra K

    2015-08-01

    The amnesic potential of scopolamine is well manifested through synaptic plasticity gene expression changes and behavioral paradigms of memory impairment. However, the underlying mechanism remains obscure and consequently ideal therapeutic target is lacking. In this context, chromatin-modifying enzymes, which regulate memory gene expression changes, deserve major attention. Therefore, we analyzed the expression of chromatin-modifying enzymes and recovery potential of enzyme modulators in scopolamine-induced amnesia. Scopolamine administration drastically up-regulated DNA methyltransferases (DNMT1) and HDAC2 expression while CREB-binding protein (CBP), DNMT3a and DNMT3b remained unaffected. HDAC inhibitor sodium butyrate and DNMT inhibitor Aza-2'deoxycytidine recovered scopolamine-impaired hippocampal-dependent memory consolidation with concomitant increase in the expression of synaptic plasticity genes Brain-derived neurotrophic factor (BDNF) and Arc and level of histone H3K9 and H3K14 acetylation and decrease in DNA methylation level. Sodium butyrate showed more pronounced effect than Aza-2'deoxycytidine and their co-administration did not exhibit synergistic effect on gene expression. Taken together, we showed for the first time that scopolamine-induced up-regulation of chromatin-modifying enzymes, HDAC2 and DNMT1, leads to gene expression changes and consequent decline in memory consolidation. Our findings on the action of scopolamine as an epigenetic modulator can pave a path for ideal therapeutic targets. We propose the following putative pathway for scopolamine-mediated memory impairment; scopolamine up-regulates hippocampal DNMT1 and HDAC2 expression, induces methylation and deacetylation of BDNF and Arc promoter, represses gene expression and eventually impairs memory consolidation. On the other hand, Aza-2 and NaB inhibit DNMT1 and HDAC2 respectively, up-regulate BDNF and Arc expression and recover memory consolidation. We elucidate the action of

  8. Enhanced Cognitive Effects of Demethoxycurcumin, a Natural Derivative of Curcumin on Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Lim, Dong Wook; Son, Hyun Jung; Um, Min Young; Kim, In-Ho; Han, Daeseok; Cho, Suengmok; Lee, Chang-Ho

    2016-08-05

    In the present study, we examined the ameliorating effects of demethoxycurcumin (DMC) on memory impairment induced by scopolamine using passive avoidance and Morris water maze tests in mice. Moreover, to determine the neurobiological effects underlying the ameliorating effects of the DMC, choline acetyltransferase (ChAT) immunoreactivity was evaluated in mice exposed to scopolamine. Our results demonstrated that chronic oral administration (28 days) of DMC (10 mg/kg) improved scopolamine-induced learning impairment in the passive avoidance task and memory impairment in the Morris water maze. Moreover, Choline acetyltransferase (ChAT) activity in the DMC-treated group was significantly increased to 33.03% compared with the control group. Our present finding suggests that DMC ameliorates memory impairments induced by scopolamine treatment through reversing the reduction of hippocampal ChAT expression in mice.

  9. Enhanced Cognitive Effects of Demethoxycurcumin, a Natural Derivative of Curcumin on Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Lim, Dong Wook; Son, Hyun Jung; Um, Min Young; Kim, In-Ho; Han, Daeseok; Cho, Suengmok; Lee, Chang-Ho

    2016-01-01

    In the present study, we examined the ameliorating effects of demethoxycurcumin (DMC) on memory impairment induced by scopolamine using passive avoidance and Morris water maze tests in mice. Moreover, to determine the neurobiological effects underlying the ameliorating effects of the DMC, choline acetyltransferase (ChAT) immunoreactivity was evaluated in mice exposed to scopolamine. Our results demonstrated that chronic oral administration (28 days) of DMC (10 mg/kg) improved scopolamine-induced learning impairment in the passive avoidance task and memory impairment in the Morris water maze. Moreover, Choline acetyltransferase (ChAT) activity in the DMC-treated group was significantly increased to 33.03% compared with the control group. Our present finding suggests that DMC ameliorates memory impairments induced by scopolamine treatment through reversing the reduction of hippocampal ChAT expression in mice. PMID:27527139

  10. Ameliorating effect of spinosin, a C-glycoside flavonoid, on scopolamine-induced memory impairment in mice.

    PubMed

    Jung, In Ho; Lee, Hyung Eun; Park, Se Jin; Ahn, Young Je; Kwon, Guyoung; Woo, Hyun; Lee, So Young; Kim, Ju Sun; Jo, Yeong-Woo; Jang, Dae Sik; Kang, Sam Sik; Ryu, Jong Hoon

    2014-05-01

    Spinosin is a C-glycoside flavonoid isolated from the seeds of Zizyphus jujuba var. spinosa. This study investigated the effect of spinosin on cholinergic blockade-induced memory impairment in mice. Behavioral tests were conducted using the passive avoidance, Y-maze, and Morris water maze tasks to evaluate the memory-ameliorating effect of spinosin. Spinosin (10 or 20mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairment in these behavioral tasks with a prolonged latency time in the passive avoidance task, an increased percentage of spontaneous alternation in the Y-maze task and a lengthened swimming time in target quadrant in the Morris water maze task. In addition, a single administration of spinosin in normal naïve mice also enhanced the latency time in the passive avoidance task. To identify the mechanism of the memory-ameliorating effect of spinosin, receptor antagonism analysis and Western blotting were performed. The ameliorating effect of spinosin on scopolamine-induced memory impairment was significantly antagonized by a sub-effective dose (0.5mg/kg, i.p.) of 8-hydroxy-2-(di-N-propylamino)tetralin, a 5-HT1A receptor agonist. In addition, spinosin significantly increased the expression levels of phosphorylated extracellular signal-regulated kinases and cAMP response element-binding proteins in the hippocampus. Taken together, these results indicate that the memory-ameliorating effect of spinosin may be, in part, due to the serotonergic neurotransmitter system, and that spinosin may be useful for the treatment of cognitive dysfunction in diseases such as Alzheimer's disease.

  11. Effect of polyacetylenes on the neurite outgrowth of neuronal culture cells and scopolamine-induced memory impairment in mice.

    PubMed

    Yamazaki, M; Hirakura, K; Miyaichi, Y; Imakura, K; Kita, M; Chiba, K; Mohri, T

    2001-12-01

    Polyacetylenic alcohols and their linoleates isolated from Panax ginseng C. A. MEYER and Cirsium japonicum DC., of which the lipophilic extracts had been found to affect the neuritogenesis of cultured paraneurons, were demonstrated to have a significant neuritogenic effect on PC12h and Neuro2a cells. Panaxynol and the acetylenic triol in particular were highly efficient at concentrations > or = 2 microm. Panaxynol (20 mg/kg/d, i.p., for 3 d) was confirmed to improve scopolamine-induced memory deficit in mice (Y-maze task). It is suggested that the promotion of neuritogenesis in cultured paraneurons by the addition of panaxynol is related its ability to improve memory deficits in animals.

  12. Effects of ginseol k-g3, an Rg3-enriched fraction, on scopolamine-induced memory impairment and learning deficit in mice

    PubMed Central

    Peña, Ike dela; Yoon, Seo Young; Kim, Hee Jin; Park, Sejin; Hong, Eun Young; Ryu, Jong Hoon; Park, Il Ho; Cheong, Jae Hoon

    2013-01-01

    Background Although ginsenosides such as Rg1, Rb1 and Rg3 have shown promise as potential nutraceuticals for cognitive impairment, their use has been limited due to high production cost and low potency. In particular, the process of extracting pure Rg3 from ginseng is laborious and expensive. Methods We described the methods in preparing ginseol k-g3, an Rg3-enriched fraction, and evaluated its effects on scopolamine-induced memory impairment in mice. Results Ginseol k-g3 (25–200 mg/kg) significantly reversed scopolamine-induced cognitive impairment in the passive avoidance, but not in Y-maze testing. Ginseol k-g3 (50 and 200 mg/kg) improved escape latency in training trials and increased swimming times within the target zone of the Morris water maze. The effect of ginseol k-g3 on the water maze task was more potent than that of Rg3 or Red ginseng. Acute or subchronic (6 d) treatment of ginseol k-g3 did not alter normal locomotor activity of mice in an open field. Ginseol k-g3 did not inhibit acetylcholinesterase activity, unlike donezepil, an acetylcholinesterase inhibitor. Rg3 enrichment through the ginseol k-g3 fraction enhanced the efficacy of Rg3 in scopolamine-induced memory impairment in mice as demonstrated in the Morris water maze task. Conclusion The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity. PMID:24558303

  13. The effects of Anethum graveolens essence on scopolamine-induced memory impairment in mice.

    PubMed

    Mesripour, Azadeh; Rafieian-Kopaei, Mahmoud; Bahrami, Bahareh

    2016-01-01

    Since Anethum graveolens (Dill) has phytoestrogenic compounds and it is proven that estrogens exert beneficial effects on cognition; the aim of this study was to understand if this plant can improve memory performance. Male Balb/c mice weighing 25-30 g were used in this study and memory was assessed by the novel object recognition task. In this method, the difference in the exploration time between a familiar object and a novel object is taken as an index of memory performance (recognition index, RI). Scopolamine significantly reduced memory index (RI = -15.5% ± 3.0). Dill essence (100 mg/kg, ip) prevented the harmful effects of scopolamine on memory (RI = 40% ± 5.5), thus RI did not differ with control animals (RI = 50% ± 5.8). In addition, 17-β estradiol also prevented memory impairment in animals (0.2 mg/kg, ip; RI = 35.8% ± 6.5). Nevertheless, the beneficial effects of dill essence were antagonized by prior injection of tamoxifen (1 mg/kg, ip; RI = -30% ± 7.8). Although phytoesrogens are not steroids, the beneficial effect of dill on memory, at least in part, may have been achieved by estrogenic receptors present in the brain. Thus dill essence could be promising in improving memory and cognition, mainly in postmenopausal women. PMID:27168754

  14. The effects of Anethum graveolens essence on scopolamine-induced memory impairment in mice

    PubMed Central

    Mesripour, Azadeh; Rafieian-Kopaei, Mahmoud; Bahrami, Bahareh

    2016-01-01

    Since Anethum graveolens (Dill) has phytoestrogenic compounds and it is proven that estrogens exert beneficial effects on cognition; the aim of this study was to understand if this plant can improve memory performance. Male Balb/c mice weighing 25-30 g were used in this study and memory was assessed by the novel object recognition task. In this method, the difference in the exploration time between a familiar object and a novel object is taken as an index of memory performance (recognition index, RI). Scopolamine significantly reduced memory index (RI = -15.5% ± 3.0). Dill essence (100 mg/kg, ip) prevented the harmful effects of scopolamine on memory (RI = 40% ± 5.5), thus RI did not differ with control animals (RI = 50% ± 5.8). In addition, 17-β estradiol also prevented memory impairment in animals (0.2 mg/kg, ip; RI = 35.8% ± 6.5). Nevertheless, the beneficial effects of dill essence were antagonized by prior injection of tamoxifen (1 mg/kg, ip; RI = -30% ± 7.8). Although phytoesrogens are not steroids, the beneficial effect of dill on memory, at least in part, may have been achieved by estrogenic receptors present in the brain. Thus dill essence could be promising in improving memory and cognition, mainly in postmenopausal women. PMID:27168754

  15. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats.

    PubMed

    Jawaid, Talha; Jahan, Shah; Kamal, Mehnaz

    2015-01-01

    The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.]), perindopril (0.1 mg/kg b.w., [i.p.]), enalapril (0.1 mg/kg b.w., [i.p.]), and ramipril (0.1 mg/kg b.w., [i.p.]) were administered in different group of animals for 5 days. On 5(th) day, scopolamine (1 mg/kg b.w., i.p.) was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM) test and pole climbing test (PCT). Biochemical estimations like glutathione (GSH), malondialdehyde (MDA), and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril. PMID:26317078

  16. Effect of acidic oligosaccharide sugar chain on scopolamine-induced memory impairment in rats and its related mechanisms.

    PubMed

    Fan, Ying; Hu, Jinfeng; Li, Jing; Yang, Zhao; Xin, Xianliang; Wang, Jia; Ding, Jian; Geng, Meiyu

    2005-02-21

    In this study we evaluated the effect of a novel, marine-derived, acidic oligosaccharide on scopolamine-induced amnesia in rats using the Morris water maze test. The results show that 30-day administration of this oligosaccharide, referred to as acidic oligosaccharide sugar chain (AOSC), to rats attenuates memory impairment by scopolamine, as evaluated by shortened escape latency, swimming distance, and increased swimming time of rats with memory impairment induced by scopolamine in the quadrant where the platform is placed. The data additionally suggest that an appropriate dose of scopolamine, a traditional muscarinic receptor antagonist, elevates oxidative damage in brain, characterized by inactivation of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and consequently, inhibition of ATPase in the hippocampus and cerebral cortex. AOSC ameliorates oxidative injuries caused by scopolamine by increasing the activities of SOD, GSH-Px, and ATPase. Further investigation by flow cytometry revealed that AOSC significantly reduces the overloading of intracellular free calcium ion ([Ca2+]i), thus suppressing apoptosis induced by H2O2 in human neuroblastoma SH-SY5Y cells. These findings suggest that AOSC can induce cognitive improvement via its antioxidant activity.

  17. ESP-102, a Combined Herbal Extract of Angelica gigas, Saururus chinensis, and Schisandra chinensis, Changes Synaptic Plasticity and Attenuates Scopolamine-Induced Memory Impairment in Rat Hippocampus Tissue

    PubMed Central

    Kim, Hyun-Bum; Hwang, Eun-Sang; Choi, Ga-Young; Lee, Seok; Park, Tae-Suk; Lee, Cheol-Won; Lee, Eun-Suk; Kim, Young-Choong; Kim, Sang Seong; Lee, Sung-Ok; Park, Ji-Ho

    2016-01-01

    ESP-102, an extract from Angelica gigas, Saururus chinensis, and Schisandra chinensis, has been used as herbal medicine and dietary supplement in Korea. Despite the numerous bioactivities in vitro and in vivo studies, its effects on neuronal networks remain elusive. To address the neuronal effect, we examined synaptic plasticity in organotypic hippocampal slice culture with multielectrode array. Our results showed an increase in excitatory postsynaptic potential (EPSP), indicating the induction of long-term potentiation (LTP), in the presence of ESP-102. In addition, the neuroprotective effect of ESP-102 was also tested by application of scopolamine to the hippocampal slice. Interestingly, ESP-102 competitively antagonized the preventative LTP effect induced by scopolamine. The scopolamine-induced reduction in brain-derived neurotrophic factor (BDNF) and GluR-2 expression was also rescued by ESP-102. In terms of mode of action, ESP-102 appears to act on the presynaptic region independent of AMPA/NMDA receptors. Based on these findings, ESP-102 can be suggested as a novel herbal ingredient with memory enhancing as well as neuroprotective effects. PMID:27298627

  18. Effects of lavender oil inhalation on improving scopolamine-induced spatial memory impairment in laboratory rats.

    PubMed

    Hritcu, Lucian; Cioanca, Oana; Hancianu, Monica

    2012-04-15

    Lavender is reported to be an effective medical plant in treating inflammation, depression, stress and mild anxiety in Europe and the USA. The present study investigated the effects of two different lavender essential oils from Lavandula angustifolia ssp. angustifolia Mill. (Lamiaceae) and Lavandula hybrida Rev. (Lamiaceae) on neurological capacity of male Wistar rats subjected to scopolamine (0.7mg/kg)-induced dementia rat model. Chronic exposures to lavender essential oils (daily, for 7 continuous days) significantly reduced anxiety-like behavior and inhibited depression in elevated plus-maze and forced swimming tests, suggesting anxiolytic and antidepressant activity. Also, spatial memory performance in Y-maze and radial arm-maze tasks was improved, suggesting positive effects on memory formation. Taken together, multiple exposures to lavender essential oils could effectively reverse spatial memory deficits induced by dysfunction of the cholinergic system in the rat brain and might provide an opportunity for management neurological abnormalities in dementia conditions.

  19. D-cycloserine in Prelimbic Cortex Reverses Scopolamine-Induced Deficits in Olfactory Memory in Rats

    PubMed Central

    Portero-Tresserra, Marta; Cristóbal-Narváez, Paula; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma; Vale-Martínez, Anna

    2013-01-01

    A significant interaction between N-methyl-D-aspartate (NMDA) and muscarinic receptors has been suggested in the modulation of learning and memory processes. The present study further investigates this issue and explores whether d-cycloserine (DCS), a partial agonist at the glycine binding site of the NMDA receptors that has been regarded as a cognitive enhancer, would reverse scopolamine (SCOP)-induced amnesia in two olfactory learning tasks when administered into the prelimbic cortex (PLC). Thus, in experiment 1, DCS (10 µg/site) was infused prior to acquisition of odor discrimination (ODT) and social transmission of food preference (STFP), which have been previously characterized as paradigms sensitive to PLC muscarinic blockade. Immediately after learning such tasks, SCOP was injected (20 µg/site) and the effects of both drugs (alone and combined) were tested in 24-h retention tests. To assess whether DCS effects may depend on the difficulty of the task, in the STFP the rats expressed their food preference either in a standard two-choice test (experiment 1) or a more challenging three-choice test (experiment 2). The results showed that bilateral intra-PLC infusions of SCOP markedly disrupted the ODT and STFP memory tests. Additionally, infusions of DCS alone into the PLC enhanced ODT but not STFP retention. However, the DCS treatment reversed SCOP-induced memory deficits in both tasks, and this effect seemed more apparent in ODT and 3-choice STFP. Such results support the interaction between the glutamatergic and the cholinergic systems in the PLC in such a way that positive modulation of the NMDA receptor/channel, through activation of the glycine binding site, may compensate dysfunction of muscarinic neurotransmission involved in stimulus-reward and relational learning tasks. PMID:23936452

  20. Pretreatment with 5-hydroxymethyl-2-furaldehyde blocks scopolamine-induced learning deficit in contextual and spatial memory in male mice.

    PubMed

    Lee, Younghwan; Gao, Qingtao; Kim, Eunji; Lee, Younghwa; Park, Se Jin; Lee, Hyung Eun; Jang, Dae Sik; Ryu, Jong Hoon

    2015-07-01

    5-Hydroxymethyl-2-furaldehyde (5-HMF) is a compound derived from the dehydration of certain sugars. The aim of the present study was to evaluate the effect of 5-HMF on the cognitive impairment induced by scopolamine, a muscarinic receptor antagonist. To measure various cognitive functions, we conducted the step-through passive avoidance task, the Y-maze task and the Morris water maze task. A single administration of 5-HMF (5 or 10mg/kg, p.o.) significantly attenuates scopolamine-induced cognitive impairment in these behavioral tasks without changes in locomotor activity, and the effect of 5-HMF on scopolamine-induced cognitive impairment was significantly reversed by a sub-effective dose of MK-801, an NMDA receptor antagonist. In addition, a single administration of 5-HMF (10mg/kg, p.o.) enhanced the cognitive performance of normal naïve mice in the passive avoidance task. Furthermore, Western blot analysis revealed that the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II-α (CaMKII) and extracellular signal-regulated kinases (ERK) were significantly enhanced by the single administration of 5-HMF in the hippocampal tissues. Taken together, the present study suggests that 5-HMF may block scopolamine-induced learning deficit and enhance cognitive function via the activation of NMDA receptor signaling, including CaMKII and ERK, and would be an effective candidate against cognitive disorders, such as Alzheimer's disease.

  1. Lactobacillus casei-01 facilitates the ameliorative effects of proanthocyanidins extracted from lotus seedpod on learning and memory impairment in scopolamine-induced amnesia mice.

    PubMed

    Xiao, Juan; Li, Shuyi; Sui, Yong; Wu, Qian; Li, Xiaopeng; Xie, Bijun; Zhang, Mingwei; Sun, Zhida

    2014-01-01

    Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (10(9) cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice.

  2. Lactobacillus casei-01 facilitates the ameliorative effects of proanthocyanidins extracted from lotus seedpod on learning and memory impairment in scopolamine-induced amnesia mice.

    PubMed

    Xiao, Juan; Li, Shuyi; Sui, Yong; Wu, Qian; Li, Xiaopeng; Xie, Bijun; Zhang, Mingwei; Sun, Zhida

    2014-01-01

    Learning and memory abilities are associated with alterations in gut function. The two-way proanthocyanidins-microbiota interaction in vivo enhances the physiological activities of proanthocyanidins and promotes the regulation of gut function. Proanthocyanidins extracted from lotus seedpod (LSPC) have shown the memory-enhancing ability. However, there has been no literature about whether Lactobacillus casei-01 (LC) enhances the ameliorative effects of LSPC on learning and memory abilities. In this study, learning and memory abilities of scopolamine-induced amnesia mice were evaluated by Y-maze test after 20-day administration of LC (10(9) cfu/kg body weight (BW)), LSPC (low dose was 60 mg/kg BW (L-LSPC) and high dose was 90 mg/kg BW (H-LSPC)), or LSPC and LC combinations (L-LSPC+LC and H-LSPC+LC). Alterations in antioxidant defense ability and oxidative damage of brain, serum and colon, and brain cholinergic system were investigated as the possible mechanisms. As a result, the error times of H-LSPC+LC group were reduced by 41.59% and 68.75% relative to those of H-LSPC and LC groups respectively. LSPC and LC combinations ameliorated scopolamine-induced memory impairment by improving total antioxidant capacity (TAOC) level, glutathione peroxidase (GSH-Px) and total superoxide dismutase (T-SOD) activities of brain, serum and colon, suppressing malondialdehyde (MDA) level of brain, serum and colon, and inhibiting brain acetylcholinesterase (AchE), myeloperoxidase, total nitric oxide synthase and neural nitric oxide synthase (nNOS) activities, and nNOS mRNA level. Moreover, LC facilitated the ameliorative effects of H-LSPC on GSH-Px activity of colon, TAOC level, GSH-Px activity and ratio of T-SOD to MDA of brain and serum, and the inhibitory effects of H-LSPC on serum MDA level, brain nNOS mRNA level and AchE activity. These results indicated that LC promoted the memory-enhancing effect of LSPC in scopolamine-induced amnesia mice. PMID:25396737

  3. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    PubMed

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia. PMID:25837935

  4. Novel 5-HT5A receptor antagonists ameliorate scopolamine-induced working memory deficit in mice and reference memory impairment in aged rats.

    PubMed

    Yamazaki, Mayako; Okabe, Mayuko; Yamamoto, Noriyuki; Yarimizu, Junko; Harada, Katsuya

    2015-03-01

    Despite the human 5-HT5A receptor being cloned in 1994, the biological function of this receptor has not been extensively characterized due to a lack of specific ligands. We recently reported that the selective 5-HT5A receptor antagonist ASP5736 ameliorated cognitive impairment in several animal models of schizophrenia. Given that areas of the brain with high levels of 5-HT5A receptor expression, such as the hippocampus and cerebral cortex, have important functions in cognition and memory, we evaluated the chemically diverse, potent and brain-penetrating 5-HT5A receptor antagonists ASP5736, AS2030680, and AS2674723 in rodent models of cognitive dysfunction associated with dementia. Each of these compounds exhibited a high affinity for recombinant 5-HT5A receptors that was comparable to that of the non-selective ligand of this receptor, lysergic acid diethylamide (LSD). Although each compound had a low affinity for other receptors, 5-HT5A was the only receptor for which all three compounds had a high affinity. Each of the three compounds ameliorated scopolamine-induced working memory deficit in mice and improved reference memory impairment in aged rats at similar doses. Further, ASP5736 decreased the binding of LSD to 5-HT5A receptors in the olfactory bulb of rats in a dose-dependent manner and occupied 15%-50% of brain 5-HT5A receptors at behaviorally effective doses. These results indicate that the 5-HT5A receptor is involved in learning and memory and that treatment with 5-HT5A receptor antagonists might be broadly effective for cognitive impairment associated with not only schizophrenia but also dementia.

  5. Effects of harmine, an acetylcholinesterase inhibitor, on spatial learning and memory of APP/PS1 transgenic mice and scopolamine-induced memory impairment mice.

    PubMed

    He, Dandan; Wu, Hui; Wei, Yue; Liu, Wei; Huang, Fei; Shi, Hailian; Zhang, Beibei; Wu, Xiaojun; Wang, Changhong

    2015-12-01

    Harmine, a β-carboline alkaloid present in Peganum harmala with a wide spectrum of pharmacological activities, has been shown to exert strong inhibition against acetylcholinesterase in vitro. However, whether it can rescue the impaired cognition has not been elucidated yet. In current study, we examined its effects on scopolamine-induced memory impairment mice and APP/PS1 transgenic mice, one of the models for Alzheimer's disease, using Morris Water Maze test. In addition, whether harmine could penetrate blood brain barrier, interact with and inhibit acetylcholinesterase, and activate downstream signaling network was also investigated. Our results showed that harmine (20mg/kg) administered by oral gavage for 2 weeks could effectively enhance the spatial cognition of C57BL/6 mice impaired by intraperitoneal injection of scopolamine (1mg/kg). Meanwhile, long-term consumption of harmine (20mg/kg) for 10 weeks also slightly benefited the impaired memory of APP/PS1 mice. Furthermore, harmine could pass through blood brain barrier, penetrate into the brain parenchyma shortly after oral administration, and modulate the expression of Egr-1, c-Jun and c-Fos. Molecular docking assay disclosed that harmine molecule could directly dock into the catalytic active site of acetylcholinesterase, which was partially confirmed by its in vivo inhibitory activity on acetylcholinesterase. Taken together, all these results suggested that harmine could ameliorate impaired memory by enhancement of cholinergic neurotransmission via inhibiting the activity of acetylcholinesterase, which may contribute to its clinical use in the therapy of neurological diseases characterized with acetylcholinesterase deficiency.

  6. Protective Effects of Mangosteen Extract on H2O2-Induced Cytotoxicity in SK-N-SH Cells and Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Sattayasai, Jintana; Chaonapan, Pongsatorn; Arkaravichie, Tarinee; Soi-ampornkul, Rungtip; Junnu, Sarawut; Charoensilp, Patcharakajee; Samer, Jutima; Jantaravinid, Jiraporn; Masaratana, Patarabutr; Suktitipat, Bhoom; Manissorn, Juthatip; Thongboonkerd, Visith; Neungton, Neelobol; Moongkarndi, Primchanien

    2013-01-01

    Mangosteen extracts (ME) contain high levels of polyphenolic compounds and antioxidant activity. Protective effects of ME against β-amyloid peptide (Aβ), induced cytotoxicity have been reported. Here, we further studied the protective effects of ME against oxidative stress induced by hydrogen peroxide (H2O2) and polychlorinated biphenyls (PCBs), and demonstrated the protection against memory impairment in mice. The cytoprotective effects of ME were measured as cell viability and the reduction in ROS activity. In SK-N-SH cell cultures, 200 μg/ml ME could partially antagonize the effects of 150 or 300 µM H2O2 on cell viability, ROS level and caspase-3 activity. At 200, 400 or 800 µg/ml, ME reduced AChE activity of SK-N-SH cells to about 60% of the control. In vivo study, Morris water maze and passive avoidance tests were used to assess the memory of the animals. ME, especially at 100 mg/kg body weight, could improve the animal’s memory and also antagonize the effect of scopolamine on memory. The increase in ROS level and caspase-3 activity in the brain of scopolamine-treated mice were antagonized by the ME treatment. The study demonstrated cytoprotective effects of ME against H2O2 and PCB-52 toxicity and having AChE inhibitory effect in cell culture. ME treatment in mice could attenuate scopolamine-induced memory deficit and oxidative stress in brain. PMID:24386444

  7. The ameliorating effects of 2,3-dihydroxy-4-methoxyacetophenone on scopolamine-induced memory impairment in mice and its neuroprotective activity.

    PubMed

    Weon, Jin Bae; Ko, Hyun-Jeong; Ma, Choong Je

    2013-12-15

    We isolated 2,3-dihydroxy-4-methoxyacetophenone, a neuroprotective compound from Cynenchum paniculatum in our previous study. The present study was conducted to investigate the possible neuroprotective effect of 2,3-dihydroxy-4-methoxyacetophenone that has been previously isolated from Cynenchum paniculatum on hippocampal neuronal cell line, HT22 cells and its possible cognitive-enhancing effect on scopolamine-induced amnesia in mice. Neuroprotective effect against glutamate-induced neurotoxicity in HT22 cells was evaluated by MTT assay. Also, cognitive enhancing effect against scopolamine (1mg/kg, ip) induced learning and memory deficit was measured by Morris water maze test. Oral administered of 2,3-dihydroxy-4-methoxyacetophenone (1, 10, 20, 40 and 50mg/kg) to amnesic mice induced by scopolamine. In Morris water maze test, 2,3-dihydroxy-4-methoxyacetophenone (50mg/kg) improved the impairment of spatial memory induced by scopolamine. 2,3-Dihydroxy-4-methoxyacetophenone protect HT22 cells on glutamate induced cell-death in a dose-dependent manner (EC50 value: 10.94μM). Furthermore, 2,3-dihydroxy-4-methoxyacetophenone was found to inhibit [Ca(2+)] accumulation in HT22 cells and had antioxidantive activity. The results showed that 2,3-dihydroxy-4-methoxyacetophenone exert neuroprotective and cognitive-enhancing activities through its antioxidant activity. We suggest that 2,3-dihydroxy-4-methoxyacetophenone improves cognitive function and may be helpful for the treatment of Alzheimer's disease.

  8. Anti-Amnesic Effect of Fermented Ganoderma lucidum Water Extracts by Lactic Acid Bacteria on Scopolamine-Induced Memory Impairment in Rats

    PubMed Central

    Choi, Yu Jin; Yang, Hee Sun; Jo, Jun Hee; Lee, Sang Cheon; Park, Tae Young; Choi, Bong Suk; Seo, Kyoung Sun; Huh, Chang Ki

    2015-01-01

    This study investigated the anti-amnesic effect of fermented Ganoderma lucidum water extracts (GW) on scopolamine-induced memory impairment in rats. GW were fermented by the lactic acid bacterium Bifidobacterium bifidum (FGWB), followed by Lactobacillus sakei LI033 (FGWBL). To induce amnesia, scopolamine (1 mg/kg) was intraperitoneally injected into rats 30 min before the behavioral tests. Step-through latencies of rats treated with primary fermented extracts (300 mg/kg, FGWB) and secondary fermented extracts (300 mg/kg, FGWBL) were significantly longer than those of rats treated with GW (300 mg/kg) in the retention trial of the multiple trial passive avoidance test. In the Morris water maze task, FGWBL significantly shortened escape latencies in training trials. Furthermore, swimming times within the target zone during the probe trial with FGWBL were significantly higher than the GW and FGWB treatments. In addition, acetylcholinesterase activities were lower in the brains of scopolamine-treated rats treated with FGWBL. These results suggest that FGWBL could be useful to enhance learning memory and cognitive function via cholinergic dysfunction. PMID:26176000

  9. Treadmill exercise ameliorates disturbance of spatial learning ability in scopolamine-induced amnesia rats.

    PubMed

    Heo, Yu-Mi; Shin, Mal-Soon; Kim, Su-Hyun; Kim, Tae-Wook; Baek, Sang-Bin; Baek, Seung-Soo

    2014-06-01

    Alzheimer's disease is the most common neurodegenerative disease and this disease induces progressive loss of memory function Scopolamine is a non-selective muscarinic cholinergic receptor antagonist and it induces impairment of learning ability. Exercise is known to ameliorate memory deficits induced by various brain diseases. In the present study, we investigated the effect of treadmill exercise on spatial learning ability in relation with cell proliferation in the hippocampus using the scopolamine-induced amnesia mice. For the induction of amnesia, 1 mg/kg scopolamine hydrobromide was administered intraperitoneally once a day for 14 days. Morris water maze test for spatial learning ability was conducted. Immonofluorescence for 5-bromo-2-deoxyuri-dine (BrdU) and western blot for brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase B (TrkB) were performed. In the present results, scopolamine-induced amnesia mice showed deterioration of spatial learning ability. Inhibition of cell proliferation and suppression of BDNF and TrkB expressions were observed in the scopolamine-induced amnesia mice. Treadmill exercise improved spatial learning ability and increased cell proliferation through activating of BDNF-TrkB pathway in the amnesia mice. These findings offer a possibility that treadmill exercise may provide preventive or therapeutic value for the memory loss induced by variable neurodegenerative diseases including Alzheimer's disease.

  10. Protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in ovariectomized rats

    PubMed Central

    Hejazian, Seyed Hassan; Karimi, Sareh; Hosseini, Mahmoud; Mousavi, Seyed Mojtaba; Soukhtanloo, Mohammad

    2016-01-01

    Background: Regarding the anti-oxidative effects on the central nervous system, the possible protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments was investigated in ovariectomized (OVX) rats. Materials and Methods: The OVX rats treated by (1) vehicle, (2) scopolamine, and (3–4) scopolamine plus estradiol (20 or 20 or 60 μg/kg). Estradiol was administered (20 or 60 μg/kg, intraperitoneally) daily for 6 weeks after ovariectomy. The rats were examined for learning and memory using passive avoidance test. Scopolamine (2 mg/kg) was injected 30 min after training in the test. The brains were then removed to determine malondialdehyde (MDA) and thiol contents. Results: Scopolamine shortened the time latency to enter the dark compartment in (P < 0.01). Compared to scopolamine, pretreatment by both doses of estradiol prolonged the latency to enter the dark compartment (P < 0.01). The brain tissues MDA concentration as an index of lipid peroxidation was decreased (P < 0.05). Pretreatment by estradiol lowered the concentration of MDA, while it increased thiol content compared to scopolamine (P < 0.05 and P < 0.01). Conclusions: These results allow us to suggest a protection against brain tissues oxidative damage as a possible mechanism for improving effects of low doses of estradiol on scopolamine-induced learning and memory impairments in OVX rats. PMID:27563633

  11. The effects of daidzin and its aglycon, daidzein, on the scopolamine-induced memory impairment in male mice.

    PubMed

    Kim, Dong Hyun; Jung, Hyun Ah; Park, Se Jin; Kim, Jong Min; Lee, Seungjoo; Choi, Jae Su; Cheong, Jae Hoon; Ko, Kwang Ho; Ryu, Jong Hoon

    2010-10-01

    In this study, the effect of daidzin or daidzein isolated from Pueraria lobata on the memory impairments induced by scopolamine was assessed in male mice using the passive avoidance and the Morris water maze tasks. Administration of daidzin (5 mg/kg) or daidzein (5 mg/kg) significantly reversed the scopolamine (1 mg/kg)-induced cognitive impairments in male mice as evidenced by the passive avoidance test (p < 0.05) and on the Morris water maze test (p < 0.05). Moreover, the ameliorating effects of daidzin or daidzein were antagonized by tamoxifen (1 mg/kg), the nonspecific estrogen receptor antagonist. These results indicate that daidzin or daidzein may be useful in cognitive impairment induced by cholinergic dysfunction, and this beneficial effect is mediated, in part, via estrogen receptor.

  12. Fermented Sipjeondaebo-tang Alleviates Memory Deficits and Loss of Hippocampal Neurogenesis in Scopolamine-induced Amnesia in Mice

    PubMed Central

    Park, Hee Ra; Lee, Heeeun; Park, Hwayong; Cho, Won-Kyung; Ma, Jin Yeul

    2016-01-01

    We investigated the anti-amnesic effects of SJ and fermented SJ (FSJ) on scopolamine (SCO)-induced amnesia mouse model. Mice were orally co-treated with SJ or FSJ (125, 250, and 500 mg/kg) and SCO (1 mg/kg), which was injected intraperitoneally for 14 days. SCO decreased the step-through latency and prolonged latency time to find the hidden platform in the passive avoidance test and Morris water maze test, respectively, and both SCO effects were ameliorated by FSJ treatment. FSJ was discovered to promote hippocampal neurogenesis during SCO treatment by increasing proliferation and survival of BrdU-positive cells, immature/mature neurons. In the hippocampus of SCO, oxidative stress and the activity of acetylcholinesterase were elevated, whereas the levels of acetylcholine and choline acetyltransferase were diminished; however, all of these alterations were attenuated by FSJ-treatment. The alterations in brain-derived neurotrophic factor, phosphorylated cAMP response element-binding protein, and phosphorylated Akt that occurred following SCO treatment were protected by FSJ administration. Therefore, our findings are the first to suggest that FSJ may be a promising therapeutic drug for the treatment of amnesia and aging-related or neurodegenerative disease-related memory impairment. Furthermore, the molecular mechanism by which FSJ exerts its effects may involve modulation of the cholinergic system and BDNF/CREB/Akt pathway. PMID:26939918

  13. A Special Extract of Bacopa monnieri (CDRI-08) Restores Learning and Memory by Upregulating Expression of the NMDA Receptor Subunit GluN2B in the Brain of Scopolamine-Induced Amnesic Mice

    PubMed Central

    Rai, Rakesh; Singh, Hemant K.; Prasad, S.

    2015-01-01

    In the present communication, we have investigated effects of the CDRI-08, a well characterized extract of Bacopa monnieri, on expression of the GluN2B subunit of NMDAR in various brain regions of the scopolamine-induced amnesic mice. Our behavioral data reveal that scopolamine-treated amnesic mice exhibit significant decline in the spatial memory compared to the normal control mice. Our RT-PCR and immunoblotting data revealed that the scopolamine treatment resulted in a significant downregulation of the NMDAR GluN2B subunit expression in prefrontal cortex and hippocampus. Our enzyme assay data revealed that scopolamine caused a significant increase in the acetylcholinesterase activity in both the brain regions. Further, oral administration of the CDRI-08 to scopolamine-treated amnesic mice restored the spatial memory which was found to be associated with significant upregulation of the GluN2B subunit expression and decline in the acetylcholinesterase activity in prefrontal cortex as well as hippocampus towards their levels in the normal control mice. Our study provides the evidence for the mechanism underlying role of the Bacopa monnieri extract (CDRI-08) in restoring spatial memory in amnesic mice, which may have therapeutic implications. PMID:26413117

  14. Attenuating effect of bioactive coumarins from Convolvulus pluricaulis on scopolamine-induced amnesia in mice.

    PubMed

    Malik, Jai; Karan, Maninder; Vasisht, Karan

    2016-01-01

    Convolvulus pluricaulis Chois. (Convolvulaceae) has been used in Ayurveda as Medhya Rasyana (nervine tonic) to treat various mental disorders. This study was designed to isolate the bioactive compound(s) of this plant and to evaluate their effect against scopolamine-induced amnesia. Column chromatography of the chloroform and ethyl-acetate fractions led to the isolation of three coumarins identified as scopoletin, ayapanin and scopolin. All the three compounds at 2.5, 5, 10 and 15 mg/kg, p.o. were evaluated for memory-enhancing activity against scopolamine-induced amnesia using elevated plus maze and step down paradigms. Effect on acetylcholinesterase activity in mice brain was also evaluated. Scopoletin and scopolin, in both the paradigms, significantly and dose dependently attenuated the scopolamine-induced amnesic effect. Furthermore, these compounds at 10 and 15 mg/kg exhibited activity comparable to that of standard drug, donepezil. The compounds also exhibited significant acetylcholinesterase inhibitory activity.

  15. Galantamine reverses scopolamine-induced behavioral alterations in Dugesia tigrina.

    PubMed

    Ramakrishnan, Latha; Amatya, Christina; DeSaer, Cassie J; Dalhoff, Zachary; Eggerichs, Michael R

    2014-09-01

    In planaria (Dugesia tigrina), scopolamine, a nonselective muscarinic receptor antagonist, induced distinct behaviors of attenuated motility and C-like hyperactivity. Planarian locomotor velocity (pLMV) displayed a dose-dependent negative correlation with scopolamine concentrations from 0.001 to 1.0 mM, and a further increase in scopolamine concentration to 2.25 mM did not further decrease pLMV. Planarian hyperactivity counts was dose-dependently increased following pretreatment with scopolamine concentrations from 0.001 to 0.5 mM and then decreased for scopolamine concentrations ≥ 1 mM. Planarian learning and memory investigated using classical Pavlovian conditioning experiments demonstrated that scopolamine (1 mM) negatively influenced associative learning indicated by a significant decrease in % positive behaviors from 86 % (control) to 14 % (1 mM scopolamine) and similarly altered memory retention, which is indicated by a decrease in % positive behaviors from 69 % (control) to 27 % (1 mM scopolamine). Galantamine demonstrated a complex behavior in planarian motility experiments since co-application of low concentrations of galantamine (0.001 and 0.01 mM) protected planaria against 1 mM scopolamine-induced motility impairments; however, pLMV was significantly decreased when planaria were tested in the presence of 0.1 mM galantamine alone. Effects of co-treatment of scopolamine and galantamine on memory retention in planaria via classical Pavlovian conditioning experiments showed that galantamine (0.01 mM) partially reversed scopolamine (1 mM)-induced memory deficits in planaria as the % positive behaviors increased from 27 to 63 %. The results demonstrate, for the first time in planaria, scopolamine's effects in causing learning and memory impairments and galantamine's ability in reversing scopolamine-induced memory impairments.

  16. Ameliorative effect of betulin from Betula platyphylla bark on scopolamine-induced amnesic mice.

    PubMed

    Cho, Namki; Kim, Hyeon Woo; Lee, Hee Kyoung; Jeon, Byung Ju; Sung, Sang Hyun

    2015-01-01

    Alzheimer's disease (AD) is a neurodegenerative disease induced by cholinergic neuron damage or amyloid-beta aggregation in the basal forebrain region and resulting in cognitive disorder. We previously reported on the neuroprotective effects of Betula platyphylla bark (BPB) in an amyloid-beta-induced amnesic mouse model. In this study, we obtained a cognitive-enhancing compound by assessing results using a scopolamine-induced amnesic mouse model. Our results show that oral treatment of mice with BPB and betulin significantly ameliorated scopolamine-induced memory deficits in both passive avoidance and Y-maze tests. In the Morris water maze test, administration of BPB and betulin significantly improved memory and cognitive function indicating the formation of working and reference memories in treated mice. Moreover, betulin significantly increased glutathione content in mouse hippocampus, and the increase was greater than that from betulinic acid treatment. We conclude that BPB and its active component betulin have potential as therapeutic, cognitive enhancer in AD.

  17. Evaluation of the effect of Cyperus rotundus L. in scopolamine-induced learning deficit in mice

    PubMed Central

    Rabbani, Mohammed; Ghannadi, Alireza; Malekian, Nahid

    2014-01-01

    Background: Cyperus rotundus L. was used in traditional Iranian medicine to treat memory and cognition disorders. The present study was aimed at investigating the effect of the extract and essential oil of C. rotundus on memory dysfunction. Materials and Methods: Cognition was evaluated using the object recognition task that was composed of a square wooden open field box with different shape objects. The test was consisted of three sections: 15 min exploration, first trial for 12 min and second one for 5 min. In the second trial the difference in exploration between a previously seen object and novel one, was considered as an index of memory performance (recognition index). Memory deficit was induced by scopolamine (0.5 mg/kg) before injection of plant extracts and essential oil. Results: Rivastigmine at 0.6 mg/kg reversed the scopolamine induced memory dysfunction in mice (P < 0.05). On the contrary, neither the hydroalcholic extracts (100, 200, 400 mg/kg) nor the polyphenolic extract (50, 100, 200 mg/kg) and essential oil (10, 20, 40 mg/kg) of C. rotundus produced significant improvement of memory dysfunction. The fact that rivastigmine reversed the scopolamine-induced memory dysfunction confirms the validity of this memory paradigm. Conclusion: Using the current method of the memory evaluation, none of the tested doses of the plant extract or essential oil changed the memory status of the animals, indicating either a lack of effective ingredient or unsuitable method for evaluation. PMID:25371874

  18. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice

    PubMed Central

    Zhou, Heng; Xue, Wei; Chu, Shi-feng; Wang, Zhen-zhen; Li, Chuang-jun; Jiang, Yi-na; Luo, Lin-ming; Luo, Piao; Li, Gang; Zhang, Dong-ming; Chen, Nai-hong

    2016-01-01

    Aim: Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Methods: Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Results: Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg−1·d−1) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg−1·d−1) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. Conclusion: PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia. PMID:27180981

  19. Estrogen levels modify scopolamine-induced amnesia in gonadally intact rats.

    PubMed

    de Macêdo Medeiros, André; Izídio, Geison Souza; Sousa, Diego Silveira; Macedo, Priscila Tavares; Silva, Anatildes Feitosa; Shiramizu, Victor Kenji Medeiros; Cabral, Alicia; Ribeiro, Alessandra Mussi; Silva, Regina Helena

    2014-08-01

    Previous studies suggested that estrogen plays a role in cognitive function by modulating the cholinergic transmission. However, most of the studies dealing with this subject have been conducted using ovariectomized rats. In the present study we evaluated the effects of physiological and supra-physiological variation of estrogen levels on scopolamine-induced amnesia in gonadally intact female rats. We used the plus-maze discriminative avoidance task (PMDAT) in order to evaluate anxiety levels and motor activity concomitantly to the memory performance. In experiment 1, female Wistar rats in each estrous cycle phase received scopolamine (1 mg/kg) or saline i.p. 20 min before the training session in the PMDAT. In experiment 2, rats in diestrus received estradiol valerate (1 mg/kg) or sesame oil i.m., and scopolamine (1 mg/kg) or saline i.p., 45 min and 20 min before the training, respectively. In experiment 3, rats in diestrus received scopolamine (1 mg/kg) or saline i.p. 20 min before the training, and estradiol valerate (1 mg/kg) or sesame oil i.m. immediately after the training session. In all experiments, a test session was performed 24 h later. The main results showed that: (1) scopolamine impaired retrieval and induced anxiolytic and hyperlocomotor effects in all experiments; (2) this cholinergic antagonist impaired acquisition only in animals in diestrus; (3) acute administration of estradiol valerate prevented the learning impairment induced by scopolamine and (4) interfered with memory consolidation process. The results suggest that endogenous variations in estrogen levels across the estrous cycle modulate some aspects of memory mediated by the cholinergic system. Indeed, specifically in diestrus, a stage with low estrogen levels, the impairment produced by scopolamine on the acquisition was counteracted by exogenous administration of the hormone, whereas the posttraining treatment potentiated the negative effects of scopolamine during the consolidation phase

  20. The modulation by neurosteroids of the scopolamine-induced learning impairment in mice involves an interaction with sigma1 (sigma1) receptors.

    PubMed

    Urani, A; Privat, A; Maurice, T

    1998-07-13

    Neurosteroids have been reported to modulate learning and memory processes in aged animals and in pharmacological models of amnesia. We report here the effects of dehydroepiandrosterone sulfate (DHEAS), pregnenolone sulfate (PREGS), and progesterone (PROG) on the learning impairment induced in mice by the muscarinic acetylcholine receptor antagonist, scopolamine. Spatial working memory was examined using the spontaneous alternation behavior in a Y-maze and long-term memory using place learning in a rectangular water-maze adapted for mice. Both DHEAS and PREGS (5-20 mg/kg, s.c.) prevented dose-dependently and significantly the scopolamine (2 mg/kg, s.c.)-induced alternation deficits. PROG (2-20 mg/kg, s.c.) failed to affect the scopolamine-induced deficits, but blocked, at 20 mg/kg, the beneficial effects induced by DHEAS or PREGS. In the water-maze, DHEAS (20 mg/kg) attenuated significantly the scopolamine-induced deficits, as observed during the acquisition sessions or the retention test. PROG (2, 20 mg/kg) did not affect the control or scopolamine-treated group performances, but blocked the ameliorating effect of DHEAS. Furthermore, in both tests, the selective sigma1 (sigma1) receptor antagonist NE-100 (1 mg/kg, i.p.) failed to affect the behaviors showed by the control or scopolamine-treated groups, but it blocked the ameliorating effects induced by DHEAS or PREGS. These results confirm the modulating role of neurosteroids in learning and memory processes and demonstrate that their modulation of the cholinergic systems involves an interaction with sigma1 receptors.

  1. Neuroprotective effects of Citrus reticulata in scopolamine-induced dementia oxidative stress in rats.

    PubMed

    El-Khadragy, Manal F; Al-Olayan, Ebtesam M; Abdel Moneim, Ahmed E

    2014-01-01

    The purpose of the study was to evaluate the potential effects of Citrus reticulate (mandarin) peel methanolic extract (MPME) on memory dysfunction in rats. Memory impairment was produced by scopolamine (1.4 mg/kg, intraperitoneally injected). Brain acetylcholinesterase enzyme (AChE) activity was measured to assess the central cholinergic activity. This study also investigated the effect of scopolamine on norepinephrine, dopamine and serotonin content in rat hippocampus, striatum and cerebral cortex. In addition, the levels of brain lipid peroxidation (LPO), nitric oxide (NO) and glutathione (GSH) were estimated to assess the degree of oxidative stress. Scopolamine administration induced a significant impairment of central cholinergic activity in rats, as indicated by a marked increase in AChE activity. The impairment of the cholinergic system was associated with a significant alternation in brain monoamines. Scopolamine administration also caused oxidant damage (elevation in LPO and NO and reduction in GSH levels). Pretreatment of MPME (250 mg/kg, orally administered) significantly reduced scopolamine-induced alternation in brain monoamines with an attenuation of scopolamine-induced rise in brain AChE activity and brain oxidative stress. It is concluded that administration of mandarin peel extract, demonstrating antioxidant activity, may be of value for dementia exhibiting elevated brain oxidative status. PMID:24938777

  2. Lactucopicrin ameliorates oxidative stress mediated by scopolamine-induced neurotoxicity through activation of the NRF2 pathway.

    PubMed

    Venkatesan, Ramu; Subedi, Lalita; Yeo, Eui-Ju; Kim, Sun Yeou

    2016-10-01

    Cholinergic activity plays a vital role in cognitive function, and is reduced in individuals with neurodegenerative diseases. Scopolamine, a muscarinic cholinergic antagonist, has been employed in many studies to understand, identify, and characterize therapeutic targets for Alzheimer's disease (AD). Scopolamine-induced dementia is associated with impairments in memory and cognitive function, as seen in patients with AD. The current study aimed to investigate the molecular mechanisms underlying scopolamine-induced cholinergic neuronal dysfunction and the neuroprotective effect of lactucopicrin, an inhibitor of acetylcholine esterase (AChE). We investigated apoptotic cell death, caspase activation, generation of reactive oxygen species (ROS), mitochondrial dysfunction, and the expression levels of anti- and pro-apoptotic proteins in scopolamine-treated C6 cells. We also analyzed the expression levels of antioxidant enzymes and nuclear factor (erythroid-derived 2)-like 2 (NRF2) in C6 cells and neurite outgrowth in N2a neuroblastoma cells. Our results revealed that 1 h scopolamine pre-treatment induced cytotoxicity by increasing apoptotic cell death via oxidative stress-mediated caspase 3 activation and mitochondrial dysfunction. Scopolamine also downregulated the expression the antioxidant enzymes superoxide dismutase, glutathione peroxidase, and catalase, and the transcription factor NRF2. Lactucopicrin treatment protected C6 cells from scopolamine-induced toxicity by reversing the effects of scopolamine on those markers of toxicity. In addition, scopolamine attenuated the secretion of neurotrophic nerve growth factor (NGF) in C6 cells and neurite outgrowth in N2a cells. As expected, lactucopicrin treatment enhanced NGF secretion and neurite outgrowth. Our study is the first to show that lactucopicrin, a potential neuroprotective agent, ameliorates scopolamine-induced cholinergic dysfunction via NRF2 activation and subsequent expression of antioxidant enzymes. PMID

  3. Amelioration of scopolamine-induced amnesia by phosphatidylserine and curcumin in the day-old chick.

    PubMed

    Barber, Teresa A; Edris, Edward M; Levinsky, Paul J; Williams, Justin M; Brouwer, Ari R; Gessay, Shawn A

    2016-09-01

    In the one-trial taste-avoidance task in day-old chicks, acetylcholine receptor activation has been shown to be important for memory formation. Injection of scopolamine produces amnesia, which appears to be very similar in type to that of Alzheimer's disease, which is correlated with low levels of acetylcholine in the brain. Traditional pharmacological treatments of Alzheimer's disease, such as cholinesterase inhibitors and glutamate receptor blockers, improve memory and delay the onset of impairments in memory compared with placebo controls. These agents also ameliorate scopolamine-induced amnesia in the day-old chick trained on the one-trial taste-avoidance task. The present experiments examined the ability of two less traditional treatments for Alzheimer's disease, phosphatidylserine and curcumin, to ameliorate scopolamine-induced amnesia in day-old chicks. The results showed that 37.9 mmol/l phosphatidylserine and 2.7 mmol/l curcumin significantly improved retention in chicks administered scopolamine, whereas lower doses were not effective. Scopolamine did not produce state-dependent learning, indicating that this paradigm in day-old chicks might be a useful one to study the effects of possible Alzheimer's treatments. In addition, chicks administered curcumin or phosphatidylserine showed little avoidance of a bead associated with water reward, indicating that these drugs did not produce response inhibition. The current results extend the findings that some nontraditional memory enhancers can ameliorate memory impairment and support the hypothesis that these treatments might be of benefit in the treatment of Alzheimer's disease. PMID:27388114

  4. Effects of histamine H3 receptor agonists and antagonists on cognitive performance and scopolamine-induced amnesia.

    PubMed

    Giovannini, M G; Bartolini, L; Bacciottini, L; Greco, L; Blandina, P

    1999-10-01

    In previous research we found that pre-training administration of histamine H3 receptor agonists such as (R)-alpha-methylhistamine and imetit impaired rat performance in object recognition and a passive avoidance response at the same doses at which they inhibited the release of cortical acetylcholine in vivo. Conversely, in the present study we report that the post-training administration of (R)-alpha-methylhistamine and imetit failed to affect rat performance in object recognition and a passive avoidance response, suggesting that H3 receptor influences the acquisition and not the recall processes. We also investigated the effects of two H3 receptor antagonists, thioperamide and clobenpropit, in the same behavioral tasks. Pre-training administration of thioperamide and clobenpropit failed to exhibit any procognitive effects in normal animals but prevented scopolamine-induced amnesia. However, also post-training administration of thioperamide prevented scopolamine-induced amnesia. Hence, the ameliorating effects of scopolamine-induced amnesia by H3 receptor antagonism are not only mediated by relieving the inhibitory action of cortical H3 receptors, but other mechanisms are also involved. Nevertheless, H3 receptor antagonists may have implications for the treatment of degenerative disorders associated with impaired cholinergic function.

  5. Task- and Treatment Length–Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats

    PubMed Central

    Pehrson, Alan L.; Hillhouse, Todd M.; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H.; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel

    2016-01-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine’s ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine’s effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine’s pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine’s moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine′s cognitive effects, which are observed under chronic dosing conditions in patients with MDD. PMID:27402279

  6. Task- and Treatment Length-Dependent Effects of Vortioxetine on Scopolamine-Induced Cognitive Dysfunction and Hippocampal Extracellular Acetylcholine in Rats.

    PubMed

    Pehrson, Alan L; Hillhouse, Todd M; Haddjeri, Nasser; Rovera, Renaud; Porter, Joseph H; Mørk, Arne; Smagin, Gennady; Song, Dekun; Budac, David; Cajina, Manuel; Sanchez, Connie

    2016-09-01

    Major depressive disorder (MDD) is a common psychiatric disorder that often features impairments in cognitive function, and these cognitive symptoms can be important determinants of functional ability. Vortioxetine is a multimodal antidepressant that may improve some aspects of cognitive function in patients with MDD, including attention, processing speed, executive function, and memory. However, the cause of these effects is unclear, and there are several competing theories on the underlying mechanism, notably including regionally-selective downstream enhancement of glutamate neurotransmission and increased acetylcholine (ACh) neurotransmission. The current work sought to evaluate the ACh hypothesis by examining vortioxetine's ability to reverse scopolamine-induced impairments in rodent tests of memory and attention. Additionally, vortioxetine's effects on hippocampal extracellular ACh levels were examined alongside studies of vortioxetine's pharmacokinetic profile. We found that acute vortioxetine reversed scopolamine-induced impairments in social and object recognition memory, but did not alter scopolamine-induced impairments in attention. Acute vortioxetine also induced a modest and short-lived increase in hippocampal ACh levels. However, this short-term effect is at variance with vortioxetine's moderately long brain half life (5.1 hours). Interestingly, subchronic vortioxetine treatment failed to reverse scopolamine-induced social recognition memory deficits and had no effects on basal hippocampal ACh levels. These data suggest that vortioxetine has some effects on memory that could be mediated through cholinergic neurotransmission, however these effects are modest and only seen under acute dosing conditions. These limitations may argue against cholinergic mechanisms being the primary mediator of vortioxetine's cognitive effects, which are observed under chronic dosing conditions in patients with MDD. PMID:27402279

  7. Ginsenoside Rh2 ameliorates scopolamine-induced learning deficit in mice.

    PubMed

    Yang, Jung-Hwa; Han, Sang-Jun; Ryu, Jong Hoon; Jang, Il-Sung; Kim, Dong-Hyun

    2009-10-01

    To understand memory-enhancing effect of red ginseng biotransformed by Bifidobacterium longum H-1 (RGB), which more potently improved scopolamine-induced learning deficit than red ginseng in the preliminary experiment, its main constituents, ginsenosides Rb1, Rg3 and Rh2, were isolated and their memory-enhancing effects investigated in scopolamine-treated mice by using passive avoidance and Y-maze tests. Among them, ginsenoside Rh2 most potently reversed memory impairment caused by scopolamine. Ginsenoside Rh2 also significantly shortened the escape latencies prolonged by scopolamine in the Morris water maze test (p<0.001) and increased the swimming time shorten by scopolamine within the platform quadrant (p<0.05). The ginsenoside Rh2 (3 muM) reversed scopolamine (10 muM)-induced suppression of long-term potentiation. It recovered field excitatory post synaptic potential (fEPSP) amplitude potentiation to 152.3+/-8.7% of the control (p<0.05). Based on these findings, RGB and its main constituent, ginsenoside Rh2, might improve learning deficits. Also the memory-enhancing effects of RGB may be dependent on the content of ginsenoside Rh2.

  8. Repeated administration of almonds increases brain acetylcholine levels and enhances memory function in healthy rats while attenuates memory deficits in animal model of amnesia.

    PubMed

    Batool, Zehra; Sadir, Sadia; Liaquat, Laraib; Tabassum, Saiqa; Madiha, Syeda; Rafiq, Sahar; Tariq, Sumayya; Batool, Tuba Sharf; Saleem, Sadia; Naqvi, Fizza; Perveen, Tahira; Haider, Saida

    2016-01-01

    Dietary nutrients may play a vital role in protecting the brain from age-related memory dysfunction and neurodegenerative diseases. Tree nuts including almonds have shown potential to combat age-associated brain dysfunction. These nuts are an important source of essential nutrients, such as tocopherol, folate, mono- and poly-unsaturated fatty acids, and polyphenols. These components have shown promise as possible dietary supplements to prevent or delay the onset of age-associated cognitive dysfunction. This study investigated possible protective potential of almond against scopolamine induced amnesia in rats. The present study also investigated a role of acetylcholine in almond induced memory enhancement. Rats in test group were orally administrated with almond suspension (400 mg/kg/day) for four weeks. Both control and almond-treated rats were then divided into saline and scopolamine injected groups. Rats in the scopolamine group were injected with scopolamine (0.5 mg/kg) five minutes before the start of each memory test. Memory was assessed by elevated plus maze (EPM), Morris water maze (MWM) and novel object recognition (NOR) task. Cholinergic function was determined in terms of hippocampal and frontal cortical acetylcholine content and acetylcholinesterase activity. Results of the present study suggest that almond administration for 28 days significantly improved memory retention. This memory enhancing effect of almond was also observed in scopolamine induced amnesia model. Present study also suggests a role of acetylcholine in the attenuation of scopolamine induced amnesia by almond.

  9. Efficacy study of Prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats

    PubMed Central

    Kulkarni, Kirti S.; Kasture, S.B.; Mengi, S.A.

    2010-01-01

    Objective: Cognitive disorders such as amnesia, attention deficit and Alzheimer’s disease are emerging nightmares in the field of medicine because no exact cure exists for them, as existing nootropic agents (piractam, tacrine, metrifonate) have several limitations. The present study was undertaken to investigate the effect of Prunus amygdalus (PA) nuts on cognitive functions, total cholesterol levels and cholinesterase (ChE) activity in scopolamine-induced amnesia in rats. Materials and Methods: The paste of PA nuts was administered orally at three doses (150, 300 and 600 mg/kg) for 7 and 14 consecutive days to the respective groups of rats. Piracetam (200 mg/kg) was used as a standard nootropic agent. Learning and memory parameters were evaluated using elevated plus maze (EPM), passive avoidance and motor activity paradigms. Brain ChE activity and serum biochemical parameters like total cholesterol, total triglycerides and glucose were evaluated. Results: It was observed that PA at the above-mentioned doses after 7 and 14 days of administration in the respective groups significantly reversed scopolamine (1 mg/kg i.p.)-induced amnesia, as evidenced by a decrease in the transfer latency in the EPM task and step-down latency in the passive avoidance task. PA reduced the brain ChE activity in rats. PA also exhibited a remarkable cholesterol and triglyceride lowering property and slight increase in glucose levels in the present study. Conclusion: Because diminished cholinergic transmission and increase in cholesterol levels appear to be responsible for the development of amyloid plaques and dementia in Alzheimer patients, PA may prove to be a useful memory-restorative agent. It would be worthwhile to explore the potential of this plant in the management of Alzheimer’s disease. PMID:20871769

  10. Cognitive enhancing and antioxidant activity of ethyl acetate soluble fraction of the methanol extract of Hibiscus rosa sinensis in scopolamine-induced amnesia

    PubMed Central

    Nade, Vandana S.; Kanhere, Sampat V.; Kawale, Laxman A.; Yadav, Adhikrao V.

    2011-01-01

    Objective: The objective of the present study was to evaluate the cognitive enhancing and antioxidant activity of Hibiscus rosa sinensis. Materials and Methods: The learning and memory was impaired by administration of scopolamine (1 mg/kg, i.p.) in mice which is associated with altered brain oxidative status. The object recognition test (ORT) and passive avoidance test (PAT) were used to assess cognitive enhancing activity. Animals were treated with an ethyl acetate soluble fraction of the methanol extract of H. sinensis (25, 50 and 100 mg/kg, p.o). Results: The ethyl acetate soluble fraction of the methanol extract of H. sinensis (EASF) attenuated amnesia induced by scopolamine and aging. The discrimination index (DI) was significantly decreased in the aged and scopolamine group in ORT. Pretreatment with EASF significantly increased the DI. In PAT, scopolamine-treated mice exhibited significantly shorter step-down latencies (SDL). EASF treatment showed a significant increase in SDL in young, aged as well as in scopolamine-treated animals. The biochemical analysis of brain revealed that scopolamine treatment increased lipid peroxidation and decreased levels of superoxide dismutase (SOD) and glutathione reductase (GSH). Administration of extract significantly reduced LPO and reversed the decrease in brain SOD and GSH levels. The administration of H. sinensis improved memory in amnesic mice and prevented the oxidative stress associated with scopolamine. The mechanism of such protection of H. sinensis may be due to augmentation of cellular antioxidants. Conclusion: The results of the present study suggested that H. sinensis had a protective role against age and scopolamine-induced amnesia, indicating its utility in management of cognitive disorders. PMID:21572646

  11. Alpha7 nicotinic acetylcholine receptor activation ameliorates scopolamine-induced behavioural changes in a modified continuous Y-maze task in mice.

    PubMed

    Redrobe, John P; Nielsen, Elsebet Ø; Christensen, Jeppe K; Peters, Dan; Timmermann, Daniel B; Olsen, Gunnar M

    2009-01-01

    The alpha7 (alpha7) nicotinic acetylcholine receptor may represent a drug target for the treatment of disorders associated with working memory/attentional dysfunction. We investigated the effects of three distinct alpha7 nicotinic acetylcholine receptor agonists: 2-methyl-5-(6-phenyl-pyridazin-3-yl)-octahydro-pyrrolo[3,4-c]pyrrole (A-582941; 0.01-0.1 mg/kg), 4-bromophenyl 1,4-diazabicyclo(3.2.2) nonane-4-carboxylate (SSR180711; 0.3-3 mg/kg) and N-[(3R)-1-azabicyclo[2.2.2]oct-3-yl]-4-chlorobenzamide (PNU-282987; 1-10 mg/kg), on scopolamine-induced deficits in a modified Y-maze procedure. Mice were forced to choose one of two visually distinct arms, and were confined there for a 5 min exploration period before being allowed to explore both arms for a 2 min test session, immediately thereafter. The time spent in each arm, entries and total distance travelled were recorded using an automated system. Characterisation experiments showed that scopolamine-treated (1 mg/kg) mice spent less time exploring the unfamiliar arm, when compared with vehicle-treated animals. Combination experiments showed that all three alpha7 agonists ameliorated scopolamine-induced changes in unfamiliar arm exploration. In conclusion, the present data support the idea that alpha7 nicotinic acetylcholine receptors may represent an interesting target for the treatment of conditions associated with attentional/working memory dysfunction.

  12. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    PubMed

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (P<0.001) and significantly decreased the acetylcholinesterase activity (P<0.001) at all doses compared to SCP treated mice. Also, PHL significantly elevated the activity of antioxidant enzymes viz. superoxide dismutase, catalase, reduced glutathione levels (P<0.001) and decreased malonaldehyde levels (P<0.001) in comparison with the SCP group. Immunohistochemistry revealed that PHL treatment dose dependently improved BDNF levels in the hippocampus which were found to be significantly depleted (P<0.001) in the SCP group. Additionally, PHL (10mg/kg) significantly enhanced the spatial memory formation (P<0.05) and neurotrophicity (P<0.001) compared to DON (1mg/kg). The aforementioned research

  13. Nootropic, neuroprotective and neurotrophic effects of phloretin in scopolamine induced amnesia in mice.

    PubMed

    Ghumatkar, Priya J; Patil, Sachin P; Jain, Pankaj D; Tambe, Rufi M; Sathaye, Sadhana

    2015-08-01

    Phloretin (PHL), a dihydrochalcone flavonoid usually present in the roots and leaves of apple tree. In vitro study on GT1-7 immortalized hypothalamic neurons exposed to amyloid beta (25-35), demonstrated that PHL significantly influenced membrane fluidity and potential. PHL also significantly decreased excitotoxicity by restoring the calcium homeostasis in the same. Thus, PHL proves to be a promising therapeutic moiety which should be further screened in the treatment of Alzheimer's disease. The objective of the present study was to evaluate the nootropic, neuroprotective and neurotrophic roles of PHL in the subacute scopolamine induced amnesia in mice. In this study, mice were pretreated with PHL 2.5mg/kg, 5mg/kg, 10mg/kg and Donepezil (DON) 1mg/kg intraperitoneally (i.p) for 14days. The last 7days of treatment regimen included daily injection of SCP 1.5mg/kg to induce cognitive deficits. Mice were subjected to behavioral analysis. Biochemical estimation of the brain homogenates for acetylcholinesterase and oxidative stress biomarkers were conducted. Furthermore, immunohistochemical analysis for the brain derived neurotrophic factor (BDNF) was carried out particularly in the hippocampus. PHL was found to significantly improve the performance of mice in Morris water maze test (P<0.001) and significantly decreased the acetylcholinesterase activity (P<0.001) at all doses compared to SCP treated mice. Also, PHL significantly elevated the activity of antioxidant enzymes viz. superoxide dismutase, catalase, reduced glutathione levels (P<0.001) and decreased malonaldehyde levels (P<0.001) in comparison with the SCP group. Immunohistochemistry revealed that PHL treatment dose dependently improved BDNF levels in the hippocampus which were found to be significantly depleted (P<0.001) in the SCP group. Additionally, PHL (10mg/kg) significantly enhanced the spatial memory formation (P<0.05) and neurotrophicity (P<0.001) compared to DON (1mg/kg). The aforementioned research

  14. In vivo investigation of the neuroprotective property of Convolvulus pluricaulis in scopolamine-induced cognitive impairments in Wistar rats

    PubMed Central

    Bihaqi, Syed Waseem; Singh, Avninder Pal; Tiwari, Manisha

    2011-01-01

    Aim: To investigate the neuroprotective effect of Convolvulus pluricaulis aqueous extract (AE) against scopolamine (1 mg/kg body weight (bwt))-induced neurotoxicity in the cerebral cortex of male Wistar rats. Materials and Methods: The study was carried out on male Wistar rats (age matched, weight 250 ± 20 g). The present study investigated cognitive-enhancing property of AE using Elevated plus maze (EPM) (transfer latency [TL]) and Morris water maze (MWM). Besides evaluating the effect of extract on neurochemical enzymes, in vivo antioxidant and free radical scavenging activities were also screened. All the measured parameters were compared with rivastigmine tartrate (1 mg/kg bwt) which was taken as standard. Results: Pretreatment of rats with AE (150 mg/kg bwt) significantly reduced scopolamine-induced increase in the TL in EPM, whereas in MWM, administration of extract improved the impairment of spatial memory induced by scopolamine. The activity of acetylcholinesterase (AChE) was significantly inhibited by extract within the cortex and hippocampus. Reduced activities or contents of glutathione reductase, superoxide dismutase, and reduced glutathione within the cortex and hippocampus induced by scopolamine were elevated by the extract. Taken together, it could be postulated that extract may exert its potent-enhancing activity through both anti-AChE and antioxidant action. Conclusion: AE possesses neuroprotective potential, thus validating its use in alleviating toxic effects of scopolamine. PMID:22021993

  15. Bone Marrow-Derived Endothelial Progenitor Cells Protect Against Scopolamine-Induced Alzheimer-Like Pathological Aberrations.

    PubMed

    Safar, Marwa M; Arab, Hany H; Rizk, Sherine M; El-Maraghy, Shohda A

    2016-04-01

    Vascular endothelial dysfunction plays a key role in the pathogenesis of Alzheimer's disease (AD). Patients with AD have displayed decreased circulating endothelial progenitor cells (EPCs) which repair and maintain the endothelial function. Transplantation of EPCs has emerged as a promising approach for the management of cerebrovascular diseases including ischemic stroke, however, its impact on AD has been poorly described. Thus, the current study aimed at investigating the effects of bone marrow-derived (BM) EPCs transplantation in repeated scopolamine-induced cognitive impairment, an experimental model that replicates biomarkers of AD. Intravenously transplanted BM-EPCs migrated into the brain of rats and improved the learning and memory deficits. Meanwhile, they mitigated the deposition of amyloid plaques and associated histopathological alterations. At the molecular levels, BM-EPCs blunted the increase of hippocampal amyloid beta protein (Aβ), amyloid precursor protein (APP) and reinstated the Aβ-degrading neprilysin together with downregulation of p-tau and its upstream glycogen synthase kinase-3β (GSK-3β). They also corrected the perturbations of neurotransmitter levels including restoration of acetylcholine and associated esterase along with dopamine, GABA, and the neuroexitatory glutamate. Furthermore, BM-EPCs induced behavioral recovery via boosting of vascular endothelial growth factor (VEGF), nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and its upstream cAMP response element binding (CREB), suppression of the proinflammatory tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and upregulation of interleukin-10 (IL-10). BM-EPCs also augmented Nrf2 and seladin-1. Generally, these actions were analogous to those exerted by adipose tissue-derived mesenchymal stem cells (AT-MSCs) and the reference anti-Alzheimer donepezil. For the first time, these findings highlight the beneficial actions of BM-EPCs against the memory

  16. Determination of the effectiveness of components of the herbal medicine Toki-Shakuyaku-San and fractions of Angelica acutiloba in improving the scopolamine-induced impairment of rat's spatial cognition in eight-armed radial maze test.

    PubMed

    Hatip-Al-Khatib, Izzettin; Egashira, Nobuaki; Mishima, Kenichi; Iwasaki, Katsunori; Iwasaki, Kiyo; Kurauchi, Kouji; Inui, Keiichiro; Ikeda, Tomoaki; Fujiwara, Michihiro

    2004-09-01

    The improving effects of various components of Toki-Shakuyaku-San (TSS) and fractions isolated from Angelica acutiloba Radix (Toki) on scopolamine-induced spatial memory impairment were investigated in eight-armed radial maze. The scopolamine-induced memory impairment was characterized by prominent increase of error choices in addition to decreased correct choices. Toki, Cnidium officinale Rhizoma (Senkyu), Poria cocos Hoelen (Bukuryo), Alisma orientale Rhizoma (Takusha), and Atractylodes lancea Rhizoma (Sojutsu) increased the correct choices, while only the Toki, Sojutsu, and Takusha decreased the error choices. No effect was produced by Paeonia lactiflora Radix (Shakuyaku). Investigation of effects of fractions isolated from Toki revealed that its activity mainly resided in the butanol layer and its contents of N-methyl-beta-carboline-3-carboxamide and amines. Moreover, the alkaloid, internal and external solutions (containing poly-, di-, and monosaccharides) obtained by dialysis with Visking cellophane tubing also improved the memory. However, no improving properties were detected for methanol and hexanol layers, L-(-)-tryptophan, L-arginine, L-(-)-lysine, and choline chloride. The results showed that the TSS components could improve the reference and working memory impaired by scopolamine. The improving effect of TSS is produced greatly by the Toki component, the activity of which was greatly produced by the fraction extracted by butanol. PMID:15351791

  17. Effects of the Methanolic Extract of Vitellaria paradoxa Stem Bark Against Scopolamine-Induced Cognitive Dysfunction and Oxidative Stress in the Rat Hippocampus.

    PubMed

    Foyet, Harquin Simplice; Asongalem, Acha Emmanuel; Oben, Eyong Kenneth; Cioanca, Oana; Hancianu, Monica; Hritcu, Lucian

    2016-10-01

    Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus.

  18. Effects of the Methanolic Extract of Vitellaria paradoxa Stem Bark Against Scopolamine-Induced Cognitive Dysfunction and Oxidative Stress in the Rat Hippocampus.

    PubMed

    Foyet, Harquin Simplice; Asongalem, Acha Emmanuel; Oben, Eyong Kenneth; Cioanca, Oana; Hancianu, Monica; Hritcu, Lucian

    2016-10-01

    Vitellaria paradoxa C.F. Gaertn (Sapotaceae) is a perennial three which naturally grows in the northern part of Cameroon. It has been traditionally used in the Cameroonian folk medicine for treating inflammation and pain. In the present study, we evaluate the possible anti-amnesic and antioxidative effects of the methanolic extract of V. paradoxa stem bark in an Alzheimer's disease (AD) rat model of scopolamine. Rats received a single injection of scopolamine (1.5 mg/kg) before behavioral testing and were treated with the methanolic extract (25 and 50 mg/kg), daily, for eight continuous days. Also, the antioxidant activity in the hippocampus was assessed using the total content of reduced glutathione and malondialdehyde levels. The scopolamine-treated rats exhibited the following: decrease of exploratory time and discrimination index within the novel object recognition test, decrease of spontaneous alternations percentage within Y-maze task, and increase of working memory errors, reference memory errors, and time taken to consume all five baits within radial arm-maze task. Administration of the methanolic extract significantly improved these parameters, suggesting positive effects on memory formation processes and antioxidant potential. Our results suggest that the methanolic extract ameliorates scopolamine-induced memory impairment by attenuation of the oxidative stress in the rat hippocampus. PMID:26620052

  19. Learning and memory promoting effects of crude garlic extract.

    PubMed

    Mukherjee, Dhrubajyoti; Banerjee, Sugato

    2013-12-01

    Chronic administration of aged garlic extract has been shown to prevent memory impairment in mice. Acute and chronic (21 days) effects of marketed formulation of crude garlic extract (Lasuna) were evaluated on learning and memory in mice using step down latency (SDL) by passive avoidance response and transfer latency (TL) using elevated plus maze. Scopolamine (0.4 mg/kg, ip) was used to induce amnesia in mice and piracetam (200 mg/kg, ip) served as positive control. In the acute study, Lasuna (65 mg/kg, po) partially reversed the scopolamine-induced amnesia but failed to improve learning and memory in untreated animals. Chronic administration of Lasuna (40 mg/kg/day for 21 days) significantly improved learning both in control and scopolamine induced amnesic animals. Influence of Lasuna on central cholinergic activity and its antioxidant properties were also studied by estimating the cortical acetylcholinesterase (AchE) activity and reduced glutathione (GSH) levels respectively. Chronic administration of Lasuna inhibited AchE, while increasing GSH levels. Thus the results indicate that long-term administration of crude garlic extract may improve learning and memory in mice while the underlying mechanism of action may be attributed to the anti-AchE activity and anti-oxidant property of garlic. PMID:24579375

  20. Bacopa monniera (CDRI-08) Upregulates the Expression of Neuronal and Glial Plasticity Markers in the Brain of Scopolamine Induced Amnesic Mice

    PubMed Central

    Konar, Arpita; Gautam, Akash; Thakur, M. K.

    2015-01-01

    Preclinical studies on animal models have discerned the antiamnesic and memory-enhancing potential of Bacopa monniera (Brahmi) crude extract and standardized extracts. These studies primarily focus on behavioral consequences. However, lack of information on molecular underpinnings has limited the clinical trials of the potent herb in human subjects. In recent years, researchers highlight plasticity markers as molecular correlates of amnesia and being crucial to design therapeutic targets. In the present report, we have investigated the effect of a special extract of B. monniera (CDRI-08) on the expression of key neuronal (BDNF and Arc) and glial (GFAP) plasticity markers in the cerebrum of scopolamine induced amnesic mice. Pre- and postadministration of CDRI-08 ameliorated amnesic effect of scopolamine by decreasing acetyl cholinesterase activity and drastically upregulating the mRNA and protein expression of BDNF, Arc, and GFAP in mouse cerebrum. Interestingly, the plant extract per se elevated BDNF and Arc expression as compared to control but GFAP was unaltered. In conclusion, our findings provide the first molecular evidence for antiamnesic potential of CDRI-08 via enhancement of both neuronal and glial plasticity markers. Further investigations on detailed molecular pathways would encourage therapeutic application of the extract in memory disorders. PMID:26413129

  1. Methyllycaconitine- and scopolamine-induced cognitive dysfunction: differential reversal effect by cognition-enhancing drugs.

    PubMed

    Andriambeloson, Emile; Huyard, Bertrand; Poiraud, Etienne; Wagner, Stéphanie

    2014-08-01

    There is a growing body of evidence pointing to the pivotal role of alpha-7 nicotinic acetylcholine receptor (α7 nAchR) dysfunction in cognitive disorders such as Alzheimer's disease or schizophrenia. This study was undertaken to establish and characterize an in vivo model for cognitive disorder secondary to the blockade of α7 nAChR by its specific antagonist, methyllycaconitine (MLA). The results show that MLA elicited cognitive dysfunction as assessed by reduced spontaneous alternation of mice in the T-maze. The maximal effect of MLA produced 25-30% reduction in the spontaneous alternation of mice, a level comparable with that induced by the muscarinic antagonism of scopolamine. Donepezil and galantamine fully reversed both MLA and scopolamine-induced cognitive dysfunction. However, the ED50 of donepezil and galantamine was significantly shifted to the left in the MLA- compared to scopolamine-treated mice (0.0005 and 0.002 mg/kg for donepezil; 0.0003 and 0.7 mg/kg for galantamine). Moreover, memantine elicited marked reversion of cognitive dysfunction (up to 70%) in MLA-treated mice while only a weak reversal effect at high dose of memantine (less than 20%) was observed in scopolamine-treated mice. The above findings indicate that MLA-induced cognitive dysfunction in the mouse is highly sensitive and more responsive to the current procognitive drugs than the traditional scopolamine-based assay. Thus, it can be of value for the preclinical screening and profiling of cognition-enhancing drugs. PMID:25505596

  2. Fucoxanthin, a Marine Carotenoid, Reverses Scopolamine-Induced Cognitive Impairments in Mice and Inhibits Acetylcholinesterase in Vitro

    PubMed Central

    Lin, Jiajia; Huang, Ling; Yu, Jie; Xiang, Siying; Wang, Jialing; Zhang, Jinrong; Yan, Xiaojun; Cui, Wei; He, Shan; Wang, Qinwen

    2016-01-01

    Fucoxanthin, a natural carotenoid abundant in edible brown seaweeds, has been shown to possess anti-cancer, anti-oxidant, anti-obesity and anti-diabetic effects. In this study, we report for the first time that fucoxanthin effectively protects against scopolamine-induced cognitive impairments in mice. In addition, fucoxanthin significantly reversed the scopolamine-induced increase of acetylcholinesterase (AChE) activity and decreased both choline acetyltransferase activity and brain-derived neurotrophic factor (BDNF) expression. Using an in vitro AChE activity assay, we discovered that fucoxanthin directly inhibits AChE with an IC50 value of 81.2 μM. Molecular docking analysis suggests that fucoxanthin likely interacts with the peripheral anionic site within AChE, which is in accordance with enzymatic activity results showing that fucoxanthin inhibits AChE in a non-competitive manner. Based on our current findings, we anticipate that fucoxanthin might exhibit great therapeutic efficacy for the treatment of Alzheimer’s disease by acting on multiple targets, including inhibiting AChE and increasing BDNF expression. PMID:27023569

  3. Cognition Enhancing and Neuromodulatory Propensity of Bacopa monniera Extract Against Scopolamine Induced Cognitive Impairments in Rat Hippocampus.

    PubMed

    Pandareesh, M D; Anand, T; Khanum, Farhath

    2016-05-01

    Cognition-enhancing activity of Bacopa monniera extract (BME) was evaluated against scopolamine-induced amnesic rats by novel object recognition test (NOR), elevated plus maze (EPM) and Morris water maze (MWM) tests. Scopolamine (2 mg/kg body wt, i.p.) was used to induce amnesia in rats. Piracetam (200 mg/kg body wt, i.p.) was used as positive control. BME at three different dosages (i.e., 10, 20 and 40 mg/kg body wt.) improved the impairment induced by scopolamine by increasing the discrimination index of NOR and by decreasing the transfer latency of EPM and escape latency of MWM tests. Our results further elucidate that BME administration has normalized the neurotransmitters (acetylcholine, glutamate, 5-hydroxytryptamine, dopamine, 3,4 dihydroxyphenylacetic acid, norepinephrine) levels that were altered by scopolamine administration in hippocampus of rat brain. BME administration also ameliorated scopolamine effect by down-regulating AChE and up-regulating BDNF, muscarinic M1 receptor and CREB expression in brain hippocampus confirms the potent neuroprotective role and these results are in corroboration with the earlier in vitro studies. BME administration showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant and lipid peroxidation. These results indicate that, cognition-enhancing and neuromodulatory propensity of BME is through modulating the expression of AChE, BDNF, MUS-1, CREB and also by altering the levels of neurotransmitters in hippocampus of rat brain.

  4. Scopolamine-induced convulsions in fasted mice after food intake: effects of glucose intake, antimuscarinic activity and anticonvulsant drugs.

    PubMed

    Enginar, Nurhan; Nurten, Asiye; Celik, Pinar Yamantürk; Açikmeşe, Bariş

    2005-09-01

    The present study was performed to further evaluate the contribution of antimuscarinic activity and hypoglycaemia to the development of scopolamine-induced convulsions in fasted mice after food intake. The effects of anticonvulsant drugs on convulsions were also evaluated. Antimuscarinic drugs atropine (3 mg/kg) and biperiden (10 mg/kg) were given intraperitoneally (i.p) to animals fasted for 48 h. Like scopolamine, both drugs induced convulsions after animals were allowed to eat ad libitum. Another group of animals was given glucose (5%) in drinking water during fasting. These animals, although they had normoglycaemic blood levels after fasting, also developed convulsions after treated with scopolamine i.p. (3 mg/kg), atropine (3 mg/kg) or biperiden (10 mg/kg) and allowed to eat ad libitum. Among the drugs studied, only valproate (340 mg/kg), gabapentin (50 mg/kg) and diazepam (2.5 and 5 mg/kg) markedly reduced the incidence of scopolamine-induced convulsions. The present results indicate that antimuscarinic activity, but not hypoglycaemia, underlies these convulsions which do not respond to most of the conventional anticonvulsant drugs.

  5. Prevention Education Effects on Fundamental Memory Processes

    PubMed Central

    Ames, Susan L.; Krank, Marvin; Grenard, Jerry L.; Sussman, Steve; Stacy, Alan W.

    2014-01-01

    This study evaluated effects of a key session from a nationally recognized drug abuse prevention program on basic memory processes in 211 high-risk youth in Southern California. In a randomized, between-subject design, the authors manipulated assignment to a Myth and Denial program session and the time of assessment (immediate vs. one-week delay). The authors examined program decay effects on memory accessibility and judgment errors. Those participants exposed to the program session generated more myths and facts from the program than those in the control group, suggesting that even a single program session influenced students’ memory for program information and this was retained at least one week and detectable with indirect tests of memory accessibility. However, consistent with basic research perspectives, participants in the program delayed assessment group erroneously generated more fact-related information from the session to the prompt “It is a myth that_____” than the participants in the program immediate assessment group; that is, they retained more facts as myths. These types of program effects, anticipated by basic memory theory, were not detected with a traditional judgment task in the present sample. The results suggest that basic science approaches offer a novel way of conceptually recasting prevention effects to more completely understand how these effects may operate. Implications for program evaluation and conceptualization are discussed. PMID:22544598

  6. Adenosine A2A receptors are necessary and sufficient to trigger memory impairment in adult mice

    PubMed Central

    Pagnussat, N; Almeida, A S; Marques, D M; Nunes, F; Chenet, G C; Botton, P H S; Mioranzza, S; Loss, C M; Cunha, R A; Porciúncula, L O

    2015-01-01

    Background and Purpose Caffeine (a non-selective adenosine receptor antagonist) prevents memory deficits in aging and Alzheimer’s disease, an effect mimicked by adenosine A2A receptor, but not A1 receptor, antagonists. Hence, we investigated the effects of adenosine receptor agonists and antagonists on memory performance and scopolamine-induced memory impairment in mice. Experimental Approach We determined whether A2A receptors are necessary for the emergence of memory impairments induced by scopolamine and whether A2A receptor activation triggers memory deficits in naïve mice, using three tests to assess short-term memory, namely the object recognition task, inhibitory avoidance and modified Y-maze. Key Results Scopolamine (1.0 mg·kg−1, i.p.) impaired short-term memory performance in all three tests and this scopolamine-induced amnesia was prevented by the A2A receptor antagonist (SCH 58261, 0.1–1.0 mg·kg−1, i.p.) and by the A1 receptor antagonist (DPCPX, 0.2–5.0 mg·kg−1, i.p.), except in the modified Y-maze where only SCH58261 was effective. Both antagonists were devoid of effects on memory or locomotion in naïve rats. Notably, the activation of A2A receptors with CGS 21680 (0.1–0.5 mg·kg−1, i.p.) before the training session was sufficient to trigger memory impairment in the three tests in naïve mice, and this effect was prevented by SCH 58261 (1.0 mg·kg−1, i.p.). Furthermore, i.c.v. administration of CGS 21680 (50 nmol) also impaired recognition memory in the object recognition task. Conclusions and Implications These results show that A2A receptors are necessary and sufficient to trigger memory impairment and further suggest that A1 receptors might also be selectively engaged to control the cholinergic-driven memory impairment. PMID:25939452

  7. Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System

    PubMed Central

    Xu, Yi-Jun; Yang, Cong; Li, Lin; Hou, Bo-Nan; Chen, Hui-Fang; Wang, Qi

    2016-01-01

    Sodium Tanshinone IIA sulfonate (STS) is a derivative of Tanshinone IIA (Tan IIA). Tan IIA has been reported to possess neuroprotective effects against Alzheimer's disease (AD). However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP-) induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg) and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE) and increased the activity of choline acetyltransferase (ChAT) in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3). STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction. PMID:27556046

  8. Sodium Tanshinone IIA Sulfonate Attenuates Scopolamine-Induced Cognitive Dysfunctions via Improving Cholinergic System.

    PubMed

    Xu, Qing-Qing; Xu, Yi-Jun; Yang, Cong; Tang, Ying; Li, Lin; Cai, Hao-Bin; Hou, Bo-Nan; Chen, Hui-Fang; Wang, Qi; Shi, Xu-Guang; Zhang, Shi-Jie

    2016-01-01

    Sodium Tanshinone IIA sulfonate (STS) is a derivative of Tanshinone IIA (Tan IIA). Tan IIA has been reported to possess neuroprotective effects against Alzheimer's disease (AD). However, whether STS possesses effect on AD remains unclear. This study aims to estimate whether STS could protect against scopolamine- (SCOP-) induced learning and memory deficit in Kunming mice. Morris water maze results showed that oral administration of STS (10 mg/kg and 20 mg/kg) and Donepezil shortened escape latency, increased crossing times of the original position of the platform, and increased the time spent in the target quadrant. STS decreased the activity of acetylcholinesterase (AChE) and increased the activity of choline acetyltransferase (ChAT) in the hippocampus and cortex of SCOP-treated mice. Oxidative stress results showed that STS increased the activity of superoxide dismutase (SOD) and decreased the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in hippocampus and cortex. In addition, western blot was carried out to detect the expression of apoptosis related proteins (Bcl-2, Bax, and Caspase-3). STS upregulated the protein expression of Bcl-2 and downregulated the proteins expression of Bax and Caspase-3. These results indicated that STS might become a promising therapeutic candidate for attenuating AD-like pathological dysfunction. PMID:27556046

  9. Scopolamine induced deficits in a battery of rat cognitive tests: comparisons of sensitivity and specificity.

    PubMed

    Hodges, Donald Bartholomew; Lindner, Mark D; Hogan, John B; Jones, Kelly M; Markus, Etan J

    2009-05-01

    Despite much research, the cognitive effects of scopolamine hydrobromide, a cholinergic antagonist, remain controversial. Scopolamine affects multiple systems each of which can impact behavior. One way to tease apart the effects of the drug is to determine the effects of low scopolamine doses on different abilities. The present experiments compared the effects of low doses of scopolamine on a single group of rats conducting a battery of behavioral tasks: Morris water maze, radial arm maze, delayed non-matching to position tasks, and fixed ratio 5 bar pressing. The behavioral battery ranged from tasks having little cognitive demand to those thought to be based more on attention and spatial-working memory. Control experiments using additional groups of rats assessing peripheral versus central effects were conducted with both liquid and dry reinforcement and with methyl scopolamine. Furthermore, the 5-choice serial reaction time test assessed scopolamine effects on attention. The data show a wide spectrum of central and peripheral cholinergic involvement. The central effects include attention and motor initiation, both of which impact and interact with the mnemonic function of acetylcholine. These results show that a limited disruption of the central cholinergic system can have profound effects on attention and/or psychomotor control before any measurable mnemonic disruption.

  10. Activation of dopamine D1 receptors in the medial septum improves scopolamine-induced amnesia in the dorsal hippocampus.

    PubMed

    Zarrindast, Mohammad Reza; Ardjmand, Abolfazl; Ahmadi, Shamseddin; Rezayof, Ameneh

    2012-04-01

    In the present study, we investigated the influence of intra-medial septum (intra-MS) injections of dopamine D1 receptor agents on amnesia induced by intra-CA1 injections of a muscarinic acetylcholine receptor antagonist, scopolamine. This study used a step-through inhibitory (passive) avoidance task to assess memory in adult male Wistar rats. The results showed that in the animals that received post-training intra-MS injections of saline, intra-CA1 administrations of scopolamine (0.75, 1, and 2 μg/rat) decreased inhibitory avoidance (IA) memory consolidation as evidenced by a decrease in step-through latency on the test day, which was suggestive of drug-induced amnesia. Post-training intra-MS injections of a dopamine D1 receptor agonist, SKF38393 at doses of 0.1, 0.15, and 0.3 μg/rat had no effect, but at dose of 0.5 μg/rat impaired IA memory consolidation. Interestingly, intra-MS injections of SKF38393 (0.15, 0.3 and 0.5 μg/rat) significantly prevented amnesia induced by intra-CA1 injections of scopolamine (1 μg/rat). Intra-MS injections of a dopamine D1 receptor antagonist, SCH23390 (0.5 and 0.75 μg/rat) by itself impaired IA memory consolidation, and also at dose of 0.75 μg/rat increased amnesia induced by intra-CA1 administrations of an ineffective dose of scopolamine (0.5 μg/rat). Post-training intra-MS injections of ineffective doses of SCH23390 (0.1, 0.3 and 0.5 μg/rat) prevented an effective dose of SKF38393 response to the impaired effect of scopolamine. These results suggest that dopamine D1 receptors in the MS via projection neurons to the hippocampus affect impairment of memory consolidation induced by intra-CA injections of scopolamine.

  11. The Garrett Lee Smith Memorial Suicide Prevention Program

    ERIC Educational Resources Information Center

    Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.

    2010-01-01

    In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs…

  12. Auraptene consolidates memory, reverses scopolamine-disrupted memory in passive avoidance task, and ameliorates retention deficits in mice

    PubMed Central

    Tabrizian, Kaveh; Yaghoobi, Najmeh Sadat; Iranshahi, Mehrdad; Shahraki, Jafar; Rezaee, Ramin; Hashemzaei, Mahmoud

    2015-01-01

    Objective(s): Auraptene (7-geranyloxycoumarin) (AUR), from Citrus species has shown anti-inflammatory, neuroprotective, and acetylcholinesterase (AChE) and beta-secretase inhibitory effects. Scopolamine is a nonselective muscarinic receptor antagonist which causes short-term memory impairments and is used for inducing animal model of Alzheimer’s disease (AD). This research aimed to investigate the effect of AUR on scopolamine-induced avoidance memory retention deficits in step-through task in mice. Materials and Methods: The effect of four-day pre-training injections of AUR (50, 75, and 100 mg/kg, subcutaneous (SC)) and scopolamine (1 mg/kg, IP), and their co-administration on avoidance memory retention in step-through passive avoidance task, was investigated by measuring the latency to enter to the dark chamber. Results: Pre-training administration of AUR caused significant increase in step-through latency in comparison with control group, 48, 96, and 168 hr after training trial. The findings of this study showed that scopolamine (1 mg/kg, IP, for four consecutive days) impaired passive avoidance memory retention compared to saline-treated animals. Step-through passive avoidance task results showed that AUR markedly reversed scopolamine-induced avoidance memory retention impairments, 24 and 168 hr after training trial in step-through task. Conclusion: Results from co-administration of AUR and scopolamine showed that AUR reversed scopolamine-induced passive avoidance memory retention impairments. PMID:26730337

  13. Tempol prevents chronic sleep-deprivation induced memory impairment.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Albawaana, Amal S; Alhashimi, Farah H; Athamneh, Rabaa Y

    2016-01-01

    Sleep deprivation is associated with oxidative stress that causes learning and memory impairment. Tempol is a nitroxide compound that promotes the metabolism of many reactive oxygen species (ROS) and has antioxidant and neuroprotective effect. The current study investigated whether chronic administration of tempol can overcome oxidative stress and prevent learning and memory impairment induced by sleep deprivation. Sleep deprivation was induced in rats using multiple platform model. Tempol was administered to rats via oral gavages. Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze. The hippocampus was dissected; antioxidant biomarkers (GSH, GSSG, GSH/GSSG ratio, GPx, SOD, and catalase) were assessed. The result of this project revealed that chronic sleep deprivation impaired both short and long term memory (P<0.05), while tempol treatment prevented such effect. Furthermore, tempol normalized chronic sleep deprivation induced reduction in the hippocampus activity of catalase, GPx, and SOD (P<0.05). Tempol also enhanced the ratio of GSH/GSSG in chronically sleep deprived rats treated with tempol as compared with only sleep deprived rats (P<0.05). In conclusion chronic sleep deprivation induced memory impairment, and treatment with tempol prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus.

  14. Tempol prevents chronic sleep-deprivation induced memory impairment.

    PubMed

    Alzoubi, Karem H; Khabour, Omar F; Albawaana, Amal S; Alhashimi, Farah H; Athamneh, Rabaa Y

    2016-01-01

    Sleep deprivation is associated with oxidative stress that causes learning and memory impairment. Tempol is a nitroxide compound that promotes the metabolism of many reactive oxygen species (ROS) and has antioxidant and neuroprotective effect. The current study investigated whether chronic administration of tempol can overcome oxidative stress and prevent learning and memory impairment induced by sleep deprivation. Sleep deprivation was induced in rats using multiple platform model. Tempol was administered to rats via oral gavages. Behavioral studies were conducted to test the spatial learning and memory using radial arm water maze. The hippocampus was dissected; antioxidant biomarkers (GSH, GSSG, GSH/GSSG ratio, GPx, SOD, and catalase) were assessed. The result of this project revealed that chronic sleep deprivation impaired both short and long term memory (P<0.05), while tempol treatment prevented such effect. Furthermore, tempol normalized chronic sleep deprivation induced reduction in the hippocampus activity of catalase, GPx, and SOD (P<0.05). Tempol also enhanced the ratio of GSH/GSSG in chronically sleep deprived rats treated with tempol as compared with only sleep deprived rats (P<0.05). In conclusion chronic sleep deprivation induced memory impairment, and treatment with tempol prevented this impairment probably through normalizing antioxidant mechanisms in the hippocampus. PMID:26616531

  15. Rosmarinic acid prevents against memory deficits in ischemic mice.

    PubMed

    Fonteles, Analu Aragão; de Souza, Carolina Melo; de Sousa Neves, Julliana Catharina; Menezes, Ana Paula Fontenele; Santos do Carmo, Marta Regina; Fernandes, Francisco Diego Pinheiro; de Araújo, Patrícia Rodrigues; de Andrade, Geanne Matos

    2016-01-15

    Polyphenols have neuroprotective effects after brain ischemia. It has been demonstrated that rosmarinic acid (RA), a natural phenolic compound, possesses antioxidant and anti-inflammatory properties. To evaluate the effectiveness of RA against memory deficits induced by permanent middle cerebral artery occlusion (pMCAO) mice were treated with RA (0.1, 1, and 20mg/kg/day, i.p. before ischemia and during 5 days). Animals were evaluated for locomotor activity and working memory 72 h after pMCAO, and spatial and recognition memories 96 h after pMCAO. In addition, in another set of experiments brain infarction, neurological deficit score and myeloperoxidase (MPO) activity were evaluates 24h after the pMCAO. Finally, immunohistochemistry, and western blot, and ELISA assay were used to analyze glial fibrillary acidic protein (GFAP), and synaptophysin (SYP) expression, and BDNF level, respectively. The working, spatial, and recognition memory deficits were significantly improved with RA treatment (20mg/kg). RA reduced infarct size and neurological deficits caused by acute ischemia. The mechanism for RA neuroprotection involved, neuronal loss suppression, and increase of synaptophysin expression, and increase of BDNF. Furthermore, the increase of MPO activity and GFAP immunireactivity were prevented in MCAO group treated with RA. These results suggest that RA exerts memory protective effects probably due to synaptogenic activity and anti-inflammatory action.

  16. Arctigenin isolated from the seeds of Arctium lappa ameliorates memory deficits in mice.

    PubMed

    Lee, In-Ah; Joh, Eun-Ha; Kim, Dong-Hyun

    2011-09-01

    The seeds of Arctium lappa L. (AL, family Asteraceae), the main constituents of which are arctiin and arctigenin, have been used as an herbal medicine or functional food to treat inflammatory diseases. These main constituents were shown to inhibit acetylcholinesterase (AChE) activity. Arctigenin more potently inhibited AChE activity than arctiin. Arctigenin at doses of 30 and 60 mg/kg (p. o.) potently reversed scopolamine-induced memory deficits by 62 % and 73 %, respectively, in a passive avoidance test. This finding is comparable with that of tacrine (10 mg/kg p. o.). Arctigenin also significantly reversed scopolamine-induced memory deficits in the Y-maze and Morris water maze tests. On the basis of these findings, arctigenin may ameliorate memory deficits by inhibiting AChE.

  17. Neuromodulatory propensity of Bacopa monniera against scopolamine-induced cytotoxicity in PC12 cells via down-regulation of AChE and up-regulation of BDNF and muscarnic-1 receptor expression.

    PubMed

    Pandareesh, M D; Anand, T

    2013-10-01

    Scopolamine is a competitive antagonist of muscarinic acetylcholine receptors, and thus classified as an anti-muscarinic and anti-cholinergic drug. PC12 cell lines possess muscarinic receptors and mimic the neuronal cells. These cells were treated with different concentrations of scopolamine for 24 h and were protected from the cellular damage by pretreatment with Bacopa monniera extract (BME). In current study, we have explored the molecular mechanism of neuromodulatory and antioxidant propensity of (BME) to attenuate scopolamine-induced cytotoxicity using PC12 cells. Our results elucidate that pretreatment of PC12 cells with BME ameliorates the mitochondrial and plasma membrane damage induced by 3 μg/ml scopolamine to 54.83 and 30.30 % as evidenced by MTT and lactate dehydrogenase assays respectively. BME (100 μg/ml) ameliorated scopolamine effect by down-regulating acetylcholine esterase and up-regulating brain-derived neurotropic factor and muscarinic muscarinic-1 receptor expression. BME pretreated cells also showed significant protection against scopolamine-induced toxicity by restoring the levels of antioxidant enzymes and lipid peroxidation. This result indicates that the scopolamine-induced cytotoxicity and neuromodulatory changes were restored with the pretreatment of BME.

  18. Integrated medicine and the prevention and reversal of memory loss.

    PubMed

    Khalsa, D S

    1998-11-01

    This article, based on scientific research and clinical observations, suggests that memory loss is not an inevitable consequence of aging and that Alzheimer's disease can be prevented and reversed using an integrated medical approach. Three new associations with memory loss other than age, heredity, and genetics are described. They include a high-fat diet, chronic unbalanced stress with its attendant risk in the adrenal hormone cortisol, and the presence of cardiovascular disease. A 4-pillar integrative medical program on brain longevity is presented. The program includes a diet consisting of 15% fat and supplementation with brain-specific nutrients such as vitamin B complex, vitamin E, ubiquinone, ginkgo biloba, and phosphatidylserine. In addition, stress-relieving meditation, mind-body and cognitive exercise, antiaging drugs like L-deprenyl citrate, as well as hormones such as dehydroepiandrosterone and pregnenolone complete the program. Patient benefits such as greater wisdom and spiritual happiness are also explored.

  19. Recovering and preventing loss of detailed memory: differential rates of forgetting for detail types in episodic memory.

    PubMed

    Sekeres, Melanie J; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-02-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired, while memory for central details is relatively spared. Given the sensitivity of memory to loss of details, the present study sought to investigate factors that mediate the forgetting of different types of information from naturalistic episodic memories in young healthy adults. The study investigated (1) time-dependent loss of "central" and "peripheral" details from episodic memories, (2) the effectiveness of cuing with reminders to reinstate memory details, and (3) the role of retrieval in preventing forgetting. Over the course of 7 d, memory for naturalistic events (film clips) underwent a time-dependent loss of peripheral details, while memory for central details (the core or gist of events) showed significantly less loss. Giving brief reminders of the clips just before retrieval reinstated memory for peripheral details, suggesting that loss of details is not always permanent, and may reflect both a storage and retrieval deficit. Furthermore, retrieving a memory shortly after it was encoded prevented loss of both central and peripheral details, thereby promoting retention over time. We consider the implications of these results for behavioral and neurobiological models of retention and forgetting.

  20. Dissociation between memory reactivation and its behavioral expression: scopolamine interferes with memory expression without disrupting long-term storage.

    PubMed

    Caffaro, Pedro Alejandro; Suárez, Luis Daniel; Blake, Mariano Gillermo; Delorenzi, Alejandro

    2012-10-01

    The reconsolidation hypothesis has challenged the traditional view of fixed memories after consolidation. Reconsolidation studies have disclosed that the mechanisms mediating memory retrieval and the mechanisms that underlie the behavioral expression of memory can be dissociated, offering a new prospect for understanding the nature of experimental amnesia. The muscarinic antagonist scopolamine has been used for decades to induce experimental amnesias The goal of the present study is to determine whether the amnesic effects of scopolamine are due to storage (or retrieval) deficits or, alternatively, to a decrease in the long-term memory expression of a consolidated long-term memory. In the crab Chasmagnathus memory model, we found that scopolamine-induced amnesia can be reverted by facilitation after reminder presentation. This recovery of memory expression was reconsolidation specific since a reminder that does not triggers reconsolidation process did not allow the recovery. A higher dose (5 μg/g) of scopolamine induced an amnesic effect that could not be reverted through reconsolidation, and thus it can be explained as an interference with memory storage and/or retrieval mechanisms. These results, showing that an effective amnesic dose of scopolamine (100 ng/g) negatively modulates long-term memory expression but not memory storage in the crab Chasmagnathus, are consistent with the concept that dissociable processes underlie the mechanisms mediating memory reactivation and the behavioral expression of memory.

  1. Involvement of dorsal hippocampal alpha-adrenergic receptors in the effect of scopolamine on memory retrieval in inhibitory avoidance task.

    PubMed

    Azami, Nasrin-Sadat; Piri, Morteza; Oryan, Shahrbano; Jahanshahi, Mehrdad; Babapour, Vahab; Zarrindast, Mohammad-Reza

    2010-05-01

    The present study evaluated the possible role of alpha-adrenergic receptors of the dorsal hippocampus on scopolamine-induced amnesia and scopolamine state-dependent memory in adult male Wistar rats. The animals were bilaterally implanted with chronic cannulae in the CA1 regions of the dorsal hippocampus, trained in a step-through type inhibitory avoidance task, and tested 24h after training to measure step-through latency. Results indicate that post-training or pre-test intra-CA1 administration of scopolamine (1 and 2 microg/rat) dose-dependently reduced the step-through latency, showing an amnestic response. Amnesia produced by post-training scopolamine (2 microg/rat) was reversed by pre-test administration of the scopolamine that is due to a state-dependent effect. Interestingly, pre-test intra-CA1 microinjection of alpha1-adrenergic agonist, phenylephrine (1 and 2 microg/rat) or alpha2-adrenergic agonist, clonidine improved post-training scopolamine (2 microg/rat)-induced retrieval impairment. Furthermore, pre-test intra-CA1 microinjection of phenylephrine (0.25, 0.5 and 1 microg/rat) or clonidine (0.25, 0.5 and 1 microg/rat) with an ineffective dose of scopolamine (0.25 microg/rat), synergistically improved memory performance impaired by post-training scopolamine. On the other hand, pre-test injection of alpha1-receptors antagonist prazosin (1 and 2 microg/rat) or alpha2-receptors antagonist yohimbine (1 and 2 microg/rat) prevented the restoration of memory by pre-test scopolamine. It is important to note that pre-test intra-CA1 administration of the same doses of prazosin or yohimbine, alone did not affect memory retrieval. These results suggest that alpha1- and alpha2-adrenergic receptors of the dorsal hippocampal CA1 regions may play an important role in scopolamine-induced amnesia and scopolamine state-dependent memory.

  2. Prevention of Drug-induced Memory Impairment by Immunopharmacotherapy

    PubMed Central

    Treweek, Jennifer B.; Sun, Chengzao; Mayorov, Alexander V.; Qi, Longwu; Levy, Coree L.; Roberts, Amanda J.; Dickerson, Tobin J.; Janda, Kim D.

    2009-01-01

    One approach to treating drug abuse uses anti-drug antibodies to immunize subjects against the illicit substance rather than administering therapeutics that target the specific CNS site of action. At present, passive vaccination has recognized efficacy in treating certain gross symptoms of drug misuse, namely motor activation, self-administration, and overdose. However, the potential for antibodies to prevent drug-induced changes involving finer cognitive processes, such as benzodiazepine-associated amnesia, remains unexplored. To address this concept, a flunitrazepam hapten was synthesized and employed in the generation of a panel of high affinity monoclonal antibodies. Anti-flunitrazepam mAb RCA3A3 (Kd,app= 200 nM) was tested in a mouse model of passive immunization and subsequent mole-equivalent challenge with flunitrazepam. Not only was flunitrazepam-induced sedation prevented, but immunization also conferred protection to memory consolidation as assessed through contextual and cued fear conditioning paradigms. These results provide evidence that immunopharmacotherapeutic blockade of drug intoxication also preserves complex cognitive function. PMID:18921991

  3. The memory-ameliorating effects of Artemisia princeps var. orientalis against cholinergic dysfunction in mice.

    PubMed

    Liu, Xiaotong; Kim, Dong Hyun; Kim, Jong Min; Park, Se Jin; Cai, Mudan; Jang, Dae Sik; Ryu, Jong Hoon

    2012-01-01

    Artemisia princeps var. orientalis (Compositae) is widely distributed in China, Japan and Korea and is known to have anti-inflammatory and anti-oxidative activities. The ethyl acetate fraction of ethanolic extract of A. princeps var. orientalis (AEA) was found to inhibit acetylcholinesterase activity in a dose-dependent manner in vitro (IC(50) value: 541.4 ± 67.5 μg/ml). Therefore, we investigated the effects of AEA on scopolamine-induced learning and memory impairment using the passive avoidance, the Y-maze, and the Morris water maze tasks in mice. AEA (100 or 200 mg/kg, p.o.) significantly ameliorated scopolamine-induced cognitive impairments in the passive avoidance and Y-maze tasks (p < 0.05). In the Morris water maze task, AEA (200 mg/kg, p.o.) significantly shortened escape latencies in training trials and increased both swimming time spent in the target zone and probe crossing numbers during the probe trial as compared with scopolamine-treated mice (p < 0.05). Additionally, the ameliorating effect of AEA on scopolamine-induced memory impairment was antagonized by a subeffective dose of MK-801. These results suggest that AEA could be an effective treatment against cholinergic dysfunction and its effect is mediated by the enhancement of the cholinergic neurotransmitter system via NMDA receptor signaling or acetylcholinesterase inhibition.

  4. Anti-amnesic effect of alkaloid fraction from Lycopodiella cernua (L.) Pic. Serm. on scopolamine-induced memory impairment in mice.

    PubMed

    Chuong, Nguyen Ngoc; Trung, Bui Huu; Luan, Tran Cong; Hung, Tran Manh; Dang, Nguyen Hai; Dat, Nguyen Tien

    2014-07-11

    Lycopodiella cernua (L.) Pic. Serm. (Licopodiaceae) has been used in Vietnamese folk medicine for treating central nervous system conditions. In this study, the alkaloid fraction from the methanol extract of this plant (VLC) was evaluated for in vitro acetylcholinesterase (AChE) inhibitory activity in cognition-relevant brain areas of mice. In in vivo study, the cognitive-enhancing effect of VLC on amnesic mice induced by scopolamine was investigated by assessing a passive avoidance and a Morris water maze test. VLC inhibited AChE activity in mouse frontal cortex, hippocampus and striatum with IC50 values of 26.7, 32.2 and 25.7μg/mL, respectively. Administration of VLC (10, 20, 50 and 100mg/kg, p.o.) significantly reversed cognitive impairments in mice by passive avoidance test. Treating with VLC (50mg/kg) reduced escape latencies in training trials and prolonged swimming times in the target quadrant during the probe trial in the water maze task (P<0.05). These results indicated that L. cernua originated from Vietnam has anti-cholinesterase activity and might be useful for the treatment of cognitive impairment. PMID:24861508

  5. Anti-amnesic effect of alkaloid fraction from Lycopodiella cernua (L.) Pic. Serm. on scopolamine-induced memory impairment in mice.

    PubMed

    Chuong, Nguyen Ngoc; Trung, Bui Huu; Luan, Tran Cong; Hung, Tran Manh; Dang, Nguyen Hai; Dat, Nguyen Tien

    2014-07-11

    Lycopodiella cernua (L.) Pic. Serm. (Licopodiaceae) has been used in Vietnamese folk medicine for treating central nervous system conditions. In this study, the alkaloid fraction from the methanol extract of this plant (VLC) was evaluated for in vitro acetylcholinesterase (AChE) inhibitory activity in cognition-relevant brain areas of mice. In in vivo study, the cognitive-enhancing effect of VLC on amnesic mice induced by scopolamine was investigated by assessing a passive avoidance and a Morris water maze test. VLC inhibited AChE activity in mouse frontal cortex, hippocampus and striatum with IC50 values of 26.7, 32.2 and 25.7μg/mL, respectively. Administration of VLC (10, 20, 50 and 100mg/kg, p.o.) significantly reversed cognitive impairments in mice by passive avoidance test. Treating with VLC (50mg/kg) reduced escape latencies in training trials and prolonged swimming times in the target quadrant during the probe trial in the water maze task (P<0.05). These results indicated that L. cernua originated from Vietnam has anti-cholinesterase activity and might be useful for the treatment of cognitive impairment.

  6. Scopolamine prevents retrograde memory interference between two different learning tasks.

    PubMed

    Blake, M G; Boccia, M M; Krawczyk, M C; Baratti, C M

    2011-03-01

    Subjects exposed to learning experiences could store the new information through memory consolidation process. If consolidation is interfered by exposing the experimental subjects to another novel stimulus, memory of the first learning situation is sometimes disrupted. The cholinergic system is critically involved in acquisition of new information. Here, we use low doses of the muscarinic cholinergic receptor antagonist scopolamine (SCOP) to disrupt acquisition of new information, but sparing memory consolidation of previous memories. Mice were consecutively exposed to two learning situations: the inhibitory avoidance (IA) and the nose-poke habituation (NPH) tasks. The exposure of mice to the NPH task, after being trained in the IA apparatus, impairs consolidation of the avoidance memory in a manner related to the duration of the exposure to the NPH task. If the exposure to the NPH task occurred after reactivation of the avoidance memory, reconsolidation was impaired. Blockade of acquisition of the NPH task by SCOP allowed consolidation and reconsolidation of the avoidance memory. Results indicate that cholinergic system blockade by SCOP impairs acquisition but is less able to affect memory consolidation. The mere exposure and perception of a novel situation are not sufficient conditions to cause impairment of retention performance about previously learned information, but effective processing leading to acquisition of the NPH task information is necessary to cause the interference between both learning situations.

  7. Memory-improving activity of Melissa officinalis extract in naïve and scopolamine-treated rats.

    PubMed

    Soodi, M; Naghdi, N; Hajimehdipoor, H; Choopani, S; Sahraei, E

    2014-01-01

    Melissa officinalis L. (Labiatae) traditionally used in treating neurological disorders has also been identified as a memory-enhancing herb. The extract of M. officinalis has a cholinergic property. The role of basal forebrain cholinergic neurons, the neurons that are destroyed in Alzheimer's disease (AD), in learning and memory, is also well known. The aim of this study is to investigate the role of cholinergic system on the memory improving activity of M. officinalis extract. The leaves of M. officinalis were extracted with ethanol 80% using the maceration method. Rats received intra-peritoneal injections of M. officinalis extract in different doses (50-400 mg/kg) alone or in combination with scopolamine (1 mg/kg) before being trained in a Morris water maze (MWM) in a single-day training protocol. After training, the acetylcholinesterase enzyme (AChE) activity was measured in the hippocampus. Administration of M. officinalis extract (200 mg/kg) could significantly enhance learning and memory of naïve rats (p<0.001) and significantly ameliorate scopolamine-induced learning deficit, but the effect of the extract was not dose dependent, and doses above 200 mg/kg could neither enhance memory in naïve rats nor reverse scopolamine-induced memory impairment. Also, inhibition of AChE activity was observed in both naïve and scopolamine-induced memory-impaired rats. These results suggest that M. officinalis can improve memory and that the cholinergic property of the extract may contribute to the memory-improving effects observed in this study. Then M. officinalis extract has potential therapeutic value in alleviating certain memory impairment observed in AD.

  8. High energy diets prevent the enhancing effects of emotional arousal on memory.

    PubMed

    Ross, Amy P; Darling, Jenna N; Parent, Marise B

    2013-10-01

    Over the past five decades, per capita caloric intake has increased by approximately 28% in the United States. Excessive intake of calories from fats and sugars (high energy diets; HEDs) negatively impacts hippocampal-dependent memory. These deleterious effects of HEDs on hippocampal function involve HED-induced decreases in neuronal growth factors, neurogenesis, and synaptic plasticity. Given that HEDs also alter responses to emotional arousal, the present experiment determined whether the effects of HEDs on memory depend on the emotional arousal produced by the memory task during encoding. Rats were fed a high fat/sugar cafeteria-style diet for 4 weeks and then tested in a low or high emotional arousal version of a spatial object place recognition task. The results demonstrated that the HED prevented the memory-enhancing effects of emotional arousal. Thus, altered responses to emotional arousal likely contribute to HED-induced memory impairments, particularly in stressful memory tasks such as the spatial water maze.

  9. Preventive and therapeutic effect of treadmill running on chronic stress-induced memory deficit in rats.

    PubMed

    Radahmadi, Maryam; Alaei, Hojjatallah; Sharifi, Mohammad Reza; Hosseini, Nasrin

    2015-04-01

    Previous results indicated that stress impairs learning and memory. In this research, the effects of preventive, therapeutic and regular continually running activity on chronic stress-induced memory deficit in rats were investigated. 70 male rats were randomly divided into seven groups as follows: Control, Sham, Stress-Rest, Rest-Stress, Stress-Exercise, Exercise-Stress and Exercise-Stress & Exercise groups. Chronic restraint stress was applied 6 h/day for 21days and treadmill running 1 h/day. Memory function was evaluated by the passive avoidance test. The results revealed that running activities had therapeutic effect on mid and long-term memory deficit and preventive effects on short and mid-term memory deficit in stressed rats. Regular continually running activity improved mid and long-term memory compared to Exercise-Stress group. The beneficial effects of exercise were time-dependent in stress conditions. Finally, data corresponded to the possibility that treadmill running had a more important role on treatment rather than on prevention on memory impairment induced by stress.

  10. AC-3933, a benzodiazepine partial inverse agonist, improves memory performance in MK-801-induced amnesia mouse model.

    PubMed

    Hashimoto, Takashi; Iwamura, Yoshihiro

    2016-05-01

    AC-3933, a novel benzodiazepine receptor partial inverse agonist, is a drug candidate for cognitive disorders including Alzheimer's disease. We have previously reported that AC-3933 enhances acetylcholine release in the rat hippocampus and ameliorates scopolamine-induced memory impairment and age-related cognitive decline in both rats and mice. In this study, we further evaluated the procognitive effect of AC-3933 on memory impairment induced by MK-801, an N-methyl-d-aspartate receptor antagonist, in mice. Unlike the acetylcholinesterase inhibitor donepezil and the benzodiazepine receptor inverse agonist FG-7142, oral administration of AC-3933 significantly ameliorated MK-801-induced memory impairment in the Y-maze test and in the object location test. Interestingly, the procognitive effects of AC-3933 on MK-801-induced memory impairment were not affected by the benzodiazepine receptor antagonist flumazenil, although this was not the case for the beneficial effects of AC-3933 on scopolamine-induced memory deficit. Moreover, the onset of AC-3933 ameliorating effect on scopolamine- or MK-801-induced memory impairment was different in the Y-maze test. Taken together, these results indicate that AC-3933 improves memory deficits caused by both cholinergic and glutamatergic hypofunction and suggest that the ameliorating effect of AC-3933 on MK-801-induced memory impairment is mediated by a mechanism other than inverse activation of the benzodiazepine receptor.

  11. Effects of clobenpropit (VUF-9153), a histamine H3-receptor antagonist, on learning and memory, and on cholinergic and monoaminergic systems in mice.

    PubMed

    Miyazaki, S; Onodera, K; Imaizumi, M; Timmerman, H

    1997-01-01

    The effects of clobenpropit (VUF-9153), a potent histamine H3-receptor antagonist, on a scopolamine-induced learning deficit in the step-through passive avoidance test was studied in mice. Clobenpropit (10 and 20 mg/kg) alone showed a tendency to ameliorate the scopolamine-induced learning deficit, and clobenpropit (10 mg/kg) in combination with zolantidine (20 mg/kg), a histamine H2-receptor antagonist, ameliorated the scopolamine-induced effect. This ameliorating effect was antagonized by (R)-alpha-methylhistamine (20 mg/kg), a histamine H3-receptor agonist and pyrilamine (20 mg/kg), a histamine H1-receptor antagonist, suggesting that clobenpropit in combination with zolantidine showed the ameliorating effect via histamine H3 receptors and/or histamine H1 receptors. We also studied the effects of clobenpropit on cholinergic and monoaminergic systems. Clobenpropit did not show any significant effect on these neuronal systems except the activation of noradrenergic system. The present results suggest that the effect of clobenpropit might be partially involved with the activation of noradrenergic system, and the histaminergic system may play certain important roles in learning and memory.

  12. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action.

    PubMed

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Piasecka, Anna; Kachlicki, Piotr; Kujawski, Radoslaw; Bogacz, Anna; Bartkowiak-Wieczorek, Joanna; Szulc, Michal; Kaminska, Ewa; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Gryszczynska, Agnieszka; Opala, Bogna; Lowicki, Zdzislaw; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw

    2016-01-01

    Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration. PMID:27239217

  13. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action

    PubMed Central

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L.; Piasecka, Anna; Kachlicki, Piotr; Kujawski, Radoslaw; Bogacz, Anna; Bartkowiak-Wieczorek, Joanna; Szulc, Michal; Kaminska, Ewa; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Gryszczynska, Agnieszka; Opala, Bogna; Lowicki, Zdzislaw; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw

    2016-01-01

    Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration. PMID:27239217

  14. Influence of the Melissa officinalis Leaf Extract on Long-Term Memory in Scopolamine Animal Model with Assessment of Mechanism of Action.

    PubMed

    Ozarowski, Marcin; Mikolajczak, Przemyslaw L; Piasecka, Anna; Kachlicki, Piotr; Kujawski, Radoslaw; Bogacz, Anna; Bartkowiak-Wieczorek, Joanna; Szulc, Michal; Kaminska, Ewa; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Gryszczynska, Agnieszka; Opala, Bogna; Lowicki, Zdzislaw; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw

    2016-01-01

    Melissa officinalis (MO, English: lemon balm, Lamiaceae), one of the oldest and still most popular aromatic medicinal plants, is used in phytomedicine for the prevention and treatment of nervous disturbances. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 50% ethanol extract of MO leaves (200 mg/kg, p.o.) compared with rosmarinic acid (RA, 10 mg/kg, p.o.) and huperzine A (HU, 0.5 mg/kg, p.o.) on behavioral and cognitive responses in scopolamine-induced rats. The results were linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex of rats. In our study, MO and HU, but not RA, showed an improvement in long-term memory. The results were in line with mRNA levels, since MO produced a decrease of AChE mRNA level by 52% in the cortex and caused a strong significant inhibition of BACE1 mRNA transcription (64% in the frontal cortex; 50% in the hippocampus). However, the extract produced only an insignificant inhibition of AChE activity in the frontal cortex. The mechanisms of MO action are probably more complicated, since its role as a modulator of beta-secretase activity should be taken into consideration.

  15. Acute nicotine treatment prevents REM sleep deprivation-induced learning and memory impairment in rat.

    PubMed

    Aleisa, A M; Helal, G; Alhaider, I A; Alzoubi, K H; Srivareerat, M; Tran, T T; Al-Rejaie, S S; Alkadhi, K A

    2011-08-01

    Rapid eye movement (REM) sleep deprivation (SD) is implicated in impairment of spatial learning and memory and hippocampal long-term potentiation (LTP). An increase in nicotine consumption among habitual smokers and initiation of tobacco use by nonsmokers was observed during SD. Although nicotine treatment was reported to attenuate the impairment of learning and memory and LTP associated with several mental disorders, the effect of nicotine on SD-induced learning and memory impairment has not been studied. Modified multiple platform paradigm was used to induce SD for 24 or 48 h during which rats were injected with saline or nicotine (1 mg kg(-1) s.c.) twice a day. In the radial arm water maze (RAWM) task, 24- or 48-h SD significantly impaired learning and short-term memory. In addition, extracellular recordings from CA1 and dentate gyrus (DG) regions of the hippocampus in urethane anesthetized rats showed a significant impairment of LTP after 24- and 48-h SD. Treatment of normal rats with nicotine for 24 or 48 h did not enhance spatial learning and memory or affect magnitude of LTP in the CA1 and DG regions. However, concurrent, acute treatment of rats with nicotine significantly attenuated SD-induced impairment of learning and STM and prevented SD-induced impairment of LTP in the CA1 and DG regions. These results show that acute nicotine treatment prevented the deleterious effect of sleep loss on cognitive abilities and synaptic plasticity.

  16. Transcription inhibitors prevent amnesia induced by NMDA antagonist-mediated impairment of memory reconsolidation.

    PubMed

    Nikitin, Vladimir P; Solntseva, Svetlana V; Shevelkin, Alexey V

    2016-09-01

    Recent studies report that long-term memory retrieval can induce memory reconsolidation, and impairment of this reconsolidation might lead to amnesia. Previously, we found that reconsolidation of a conditioned food aversion memory could be disrupted by translation inhibitors for up to 3 h following a reconsolidation event, thus inducing amnesia. We examined the role of transcription processes in the induction of amnesia in the land snail, Helix lucorum. It received N-methyl-D-aspartate (NMDA) glutamate receptor antagonist and transcription inhibitor 2 days after learning in a neutral context environment; it was then transferred to the learning context followed by reminder with conditioned food stimulus. NMDA receptor blockade, followed by a reminder session, impaired reconsolidation of an aversive memory. Simultaneous administration of an NMDA receptor antagonist and a transcription inhibitor prior to reminder of an aversive event prevented amnesia induction. In contrast, when a transcription inhibitor alone was injected prior to a reminder session, the blockade had no effect on memory. We found that transcription inhibition 0-6 h after amnesia induction suppressed memory loss, but this suppression was lost when inhibitors were administered 9 h after amnesia. Thus, amnesia is likely dependent on transcription processes within a 9-h time window. We can hypothesize that amnesia induction initiates synthesis of specific mRNAs and proteins; furthermore, these events occur within specific time-dependent windows. Our findings could prove useful for the analysis of amnesia formation and for the development of possible ways to prevent memory loss associated with various diseases and injuries in animals and humans. PMID:26742927

  17. Effects of meclofenoxate and citicholine on learning and memory in aged rats.

    PubMed

    Mosharrof, A H; Petkov, V D; Petkov, V V

    1987-01-01

    The maze method for active avoidance with punishment reinforcement and the step-through method for passive avoidance with negative reinforcement were used to study the processes of learning and memory in 22-month-old rats, as well as the effects of meclofenoxate (Mf) and citicholine (CCh) on these processes. Meclofenoxate, administered in a dose of 50 mg/kg twice daily for 7 days using the maze-training method, increased the number of responses to the conditioned stimulus, when retention tests were made 24 hours and 7 days after training, whereas citicholine, applied in the same way in a dose of 10 mg/kg, shortened the latency of the responses with reinforcement during the training and increased the number of correct responses to the conditioned stimulus in retention tests 7 days after the training. With the same pattern of administration, both Mf and CCh strongly prolonged the time spent by the animals in the light chamber (i.e., improved retention) in tests using the step-through method 24 hours and 7 days after the training. Both drugs prevented the occurrence of scopolamine-induced (2 mg/kg i.p.) amnesia. A comparison of the results obtained for 22-month-old rats with the results obtained in earlier experiments on 5-month-old rats under fully identical experimental conditions showed that the age-dependent differences in the memory process and in the effects on it of the psychotropic agents meclofenoxate and citicholine were not unidirectional in character.

  18. Can improving working memory prevent academic difficulties? a school based randomised controlled trial

    PubMed Central

    2011-01-01

    Background Low academic achievement is common and is associated with adverse outcomes such as grade repetition, behavioural disorders and unemployment. The ability to accurately identify these children and intervene before they experience academic failure would be a major advance over the current 'wait to fail' model. Recent research suggests that a possible modifiable factor for low academic achievement is working memory, the ability to temporarily store and manipulate information in a 'mental workspace'. Children with working memory difficulties are at high risk of academic failure. It has recently been demonstrated that working memory can be improved with adaptive training tasks that encourage improvements in working memory capacity. Our trial will determine whether the intervention is efficacious as a selective prevention strategy for young children at risk of academic difficulties and is cost-effective. Methods/Design This randomised controlled trial aims to recruit 440 children with low working memory after a school-based screening of 2880 children in Grade one. We will approach caregivers of all children from 48 participating primary schools in metropolitan Melbourne for consent. Children with low working memory will be randomised to usual care or the intervention. The intervention will consist of 25 computerised working memory training sessions, which take approximately 35 minutes each to complete. Follow-up of children will be conducted at 6, 12 and 24 months post-randomisation through child face-to-face assessment, parent and teacher surveys and data from government authorities. The primary outcome is academic achievement at 12 and 24 months, and other outcomes include child behaviour, attention, health-related quality of life, working memory, and health and educational service utilisation. Discussion A successful start to formal learning in school sets the stage for future academic, psychological and economic well-being. If this preventive intervention

  19. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex.

    PubMed

    Kunisawa, K; Nakashima, N; Nagao, M; Nomura, T; Kinoshita, S; Hiramatsu, M

    2015-10-01

    Betaine plays important roles that include acting as a methyl donor and converting homocysteine (Hcy) to methionine. Elevated plasma Hcy levels are known as hyperhomocysteinemia (HHcy) and contribute to impairments of learning and memory. Although it is commonly known that betaine plays an important role in Hcy metabolism, the effects of betaine on Hcy-induced memory impairment have not been investigated. Previously, we demonstrated the beneficial effects of betaine on acute stress and lipopolysaccharide-induced memory impairment. In the present study, we investigated whether betaine ameliorates Hcy-induced memory impairment and the underlying mechanisms of this putative effect. Mice were treated with Hcy (0.162mg/kg, s.c.) twice a day for nine days, and betaine (25mg/kg, s.c.) was administered 30min before the Hcy injections. The memory functions were evaluated using a spontaneous alternation performance test (Y-maze) at seven days and a step-down type passive avoidance test (SD) at nine and ten days after Hcy injection. We found that betaine suppressed the memory impairment induced by repeated Hcy injections. However, the blood concentrations of Hcy were significantly increased in the Hcy-treated mice immediately after the passive avoidance test, and betaine did not prevent this increase. Furthermore, Hcy induces redox stress in part by activating matrix metalloproteinase-9 (MMP-9), which leads to BBB dysfunction. Therefore, we tested whether betaine affected MMP-9 activity. Interestingly, treatment with betaine significantly inhibited Hcy-induced MMP-9 activity in the frontal cortex but not in the hippocampus after acute Hcy injection. These results suggest that the changes in MMP-9 activity after betaine treatment might have been partially responsible for the amelioration of the memory deficits and that MMP-9 might be a candidate therapeutic target for HHcy.

  20. Memory

    MedlinePlus

    ... it has to decide what is worth remembering. Memory is the process of storing and then remembering this information. There are different types of memory. Short-term memory stores information for a few ...

  1. Bushen-Yizhi formula ameliorates cognition deficits and attenuates oxidative stress-related neuronal apoptosis in scopolamine-induced senescence in mice

    PubMed Central

    HOU, XUE-QIN; WU, DIAN-WEI; ZHANG, CHUN-XIA; YAN, RONG; YANG, CONG; RONG, CUI-PING; ZHANG, LEI; CHANG, XIANG; SU, RU-YU; ZHANG, SHI-JIE; HE, WEN-QING; QU, ZHAO; LI, SHI; SU, ZI-REN; CHEN, YUN-BO; WANG, QI; FANG, SHU-HUAN

    2014-01-01

    Bushen-Yizhi formula (BSYZ), a traditional Chinese medicine formula consisting of six herbs has been reported to possess a neuroprotective effect. The present study aimed to investigate the effects of BSYZ on learning and memory abilities, as well as oxidative stress and neuronal apoptosis in the hippocampus of scopolamine (SCOP)-induced senescence in mice, in order to reveal whether BSYZ is a potential therapeutic agent for Alzheimer’s disease (AD). A high-performance liquid chromatography (HPLC) fingerprint was applied to provide a chemical profile of BSYZ. Extracts of BSYZ were orally administered to mice with SCOP-induced memory impairment for two weeks. The learning and memory abilities were determined by the Morris water maze test. The oxidant stress-related indices, such as activity of superoxide dismutase (SOD) and levels of glutathione (GSH) and malondialdehyde (MDA) were examined in hippocampus of SCOP-treated mice. The cell death ratio was assessed by TUNEL staining, while apoptotic-related proteins including Bcl-2 and Bax were determined by immunofluorescent staining and western blot analysis. Caspase-3 was determined by western blot analysis. Consequently, a chromatographic condition, which was conducted at 35°C with a flow rate of 0.8 ml/min on the Gemini C18 column with mobile phase of acetonitrile and water-phosphoric acid (100:0.1, v/v), was established to yield common fingerprint chromatography under 203 nm with a similarity index of 0.986 within 10 batches of BSYZ samples. BSYZ at a dose of 2.92 g/kg significantly improved the cognitive ability, restored the abnormal activity of SOD and increased the levels of MDA and GSH induced by SCOP. Moreover, the neural apoptosis in the hippocampus of SCOP-treated mice was reversed by BSYZ by regulating the expression of Bcl-2, Bax and caspase-3. The results demonstrated that BSYZ had neuroprotective effects in SCOP-induced senescence in mice by ameliorating oxidative stress and neuronal apoptosis in the

  2. Chronic administration of quercetin prevent spatial learning and memory deficits provoked by chronic stress in rats.

    PubMed

    Mohammadi, Hadis Said; Goudarzi, Iran; Lashkarbolouki, Taghi; Abrari, Kataneh; Elahdadi Salmani, Mahmoud

    2014-08-15

    There are several reports that cognitive impairment is observed in stress related disorders and chronic stress impairs learning and memory. However, very few studies have looked into the possible ways of preventing this stress-induced deficit. This research study was conducted to evaluate the effects of quercetin, a natural flavonoid, with strong antioxidant and free radical scavenger properties, on chronic stress induced learning and memory deficits and oxidative stress in hippocampus. For chronic stress, rats were restrained daily for 6h/day (from 9:00 to 15:00) for 21 days in well-ventilated plexiglass tubes without access to food and water. The animals were injected with quercetin or vehicle 60 min before restraint stress over a period of 21 days. Then, rats trained with six trials per day for 6 consecutive days in the water maze. On day 28, a probe test was done to measure memory retention. In addition, oxidative stress markers in the hippocampus were evaluated. Results of this study demonstrated that chronic stress exposure rats exhibited higher escape latency during training trials and reduced time spent in target quadrant, higher escape location latency and average proximity in probe trial test. Quercetin (50mg/kg) treatment during restraint stress (21 days) markedly decreased escape latency and increased time spent in target quadrant during Morris water maze task. In comparison to vehicle treated group, chronic-stress group had significantly higher malondialdehyde (MDA) levels, significantly higher superoxide dismutase (SOD) activity and significantly lower glutathione peroxidase (GPx) activity in the hippocampus. Quercetin treatment caused a significant decrease in the hippocampus MDA levels and improves SOD and GPx activities in stressed animals. Finally, quercetin significantly decreased plasma corticosterone levels in stressed animals. Based on results of this study, chronic stress has detrimental effects on learning and memory and quercetin treatment

  3. Recovering and Preventing Loss of Detailed Memory: Differential Rates of Forgetting for Detail Types in Episodic Memory

    ERIC Educational Resources Information Center

    Sekeres, Melanie J.; Bonasia, Kyra; St-Laurent, Marie; Pishdadian, Sara; Winocur, Gordon; Grady, Cheryl; Moscovitch, Morris

    2016-01-01

    Episodic memories undergo qualitative changes with time, but little is known about how different aspects of memory are affected. Different types of information in a memory, such as perceptual detail, and central themes, may be lost at different rates. In patients with medial temporal lobe damage, memory for perceptual details is severely impaired,…

  4. Memory.

    ERIC Educational Resources Information Center

    McKean, Kevin

    1983-01-01

    Discusses current research (including that involving amnesiacs and snails) into the nature of the memory process, differentiating between and providing examples of "fact" memory and "skill" memory. Suggests that three brain parts (thalamus, fornix, mammilary body) are involved in the memory process. (JN)

  5. Erasure of Fear Memories is Prevented by Nogo Receptor 1 in Adulthood

    PubMed Central

    Bhagat, Sarah M.; Butler, Santino S.; Taylor, Jane R.; McEwen, Bruce S.; Strittmatter, Stephen M.

    2015-01-01

    Critical periods are temporary windows of heightened neural plasticity early in development. For example, fear memories in juvenile rodents are subject to erasure following extinction training, while after closure of this critical period, extinction training only temporarily and weakly suppresses fear memories. Persistence of fear memories is important for survival, but the inability to effectively adapt to the trauma is a characteristic of post-traumatic stress disorder. We examined whether Nogo Receptor 1 (NgR1) regulates the plasticity associated with fear extinction. Loss of NgR1 function in adulthood eliminates spontaneous fear recovery and fear renewal, with a restoration of fear reacquisition rate to equal that of naïve mice; thus mimicking the phenotype observed in juvenile rodents. Regional gene disruption demonstrates that NgR1 expression is required in both the basolateral amygdala (BLA) and infralimbic (IL) cortex to prevent fear erasure. NgR1 expression by parvalbumin expressing interneurons is essential for limiting extinction-dependent plasticity. NgR1 gene deletion enhances anatomical changes of inhibitory synapse markers after extinction training. Thus, NgR1 robustly inhibits elimination of fear expression in the adult brain and could serve as a therapeutic target for anxiety disorders, such as post-traumatic stress disorder (PTSD). PMID:26619810

  6. Pharmacological Modulation of Acute Trauma Memories to Prevent PTSD: Considerations from a Developmental Perspective

    PubMed Central

    Hruska, Bryce; Cullen, Patrick K.; Delahanty, Douglas L.

    2014-01-01

    Estimates of the lifetime prevalence of posttraumatic stress disorder (PTSD) in American adults range from 6.4–6.8%. PTSD is associated with increased risk for comorbid major depression, substance use disorder, suicide, and a variety of other mental and physical health conditions. Given the negative sequelae of trauma/PTSD, research has focused on identifying efficacious interventions that could be administered soon after a traumatic event to prevent or reduce the subsequent incidence of PTSD. While early psychosocial interventions have been shown to be relatively ineffective, early (secondary) pharmacological interventions have shown promise. These pharmacological approaches are largely based on the hypothesis that disruption of altered stress hormone levels and the consequent formation of trauma memories could protect against the development of PTSD. The present manuscript reviews the literature regarding the role of peri-traumatic stress hormones as risk factors for the development of PTSD and reviews evidence for the efficacy of exogenously modulating stress hormone levels to prevent/buffer the development of PTSD symptoms. Whereas prior literature has focused primarily on either child or adult studies, the present review incorporates both child and adult studies in a developmental approach to understanding risk for PTSD and how pharmacological modulation of acute memories may buffer the development of PTSD symptoms. PMID:24513176

  7. Antioxidant administration prevents memory impairment in an animal model of maple syrup urine disease.

    PubMed

    Scaini, Giselli; Teodorak, Brena P; Jeremias, Isabela C; Morais, Meline O; Mina, Francielle; Dominguini, Diogo; Pescador, Bruna; Comim, Clarissa M; Schuck, Patrícia F; Ferreira, Gustavo C; Quevedo, João; Streck, Emilio L

    2012-05-16

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder resulting from deficiency of branched-chain α-keto acid dehydrogenase complex leading to branched chain amino acids (BCAA) leucine, isoleucine, and valine accumulation as well as their corresponding transaminated branched-chain α-keto acids. MSUD patients present neurological dysfunction and cognitive impairment. Here, we investigated whether acute and chronic administration of a BCAA pool causes impairment of acquisition and retention of avoidance memory in young rats. We have used two administration protocols. Acute administration consisted of three subcutaneous administrations of the BCAA pool (15.8 μL/g body weight at 1-h intervals) containing 190 mmol/L leucine, 59 mmol/L isoleucine, and 69 mmol/L valine or saline solution (0.85% NaCl; control group) in 30 days old Wistar rats. Chronic administration consisted of two subcutaneous administrations of BCAA pool for 21 days in 7 days old Wistar rats. N-acetylcysteine (NAC; 20 mg/kg) and deferoxamine (DFX; 20 mg/kg) co administration influence on behavioral parameters after chronic BCAA administration was also investigated. BCAA administration induced long-term memory impairment in the inhibitory avoidance and CMIA (continuous multiple-trials step-down inhibitory avoidance) tasks whereas with no alterations in CMIA retention memory. Inhibitory avoidance alterations were prevented by NAC and DFX. BCAA administration did not impair the neuropsychiatric state, muscle tone and strength, and autonomous function evaluated with the SHIRPA (SmithKline/Harwell/ImperialCollege/RoyalHospital/Phenotype Assessment) protocol. Taken together, our results indicate that alterations of motor activity or emotionality probably did not contribute to memory impairment after BCAA administration and NAC and DFX effects suggest that cognition impairment after BCAA administration may be caused by oxidative brain damage. PMID:22433584

  8. Cilostazol but not sildenafil prevents memory impairment after chronic cerebral hypoperfusion in middle-aged rats.

    PubMed

    Godinho, Jacqueline; de Oliveira, Janaina Nicolau; Ferreira, Emilene Dias Fiuza; Zaghi, Gislene Gonçalves D; Bacarin, Cristiano Correia; de Oliveira, Rúbia Maria Weffort; Milani, Humberto

    2015-04-15

    We previously reported that the phosphodiesterase-5 (PDE5) inhibitor sildenafil prevented neurodegeneration but not learning deficits in middle-aged rats that were subjected to the permanent, three-stage, four-vessel occlusion/internal carotid artery (4-VO/ICA) model of chronic cerebral hypoperfusion (CCH). In the present study, we examined whether the PDE3 inhibitor cilostazol alleviates the loss of long-term memory (i.e., retrograde amnesia) caused by CCH. The effect of sildenafil was then compared to cilostazol. Naive rats (12-15 months old) were trained in a non-food-rewarded eight-arm radial maze and subjected to CCH. One week later, retrograde memory was assessed for 5 weeks. Cilostazol (50mg/kg, p.o.) was administered for 42 days or 15 days, beginning approximately 45 min after the first occlusion stage. Sildenafil (3mg/kg, p.o.) was similarly administered for 15 days only. Histological examination was performed after behavioral testing. Chronic cerebral hypoperfusion caused persistent retrograde amnesia, which was reversed by cilostazol after both short-term and long-term treatment. This antiamnesic effect of cilostazol was sustained throughout the experiment, even after discontinuing treatment (15-day treatment group). This effect occurred in the absence of neuronal rescue. Sildenafil failed to prevent CCH-induced retrograde amnesia, but it reduced hippocampal cell death. Extending previous findings from this laboratory, we conclude that sildenafil does not afford memory recovery after CCH, despite its neuroprotective effect. In contrast, cilostazol abolished CCH-induced retrograde amnesia, an effect that may not depend on histological neuroprotection. The present data suggest that cilostazol but not sildenafil represents a potential strategy for the treatment of cognitive sequelae associated with CCH.

  9. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    PubMed

    Sun, Bao-Fei; Wang, Qing-Qing; Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  10. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB

    PubMed Central

    Yu, Zi-Jiang; Yu, Yan; Xiao, Chao-Lun; Kang, Chao-Sheng; Ge, Guo; Linghu, Yan; Zhu, Jun-De; Li, Yu-Mei; Li, Qiang-Ming; Luo, Shi-Peng; Yang, Dang; Li, Lin; Zhang, Wen-Yan; Tian, Guang

    2015-01-01

    High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus. PMID:26368803

  11. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.

    PubMed

    Kaczmarczyk, Melissa M; Machaj, Agnieszka S; Chiu, Gabriel S; Lawson, Marcus A; Gainey, Stephen J; York, Jason M; Meling, Daryl D; Martin, Stephen A; Kwakwa, Kristin A; Newman, Andrew F; Woods, Jeffrey A; Kelley, Keith W; Wang, Yanyan; Miller, Michael J; Freund, Gregory G

    2013-09-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD.

  12. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice.

    PubMed

    Kaczmarczyk, Melissa M; Machaj, Agnieszka S; Chiu, Gabriel S; Lawson, Marcus A; Gainey, Stephen J; York, Jason M; Meling, Daryl D; Martin, Stephen A; Kwakwa, Kristin A; Newman, Andrew F; Woods, Jeffrey A; Kelley, Keith W; Wang, Yanyan; Miller, Michael J; Freund, Gregory G

    2013-09-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1-3wks) of a high-fat diet (HFD). After 1wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. PMID:23411461

  13. Methylphenidate prevents high-fat diet (HFD)-induced learning/memory impairment in juvenile mice

    PubMed Central

    Kaczmarczyk, Melissa M.; Machaj, Agnieszka S.; Chiu, Gabriel S.; Lawson, Marcus A.; Gainey, Stephen J.; York, Jason M.; Meling, Daryl D.; Martin, Stephen A.; Kwakwa, Kristen A.; Newman, Andrew F.; Woods, Jeffrey A.; Kelley, Keith W.; Wang, Yanyan; Miller, Michael J.; Freund, Gregory G.

    2013-01-01

    The prevalence of childhood obesity has risen dramatically and coincident with this upsurge is a growth in adverse childhood psychological conditions including impulsivity, depression, anxiety and attention deficit/hyperactive disorder (ADHD). Due to confounds that exist when determining causality of childhood behavioral perturbations, controversy remains as to whether overnutrition and/or childhood obesity is important. Therefore, we examined juvenile mice to determine if biobehaviors were impacted by a short-term feeding (1–3 wks) of a high-fat diet (HFD). After 1 wk of a HFD feeding, mouse burrowing and spontaneous wheel running were increased while mouse exploration of the open quadrants of a zero maze, perfect alternations in a Y-maze and recognition of a novel object were impaired. Examination of mouse cortex, hippocampus and hypothalamus for dopamine and its metabolites demonstrated increased homovanillic acid (HVA) concentrations in the hippocampus and cortex that were associated with decreased cortical BDNF gene expression. In contrast, pro-inflammatory cytokine gene transcripts and serum IL-1α, IL-1β, TNF-α and IL-6 were unaffected by the short-term HFD feeding. Administration to mice of the psychostimulant methylphenidate prevented HFD-dependent impairment of learning/memory. HFD learning/memory impairment was not inhibited by the anti-depressants desipramine or reboxetine nor was it blocked in IDO or IL-1R1 knockout mice. In sum, a HFD rapidly impacts dopamine metabolism in the brain appearing to trigger anxiety-like behaviors and learning/memory impairments prior to the onset of weight gain and/or pre-diabetes. Thus, overnutrition due to fats may be central to childhood psychological perturbations such as anxiety and ADHD. PMID:23411461

  14. Effects of glucocorticoids on mood, memory, and the hippocampus. Treatment and preventive therapy.

    PubMed

    Brown, E Sherwood

    2009-10-01

    Corticosteroids, such as prednisone and dexamethasone, are commonly prescribed medications that suppress the immune system and decrease inflammation. Common side effects of long-term treatment with corticosteroids include weight gain, osteoporosis, and diabetes mellitus. This paper reviews the literature on psychiatric and cognitive changes during corticosteroid therapy and potential treatment options. Hypomania and mania are the most common mood changes during acute corticosteroid therapy, although depression has also been reported. However, depression is reported to be more common than mania during long-term treatment with corticosteroids. A decline in declarative and working memory is also reported during corticosteroid therapy. Corticosteroids are associated with changes in the temporal lobe, detected by structural, functional, and spectroscopic imaging. The mood and cognitive symptoms are dose dependent and frequently occur during the first few weeks of therapy. Other risk factors are not well characterized. Controlled trials suggest that lithium and phenytoin can prevent mood symptoms associated with corticosteroids. Lamotrigine and memantine also have been shown to reverse, at least partially, the declarative memory effects of corticosteroids. Uncontrolled trials suggest that antipsychotics, anti-seizure medications, and perhaps some antidepressants can also be useful for normalizing mood changes associated with corticosteroids. Thus, both the symptoms and treatment response are similar to those of bipolar disorder. Moreover, corticosteroid-induced mood and cognitive alterations have been shown to be reversible with dose reduction or discontinuation of treatment.

  15. Propofol Prevents Hippocampal Neuronal Loss and Memory Impairment in Cerebral Ischemia Injury Through Promoting PTEN Degradation.

    PubMed

    Chen, Xin; Du, Ye-Mu; Xu, Feng; Liu, Dai; Wang, Yuan-Lin

    2016-09-01

    Neuroprotective effect of propofol against cerebral ischemia injury was widely investigated. However, its mechanisms remain unclear. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is supposed as a cell survival pathway, and phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a negative regulator of AKT phosphorylation. Whether PTEN was involved in the protective effect of propofol against cerebral ischemia injury was not elucidated. In this study, the function of PTEN in the acute phase of cerebral ischemia injury was investigated. Our data showed that propofol promoted the PTEN degradation in the acute phase of cerebral ischemia injury and concurrently activated AKT phosphorylation. The increase of ubiquitinated PTEN caused by cerebral ischemia injury were degraded in propofol-pretreated rats. Moreover, we evidenced that proteasome activity was stimulated in propofol-treated rats. These data pointed that PTEN degradation was facilitated in the acute phase after propofol treatment possibly through activating ubiquitin-proteasome system. Therefore, we applied PTEN inhibitor-bpV before cerebral ischemia injury. Like propofol, bpV pretreatment also mitigated cerebral ischemia injury-induced cell loss in CA1 region and memory impairment. Taken together, our data suggest that PTEN degradation is neuroprotective against cerebral ischemia injury and propofol facilitates PTEN degradation to prevent hippocampal neuronal loss and memory deficit in cerebral ischemia injury.

  16. Propofol Prevents Hippocampal Neuronal Loss and Memory Impairment in Cerebral Ischemia Injury Through Promoting PTEN Degradation.

    PubMed

    Chen, Xin; Du, Ye-Mu; Xu, Feng; Liu, Dai; Wang, Yuan-Lin

    2016-09-01

    Neuroprotective effect of propofol against cerebral ischemia injury was widely investigated. However, its mechanisms remain unclear. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is supposed as a cell survival pathway, and phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a negative regulator of AKT phosphorylation. Whether PTEN was involved in the protective effect of propofol against cerebral ischemia injury was not elucidated. In this study, the function of PTEN in the acute phase of cerebral ischemia injury was investigated. Our data showed that propofol promoted the PTEN degradation in the acute phase of cerebral ischemia injury and concurrently activated AKT phosphorylation. The increase of ubiquitinated PTEN caused by cerebral ischemia injury were degraded in propofol-pretreated rats. Moreover, we evidenced that proteasome activity was stimulated in propofol-treated rats. These data pointed that PTEN degradation was facilitated in the acute phase after propofol treatment possibly through activating ubiquitin-proteasome system. Therefore, we applied PTEN inhibitor-bpV before cerebral ischemia injury. Like propofol, bpV pretreatment also mitigated cerebral ischemia injury-induced cell loss in CA1 region and memory impairment. Taken together, our data suggest that PTEN degradation is neuroprotective against cerebral ischemia injury and propofol facilitates PTEN degradation to prevent hippocampal neuronal loss and memory deficit in cerebral ischemia injury. PMID:27480093

  17. Physical exercise prevents short and long-term deficits on aversive and recognition memory and attenuates brain oxidative damage induced by maternal deprivation.

    PubMed

    Neves, Ben-Hur; Menezes, Jefferson; Souza, Mauren Assis; Mello-Carpes, Pâmela B

    2015-12-01

    It is known from previous research that physical exercise prevents long-term memory deficits induced by maternal deprivation in rats. But we could not assume similar effects of physical exercise on short-term memory, as short- and long-term memories are known to result from some different memory consolidation processes. Here we demonstrated that, in addition to long-term memory deficit, the short-term memory deficit resultant from maternal deprivation in object recognition and aversive memory tasks is also prevented by physical exercise. Additionally, one of the mechanisms by which the physical exercise influences the memory processes involves its effects attenuating the oxidative damage in the maternal deprived rats' hippocampus and prefrontal cortex.

  18. Effects and mechanism of cerebroprotein hydrolysate on learning and memory ability in mice.

    PubMed

    An, L; Han, X; Li, H; Ma, Y; Shi, L; Xu, G; Yuan, G; Sun, J; Zhao, N; Sheng, Y; Wang, M; Du, P

    2016-01-01

    Cerebroprotein hydrolysate is an extract from porcine brain tissue that acts on the central nervous system in various ways to protect neurons and improve memory, attention, and vigilance. This study examined the effect and mechanism of cerebroprotein hydrolysate on learning and memory in mice with scopolamine-induced impairment. Mice were given an intraperitoneal injection of scopolamine hydrobromide to establish a murine model of learning and memory impairment. After 35 successive days of cerebroprotein hydrolysate treatment, their behaviors were observed in the Morris water maze and step-down test. Superoxide dismutase (SOD), Na(+)-K(+)-ATPase, and acetylcholinesterase (AChE) activity, and malondialdehyde (MDA), γ-aminobutyric acid (GABA), and glutamic acid (Glu) levels in the brain tissue of the mice were determined, and pathological changes in the hippocampus were examined. The results of the water-maze test showed that cerebroprotein hydrolysate shortened the escape latency and increased the number of platform crossings. In the step-down test, cerebroprotein hydrolysate treatment prolonged the step-down latency and reduced the number of errors; cerebroprotein hydrolysate increased the activity of SOD, Na(+)-K(+)-ATPase, and AChE, reduced the levels of MDA, decreased the Glu/GABA ratio in brain tissue, and reduced pathological changes in the hippocampus. The results indicate that cerebroprotein hydrolysate can improve learning and memory in mice with scopolamine-induced impairment. This effect may be associated with its ability to reduce injury caused by free radicals, improve acetylcholine function, and modulate the Glu/GABA learning and memory regulation system, reducing excitotoxicity caused by Glu. PMID:27525868

  19. Memories.

    ERIC Educational Resources Information Center

    Brand, Judith, Ed.

    1998-01-01

    This theme issue of the journal "Exploring" covers the topic of "memories" and describes an exhibition at San Francisco's Exploratorium that ran from May 22, 1998 through January 1999 and that contained over 40 hands-on exhibits, demonstrations, artworks, images, sounds, smells, and tastes that demonstrated and depicted the biological,…

  20. Ethanol extract of Magnolia officinalis prevents lipopolysaccharide-induced memory deficiency via its antineuroinflammatory and antiamyloidogenic effects.

    PubMed

    Lee, Young-Jung; Choi, Dong-Young; Yun, Yeo-Pyo; Han, Sang Bae; Kim, Hwan Mook; Lee, Kiho; Choi, Seok Hwa; Yang, Mhan-Pyo; Jeon, Hyun Soo; Jeong, Jea-Hwang; Oh, Ki-Wan; Hong, Jin Tae

    2013-03-01

    Magnolia bark contains several compounds such as magnolol, honokiol, 4-O-methylhonokiol, obovatol, and other neolignan compounds. These compounds have been reported to have various beneficial effects in various diseases. There is sufficient possibility that ethanol extract of Magnolia officinalis is more effective in amyloidogenesis via synergism of these ingredients. Neuroinflammation has been known to play a critical role in the pathogenesis of Alzheimer's disease (AD). We investigated whether the ethanol extract of M. officinalis (10 mg/ kg in 0.05% ethanol) prevents memory dysfunction and amyloidogenesis in AD mouse model by intraperitoneal lipopolysaccharide (LPS, 250 µg/ kg/day for seven times) injection. We found that ethanol extract of M. officinalis prevented LPS-induced memory deficiency as well as inhibited the LPS-induced elevation of inflammatory proteins, such as inducible nitric oxide synthase and cyclooxygenase 2, and activation of astrocytes and microglia. In particular, administration of M. officinalis ethanol extract inhibited LPS-induced amyloidogenesis, which resulted in the inhibition of amyloid precursor protein, beta-site amyloid-precursor-protein-cleaving enzyme 1 and C99. Thus, this study shows that ethanol extract of M. officinalis prevents LPS-induced memory impairment as well as amyloidogenesis via inhibition of neuroinflammation and suggests that ethanol extract of M. officinalis might be a useful intervention for neuroinflammation-associated diseases such as AD.

  1. In vitro and ex-vivo cellular antioxidant protection and cognitive enhancing effects of an extract of Polygonum minus Huds (Lineminus™) demonstrated in a Barnes Maze animal model for memory and learning

    PubMed Central

    2014-01-01

    Background Polygonum minus Huds.is a culinary flavouring that is common in South East Asian cuisine and as a remedy for diverse maladies ranging from indigestion to poor eyesight. The leaves of this herb have been reported to be high in antioxidants. Flavonoids which have been associated with memory, cognition and protection against neurodegeneration were found in P. minus. Method This study examined a P. minus aqueous extract (Lineminus™) for its antioxidant activity using the Oxygen Radical Absorbance Capacity (ORAC) assay, the ex vivo Cellular Antioxidant Protection of erythrocytes (CAP-e) assays and for potential anticholinesterase activity in vitro. Cognitive function and learning of Lineminus™ was evaluated using scopolamine induced cognition deficits in a Barnes maze, rodent model of cognition. Results The extract displayed in vitro antioxidant activity with a total ORAC value of 16,964 μmole TE/gram. Cellular antioxidant protection from free radical damage using the CAP-e assay, with an IC50 of 0.58 g/L for inhibition of cellular oxidative damage, was observed. The extract inhibited cholinesterase activity with an IC50 of 0.04 mg/ml with a maximum inhibition of 68%. In a rodent model of cognition using scopolamine induced cognition deficits in the Barnes maze, the extract attenuated scopolamine induced disruptions in learning at the higher dose of 100 mg/kg. Conclusion These data shows that P. minus possesses antioxidant and anticholinesterase activity and demonstrated enhanced cognition in vivo. The data suggest neuroprotective properties of the extract. PMID:24886679

  2. Dietary CDP-Choline Supplementation Prevents Memory Impairment Caused by Impoverished Environmental Conditions in Rats

    ERIC Educational Resources Information Center

    Teather, Lisa A.; Wurtman, Richard J.

    2005-01-01

    The authors previously showed that dietary cytidine (5')-diphosphocholine (CDP-choline) supplementation could protect against the development of memory deficits in aging rats. In the present study, younger rats exposed to impoverished environmental conditions and manifesting hippocampal-dependent memory impairments similar to those observed in the…

  3. Naringin and Rutin Alleviates Episodic Memory Deficits in Two Differentially Challenged Object Recognition Tasks

    PubMed Central

    Ramalingayya, Grandhi Venkata; Nampoothiri, Madhavan; Nayak, Pawan G.; Kishore, Anoop; Shenoy, Rekha R.; Mallikarjuna Rao, Chamallamudi; Nandakumar, Krishnadas

    2016-01-01

    Background: Cognitive decline or dementia is a debilitating problem of neurological disorders such as Alzheimer's and Parkinson's disease, including special conditions like chemobrain. Dietary flavonoids proved to be efficacious in delaying the incidence of neurodegenerative diseases. Two such flavonoids, naringin (NAR) and rutin (RUT) were reported to have neuroprotective potential with beneficial effects on spatial and emotional memories in particular. However, the efficacy of these flavonoids is poorly understood on episodic memory, which comprises an important form of autobiographical memory. Objective: This study objective is to evaluate NAR and RUT to reverse time-delay-induced long-term and scopolamine-induced short-term episodic memory deficits in Wistar rats. Materials and Methods: We have evaluated both short-term and long-term episodic memory forms using novel object recognition task. Open field paradigm was used to assess locomotor activity for any confounding influence on memory assessment. Donepezil was used as positive control and was effective in both models at 1 mg/kg, i.p. Results: Animals treated with NAR and RUT at 50 and 100 mg/kg, p.o. spent significantly more time exploring novel object compared to familiar one, whereas control animals spent almost equal time with both objects in choice trial. NAR and RUT dose-dependently increased recognition and discriminative indices in time-induced long-term as well as scopolamine-induced short-term episodic memory deficit models without interfering with the locomotor activity. Conclusion: We conclude that, NAR and RUT averted both short- and long-term episodic memory deficits in Wistar rats, which may be potential interventions for neurodegenerative diseases as well as chemobrain condition. SUMMARY Incidence of Alzheimer's disease is increasing globally and the current therapy is only symptomatic. Curative treatment is a major lacuna. NAR and RUT are natural flavonoids proven for their pleiotropic

  4. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation.

    PubMed

    Wong-Goodrich, Sarah J E; Pfau, Madeline L; Flores, Catherine T; Fraser, Jennifer A; Williams, Christina L; Jones, Lee W

    2010-11-15

    Whole-brain irradiation (WBI) therapy produces progressive learning and memory deficits in patients with primary or secondary brain tumors. Exercise enhances memory and adult hippocampal neurogenesis in the intact brain, so we hypothesized that exercise may be an effective treatment to alleviate consequences of WBI. Previous studies using animal models to address this issue have yielded mixed results and have not examined potential molecular mechanisms. We investigated the short- and long-term effects of WBI on spatial learning and memory retention and determined whether voluntary running after WBI aids recovery of brain and cognitive function. Forty adult female C57Bl/6 mice given a single dose of 5 Gy or sham WBI were trained 2.5 weeks and up to 4 months after WBI in a Barnes maze. Half of the mice received daily voluntary wheel access starting 1 month after sham or WBI. Daily running following WBI prevented the marked decline in spatial memory retention observed months after irradiation. Bromodeoxyuridine (BrdUrd) immunolabeling and enzyme-linked immunosorbent assay indicated that this behavioral rescue was accompanied by a partial restoration of newborn BrdUrd+/NeuN+ neurons in the dentate gyrus and increased hippocampal expression of brain-derived vascular endothelial growth factor and insulin-like growth factor-1, and occurred despite irradiation-induced elevations in hippocampal proinflammatory cytokines. WBI in adult mice produced a progressive memory decline consistent with what has been reported in cancer patients receiving WBI therapy. Our findings show that running can abrogate this memory decline and aid recovery of adult hippocampal plasticity, thus highlighting exercise as a potential therapeutic intervention.

  5. Memantine prevents reference and working memory impairment caused by sleep deprivation in both young and aged Octodon degus.

    PubMed

    Tarragon, Ernesto; Lopez, Dolores; Estrada, Cristina; Gonzalez-Cuello, Ana; Ros, Carmen Ma; Lamberty, Yves; Pifferi, Fabien; Cella, Massimo; Canovi, Mara; Guiso, Giovanna; Gobbi, Marco; Fernández-Villalba, Emiliano; Blin, Olivier; Bordet, Regis; Richardson, Jill C; Herrero, María Trinidad

    2014-10-01

    Memory loss is one of the key features of cognitive impairment in either aging, Mild Cognitive Impairment (MCI) or dementia. Pharmacological treatments for memory loss are today focused on addressing symptomatology. One of these approved compounds is memantine, a partial NMDA receptor antagonist that has proved its beneficial effects in cognition. The Octodon degus (O. degus) has been recently proposed as a potential model relevant for neurodegenerative diseases. However, there are no previous studies investigating the effect of pharmacological treatments for age-related cognitive impairment in this rodent. In this work we aimed to evaluate the effect of memantine on sleep deprivation (SD)-induced memory impairment in young and old O. degus. Young and old animals were trained in different behavioral paradigms validated for memory evaluation, and randomly assigned to a control (CTL, n=14) or an SD (n=14) condition, and treated with vehicle or memantine (10-mg/Kg i.p.) before the SD started. We demonstrate that SD impairs memory in both young and old animals, although the effect in the old group was significantly more severe (P<0.05). Memantine pretreatment was able to prevent the cognitive impairment caused by SD in both age groups, while it had no negative effect on CTL animals. The positive effect of memantine in counteracting the negative effect of SD on the retrieval process even in the aged O. degus further supports the translational potential of both the challenge and the species, and will enable a better understanding of the behavioral features of memantine effects, especially related with reference and working memories.

  6. Propofol prevents electroconvulsive-shock-induced memory impairment through regulation of hippocampal synaptic plasticity in a rat model of depression

    PubMed Central

    Luo, Jie; Min, Su; Wei, Ke; Cao, Jun; Wang, Bin; Li, Ping; Dong, Jun; Liu, Yuanyuan

    2014-01-01

    Background Although a rapid and efficient psychiatric treatment, electroconvulsive therapy (ECT) induces memory impairment. Modified ECT requires anesthesia for safety purposes. Although traditionally found to exert amnesic effects in general anesthesia, which is an inherent part of modified ECT, some anesthetics have been found to protect against ECT-induced cognitive impairment. However, the mechanisms remain unclear. We investigated the effects of propofol (2,6-diisopropylphenol) on memory in depressed rats undergoing electroconvulsive shock (ECS), the analog of ECT in animals, under anesthesia as well as its mechanisms. Methods Chronic unpredictable mild stresses were adopted to reproduce depression in a rodent model. Rats underwent ECS (or sham ECS) with anesthesia with propofol or normal saline. Behavior was assessed in sucrose preference, open field and Morris water maze tests. Hippocampal long-term potentiation (LTP) was measured using electrophysiological techniques. PSD-95, CREB, and p-CREB protein expression was assayed with Western blotting. Results Depression induced memory damage, and downregulated LTP, PSD-95, CREB, and p-CREB; these effects were exacerbated in depressed rats by ECS; propofol did not reverse the depression-induced changes, but when administered in modified ECS, propofol improved memory and reversed the downregulation of LTP and the proteins. Conclusion These findings suggest that propofol prevents ECS-induced memory impairment, and modified ECS under anesthesia with propofol improves memory in depressed rats, possibly by reversing the excessive changes in hippocampal synaptic plasticity. These observations provide a novel insight into potential targets for optimizing the clinical use of ECT for psychiatric disorders. PMID:25285008

  7. (-)Epigallocatechin-3-gallate prevents the reserpine-induced impairment of short-term social memory in rats.

    PubMed

    Tseng, Hsiang-Chien; Wang, Mao-Hsien; Soung, Hung-Sheng; Chang, Yi; Chang, Kuo-Chi

    2015-12-01

    Reserpine has been confirmed to induce cognitive dysfunction and increase brain neural oxidative stress. Green tea catechins, particularly (-)epigallocatechin-3-gallate (EGCG), have strong antioxidative properties and can protect against numerous oxidative damages. In this study, we examined the possible protective effects of EGCG on reserpine-induced impairment of short-term memory in rats. Reserpine (1 mg/kg, intraperitoneal)-induced memory impairment was assessed using the social recognition task method; locomotor activity and the olfactory discrimination ability were not altered as measured by an open-field test and an olfactory discrimination test, respectively. EGCG treatment (100 and 300 mg/kg, intraperitoneal, for 7 days, starting 6 days before the reserpine injection) could improve the worsened social memory of reserpine-treated rats. Also, EGCG treatment reduced reserpine-induced lipid peroxidation and enhanced the antioxidation power in the hippocampi of reserpine-treated rats. These results suggest a protective effect of EGCG in treating reserpine-induced impairment of memory, most probably through its powerful antioxidative activities. Accordingly, EGCG may hold a clinically relevant value in preventing reserpine-induced cognitive dysfunction. PMID:26196076

  8. Estradiol prevents ozone-induced increases in brain lipid peroxidation and impaired social recognition memory in female rats.

    PubMed

    Guevara-Guzmán, R; Arriaga, V; Kendrick, K M; Bernal, C; Vega, X; Mercado-Gómez, O F; Rivas-Arancibia, S

    2009-03-31

    There is increasing concern about the neurodegenerative and behavioral consequences of ozone pollution in industrialized urban centers throughout the world and that women may be more susceptible to brain neurodegenerative disorders. In the present study we have investigated the effects of chronic (30 or 60 days) exposure to ozone on olfactory perception and memory and on levels of lipid peroxidation, alpha and beta estrogen receptors and dopamine beta-hydroxylase in the olfactory bulb in ovariectomized female rats. The ability of 17beta-estradiol to prevent these effects was then assessed. Results showed that ozone exposure for 30 or 60 days impaired formation/retention of a selective olfactory recognition memory 120 min after exposure to a juvenile stimulus animal with the effect at 60 days being significantly greater than at 30 days. They also showed impaired speed in locating a buried chocolate reward after 60 days of ozone exposure indicating some loss of olfactory perception. These functional impairments could all be prevented by coincident estradiol treatment. In the olfactory bulb, levels of lipid peroxidation were increased at both 30- and 60-day time-points and numbers of cells with immunohistochemical staining for alpha and beta estrogen receptors, and dopamine beta-hydroxylase were reduced as were alpha and beta estrogen receptor protein levels. These effects were prevented by estradiol treatment. Oxidative stress damage caused by chronic exposure to ozone does therefore impair olfactory perception and social recognition memory and may do so by reducing noradrenergic and estrogen receptor activity in the olfactory bulb. That these effects can be prevented by estradiol treatment suggests increased susceptibility to neurodegenerative disorders in aging women may be contributed to by reduced estrogen levels post-menopause.

  9. Review: Modulating the unfolded protein response to prevent neurodegeneration and enhance memory

    PubMed Central

    Halliday, Mark

    2015-01-01

    Recent evidence has placed the unfolded protein response (UPR) at the centre of pathological processes leading to neurodegenerative disease. The translational repression caused by UPR activation starves neurons of the essential proteins they need to function and survive. Restoration of protein synthesis, via genetic or pharmacological means, is neuroprotective in animal models, prolonging survival. This is of great interest due to the observation of UPR activation in the post mortem brains of patients with Alzheimer's, Parkinson's, tauopathies and prion diseases. Protein synthesis is also an essential step in the formation of new memories. Restoring translation in disease or increasing protein synthesis from basal levels has been shown to improve memory in numerous models. As neurodegenerative diseases often present with memory impairments, targeting the UPR to both provide neuroprotection and enhance memory provides an extremely exciting novel therapeutic target. PMID:25556298

  10. PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness.

    PubMed

    Ormerod, Brandi K; Hanft, Simon J; Asokan, Aditya; Haditsch, Ursula; Lee, Star W; Palmer, Theo D

    2013-03-01

    The detrimental effects of illness on cognition are familiar to virtually everyone. Some effects resolve quickly while others may linger after the illness resolves. We found that a transient immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal neurogenesis and impaired hippocampus-dependent spatial memory. The immune event caused an ∼50% reduction in the number of neurons generated during the illness and the onset of the memory impairment was delayed and coincided with the time when neurons generated during the illness would have become functional within the hippocampus. Broad spectrum non-steroidal anti-inflammatory drugs attenuated these effects but selective Cox-2 inhibition was ineffective while PPARγ activation was surprisingly effective at protecting both neurogenesis and memory from the effects of LPS-produced transient illness. These data may highlight novel mechanisms behind chronic inflammatory and neuroinflammatory episodes that are known to compromise hippocampus-dependent forms of learning and memory.

  11. PPARγ activation prevents impairments in spatial memory and neurogenesis following transient illness

    PubMed Central

    Ormerod, Brandi K.; Hanft, Simon J.; Asokan, Aditya; Haditsch, Ursula; Lee, Star W.; Palmer, Theo D.

    2012-01-01

    The detrimental effects of illness on cognition are familiar to virtually everyone. Some effects resolve quickly while others may linger after the illness resolves. We found that a transient immune response stimulated by lipopolysaccharide (LPS) compromised hippocampal neurogenesis and impaired hippocampus-dependent spatial memory. The immune event caused a 50% reduction in the number of neurons generated during the illness and the onset of the memory impairment was delayed and coincided with the time when neurons generated during the illness would have become functional within the hippocampus. Broad spectrum non-steroidal anti-inflammatory drugs attenuated these effects but selective Cox-2 inhibition was ineffective while PPARγ activation was surprisingly effective at protecting both neurogenesis and memory from the effects of LPS-produced transient illness. These data may highlight novel mechanisms behind chronic inflammatory and neuroinflammatory episodes that are known to compromise hippocampus-dependent forms of learning and memory. PMID:23108061

  12. Bardoxolone methyl prevents high-fat diet-induced alterations in prefrontal cortex signalling molecules involved in recognition memory.

    PubMed

    Camer, Danielle; Yu, Yinghua; Szabo, Alexander; Fernandez, Francesca; Dinh, Chi H L; Huang, Xu-Feng

    2015-06-01

    High fat (HF) diets are known to induce changes in synaptic plasticity in the forebrain leading to learning and memory impairments. Previous studies of oleanolic acid derivatives have found that these compounds can cross the blood-brain barrier to prevent neuronal cell death. We examined the hypothesis that the oleanolic acid derivative, bardoxolone methyl (BM) would prevent diet-induced cognitive deficits in mice fed a HF diet. C57BL/6J male mice were fed a lab chow (LC) (5% of energy as fat), a HF (40% of energy as fat), or a HF diet supplemented with 10mg/kg/day BM orally for 21weeks. Recognition memory was assessed by performing a novel object recognition test on the treated mice. Downstream brain-derived neurotrophic factor (BDNF) signalling molecules were examined in the prefrontal cortex (PFC) and hippocampus of mice via Western blotting and N-methyl-d-aspartate (NMDA) receptor binding. BM treatment prevented HF diet-induced impairment in recognition memory (p<0.001). In HF diet fed mice, BM administration attenuated alterations in the NMDA receptor binding density in the PFC (p<0.05), however, no changes were seen in the hippocampus (p>0.05). In the PFC and hippocampus of the HF diet fed mice, BM administration improved downstream BDNF signalling as indicated by increased protein levels of BDNF, phosphorylated tropomyosin related kinase B (pTrkB) and phosphorylated protein kinase B (pAkt), and increased phosphorylated AMP-activated protein kinase (pAMPK) (p<0.05). BM administration also prevented the HF diet-induced increase in the protein levels of inflammatory molecules, phosphorylated c-Jun N-terminal kinase (pJNK) in the PFC, and protein tyrosine phosphatase 1B (PTP1B) in both the PFC and hippocampus. In summary, these findings suggest that BM prevents HF diet-induced impairments in recognition memory by improving downstream BDNF signal transduction, increasing pAMPK, and reducing inflammation in the PFC and hippocampus.

  13. Wnt-5a prevents Aβ-induced deficits in long-term potentiation and spatial memory in rats.

    PubMed

    Zhang, Gui-Li; Zhang, Jun; Li, Shao-Feng; Lei, Liu; Xie, Hong-Yan; Deng, Fang; Feng, Jia-Chun; Qi, Jin-Shun

    2015-10-01

    Although the neurotoxicity of amyloid β (Aβ) protein in Alzheimer's disease (AD) has been reported widely, the exact molecular mechanism underlying the Aβ-induced synaptic dysfunction and memory impairment remains largely unclear. Growing evidence indicates that wingless-type (Wnt) signaling plays an important role in neuronal development, synapse formation and synaptic plasticity. In the present study, we investigated the neuroprotective action of Wnt-5a against the synaptic damage and memory deficit induced by Aβ25-35 by using in vivo electrophysiological recording and Morris water maze (MWM) test. We found that intracerebroventricular (i.c.v.) injection of Aβ25-35 alone did not affect the baseline field excitatory postsynaptic potentials (fEPSPs) and the paired-pulse facilitation (PPF) in the hippocampal CA1 region of rats, but significantly suppressed high frequency stimulation (HFS) induced long-term potentiation (LTP); pretreatment with Wnt-5a prevented the Aβ25-35-induced suppression of hippocampal LTP in a dose-dependent manner; soluble Frizzled-related protein (sFRP), a specific Wnt antagonist, effectively attenuated the protective effects of Wnt-5a. In MWM test, Aβ25-35 alone significantly disrupted spatial learning and memory ability of rats, while pretreatment with Wnt-5a effectively prevented the impairments induced by Aβ25-35. These results in the present study demonstrated for the first time the neuroprotective effects of Wnt-5a against Aβ-induced in vivo synaptic plasticity impairment and memory disorder, suggesting that Wnt signaling pathway is one of the important targets of Aβ neurotoxicity and Wnt-5a might be used as one of the putative candidates for the therapeutic intervention of AD.

  14. Ilex latifolia Prevents Amyloid β Protein (25-35)-Induced Memory Impairment by Inhibiting Apoptosis and Tau Phosphorylation in Mice.

    PubMed

    Kim, Joo Youn; Lee, Hong Kyu; Jang, Ji Yeon; Yoo, Jae Kuk; Seong, Yeon Hee

    2015-12-01

    Ilex latifolia Thunb. (Aquifoliaceae), a Chinese bitter tea called "kudingcha," has been widely consumed as a health beverage and found to possess antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-ischemic activities. The aim of the present study was to investigate the neuroprotective effects of an ethanol extract of I. latifolia against amyloid β protein (Aβ)-induced memory impairment in mice and neurotoxicity in cultured rat cortical neurons. Memory impairment in mice was induced by intracerebroventricular injection of 15 nmol Aβ (25-35) and measured by the passive avoidance test and Morris water maze test. Chronic administration of I. latifolia (25-100 mg/kg, p.o.) significantly prevented Aβ (25-35)-induced memory loss. I. latifolia also prevented the decrease of glutathione concentrations, increased lipid peroxidation, expression of phosphorylated tau (p-tau), and changes in apoptosis-associated proteins in the memory-impaired mouse brain. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 36 h induced neuronal apoptotic death. The neuronal cell death, elevation of intracellular Ca(2+) concentration, generation of reactive oxygen species, and expression of proapoptotic proteins caused by Aβ (25-35) in the cultured neurons were inhibited by treatment with I. latifolia (1-50 μg/mL). These results suggest that I. latifolia may have a possible therapeutic role in managing cognitive impairment associated with Alzheimer's disease. The underlying mechanism might involve the antiapoptotic effects mediated by antioxidant activity and inhibition of p-tau formation.

  15. Interaction between two cholesterol metabolism genes influences memory: findings from the Wisconsin Registry for Alzheimer’s Prevention

    PubMed Central

    Engelman, Corinne D.; Koscik, Rebecca L.; Jonaitis, Erin M.; Okonkwo, Ozioma C.; Hermann, Bruce P.; La Rue, Asenath; Sager, Mark A.

    2013-01-01

    The strongest genetic factor for late-onset Alzheimer’s disease (AD) is APOE; nine additional susceptibility genes have recently been identified. The effect of these genes is often assumed to be additive and polygenic scores are formed as a summary measure of risk. However, interactions between these genes are likely to be important. We sought to examine the role of interactions between the nine recently identified AD susceptibility genes and APOE in cognitive function and decline in 1,153 participants from the Wisconsin Registry for Alzheimer’s Prevention, a longitudinal study of middle-aged adults enriched for a parental history of AD. Participants underwent extensive cognitive testing at baseline and up to two additional visits approximately 4 and 6 years later. The influence of the interaction between APOE and each of 14 single nucleotide polymorphisms (SNPs) in the nine recently identified genes on three cognitive factor scores (Verbal Learning and Memory, Working Memory, and Immediate Memory) was examined using linear mixed models adjusting for age, gender and ancestry. Interactions between the APOE ε4 allele and both of the genotyped ABCA7 SNPs, rs3764650 and rs3752246, were associated with all three cognitive factor scores (P-values ≤0.01). Both of these genes are in the cholesterol metabolism pathway leading to AD. This research supports the importance of considering non-additive effects of AD susceptibility genes. PMID:23669301

  16. Pre-training Catechin gavage prevents memory impairment induced by intracerebroventricular streptozotocin in rats

    PubMed Central

    Zamani, Marzieh; Rohampour, Kambiz; Zeraati, Maryam; Hosseinmardi, Narges; Kazemian, Mostafa M.

    2015-01-01

    Objective: To evaluate the effects of Catechin (CAT) on memory acquisition and retrieval in the animal model of sporadic alzheimer’s disease (sAD) induced by intracerebroventricular (icv) injection of streptozotocin (STZ) in passive avoidance memory test. Methods: Thirty adult rats were divided into 5 experimental groups (n=6). Animals were treated by icv saline/STZ (3 mg/kg) injection at day one and 3 after cannulation. The STZ+CAT group received 40 mg/kg CAT by daily gavages for 10 days, after icv STZ treatment and before training. The step-through latency (STL) and time spent in the dark compartment (TDC) were evaluated to examine the memory acquisition and retrieval. All tests were performed in Qom University of Medical Sciences, Qom, Iran, from April to December 2013. Results: The STZ treatment significantly decreased STL and increased the number of entries to the dark compartment on the training day. It also increased TDC, on day one and 7 after training. Pre-training gavage of CAT reversed the STL significantly (p=0.027). The CAT treatment also decreased the TDC in both early and late retrieval, in respect to STZ group. Conclusion: This data suggests that CAT as an antioxidant could improve both memory acquisition and retrieval in the animal model of sAD. PMID:26166589

  17. Original nootropic drug noopept prevents memory deficit in rats with muscarinic and nicotinic receptor blockade.

    PubMed

    Radionova, K S; Belnik, A P; Ostrovskaya, R U

    2008-07-01

    Antiamnesic activity of Noopept was studied on the original three-way model of conditioned passive avoidance response, which allows studying spatial component of memory. Cholinoceptor antagonists of both types (scopolamine and mecamylamine) decreased entry latency and reduced the probability for selection of the safe compartment. Noopept abolished the antiamnesic effect of cholinoceptor antagonists and improved spatial preference. PMID:19145351

  18. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease.

    PubMed

    Nunes, Marielza Andrade; Schöwe, Natalia Mendes; Monteiro-Silva, Karla Cristina; Baraldi-Tornisielo, Ticiana; Souza, Suzzanna Ingryd Gonçalves; Balthazar, Janaina; Albuquerque, Marilia Silva; Caetano, Ariadiny Lima; Viel, Tania Araujo; Buck, Hudson Sousa

    2015-01-01

    The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer's disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (0.25mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively [corrected]. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer's disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained.

  19. Chronic Microdose Lithium Treatment Prevented Memory Loss and Neurohistopathological Changes in a Transgenic Mouse Model of Alzheimer's Disease

    PubMed Central

    Monteiro-Silva, Karla Cristina; Baraldi-Tornisielo, Ticiana; Souza, Suzzanna Ingryd Gonçalves; Balthazar, Janaina; Albuquerque, Marilia Silva; Caetano, Ariadiny Lima; Viel, Tania Araujo; Buck, Hudson Sousa

    2015-01-01

    The use of lithium is well established in bipolar disorders and the benefits are being demonstrated in neurodegenerative disorders. Recently, our group showed that treatment with microdose lithium stabilized the cognitive deficits observed in Alzheimer’s disease (AD) patients. In order to verify the lithium microdose potential in preventing the disease development, the aim of this work was to verify the effects of chronic treatment with microdose lithium given before and after the appearance of symptoms in a mouse model of a disease similar to AD. Transgenic mice (Cg-Tg(PDGFB-APPSwInd)20Lms/2J) and their non-transgenic litter mate genetic controls were treated with lithium carbonate (1.2 mg/Kg/day in drinking water) for 16 or 8 months starting at two and ten months of age, respectively. Similar groups were treated with water. At the end of treatments, both lithium treated transgenic groups and non-transgenic mice showed no memory disruption, different from what was observed in the water treated transgenic group. Transgenic mice treated with lithium since two months of age showed decreased number of senile plaques, no neuronal loss in cortex and hippocampus and increased BDNF density in cortex, when compared to non-treated transgenic mice. It is suitable to conclude that these data support the use of microdose lithium in the prevention and treatment of Alzheimer’s disease, once the neurohistopathological characteristics of the disease were modified and the memory of transgenic animals was maintained. PMID:26605788

  20. Intravenous transplantation of bone marrow-derived mononuclear cells prevents memory impairment in transgenic mouse models of Alzheimer's disease.

    PubMed

    Kanamaru, Takuya; Kamimura, Naomi; Yokota, Takashi; Nishimaki, Kiyomi; Iuchi, Katsuya; Lee, Hyunjin; Takami, Shinya; Akashiba, Hiroki; Shitaka, Yoshitsugu; Ueda, Masayuki; Katsura, Ken-Ichiro; Kimura, Kazumi; Ohta, Shigeo

    2015-04-24

    Stem cell transplantation therapy is currently in clinical trials for the treatment of ischemic stroke, and several beneficial aspects have been reported. Similarly, in Alzheimer's disease (AD), stem cell therapy is expected to provide an efficient therapeutic approach. Indeed, the intracerebral transplantation of stem cells reduced amyloid-β (Aβ) deposition and rescued memory deficits in AD model mice. Here, we show that intravenous transplantation of bone marrow-derived mononuclear cells (BMMCs) improves cognitive function in two different AD mouse models, DAL and APP mice, and prevents neurodegeneration. GFP-positive BMMCs were isolated from tibiae and femurs of 4-week-old mice and then transplanted intravenously into DAL and APP mice. Transplantation of BMMCs suppressed neuronal loss and restored memory impairment of DAL mice to almost the same level as in wild-type mice. Transplantation of BMMCs to APP mice reduced Aβ deposition in the brain. APP mice treated with BMMCs performed significantly better on behavioral tests than vehicle-injected mice. Moreover, the effects were observed even with transplantation after the onset of cognitive impairment in DAL mice. Together, our results indicate that intravenous transplantation of BMMCs has preventive effects against the cognitive decline in AD model mice and suggest a potential therapeutic effect of BMMC transplantation therapy.

  1. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus.

    PubMed

    Portero-Tresserra, Marta; Del Olmo, Nuria; Martí-Nicolovius, Margarita; Guillazo-Blanch, Gemma; Vale-Martínez, Anna

    2014-11-01

    Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.

  2. Estrogen prevents norepinephrine alpha-2a receptor reversal of stress-induced working memory impairment

    PubMed Central

    SHANSKY, REBECCA M.; BENDER, GENEVIEVE; ARNSTEN, A. F. T.

    2011-01-01

    Understanding effects of estrogen on the medial prefrontal cortex (PFC) may help to elucidate the increased prevalence of depression and post-traumatic stress disorder in women of ovarian cycling age. Estrogen replacement in ovariectomized (OVX) young rats amplifies the detrimental effects of stress on working memory (a PFC-mediated task), but the mechanisms by which this occurs have yet to be identified. In male rats, stimulation of norepinephrine alpha-2 adrenoceptors protects working memory from stress-induced impairments. However, this effect has not been studied in females, and has not been examined for sensitivity to estrogen. The current study asked whether OVX females with estrogen replacement (OVX + Est) and without replacement (OVX + Veh) responded differently to stimulation of alpha-2 adrenoceptors after administration of the benzodiazepine inverse agonist FG7142, a pharmacological stressor. The alpha-2 agonist, guanfacine, protected working memory from the impairing effects of FG7142 in OVX + Veh, but not in OVX + Est rats. Western Blot analysis for alpha-2 receptors was performed on PFC tissue from each group, but no changes in expression were found, indicating that the behavioral effects observed were likely not due to changes in receptor expression. These findings point to possible mechanisms by which estrogen may enhance the stress response, and hold implications for the gender discrepancy in the prevalence of stress-related mental illness. PMID:19005873

  3. Grape powder supplementation prevents oxidative stress-induced anxiety-like behavior, memory impairment, and high blood pressure in rats.

    PubMed

    Allam, Farida; Dao, An T; Chugh, Gaurav; Bohat, Ritu; Jafri, Faizan; Patki, Gaurav; Mowrey, Christopher; Asghar, Mohammad; Alkadhi, Karim A; Salim, Samina

    2013-06-01

    We examined whether or not grape powder treatment ameliorates oxidative stress-induced anxiety-like behavior, memory impairment, and hypertension in rats. Oxidative stress in Sprague-Dawley rats was produced by using L-buthionine-(S,R)-sulfoximine (BSO). Four groups of rats were used: 1) control (C; injected with vehicle and provided with tap water), 2) grape powder-treated (GP; injected with vehicle and provided for 3 wk with 15 g/L grape powder dissolved in tap water), 3) BSO-treated [injected with BSO (300 mg/kg body weight), i.p. for 7 d and provided with tap water], and 4) BSO plus grape powder-treated (GP+BSO; injected with BSO and provided with grape powder-treated tap water). Anxiety-like behavior was significantly greater in BSO rats compared with C or GP rats (P < 0.05). Grape powder attenuated BSO-induced anxiety-like behavior in GP+BSO rats. BSO rats made significantly more errors in both short- and long-term memory tests compared with C or GP rats (P < 0.05), which was prevented in GP+BSO rats. Systolic and diastolic blood pressure was significantly greater in BSO rats compared with C or GP rats (P < 0.05), whereas grape powder prevented high blood pressure in GP+BSO rats. Furthermore, brain extracellular signal-regulated kinase-1/2 (ERK-1/2) was activated (P < 0.05), whereas levels of glyoxalase-1 (GLO-1), glutathione reductase-1 (GSR-1), calcium/calmodulin-dependent protein kinase type IV (CAMK-IV), cAMP response element-binding protein (CREB), and brain-derived neurotrophic factor (BDNF) were significantly less (P < 0.05) in BSO but not in GP+BSO rats compared with C or GP rats. We suggest that by regulating brain ERK-1/2, GLO-1, GSR-1, CAMK-IV, CREB, and BDNF levels, grape powder prevents oxidative stress-induced anxiety, memory impairment, and hypertension in rats. PMID:23596160

  4. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function.

  5. Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress.

    PubMed

    Kaster, Manuella P; Machado, Nuno J; Silva, Henrique B; Nunes, Ana; Ardais, Ana Paula; Santana, Magda; Baqi, Younis; Müller, Christa E; Rodrigues, Ana Lúcia S; Porciúncula, Lisiane O; Chen, Jiang Fan; Tomé, Ângelo R; Agostinho, Paula; Canas, Paula M; Cunha, Rodrigo A

    2015-06-23

    The consumption of caffeine (an adenosine receptor antagonist) correlates inversely with depression and memory deterioration, and adenosine A2A receptor (A2AR) antagonists emerge as candidate therapeutic targets because they control aberrant synaptic plasticity and afford neuroprotection. Therefore we tested the ability of A2AR to control the behavioral, electrophysiological, and neurochemical modifications caused by chronic unpredictable stress (CUS), which alters hippocampal circuits, dampens mood and memory performance, and enhances susceptibility to depression. CUS for 3 wk in adult mice induced anxiogenic and helpless-like behavior and decreased memory performance. These behavioral changes were accompanied by synaptic alterations, typified by a decrease in synaptic plasticity and a reduced density of synaptic proteins (synaptosomal-associated protein 25, syntaxin, and vesicular glutamate transporter type 1), together with an increased density of A2AR in glutamatergic terminals in the hippocampus. Except for anxiety, for which results were mixed, CUS-induced behavioral and synaptic alterations were prevented by (i) caffeine (1 g/L in the drinking water, starting 3 wk before and continued throughout CUS); (ii) the selective A2AR antagonist KW6002 (3 mg/kg, p.o.); (iii) global A2AR deletion; and (iv) selective A2AR deletion in forebrain neurons. Notably, A2AR blockade was not only prophylactic but also therapeutically efficacious, because a 3-wk treatment with the A2AR antagonist SCH58261 (0.1 mg/kg, i.p.) reversed the mood and synaptic dysfunction caused by CUS. These results herald a key role for synaptic A2AR in the control of chronic stress-induced modifications and suggest A2AR as candidate targets to alleviate the consequences of chronic stress on brain function. PMID:26056314

  6. Prevention of meningococcal serogroup B infections in children: a protein-based vaccine induces immunologic memory.

    PubMed

    de Kleijn, E D; de Groot, R; Lafeber, A B; Labadie, J; van Limpt, C J; Visser, J; Berbers, G A; van Alphen, L; Rümke, H C

    2001-07-01

    Immunologic memory against meningococci was studied in 177 children (100 children were 10-11 years old and 77 were 5-6 years old) 2.5 years after vaccination with hexavalent meningococcal outer membrane vesicle (OMV) vaccine or hepatitis B (HepB) vaccine. Children were revaccinated with monovalent P1.7(h),4 meningococcal OMV vaccine. Serum bactericidal antibodies (SBAs) were measured before revaccination and after 4-6 weeks. A minimum 4-fold increase in SBAs against serosubtype P1.7(h),4 was detected in 48.5% of the children after hexavalent meningococcal vaccine and in 8.9% after HepB vaccine. Of the initial responders given hexavalent meningococcal vaccine, 78% had > or =4-fold increase in SBAs against strain P1.4. Thus, immunologic memory is present in toddlers and school-aged children previously given 3 hexavalent meningococcal vaccinations. Booster vaccination with monovalent P1.7(h),4 meningococcal OMV vaccine induces a significant increase in SBAs against serosubtype P1.7(h),4 and cross-reactivity against other serosubtypes in the hexavalent vaccine.

  7. PWZ-029, an inverse agonist selective for α₅ GABAA receptors, improves object recognition, but not water-maze memory in normal and scopolamine-treated rats.

    PubMed

    Milić, Marija; Timić, Tamara; Joksimović, Srđan; Biawat, Poonam; Rallapalli, Sundari; Divljaković, Jovana; Radulović, Tamara; Cook, James M; Savić, Miroslav M

    2013-03-15

    Inverse agonism at the benzodiazepine site of α(5) subunit-containing GABA(A) receptors is an attractive approach for the development of putative cognition-enhancing compounds, which are still far from clinical application. Several ligands with binding and/or functional selectivity for α(5) GABA(A) receptors have been synthesized and tested in a few animal models. PWZ-029 is an α(5) GABA(A) selective inverse agonist whose memory enhancing effects were demonstrated in the passive avoidance task in rats and in Pavlovian fear conditioning in mice. In the present study we investigated the effects of PWZ-029 administration in novel object recognition test and Morris water maze, in normal and scopolamine-treated rats. All the three doses of PWZ-029 (2, 5 and 10 mg/kg) improved object recognition after the 24-h delay period, as shown by significant differences between the exploration times of the novel and old object, and the respective discrimination indices. PWZ-029 (2 mg/kg) also successfully reversed the 0.3 mg/kg scopolamine-induced deficit in recognition memory after the 1-h delay. In the Morris water maze test, PWZ-029 (5, 10 and 15 mg/kg) did not significantly influence swim patterns, either during five acquisition days or during the treatment-free probe trial. PWZ-029 (2, 5 and 10 mg/kg) also proved to be ineffective in the reversal of the 1mg/kg scopolamine-induced memory impairment in the water maze. The present mixed results encourage use of a variety of tests and experimental conditions in order to increase the predictability of preclinical testing of selective α(5) GABA(A) inverse agonists.

  8. Trace administration of vitamin E can retrieve and prevent UV-irradiation- and metal exposure-induced memory deficits in nematode Caenorhabditis elegans.

    PubMed

    Ye, Huayue; Ye, Boping; Wang, Dayong

    2008-07-01

    Vitamin E (alpha-tocopherol), a lipid-soluble anti-oxidant, prevents the uncontrolled propagation of lipid peroxidation by free radicals. Nevertheless, there is weak or no evidence of a protective effect of previous vitamin E intake on cognitive function in humans. In the present study, we explored the thermosensation model to investigate the possible effects of vitamin E administration on memory behaviors in Caenorhabditis elegans. Administration of 100 and 200microg/mL of vitamin E had no significant effects on the memory for different time intervals, whereas relatively high concentration (400microg/mL) of vitamin E exposure shortened the extinction period of the association paradigm (food at 20 degrees C). Following the UV-irradiation, post-treatment with 200microg/mL of vitamin E not only retrieved the UV-irradiation-induced memory deficits, but also enhanced the memory functions in UV-irradiating animals. Post-treatment with trace vitamin E could also ameliorate the memory deficits in metal (Al or Pb) exposed worms. In addition, pre-treatment with 200microg/mL of vitamin E could effectively prevent the occurrence of memory deficits induced by metal exposure and UV-irradiation. Therefore, the close association may exist between trace dietary vitamin E intake and memory behaviors, and a specific response mechanism may be activated after the administration of vitamin E in stress-exposed animals. Moreover, treatment with 200microg/mL of vitamin E could restore the memory deficits formed in the ncs-1 mutant worms, suggesting that exogenous treatment with trace vitamin E can largely mimic the function of NCS-1 in regulating the memory for thermosensation.

  9. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    PubMed

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  10. High intelligence prevents the negative impact of anxiety on working memory.

    PubMed

    Chuderski, Adam

    2015-01-01

    Using a large sample and the confirmatory factor analysis, the study investigated the relationships between anxiety, working memory (WM) and (fluid) intelligence. The study showed that the negative impact of anxiety on WM functioning diminishes with increasing intelligence, and that anxiety can significantly affect WM only in people below average intelligence. This effect could not be fully explained by the sheer differences in WM capacity (WMC), suggesting the importance of higher-level cognition in coping with anxiety. Although intelligence moderated the impact of anxiety on WM, it was only weakly related to anxiety. In contrast to previous studies, anxiety explained the substantial amount of WMC variance (17.8%) in less intelligent participants, but none of the variance in more intelligent ones. These results can be explained in terms of either increased motivation of intelligent but anxious people to cope with a WM task, or their ability to compensate decrements in WM.

  11. The mood-stabilizer lithium prevents hippocampal apoptosis and improves spatial memory in experimental meningitis.

    PubMed

    Liechti, Fabian D; Stüdle, Nicolas; Theurillat, Regula; Grandgirard, Denis; Thormann, Wolfgang; Leib, Stephen L

    2014-01-01

    Pneumococcal meningitis is associated with high morbidity and mortality rates. Brain damage caused by this disease is characterized by apoptosis in the hippocampal dentate gyrus, a morphological correlate of learning deficits in experimental paradigms. The mood stabilizer lithium has previously been found to attenuate brain damage in ischemic and inflammatory diseases of the brain. An infant rat model of pneumococcal meningitis was used to investigate the neuroprotective and neuroregenerative potential of lithium. To assess an effect on the acute disease, LiCl was administered starting five days prior to intracisternal infection with live Streptococcus pneumoniae. Clinical parameters were recorded, cerebrospinal fluid (CSF) was sampled, and the animals were sacrificed 42 hours after infection to harvest the brain and serum. Cryosections of the brains were stained for Nissl substance to quantify brain injury. Hippocampal gene expression of Bcl-2, Bax, p53, and BDNF was analyzed. Lithium concentrations were measured in serum and CSF. The effect of chronic lithium treatment on spatial memory function and cell survival in the dentate gyrus was evaluated in a Morris water maze and by quantification of BrdU incorporation after LiCl treatment during 3 weeks following infection. In the hippocampus, LiCl significantly reduced apoptosis and gene expression of Bax and p53 while it increased expression of Bcl-2. IL-10, MCP-1, and TNF were significantly increased in animals treated with LiCl compared to NaCl. Chronic LiCl treatment improved spatial memory in infected animals. The mood stabilizer lithium may thus be a therapeutic alternative to attenuate neurofunctional deficits as a result of pneumococcal meningitis.

  12. Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague–Dawley rats

    PubMed Central

    Bugarith, Kishor; Russell, Vivienne A

    2012-01-01

    Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague–Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus. PMID:22476924

  13. Maternal separation enhances object location memory and prevents exercise-induced MAPK/ERK signalling in adult Sprague-Dawley rats.

    PubMed

    Makena, Nokuthula; Bugarith, Kishor; Russell, Vivienne A

    2012-09-01

    Early life stress increases the risk of developing psychopathology accompanied by reduced cognitive function in later life. Maternal separation induces anxiety-like behaviours and is associated with impaired memory. On the other hand, exercise has been shown to diminish anxiety-like behaviours and improve cognitive function. The effects of maternal separation and exercise on anxiety, memory and hippocampal proteins were investigated in male Sprague-Dawley rats. Maternal separation produced anxiety-like behaviours which were reversed by exercise. Maternal separation also enhanced object location memory which was not affected by exercise. Exercise did, however, increase synaptophysin and phospho-extracellular signal-regulated kinase (p-ERK) in the hippocampus of non-separated rats and this effect was not observed in maternally separated rats. These findings show that maternal separation selectively enhanced n memory and prevented activation of the MAPK/ERK signalling pathway in the adult rat hippocampus.

  14. Protein kinase Mζ-dependent maintenance of GluA2 at the synapse: a possible target for preventing or treating age-related memory decline?

    PubMed

    Aicardi, Giorgio

    2013-08-01

    Age-related functional alterations in the perforant path projection from the entorhinal cortex to the dentate gyrus (DG) of the hippocampus play a major role in age-related memory impairments, but little is known about the molecular mechanisms responsible for these changes. In a recent interesting study, Hara and colleagues (J Neurosci 2012;32:7336-7344) tested young and aged monkeys on the visual recognition memory test "delayed nonmatching-to-sample" (DNMS). Then they performed electron microscopy immunocytochemistry in the hippocampal DG to determine the subcellular localization of the GluA2 subunit of the glutamate α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) and protein kinase Mζ (PKMζ), which promotes memory storage by regulating GluA2-containing AMPAR trafficking. The results obtained suggest that age-related deficits in visual recognition memory are coupled with impairment in PKMζ-dependent maintenance of GluA2 at the synapse. Together with previous evidence of the critical role of PKMζ in memory consolidation, these data render this enzyme an attractive potential therapeutic target for preventing or treating age-related memory decline, and support the view that the pharmacological manipulation of AMPAR trafficking in the synapses may provide new insights in the search of memory enhancers for aged individuals, including those affected by Alzheimer disease.

  15. Forced treadmill exercise prevents oxidative stress and memory deficits following chronic cerebral hypoperfusion in the rat.

    PubMed

    Cechetti, Fernanda; Worm, Paulo Valdeci; Elsner, Viviane Rostirolla; Bertoldi, Karine; Sanches, Eduardo; Ben, Juliana; Siqueira, Ionara Rodrigues; Netto, Carlos Alexandre

    2012-01-01

    Physical activity impacts functional recovery following stroke in humans, however its effects in experimental animals submitted to chronic cerebral hypoperfusion have not been investigated. The aim of this study was to evaluate the therapeutic potential of exercise, as assessed by cognitive activity in the Morris water maze and the brain oxidative status, through measurement of macromolecules damage, TBARS levels and total cellular thiols, as well as antioxidant enzymes in hippocampus, striatum and cerebral cortex. Adult male Wistar rats were submitted to the modified permanent bilateral occlusion of the common carotid arteries (2VO) method, with right common carotid artery being first occluded, and tested 3 months after the ischemic event. The effects of three different exercise protocols were examined: pre-ischemia, post-ischemia and pre+post-ischemia. Physical exercise consisted of sessions of 20-min, 3 times per week during 12 weeks (moderate intensity). Rats were submitted to cognitive assessment, in both reference and working spatial memory and after the last testing session were sacrificed to have oxidative stress parameters determined. Hypoperfusion caused a significant cognitive deficit in both spatial water maze tasks and this effect was reversed in rats receiving exercise protocol post and pre+post the ischemic event. Moreover, forced regular treadmill exercise regulated oxidative damage and antioxidant enzyme activity in the hippocampus. These results suggest that physical exercise protects against cognitive and biochemical impairments caused by chronic cerebral hypoperfusion.

  16. [Commemorative lecture of receiving Imamura Memorial Prize. Studies on prevention and treatment of childhood tuberculosis].

    PubMed

    Takamatsu, I

    1999-11-01

    We performed a retrospective analysis of 394 patients who were treated for active tuberculosis (TB) at our hospital from 1976 to 1997. We had started early BCG vaccination campaign in Osaka Prefecture from 1995 and the coverage of BCG vaccination in infants rose up to about 90%. From that experience, we studied the current situations and measures on prevention and treatment of childhood tuberculosis. Pulmonary TB in children is successfully treated with 6-month standard short-course chemotherapy using isoniazid, rifampin, and pyrazinamide daily for 2 months, followed by isoniazid and rifampin daily for 4 months. Prognosis of childhood tuberculous meningitis (TBM) is poor, early diagnosis and prevention of TBM is important. In order to promote TB control and eliminate childhood TB, especially in infants, the following is necessary; 1) early detection and treatment of adult TB patients, source of infection, 2) prompt and appropriate contact examination and chemoprophylaxis, 3) BCG vaccination during early infancy, 4) protection from MDR-TB are most important.

  17. [Commemorative lecture of receiving Imamura Memorial Prize. Studies on prevention and treatment of childhood tuberculosis].

    PubMed

    Takamatsu, I

    1999-11-01

    We performed a retrospective analysis of 394 patients who were treated for active tuberculosis (TB) at our hospital from 1976 to 1997. We had started early BCG vaccination campaign in Osaka Prefecture from 1995 and the coverage of BCG vaccination in infants rose up to about 90%. From that experience, we studied the current situations and measures on prevention and treatment of childhood tuberculosis. Pulmonary TB in children is successfully treated with 6-month standard short-course chemotherapy using isoniazid, rifampin, and pyrazinamide daily for 2 months, followed by isoniazid and rifampin daily for 4 months. Prognosis of childhood tuberculous meningitis (TBM) is poor, early diagnosis and prevention of TBM is important. In order to promote TB control and eliminate childhood TB, especially in infants, the following is necessary; 1) early detection and treatment of adult TB patients, source of infection, 2) prompt and appropriate contact examination and chemoprophylaxis, 3) BCG vaccination during early infancy, 4) protection from MDR-TB are most important. PMID:10599214

  18. Prevention

    MedlinePlus

    ... our e-newsletter! Aging & Health A to Z Prevention Basic Facts & Information Some factors that affect your ... control of the things that you can change. Preventive Recommendations for Adults Aged 65 and Older The ...

  19. Acute homocysteine administration impairs memory consolidation on inhibitory avoidance task and decreases hippocampal brain-derived neurotrophic factor immunocontent: prevention by folic acid treatment.

    PubMed

    Matté, C; Pereira, L O; Dos Santos, T M; Mackedanz, V; Cunha, A A; Netto, C A; Wyse, A T S

    2009-11-10

    In the present study, we first investigated the effect of single homocysteine administration on consolidation of short- and long-term memories of inhibitory avoidance task in Wistar rats. We also measured brain-derived neurotrophic factor levels in the hippocampus and parietal cortex of rats. The influence of pretreatment with folic acid on behavioral and biochemical effects elicited by homocysteine was also studied. Wistar rats were subjected to a folic acid or saline pretreatment from their 22(nd) to 28(th) day of life; 12 h later they were submitted to a single administration of homocysteine or saline. For motor activity and memory evaluation we performed open-field and inhibitory avoidance tasks. Hippocampus and parietal cortex were obtained for brain-derived neurotrophic factor immunocontent determination. Results showed that homocysteine impaired short- and long-term memories and reduced brain-derived neurotrophic factor levels in the hippocampus. Pretreatment with folic acid prevented both the memory deficit and the reduction in the brain-derived neurotrophic factor immunocontent induced by homocysteine injection. Further studies are required to determine the entire mechanism by which folic acid acts and its potential therapeutic use for memory impairment prevention in homocystinuric patients.

  20. Transiently Increasing cAMP Levels Selectively in Hippocampal Excitatory Neurons during Sleep Deprivation Prevents Memory Deficits Caused by Sleep Loss

    PubMed Central

    Bruinenberg, Vibeke M.; Tudor, Jennifer C.; Ferri, Sarah L.; Baumann, Arnd; Meerlo, Peter

    2014-01-01

    The hippocampus is particularly sensitive to sleep loss. Although previous work has indicated that sleep deprivation impairs hippocampal cAMP signaling, it remains to be determined whether the cognitive deficits associated with sleep deprivation are caused by attenuated cAMP signaling in the hippocampus. Further, it is unclear which cell types are responsible for the memory impairments associated with sleep deprivation. Transgenic approaches lack the spatial resolution to manipulate specific signaling pathways selectively in the hippocampus, while pharmacological strategies are limited in terms of cell-type specificity. Therefore, we used a pharmacogenetic approach based on a virus-mediated expression of a Gαs-coupled Drosophila octopamine receptor selectively in mouse hippocampal excitatory neurons in vivo. With this approach, a systemic injection with the receptor ligand octopamine leads to increased cAMP levels in this specific set of hippocampal neurons. We assessed whether transiently increasing cAMP levels during sleep deprivation prevents memory consolidation deficits associated with sleep loss in an object–location task. Five hours of total sleep deprivation directly following training impaired the formation of object–location memories. Transiently increasing cAMP levels in hippocampal neurons during the course of sleep deprivation prevented these memory consolidation deficits. These findings demonstrate that attenuated cAMP signaling in hippocampal excitatory neurons is a critical component underlying the memory deficits in hippocampus-dependent learning tasks associated with sleep deprivation. PMID:25411499

  1. NK₃ receptor agonism reinstates temporal order memory in the hemiparkinsonian rat.

    PubMed

    Chao, Owen Y; Wang, An-Li; Nikolaus, Susanne; de Souza Silva, Maria A

    2015-05-15

    Animals treated with unilateral 6-hydroxydopamine (6-ODHA) injections, an animal model of Parkinson's disease, exhibit deficits in memory for temporal order, but show intact novel object recognition. Since senktide, a potent neurokinin-3 receptor (NK3-R) agonist, has been shown to have promnestic effects in the aged rat and to alleviate scopolamine-induced impairment, the present study aimed to assess possible promnestic effects of senktide in the hemiparkinsonian rat model. Animals received unilateral 6-ODHA microinjections into the medial forebrain bundle. Two weeks later, they were randomly assigned to treatment with vehicle, 0.2, or 0.4 mg/kg senktide. Temporal order memory and place recognition tests were conducted, locomotor activity and turning behavior were assessed in the open field and anxiety-related behavior was measured in the light-dark box. Treatments were administered 30 min prior to behavioral testing with an interval of seven days between tests. The animals treated with 0.2 mg/kg senktide exhibited temporal order memory, unlike the vehicle-treated group. No significant treatment effects were found in the open field and light-dark box. Administration of 0.2 mg/kg senktide may influence the prefrontal cortex and hippocampus, leading to compensations for deficits in memory for temporal order.

  2. Cognitive-Enhancing Effect of Aronia melanocarpa Extract against Memory Impairment Induced by Scopolamine in Mice.

    PubMed

    Lee, Hyeon Yong; Weon, Jin Bae; Jung, Youn Sik; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2016-01-01

    Aronia melanocarpa (A. melanocarpa) berries are a fruit with a marked antioxidant effect. The objective of this study was to confirm the effect of A. melanocarpa berries extract against scopolamine-induced memory impairment in mice using the Morris water maze and passive avoidance test. Moreover, we determined a possible mechanism of the cognitive-enhancing effect involving AChE activity and BDNF and p-CREB expression in the hippocampus of mice. A. melanocarpa berries extract attenuated the learning and memory impairment induced by scopolamine in the Morris water maze (79.3 ± 0.8 s of 200 mg/kg and 64.4 ± 10.7 s of 400 mg/kg on day 4) and passive avoidance tests (46.0 ± 41.1 s of 200 mg/kg and 25.6 ± 18.7 s of 400 mg/kg). A. melanocarpa berries extract reduced the acetylcholinesterase level in the hippocampus of scopolamine-injected mice and increased BDNF and p-CREB expression in the hippocampus. The major compound, cyanidin-3-O-galactoside, also reversed memory impairment. These results showed that A. melanocarpa berries extract improved memory impairment by inhibiting AChE and increasing BDNF and p-CREB expression, and cyanidin-3-O-galactoside may be responsible for the effect of A. melanocarpa berries extract.

  3. Cognitive-Enhancing Effect of Aronia melanocarpa Extract against Memory Impairment Induced by Scopolamine in Mice

    PubMed Central

    Lee, Hyeon Yong; Weon, Jin Bae; Jung, Youn Sik; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2016-01-01

    Aronia melanocarpa (A. melanocarpa) berries are a fruit with a marked antioxidant effect. The objective of this study was to confirm the effect of A. melanocarpa berries extract against scopolamine-induced memory impairment in mice using the Morris water maze and passive avoidance test. Moreover, we determined a possible mechanism of the cognitive-enhancing effect involving AChE activity and BDNF and p-CREB expression in the hippocampus of mice. A. melanocarpa berries extract attenuated the learning and memory impairment induced by scopolamine in the Morris water maze (79.3 ± 0.8 s of 200 mg/kg and 64.4 ± 10.7 s of 400 mg/kg on day 4) and passive avoidance tests (46.0 ± 41.1 s of 200 mg/kg and 25.6 ± 18.7 s of 400 mg/kg). A. melanocarpa berries extract reduced the acetylcholinesterase level in the hippocampus of scopolamine-injected mice and increased BDNF and p-CREB expression in the hippocampus. The major compound, cyanidin-3-O-galactoside, also reversed memory impairment. These results showed that A. melanocarpa berries extract improved memory impairment by inhibiting AChE and increasing BDNF and p-CREB expression, and cyanidin-3-O-galactoside may be responsible for the effect of A. melanocarpa berries extract. PMID:27239211

  4. Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease.

    PubMed

    Bang, Shraddha R; Ambavade, Shirishkumar D; Jagdale, Priti G; Adkar, Prafulla P; Waghmare, Arun B; Ambavade, Prashant D

    2015-07-01

    Lacosamide, a histone deacetylase (HDAC) inhibitor, has been approved for the treatment of epilepsy. Some HDAC inhibitors have been proven effective for the treatment of memory disorders. The present investigation was designed to evaluate the effect of lacosamide on memory and brain HDAC levels. The effect on memory was evaluated in animals with scopolamine-induced amnesia using the elevated plus maze, object recognition test, and radial arm maze. The levels of acetylcholinesterase and HDAC in the cerebral cortex were evaluated. Lacosamide at doses of 10 and 30mg/kg significantly reduced the transfer latency in the elevated plus maze. Lacosamide at a dose of 30mg/kg significantly increased the time spent with a familiar object in the object recognition test at the 24h interval and decreased the time spent in the baited arm. Moreover, at this dose, the number of errors in the radial arm maze at 3 and 24h intervals was minimized and a reduction in the level of HDAC1, but not acetylcholinesterase, was observed in the cerebral cortex. These effects of lacosamide are equivalent to those of piracetam at a dose of 300mg/kg. These results suggest that lacosamide at a 30mg/kg dose improves disrupted memory, possibly by inhibiting HDAC, and could be used to treat amnesic symptoms of Alzheimer's disease.

  5. A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I.

    PubMed

    Touyarot, Katia; Bonhomme, Damien; Roux, Pascale; Alfos, Serge; Lafenêtre, Pauline; Richard, Emmanuel; Higueret, Paul; Pallet, Véronique

    2013-01-01

    Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions. PMID:23977218

  6. A Mid-Life Vitamin A Supplementation Prevents Age-Related Spatial Memory Deficits and Hippocampal Neurogenesis Alterations through CRABP-I

    PubMed Central

    Touyarot, Katia; Bonhomme, Damien; Roux, Pascale; Alfos, Serge; Lafenêtre, Pauline; Richard, Emmanuel; Higueret, Paul; Pallet, Véronique

    2013-01-01

    Age-related memory decline including spatial reference memory is considered to begin at middle-age and coincides with reduced adult hippocampal neurogenesis. Moreover, a dysfunction of vitamin A hippocampal signalling pathway has been involved in the appearance of age-related memory deficits but also in adult hippocampal neurogenesis alterations. The present study aims at testing the hypothesis that a mid-life vitamin A supplementation would be a successful strategy to prevent age-related memory deficits. Thus, middle-aged Wistar rats were submitted to a vitamin A enriched diet and were tested 4 months later in a spatial memory task. In order to better understand the potential mechanisms mediating the effects of vitamin A supplementation on hippocampal functions, we studied different aspects of hippocampal adult neurogenesis and evaluated hippocampal CRABP-I expression, known to modulate differentiation processes. Here, we show that vitamin A supplementation from middle-age enhances spatial memory and improves the dendritic arborisation of newborn immature neurons probably resulting in a better survival and neuronal differentiation in aged rats. Moreover, our results suggest that hippocampal CRABP-I expression which controls the intracellular availability of retinoic acid (RA), may be an important regulator of neuronal differentiation processes in the aged hippocampus. Thus, vitamin A supplementation from middle-age could be a good strategy to maintain hippocampal plasticity and functions. PMID:23977218

  7. Intense emotional experiences and enhanced training prevent memory loss induced by post-training amnesic treatments administered to the striatum, amygdala, hippocampus or substantia nigra.

    PubMed

    Prada-Alcala, Roberto A; Medina, Andrea C; Lopez, Norma Serafin; Quirarte, Gina L

    2012-01-01

    Most of the work related to the neurobiological basis of memory has been guided by the memory consolidation theory, which was derived from the seminal work of Miiller and Pilzecker that was published over a century ago. This theory proposes that the transfer from short- to long-term memory is mediated by a process called consolidation,and while consolidation is taking place, the information to be stored is in a labile state. A great deal of experimentation has given strong support to this proposal,as it has been found repeatedly that interference with neural activity shortly after a learning experience impedes durable retention of that experience. A growing body of evidence, however, indicates that intense emotional experiences prevent memory loss induced by amnesic treatments,even when these treatments are administered intracerebrally shortly after the learning experience. This evidence implies that the memory consolidation theory cannot account for long-term memory formation when neural activity is disrupted while consolidation should be taking place, and it calls for new hypotheses to account for these findings. PMID:23023883

  8. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  9. Exercise prevents high-fat diet-induced impairment of flexible memory expression in the water maze and modulates adult hippocampal neurogenesis in mice.

    PubMed

    Klein, C; Jonas, W; Iggena, D; Empl, L; Rivalan, M; Wiedmer, P; Spranger, J; Hellweg, R; Winter, Y; Steiner, B

    2016-05-01

    Obesity is currently one of the most serious threats to human health in the western civilization. A growing body of evidence suggests that obesity is associated with cognitive dysfunction. Physical exercise not only improves fitness but it has also been shown in human and animal studies to increase hippocampus-dependent learning and memory. High-fat diet (HFD)-induced obesity and physical exercise both modulate adult hippocampal neurogenesis. Adult neurogenesis has been demonstrated to play a role in hippocampus-dependent learning and memory, particularly flexible memory expression. Here, we investigated the effects of twelve weeks of HFD vs. control diet (CD) and voluntary physical activity (wheel running; -R) vs. inactivity (sedentary; -S) on hippocampal neurogenesis and spatial learning and flexible memory function in female C57Bl/6 mice assessed in the Morris water maze. HFD was initiated either in adolescent mice combined with long-term concurrent exercise (preventive approach) or in young adult mice with 14days of subsequent exercise (therapeutic approach). HFD resulted in impaired flexible memory expression only when initiated in adolescent (HFD-S) but not in young adult mice, which was successfully prevented by concurrent exercise (HFD-R). Histological analysis revealed a reduction of immature neurons in the hippocampus of the memory-impaired HFD-S mice of the preventive approach. Long-term physical exercise also led to accelerated spatial learning during the acquisition period, which was accompanied by increased numbers of newborn mature neurons (HFD-R and CD-R). Short-term exercise of 14days in the therapeutic group was not effective in improving spatial learning or memory. We show that (1) alterations in learning and flexible memory expression are accompanied by changes in the number of neuronal cells at different maturation stages; (2) these neuronal cells are in turn differently affected by HFD; (3) adolescent mice are specifically susceptible to the

  10. Chronic nicotine restores normal Aβ levels and prevents short-term memory and E-LTP impairment in Aβ rat model of Alzheimer's disease.

    PubMed

    Srivareerat, Marisa; Tran, Trinh T; Salim, Samina; Aleisa, Abdulaziz M; Alkadhi, Karim A

    2011-05-01

    Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by increased deposition of beta-amyloid (Aβ) peptides and progressive cholinergic dysfunction in regions of the brain involved in learning and memory processing. In AD, progressive accumulation of Aβ peptide impairs nicotinic acetylcholine receptor (nAChR) function by an unknown mechanism believed to involve α(7)- and α(4)β(2)-nAChR blockade. The three approaches of the current study evaluated the effects of chronic nicotine treatment in the prevention of Aβ-induced impairment of learning and short-term memory. Rat AD model was induced by 14-day i.c.v. osmotic pump infusion of a 1:1 mixture of 300 pmol/day Aβ(1-40)/Aβ(1-42) or Aβ(40-1) (inactive peptide, control). The effect of nicotine (2 mg/(kg day)) on Aβ-induced spatial learning and memory impairments was assessed by evaluation of performance in the radial arm water maze (RAWM), in vivo electrophysiological recordings of early-phase long-term potentiation (E-LTP) in urethane-anesthetized rats, and immunoblot analysis to determine changes in the levels of beta-site amyloid precursor protein (APP)-cleaving enzyme (BACE), Aβ and memory-related proteins. The results indicate that 6 weeks of nicotine treatment reduced the levels of Aβ(1-40) and BACE1 peptides in hippocampal area CA1 and prevented Aβ-induced impairment of learning and short-term memory. Chronic nicotine also prevented the Aβ-induced inhibition of basal synaptic transmission and LTP in hippocampal area CA1. Furthermore, chronic nicotine treatment prevented the Aβ-induced reduction of α(7)- and α(4)-nAChR. These effects of nicotine may be due, at least in part, to upregulation of brain derived neurotropic factor (BDNF).

  11. Nakahara memorial lecture. Application of the mechanisms of nutritional carcinogenesis to the prevention of cancer.

    PubMed

    Weisburger, J H

    1985-01-01

    and processing, and on the role of certain promoting or inhibiting elements such as fat, fiber, or components of fruits and vegetables. Certain of these elements are sufficiently well established for application to the prevention of specific cancers in various parts of the world. PMID:3916190

  12. Saffron (Crocus sativus L.) extract prevents and improves D-galactose and NaNO2 induced memory impairment in mice

    PubMed Central

    Dashti-r, M.H.; Zeinali, F.; Anvari, M.; Hosseini, S.M.

    2012-01-01

    This study was conducted to examine the effects of saffron extract on preventing D-galactose and NaNO2 induced memory impairment and improving learning and memory deficits in amnestic mice. In this study, the learning and memory functions in ovariectomized mice were examined by the one way passive and active avoidance tests. In active avoidance test, training in amnestic treated (AT) and amnestic prophylaxis (AP) groups, was improved so that there was a significant difference between them and the amnestic control (AC) group. In passive avoidance test, animal's step through latency, as an index for learning, in all test groups was significantly greater than control group. Total time spent in dark room (DS), which opposes the memory retention ability, in AC was significantly greater than AT group at 1 and 2 hours after full training, while there was not any significant difference between this index in AP and AT as compared with normal control (NC) group. Our findings indicate that saffron hydro-alcoholic extract prevents and improves amnesia induced by D-galactose and NaNO2 in mice. PMID:27418908

  13. Acute treatment with bis selenide, an organic compound containing the trace element selenium, prevents memory deficits induced by reserpine in rats.

    PubMed

    Bortolatto, Cristiani Folharini; Guerra Souza, Ana Cristina; Wilhelm, Ethel Antunes; Nogueira, Cristina Wayne

    2013-01-01

    Taking into account the promising pharmacological actions of (Z)-2,3-bis(4-chlorophenylselanyl) prop-2-en-1-ol) (bis selenide), an organic compound containing the trace element selenium, and the constant search for drugs that improve the cognitive performance, the objective of the present study was to investigate whether bis selenide treatment ameliorates memory deficits induced by reserpine in rats. For this aim, male adult rats received a single subcutaneous injection of reserpine (1 mg/kg), a biogenic amine-depleting agent used to induce memory deficit. After 24 h, bis selenide at doses of 25 and 50 mg/kg was administered to rats by intragastric route, and 1 h later, the animals were submitted to behavior tasks. The effects of acute administration of bis selenide on memory were evaluated by social recognition, step-down passive avoidance, and object recognition paradigms. Exploratory and locomotor activities of rats were determined using the open-field test. Analysis of data revealed that the social memory disruption caused by reserpine was reversed by bis selenide at both doses. In addition, bis selenide, at the highest dose, prevented the memory deficit resulting from reserpine administration to rats in step-down passive avoidance and object recognition tasks. No significant alterations in locomotor and exploratory behaviors were found in animals treated with reserpine and/or bis selenide. Results obtained from distinct memory behavioral paradigms revealed that an acute treatment with bis selenide attenuated memory deficits induced by reserpine in rats.

  14. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    PubMed

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc.

  15. Preventive effects of Salvia officinalis L. against learning and memory deficit induced by diabetes in rats: Possible hypoglycaemic and antioxidant mechanisms.

    PubMed

    Hasanein, Parisa; Felehgari, Zhila; Emamjomeh, Abbasali

    2016-05-27

    Learning and memory impairment occurs in diabetes. Salvia officinalis L. (SO) has been used in Iranian traditional medicine as a remedy against diabetes. We hypothesized that chronic administration of SO (400, 600 and 800mg/kg, p.o.) and its principal constituent, rosmarinic acid, would affect on passive avoidance learning (PAL) and memory in streptozocin-induced diabetic and non-diabetic rats. We also explored hypoglycemic and antioxidant activities of SO as the possible mechanisms. Treatments were begun at the onset of hyperglycemia. PAL was assessed 30days later. Retention test was done 24h after training. At the end, animals were weighed and blood samples were drawn for further analyzing of glucose and oxidant/antioxidant markers. Diabetes induced deficits in acquisition and retrieval processes. SO (600 and 800mg/kg) and rosmarinic acid reversed learning and memory deficits induced by diabetes and improved cognition of healthy rats. While the dose of 400mg/kg had no effect, the higher doses and rosmarinic acid inhibited hyperglycemia and lipid peroxidation as well as enhanced the activity of antioxidant enzymes superoxide dismutase and catalase. SO prevented diabetes-induced acquisition and memory deficits through inhibiting hyperglycemia, lipid peroxidation as well as enhancing antioxidant defense systems. Therefore, SO and its principal constituent rosmarinic acid represent a potential therapeutic option against diabetic memory impairment which deserves consideration and further examination.

  16. Administration of the TrkB receptor agonist 7,8-dihydroxyflavone prevents traumatic stress-induced spatial memory deficits and changes in synaptic plasticity.

    PubMed

    Sanz-García, Ancor; Knafo, Shira; Pereda-Pérez, Inmaculada; Esteban, José A; Venero, César; Armario, Antonio

    2016-09-01

    Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic situations and it is characterized by cognitive deficits that include impaired explicit memory. The neurobiological bases of such PTSD-associated memory alterations are yet to be elucidated and no satisfactory treatment for them exists. To address this issue, we first studied whether a single exposure of young adult rats (60 days) to immobilization on boards (IMO), a putative model of PTSD, produces long-term behavioral effects (2-8 days) similar to those found in PTSD patients. Subsequently, we investigated whether the administration of the TrkB agonist 7,8-dihydroxyflavone (DHF) 8 h after stress (therapeutic window) ameliorated the PTSD-like effect of IMO and the associated changes in synaptic plasticity. A single IMO exposure induced a spatial memory impairment similar to that found in other animal models of PTSD or in PTSD patients. IMO also increased spine density and long-term potentiation (LTP) in the CA3-CA1 pathway. Significantly, DHF reverted both spatial memory impairment and the increase in LTP, while it produced no effect in the controls. These data provide novel insights into the possible neurobiological substrate for explicit memory impairment in PTSD patients, supporting the idea that the activation of the BDNF/TrkB pathway fulfils a protective role after severe stress. Administration of DHF in the aftermath of a traumatic experience might be relevant to prevent its long-term consequences. © 2016 Wiley Periodicals, Inc. PMID:27068341

  17. Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus.

    PubMed

    Kim, Sung-Eun; Ko, Il-Gyu; Kim, Bo-Kyun; Shin, Mal-Soon; Cho, Sehyung; Kim, Chang-Ju; Kim, Sang-Hun; Baek, Seung-Soo; Lee, Eun-Kyu; Jee, Yong-Seok

    2010-05-01

    Aging leads to functional changes in the hippocampus, and consequently induces cognitive deficits, such as failure of memory. Neurogenesis in the hippocampal dentate gyrus continues throughout life, but steadily declines from early adulthood. Apoptosis occurs under various pathologic and physiologic conditions, and excessive apoptotic cell death can cause a number of functional disorders in humans. Apoptosis in the hippocampus also disturbs cognitive functions. In this study, we examined the effect of treadmill exercise on memory in relation to neurogensis and apoptosis in the hippocampal dentate gyrus of old-aged rats. The present results showed that loss of memory by aging was associated with a decrease in neurogenesis and an increase in apoptosis in the hippocampal dentate gyrus. Treadmill exercise improved short-term and spatial memories by enhancing neurogenesis and suppressing apoptosis in the hippocampal dentate gyrus of old-aged rats. In the present study, we showed that treadmill exercise is a very useful strategy for preventing failure of memory in the elderly.

  18. Prevention

    MedlinePlus

    ... Prevention Treatment 2003 U.S. Outbreak African Rodent Importation Ban For Clinicians Clinical Recognition Specimen Collection Treatment Smallpox ... Examining Animals with Suspected Monkeypox African Rodent Importation Ban Resources Related Links Poxvirus Molluscum Contagiosum Orf Virus ( ...

  19. Spermidine Suppresses Age-Associated Memory Impairment by Preventing Adverse Increase of Presynaptic Active Zone Size and Release

    PubMed Central

    Gupta, Varun K.; Pech, Ulrike; Fulterer, Andreas; Ender, Anatoli; Mauermann, Stephan F.; Andlauer, Till F. M.; Beuschel, Christine; Thriene, Kerstin; Quentin, Christine; Schwärzel, Martin; Mielke, Thorsten; Madeo, Frank; Dengjel, Joern; Fiala, André; Sigrist, Stephan J.

    2016-01-01

    Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse. PMID:27684064

  20. Neuropeptide Y (NPY) prevents depressive-like behavior, spatial memory deficits and oxidative stress following amyloid-β (Aβ(1-40)) administration in mice.

    PubMed

    dos Santos, Vanessa V; Santos, Danúbia B; Lach, Gilliard; Rodrigues, Ana Lúcia S; Farina, Marcelo; De Lima, Thereza C M; Prediger, Rui Daniel

    2013-05-01

    Neuropeptide Y (NPY) is a 36-amino acid peptide widely distributed in the central nervous system (CNS) that has been associated with the modulation of several functions including food intake, learning and memory, mood and neuroprotection. There is great interest in understanding the role of NPY in the deleterious effects induced by the central accumulation of amyloid-β (Aβ) peptides, a pathological hallmark of Alzheimer's disease (AD). Herein, we evaluated the effects of a single intracerebroventricular (i.c.v.) administration of NPY (0.0234 μmol/μL) 15 min prior to the i.c.v. injection of aggregated Aβ1-40 peptide (400 pmol/mouse) in behavioral and neurochemical parameters related to oxidative stress in mice. Pretreatment with NPY prevented Aβ1-40-induced depressive-like responses and spatial memory impairments evaluated in the tail suspension and object location tasks, respectively. The protective effects of NPY on spatial memory of Aβ1-40-treated mice were abolished by the pretreatment with the selective Y2 receptor antagonist BIIE0246. On the other hand, the administration of NPY and Aβ1-40 did not alter the performance of the animals in the elevated plus-maze and open field arena, indicating lack of effects on anxiety state and locomotor function. Although Aβ1-40 infusion did not change hippocampal and cortical glutathione peroxidase (GPx) activity and glutathione (GSH) levels, Aβ1-40-infused animals showed an increased lipid peroxidation in hippocampus and prefrontal cortex that were blunted by NPY administration. These findings indicate that central administration of NPY prevents Aβ1-40-induced depressive-like behavior and spatial memory deficits in mice and that this response is mediated, at least in part, by the activation of Y2 receptors and prevention of oxidative stress.

  1. Voluntary exercise followed by chronic stress strikingly increases mature adult-born hippocampal neurons and prevents stress-induced deficits in 'what-when-where' memory.

    PubMed

    Castilla-Ortega, Estela; Rosell-Valle, Cristina; Pedraza, Carmen; Rodríguez de Fonseca, Fernando; Estivill-Torrús, Guillermo; Santín, Luis J

    2014-03-01

    We investigated whether voluntary exercise prevents the deleterious effects of chronic stress on episodic-like memory and adult hippocampal neurogenesis. After bromodeoxyuridine (BrdU) administration, mice were assigned to receive standard housing, chronic intermittent restraint stress, voluntary exercise or a combination of both (stress starting on the seventh day of exercise). Twenty-four days later, mice were tested in a 'what-when-where' object recognition memory task. Adult hippocampal neurogenesis (proliferation, differentiation, survival and apoptosis) and c-Fos expression in the hippocampus and extra-hippocampal areas (medial prefrontal cortex, amygdala, paraventricular hypothalamic nucleus, accumbens and perirhinal cortex) were assessed after behavior. Chronic intermittent restraint stress impaired neurogenesis and the 'when' memory, while exercise promoted neurogenesis and improved the 'where' memory. The 'when' and 'where' memories correlated with c-Fos expression in CA1 and the dentate gyrus, respectively. Furthermore, analysis suggested that each treatment induced a distinct pattern of functional connectivity among the areas analyzed for c-Fos. In the animals in which stress and exercise were combined, stress notably reduced the amount of voluntary exercise performed. Nevertheless, exercise still improved memory and counteracted the stress induced-deficits in neurogenesis and behavior. Interestingly, compared with the other three treatments, the stressed exercising animals showed a larger increase in cell survival, the maturation of new neurons and apoptosis in the dentate gyrus, with a considerable increase in the number of 24-day-old BrdU+cells that differentiated into mature neurons. The interaction between exercise and stress in enhancing the number of adult-born hippocampal neurons supports a role of exercise-induced neurogenesis in stressful conditions. PMID:24333647

  2. Single fluoxetine treatment before but not after stress prevents stress-induced hippocampal long-term depression and spatial memory retrieval impairment in rats.

    PubMed

    Han, Huili; Dai, Chunfang; Dong, Zhifang

    2015-07-28

    A growing body of evidence has shown that chronic treatment with fluoxetine, a widely prescribed medication for treatment of depression, can affect synaptic plasticity in the adult central nervous system. However, it is not well understood whether acute fluoxetine influences synaptic plasticity, especially on hippocampal CA1 long-term depression (LTD), and if so, whether it subsequently impacts hippocampal-dependent spatial memory. Here, we reported that LTD facilitated by elevated-platform stress in hippocampal slices was completely prevented by fluoxetine administration (10 mg/kg, i.p.) 30 min before stress. The LTD was not, however, significantly inhibited by fluoxetine administration immediately after stress. Similarly, fluoxetine incubation (10 μM) during electrophysiological recordings also displayed no influence on the stress-facilitated LTD. In addition, behavioral results showed that a single fluoxetine treatment 30 min before but not after acute stress fully reversed the impairment of spatial memory retrieval in the Morris water maze paradigm. Taken together, these results suggest that acute fluoxetine treatment only before, but not after stress, can prevent hippocampal CA1 LTD and spatial memory retrieval impairment caused by behavioral stress in adult animals.

  3. Prevention of progression to dementia in the elderly: rationale and proposal for a health-promoting memory consultation (an IANA Task Force).

    PubMed

    Gillette Guyonnet, S; Abellan Van Kan, G; Andrieu, S; Aquino, J P; Arbus, C; Becq, J P; Berr, C; Bismuth, S; Chamontin, B; Dantoine, T; Dartigues, J F; Dubois, B; Fraysse, B; Hergueta, T; Hanaire, H; Jeandel, C; Lagleyre, S; Lala, F; Nourhashemi, F; Ousset, P J; Portet, F; Ritz, P; Robert, P; Rolland, Y; Sanz, C; Soto, M; Touchon, J; Vellas, B

    2008-10-01

    Alzheimer's disease (AD) is the most frequent form of dementia and according to the most recent estimation it affects nearly 27 million people in the world. The onset of the disease is generally insidious. It is becoming increasingly evident that the underlying pathophysiological mechanisms are active long before the appearance of the clinical symptoms of the disease. In the current context, it is important to develop strategies to delay the onset of cognitive decline. Delaying the onset by 5 years would reduce the prevalence by half at term, and a delay of 10 years would reduce it by three-quarters. The effectiveness of currently suggested preventive approaches remains to be confirmed, but certain strategies could be applied straight away to at-risk subjects. We propose that a health-promoting memory consultation should be set up for elderly persons who have attended a specialized memory consultation and in whom the diagnosis of dementia and of AD in particular, has not been established by standardized tools. Through this consultation, they would be offered full multidimensional investigation of all aspects of their health status, follow-up could be organized, general practitioners in private practice could be made more conscious of this population and the elderly could be made more aware of the risk factors to which they are exposed. The development of an information policy for the elderly would meet a present need. In our reflection, we must take into account the question of how to give this preventive consultation its due place in the healthcare pathway of the elderly person in order to ensure coordinated follow-up with all the other health professionals involved. The principle of the health-promoting memory consultation is undergoing validation in a large French multicentre preventive trial in 1200 frail elderly persons aged 70 years followed for three years, the Multidomain Alzheimer Preventive Trial (MAPT).

  4. Regular Exercise Prevents Sleep Deprivation Associated Impairment of Long-Term Memory and Synaptic Plasticity in The CA1 Area of the Hippocampus

    PubMed Central

    Zagaar, Munder; Dao, An; Levine, Amber; Alhaider, Ibrahim; Alkadhi, Karim

    2013-01-01

    Study Objectives: The present study aimed to investigate the effects of treadmill exercise on sleep deprivation (S-D)-induced impairment of hippocampal dependent long-term memory, late phase long-term potentiation (L-LTP) and its signaling cascade in the cornu ammonis 1 (CA1) area. Experimental Design: Animals were conditioned to run on treadmills for 4 weeks then deprived of sleep for 24 h using the columns-in-water method. We tested the effect of exercise and/or S-D on behavioral performance using a post-learning paradigm in the radial arm water maze (RAWM) and in vivo extracellular recording in the CA1 area. The levels of L-LTP-related molecules in the CA1 area were then assessed both before and after L-LTP induction. Measurements and Results: After 24 h of S-D, spatial long-term memory impairment in the RAWM and L-LTP suppression was prevented by 4 weeks of regular exercise. Regular exercise also restored the S-D-associated decreases in the basal levels of key signaling molecules such as: calcium/calmodulin kinase IV (CaMKIV), mitogen-activated protein kinase (MAPK/ERK), phosphorylated cAMP response element-binding protein (P-CREB) and brain derived neurotrophic factor (BDNF), in the CA1 area. After L-LTP induction, regular exercise also prevented the S-D-induced down regulation of BDNF and P-CREB protein levels. Conclusions: The results suggest that our exercise protocol may prevent 24-h S-D-induced impairments in long-term memory and LTP by preventing deleterious changes in the basal and post-stimulation levels of P-CREB and BDNF associated with S-D. Citation: Zagaar M; Dao A; Levine A; Alhaider I; Alkadhi K. Regular exercise prevents sleep deprivation associated impairment of long-term memory and synaptic plasticity in the CA1 area of the hippocampus. SLEEP 2013;36(5):751-761. PMID:23633758

  5. Influence of asafoetida on prevention and treatment of memory impairment induced by d-galactose and NaNO2 in mice.

    PubMed

    Bagheri, Seyyed Majid; Dashti-R, Mohammad Hossein

    2015-09-01

    In Iranian traditional medicine, asafoetida is introduced as a valuable remedy for nervous disorders. Dementia was induced by injection of d-galactose and NaNO2 for 60 consecutive days. Animals were divided into normal control (NC), dementia control (DC), dementia prophylactic (DP), and dementia treated (DT). The learning and memory functions were examined by 1-way active and passive avoidance tests, using a shuttle box device. Avoidance response in training tests and 1 and 3 weeks later was significantly increased in NC, DP, and DT groups compared to the DC group. Step through latency in all groups was significantly greater than the DC group. Total time spent in light room, which shows the memory retention ability, in DP, NC, and DT was significantly greater than the DC group. Our findings indicate that asafoetida could prevent and treat amnesia. These beneficial effects maybe related to some constituent's effectiveness such as ferulic acid and umbelliferone.

  6. Preventing academic difficulties in preterm children: a randomised controlled trial of an adaptive working memory training intervention – IMPRINT study

    PubMed Central

    2013-01-01

    Background Very preterm children exhibit difficulties in working memory, a key cognitive ability vital to learning information and the development of academic skills. Previous research suggests that an adaptive working memory training intervention (Cogmed) may improve working memory and other cognitive and behavioural domains, although further randomised controlled trials employing long-term outcomes are needed, and with populations at risk for working memory deficits, such as children born preterm. In a cohort of extremely preterm (<28 weeks’ gestation)/extremely low birthweight (<1000 g) 7-year-olds, we will assess the effectiveness of Cogmed in improving academic functioning 2 years’ post-intervention. Secondary objectives are to assess the effectiveness of Cogmed in improving working memory and attention 2 weeks’, 12 months’ and 24 months’ post-intervention, and to investigate training related neuroplasticity in working memory neural networks 2 weeks’ post-intervention. Methods/Design This double-blind, placebo-controlled, randomised controlled trial aims to recruit 126 extremely preterm/extremely low birthweight 7-year-old children. Children attending mainstream school without major intellectual, sensory or physical impairments will be eligible. Participating children will undergo an extensive baseline cognitive assessment before being randomised to either an adaptive or placebo (non-adaptive) version of Cogmed. Cogmed is a computerised working memory training program consisting of 25 sessions completed over a 5 to 7 week period. Each training session takes approximately 35 minutes and will be completed in the child’s home. Structural, diffusion and functional Magnetic Resonance Imaging, which is optional for participants, will be completed prior to and 2 weeks following the training period. Follow-up assessments focusing on academic skills (primary outcome), working memory and attention (secondary outcomes) will be conducted at 2 weeks’, 12

  7. Behavioral effects of deep brain stimulation of different areas of the Papez circuit on memory- and anxiety-related functions.

    PubMed

    Hescham, Sarah; Jahanshahi, Ali; Meriaux, Céline; Lim, Lee Wei; Blokland, Arjan; Temel, Yasin

    2015-10-01

    Deep brain stimulation (DBS) has gained interest as a potential therapy for advanced treatment-resistant dementia. However, possible targets for DBS and the optimal stimulation parameters are not yet clear. Here, we compared the effects of DBS of the CA1 sub-region of the hippocampus, mammillothalamic tract, anterior thalamic nucleus, and entorhinal cortex in an experimental rat model of dementia. Rats with scopolamine-induced amnesia were assessed in the object location task with different DBS parameters. Moreover, anxiety-related side effects were evaluated in the elevated zero maze and open field. After sacrifice, we applied c-Fos immunohistochemistry to assess which memory-related regions were affected by DBS. When comparing all structures, DBS of the entorhinal cortex and CA1 sub-region was able to restore memory loss when a specific set of stimulation parameters was used. No anxiety-related side effects were found following DBS. The beneficial behavioral performance of CA1 DBS rats was accompanied with an activation of cells in the anterior cingulate gyrus. Therefore, we conclude that acute CA1 DBS restores memory loss possibly through improved attentional and cognitive processes in the limbic cortex.

  8. Resveratrol prevents age-related memory and mood dysfunction with increased hippocampal neurogenesis and microvasculature, and reduced glial activation.

    PubMed

    Kodali, Maheedhar; Parihar, Vipan K; Hattiangady, Bharathi; Mishra, Vikas; Shuai, Bing; Shetty, Ashok K

    2015-01-28

    Greatly waned neurogenesis, diminished microvasculature, astrocyte hypertrophy and activated microglia are among the most conspicuous structural changes in the aged hippocampus. Because these alterations can contribute to age-related memory and mood impairments, strategies efficacious for mitigating these changes may preserve cognitive and mood function in old age. Resveratrol, a phytoalexin found in the skin of red grapes having angiogenic and antiinflammatory properties, appears ideal for easing these age-related changes. Hence, we examined the efficacy of resveratrol for counteracting age-related memory and mood impairments and the associated detrimental changes in the hippocampus. Two groups of male F344 rats in late middle-age having similar learning and memory abilities were chosen and treated with resveratrol or vehicle for four weeks. Analyses at ~25 months of age uncovered improved learning, memory and mood function in resveratrol-treated animals but impairments in vehicle-treated animals. Resveratrol-treated animals also displayed increased net neurogenesis and microvasculature, and diminished astrocyte hypertrophy and microglial activation in the hippocampus. These results provide novel evidence that resveratrol treatment in late middle age is efficacious for improving memory and mood function in old age. Modulation of the hippocampus plasticity and suppression of chronic low-level inflammation appear to underlie the functional benefits mediated by resveratrol.

  9. Curcumin, the main part of turmeric, prevents learning and memory changes induced by sodium metabisulfite, a preservative agent, in rats.

    PubMed

    Noorafshan, Ali; Asadi-Golshan, Reza; Karbalay-Doust, Saied; Abdollahifar, Mohammad Amin; Rashidiani-Rashidabadi, Ali

    2013-03-01

    Sodium metabisulfite is used as a disinfectant, antioxidant, and preservative agent in the food, beverage, and drug industries. Neurons are highly sensitive to sulfite toxicity. Curcumin is the main part of turmeric and has neuroprotective effects on a variety of nervous system damages. The present study aimed to investigate the possible protective role of curcumin in learning and memory after exposure to sulfite in rats. The rats were divided into five groups receiving distilled water (solvent of the sulfite), olive oil (solvent of the curcumin), sodium metabisulfite (25 mg/kg/day), curcumin (100 mg/kg/day), and sulfite + curcumin. All the animals received daily gavages for 8 weeks. At the end of the 8(th) week, learning and memory were assessed in a partially-baited eight arm radial maze. The animals treated with sulfite showed fewer correct choices and more reference and working memory errors during the learning phase, at the end of the learning phase, and during the retention testing (p<0.001). The study results demonstrated that sulfite-exposure was associated with impaired learning and memory in rats. Adding curcumin to the rat nutrition plays a protective role in learning and memory after exposure to sulfite.

  10. Single dose of L-dopa makes extinction memories context-independent and prevents the return of fear.

    PubMed

    Haaker, Jan; Gaburro, Stefano; Sah, Anupam; Gartmann, Nina; Lonsdorf, Tina B; Meier, Kolja; Singewald, Nicolas; Pape, Hans-Christian; Morellini, Fabio; Kalisch, Raffael

    2013-06-25

    Traumatic events can engender persistent excessive fear responses to trauma reminders that may return even after successful treatment. Extinction, the laboratory analog of behavior therapy, does not erase conditioned fear memories but generates competing, fear-inhibitory "extinction memories" that, however, are tied to the context in which extinction occurred. Accordingly, a dominance of fear over extinction memory expression--and, thus, return of fear--is often observed if extinguished fear stimuli are encountered outside the extinction (therapy) context. We show that postextinction administration of the dopamine precursor L-dopa makes extinction memories context-independent, thus strongly reducing the return of fear in both mice and humans. Reduced fear is accompanied by decreased amygdala and enhanced ventromedial prefrontal cortex activation in both species. In humans, ventromedial prefrontal cortex activity is predicted by enhanced resting-state functional coupling of the area with the dopaminergic midbrain during the postextinction consolidation phase. Our data suggest that dopamine-dependent boosting of extinction memory consolidation is a promising avenue to improving anxiety therapy.

  11. Effect of endogenous histamine in the ventral hippocampus on fear memory deficits induced by scopolamine as evaluated by step-through avoidance response in rats.

    PubMed

    Yu, Chaoyang; Shen, Yao; Xu, Lisha; Zhu, Yuanyuan; Zhuge, Zhenbin; Huang, Yuwen; Henk, Timmerman; Rob, Leurs; Wei, Erqing; Chen, Zhong

    2006-04-15

    In the present study, the effects of endogenous histamine in the ventral hippocampus on fear memory deficits induced by scopolamine were investigated as evaluated by step-through avoidance response in adult male rats. Bilateral ventral hippocampal injection of scopolamine (i.h., 2, 5 microg/site) significantly produced depressant effects on the active avoidance response in a dose-dependent manner. Histamine H(3)-antagonist clobenpropit (5, 10 microg/site) significantly ameliorated the fear memory deficits induced by scopolamine in a dose-dependent manner. Its procognitive effect was completely antagonized by immepip (10 microg/site), a selective histamine H(3)-agonist. Both histamine H(1)-antagonist pyrilamine and H(2)-antagonist cimetidine, also inhibited the procognitive effects of clobenpropit. Additionally, the procognitive effects of clobenpropit on the fear memory deficits induced by scopolamine were significantly potentiated by intraperitoneal (i.p.) injection of histidine, a precursor of histamine, but markedly reversed by i.h. injection of alpha-fluoromethylhistidine (FMH, 10 microg/site), a selective and potent histidine decarboxylase inhibitor. It is concluded that the increased endogenous histamine release in the ventral hippocampus ameliorates the scopolamine-induced fear memory deficits, and its action is mainly mediated by histamine presynaptic H(3)-receptors and postsynaptic H(1)- and H(2)-receptors.

  12. Clearance of fear memory from the hippocampus through neurogenesis by omega-3 fatty acids: a novel preventive strategy for posttraumatic stress disorder?

    PubMed Central

    2011-01-01

    Not only has accidental injury been shown to account for a significant health burden on all populations, regardless of age, sex and geographic region, but patients with accidental injury frequently present with the psychiatric condition of posttraumatic stress disorder (PTSD). Prevention of accident-related PTSD thus represents a potentially important goal. Physicians in the field of psychosomatic medicine and critical care medicine have the opportunity to see injured patients in the immediate aftermath of an accident. This article first briefly reviews the prevalence and associated factors of accident-related PTSD, then focuses on a conceptual model of fear memory and proposes a new, rationally hypothesized translational preventive intervention for PTSD through promoting hippocampal neurogenesis by omega-3 fatty acid supplementation. The results of an open-label pilot trial of injured patients admitted to the intensive care unit suggest that omega-3 fatty acid supplementation immediately after accidental injury can reduce subsequent PTSD symptoms. PMID:21303552

  13. Exercise is more effective than diet control in preventing high fat diet-induced β-amyloid deposition and memory deficit in amyloid precursor protein transgenic mice.

    PubMed

    Maesako, Masato; Uemura, Kengo; Kubota, Masakazu; Kuzuya, Akira; Sasaki, Kazuki; Hayashida, Naoko; Asada-Utsugi, Megumi; Watanabe, Kiwamu; Uemura, Maiko; Kihara, Takeshi; Takahashi, Ryosuke; Shimohama, Shun; Kinoshita, Ayae

    2012-06-29

    Accumulating evidence suggests that some dietary patterns, specifically high fat diet (HFD), increase the risk of developing sporadic Alzheimer disease (AD). Thus, interventions targeting HFD-induced metabolic dysfunctions may be effective in preventing the development of AD. We previously demonstrated that amyloid precursor protein (APP)-overexpressing transgenic mice fed HFD showed worsening of cognitive function when compared with control APP mice on normal diet. Moreover, we reported that voluntary exercise ameliorates HFD-induced memory impairment and β-amyloid (Aβ) deposition. In the present study, we conducted diet control to ameliorate the metabolic abnormality caused by HFD on APP transgenic mice and compared the effect of diet control on cognitive function with that of voluntary exercise as well as that of combined (diet control plus exercise) treatment. Surprisingly, we found that exercise was more effective than diet control, although both exercise and diet control ameliorated HFD-induced memory deficit and Aβ deposition. The production of Aβ was not different between the exercise- and the diet control-treated mice. On the other hand, exercise specifically strengthened the activity of neprilysin, the Aβ-degrading enzyme, the level of which was significantly correlated with that of deposited Aβ in our mice. Notably, the effect of the combination treatment (exercise and diet control) on memory and amyloid pathology was not significantly different from that of exercise alone. These studies provide solid evidence that exercise is a useful intervention to rescue HFD-induced aggravation of cognitive decline in transgenic model mice of AD.

  14. Examining reward-seeking, negative self-beliefs and over-general autobiographical memory as mechanisms of change in classroom prevention programs for adolescent depression

    PubMed Central

    Rice, Frances; Rawal, Adhip; Riglin, Lucy; Lewis, Gemma; Lewis, Glyn; Dunsmuir, Sandra

    2015-01-01

    Background Effective methods to prevent adolescent depressive symptoms could reduce suffering and burden across the lifespan. However, psychological interventions delivered to adolescents show efficacy only in symptomatic or high-risk youth. Targeting causal risk factors and assessing mechanistic change can help devise efficacious universal or classroom based prevention programs. Methods A non-randomized longitudinal design was used to compare three classroom-based prevention programs for adolescent depression (Behavioral Activation with Reward Processing, “Thinking about Reward in Young People” (TRY); Cognitive Behavioral Therapy (CBT) and Mindfulness Based Cognitive Therapy (MBCT)), and determine cognitive mechanisms of change in these programs. Cognitive mechanisms examined were reward-seeking, negative self-beliefs (assessed with behavioral tasks) and over-general autobiographical memory. 256 healthy adolescents aged 13–14 participated with 236 (92%) and 227 (89%) completing the pre- and post-assessments. Results TRY was the only intervention associated with a reduction in depressive symptoms at follow-up. Reward-seeking increased following TRY. In the other programs there were non-significant changes in cognitive mechanisms, with more reflective negative self-beliefs in CBT and fewer over-general autobiographical memories in MBCT In the TRY program, which focused on increasing sensitivity to rewarding activities, reward seeking increased and this was associated with decreased depressive symptoms. Limitations Due to the infeasibility of a cluster randomized controlled trial, a non-randomized design was used. Conclusions Increased reward-seeking was associated with decreased depressive symptoms and may be a mechanism of depressive symptom change in the intervention with a focus on enhancing sensitivity and awareness of reward. This study provides preliminary evidence to suggest that incorporating activities to enhance reward sensitivity may be fruitful in

  15. Treatment with a γ-ketoaldehyde scavenger prevents working memory deficits in hApoE4 mice.

    PubMed

    Davies, Sean S; Bodine, Chris; Matafonova, Elena; Pantazides, Brooke G; Bernoud-Hubac, Nathalie; Harrison, Fiona E; Olson, Sandra J; Montine, Thomas J; Amarnath, Venkataraman; Roberts, L Jackson

    2011-01-01

    Both inflammation and oxidative injury are features of Alzheimer's disease (AD), but the contribution of these intertwined phenomena to the loss of working memory in this disease is unclear. We tested the hypothesis that highly reactive γ-ketoaldehydes that are formed both by non-enzymatic free radical catalyzed lipid peroxidation and by cyclooxygenases may be causally linked to the development of memory impairment in AD. We found that levels of γ-ketoaldehyde protein adducts were increased in the hippocampus of brains obtained postmortem from patients with AD compared to age-matched controls, but that levels of γ-ketoaldehyde protein adducts in the cerebellum were not different in the two groups. Moreover, immunohistochemistry revealed that adducts localized to hippocampal pyramidal neurons. We tested the effect of an orally available γ-ketoaldehyde scavenger, salicylamine, on the development of spatial working memory deficits in hApoE4 targeted replacement mice, a mouse model of dementia. Long-term salicylamine supplementation did not significantly alter body weight or survival, but protected against the development of age-related deficits in spatial working memory in 12-14 month old ApoE4 mice. These findings suggest that γ-ketoaldehyde adduct formation is associated with damage to hippocampal neurons in patients with AD and can contribute to the pathogenesis of spatial working memory deficits in hApoE4 mice. These data provide a rational basis for future studies exploring whether γ-ketoaldehyde scavengers may mitigate the development of cognitive dysfunction in patients with AD.

  16. Bis(propyl)-cognitin Prevents β-amyloid-induced Memory Deficits as Well as Synaptic Formation and Plasticity Impairments via the Activation of PI3-K Pathway.

    PubMed

    Jiang, Liting; Huang, Meng; Xu, Shujun; Wang, Yu; An, Pengyuan; Feng, Chenxi; Chen, Xiaowei; Wei, Xiaofei; Han, Yifan; Wang, Qinwen

    2016-08-01

    Bis(propyl)-cognitin (B3C), derived from tacrine linked with three methylene (-CH2-) groups, is a dimerized molecule interacting multiple targets. During the past several years, it has been reported as a promising therapeutic drug for Alzheimer's disease (AD) and other neurodegenerative disorders. However, the therapeutic mechanism of B3C for AD needs further demonstration. Based on a combination of behavioral tests, electrophysiological technique, immunocytochemistry, and live cell imaging, we studied the effects and the underlying mechanism of B3C on the impairments of cognitive function, synapse formation, and synaptic plasticity induced by soluble amyloid-β protein (Aβ) oligomers. Our study showed that spatial learning and memory in a Morris water maze task and recognition memory in a novel object recognition task were significantly decreased in the AD model mice created by hippocampal injection of Aβ. Chronic administration of B3C for 21 days prevented the memory impairments of the AD model mice in a dose-dependent manner. Live cell imaging study showed that 2-h pretreatment of B3C prevented the decrease in the number of filopodia and synapses induced by Aβ (0.5 μM) in a dose-dependent manner. Besides, electrophysiological recording data showed that the inhibition of long-term potentiation (LTP) induced by Aβ1-42 oligomers in the dentate gyrus (DG) of hippocampus was prevented by B3C in a dose-dependent manner. Furthermore, we found that the neuroprotective effect of B3C against Aβ-oligomer-induced impairments of synaptic formation and plasticity could be partially blocked by a specific phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 (50 μM). Therefore, these results indicate that B3C can prevent Aβ-oligomer-induced cognitive deficits, synaptic formation impairments, and synaptic plasticity impairments in a concentration-dependent manner. These effects of B3C are partially mediated via the PI3-K pathway. This study provides novel insights

  17. Timosaponin AIII, a saponin isolated from Anemarrhena asphodeloides, ameliorates learning and memory deficits in mice.

    PubMed

    Lee, Bomi; Jung, Kangsik; Kim, Dong-Hyun

    2009-08-01

    Anemarrhena asphodeloides Bunge (AA, family Liliaceae), which primarily contains xantones, such as mangiferin, and steroidal saponins, such as timosaponin AIII and sarsasapogenin, has been used as an anti-pyretic, anti-inflammatory, anti-diabetic, anti-platelet aggregation, and anti-depressant agent in traditional Chinese medicine. In the present study, the memory-enhancing effects of these saponins were investigated in scopolamine-treated mice. Among saponins, timosaponin AIII (TA3) significantly reversed the scopolamine-induced deficits in a passive avoidance test and in the Morris water maze test. TA3 also increased hippocampal acetylcholine levels in scopolamine-treated mice and dose-dependently inhibited acetylcholinesterase (AChE) activity (IC(50) value, 35.4 microM). When TA3 (50 mg/kg) was orally administered to mice and its blood concentration was measured by liquid chromatography and tandem mass spectrometry, the C(max) of TA3 occurred 4-6 h after TA3 treatment. The memory-enhancing effect of TA3 was greater when it was administered 5 h before the acquisition trial than 1 h before. Scopolamine treatment in mice increased brain levels of TNF-alpha and IL-1beta expression. However, treatment with TA3 and scopolamine inhibited the increase of TNF-alpha and IL-1beta expression. These results suggest that scopolamine may cause learning and memory deficits that are further complicated by inflammation. TA3 also inhibited the activation of NF-kappaB signaling in BV-2 microglia and in SK-N-SH neuroblastoma cells induced with TNF-alpha or scopolamine. Nevertheless, TA3 may ameliorate memory deficits, mainly by inhibiting AChE. PMID:19426756

  18. Mental space travel: damage to posterior parietal cortex prevents egocentric navigation and reexperiencing of remote spatial memories.

    PubMed

    Ciaramelli, Elisa; Rosenbaum, R Shayna; Solcz, Stephanie; Levine, Brian; Moscovitch, Morris

    2010-05-01

    The ability to navigate in a familiar environment depends on both an intact mental representation of allocentric spatial information and the integrity of systems supporting complementary egocentric representations. Although the hippocampus has been implicated in learning new allocentric spatial information, converging evidence suggests that the posterior parietal cortex (PPC) might support egocentric representations. To date, however, few studies have examined long-standing egocentric representations of environments learned long ago. Here we tested 7 patients with focal lesions in PPC and 12 normal controls in remote spatial memory tasks, including 2 tasks reportedly reliant on allocentric representations (distance and proximity judgments) and 2 tasks reportedly reliant on egocentric representations (landmark sequencing and route navigation; see Rosenbaum, Ziegler, Winocur, Grady, & Moscovitch, 2004). Patients were unimpaired in distance and proximity judgments. In contrast, they all failed in route navigation, and left-lesioned patients also showed marginally impaired performance in landmark sequencing. Patients' subjective experience associated with navigation was impoverished and disembodied compared with that of the controls. These results suggest that PPC is crucial for accessing remote spatial memories within an egocentric reference frame that enables both navigation and reexperiencing. Additionally, PPC was found to be necessary to implement specific aspects of allocentric navigation with high demands on spontaneous retrieval.

  19. Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity.

    PubMed

    Kanatsou, Sofia; Fearey, Brenna C; Kuil, Laura E; Lucassen, Paul J; Harris, Anjanette P; Seckl, Jonathan R; Krugers, Harm; Joels, Marian

    2015-01-01

    Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity. PMID:26600250

  20. Overexpression of Mineralocorticoid Receptors Partially Prevents Chronic Stress-Induced Reductions in Hippocampal Memory and Structural Plasticity

    PubMed Central

    Kanatsou, Sofia; Fearey, Brenna C.; Kuil, Laura E.; Lucassen, Paul J.; Harris, Anjanette P.; Seckl, Jonathan R.

    2015-01-01

    Exposure to chronic stress is a risk factor for cognitive decline and psychopathology in genetically predisposed individuals. Preliminary evidence in humans suggests that mineralocorticoid receptors (MRs) may confer resilience to these stress-related changes. We specifically tested this idea using a well-controlled mouse model for chronic stress in combination with transgenic MR overexpression in the forebrain. Exposure to unpredictable stressors for 21 days in adulthood reduced learning and memory formation in a low arousing hippocampus-dependent contextual learning task, but enhanced stressful contextual fear learning. We found support for a moderating effect of MR background on chronic stress only for contextual memory formation under low arousing conditions. In an attempt to understand potentially contributing factors, we studied structural plasticity. Chronic stress altered dendritic morphology in the hippocampal CA3 area and reduced the total number of doublecortin-positive immature neurons in the infrapyramidal blade of the dentate gyrus. The latter reduction was absent in MR overexpressing mice. We therefore provide partial support for the idea that overexpression of MRs may confer resilience to the effects of chronic stress on hippocampus-dependent function and structural plasticity. PMID:26600250

  1. Preventive brain radio-chemotherapy alters plasticity associated metabolite profile in the hippocampus but seems to not affect spatial memory in young leukemia patients

    PubMed Central

    Brandt, Moritz D; Brandt, Kalina; Werner, Annett; Schönfeld, Robby; Loewenbrück, Kai; Donix, Markus; Schaich, Markus; Bornhäuser, Martin; von Kummer, Rüdiger; Leplow, Bernd; Storch, Alexander

    2015-01-01

    Background Neuronal plasticity leading to evolving reorganization of the neuronal network during entire lifespan plays an important role for brain function especially memory performance. Adult neurogenesis occurring in the dentate gyrus of the hippocampus represents the maximal way of network reorganization. Brain radio-chemotherapy strongly inhibits adult hippocampal neurogenesis in mice leading to impaired spatial memory. Methods To elucidate the effects of CNS radio-chemotherapy on hippocampal plasticity and function in humans, we performed a longitudinal pilot study using 3T proton magnetic resonance spectroscopy (1H-MRS) and virtual water-maze-tests in 10 de-novo patients with acute lymphoblastic leukemia undergoing preventive whole brain radio-chemotherapy. Patients were examined before, during and after treatment. Results CNS radio-chemotherapy did neither affect recall performance in probe trails nor flexible (reversal) relearning of a new target position over a time frame of 10 weeks measured by longitudinal virtual water-maze-testing, but provoked hippocampus-specific decrease in choline as a metabolite associated with cellular plasticity in 1H-MRS. Conclusion Albeit this pilot study needs to be followed up to definitely resolve the question about the functional role of adult human neurogenesis, the presented data suggest that 1H-MRS allows the detection of neurogenesis-associated plasticity in the human brain. PMID:26442754

  2. Fourteenth Gaddum Memorial Lecture. A current view of tamoxifen for the treatment and prevention of breast cancer.

    PubMed Central

    Jordan, V. C.

    1993-01-01

    Tamoxifen has been found to be a safe and effective treatment for all stages of breast cancer. Long term tamoxifen therapy is associated with some rare, but potentially serious, side effects so patients should be carefully monitored. However, long term tamoxifen therapy is also associated with a number of physiological benefits over and above its tumouristatic action. These benefits include a decrease in the development of contralateral breast cancer, the maintenance of bone density in postmenopausal women and a decrease in cardiovascular disease. The successful application of tamoxifen to treat breast cancer has increased enthusiasm to test its worth to prevent breast cancer. Although there are individual requests by patients for tamoxifen to prevent breast cancer, individual treatment is inappropriate. Tamoxifen can only be adequately evaluated as a preventive in randomized, double-blind clinical trials. These trials are in place and physicians should encourage women to participate and establish a new therapeutic option as rapidly as possible. PMID:8242225

  3. Long-term cannabidiol treatment prevents the development of social recognition memory deficits in Alzheimer's disease transgenic mice.

    PubMed

    Cheng, David; Spiro, Adena S; Jenner, Andrew M; Garner, Brett; Karl, Tim

    2014-01-01

    Impairments in cognitive ability and widespread pathophysiological changes caused by neurotoxicity, neuroinflammation, oxidative damage, and altered cholesterol homeostasis are associated with Alzheimer's disease (AD). Cannabidiol (CBD) has been shown to reverse cognitive deficits of AD transgenic mice and to exert neuroprotective, anti-oxidative, and anti-inflammatory properties in vitro and in vivo. Here we evaluate the preventative properties of long-term CBD treatment in male AβPPSwe/PS1ΔE9 (AβPP × PS1) mice, a transgenic model of AD. Control and AD transgenic mice were treated orally from 2.5 months of age with CBD (20 mg/kg) daily for 8 months. Mice were then assessed in the social preference test, elevated plus maze, and fear conditioning paradigms, before cortical and hippocampal tissues were analyzed for amyloid load, oxidative damage, cholesterol, phytosterols, and inflammation. We found that AβPP × PS1 mice developed a social recognition deficit, which was prevented by CBD treatment. CBD had no impact on anxiety or associative learning. The prevention of the social recognition deficit was not associated with any changes in amyloid load or oxidative damage. However, the study revealed a subtle impact of CBD on neuroinflammation, cholesterol, and dietary phytosterol retention, which deserves further investigation. This study is the first to demonstrate CBD's ability to prevent the development of a social recognition deficit in AD transgenic mice. Our findings provide the first evidence that CBD may have potential as a preventative treatment for AD with a particular relevance for symptoms of social withdrawal and facial recognition.

  4. GuidAge study: a 5-year double blind, randomised trial of EGb 761 for the prevention of Alzheimer's disease in elderly subjects with memory complaints. i. rationale, design and baseline data.

    PubMed

    Andrieu, Sandrine; Ousset, Pierre-Jean; Coley, Nicola; Ouzid, Mehemed; Mathiex-Fortunet, Hélène; Vellas, Bruno

    2008-08-01

    Primary and secondary prevention strategies for Alzheimer's disease (AD) are urgently needed. We have initiated a five-year prospective prevention study involving patients spontaneously reporting memory complaints. The primary objective is to determine the effect of treatment with EGb 76 on the rate of conversion from memory complaints to AD using survival analysis. Ambulatory patients aged at least 70 years who spontaneously reported a memory complaint during a GP or memory centre consultation were eligible for inclusion. Patients with major objective memory impairment or clinically relevant symptoms of anxiety and depression were excluded. Subjects were randomised to receive either EGb 761 120mg bid or matching placebo. Participants undergo an annual visit at a memory centre, where a series of neuropsychological tests are administered to assess cognitive function (Grober and Buschke, Trail-Making and controlled oral word association tests) and cognitive status (MMS and CDR). Functional status is evaluated with the Instrumental Activities of Daily Living questionnaire. The primary outcome is the transition to a diagnosis of AD (DSM-IV and NINCDS-ADRDA criteria), determined at the annual memory centre visit. A total of 4066 patients were screened for participation, of whom 2854 fulfilled the eligibility criteria and were entered into the study. Their mean age was 76.8+/-4.4 years and 66.7% were female. The mean MMSE score was 27.8+/-1.7 and 55.5% presented a CDR score of 0.5. This study will enable us to evaluate the efficacy of EGb761 in the prevention of AD, and to assess the usefulness of various baseline characteristics as predictors of conversion to AD in this population.

  5. Lithium chloride administration prevents spatial learning and memory impairment in repeated cerebral ischemia-reperfusion mice by depressing apoptosis and increasing BDNF expression in hippocampus.

    PubMed

    Fan, Mingyue; Jin, Wei; Zhao, Haifeng; Xiao, Yining; Jia, Yanqiu; Yin, Yu; Jiang, Xin; Xu, Jing; Meng, Nan; Lv, Peiyuan

    2015-09-15

    Lithium has been reported to have neuroprotective effects, but the preventive and treated role on cognition impairment and the underlying mechanisms have not been determined. In the present study, C57Bl/6 mice were subjected to repeated bilateral common carotid artery occlusion to induce the learning and memory deficits. 2 mmol/kg or 5 mmol/kg of lithium chloride (LiCl) was injected intraperitoneally per day before (for 7 days) or post (for 28 days) the operation. This repeated cerebral ischemia-reperfusion (IR) induced dynamic overexpression of ratio of Bcl-2/Bax and BDNF in hippocampus of mice. LiCl pretreatment and treatment significantly decreased the escape latency and increased the percentage of time that the mice spent in the target quadrant in Morris water maze. 2 mmol/kg LiCl evidently reversed the morphologic changes, up-regulated the survival neuron count and increased the BDNF gene and protein expression. 5 mmol/kg pre-LiCl significantly increased IR-stimulated reduce of Bcl-2/Bax and p-CREB/CREB. These results described suggest that pre-Li and Li treatment may induce a pronounced prevention on cognitive impairment. These effects may relay on the inhibition of apoptosis and increasing BDNF and p-CREB expression.

  6. Angelica gigas Nakai and Soluplus-Based Solid Formulations Prepared by Hot-Melting Extrusion: Oral Absorption Enhancing and Memory Ameliorating Effects

    PubMed Central

    Piao, Jingpei; Lee, Jae-Young; Weon, Jin Bae; Ma, Choong Je; Ko, Hyun-Jeong; Kim, Dae-Duk; Kang, Wie-Soo; Cho, Hyun-Jong

    2015-01-01

    Oral solid formulations based on Angelica gigas Nakai (AGN) and Soluplus were prepared by the hot-melting extrusion (HME) method. AGN was pulverized into coarse and ultrafine particles, and their particle size and morphology were investigated. Ultrafine AGN particles were used in the HME process with high shear to produce AGN-based formulations. In simulated gastrointestinal fluids (pH 1.2 and pH 6.8) and water, significantly higher amounts of the major active components of AGN, decursin (D) and decursinol angelate (DA), were extracted from the HME-processed AGN/Soluplus (F8) group than the AGN EtOH extract (ext) group (p < 0.05). Based on an in vivo pharmacokinetic study in rats, the relative oral bioavailability of decursinol (DOH), a hepatic metabolite of D and DA, in F8-administered mice was 8.75-fold higher than in AGN EtOH ext-treated group. In scopolamine-induced memory-impaired mice, F8 exhibited a more potent cognitive enhancing effect than AGN EtOH ext in both a Morris water maze test and a passive avoidance test. These findings suggest that HME-processed AGN/Soluplus formulation (F8) could be a promising therapeutic candidate for memory impairment. PMID:25915423

  7. Improvement in Long-Term Memory following Chronic Administration of Eryngium planum Root Extract in Scopolamine Model: Behavioral and Molecular Study

    PubMed Central

    Ozarowski, Marcin; Thiem, Barbara; Mikolajczak, Przemyslaw L.; Piasecka, Anna; Kachlicki, Piotr; Szulc, Michal; Kaminska, Ewa; Bogacz, Anna; Kujawski, Radoslaw; Bartkowiak-Wieczorek, Joanna; Kujawska, Malgorzata; Jodynis-Liebert, Jadwiga; Budzianowski, Jaromir; Kędziora, Izabela; Seremak-Mrozikiewicz, Agnieszka; Czerny, Boguslaw; Bobkiewicz-Kozłowska, Teresa

    2015-01-01

    Eryngium planum L. (EP) is as a rare medicinal plant with a lot of potentials as pharmaceutical crops. The aim of our study was to assess the effect of subchronic (28-fold) administration of a 70% ethanol extract of EP roots (200 mg/kg, p.o.) on behavioral and cognitive responses in Wistar rats linked with acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and beta-secretase (BACE-1) mRNA levels and AChE and BuChE activities in the hippocampus and frontal cortex. On the last day of experiment, 30 min after the last dose of EP or Huperzine A (HU), scopolamine (SC) was given at a dose of 0.5 mg/kg b.w. intraperitoneally. The results of a passive avoidance test showed an improvement in long-term memory produced by the EP extract in both scopolamine-induced rats and control group. EP caused an insignificant inhibition of AChE and BuChE activities in the frontal cortex and the hippocampus. EP decreased mRNA AChE, BuChE, and BACE-1 levels, especially in the cortex. Our results suggest that the EP extract led to the improvement of the long-term memory in rats coupled with total saponin content. The mechanism of EP action is probably complicated, since HPLC-MS analysis showed 64 chemical compounds (phenolics, saponins) in the extract of EP roots. PMID:26483842

  8. Angelica gigas Nakai and Soluplus-Based Solid Formulations Prepared by Hot-Melting Extrusion: Oral Absorption Enhancing and Memory Ameliorating Effects.

    PubMed

    Piao, Jingpei; Lee, Jae-Young; Weon, Jin Bae; Ma, Choong Je; Ko, Hyun-Jeong; Kim, Dae-Duk; Kang, Wie-Soo; Cho, Hyun-Jong

    2015-01-01

    Oral solid formulations based on Angelica gigas Nakai (AGN) and Soluplus were prepared by the hot-melting extrusion (HME) method. AGN was pulverized into coarse and ultrafine particles, and their particle size and morphology were investigated. Ultrafine AGN particles were used in the HME process with high shear to produce AGN-based formulations. In simulated gastrointestinal fluids (pH 1.2 and pH 6.8) and water, significantly higher amounts of the major active components of AGN, decursin (D) and decursinol angelate (DA), were extracted from the HME-processed AGN/Soluplus (F8) group than the AGN EtOH extract (ext) group (p < 0.05). Based on an in vivo pharmacokinetic study in rats, the relative oral bioavailability of decursinol (DOH), a hepatic metabolite of D and DA, in F8-administered mice was 8.75-fold higher than in AGN EtOH ext-treated group. In scopolamine-induced memory-impaired mice, F8 exhibited a more potent cognitive enhancing effect than AGN EtOH ext in both a Morris water maze test and a passive avoidance test. These findings suggest that HME-processed AGN/Soluplus formulation (F8) could be a promising therapeutic candidate for memory impairment.

  9. Oral supplementation with melon superoxide dismutase extract promotes antioxidant defences in the brain and prevents stress-induced impairment of spatial memory.

    PubMed

    Nakajima, Sanae; Ohsawa, Ikuroh; Nagata, Kazufumi; Ohta, Shigeo; Ohno, Makoto; Ijichi, Tetsuo; Mikami, Toshio

    2009-06-01

    The purpose of this study was to investigate the effect of antioxidant ingestion on stress-induced impairment of cognitive memory. Male C57BL/6 mice were divided into four groups as follows: (1) control mice (C mice) fed in a normal cage without immobilization; (2) restraint-stressed (RS mice) fed in a small cage; (3) vitamin E mice (VE mice), mice were fed in a small cage with a diet supplemented with vitamin E; (4) GliSODin mice (GS mice) fed in a small cage with a diet supplemented with GliSODin. RS, VE and GS mice were exposed to 12 h of immobilization daily. Five weeks later, spatial learning was measured using the Morris Water Maze (MWM) test. After water maze testing, we performed immunohistochemical analysis using 4-hydroxy-2-noneral (4-HNE) and an anti-Ki67 antibody. 4-HNE is a marker of lipid peroxidation. RS mice showed impaired spatial learning performance and an increased number of 4-HNE-positive cells in the granule cell layer (GCL) of the hippocampal dentate gyrus when compared to C mice. Moreover, RS mice showed a decreased number of Ki67-positive cells in the subgranular zone (SGZ). GS mice showed better spatial learning memory than RS mice. The number of 4-HNE-positive cells in the GCL of GS mice was significantly less than that of RS mice. The number of Ki67-positive cells in the SGZ of GS mice was significantly greater than that of RS mice. These finding suggests that GliSODin prevents stress-induced impairment of cognitive function and maintains neurogenesis in the hippocampus through antioxidant activity.

  10. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    PubMed Central

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  11. Absence of ALOX5 gene prevents stress-induced memory deficits, synaptic dysfunction and tauopathy in a mouse model of Alzheimer's disease

    PubMed Central

    Joshi, Yash B.; Giannopoulos, Phillip F.; Chu, Jin; Sperow, Margaret; Kirby, Lynn G.; Abood, Mary E.; Praticò, Domenico

    2014-01-01

    Although the initial events of Alzheimer's disease (AD) are still not known, it is clear that the disease in its sporadic form results from the combination of genetic and environmental risk factors. Among the latter, behavioral stress has been increasingly recognized as an important factor in the propagation of AD. However, the mechanisms underlying this modulation remain to be fully investigated. Since stress up-regulates the ALOX5 gene product, 5-lipoxygenase (5LO), herein we investigated its role in modulating stress-dependent development of the AD phenotype. To reach this goal, triple transgenic (3xTg) mice and 3xTg genetically deficient for 5LO were investigated after undergoing a restraint/isolation paradigm. In the present paper, we found that 28 days of restraint/isolation stress worsened tau phosphorylation and solubility, increased glycogen synthase kinase 3β activity, compromised long-term potentiation and impaired fear-conditioned memory recall in 3xTg animals, but not in 3xTg animals lacking 5LO (3xTg/5LO−/−). These results highlight the novel functional role that the ALOX5 gene plays in the development of the biochemical, electrophysiological and behavioral sequelae of stress in the AD context. They provide critical support that this gene and its expressed protein are viable therapeutic targets to prevent the onset or delay the progression of AD in individuals exposed to this risk factor. PMID:25122659

  12. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-08-15

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  13. Mechanical memory

    DOEpatents

    Gilkey, Jeffrey C.; Duesterhaus, Michelle A.; Peter, Frank J.; Renn, Rosemarie A.; Baker, Michael S.

    2006-05-16

    A first-in-first-out (FIFO) microelectromechanical memory apparatus (also termed a mechanical memory) is disclosed. The mechanical memory utilizes a plurality of memory cells, with each memory cell having a beam which can be bowed in either of two directions of curvature to indicate two different logic states for that memory cell. The memory cells can be arranged around a wheel which operates as a clocking actuator to serially shift data from one memory cell to the next. The mechanical memory can be formed using conventional surface micromachining, and can be formed as either a nonvolatile memory or as a volatile memory.

  14. Psychopharmacology and memory

    PubMed Central

    Glannon, W

    2006-01-01

    Psychotropic and other drugs can alter brain mechanisms regulating the formation, storage, and retrieval of different types of memory. These include “off label” uses of existing drugs and new drugs designed specifically to target the neural bases of memory. This paper discusses the use of beta‐adrenergic antagonists to prevent or erase non‐conscious pathological emotional memories in the amygdala. It also discusses the use of novel psychopharmacological agents to enhance long term semantic and short term working memory by altering storage and retrieval mechanisms in the hippocampus and prefrontal cortex. Although intervention in the brain to alter memory as therapy or enhancement holds considerable promise, the long term effects of experimental drugs on the brain and memory are not known. More studies are needed to adequately assess the potential benefits and risks of these interventions. PMID:16446410

  15. CD27 stimulation promotes the frequency of IL-7R expressing memory precursors and prevents IL-12 mediated loss of CD8+ T cell memory in the absence of CD4+ T cell help

    PubMed Central

    Dong, Han; Franklin, Nathan. A.; Roberts, Drew J.; Yagita, Hideo; Glennie, Martin J.; Bullock, Timothy N.J.

    2012-01-01

    Fully functional CD8+ T cell memory is highly dependent upon CD4+ T cell support. CD4+ T cells play a critical role in inducing the expression of CD70, the ligand for CD27, on dendritic cells. Here we demonstrate that CD27 stimulation during primary CD8+ T cell responses regulates the ability to mount secondary CD8+ T cell responses. CD27 stimulation during vaccinia and dendritic cell immunization controls the expression of the IL-7 receptor (CD127), which has been shown to be necessary for memory CD8+ T cell survival. Further, CD27 stimulation during primary CD8+ T cell responses to vaccinia virus restrained the late expression on memory precursor cells of cytokine receptors that support terminal differentiation. The formation of CD8+ T cell memory precursors and secondary CD8+ T cell responses were restored in the absence of CD27 costimulation when endogenous IL-12 was not available. Similarly, the lesion in CD8+ T cell memory that occurs in the absence ofCD4+ T cells did not occur in mice lacking IL-12. These data indicate that CD4+ T cell help and, by extension, CD27 stimulation supports CD8+ T cell memory by modulating the expression of cytokine receptors that influence the differentiation and survival of memory CD8+ T cells. PMID:22422886

  16. Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric Aβ25-35 peptide administration in mice.

    PubMed

    Naert, Gaëlle; Ferré, Valentine; Meunier, Johann; Keller, Emeline; Malmström, Susanna; Givalois, Laurent; Carreaux, François; Bazureau, Jean-Pierre; Maurice, Tangui

    2015-11-01

    Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) are implicated in the onset and progression of Down syndrome (DS) and Alzheimer's disease (AD). DYRK1A has emerged as a possible link between amyloid-β (Aβ) and Tau, the major pathological proteins in AD. We here assessed the neuroprotective potential of a novel inhibitor of DYRKs/CLKs. The Leucettine L41, acting preferentially on DYRK1A, was tested in Aβ25-35-treated mice, a nontransgenic model of AD-like toxicity. We co-injected intracerebroventricularly oligomeric Aβ25-35 peptide and L41 in Swiss male mice. After 7 days, they were submitted to behavioral tests addressing spatial and non-spatial, short- and long-term memories. The oxidative stress, apoptotic markers, kinases involved in Tau phosphorylation, and synaptic integrity were analyzed by Western blot and ELISA in the hippocampus. L41, tested at 0.4, 1.2, 4 µg, prevented the Aβ25-35-induced memory deficits in the Y-maze, passive avoidance and water-maze tests, with the most active dose being 4 µg. The inhibitor prevented the Aβ25-35-induced oxidative stress, as revealed by measures of lipid peroxidation levels and reactive oxygen species accumulation, and abolished Aβ25-35-induced expression of pro-apoptotic markers. L41 prevented the Aβ25-35-induced decrease of AKT activation and increase of glycogen synthase kinase-3β (GSK-3β) activation, resulting in a decrease of Tau phosphorylation. Finally, L41 restored Aβ25-35-reduced levels of synaptic markers. The novel DYRK1A-preferential inhibitor L41 therefore prevented Aβ25-35-induced memory impairments and neurotoxicity in the mouse hippocampus. These in vivo data highlighted particularly DYRK1A as a major kinase involved in Aβ pathology and suggested therapeutic developments for DYRK1A inhibitors in AD.

  17. Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric Aβ25-35 peptide administration in mice.

    PubMed

    Naert, Gaëlle; Ferré, Valentine; Meunier, Johann; Keller, Emeline; Malmström, Susanna; Givalois, Laurent; Carreaux, François; Bazureau, Jean-Pierre; Maurice, Tangui

    2015-11-01

    Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) are implicated in the onset and progression of Down syndrome (DS) and Alzheimer's disease (AD). DYRK1A has emerged as a possible link between amyloid-β (Aβ) and Tau, the major pathological proteins in AD. We here assessed the neuroprotective potential of a novel inhibitor of DYRKs/CLKs. The Leucettine L41, acting preferentially on DYRK1A, was tested in Aβ25-35-treated mice, a nontransgenic model of AD-like toxicity. We co-injected intracerebroventricularly oligomeric Aβ25-35 peptide and L41 in Swiss male mice. After 7 days, they were submitted to behavioral tests addressing spatial and non-spatial, short- and long-term memories. The oxidative stress, apoptotic markers, kinases involved in Tau phosphorylation, and synaptic integrity were analyzed by Western blot and ELISA in the hippocampus. L41, tested at 0.4, 1.2, 4 µg, prevented the Aβ25-35-induced memory deficits in the Y-maze, passive avoidance and water-maze tests, with the most active dose being 4 µg. The inhibitor prevented the Aβ25-35-induced oxidative stress, as revealed by measures of lipid peroxidation levels and reactive oxygen species accumulation, and abolished Aβ25-35-induced expression of pro-apoptotic markers. L41 prevented the Aβ25-35-induced decrease of AKT activation and increase of glycogen synthase kinase-3β (GSK-3β) activation, resulting in a decrease of Tau phosphorylation. Finally, L41 restored Aβ25-35-reduced levels of synaptic markers. The novel DYRK1A-preferential inhibitor L41 therefore prevented Aβ25-35-induced memory impairments and neurotoxicity in the mouse hippocampus. These in vivo data highlighted particularly DYRK1A as a major kinase involved in Aβ pathology and suggested therapeutic developments for DYRK1A inhibitors in AD. PMID:26381812

  18. Memory Matters

    MedlinePlus

    ... different parts. Some of them are important for memory. The hippocampus (say: hih-puh-KAM-pus) is one of the more important parts of the brain that processes memories. Old information and new information, or memories, are ...

  19. Blockage of glucocorticoid receptors during memory acquisition, retrieval and reconsolidation prevents the expression of morphine-induced conditioned place preferences in mice.

    PubMed

    Fan, Yao-Dong; Niu, Hai-Chen; Huma, Tanzeel; Li, Ling; Wang, Gui-Mei; Xu, Li-Qi; Ren, He; Ma, Yuan-Ye; Yu, Hua-Lin

    2013-01-01

    Association between the reward caused by consuming drugs and the context in which they are consumed is essential in the formation of morphine-induced conditioned place preference (CPP). Glucocorticoid receptor (GRs) activation in different regions of the brain affects reward-based reinforcement and memory processing. A wide array of studies have demonstrated that blockage of GRs in some brain areas can have an effect on reward-related memory; however, to date there have been no systematic studies about the involvement of glucocorticoids (GCs) in morphine-related reward memory. Here, we used the GR antagonist RU38486 to investigate how GRs blockage affects the sensitization and CPP behavior during different phases of reward memory included acquisition, retrieval and reconsolidation. Interestingly, our results showed RU38486 has the ability to impair the acquisition, retrieval and reconsolidation of reward-based memory in CPP and sensitization behavior. But RU38486 by itself cannot induce CPP or conditioned place aversion (CPA) behavior. Our data provide a much more complete picture of the potential effects that glucocorticoids have on the reward memory of different phases and inhibit the sensitization behavior.

  20. When Forgetting Preserves Memory

    PubMed Central

    Hupbach, Almut

    2013-01-01

    There has been a resurgence of interest in defining the circumstances leading to memory modifications. Studies have shown that reactivating a supposedly stable memory re-introduces a time-limited window of plasticity during which presentation of interfering material can cause long-term memory changes. The present study asks whether such memory changes can be prevented if people are instructed to forget the memory before the new material is encoded. Participants learned a set of objects. After 48 h, they were reminded of this learning episode, and learned another set of objects. Again 48 h later, they recalled the first (Exp. 1) or second set (Exp. 3). As shown previously, a reminder caused intrusions from the second set into recall of the first set. Here I show that the instruction to forget the first set significantly diminished intrusions from the second set, especially when the instruction was given before the new set was encoded in the second session. Experiment 2 suggests that the reduced intrusions were due to list segregation/isolation, rather than temporarily inhibited access to Set 1. Taken together, the study shows that the attempt to forget a memory can immunize it such that the presentation of interfering material has limited effects, and the memory can be recalled unchanged in the future. This is important when veridical memory is essential, such as in eyewitness testimonies. PMID:23382724

  1. Memory Palaces

    ERIC Educational Resources Information Center

    Wood, Marianne

    2007-01-01

    This article presents a lesson called Memory Palaces. A memory palace is a memory tool used to remember information, usually as visual images, in a sequence that is logical to the person remembering it. In his book, "In the Palaces of Memory", George Johnson calls them "...structure(s) for arranging knowledge. Lots of connections to language arts,…

  2. Sensitivity to cholinergic drug treatments of aged rats with variable degrees of spatial memory impairment.

    PubMed

    Stemmelin, J; Cassel, J C; Will, B; Kelche, C

    1999-01-01

    As a first step, the present experiment aimed at characterizing learning and memory capabilities, as well as some motor and sensorimotor faculties, in aged (24-26.5 months) Long-Evans female rats. As a second step, a psychopharmacological approach was undertaken in order to examine the sensitivity of aged rats to muscarinic blockade and to cholinomimetic treatments. Young adult (3-5.5 months) and aged rats were tested for beam-walking performance, locomotor activity in the home cage and an open field, and spatial learning/memory performance in a water maze and a radial maze. Spontaneous alternation rates were assessed in a T-maze. Statistical analysis discriminated between aged rats showing moderate impairment (AMI) and those showing severe impairment (ASI) in the water maze test. Beside their different degrees of impairment in the water maze, AMI and ASI rats were similarly (no significant difference) impaired in beam-walking capabilities, home cage activity and radial maze performance. In the spontaneous alternation task aged rats were not impaired and, in the open-field test, AMI rats were hypoactive, but not as much as ASI rats. Neither of the cognitive deficits was correlated with a locomotor or a sensorimotor variable, or with the body weight. When tested in the radial maze, a low dose of scopolamine (0.1 mg/kg i.p.) produced memory impairments which were significant in AMI and ASI rats, but not in young rats. Combined injections of scopolamine and physostigmine (0.05 and 0.1 mg/kg) or tacrine (THA, 3 mg/kg) showed physostigmine (0.1 mg/kg) to compensate for the scopolamine-induced impairments only in AMI rats. whereas THA was efficient in both AMI and ASI rats. The results indicate: (i) that rats with different degrees of spatial memory impairment in the water maze are similarly hypersensitive to muscarinic blockade when tested in a radial maze test; and (ii) that under the influence of a dose of scopolamine which is subamnesic in young rats, aged rats

  3. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia.

    PubMed

    Blanco-Alvarez, Victor Manuel; Soto-Rodriguez, Guadalupe; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Brambila, Eduardo; Torres-Soto, Maricela; Aguilar-Peralta, Ana Karina; Gonzalez-Vazquez, Alejandro; Tomás-Sanchez, Constantino; Limón, I Daniel; Eguibar, Jose R; Ugarte, Araceli; Hernandez-Castillo, Jeanett; Leon-Chavez, Bertha Alicia

    2015-01-01

    Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors.

  4. Prophylactic Subacute Administration of Zinc Increases CCL2, CCR2, FGF2, and IGF-1 Expression and Prevents the Long-Term Memory Loss in a Rat Model of Cerebral Hypoxia-Ischemia

    PubMed Central

    Blanco-Alvarez, Victor Manuel; Soto-Rodriguez, Guadalupe; Gonzalez-Barrios, Juan Antonio; Martinez-Fong, Daniel; Brambila, Eduardo; Torres-Soto, Maricela; Aguilar-Peralta, Ana Karina; Gonzalez-Vazquez, Alejandro; Tomás-Sanchez, Constantino; Limón, I. Daniel; Eguibar, Jose R.; Ugarte, Araceli; Hernandez-Castillo, Jeanett; Leon-Chavez, Bertha Alicia

    2015-01-01

    Prophylactic subacute administration of zinc decreases lipoperoxidation and cell death following a transient cerebral hypoxia-ischemia, thus suggesting neuroprotective and preconditioning effects. Chemokines and growth factors are also involved in the neuroprotective effect in hypoxia-ischemia. We explored whether zinc prevents the cerebral cortex-hippocampus injury through regulation of CCL2, CCR2, FGF2, and IGF-1 expression following a 10 min of common carotid artery occlusion (CCAO). Male rats were grouped as follows: (1) Zn96h, rats injected with ZnCl2 (one dose every 24 h during four days); (2) Zn96h + CCAO, rats treated with ZnCl2 before CCAO; (3) CCAO, rats with CCAO only; (4) Sham group, rats with mock CCAO; and (5) untreated rats. The cerebral cortex-hippocampus was dissected at different times before and after CCAO. CCL2/CCR2, FGF2, and IGF-1 expression was assessed by RT-PCR and ELISA. Learning in Morris Water Maze was achieved by daily training during 5 days. Long-term memory was evaluated on day 7 after learning. Subacute administration of zinc increased expression of CCL2, CCR2, FGF2, and IGF-1 in the early and late phases of postreperfusion and prevented the CCAO-induced memory loss in the rat. These results might be explained by the induction of neural plasticity because of the expression of CCL2 and growth factors. PMID:26355725

  5. Grape Powder Intake Prevents Ovariectomy-Induced Anxiety-Like Behavior, Memory Impairment and High Blood Pressure in Female Wistar Rats

    PubMed Central

    Patki, Gaurav; Allam, Farida H.; Atrooz, Fatin; Dao, An T.; Solanki, Naimesh; Chugh, Gaurav; Asghar, Mohammad; Jafri, Faizan; Bohat, Ritu; Alkadhi, Karim A.; Salim, Samina

    2013-01-01

    Diminished estrogen influence at menopause is reported to be associated with cognitive decline, heightened anxiety and hypertension. While estrogen therapy is often prescribed to overcome these behavioral and physiological deficits, antioxidants which have been shown beneficial are gaining nutritional intervention and popularity. Therefore, in the present study, utilizing the antioxidant properties of grapes, we have examined effect of 3 weeks of grape powder (GP; 15 g/L dissolved in tap water) treatment on anxiety-like behavior, learning-memory impairment and high blood pressure in ovariectomized (OVX) rats. Four groups of female Wistar rats were used; sham control, sham-GP treated, OVX and OVX+GP treated. We observed a significant increase in systolic and diastolic blood pressure in OVX rats as compared to sham-controls. Furthermore, ovariectomy increased anxiety-like behavior and caused learning and memory impairment in rats as compared to sham-controls. Interestingly, providing grape powder treated water to OVX rats restored both systolic and diastolic blood pressure, decreased anxiety-like behavior and improved memory function. Moreover, OVX rats exhibited an impaired long term potentiation which was restored with grape powder treatment. Furthermore, ovariectomy increased oxidative stress in the brain, serum and urine, selectively decreasing antioxidant enzyme, glyoxalase-1 protein expression in the hippocampus but not in the cortex and amygdala of OVX rats, while grape powder treatment reversed these effects. Other antioxidant enzyme levels, including manganese superoxide dismutase (SOD) and Cu/Zn SOD remained unchanged. We suggest that grape powder by regulating oxidative stress mechanisms exerts its protective effect on blood pressure, learning-memory and anxiety-like behavior. Our study is the first to examine behavioral, biochemical, physiological and electrophysiological outcome of estrogen depletion in rats and to test protective role of grape powder

  6. Vicarious memories.

    PubMed

    Pillemer, David B; Steiner, Kristina L; Kuwabara, Kie J; Thomsen, Dorthe Kirkegaard; Svob, Connie

    2015-11-01

    People not only have vivid memories of their own personal experiences, but also vicarious memories of events that happened to other people. To compare the phenomenological and functional qualities of personal and vicarious memories, college students described a specific past event that they had recounted to a parent or friend, and also an event that a friend or parent had recounted to them. Although ratings of memory vividness, emotional intensity, visualization, and physical reactions were higher for personal than for vicarious memories, the overall pattern of ratings was similar. Participants' ratings also indicated that vicarious memories serve many of the same life functions as personal memories, although at lower levels of intensity. The findings suggest that current conceptions of autobiographical memory, which focus on past events that happened directly to the self, should be expanded to include detailed mental representations of specific past events that happened to other people.

  7. Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.

    PubMed

    Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia

    2013-11-01

    The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5

  8. Memory Dysfunction

    PubMed Central

    Matthews, Brandy R.

    2015-01-01

    Purpose of Review: This article highlights the dissociable human memory systems of episodic, semantic, and procedural memory in the context of neurologic illnesses known to adversely affect specific neuroanatomic structures relevant to each memory system. Recent Findings: Advances in functional neuroimaging and refinement of neuropsychological and bedside assessment tools continue to support a model of multiple memory systems that are distinct yet complementary and to support the potential for one system to be engaged as a compensatory strategy when a counterpart system fails. Summary: Episodic memory, the ability to recall personal episodes, is the subtype of memory most often perceived as dysfunctional by patients and informants. Medial temporal lobe structures, especially the hippocampal formation and associated cortical and subcortical structures, are most often associated with episodic memory loss. Episodic memory dysfunction may present acutely, as in concussion; transiently, as in transient global amnesia (TGA); subacutely, as in thiamine deficiency; or chronically, as in Alzheimer disease. Semantic memory refers to acquired knowledge about the world. Anterior and inferior temporal lobe structures are most often associated with semantic memory loss. The semantic variant of primary progressive aphasia (svPPA) is the paradigmatic disorder resulting in predominant semantic memory dysfunction. Working memory, associated with frontal lobe function, is the active maintenance of information in the mind that can be potentially manipulated to complete goal-directed tasks. Procedural memory, the ability to learn skills that become automatic, involves the basal ganglia, cerebellum, and supplementary motor cortex. Parkinson disease and related disorders result in procedural memory deficits. Most memory concerns warrant bedside cognitive or neuropsychological evaluation and neuroimaging to assess for specific neuropathologies and guide treatment. PMID:26039844

  9. Memory expression is independent of memory labilization/reconsolidation.

    PubMed

    Barreiro, Karina A; Suárez, Luis D; Lynch, Victoria M; Molina, Víctor A; Delorenzi, Alejandro

    2013-11-01

    There is growing evidence that certain reactivation conditions restrict the onset of both the destabilization phase and the restabilization process or reconsolidation. However, it is not yet clear how changes in memory expression during the retrieval experience can influence the emergence of the labilization/reconsolidation process. To address this issue, we used the context-signal memory model of Chasmagnathus. In this paradigm a short reminder that does not include reinforcement allows us to evaluate memory labilization and reconsolidation, whereas a short but reinforced reminder restricts the onset of such a process. The current study investigated the effects of the glutamate antagonists, APV (0.6 or 1.5 μg/g) and CNQX (1 μg/g), prior to the reminder session on both behavioral expression and the reconsolidation process. Under conditions where the reminder does not initiate the labilization/reconsolidation process, APV prevented memory expression without affecting long-term memory retention. In contrast, APV induced amnesic effects in the long-term when administered before a reminder session that triggers reconsolidation. Under the present parametric conditions, the administration of CNQX prior to the reminder that allows memory to enter reconsolidation impairs this process without disrupting memory expression. Overall, the present findings suggest that memory reactivation--but not memory expression--is necessary for labilization and reconsolidation. Retrieval and memory expression therefore appear not to be interchangeable concepts.

  10. Memory protection

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1988-01-01

    Accidental overwriting of files or of memory regions belonging to other programs, browsing of personal files by superusers, Trojan horses, and viruses are examples of breakdowns in workstations and personal computers that would be significantly reduced by memory protection. Memory protection is the capability of an operating system and supporting hardware to delimit segments of memory, to control whether segments can be read from or written into, and to confine accesses of a program to its segments alone. The absence of memory protection in many operating systems today is the result of a bias toward a narrow definition of performance as maximum instruction-execution rate. A broader definition, including the time to get the job done, makes clear that cost of recovery from memory interference errors reduces expected performance. The mechanisms of memory protection are well understood, powerful, efficient, and elegant. They add to performance in the broad sense without reducing instruction execution rate.

  11. Quantum memory Quantum memory

    NASA Astrophysics Data System (ADS)

    Le Gouët, Jean-Louis; Moiseev, Sergey

    2012-06-01

    Interaction of quantum radiation with multi-particle ensembles has sparked off intense research efforts during the past decade. Emblematic of this field is the quantum memory scheme, where a quantum state of light is mapped onto an ensemble of atoms and then recovered in its original shape. While opening new access to the basics of light-atom interaction, quantum memory also appears as a key element for information processing applications, such as linear optics quantum computation and long-distance quantum communication via quantum repeaters. Not surprisingly, it is far from trivial to practically recover a stored quantum state of light and, although impressive progress has already been accomplished, researchers are still struggling to reach this ambitious objective. This special issue provides an account of the state-of-the-art in a fast-moving research area that makes physicists, engineers and chemists work together at the forefront of their discipline, involving quantum fields and atoms in different media, magnetic resonance techniques and material science. Various strategies have been considered to store and retrieve quantum light. The explored designs belong to three main—while still overlapping—classes. In architectures derived from photon echo, information is mapped over the spectral components of inhomogeneously broadened absorption bands, such as those encountered in rare earth ion doped crystals and atomic gases in external gradient magnetic field. Protocols based on electromagnetic induced transparency also rely on resonant excitation and are ideally suited to the homogeneous absorption lines offered by laser cooled atomic clouds or ion Coulomb crystals. Finally off-resonance approaches are illustrated by Faraday and Raman processes. Coupling with an optical cavity may enhance the storage process, even for negligibly small atom number. Multiple scattering is also proposed as a way to enlarge the quantum interaction distance of light with matter. The

  12. Cancer immunotherapy and immunological memory.

    PubMed

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

      Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy.

  13. Cancer immunotherapy and immunological memory.

    PubMed

    Murata, Kenji; Tsukahara, Tomohide; Torigoe, Toshihiko

    2016-01-01

      Human immunological memory is the key distinguishing hallmark of the adaptive immune system and plays an important role in the prevention of morbidity and the severity of infection. The differentiation system of T cell memory has been clarified using mouse models. However, the human T cell memory system has great diversity induced by natural antigens derived from many pathogens and tumor cells throughout life, and profoundly differs from the mouse memory system constructed using artificial antigens and transgenic T cells. We believe that only human studies can elucidate the human immune system. The importance of immunological memory in cancer immunotherapy has been pointed out, and the trafficking properties and long-lasting anti-tumor capacity of memory T cells play a crucial role in the control of malignant tumors. Adoptive cell transfer of less differentiated T cells has consistently demonstrated superior anti-tumor capacity relative to more differentiated T cells. Therefore, a human T cell population with the characteristics of stem cell memory is thought to be attractive for peptide vaccination and adoptive cell transfer. A novel human memory T cell population that we have identified is closer to the naive state than previous memory T cells in the T cell differentiation lineage, and has the characteristics of stem-like chemoresistance. Here we introduce this novel population and describe the fundamentals of immunological memory in cancer immunotherapy. PMID:27181230

  14. Declarative memory.

    PubMed

    Riedel, Wim J; Blokland, Arjan

    2015-01-01

    Declarative Memory consists of memory for events (episodic memory) and facts (semantic memory). Methods to test declarative memory are key in investigating effects of potential cognition-enhancing substances--medicinal drugs or nutrients. A number of cognitive performance tests assessing declarative episodic memory tapping verbal learning, logical memory, pattern recognition memory, and paired associates learning are described. These tests have been used as outcome variables in 34 studies in humans that have been described in the literature in the past 10 years. Also, the use of episodic tests in animal research is discussed also in relation to the drug effects in these tasks. The results show that nutritional supplementation of polyunsaturated fatty acids has been investigated most abundantly and, in a number of cases, but not all, show indications of positive effects on declarative memory, more so in elderly than in young subjects. Studies investigating effects of registered anti-Alzheimer drugs, cholinesterase inhibitors in mild cognitive impairment, show positive and negative effects on declarative memory. Studies mainly carried out in healthy volunteers investigating the effects of acute dopamine stimulation indicate enhanced memory consolidation as manifested specifically by better delayed recall, especially at time points long after learning and more so when drug is administered after learning and if word lists are longer. The animal studies reveal a different picture with respect to the effects of different drugs on memory performance. This suggests that at least for episodic memory tasks, the translational value is rather poor. For the human studies, detailed parameters of the compositions of word lists for declarative memory tests are discussed and it is concluded that tailored adaptations of tests to fit the hypothesis under study, rather than "off-the-shelf" use of existing tests, are recommended. PMID:25977084

  15. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  16. Virtual memory

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Virtual memory was conceived as a way to automate overlaying of program segments. Modern computers have very large main memories, but need automatic solutions to the relocation and protection problems. Virtual memory serves this need as well and is thus useful in computers of all sizes. The history of the idea is traced, showing how it has become a widespread, little noticed feature of computers today.

  17. CCD Memory

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliot, Tom; Norris, Dave; Vescelus, Fred

    1987-01-01

    CCD memory device yields over 6.4 x 10 to the eighth power levels of information on single chip. Charge-coupled device (CCD) demonstrated to operate as either read-only-memory (ROM) or photon-programmable memory with capacity of 640,000 bits, with each bit capable of being weighted to more than 1,000 discrete analog levels. Larger memory capacities now possible using proposed approach in conjunction with CCD's now being fabricated, which yield over 4 x 10 to the ninth power discrete levels of information on single chip.

  18. Novel peptide VIP-TAT with higher affinity for PAC1 inhibited scopolamine induced amnesia.

    PubMed

    Yu, Rongjie; Yang, Yanxu; Cui, Zekai; Zheng, Lijun; Zeng, Zhixing; Zhang, Huahua

    2014-10-01

    A novel peptide VIP-TAT with a cell penetrating peptide TAT at the C-terminus of VIP was constructed and prepared using intein mediated purification with an affinity chitin-binding tag (IMPACT) system to enhance the brain uptake efficiency for the medical application in central nervous system. It was found by labeling VIP-TAT and VIP with fluorescein isothiocyanate (FITC) that the extension with TAT increased the brain uptake efficiency of VIP-TAT significantly. Then short-term and long-term treatment with scopolamine (Scop) was used to evaluate the effect of VIP-TAT or VIP on Scop induced amnesia. Both short-term and long-term administration of VIP-TAT inhibited the latent time reduction in step-through test induced by Scop significantly, but long-term administration of VIP aggravated the Scop induced amnesia. Long-term i.p. injection of VIP-TAT was shown to have positive effect by inhibiting the oxidative damage, apoptosis and the cholinergic system activity reduction that induced by Scop, while VIP exerted negative effect in brain opposite to that in periphery system. The in vitro data showed that VIP-TAT had not only protective but also proliferative effect on Neuro2a cells which was inhibited by PAC1 antagonist PACAP(6-38). Competition binding assay and cAMP assay confirmed that VIP-TAT had higher affinity and activation for PAC1 than VIP. So it was concluded that the significantly stronger protective effect of VIP-TAT against Scop induced amnesia than VIP was due to (1) the enhanced brain uptake efficiency of VIP-TAT and (2) the increased affinity and activation of VIP-TAT for receptor PAC1.

  19. β-glucan attenuated scopolamine induced cognitive impairment via hippocampal acetylcholinesterase inhibition in rats.

    PubMed

    Haider, Ali; Inam, Wali; Khan, Shahab Ali; Hifza; Mahmood, Wajahat; Abbas, Ghulam

    2016-08-01

    β-glucan (polysaccharide) rich diet has been reported to enhance cognition in humans but the mechanism remained elusive. Keeping this in mind, the present study was designed to investigate the interaction of β-glucan with central cholinergic system. Briefly, in-silico analysis revealed promising interactions of β-glucan with the catalytic residues of acetylcholinesterase (AChE) enzyme. In line with this outcome, the in vitro assay (Ellman's method) also exhibited inhibition of AChE by β-glucan (IC50=0.68±0.08μg/µl). Furthermore, the in vivo study (Morris water maze) showed significant dose dependent reversal of the amnesic effect of scopolamine (2mg/kg i.p.) by β-glucan treatment (5, 25, 50 and 100mg/kg, i.p.). Finally, the hippocampi of aforementioned treated animals also revealed dose dependent inhibition of AChE enzyme. Hence, it can be deduced that β-glucan possesses potential to enhance central cholinergic tone via inhibiting AChE enzyme. In conclusion, the present study provides mechanistic insight to the cognition enhancing potential of β-glucan. Keeping in mind its dietary use and abundance in nature, it can be considered as economic therapeutic option against cognitive ailments associated with decline in cholinergic neurotransmission.

  20. Memory systems.

    PubMed

    Eichenbaum, Howard

    2010-07-01

    The idea that there are multiple memory systems can be traced to early philosophical considerations and introspection. However, the early experimental work considered memory a unitary phenomenon and focused on finding the mechanism upon which memory is based. A full reconciliation of debates about that mechanism, and a coincidental rediscovery of the idea of multiple memory systems, emerged from studies in the cognitive neuroscience of memory. This research has identified three major forms of memory that have distinct operating principles and are supported by different brain systems. These include: (1) a cortical-hippocampal circuit that mediates declarative memory, our capacity to recollect facts and events; (2) procedural memory subsystems involving a cortical-striatal circuit that mediates habit formation and a brainstem-cerebellar circuit that mediates sensorimotor adaptations; and (3) a circuit involving subcortical and cortical pathways through the amygdala that mediates the attachment of affective status and emotional responses to previously neutral stimuli. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs website.

  1. Collaging Memories

    ERIC Educational Resources Information Center

    Wallach, Michele

    2011-01-01

    Even middle school students can have memories of their childhoods, of an earlier time. The art of Romare Bearden and the writings of Paul Auster can be used to introduce ideas about time and memory to students and inspire works of their own. Bearden is an exceptional role model for young artists, not only because of his astounding art, but also…

  2. Episodic Memories

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2009-01-01

    An account of episodic memories is developed that focuses on the types of knowledge they represent, their properties, and the functions they might serve. It is proposed that episodic memories consist of "episodic elements," summary records of experience often in the form of visual images, associated to a "conceptual frame" that provides a…

  3. Memory conformity affects inaccurate memories more than accurate memories.

    PubMed

    Wright, Daniel B; Villalba, Daniella K

    2012-01-01

    After controlling for initial confidence, inaccurate memories were shown to be more easily distorted than accurate memories. In two experiments groups of participants viewed 50 stimuli and were then presented with these stimuli plus 50 fillers. During this test phase participants reported their confidence that each stimulus was originally shown. This was followed by computer-generated responses from a bogus participant. After being exposed to this response participants again rated the confidence of their memory. The computer-generated responses systematically distorted participants' responses. Memory distortion depended on initial memory confidence, with uncertain memories being more malleable than confident memories. This effect was moderated by whether the participant's memory was initially accurate or inaccurate. Inaccurate memories were more malleable than accurate memories. The data were consistent with a model describing two types of memory (i.e., recollective and non-recollective memories), which differ in how susceptible these memories are to memory distortion.

  4. Intranasal “painless” Human Nerve Growth Factors Slows Amyloid Neurodegeneration and Prevents Memory Deficits in App X PS1 Mice

    PubMed Central

    Capsoni, Simona; Marinelli, Sara; Ceci, Marcello; Vignone, Domenico; Amato, Gianluca; Malerba, Francesca; Paoletti, Francesca; Meli, Giovanni; Viegi, Alessandro; Pavone, Flaminia; Cattaneo, Antonino

    2012-01-01

    Nerve Growth Factor (NGF) is being considered as a therapeutic candidate for Alzheimer's disease (AD) treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V), which would allow increasing the dose of NGF without triggering pain. We show that “painless” hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8), hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of “painless” hNGF variants as a new generation of therapeutics for neurodegenerative diseases. PMID:22666365

  5. Lithium and valproate prevent olfactory discrimination and short-term memory impairments in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) rat model of Parkinson's disease.

    PubMed

    Castro, Adalberto A; Ghisoni, Karina; Latini, Alexandra; Quevedo, João; Tasca, Carla I; Prediger, Rui D S

    2012-04-01

    We have recently demonstrated that rodents treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) display time-dependent impairments in olfactory, emotional, cognitive and motor functions associated with disruption of dopaminergic neurotransmission in different brain structures conceivably analogous to those observed during different stages of Parkinson's disease (PD). On the other hand, lithium (Li) and valproate (VPA) are two primary drugs used to treat bipolar mood disorder that have recently emerged as promising neuroprotective agents. The present data indicates that the pretreatment with Li (47.5 mg/kg) or VPA (200 mg/kg) by intraperitoneal route during 7 consecutive days was able to prevent olfactory discrimination and short-term memory impairments evaluated in the social recognition and step-down inhibitory avoidance tasks in rats infused with a single intranasal (i.n.) administration of MPTP (0.1 mg/nostril). Despite the absence of clear depressive-like responses following the current MPTP dose, Li and VPA treatment presented an antidepressant profile reducing the immobility time in the forced swimming test. Importantly, at this time no significant alterations on the locomotor activity of the animals were observed in the open field test. Moreover, Li and VPA prevented dopamine depletion in the olfactory bulb and striatum of MPTP-infused rats. These results provide new insights in experimental models of PD, indicating that Li and VPA may represent new therapeutic tools for the management of olfactory and cognitive symptoms associated to early preclinical phases of PD, together with their neuroprotective potential demonstrated in previous research.

  6. Synchronous semiconductor memory device

    SciTech Connect

    Onno, C.; Hirata, M.

    1989-11-21

    This patent describes a synchronous semiconductor memory device. It comprises: first latch means for latching a write command in synchronism with clock signal; second latch means for latching a write data in synchronism with the clock signal and for outputting two write process signals based on the write data latched thereby; pulse generating means for generating an internal write pulse signal based on the write command latched by the first latch means. The internal write pulse signal having a semiconductor memory device; write control means supplied with the internal write pulse signal and the write process signals for controlling write and read operations of the synchronous semiconductor memory device; memory means for storing the write data latched by the second latch means; and noise preventing means coupled to the second latch means and the write control means for supplying the write process signals to the write control means only in the write mode responsive to the internal write pulse signal and for setting the write process signals to fixed potentials during a time other than the write mode.

  7. Elder abuse and neglect--"old phenomenon": new directions for research, legislation, and service developments. (2008 Rosalie S. Wolf Memorial Elder Abuse Prevention Award--International Category Lecture).

    PubMed

    Lowenstein, Ariela

    2009-01-01

    This article poses the question: Is elder abuse and neglect a social problem, showing that it is. Elder abuse, though, is still the most hidden form of mistreatment and a key to governmental responses to an ageing population. It is an important facet as a family violence problem, an intergenerational concern, as well as a health, justice and human rights issue. Because the phenomenon of elder abuse and neglect is so complex and multi-dimensional, it has to be addressed by multi-professional and inter-disciplinary approaches. Raising awareness is a fundamental prevention strategy and an important step in causing changes in attitudes and behaviors. This has been accomplished by INPEA and the article was developed from the lecture given by the author on receiving the International Rosalie Wolf Award from INPEA. The discussion focuses on elder abuse as a product of global ageing, stemming from population ageing, which is consistent with an increased prevalence of abuse of all vulnerable groups, older people among them. It is pointed out that baseline and trend data on the nature and prevalence of senior abuse are crucial to policy responses and the development of appropriate programs and services. Difficulties in assessing the scope of the phenomenon, though, are due to: problems in definitions and methodology, which create difficulties in comparing data from various countries; lack of social and familial awareness; isolation of some elders, especially migrants; elder abuse as a 'hidden issue' that usually occurs in the privacy of the home and is viewed as a family affair; limited access to institutional settings. Difficulties also exist in constructing a unifying research framework in order to study the phenomenon due to a lack of comparison groups, a lack of representative national surveys and difficulties in measurement. There is currently, however, an increase in prevalence and incidence studies from both sides of the Atlantic and especially from Europe. But while

  8. Fear Memory.

    PubMed

    Izquierdo, Ivan; Furini, Cristiane R G; Myskiw, Jociane C

    2016-04-01

    Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general. PMID:26983799

  9. Fear Memory.

    PubMed

    Izquierdo, Ivan; Furini, Cristiane R G; Myskiw, Jociane C

    2016-04-01

    Fear memory is the best-studied form of memory. It was thoroughly investigated in the past 60 years mostly using two classical conditioning procedures (contextual fear conditioning and fear conditioning to a tone) and one instrumental procedure (one-trial inhibitory avoidance). Fear memory is formed in the hippocampus (contextual conditioning and inhibitory avoidance), in the basolateral amygdala (inhibitory avoidance), and in the lateral amygdala (conditioning to a tone). The circuitry involves, in addition, the pre- and infralimbic ventromedial prefrontal cortex, the central amygdala subnuclei, and the dentate gyrus. Fear learning models, notably inhibitory avoidance, have also been very useful for the analysis of the biochemical mechanisms of memory consolidation as a whole. These studies have capitalized on in vitro observations on long-term potentiation and other kinds of plasticity. The effect of a very large number of drugs on fear learning has been intensively studied, often as a prelude to the investigation of effects on anxiety. The extinction of fear learning involves to an extent a reversal of the flow of information in the mentioned structures and is used in the therapy of posttraumatic stress disorder and fear memories in general.

  10. Is external memory memory? Biological memory and extended mind.

    PubMed

    Michaelian, Kourken

    2012-09-01

    Clark and Chalmers (1998) claim that an external resource satisfying the following criteria counts as a memory: (1) the agent has constant access to the resource; (2) the information in the resource is directly available; (3) retrieved information is automatically endorsed; (4) information is stored as a consequence of past endorsement. Research on forgetting and metamemory shows that most of these criteria are not satisfied by biological memory, so they are inadequate. More psychologically realistic criteria generate a similar classification of standard putative external memories, but the criteria still do not capture the function of memory. An adequate account of memory function, compatible with its evolution and its roles in prospection and imagination, suggests that external memory performs a function not performed by biological memory systems. External memory is thus not memory. This has implications for: extended mind theorizing, ecological validity of memory research, the causal theory of memory.

  11. Attending to items in working memory: evidence that refreshing and memory search are closely related.

    PubMed

    Vergauwe, Evie; Cowan, Nelson

    2015-08-01

    Refreshing refers to the use of attention to reactivate items in working memory (WM). In the present study, we aimed to test the hypothesis that refreshing is closely related to memory search. The assumption is that refreshing and memory search both rely on a basic covert memory process that quickly retrieves the memory items into the focus of attention, thereby reactivating the information (Cowan, 1992; Vergauwe & Cowan, 2014). Consistent with the idea that people use their attention to prevent loss from WM, previous research has shown that increasing the proportion of time during which attention is occupied by concurrent processing, thereby preventing refreshing, results in poorer recall performance in complex span tasks (Barrouillet, Portrat, & Camos, Psychological Review, 118, 175-192, 2011). Here, we tested whether recall performance is differentially affected by prolonged attentional capture caused by memory search. If memory search and refreshing both rely on retrieval from WM, then prolonged attentional capture caused by memory search should not lead to forgetting, because memory items are assumed to be reactivated during memory search, in the same way that they would be if that period of time were used for refreshing. Consistent with this idea, prolonged attentional capture had a disruptive effect when it was caused by the need to retrieve knowledge from long-term memory, but not when it was caused by the need to search through the content of WM. The present results support the idea that refreshing operates through a process of retrieval of information into the focus of attention.

  12. Attending to items in working memory: evidence that refreshing and memory search are closely related.

    PubMed

    Vergauwe, Evie; Cowan, Nelson

    2015-08-01

    Refreshing refers to the use of attention to reactivate items in working memory (WM). In the present study, we aimed to test the hypothesis that refreshing is closely related to memory search. The assumption is that refreshing and memory search both rely on a basic covert memory process that quickly retrieves the memory items into the focus of attention, thereby reactivating the information (Cowan, 1992; Vergauwe & Cowan, 2014). Consistent with the idea that people use their attention to prevent loss from WM, previous research has shown that increasing the proportion of time during which attention is occupied by concurrent processing, thereby preventing refreshing, results in poorer recall performance in complex span tasks (Barrouillet, Portrat, & Camos, Psychological Review, 118, 175-192, 2011). Here, we tested whether recall performance is differentially affected by prolonged attentional capture caused by memory search. If memory search and refreshing both rely on retrieval from WM, then prolonged attentional capture caused by memory search should not lead to forgetting, because memory items are assumed to be reactivated during memory search, in the same way that they would be if that period of time were used for refreshing. Consistent with this idea, prolonged attentional capture had a disruptive effect when it was caused by the need to retrieve knowledge from long-term memory, but not when it was caused by the need to search through the content of WM. The present results support the idea that refreshing operates through a process of retrieval of information into the focus of attention. PMID:25361821

  13. Involvement of hippocampal Arc in amnesia and its recovery by alcoholic extract of Ashwagandha leaves.

    PubMed

    Gautam, Akash; Wadhwa, Renu; Thakur, Mahendra K

    2013-11-01

    Arc (Activity-regulated cytoskeletal-associated protein) is a member of the immediate-early gene (IEG) family protein. Because of its critical role in learning and memory, it is widely considered to be an important protein in synaptic plasticity and related neurobiological functions. Alcoholic extract of Ashwagandha leaves (i-Extract) was recently shown to have preventive and therapeutic potential for scopolamine-induced amnesia and glutamate-induced excitotoxicity. In the present study, we investigated the involvement of Arc in scopolamine-induced amnesia and its recovery by i-Extract with particular focus to the changes in Arc expression in the hippocampus and cerebral cortex of mice. Morris water maze test showed that spatial learning and memory of mice were drastically reduced by scopolamine administration but improved with i-Extract treatment as compared to control and scopolamine-challenged mice. Molecular analysis revealed a remarkable decline in Arc expression in both hippocampus and cerebral cortex of amnesic mice, which was recovered after i-Extract treatment. Interestingly, Arc expression showed better recovery in the hippocampus than the cerebral cortex and the pre-treatment with i-Extract was more effective than the post-treatment. These findings suggest that Arc may be involved in i-Extract mediated recovery from amnesia.

  14. Retracing Memories

    ERIC Educational Resources Information Center

    Harrison, David L.

    2005-01-01

    There are plenty of paths to poetry but few are as accessible as retracing ones own memories. When students are asked to write about something they remember, they are given them the gift of choosing from events that are important enough to recall. They remember because what happened was funny or scary or embarrassing or heartbreaking or silly.…

  15. Fueling Memories

    PubMed Central

    Powell, Jonathan D.; Pollizzi, Kristen

    2012-01-01

    A hallmark of the adaptive immune response is rapid and robust activation upon rechallenge. In the current issue of Immunity van der Windt et al. (2012) provide an important link between mitochondrial respiratory capacity and the development of CD8+ T cell memory. PMID:22284413

  16. Memory Loss

    ERIC Educational Resources Information Center

    Cassebaum, Anne

    2011-01-01

    In four decades of teaching college English, the author has watched many good teaching jobs morph into second-class ones. Worse, she has seen the memory and then the expectation of teaching jobs with decent status, security, and salary depart along with principles and collegiality. To help reverse this downward spiral, she contends that what is…

  17. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice

    PubMed Central

    Wolf, Andrea; Bauer, Björn; Abner, Erin L.; Ashkenazy-Frolinger, Tal; Hartz, Anika M. S.

    2016-01-01

    Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer’s disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background—scopolamine-treated 129S6/SvEvTac mice (3–5 month-old) and transgenic 129S6/Tg2576 mice (11–13 month-old)–to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added. PMID:26808326

  18. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice.

    PubMed

    Wolf, Andrea; Bauer, Björn; Abner, Erin L; Ashkenazy-Frolinger, Tal; Hartz, Anika M S

    2016-01-01

    Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer's disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background--scopolamine-treated 129S6/SvEvTac mice (3-5 month-old) and transgenic 129S6/Tg2576 mice (11-13 month-old)-to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added.

  19. A Comprehensive Behavioral Test Battery to Assess Learning and Memory in 129S6/Tg2576 Mice.

    PubMed

    Wolf, Andrea; Bauer, Björn; Abner, Erin L; Ashkenazy-Frolinger, Tal; Hartz, Anika M S

    2016-01-01

    Transgenic Tg2576 mice overexpressing human amyloid precursor protein (hAPP) are a widely used Alzheimer's disease (AD) mouse model to evaluate treatment effects on amyloid beta (Aβ) pathology and cognition. Tg2576 mice on a B6;SJL background strain carry a recessive rd1 mutation that leads to early retinal degeneration and visual impairment in homozygous carriers. This can impair performance in behavioral tests that rely on visual cues, and thus, affect study results. Therefore, B6;SJL/Tg2576 mice were systematically backcrossed with 129S6/SvEvTac mice resulting in 129S6/Tg2576 mice that lack the rd1 mutation. 129S6/Tg2576 mice do not develop retinal degeneration but still show Aβ accumulation in the brain that is comparable to the original B6;SJL/Tg2576 mouse. However, comprehensive studies on cognitive decline in 129S6/Tg2576 mice are limited. In this study, we used two dementia mouse models on a 129S6 background--scopolamine-treated 129S6/SvEvTac mice (3-5 month-old) and transgenic 129S6/Tg2576 mice (11-13 month-old)-to establish a behavioral test battery for assessing learning and memory. The test battery consisted of five tests to evaluate different aspects of cognitive impairment: a Y-Maze forced alternation task, a novel object recognition test, the Morris water maze, the radial arm water maze, and a Y-maze spontaneous alternation task. We first established this behavioral test battery with the scopolamine-induced dementia model using 129S6/SvEvTac mice and then evaluated 129S6/Tg2576 mice using the same testing protocol. Both models showed distinctive patterns of cognitive impairment. Together, the non-invasive behavioral test battery presented here allows detecting cognitive impairment in scopolamine-treated 129S6/SvEvTac mice and in transgenic 129S6/Tg2576 mice. Due to the modular nature of this test battery, more behavioral tests, e.g. invasive assays to gain additional cognitive information, can easily be added. PMID:26808326

  20. 3 CFR 8507 - Proclamation 8507 of April 28, 2010. Workers Memorial Day, 2010

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... their memory, we rededicate ourselves to preventing such tragedies, and to securing a safer workplace... and activities in memory of those who have been killed due to unsafe working conditions. IN...

  1. Cell memory-based therapy.

    PubMed

    Anjamrooz, Seyed Hadi

    2015-11-01

    Current cell therapies, despite all of the progress in this field, still faces major ethical, technical and regulatory hurdles. Because these issues possibly stem from the current, restricted, stereotypical view of cell ultrastructure and function, we must think radically about the nature of the cell. In this regard, the author's theory of the cell memory disc offers 'memory-based therapy', which, with the help of immune system rejuvenation, nervous system control and microparticle-based biodrugs, may have substantial therapeutic potential. In addition to its potential value in the study and prevention of premature cell aging, age-related diseases and cell death, memory therapy may improve the treatment of diseases that are currently limited by genetic disorders, risk of tumour formation and the availability and immunocompatibility of tissue transplants. PMID:26256679

  2. Cell memory-based therapy

    PubMed Central

    Anjamrooz, Seyed Hadi

    2015-01-01

    Current cell therapies, despite all of the progress in this field, still faces major ethical, technical and regulatory hurdles. Because these issues possibly stem from the current, restricted, stereotypical view of cell ultrastructure and function, we must think radically about the nature of the cell. In this regard, the author's theory of the cell memory disc offers ‘memory-based therapy’, which, with the help of immune system rejuvenation, nervous system control and microparticle-based biodrugs, may have substantial therapeutic potential. In addition to its potential value in the study and prevention of premature cell aging, age-related diseases and cell death, memory therapy may improve the treatment of diseases that are currently limited by genetic disorders, risk of tumour formation and the availability and immunocompatibility of tissue transplants. PMID:26256679

  3. The coumarin scopoletin potentiates acetylcholine release from synaptosomes, amplifies hippocampal long-term potentiation and ameliorates anticholinergic- and age-impaired memory

    PubMed Central

    Hornick, A.; Lieb, A.; Vo, N.P.; Rollinger, J.M.; Stuppner, H.; Prast, H.

    2011-01-01

    In a previous study the simple, naturally derived coumarin scopoletin (SCT) was identified as an inhibitor of acetylcholinesterase (AChE), using a pharmacophore-based virtual screening approach. In this study the potential of SCT as procholinergic and cognition-enhancing therapeutic was investigated in a more detailed way, using different experimental approaches like measuring newly synthesized acetylcholine (ACh) in synaptosomes, long-term potentiation (LTP) experiments in hippocampal slices, and behavior studies. SCT enhanced the K+-stimulated release of ACh from rat frontal cortex synaptosomes, showing a bell-shaped dose effect curve (Emax: 4 μM). This effect was blocked by the nicotinic ACh receptor (nAChR) antagonists mecamylamine (MEC) and dihydro-β-erythroidine (DHE). The nAChR agonist (and AChE inhibitor) galantamine induced a similar increase in ACh release (Emax: 1 μM). SCT potentiated LTP in hippocampal slices of rat brain. The high-frequency stimulation (HFS)-induced, N-methyl-D-aspartate (NMDA) receptor dependent LTP of field excitatory postsynaptic potentials at CA3-CA1 synapses was greatly enhanced by pre-HFS application of SCT (4 μM for 4 min). This effect was mimicked by nicotine (2 μM) and abolished by MEC, suggesting an effect on nAChRs. SCT did not restore the total inhibition of LTP by NMDA receptor antagonist d, l-2-amino-5-phosphonopentanoic acid (AP-5). SCT (2 μg, i.c.v.) increased T-maze alternation and ameliorated novel object recognition of mice with scopolamine-induced cholinergic deficit. It also reduced age-associated deficits in object memory of 15–18-month-old mice (2 mg/kg sc). Our findings suggest that SCT possesses memory-improving properties, which are based on its direct nAChR agonistic activity. Therefore, SCT might be able to rescue impaired cholinergic functions by enhancing nAChR-mediated release of neurotransmitters and promoting neural plasticity in hippocampus. PMID:21945033

  4. Low luteinizing hormone enhances spatial memory and has protective effects on memory loss in rats.

    PubMed

    Ziegler, Shira G; Thornton, Janice E

    2010-11-01

    Though several studies have suggested that estradiol improves hippocampal-dependent spatial memory, the effects of other hormones in the hypothalamic-pituitary-gonadal axis on memory have largely been ignored. Estradiol and luteinizing hormone (LH) are generally inversely related and LH may significantly affect spatial memory. Ovariectomized (ovx) rats treated with Antide (a gonadotropin releasing hormone receptor antagonist) had low LH levels and showed enhanced spatial memory, comparable to treatment with estradiol. Antide-treated ovx females retained spatial memory longer than estradiol-treated ovx females. Deficits in spatial memory are a primary symptom of neurodegenerative disorders including Alzheimer's disease (AD). Treatment with Antide prevented spatial memory deficits in a neurotoxin-induced model typical of early AD. These data suggest that memory impairments seen in female rats after ovariectomy or women after menopause may be due to high LH levels and that a reduction in LH enhances memory. These results also implicate an LH lowering agent as a potential preventative therapy for AD.

  5. Cognition-enhancing and neuroprotective activities of the standardized extract of Betula platyphylla bark and its major diarylheptanoids.

    PubMed

    Lee, Ki Yong; Jeong, Eun Ju; Huh, Jungmoo; Cho, Namki; Kim, Tae Bum; Jeon, Byung Ju; Kim, Seung Hyun; Kim, Hong Pyo; Sung, Sang Hyun

    2012-11-15

    Diarylheptanoids have been the center of the intensive research efforts for Alzheimer's disease and other neurodegenerative diseases. The present study aimed to determine the effect of the standardized extract of B. platyphylla bark and its major diarylheptanoids in scopolamine-induced amnesic mice through cyclic AMP response element-binding protein (CREB) activation. Oral administration of the standardized extract of B. platyphylla bark (100mg/kg body weight), aceroside VIII (1mg/kg body weight) and platyphylloside (1 or 2mg/kg body weight) significantly ameliorated scopolamine-induced amnesia in passive avoidance test. CREB phosphorylation and brain-derived neurotrophic factor (BDNF) expression in the cortex and hippocampus of the scopolamine-treated mice were markedly increased by the treatment of the standardized extract of B. platyphylla bark and platyphylloside. The standardized extract of B. platyphylla bark and its major diarylheptanoids also significantly protected HT22 cells against neurotoxicity induced by glutamate insult. The standardized extract of B. platyphylla bark and platyphylloside may ameliorate memory deficits by activating the CREB-BDNF pathway and prevent a neurodegeneration by inhibiting neuronal cell death.

  6. Improving Memory Error Handling Using Linux

    SciTech Connect

    Carlton, Michael Andrew; Blanchard, Sean P.; Debardeleben, Nathan A.

    2014-07-25

    As supercomputers continue to get faster and more powerful in the future, they will also have more nodes. If nothing is done, then the amount of memory in supercomputer clusters will soon grow large enough that memory failures will be unmanageable to deal with by manually replacing memory DIMMs. "Improving Memory Error Handling Using Linux" is a process oriented method to solve this problem by using the Linux kernel to disable (offline) faulty memory pages containing bad addresses, preventing them from being used again by a process. The process of offlining memory pages simplifies error handling and results in reducing both hardware and manpower costs required to run Los Alamos National Laboratory (LANL) clusters. This process will be necessary for the future of supercomputing to allow the development of exascale computers. It will not be feasible without memory error handling to manually replace the number of DIMMs that will fail daily on a machine consisting of 32-128 petabytes of memory. Testing reveals the process of offlining memory pages works and is relatively simple to use. As more and more testing is conducted, the entire process will be automated within the high-performance computing (HPC) monitoring software, Zenoss, at LANL.

  7. SODR Memory Control Buffer Control ASIC

    NASA Technical Reports Server (NTRS)

    Hodson, Robert F.

    1994-01-01

    The Spacecraft Optical Disk Recorder (SODR) is a state of the art mass storage system for future NASA missions requiring high transmission rates and a large capacity storage system. This report covers the design and development of an SODR memory buffer control applications specific integrated circuit (ASIC). The memory buffer control ASIC has two primary functions: (1) buffering data to prevent loss of data during disk access times, (2) converting data formats from a high performance parallel interface format to a small computer systems interface format. Ten 144 p in, 50 MHz CMOS ASIC's were designed, fabricated and tested to implement the memory buffer control function.

  8. Memory Retrieval and Interference: Working Memory Issues

    ERIC Educational Resources Information Center

    Radvansky, Gabriel A.; Copeland, David E.

    2006-01-01

    Working memory capacity has been suggested as a factor that is involved in long-term memory retrieval, particularly when that retrieval involves a need to overcome some sort of interference (Bunting, Conway, & Heitz, 2004; Cantor & Engle, 1993). Previous work has suggested that working memory is related to the acquisition of information during…

  9. Episodic memory, semantic memory, and amnesia.

    PubMed

    Squire, L R; Zola, S M

    1998-01-01

    Episodic memory and semantic memory are two types of declarative memory. There have been two principal views about how this distinction might be reflected in the organization of memory functions in the brain. One view, that episodic memory and semantic memory are both dependent on the integrity of medial temporal lobe and midline diencephalic structures, predicts that amnesic patients with medial temporal lobe/diencephalic damage should be proportionately impaired in both episodic and semantic memory. An alternative view is that the capacity for semantic memory is spared, or partially spared, in amnesia relative to episodic memory ability. This article reviews two kinds of relevant data: 1) case studies where amnesia has occurred early in childhood, before much of an individual's semantic knowledge has been acquired, and 2) experimental studies with amnesic patients of fact and event learning, remembering and knowing, and remote memory. The data provide no compelling support for the view that episodic and semantic memory are affected differently in medial temporal lobe/diencephalic amnesia. However, episodic and semantic memory may be dissociable in those amnesic patients who additionally have severe frontal lobe damage.

  10. Optical memory

    DOEpatents

    Mao, Samuel S; Zhang, Yanfeng

    2013-07-02

    Optical memory comprising: a semiconductor wire, a first electrode, a second electrode, a light source, a means for producing a first voltage at the first electrode, a means for producing a second voltage at the second electrode, and a means for determining the presence of an electrical voltage across the first electrode and the second electrode exceeding a predefined voltage. The first voltage, preferably less than 0 volts, different from said second voltage. The semiconductor wire is optically transparent and has a bandgap less than the energy produced by the light source. The light source is optically connected to the semiconductor wire. The first electrode and the second electrode are electrically insulated from each other and said semiconductor wire.

  11. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories

    PubMed Central

    Noreen, Saima; O’Connor, Akira R.; MacLeod, Malcolm D.

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one’s attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory. PMID:27047412

  12. Neural Correlates of Direct and Indirect Suppression of Autobiographical Memories.

    PubMed

    Noreen, Saima; O'Connor, Akira R; MacLeod, Malcolm D

    2016-01-01

    Research indicates that there are two possible mechanisms by which particular target memories can be intentionally forgotten. Direct suppression, which involves the suppression of the unwanted memory directly, and is dependent on a fronto-hippocampal modulatory process, and, memory substitution, which includes directing one's attention to an alternative memory in order to prevent the unwanted memory from coming to mind, and involves engaging the caudal prefrontal cortex (cPFC) and the mid-ventrolateral prefrontal cortex (VLPFC) regions. Research to date, however, has investigated the neural basis of memory suppression of relatively simple information. The aim of the current study was to use fMRI to identify the neural mechanisms associated with the suppression of autobiographical memories. In the present study, 22 participants generated memories in response to a series of cue words. In a second session, participants learnt these cue-memory pairings, and were subsequently presented with a cue word and asked either to recall (think) or to suppress (no-think) the associated memory, or to think of an alternative memory in order to suppress the original memory (memory-substitution). Our findings demonstrated successful forgetting effects in the no-think and memory substitution conditions. Although we found no activation in the dorsolateral prefrontal cortex, there was reduced hippocampal activation during direct suppression. In the memory substitution condition, however, we failed to find increased activation in the cPFC and VLPFC regions. Our findings suggest that the suppression of autobiographical memories may rely on different neural mechanisms to those established for other types of material in memory.

  13. Infant Visual Recognition Memory

    ERIC Educational Resources Information Center

    Rose, Susan A.; Feldman, Judith F.; Jankowski, Jeffery J.

    2004-01-01

    Visual recognition memory is a robust form of memory that is evident from early infancy, shows pronounced developmental change, and is influenced by many of the same factors that affect adult memory; it is surprisingly resistant to decay and interference. Infant visual recognition memory shows (a) modest reliability, (b) good discriminant…

  14. Memory and the brain.

    PubMed

    Robertson, Lee T

    2002-01-01

    This review summarizes some of the recent advances in the neurobiology of memory. Current research helps us to understand how memories are created and, conversely, how our memories can be influenced by stress, drugs, and aging. An understanding of how memories are encoded by the brain may also lead to new ideas about how to maximize the long-term retention of important information. There are multiple memory systems with different functions and, in this review, we focus on the conscious recollection of one's experience of events and facts and on memories tied to emotional responses. Memories are also classified according to time: from short-term memory, lasting only seconds or minutes, to long-term memory, lasting months or years. The advent of new functional neuroimaging methods provides an opportunity to gain insight into how the human brain supports memory formation. Each memory system has a distinct anatomical organization, where different parts of the brain are recruited during phases of memory storage. Within the brain, memory is a dynamic property of populations of neurons and their interconnections. Memories are laid down in our brains via chemical changes at the neuron level. An understanding of the neurobiology of memory may stimulate health educators to consider how various teaching methods conform to the process of memory formation. PMID:12358099

  15. Rape prevention

    MedlinePlus

    Date rape - prevention; Sexual assault - prevention ... Centers for Disease Control and Prevention. Sexual assault and abuse and STDs. In: 2015 sexually transmitted diseases treatment guidelines 2015. Updated June 4, 2015. www.cdc.gov/ ...

  16. Verbal memory and menopause.

    PubMed

    Maki, Pauline M

    2015-11-01

    Midlife women frequently report memory problems during the menopausal transition. Recent studies validate those complaints by showing significant correlations between memory complaints and performance on validated memory tasks. Longitudinal studies demonstrate modest declines in verbal memory during the menopausal transition and a likely rebound during the postmenopausal stage. Clinical studies that examine changes in memory following hormonal withdrawal and add-back hormone therapy (HT) demonstrate that estradiol plays a critical role in memory. Although memory changes are frequently attributed to menopausal symptoms, studies show that the memory problems occur during the transition even after controlling for menopausal symptoms. It is well established that self-reported vasomotor symptoms (VMS) are unrelated to objective memory performance. However, emerging evidence suggests that objectively measured VMS significantly correlate with memory performance, brain activity during rest, and white matter hyperintensities. This evidence raises important questions about whether VMS and VMS treatments might affect memory during the menopausal transition. Unfortunately, there are no clinical trials to inform our understanding of how HT affects both memory and objectively measured VMS in women in whom HT is indicated for treatment of moderate to severe VMS. In clinical practice, it is helpful to normalize memory complaints, to note that evidence suggests that memory problems are temporary, and to counsel women with significant VMS that memory might improve with treatment.

  17. The Language of Patriotism: Sacred History and Dangerous Memories

    ERIC Educational Resources Information Center

    Christou, Miranda

    2007-01-01

    This paper examines arguments about the teaching of history in Cyprus, especially as they relate to the cultivation of patriotism. I point out how the narratives of "sacred history" and "dangerous memories" are discursive elements of a pedagogy that aims at maintaining patriotism by preventing subjective and divisive personal memories from eroding…

  18. Reducing unwanted trauma memories by imaginal exposure or autobiographical memory elaboration: An analogue study of memory processes

    PubMed Central

    Ehlers, Anke; Mauchnik, Jana; Handley, Rachel

    2012-01-01

    Unwanted memories of traumatic events are a core symptom of post-traumatic stress disorder. A range of interventions including imaginal exposure and elaboration of the trauma memory in its autobiographical context are effective in reducing such unwanted memories. This study explored whether priming for stimuli that occur in the context of trauma and evaluative conditioning may play a role in the therapeutic effects of these procedures. Healthy volunteers (N = 122) watched analogue traumatic and neutral picture stories. They were then randomly allocated to 20 min of either imaginal exposure, autobiographical memory elaboration, or a control condition designed to prevent further processing of the picture stories. A blurred picture identification task showed that neutral objects that preceded traumatic pictures in the stories were subsequently more readily identified than those that had preceded neutral stories, indicating enhanced priming. There was also an evaluative conditioning effect in that participants disliked neutral objects that had preceded traumatic pictures more. Autobiographical memory elaboration reduced the enhanced priming effect. Both interventions reduced the evaluative conditioning effect. Imaginal exposure and autobiographical memory elaboration both reduced the frequency of subsequent unwanted memories of the picture stories. PMID:21227404

  19. Ginkgo biloba and Memory: An Overview.

    PubMed

    Field, B H; Vadnal, R

    1998-01-01

    Ginkgo biloba extract has been increasingly popular for the treatment of memory problems. However, it is not commonly understood that this extract is composed of numerous chemicals, including flavonoid glycosides, terpene lactones, biflavones, and other miscellaneous components. It remains to be established exactly which components are biologically helpful. The extracts come from the leaves of the Ginkgo biloba tree which is cultivated extensively for this purpose. Our aging population will consist of approximately 79 million people 65 y.o. or older in the year 2050. Since memory disorders increase dramatically with age, this poses a major challenge to both the pharmaceutical and nutritional industries to provide products which improve or prevent problems with memory. Our culture is based on the ability to recall information, therefore problems with memory are fundamental to our entire social system. Dementias are disorders that affect memory and intellectual functioning, and are caused primarily by Alzheimer's disease and vascular disorders (multi-infarct dementia). New drug therapies have been developed to improve cognition, through stimulation of the cholinergic system. In recent decades, an extract of the leaves of the tree Ginkgo biloba L. has been used to improve memory in these disorders. The European experience with Ginkgo extract is much greater than that of the U.S. Clinical studies to date have indicated a probable therapeutic benefit of Ginkgo biloba extract. Further human studies are needed to identify which clinical population is most responsive to Ginkgo treatment. In addition, it would be very useful to identify which chemical compound or compounds provide therapeutic effects in memory disorders. These bioactive components may be further concentrated for increased benefit in increasing cognitive memory capabilities. In addition, pharmaceutical companies might be able to modify memory-enhancing Ginkgo-derived molecules to increase potency and

  20. Memory beyond expression.

    PubMed

    Delorenzi, A; Maza, F J; Suárez, L D; Barreiro, K; Molina, V A; Stehberg, J

    2014-01-01

    The idea that memories are not invariable after the consolidation process has led to new perspectives about several mnemonic processes. In this framework, we review our studies on the modulation of memory expression during reconsolidation. We propose that during both memory consolidation and reconsolidation, neuromodulators can determine the probability of the memory trace to guide behavior, i.e. they can either increase or decrease its behavioral expressibility without affecting the potential of persistent memories to be activated and become labile. Our hypothesis is based on the findings that positive modulation of memory expression during reconsolidation occurs even if memories are behaviorally unexpressed. This review discusses the original approach taken in the studies of the crab Neohelice (Chasmagnathus) granulata, which was then successfully applied to test the hypothesis in rodent fear memory. Data presented offers a new way of thinking about both weak trainings and experimental amnesia: memory retrieval can be dissociated from memory expression. Furthermore, the strategy presented here allowed us to show in human declarative memory that the periods in which long-term memory can be activated and become labile during reconsolidation exceeds the periods in which that memory is expressed, providing direct evidence that conscious access to memory is not needed for reconsolidation. Specific controls based on the constraints of reminders to trigger reconsolidation allow us to distinguish between obliterated and unexpressed but activated long-term memories after amnesic treatments, weak trainings and forgetting. In the hypothesis discussed, memory expressibility--the outcome of experience-dependent changes in the potential to behave--is considered as a flexible and modulable attribute of long-term memories. Expression seems to be just one of the possible fates of re-activated memories.

  1. Retrieval Is Not Necessary to Trigger Reconsolidation of Object Recognition Memory in the Perirhinal Cortex

    ERIC Educational Resources Information Center

    Santoyo-Zedillo, Marianela; Rodriguez-Ortiz, Carlos J.; Chavez-Marchetta, Gianfranco; Bermudez-Rattoni, Federico; Balderas, Israela

    2014-01-01

    Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have…

  2. Bayesian Analysis of Recognition Memory: The Case of the List-Length Effect

    ERIC Educational Resources Information Center

    Dennis, Simon; Lee, Michael D.; Kinnell, Angela

    2008-01-01

    Recognition memory experiments are an important source of empirical constraints for theories of memory. Unfortunately, standard methods for analyzing recognition memory data have problems that are often severe enough to prevent clear answers being obtained. A key example is whether longer lists lead to poorer recognition performance. The presence…

  3. Prefrontal Activity Links Nonoverlapping Events in Memory

    PubMed Central

    Miyawaki, Hiroyuki; Helmstetter, Fred J.; Diba, Kamran

    2013-01-01

    The medial prefrontal cortex (mPFC) plays an important role in memory. By maintaining a working memory buffer, neurons in prelimbic (PL) mPFC may selectively contribute to learning associations between stimuli that are separated in time, as in trace fear conditioning (TFC). Until now, evidence for this bridging role was largely descriptive. Here we used optogenetics to silence neurons in the PL mPFC of rats during learning in TFC. Memory formation was prevented when mPFC was silenced specifically during the interval separating the cue and shock. Our results provide support for a working memory function for these cells and indicate that associating two noncontiguous stimuli requires bridging activity in PL mPFC. PMID:23804110

  4. Gamma and Beta Bursts Underlie Working Memory.

    PubMed

    Lundqvist, Mikael; Rose, Jonas; Herman, Pawel; Brincat, Scott L; Buschman, Timothy J; Miller, Earl K

    2016-04-01

    Working memory is thought to result from sustained neuron spiking. However, computational models suggest complex dynamics with discrete oscillatory bursts. We analyzed local field potential (LFP) and spiking from the prefrontal cortex (PFC) of monkeys performing a working memory task. There were brief bursts of narrow-band gamma oscillations (45-100 Hz), varied in time and frequency, accompanying encoding and re-activation of sensory information. They appeared at a minority of recording sites associated with spiking reflecting the to-be-remembered items. Beta oscillations (20-35 Hz) also occurred in brief, variable bursts but reflected a default state interrupted by encoding and decoding. Only activity of neurons reflecting encoding/decoding correlated with changes in gamma burst rate. Thus, gamma bursts could gate access to, and prevent sensory interference with, working memory. This supports the hypothesis that working memory is manifested by discrete oscillatory dynamics and spiking, not sustained activity. PMID:26996084

  5. Detailed sensory memory, sloppy working memory.

    PubMed

    Sligte, Ilja G; Vandenbroucke, Annelinde R E; Scholte, H Steven; Lamme, Victor A F

    2010-01-01

    Visual short-term memory (VSTM) enables us to actively maintain information in mind for a brief period of time after stimulus disappearance. According to recent studies, VSTM consists of three stages - iconic memory, fragile VSTM, and visual working memory - with increasingly stricter capacity limits and progressively longer lifetimes. Still, the resolution (or amount of visual detail) of each VSTM stage has remained unexplored and we test this in the present study. We presented people with a change detection task that measures the capacity of all three forms of VSTM, and we added an identification display after each change trial that required people to identify the "pre-change" object. Accurate change detection plus pre-change identification requires subjects to have a high-resolution representation of the "pre-change" object, whereas change detection or identification only can be based on the hunch that something has changed, without exactly knowing what was presented before. We observed that people maintained 6.1 objects in iconic memory, 4.6 objects in fragile VSTM, and 2.1 objects in visual working memory. Moreover, when people detected the change, they could also identify the pre-change object on 88% of the iconic memory trials, on 71% of the fragile VSTM trials and merely on 53% of the visual working memory trials. This suggests that people maintain many high-resolution representations in iconic memory and fragile VSTM, but only one high-resolution object representation in visual working memory. PMID:21897823

  6. 74. AERIAL VIEW OF MEMORIAL BRIDGE AND MEMORIAL AVENUE LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. AERIAL VIEW OF MEMORIAL BRIDGE AND MEMORIAL AVENUE LOOKING EAST AT LINCOLN MEMORIAL. - George Washington Memorial Parkway, Along Potomac River from McLean to Mount Vernon, VA, Mount Vernon, Fairfax County, VA

  7. AMPA receptor exchange underlies transient memory destabilization on retrieval.

    PubMed

    Hong, Ingie; Kim, Jeongyeon; Kim, Jihye; Lee, Sukwon; Ko, Hyoung-Gon; Nader, Karim; Kaang, Bong-Kiun; Tsien, Richard W; Choi, Sukwoo

    2013-05-14

    A consolidated memory can be transiently destabilized by memory retrieval, after which memories are reconsolidated within a few hours; however, the molecular substrates underlying this destabilization process remain essentially unknown. Here we show that at lateral amygdala synapses, fear memory consolidation correlates with increased surface expression of calcium-impermeable AMPA receptors (CI-AMPARs), which are known to be more stable at the synapse, whereas memory retrieval induces an abrupt exchange of CI-AMPARs to calcium-permeable AMPARs (CP-AMPARs), which are known to be less stable at the synapse. We found that blockade of either CI-AMPAR endocytosis or NMDA receptor activity during memory retrieval, both of which blocked the exchange to CP-AMPARs, prevented memory destabilization, indicating that this transient exchange of AMPARs may underlie the transformation of a stable memory into an unstable memory. These newly inserted CP-AMPARs gradually exchanged back to CI-AMPARs within hours, which coincided with the course of reconsolidation. Furthermore, blocking the activity of these newly inserted CP-AMPARs after retrieval impaired reconsolidation, suggesting that they serve as synaptic "tags" that support synapse-specific reconsolidation. Taken together, our results reveal unexpected physiological roles of CI-AMPARs and CP-AMPARs in transforming a consolidated memory into an unstable memory and subsequently guiding reconsolidation. PMID:23630279

  8. Scopolamine-induced convulsions in fasted mice after food intake: the effect of duration of food deprivation.

    PubMed

    Enginar, Nurhan; Nurten, Asiye; Ozünal, Zeynep Güneş; Zengin, Asli

    2009-01-01

    It has been shown that mice and rats treated with antimuscarinic drugs, scopolamine or atropine, after fasting for 48 h develop convulsions soon after refeeding. The present study was performed to evaluate whether mice also develop convulsions after being deprived of food for 1-24 h. The effect of day-night fasting on the development of convulsions was also determined in 12-h deprived animals. Mice were deprived of food for periods of 1, 2, 3, 6, 9, 12, 18, 24, and 48 h. Animals fasted for 12 h during the day or night were deprived of food at 08:00 or 20:00 h, respectively. At the time of testing, animals were treated with intraperitoneal (i.p.) saline or 3 mg/kg scopolamine. Twenty minutes later, they were given food and allowed to eat ad lib. All animals were observed for 30 min for the incidence and onset of convulsions. Fasted animals treated with scopolamine developed clonic convulsions after food intake. Incidence of convulsions was significant in 2-, 3-, 12-, 18-, 24-, and 48-h deprived animals. Convulsions observed after deprivation of food for 12 h during the day or at night were almost similar in both regimens. Our results indicate that food deprivation itself, rather than its duration, seems to be the principal factor in the development of these convulsions.

  9. Searching for repressed memory.

    PubMed

    McNally, Richard J

    2012-01-01

    This chapter summarizes the work of my research group on adults who report either repressed, recovered, or continuous memories of childhood sexual abuse (CSA) or who report no history of CSA. Adapting paradigms from cognitive psychology, we tested hypotheses inspired by both the "repressed memory" and "false memory" perspectives on recovered memories of CSA. We found some evidence for the false memory perspective, but no evidence for the repressed memory perspective. However, our work also suggests a third perspective on recovered memories that does not require the concept of repression. Some children do not understand their CSA when it occurs, and do not experience terror. Years later, they recall the experience, and understanding it as abuse, suffer intense distress. The memory failed to come to mind for years, partly because the child did not encode it as terrifying (i.e., traumatic), not because the person was unable to recall it.

  10. Emotional Memory Persists Longer than Event Memory

    ERIC Educational Resources Information Center

    Kuriyama, Kenichi; Soshi, Takahiro; Fujii, Takeshi; Kim, Yoshiharu

    2010-01-01

    The interaction between amygdala-driven and hippocampus-driven activities is expected to explain why emotion enhances episodic memory recognition. However, overwhelming behavioral evidence regarding the emotion-induced enhancement of immediate and delayed episodic memory recognition has not been obtained in humans. We found that the recognition…

  11. Associative Memory Acceptors.

    ERIC Educational Resources Information Center

    Card, Roger

    The properties of an associative memory are examined in this paper from the viewpoint of automata theory. A device called an associative memory acceptor is studied under real-time operation. The family "L" of languages accepted by real-time associative memory acceptors is shown to properly contain the family of languages accepted by one-tape,…

  12. Music, memory and emotion.

    PubMed

    Jäncke, Lutz

    2008-08-08

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory.

  13. Memories (Children's Books).

    ERIC Educational Resources Information Center

    McKinley, Carol; Peters, Donna; Semer, Susie; White, W. Quinn; Scharer, Patricia L.

    1998-01-01

    Presents brief annotations of 46 children's books that explore memories of childhood, memories of love, keepsakes that capture those memories, memorable tales from long ago, memorable journeys, times that are painful to remember, and heroes and heroines who have provided hope and change in a troubled world. (SR)

  14. Memory and the Self

    ERIC Educational Resources Information Center

    Conway, Martin A.

    2005-01-01

    The Self-Memory System (SMS) is a conceptual framework that emphasizes the interconnectedness of self and memory. Within this framework memory is viewed as the data base of the self. The self is conceived as a complex set of active goals and associated self-images, collectively referred to as the "working self." The relationship between the…

  15. Music, memory and emotion

    PubMed Central

    Jäncke, Lutz

    2008-01-01

    Because emotions enhance memory processes and music evokes strong emotions, music could be involved in forming memories, either about pieces of music or about episodes and information associated with particular music. A recent study in BMC Neuroscience has given new insights into the role of emotion in musical memory. PMID:18710596

  16. Memory-Compatible Instruction.

    ERIC Educational Resources Information Center

    Kiewra, Kenneth A.

    1987-01-01

    Argues that most teachers do not understand the nature of human memory. Presents an informal introduction to human memory, including information on long-term retention, prior knowledge, retrieval, and cues. States that instructors can design memory-compatible instruction that makes recording and retrieval of new knowledge easier. (TW)

  17. Generation and Context Memory

    ERIC Educational Resources Information Center

    Mulligan, Neil W.; Lozito, Jeffrey P.; Rosner, Zachary A.

    2006-01-01

    Generation enhances memory for occurrence but may not enhance other aspects of memory. The present study further delineates the negative generation effect in context memory reported in N. W. Mulligan (2004). First, the negative generation effect occurred for perceptual attributes of the target item (its color and font) but not for extratarget…

  18. Drowning Prevention

    MedlinePlus

    ... Listen Español Text Size Email Print Share Drowning Prevention: Information for Parents Page Content Article Body Drowning ... in very cold water for lengthy periods. Drowning Prevention: Know the Warning Signs These signs may signal ...

  19. Preventing Suicide

    MedlinePlus

    ... The top three methods used in suicides include firearms (49.9%), suffocation (26.7%), and poisoning (15. ... Content source: National Center for Injury Prevention and Control, Division of Violence Prevention Page maintained by: Office ...

  20. Non-volatile memory based on the ferroelectric photovoltaic effect

    PubMed Central

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  1. Non-volatile memory based on the ferroelectric photovoltaic effect

    NASA Astrophysics Data System (ADS)

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-06-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique.

  2. A multiplexed quantum memory.

    PubMed

    Lan, S-Y; Radnaev, A G; Collins, O A; Matsukevich, D N; Kennedy, T A; Kuzmich, A

    2009-08-01

    A quantum repeater is a system for long-distance quantum communication that employs quantum memory elements to mitigate optical fiber transmission losses. The multiplexed quantum memory (O. A. Collins, S. D. Jenkins, A. Kuzmich, and T. A. B. Kennedy, Phys. Rev. Lett. 98, 060502 (2007)) has been shown theoretically to reduce quantum memory time requirements. We present an initial implementation of a multiplexed quantum memory element in a cold rubidium gas. We show that it is possible to create atomic excitations in arbitrary memory element pairs and demonstrate the violation of Bell's inequality for light fields generated during the write and read processes.

  3. Immunological memory is associative

    SciTech Connect

    Smith, D.J.; Forrest, S.; Perelson, A.S.

    1996-12-31

    The purpose of this paper is to show that immunological memory is an associative and robust memory that belongs to the class of sparse distributed memories. This class of memories derives its associative and robust nature by sparsely sampling the input space and distributing the data among many independent agents. Other members of this class include a model of the cerebellar cortex and Sparse Distributed Memory (SDM). First we present a simplified account of the immune response and immunological memory. Next we present SDM, and then we show the correlations between immunological memory and SDM. Finally, we show how associative recall in the immune response can be both beneficial and detrimental to the fitness of an individual.

  4. Flexible kernel memory.

    PubMed

    Nowicki, Dimitri; Siegelmann, Hava

    2010-06-11

    This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors can be added, deleted, and updated on-line simply, without harming existing memories, and the number of attractors is independent of input dimension. Input vectors do not have to adhere to a fixed or bounded dimensionality; they can increase and decrease it without relearning previous memories. A memory consolidation process enables the network to generalize concepts and form clusters of input data, which outperforms many unsupervised clustering techniques; this process is demonstrated on handwritten digits from MNIST. Another process, reminiscent of memory reconsolidation is introduced, in which existing memories are refreshed and tuned with new inputs; this process is demonstrated on series of morphed faces.

  5. Child maltreatment and memory.

    PubMed

    Goodman, Gail S; Quas, Jodi A; Ogle, Christin M

    2010-01-01

    Exposure to childhood trauma, especially child maltreatment, has important implications for memory of emotionally distressing experiences. These implications stem from cognitive, socio-emotional, mental health, and neurobiological consequences of maltreatment and can be at least partially explained by current theories concerning the effects of childhood trauma. In this review, two main hypotheses are advanced: (a) Maltreatment in childhood is associated with especially robust memory for emotionally distressing material in many individuals, but (b) maltreatment can impair memory for such material in individuals who defensively avoid it. Support for these hypotheses comes from research on child abuse victims' memory and suggestibility regarding distressing but nonabusive events, memory for child abuse itself, and autobiographical memory. However, more direct investigations are needed to test precisely when and how childhood trauma affects memory for emotionally significant, distressing experiences. Legal implications and future directions are discussed.

  6. Memory access in shared virtual memory

    SciTech Connect

    Berrendorf, R.

    1992-09-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  7. Memory access in shared virtual memory

    SciTech Connect

    Berrendorf, R. )

    1992-01-01

    Shared virtual memory (SVM) is a virtual memory layer with a single address space on top of a distributed real memory on parallel computers. We examine the behavior and performance of SVM running a parallel program with medium-grained, loop-level parallelism on top of it. A simulator for the underlying parallel architecture can be used to examine the behavior of SVM more deeply. The influence of several parameters, such as the number of processors, page size, cold or warm start, and restricted page replication, is studied.

  8. Placing memories in context: Hippocampal representations promote retrieval of appropriate memories.

    PubMed

    Bulkin, David A; Law, L Matthew; Smith, David M

    2016-07-01

    Returning to a familiar context triggers retrieval of relevant memories, making memories from other contexts less likely to intrude and cause interference. We investigated the physiology that underlies the use of context to prevent interference by recording hippocampal neurons while rats learned two conflicting sets of discrimination problems, either in the same context or in two distinct contexts. Rats that learned the conflicting problem sets in the same context maintained similar neural representations, and performed poorly because conflicting memories interfered with new learning. In contrast, rats that learned in different contexts formed distinct ensemble representations and performed significantly better. We also measured trial-to-trial variation in representations and found that hippocampal activity was directly linked with performance: on trials where an old representation was active, rats were far more likely to make errors. These results show that the formation of distinct hippocampal representations is critical for contextually appropriate memory retrieval. © 2016 Wiley Periodicals, Inc.

  9. Memory bistable mechanisms of organic memory devices

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Ting; Yu, Li-Zhen; Chen, Hung-Chun

    2010-07-01

    To investigate the memory bistable mechanisms of organic memory devices, the structure of [top Au anode/9,10-di(2-naphthyl)anthracene (ADN) active layer/bottom Au cathode] was deposited using a thermal deposition system. The Au atoms migrated into the ADN active layer was observed from the secondary ion mass spectrometry. The density of 9.6×1016 cm-3 and energy level of 0.553 eV of the induced trapping centers caused by the migrated Au atoms in the ADN active layer were calculated. The induced trapping centers did not influence the carrier injection barrier height between Au and ADN active layer. Therefore, the memory bistable behaviors of the organic memory devices were attributed to the induced trapping centers. The energy diagram was established to verify the mechanisms.

  10. Psychophysiology of prospective memory.

    PubMed

    Rothen, Nicolas; Meier, Beat

    2014-01-01

    Prospective memory involves the self-initiated retrieval of an intention upon an appropriate retrieval cue. Cue identification can be considered as an orienting reaction and may thus trigger a psychophysiological response. Here we present two experiments in which skin conductance responses (SCRs) elicited by prospective memory cues were compared to SCRs elicited by aversive stimuli to test whether a single prospective memory cue triggers a similar SCR as an aversive stimulus. In Experiment 2 we also assessed whether cue specificity had a differential influence on prospective memory performance and on SCRs. We found that detecting a single prospective memory cue is as likely to elicit a SCR as an aversive stimulus. Missed prospective memory cues also elicited SCRs. On a behavioural level, specific intentions led to better prospective memory performance. However, on a psychophysiological level specificity had no influence. More generally, the results indicate reliable SCRs for prospective memory cues and point to psychophysiological measures as valuable approach, which offers a new way to study one-off prospective memory tasks. Moreover, the findings are consistent with a theory that posits multiple prospective memory retrieval stages.

  11. Medicinal Herbs in Iranian Traditional Medicine for Learning and Memory

    PubMed Central

    Shojaii, Asie; Ghods, Roshanak; Fard, Mehri Abdollahi

    2016-01-01

    Background: A few factors such as age, stress, and emotions may lead to impaired learning, memory loss, amnesia, and dementia or threats like schizophrenia and Alzheimer’s disease (AD). Iranian traditional medicine (ITM) recommends some herbs and herbal preparations for the treatment or prevention of CNS problems. Methods: In this study, scientific evidence related to the effectiveness of ITM herbal medicine on memory, learning and AD is reviewed. The scientific evidence of plant efficacy was searched in electronic databases including PubMed, Scopus, SID, Science Direct, and Google Scholar by keywords such as memory, Alzheimer, amnesia, learning and scientific plant names from 1969 to 2014. Results: The findings of this study confirmed the effectiveness of certain ITM medicinal plants on enhancing memory and learning or in the treatment/prevention of amnesia and AD. Some ITM plants like Melissa officinalis, Crocus sativus and Nigella sativa showed improving effects on memory and the treatment of AD in clinical trials. In some cases, active principles responsible for the efficacy of these plants on memory were also determined. Discussion: Most of the studies on ITM plants were designed in animal models and a few herbs were evaluated in clinical trials on AD. Furthermore, there are insufficient or no investigations on certain herbal medicines used in ITM to confirm their effectiveness on memory and learning. Therefore, further experimental and clinical studies are necessary to evaluate the effectiveness of these plants on memory and AD as well as determining their active components. PMID:27516676

  12. Human learning and memory.

    PubMed

    Johnson, M K; Hasher, L

    1987-01-01

    There have been several notable recent trends in the area of learning and memory. Problems with the episodic/semantic distinction have become more apparent, and new efforts have been made (exemplar models, distributed-memory models) to represent general knowledge without assuming a separate semantic system. Less emphasis is being placed on stable, prestored prototypes and more emphasis on a flexible memory system that provides the basis for a multitude of categories or frames of reference, derived on the spot as tasks demand. There is increasing acceptance of the idea that mental models are constructed and stored in memory in addition to, rather than instead of, memorial representations that are more closely tied to perceptions. This gives rise to questions concerning the conditions that permit inferences to be drawn and mental models to be constructed, and to questions concerning the similarities and differences in the nature of the representations in memory of perceived and generated information and in their functions. There has also been a swing from interest in deliberate strategies to interest in automatic, unconscious (even mechanistic!) processes, reflecting an appreciation that certain situations (e.g. recognition, frequency judgements, savings in indirect tasks, aspects of skill acquisition, etc) seem not to depend much on the products of strategic, effortful or reflective processes. There is a lively interest in relations among memory measures and attempts to characterize memory representations and/or processes that could give rise to dissociations among measures. Whether the pattern of results reflects the operation of functional subsystems of memory and, if so, what the "modules" are is far from clear. This issue has been fueled by work with amnesics and has contributed to a revival of interaction between researchers studying learning and memory in humans and those studying learning and memory in animals. Thus, neuroscience rivals computer science as a

  13. A generalized memory test algorithm

    NASA Technical Reports Server (NTRS)

    Milner, E. J.

    1982-01-01

    A general algorithm for testing digital computer memory is presented. The test checks that (1) every bit can be cleared and set in each memory work, and (2) bits are not erroneously cleared and/or set elsewhere in memory at the same time. The algorithm can be applied to any size memory block and any size memory word. It is concise and efficient, requiring the very few cycles through memory. For example, a test of 16-bit-word-size memory requries only 384 cycles through memory. Approximately 15 seconds were required to test a 32K block of such memory, using a microcomputer having a cycle time of 133 nanoseconds.

  14. Shape memory polymers

    SciTech Connect

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  15. Autosuggestibility in memory development.

    PubMed

    Brainerd, C J; Reyna, V F

    1995-02-01

    Autosuggestibility is a potentially common source of false memories in children. We studied a form of autosuggestibility in which children's answers to memory tests were shifted in the direction of their illogical solutions to reasoning problems. In Experiments 1 and 2, illogic-consistent shifts were identified in children's memories of the numerical inputs on class-inclusion problems. The magnitudes of the shifts declined with age, and they appeared to be due to the intrusion of inappropriate gist on memory probes rather than retroactive interference from illogical reasoning. A model of how gist intrusion causes autosuggestibility was investigated in Experiments 3-5. The model assumes that children retrieve and process inappropriate gist when memory tests supply cues that are inadequate to permit access to verbatim memories.

  16. Preventing Rejection

    MedlinePlus

    ... Drug Assistance Lifestyle Changes Back to Work or School Physical Changes Relationship Changes Pregnancy Precautions Fertility Labor & Delivery Breastfeeding Risks Cancer Types Risk Factors Prevention & Early Detection ...

  17. Practical Memory Concerns in Adulthood

    ERIC Educational Resources Information Center

    Reese, Celinda M.; Cherry, Katie E.

    2004-01-01

    In this article, we focus on practical memory concerns in adulthood. Young, middle-aged, and community-dwelling older adults responded to seven open-ended questions covering the topics of memory self-efficacy, memory management, memory remediation, and fears about memory aging in adulthood. The results revealed several similarities among the age…

  18. Children's Memory for Early Experience.

    ERIC Educational Resources Information Center

    Newcombe, Nora; And Others

    1995-01-01

    This introduction reviews recent trends in childhood memory research, focusing on closer relations between the study of memory development and the study of cognitive and neurological development, new relations between the study of memory development and the study of adult memory, and new relations between the study of memory development and…

  19. Sparse distributed memory

    NASA Technical Reports Server (NTRS)

    Kanerva, Pentti

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system.

  20. Myrmics Memory Allocator

    SciTech Connect

    Lymperis, S.

    2011-09-23

    MMA is a stand-alone memory management system for MPI clusters. It implements a shared Partitioned Global Address Space, where multiple MPI processes request objects from the allocator and the latter provides them with system-wide unique memory addresses for each object. It provides applications with an intuitive way of managing the memory system in a unified way, thus enabling easier writing of irregular application code.

  1. Memory Golf Clubs

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Memory Corporation's investigation of shape memory effect, stemming from Marshall Space Flight Center contracts to study materials for the space station, has aided in the development of Zeemet, a proprietary, high-damping shape memory alloy for the golf industry. The Nicklaus Golf Company has created a new line of golf clubs using Zeemet inserts. Its superelastic and high damping attributes translate into more spin on the ball, greater control, and a solid feel.

  2. Memories of art.

    PubMed

    Hirstein, William

    2013-04-01

    Although the art-historical context of a work of art is important to our appreciation of it, it is our knowledge of that history that plays causal roles in producing the experience itself. This knowledge is in the form of memories, both semantic memories about the historical circumstances, but also episodic memories concerning our personal connections with an artwork. We also create representations of minds in order to understand the emotions that artworks express.

  3. Sparse distributed memory

    SciTech Connect

    Kanerva, P.

    1988-01-01

    Theoretical models of the human brain and proposed neural-network computers are developed analytically. Chapters are devoted to the mathematical foundations, background material from computer science, the theory of idealized neurons, neurons as address decoders, and the search of memory for the best match. Consideration is given to sparse memory, distributed storage, the storage and retrieval of sequences, the construction of distributed memory, and the organization of an autonomous learning system. 63 refs.

  4. Memories in context.

    PubMed

    Pomi Brea, A; Mizraji, E

    1999-06-01

    Context-dependent associative memories are models that allow the retrieval of different vectorial responses given a same vectorial stimulus, depending on the context presented to the memory. The contextualization is obtained by doing the Kronecker product between two vectorial entries to the associative memory: the key stimulus and the context. These memories are able to display a wide variety of behaviors that range from all the basic operations of the logical calculus (including fuzzy logics) to the selective extraction of features from complex vectorial patterns. In the present contribution, we show that a context-dependent memory matrix stores a large amount of possible virtual associative memories, that awaken in the presence of a context. We show how the vectorial context allows a memory matrix to be representable in terms of its singular-value decomposition. We describe a neural interpretation of the model in which the Kronecker product is performed on the same neurons that sustain the memory. We explored, with numerical experiments, the reliability of chains of contextualized associations. In some cases, random disconnection produces the emergence of oscillatory behaviors of the system. Our results show that associative chains retain their performances for relatively large dimensions. Finally, we analyze the properties of some modules of context-dependent autoassociative memories inserted in recursive nets: the perceptual autoorganization in the presence of ambiguous inputs (e.g. the disambiguation of the Necker's cube figure), the construction of intersection filters, and the feature extraction capabilities.

  5. Memory on time.

    PubMed

    Eichenbaum, Howard

    2013-02-01

    Considerable recent work has shown that the hippocampus is critical for remembering the order of events in distinct experiences, a defining feature of episodic memory. Correspondingly, hippocampal neuronal activity can 'replay' sequential events in memories and hippocampal neuronal ensembles represent a gradually changing temporal context signal. Most strikingly, single hippocampal neurons - called time cells - encode moments in temporally structured experiences much as the well-known place cells encode locations in spatially structured experiences. These observations bridge largely disconnected literatures on the role of the hippocampus in episodic memory and spatial mapping, and suggest that the fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing memories.

  6. Building synthetic memory

    PubMed Central

    Inniss, Mara C.; Silver, Pamela A.

    2013-01-01

    Synopsis Cellular memory – conversion of a transient signal into a sustained response – is a common feature of biological systems. Synthetic biologists aim to understand and reengineer such systems in a reliable and predictable manner. Synthetic memory circuits have been designed and built in vitro and in vivo based on diverse mechanisms such as oligonucleotide hybridization, recombination, transcription, phosphorylation, and RNA editing. Thus far, building these circuits has helped us explore the basic principles required for stable memory and ask novel biological questions. Here we discuss strategies for building synthetic memory circuits, their use as research tools, and future applications of these devices in medicine and industry. PMID:24028965

  7. Hypnosis, memory and amnesia.

    PubMed Central

    Kihlstrom, J F

    1997-01-01

    Hypnotized subjects respond to suggestions from the hypnotist for imaginative experiences involving alterations in perception and memory. Individual differences in hypnotizability are only weakly related to other forms of suggestibility. Neuropsychological speculations about hypnosis focus on the right hemisphere and/or the frontal lobes. Posthypnotic amnesia refers to subjects' difficulty in remembering, after hypnosis, the events and experiences that transpired while they were hypnotized. Posthypnotic amnesia is not an instance of state-dependent memory, but it does seem to involve a disruption of retrieval processes similar to the functional amnesias observed in clinical dissociative disorders. Implicit memory, however, is largely spared, and may underlie subjects' ability to recognize events that they cannot recall. Hypnotic hypermnesia refers to improved memory for past events. However, such improvements are illusory: hypermnesia suggestions increase false recollection, as well as subjects' confidence in both true and false memories. Hypnotic age regression can be subjectively compelling, but does not involve the ablation of adult memory, or the reinstatement of childlike modes of mental functioning, or the revivification of memory. The clinical and forensic use of hypermnesia and age regression to enhance memory in patients, victims and witnesses (e.g. recovered memory therapy for child sexual abuse) should be discouraged. PMID:9415925

  8. Sleep, memory, and learning.

    PubMed

    Blissitt, P A

    2001-08-01

    The relationship of sleep to memory and learning is complex. Sleep affects memory, and memory must be present for learning to occur. A number of studies have been conducted to increase our understanding of their relationship. In addition to the numerous scientific investigations of each concept separately, sleep, memory, and learning have been studied together to determine (a) the effect of sleep on memory and learning, (b) the effect of sleep deprivation in general on memory and learning, (c) the effect of rapid eye movement (REM) sleep deprivation on memory and learning, (d) the effect of memory and learning on REM sleep, and (e) the effect of non-REM sleep loss on memory and learning. Neuroanatomic correlates have been pursued as well with most attention to the hippocampus. Despite considerable efforts to date, many of the studies reveal contradictory or inconclusive findings. Much remains unknown, and additional work is needed. Implications for nursing include those that have a direct effect on the patient, the nurse, and nursing science.

  9. Sparse distributed memory overview

    NASA Technical Reports Server (NTRS)

    Raugh, Mike

    1990-01-01

    The Sparse Distributed Memory (SDM) project is investigating the theory and applications of massively parallel computing architecture, called sparse distributed memory, that will support the storage and retrieval of sensory and motor patterns characteristic of autonomous systems. The immediate objectives of the project are centered in studies of the memory itself and in the use of the memory to solve problems in speech, vision, and robotics. Investigation of methods for encoding sensory data is an important part of the research. Examples of NASA missions that may benefit from this work are Space Station, planetary rovers, and solar exploration. Sparse distributed memory offers promising technology for systems that must learn through experience and be capable of adapting to new circumstances, and for operating any large complex system requiring automatic monitoring and control. Sparse distributed memory is a massively parallel architecture motivated by efforts to understand how the human brain works. Sparse distributed memory is an associative memory, able to retrieve information from cues that only partially match patterns stored in the memory. It is able to store long temporal sequences derived from the behavior of a complex system, such as progressive records of the system's sensory data and correlated records of the system's motor controls.

  10. The future of memory

    NASA Astrophysics Data System (ADS)

    Marinella, M.

    In the not too distant future, the traditional memory and storage hierarchy of may be replaced by a single Storage Class Memory (SCM) device integrated on or near the logic processor. Traditional magnetic hard drives, NAND flash, DRAM, and higher level caches (L2 and up) will be replaced with a single high performance memory device. The Storage Class Memory paradigm will require high speed (< 100 ns read/write), excellent endurance (> 1012), nonvolatility (retention > 10 years), and low switching energies (< 10 pJ per switch). The International Technology Roadmap for Semiconductors (ITRS) has recently evaluated several potential candidates SCM technologies, including Resistive (or Redox) RAM, Spin Torque Transfer RAM (STT-MRAM), and phase change memory (PCM). All of these devices show potential well beyond that of current flash technologies and research efforts are underway to improve the endurance, write speeds, and scalabilities to be on-par with DRAM. This progress has interesting implications for space electronics: each of these emerging device technologies show excellent resistance to the types of radiation typically found in space applications. Commercially developed, high density storage class memory-based systems may include a memory that is physically radiation hard, and suitable for space applications without major shielding efforts. This paper reviews the Storage Class Memory concept, emerging memory devices, and possible applicability to radiation hardened electronics for space.

  11. Preventative Maintenance.

    ERIC Educational Resources Information Center

    Migliorino, James

    Boards of education must be convinced that spending money up front for preventive maintenance will, in the long run, save districts' tax dollars. A good program of preventive maintenance can minimize disruption of service; reduce repair costs, energy consumption, and overtime; improve labor productivity and system equipment reliability; handle…

  12. Preventive Medicine.

    ERIC Educational Resources Information Center

    Jozwiak, Dick

    1998-01-01

    Argues the importance of regularly inspecting thermoplastic roofs to avoid costly repairs. Preventive measures such as access restriction and the use of protective mats and pads to prevent third-party accidents are discussed as is the importance of checking for drain blockages. (GR)

  13. Retrieval-induced forgetting predicts failure to recall negative autobiographical memories.

    PubMed

    Storm, Benjamin C; Jobe, Tara A

    2012-01-01

    There is a positivity bias in autobiographical memory such that people are more likely to remember positive events from their past than they are to remember negative ones. Inhibition may promote this positivity bias by deterring negative memories from being retrieved. In our first experiment, we measured individual differences in retrieval-induced forgetting, a phenomenon believed to be the consequence of retrieval inhibition, and correlated that measure with individual differences in the recall of positive and negative autobiographical memories. Participants who exhibited lower levels of retrieval-induced forgetting recalled significantly more negative memories despite recalling fewer positive memories. In our second experiment, participants attempted to recall negative memories from childhood and from the previous month. Participants who exhibited lower levels of retrieval-induced forgetting recalled significantly more negative memories in both conditions. These results suggest that inhibition plays a key role in preventing the retrieval of negative autobiographical memories.

  14. Home sweet home: does where you live matter to working memory and other cognitive skills?

    PubMed

    Alloway, Tracy Packiam; Alloway, Ross G; Wootan, Samantha

    2014-08-01

    Learning outcomes are associated with a variety of environmental and cognitive factors, and the aim of the current study was to compare the predictive power of these factors in longitudinal outcomes. We recruited children in kindergarten and tested their learning outcomes 2 years later. In kindergarten, children completed tests of IQ, phonological awareness, and memory (sentence memory, short-term memory, and working memory). After 2 years, they took national assessments in reading, writing, and math. Working memory performance was not affected by socioeconomic status (SES), whereas IQ, phonological awareness, and sentence memory scores differed as a function of SES. A series of hierarchical regression analyses indicated that working memory and phonological awareness were better predictors of learning than any other factors tested, including SES. Educational implications include providing intervention during the early years to boost working memory and phonological awareness so as to prevent subsequent learning difficulties. PMID:24508377

  15. Acoustic Masking in Primary Memory

    ERIC Educational Resources Information Center

    Colle, Herbert A.; Welsh, Alan

    1976-01-01

    Two experiments are reported to investigate the theory that since auditory sensory memory is used to store memory information, concurrent auditory stimulation should destroy memory information and thus reduce recall performance. (Author/RM)

  16. Evidence against decay in verbal working memory.

    PubMed

    Oberauer, Klaus; Lewandowsky, Stephan

    2013-05-01

    The article tests the assumption that forgetting in working memory for verbal materials is caused by time-based decay, using the complex-span paradigm. Participants encoded 6 letters for serial recall; each letter was preceded and followed by a processing period comprising 4 trials of difficult visual search. Processing duration, during which memory could decay, was manipulated via search set size. This manipulation increased retention interval by up to 100% without having any effect on recall accuracy. This result held with and without articulatory suppression. Two experiments using a dual-task paradigm showed that the visual search process required central attention. Thus, even when memory maintenance by central attention and by articulatory rehearsal was prevented, a large delay had no effect on memory performance, contrary to the decay notion. Most previous experiments that manipulated the retention interval and the opportunity for maintenance processes in complex span have confounded these variables with time pressure during processing periods. Three further experiments identified time pressure as the variable that affected recall. We conclude that time-based decay does not contribute to the capacity limit of verbal working memory. PMID:22866686

  17. Memory-related brain lateralisation in birds and humans.

    PubMed

    Moorman, Sanne; Nicol, Alister U

    2015-03-01

    Visual imprinting in chicks and song learning in songbirds are prominent model systems for the study of the neural mechanisms of memory. In both systems, neural lateralisation has been found to be involved in memory formation. Although many processes in the human brain are lateralised--spatial memory and musical processing involves mostly right hemisphere dominance, whilst language is mostly left hemisphere dominant--it is unclear what the function of lateralisation is. It might enhance brain capacity, make processing more efficient, or prevent occurrence of conflicting signals. In both avian paradigms we find memory-related lateralisation. We will discuss avian lateralisation findings and propose that birds provide a strong model for studying neural mechanisms of memory-related lateralisation.

  18. Memory technology survey

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The current status of semiconductor, magnetic, and optical memory technologies is described. Projections based on these research activities planned for the shot term are presented. Conceptual designs of specific memory buffer pplications employing bipola, CMOS, GaAs, and Magnetic Bubble devices are discussed.

  19. Eavesdropping without quantum memory

    SciTech Connect

    Bechmann-Pasquinucci, H.

    2006-04-15

    In quantum cryptography the optimal eavesdropping strategy requires that the eavesdropper uses ancillas and quantum memories in order to optimize her information. What happens if the eavesdropper has no quantum memory? It is shown that in this case the eavesdropper obtains a better information/disturbance trade-off by adopting the simple intercept/resend strategy.

  20. A Space for Memory

    ERIC Educational Resources Information Center

    Charman, Karen

    2015-01-01

    In this article I examine the possibilities of reparation in an era of privatisation and de-industrialisation. I examine the effect of a recent project Sunshine Memory Space, a space, designed to evoke memories of a de-industrialised urban Melbourne suburb Sunshine. This project offered the opportunity for the effects of industrial change to be…

  1. Distributed multiport memory architecture

    NASA Technical Reports Server (NTRS)

    Kohl, W. H. (Inventor)

    1983-01-01

    A multiport memory architecture is diclosed for each of a plurality of task centers connected to a command and data bus. Each task center, includes a memory and a plurality of devices which request direct memory access as needed. The memory includes an internal data bus and an internal address bus to which the devices are connected, and direct timing and control logic comprised of a 10-state ring counter for allocating memory devices by enabling AND gates connected to the request signal lines of the devices. The outputs of AND gates connected to the same device are combined by OR gates to form an acknowledgement signal that enables the devices to address the memory during the next clock period. The length of the ring counter may be effectively lengthened to any multiple of ten to allow for more direct memory access intervals in one repetitive sequence. One device is a network bus adapter which serially shifts onto the command and data bus, a data word (8 bits plus control and parity bits) during the next ten direct memory access intervals after it has been granted access. The NBA is therefore allocated only one access in every ten intervals, which is a predetermined interval for all centers. The ring counters of all centers are periodically synchronized by DMA SYNC signal to assure that all NBAs be able to function in synchronism for data transfer from one center to another.

  2. Human Memory: The Basics

    ERIC Educational Resources Information Center

    Martinez, Michael E.

    2010-01-01

    The human mind has two types of memory: short-term and long-term. In all types of learning, it is best to use that structure rather than to fight against it. One way to do that is to ensure that learners can fit new information into patterns that can be stored in and more easily retrieved from long-term memory.

  3. Human Learning and Memory

    ERIC Educational Resources Information Center

    Lieberman, David A.

    2012-01-01

    This innovative textbook is the first to integrate learning and memory, behaviour, and cognition. It focuses on fascinating human research in both memory and learning (while also bringing in important animal studies) and brings the reader up to date with the latest developments in the subject. Students are encouraged to think critically: key…

  4. Regret as Autobiographical Memory

    ERIC Educational Resources Information Center

    Davison, Ian M.; Feeney, Aidan

    2008-01-01

    We apply an autobiographical memory framework to the study of regret. Focusing on the distinction between regrets for specific and general events we argue that the temporal profile of regret, usually explained in terms of the action-inaction distinction, is predicted by models of autobiographical memory. In two studies involving participants in…

  5. Memories of Physical Education

    ERIC Educational Resources Information Center

    Sidwell, Amy M.; Walls, Richard T.

    2014-01-01

    The purpose of this investigation was to explore college students' autobiographical memories of physical education (PE). Questionnaires were distributed to students enrolled in undergraduate Introduction to PE and Introduction to Communications courses. The 261 participants wrote about memories of PE. These students recalled events from Grades…

  6. How Misinformation Alters Memories.

    ERIC Educational Resources Information Center

    Wright, Daniel B.; Loftus, Elizabeth F.

    1998-01-01

    Notes that a multitude of studies have demonstrated that misleading postevent information affects people's memories. Contents that the fuzzy-trace theory is a positive step toward understanding the malleability of memory. Discusses fuzzy-trace theory in terms of three primary areas of study: altered response format, maximized misinformation…

  7. What memory is for.

    PubMed

    Glenberg, A M

    1997-03-01

    Let's start from scratch in thinking about what memory is for, and consequently, how it works. Suppose that memory and conceptualization work in the service of perception and action. In this case, conceptualization is the encoding of patterns of possible physical interaction with a three-dimensional world. These patterns are constrained by the structure of the environment, the structure of our bodies, and memory. Thus, how we perceive and conceive of the environment is determined by the types of bodies we have. Such a memory would not have associations. Instead, how concepts become related (and what it means to be related) is determined by how separate patterns of actions can be combined given the constraints of our bodies. I call this combination "mesh." To avoid hallucination, conceptualization would normally be driven by the environment, and patterns of action from memory would play a supporting, but automatic, role. A significant human skill is learning to suppress the overriding contribution of the environment to conceptualization, thereby allowing memory to guide conceptualization. The effort used in suppressing input from the environment pays off by allowing prediction, recollective memory, and language comprehension. I review theoretical work in cognitive science and empirical work in memory and language comprehension that suggest that it may be possible to investigate connections between topics as disparate as infantile amnesia and mental-model theory.

  8. Retrieval of Emotional Memories

    ERIC Educational Resources Information Center

    Buchanan, Tony W.

    2007-01-01

    Long-term memories are influenced by the emotion experienced during learning as well as by the emotion experienced during memory retrieval. The present article reviews the literature addressing the effects of emotion on retrieval, focusing on the cognitive and neurological mechanisms that have been revealed. The reviewed research suggests that the…

  9. Memory Metals (Marchon Eyewear)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Another commercial application of memory metal technology is found in a "smart" eyeglass frame that remembers its shape and its wearer's fit. A patented "memory encoding process" makes this possible. Heat is not required to return the glasses to shape. A large commercial market is anticipated.

  10. Predicting Reasoning from Memory

    ERIC Educational Resources Information Center

    Heit, Evan; Hayes, Brett K.

    2011-01-01

    In an effort to assess the relations between reasoning and memory, in 8 experiments, the authors examined how well responses on an inductive reasoning task are predicted from responses on a recognition memory task for the same picture stimuli. Across several experimental manipulations, such as varying study time, presentation frequency, and the…

  11. Distinguishing short-term memory from working memory.

    PubMed

    Kail, R; Hall, L K

    2001-01-01

    The aim of the present research was to determine whether short-term memory and working memory could be distinguished. In two studies, 7- to 13-year-olds (N = 155, N = 132) were administered tasks thought to assess short-term memory as well as tasks thought to assess working memory. Both exploratory and confirmatory factor analyses distinguished short-term memory tasks from working memory tasks. In addition, performance on working memory tasks was related to word decoding skill but performance on short-term memory tasks was not. Finally, performance on both short-term memory and working memory tasks were associated with age-related increases in processing speed. Results are discussed in relation to models of short-term and working memory.

  12. Memory systems interaction in the pigeon: working and reference memory.

    PubMed

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record

  13. Is random access memory random?

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    Most software is contructed on the assumption that the programs and data are stored in random access memory (RAM). Physical limitations on the relative speeds of processor and memory elements lead to a variety of memory organizations that match processor addressing rate with memory service rate. These include interleaved and cached memory. A very high fraction of a processor's address requests can be satified from the cache without reference to the main memory. The cache requests information from main memory in blocks that can be transferred at the full memory speed. Programmers who organize algorithms for locality can realize the highest performance from these computers.

  14. Animal models of source memory.

    PubMed

    Crystal, Jonathon D

    2016-01-01

    Source memory is the aspect of episodic memory that encodes the origin (i.e., source) of information acquired in the past. Episodic memory (i.e., our memories for unique personal past events) typically involves source memory because those memories focus on the origin of previous events. Source memory is at work when, for example, someone tells a favorite joke to a person while avoiding retelling the joke to the friend who originally shared the joke. Importantly, source memory permits differentiation of one episodic memory from another because source memory includes features that were present when the different memories were formed. This article reviews recent efforts to develop an animal model of source memory using rats. Experiments are reviewed which suggest that source memory is dissociated from other forms of memory. The review highlights strengths and weaknesses of a number of animal models of episodic memory. Animal models of source memory may be used to probe the biological bases of memory. Moreover, these models can be combined with genetic models of Alzheimer's disease to evaluate pharmacotherapies that ultimately have the potential to improve memory.

  15. Imaging autobiographical memory.

    PubMed

    Fossati, Philippe

    2013-12-01

    Autobiographical memory (AM) defines the memory systems that encode, consolidate, and retrieve personal events and facts, AM is strongly related to self-perception and self representation. We review here the neural correlates of AM retrieval. AM retrieval encompasses a large neural network including the prefrontal, temporal, and parietal cortex, and limbic structures. All these regions subserve the cognitive processes (episodic remembering, cognitive control, self-processing, and scene construction) at play during memory retrieval. We emphasize the specific role of medial prefrontal cortex and precuneus in self-processing during autobiographical memory retrieval. Overall, these data call for further studies in psychiatric patients, to investigate the neural underpinnings of autobiographical memory and self-representation in mental disorders.

  16. Computer memory management system

    DOEpatents

    Kirk, III, Whitson John

    2002-01-01

    A computer memory management system utilizing a memory structure system of "intelligent" pointers in which information related to the use status of the memory structure is designed into the pointer. Through this pointer system, The present invention provides essentially automatic memory management (often referred to as garbage collection) by allowing relationships between objects to have definite memory management behavior by use of coding protocol which describes when relationships should be maintained and when the relationships should be broken. In one aspect, the present invention system allows automatic breaking of strong links to facilitate object garbage collection, coupled with relationship adjectives which define deletion of associated objects. In another aspect, The present invention includes simple-to-use infinite undo/redo functionality in that it has the capability, through a simple function call, to undo all of the changes made to a data model since the previous `valid state` was noted.

  17. Cosmological memory effect

    NASA Astrophysics Data System (ADS)

    Tolish, Alexander; Wald, Robert M.

    2016-08-01

    The "memory effect" is the permanent change in the relative separation of test particles resulting from the passage of gravitational radiation. We investigate the memory effect for a general, spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology by considering the radiation associated with emission events involving particle-like sources. We find that if the resulting perturbation is decomposed into scalar, vector, and tensor parts, only the tensor part contributes to memory. Furthermore, the tensor contribution to memory depends only on the cosmological scale factor at the source and observation events, not on the detailed expansion history of the universe. In particular, for sources at the same luminosity distance, the memory effect in a spatially flat FLRW spacetime is enhanced over the Minkowski case by a factor of (1 +z ).

  18. Schemas and memory consolidation.

    PubMed

    Tse, Dorothy; Langston, Rosamund F; Kakeyama, Masaki; Bethus, Ingrid; Spooner, Patrick A; Wood, Emma R; Witter, Menno P; Morris, Richard G M

    2007-04-01

    Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative "schema" into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.

  19. Imaging autobiographical memory.

    PubMed

    Fossati, Philippe

    2013-12-01

    Autobiographical memory (AM) defines the memory systems that encode, consolidate, and retrieve personal events and facts, AM is strongly related to self-perception and self representation. We review here the neural correlates of AM retrieval. AM retrieval encompasses a large neural network including the prefrontal, temporal, and parietal cortex, and limbic structures. All these regions subserve the cognitive processes (episodic remembering, cognitive control, self-processing, and scene construction) at play during memory retrieval. We emphasize the specific role of medial prefrontal cortex and precuneus in self-processing during autobiographical memory retrieval. Overall, these data call for further studies in psychiatric patients, to investigate the neural underpinnings of autobiographical memory and self-representation in mental disorders. PMID:24459415

  20. Neuromodulation for restoring memory.

    PubMed

    Bick, Sarah K B; Eskandar, Emad N

    2016-05-01

    Disorders of learning and memory have a large social and economic impact in today's society. Unfortunately, existing medical treatments have shown limited clinical efficacy or potential for modification of the disease course. Deep brain stimulation is a successful treatment for movement disorders and has shown promise in a variety of other diseases including psychiatric disorders. The authors review the potential of neuromodulation for the treatment of disorders of learning and memory. They briefly discuss learning circuitry and its involvement in Alzheimer disease and traumatic brain injury. They then review the literature supporting various targets for neuromodulation to improve memory in animals and humans. Multiple targets including entorhinal cortex, fornix, nucleus basalis of Meynert, basal ganglia, and pedunculopontine nucleus have shown a promising potential for improving dysfunctional memory by mechanisms such as altering firing patterns in neuronal networks underlying memory and increasing synaptic plasticity and neurogenesis. Significant work remains to be done to translate these findings into durable clinical therapies. PMID:27132526

  1. Oculomotor preparation as a rehearsal mechanism in spatial working memory.

    PubMed

    Pearson, David G; Ball, Keira; Smith, Daniel T

    2014-09-01

    There is little consensus regarding the specific processes responsible for encoding, maintenance, and retrieval of information in visuo-spatial working memory (VSWM). One influential theory is that VSWM may involve activation of the eye-movement (oculomotor) system. In this study we experimentally prevented healthy participants from planning or executing saccadic eye-movements during the encoding, maintenance, and retrieval stages of visual and spatial working memory tasks. Participants experienced a significant reduction in spatial memory span only when oculomotor preparation was prevented during encoding or maintenance. In contrast there was no reduction when oculomotor preparation was prevented only during retrieval. These results show that (a) involvement of the oculomotor system is necessary for optimal maintenance of directly-indicated locations in spatial working memory and (b) oculomotor preparation is not necessary during retrieval from spatial working memory. We propose that this study is the first to unambiguously demonstrate that the oculomotor system contributes to the maintenance of spatial locations in working memory independently from the involvement of covert attention. PMID:24908341

  2. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    PubMed

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation.

  3. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    PubMed

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. PMID:27544851

  4. DADS Analogues Ameliorated the Cognitive Impairments of Alzheimer-Like Rat Model Induced by Scopolamine.

    PubMed

    Manral, Apra; Meena, Poonam; Saini, Vikas; Siraj, Fouzia; Shalini, Shruti; Tiwari, Manisha

    2016-10-01

    The development of agents that affect two or more relevant targets has drawn considerable attention in treatment of AD. Diallyl disulfide (DADS), an active principle of garlic, has been reported to prevent APP processing by amyloidogenic pathway. Recently, we have reported a new series of DADS derivatives and our findings revealed that compound 7k and 7l could provide good templates for developing new multifunctional agents for AD treatment. Thus, the present study was constructed to investigate the neuroprotective effect of DADS analogues (7k and 7l) against Aβ-induced neurotoxicity in SH-SY5Y human neuroblastoma cells and in ameliorating the cognition deficit induced by scopolamine in rat model. The results indicated that compound 7k and 7l significantly inhibited Aβ1-42-induced neuronal cell death by inhibiting ROS generation. Moreover, they prevented apoptosis, in response to ROS, by restoring normal Bax/Bcl-2 ratio. Furthermore, it was observed that scopolamine-induced memory impairment was coupled by alterations in neurotransmitters, acetylcholinesterase activity and oxidative stress markers. Histological analysis revealed severe damaging effects of scopolamine on the structure of cerebral cortex and hippocampus. Administration of compounds 7k and 7l at 5 mg/kg significantly reversed scopolamine-induced behavioural, biochemical, neurochemical and histological changes in a manner comparable to standard donepezil. Together the present findings and previous studies indicate that compounds 7k and 7l have neuroprotective and cognition-enhancing effects, which makes them a promising multi-target candidate for addressing the complex nature of AD. PMID:27149969

  5. Preventing falls

    MedlinePlus

    Dalbaere K, Sherrington C, Lord SR. Falls prevention interventions. In: Marchus R, Feldman D, Depmster DW, Luckey M, Cauley JA, eds. Osteoporosis . 4th ed. Philadelphia, PA: Elsevier; 2013:chap 70. Rubenstein ...

  6. Dengue Prevention

    MedlinePlus

    ... Compartir This photograph shows a mother applying mosquito repellent to her child's skin in order to prevent ... the lights are on. To protect yourself, use repellent on your skin while indoors or out. When ...

  7. Memory retrieval time and memory capacity of the CA3 network: role of gamma frequency oscillations.

    PubMed

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E

    2007-11-01

    The existence of recurrent synaptic connections in CA3 led to the hypothesis that CA3 is an autoassociative network similar to the Hopfield networks studied by theorists. CA3 undergoes gamma frequency periodic inhibition that prevents a persistent attractor state. This argues against the analogy to Hopfield nets, in which an attractor state can be used for working memory. However, we show that such periodic inhibition allows one cycle of recurrent excitatory activity and that this is sufficient for memory retrieval (within milliseconds). Thus, gamma oscillations are compatible with a long-term autoassociative memory function for CA3. A second goal of our work was to evaluate previous methods for estimating the memory capacity (P) of CA3. We confirm the equation, P = c/a(2), where c is the probability that any two cells are recurrently connected and a is the fraction of cells representing a memory item. In applying this to CA3, we focus on CA3a, the subregion where recurrent connections are most numerous (c = 0.2) and approximate randomness. We estimate that a memory item is represented by approximately 225 of the 70,000 neurons in CA3a (a = 0.003) and that approximately 20,000 memory items can be stored. Our general conclusion is that the physiological and anatomical findings of CA3a are consistent with an autoassociative function. The nature of the information that is associated in CA3a is discussed. We also discuss how the autoassociative properties of CA3 and the heteroassociative properties of dentate synapses (linking sequential memories) form an integrated system for the storage and recall of item sequences. The recall process generates the phase precession in dentate, CA3, and entorhinal cortex.

  8. Memory retrieval time and memory capacity of the CA3 network: Role of gamma frequency oscillations

    PubMed Central

    de Almeida, Licurgo; Idiart, Marco; Lisman, John E.

    2007-01-01

    The existence of recurrent synaptic connections in CA3 led to the hypothesis that CA3 is an autoassociative network similar to the Hopfield networks studied by theorists. CA3 undergoes gamma frequency periodic inhibition that prevents a persistent attractor state. This argues against the analogy to Hopfield nets, in which an attractor state can be used for working memory. However, we show that such periodic inhibition allows one cycle of recurrent excitatory activity and that this is sufficient for memory retrieval (within milliseconds). Thus, gamma oscillations are compatible with a long-term autoassociative memory function for CA3. A second goal of our work was to evaluate previous methods for estimating the memory capacity (P) of CA3. We confirm the equation, P = c/a2, where c is the probability that any two cells are recurrently connected and a is the fraction of cells representing a memory item. In applying this to CA3, we focus on CA3a, the subregion where recurrent connections are most numerous (c = 0.2) and approximate randomness. We estimate that a memory item is represented by ∼225 of the 70,000 neurons in CA3a (a = 0.003) and that ∼20,000 memory items can be stored. Our general conclusion is that the physiological and anatomical findings of CA3a are consistent with an autoassociative function. The nature of the information that is associated in CA3a is discussed. We also discuss how the autoassociative properties of CA3 and the heteroassociative properties of dentate synapses (linking sequential memories) form an integrated system for the storage and recall of item sequences. The recall process generates the phase precession in dentate, CA3, and entorhinal cortex. PMID:18007022

  9. Contextual Information Drives the Reconsolidation-Dependent Updating of Retrieved Fear Memories.

    PubMed

    Jarome, Timothy J; Ferrara, Nicole C; Kwapis, Janine L; Helmstetter, Fred J

    2015-12-01

    Stored memories enter a temporary state of vulnerability following retrieval known as 'reconsolidation', a process that can allow memories to be modified to incorporate new information. Although reconsolidation has become an attractive target for treatment of memories related to traumatic past experiences, we still do not know what new information triggers the updating of retrieved memories. Here, we used biochemical markers of synaptic plasticity in combination with a novel behavioral procedure to determine what was learned during memory reconsolidation under normal retrieval conditions. We eliminated new information during retrieval by manipulating animals' training experience and measured changes in proteasome activity and GluR2 expression in the amygdala, two established markers of fear memory lability and reconsolidation. We found that eliminating new contextual information during the retrieval of memories for predictable and unpredictable fear associations prevented changes in proteasome activity and glutamate receptor expression in the amygdala, indicating that this new information drives the reconsolidation of both predictable and unpredictable fear associations on retrieval. Consistent with this, eliminating new contextual information prior to retrieval prevented the memory-impairing effects of protein synthesis inhibitors following retrieval. These results indicate that under normal conditions, reconsolidation updates memories by incorporating new contextual information into the memory trace. Collectively, these results suggest that controlling contextual information present during retrieval may be a useful strategy for improving reconsolidation-based treatments of traumatic memories associated with anxiety disorders such as post-traumatic stress disorder.

  10. Aging Memories: Differential Decay of Episodic Memory Components

    ERIC Educational Resources Information Center

    Talamini, Lucia M.; Gorree, Eva

    2012-01-01

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a…

  11. Single-Item Memory, Associative Memory, and the Human Hippocampus

    ERIC Educational Resources Information Center

    Squire, Larry R.; Gold, Jeffrey J.; Hopkins, Ramona O.

    2006-01-01

    We tested recognition memory for items and associations in memory-impaired patients with bilateral lesions thought to be limited to the hippocampal region. In Experiment 1 (Combined memory test), participants studied words and then took a memory test in which studied words, new words, studied word pairs, and recombined word pairs were presented in…

  12. Traces of Drosophila Memory

    PubMed Central

    Davis, Ronald L.

    2012-01-01

    Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352

  13. The Unobtrusive Memory Allocator

    2003-03-31

    This library implements a memory allocator/manager which ask its host program or library for memory refions to manage rather than requesting them from the operating system. This allocator supports multiple distinct heaps within a single executable, each of which may grow either upward or downward in memory. The GNU mmalloc library has been modified in such a way that its allocation algorithms have been preserved, but the manner in which it obtains regions to managemore » has been changed to request memory from the host program or library. Additional modifications allow the allocator to manage each heap as either upward or downward-growing. By allowing the hosting program or library to determine what memory is managed, this package allows a greater degree of control than other memory allocation/management libraries. Additional distinguishing features include the ability to manage multiple distinct heaps with in a single executable, each of which may grow either upward or downward in memory. The most common use of this library is in conjunction with the Berkeley Unified Parallel C (UPC) Runtime Library. This package is a modified version of the LGPL-licensed "mmalloc" allocator from release 5.2 of the "gdb" debugger's source code.« less

  14. Activity in prelimbic cortex subserves fear memory reconsolidation over time

    PubMed Central

    Stern, Cristina A.J.; Gazarini, Lucas; Vanvossen, Ana C.; Hames, Mayara S.; Bertoglio, Leandro J.

    2014-01-01

    The prelimbic cortex has been implicated in the consolidation of previously learned fear. Herein, we report that temporarily inactivating this medial prefrontal cortex subregion with the GABAA agonist muscimol (4.0 nmol in 0.2 μL per hemisphere) was able to equally disrupt 1-, 7-, and 21-d-old contextual fear memories after their brief retrieval in rats. In all cases, this effect was prevented when memory reactivation was omitted. These results indicate that recent and remote fear memories are susceptible to reconsolidation blockade induced by prelimbic cortex inactivation. It was also demonstrated that the disrupting effect of prelimbic cortex inactivation on fear memory persisted over 11 d, and did not show extinction-related features, such as reinstatement. Infusing the same dose and volume of muscimol bilaterally into the infralimbic cortex after brief retrieval/reactivation of the fear memory did not disrupt it, as seen in prelimbic cortex-inactivated animals. The expression of Zif268/Egr1, the product of an immediate early gene related to memory reconsolidation, was also less pronounced in the infralimbic cortex than in prelimbic cortex following memory retrieval/reactivation. Altogether, the present findings highlight that activity in the prelimbic cortex may reestablish reactivated aversive memories and, therefore, contribute to their maintenance over time. PMID:24344180

  15. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Carpenter, K. H.

    1974-01-01

    The design, construction, and test history of a 4096 word by 18 bit random access NDRO Plated Wire Memory for use in conjunction with a spacecraft input/output and central processing unit is reported. A technical and functional description is given along with diagrams illustrating layout and systems operation. Test data is shown on the procedures and results of system level and memory stack testing, and hybrid circuit screening. A comparison of the most significant physical and performance characteristics of the memory unit versus the specified requirements is also included.

  16. Digital Radio Frequency Memories

    NASA Astrophysics Data System (ADS)

    Hey-Shipton, Gregory L.

    The Digital RF Memory (DRFM) is gradually replacing the recirculating Frequency Memory Loop (FML). The shortcomings of the FML in the area of limited storage time, single signal processing, and limited ECM capabilities are overcome by the use of the DRFM. There are several architectures for the DRFM but all of them accomplish the same basic function: to convert an incoming RF signal to a low enough frequency to allow storage in a digital memory and subsequent upconversion to the original signal frequency. Multiple signal handling capabilities on a pulse by pulse basis and software controlled ECM generation make the DRFM a powerful addition to any ECM suite.

  17. Eliciting Sound Memories.

    PubMed

    Harris, Anna

    2015-11-01

    Sensory experiences are often considered triggers of memory, most famously a little French cake dipped in lime blossom tea. Sense memory can also be evoked in public history research through techniques of elicitation. In this article I reflect on different social science methods for eliciting sound memories such as the use of sonic prompts, emplaced interviewing, and sound walks. I include examples from my research on medical listening. The article considers the relevance of this work for the conduct of oral histories, arguing that such methods "break the frame," allowing room for collaborative research connections and insights into the otherwise unarticulatable.

  18. Enhanced memory persistence is blocked by a DNA methyltransferase inhibitor in the snail Lymnaea stagnalis.

    PubMed

    Lukowiak, Ken; Heckler, Benjamin; Bennett, Thomas E; Schriner, Ellen K; Wyrick, Kathryn; Jewett, Cynthia; Todd, Ryan P; Sorg, Barbara A

    2014-08-15

    Lymnaea stagnalis provides an excellent model system for studying memory because these snails have a well-described set of neurons, a single one of which controls expression of long-term memory of operantly conditioned respiratory behavior. We have shown that several different manipulations, including pre-training exposure to serotonin (5-HT) or methamphetamine, submersion of snails after training to prevent memory interference, and exposure to effluent from predatory crayfish (CE), enhance memory persistence. Changes in DNA methylation underlie formation of strong memories in mammals and 5-HT-enhanced long-term facilitation in Aplysia. Here we determined the impact of the DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-AZA; 87 μmol l(-1)), on enhanced memory persistence by all four manipulations. We found that 5-HT (100 μmol l(-1)) enhanced memory persistence, which was blocked by 5-AZA pretreatment. Snails pre-exposed to 3.3 μmol l(-1) Meth 4 h prior to training demonstrated memory 72 h later, which was not present in controls. This memory-enhancing effect was blocked by pre-treatment with 87 μmol l(-1) 5-AZA. Similarly, submersion to prevent interference learning as well as training in CE produced memory that was not present in controls, and these effects were blocked by pre-treatment with 87 μmol l(-1) 5-AZA. In contrast, 5-AZA injection did not alter expression of normal (non-enhanced) memory, suggesting that these four stimuli enhance memory persistence by increasing DNA methyltransferase activity, which, in turn, increases expression of memory-enhancing genes and/or inhibits memory suppressor genes. These studies lay important groundwork for delineating gene methylation changes that are common to persistent memory produced by different stimuli.

  19. Reduced False Memory after Sleep

    ERIC Educational Resources Information Center

    Fenn, Kimberly M.; Gallo, David A.; Margoliash, Daniel; Roediger, Henry L., III; Nusbaum, Howard C.

    2009-01-01

    Several studies have shown that sleep contributes to the successful maintenance of previously encoded information. This research has focused exclusively on memory for studied events, as opposed to false memories. Here we report three experiments showing that sleep reduces false memories in the Deese-Roediger-McDermott (DRM) memory illusion. False…

  20. Pomegranate Juice Augments Memory and fMRI Activity in Middle-Aged and Older Adults with Mild Memory Complaints

    PubMed Central

    Bookheimer, Susan Y.; Renner, Brian A.; Ekstrom, Arne; Henning, Susanne M.; Brown, Jesse A.; Jones, Mike; Moody, Teena; Small, Gary W.

    2013-01-01

    Despite increasing emphasis on the potential of dietary antioxidants in preventing memory loss and on diet as a precursor of neurological health, rigorous studies investigating the cognitive effects of foods and their components are rare. Recent animal studies have reported memory and other cognitive benefits of polyphenols, found abundantly in pomegranate juice. We performed a preliminary, placebo-controlled randomized trial of pomegranate juice in older subjects with age-associated memory complaints using memory testing and functional brain activation (fMRI) as outcome measures. Thirty-two subjects (28 completers) were randomly assigned to drink 8 ounces of either pomegranate juice or a flavor-matched placebo drink for 4 weeks. Subjects received memory testing, fMRI scans during cognitive tasks, and blood draws for peripheral biomarkers before and after the intervention. Investigators and subjects were all blind to group membership. After 4 weeks, only the pomegranate group showed a significant improvement in the Buschke selective reminding test of verbal memory and a significant increase in plasma trolox-equivalent antioxidant capacity (TEAC) and urolithin A-glucuronide. Furthermore, compared to the placebo group, the pomegranate group had increased fMRI activity during verbal and visual memory tasks. While preliminary, these results suggest a role for pomegranate juice in augmenting memory function through task-related increases in functional brain activity. PMID:23970941

  1. Prospective memory: A comparative perspective

    PubMed Central

    Crystal, Jonathon D.; Wilson, A. George

    2014-01-01

    Prospective memory consists of forming a representation of a future action, temporarily storing that representation in memory, and retrieving it at a future time point. Here we review the recent development of animal models of prospective memory. We review experiments using rats that focus on the development of time-based and event-based prospective memory. Next, we review a number of prospective-memory approaches that have been used with a variety of non-human primates. Finally, we review selected approaches from the human literature on prospective memory to identify targets for development of animal models of prospective memory. PMID:25101562

  2. Memory Circuit Fault Simulator

    NASA Technical Reports Server (NTRS)

    Sheldon, Douglas J.; McClure, Tucker

    2013-01-01

    Spacecraft are known to experience significant memory part-related failures and problems, both pre- and postlaunch. These memory parts include both static and dynamic memories (SRAM and DRAM). These failures manifest themselves in a variety of ways, such as pattern-sensitive failures, timingsensitive failures, etc. Because of the mission critical nature memory devices play in spacecraft architecture and operation, understanding their failure modes is vital to successful mission operation. To support this need, a generic simulation tool that can model different data patterns in conjunction with variable write and read conditions was developed. This tool is a mathematical and graphical way to embed pattern, electrical, and physical information to perform what-if analysis as part of a root cause failure analysis effort.

  3. Making a Memory Book

    MedlinePlus Videos and Cool Tools

    Narrator: Another project you and your loved one can do together is make a memory book. Hattie Grossman is 93 years ... grandchildren. This afternoon they're working on a project with University of Pittsburgh researcher, Michelle Bourgeois. Bourgeois: ...

  4. Medications for Memory Loss

    MedlinePlus

    ... memory loss, confusion, and problems with thinking and reasoning) of Alzheimer's disease. As Alzheimer’s progresses, brain cells ... the latest Alzheimer's medications available today, and the clinical trials that may bring us closer to new ...

  5. Memory on time

    PubMed Central

    Eichenbaum, Howard

    2013-01-01

    Considerable recent work has shown that the hippocampus is critical for remembering the order of events in distinct experiences, a defining feature of episodic memory. Correspondingly, hippocampal neuronal activity can ‘replay’ sequential events in memories and hippocampal neuronal ensembles represent a gradually changing temporal context signal. Most strikingly, single hippocampal neurons – called time cells – encode moments in temporally structured experiences much as the well-known place cells encode locations in spatially structured experiences. These observations bridge largely disconnected literatures on the role of the hippocampus in episodic memory and spatial mapping, and suggest that the fundamental function of the hippocampus is to establish spatio-temporal frameworks for organizing memories. PMID:23318095

  6. Coping with Memory Loss

    MedlinePlus

    ... either using computerized axial tomography (CAT) scans or magnetic resonance imaging (MRI) – can help to identify strokes and tumors, which can sometimes cause memory loss. “The goal is to rule out factors ...

  7. Plated wire memory subsystem

    NASA Technical Reports Server (NTRS)

    Reynolds, L.; Tweed, H.

    1972-01-01

    The work performed entailed the design, development, construction and testing of a 4000 word by 18 bit random access, NDRO plated wire memory for use in conjunction with a spacecraft imput/output unit and central processing unit. The primary design parameters, in order of importance, were high reliability, low power, volume and weight. A single memory unit, referred to as a qualification model, was delivered.

  8. Photonic crystal optical memory

    NASA Astrophysics Data System (ADS)

    Lima, A. Wirth; Sombra, A. S. B.

    2011-06-01

    After several decades pushing the technology and the development of the world, the electronics is giving space for technologies that use light. We propose and analyze an optical memory embedded in a nonlinear photonic crystal (PhC), whose system of writing and reading data is controlled by an external command signal. This optical memory is based on optical directional couplers connected to a shared optical ring. Such a device can work over the C-Band of ITU (International Telecommunication Union).

  9. Computational principles of memory.

    PubMed

    Chaudhuri, Rishidev; Fiete, Ila

    2016-03-01

    The ability to store and later use information is essential for a variety of adaptive behaviors, including integration, learning, generalization, prediction and inference. In this Review, we survey theoretical principles that can allow the brain to construct persistent states for memory. We identify requirements that a memory system must satisfy and analyze existing models and hypothesized biological substrates in light of these requirements. We also highlight open questions, theoretical puzzles and problems shared with computer science and information theory. PMID:26906506

  10. The Rivermead Behavioural Memory Test and Wechsler Memory Scale--Revised: Relationship to Everyday Memory Impairment.

    ERIC Educational Resources Information Center

    Koltai, Deborah C.; Bowler, Rosemarie M.; Shore, Michael D.

    1996-01-01

    A comparison of the Rivermead Behavioural Memory Test (B. Wilson, 1987) and the Wechsler Memory Scale--Revised conducted with 20 neurotoxin-exposed and 20 unexposed adults finds that the two tests do not differ significantly in their relationships to estimates of everyday memory, and using both tests does not improve prediction of memory function.…

  11. Immune memory in invertebrates.

    PubMed

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming. PMID:27402055

  12. Shape-memory polymers.

    PubMed

    Lendlein, Andreas; Kelch, Steffen

    2002-06-17

    Material scientists predict a prominent role in the future for self-repairing and intelligent materials. Throughout the last few years, this concept has found growing interest as a result of the rise of a new class of polymers. These so-called shape-memory polymers by far surpass well-known metallic shape-memory alloys in their shape-memory properties. As a consequence of the relatively easy manufacture and programming of shape-memory polymers, these materials represent a cheap and efficient alternative to well-established shape-memory alloys. In shape-memory polymers, the consequences of an intended or accidental deformation caused by an external force can be ironed out by heating the material above a defined transition temperature. This effect can be achieved because of the given flexibility of the polymer chains. When the importance of polymeric materials in our daily life is taken into consideration, we find a very broad, additional spectrum of possible applications for intelligent polymers that covers an area from minimally invasive surgery, through high-performance textiles, up to self-repairing plastic components in every kind of transportation vehicles.

  13. Glucose, memory, and aging.

    PubMed

    Korol, D L; Gold, P E

    1998-04-01

    Circulating glucose concentrations regulate many brain functions, including learning and memory. Much of the evidence for this view comes from experiments assessing stress-related release of epinephrine with subsequent increases in blood glucose concentrations. One application of this work has been to investigate whether age-related memory impairments result from dysfunctions in the neuroendocrine regulation of the brain processes responsible for memory. Like humans, aged rodents exhibit some memory impairments that can be reversed by administration of epinephrine or glucose. In elderly humans, ingestion of glucose enhances some cognitive functions, with effects best documented thus far on tests of verbal contextual and noncontextual information. Glucose also effectively enhances cognition in persons with Alzheimer disease or Down syndrome. Although earlier evidence suggested that glucose does not enhance cognitive function in healthy young adults, more recent findings suggest that glucose is effective in this population, provided the tests are sufficiently difficult. In college students, glucose consumption significantly enhanced memory of material in a paragraph. Glucose also appeared to enhance attentional processes in these students. Neither face and word recognition nor working memory was influenced by treatment with glucose. The neurobiological mechanisms by which glucose acts are under current investigation. Initial evidence suggests that glucose or a metabolite may activate release of the neurotransmitter acetylcholine in rats when they are engaged in learning. Consequently, the issue of nutrition and cognition becomes increasingly important in light of evidence that circulating glucose concentrations have substantial effects on brain and cognitive functions.

  14. Multiprocessor memory contention

    SciTech Connect

    Knadler, C.E. Jr.

    1989-01-01

    Caches are frequently incorporated in processor architectures to increase the effective memory speed and to reduce memory contention. However, task switches and the coherency problems of large n-way, mainframe-class multiprocessors lessen the effectiveness of cache architectures for general-purpose applications. A proposed alternative approach is to increase the effective memory bandwidth and decrease memory-access delays through instruction prefetch, operand buffering, highly interleave memory, and multiple-word width processor-memory data paths. This approach was evaluated by comparing cache and noncache system performance, using discrete-event simulation. Since the performance of a multiprocessor architecture is a function of its operating environment was well as its design, the system workload was defined. General-purpose applications, running under multitasking operating systems, were characterized with respect to addressing patterns, paging rates, and frequency of input/output operations. The proposed noncache architecture was found to have performance comparable to that of the cache architectures and obviated then need to solve the cache coherency problem.

  15. Mechanisms of memory enhancement.

    PubMed

    Stern, Sarah A; Alberini, Cristina M

    2013-01-01

    The ongoing quest for memory enhancement is one that grows necessary as the global population increasingly ages. The extraordinary progress that has been made in the past few decades elucidating the underlying mechanisms of how long-term memories are formed has provided insight into how memories might also be enhanced. Capitalizing on this knowledge, it has been postulated that targeting many of the same mechanisms, including CREB activation, AMPA/NMDA receptor trafficking, neuromodulation (e.g., via dopamine, adrenaline, cortisol, or acetylcholine) and metabolic processes (e.g., via glucose and insulin) may all lead to the enhancement of memory. These and other mechanisms and/or approaches have been tested via genetic or pharmacological methods in animal models, and several have been investigated in humans as well. In addition, a number of behavioral methods, including exercise and reconsolidation, may also serve to strengthen and enhance memories. By utilizing this information and continuing to investigate these promising avenues, memory enhancement may indeed be achieved in the future.

  16. Immune memory in invertebrates.

    PubMed

    Milutinović, Barbara; Kurtz, Joachim

    2016-08-01

    Evidence for innate immune memory (or 'priming') in invertebrates has been accumulating over the last years. We here provide an in-depth review of the current state of evidence for immune memory in invertebrates, and in particular take a phylogenetic viewpoint. Invertebrates are a very heterogeneous group of animals and accordingly, evidence for the phenomenon of immune memory as well as the hypothesized molecular underpinnings differ largely for the diverse invertebrate taxa. The majority of research currently focuses on Arthropods, while evidence from many other groups of invertebrates is fragmentary or even lacking. We here concentrate on immune memory that is induced by pathogenic challenges, but also extent our view to a non-pathogenic context, i.e. allograft rejection, which can also show forms of memory and can inform us about general principles of specific self-nonself recognition. We discuss definitions of immune memory and a number of relevant aspects such as the type of antigens used, the route of exposure, and the kinetics of reactions following priming.

  17. Retrieval is not necessary to trigger reconsolidation of object recognition memory in the perirhinal cortex

    PubMed Central

    Santoyo-Zedillo, Marianela; Rodriguez-Ortiz, Carlos J.; Chavez-Marchetta, Gianfranco; Bermudez-Rattoni, Federico

    2014-01-01

    Memory retrieval has been considered as requisite to initiate memory reconsolidation; however, some studies indicate that blocking retrieval does not prevent memory from undergoing reconsolidation. Since N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors in the perirhinal cortex have been involved in object recognition memory formation, the present study evaluated whether retrieval and reconsolidation are independent processes by manipulating these glutamate receptors. The results showed that AMPA receptor antagonist infusions in the perirhinal cortex blocked retrieval, but did not affect memory reconsolidation, although NMDA receptor antagonist infusions disrupted reconsolidation even if retrieval was blocked. Importantly, neither of these antagonists disrupted short-term memory. These data suggest that memory underwent reconsolidation even in the absence of retrieval. PMID:25128536

  18. Music evokes vivid autobiographical memories.

    PubMed

    Belfi, Amy M; Karlan, Brett; Tranel, Daniel

    2016-08-01

    Music is strongly intertwined with memories-for example, hearing a song from the past can transport you back in time, triggering the sights, sounds, and feelings of a specific event. This association between music and vivid autobiographical memory is intuitively apparent, but the idea that music is intimately tied with memories, seemingly more so than other potent memory cues (e.g., familiar faces), has not been empirically tested. Here, we compared memories evoked by music to those evoked by famous faces, predicting that music-evoked autobiographical memories (MEAMs) would be more vivid. Participants listened to 30 songs, viewed 30 faces, and reported on memories that were evoked. Memories were transcribed and coded for vividness as in Levine, B., Svoboda, E., Hay, J. F., Winocur, G., & Moscovitch, M. [2002. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689]. In support of our hypothesis, MEAMs were more vivid than autobiographical memories evoked by faces. MEAMs contained a greater proportion of internal details and a greater number of perceptual details, while face-evoked memories contained a greater number of external details. Additionally, we identified sex differences in memory vividness: for both stimulus categories, women retrieved more vivid memories than men. The results show that music not only effectively evokes autobiographical memories, but that these memories are more vivid than those evoked by famous faces.

  19. Preventing Tragedy.

    ERIC Educational Resources Information Center

    One Feather, Sandra

    2003-01-01

    The Navajo supervisor in the Office of Environmental Health in New Mexico identifies diseases and their risk factors, administers an injury prevention program, and ensures compliance with various health-related codes. She assists in the planning and direction of environmental health programs and public health education for local Navajo…

  20. Poison Prevention

    MedlinePlus

    ... Word Shop AAP Find a Pediatrician Safety & Prevention ... Content Article Body Post the Poison Help number 1-800-222-1222 on the emergency list next to every phone in your home and in your cell phone. A toddler or preschooler who vomits may ...

  1. Bullying Prevention

    ERIC Educational Resources Information Center

    Kemp, Patrice

    2016-01-01

    The focus of the milestone project is to focus on bridging the gap of bullying and classroom instruction methods. There has to be a defined expectations and level of accountability that has to be defined when supporting and implementing a plan linked to bullying prevention. All individuals involved in the student's learning have to be aware of…

  2. Dr. Worta McCaskill-Stevens Named Recipient of AACR Minorities in Cancer Research Award | Division of Cancer Prevention

    Cancer.gov

    Worta McCaskill-Stevens, MD, MS, Chief of the Community Oncology and Prevention Trials Research Group, NCI Division of Cancer Prevention, was named the recipient of the 2016 American Association for Cancer Research Jane Cooke Wright Memorial Lectureship. |

  3. Hibernation does not affect memory retention in bats.

    PubMed

    Ruczynski, Ireneusz; Siemers, Björn M

    2011-02-23

    Long-term memory can be critically important for animals in a variety of contexts, and yet the extreme reduction in body temperature in hibernating animals alters neurochemistry and may therefore impair brain function. Behavioural studies on memory impairment associated with hibernation have been almost exclusively conducted on ground squirrels (Rodentia) and provide conflicting results, including clear evidence for memory loss. Here, we for the first time tested memory retention after hibernation for a vertebrate outside rodents-bats (Chiroptera). In the light of the high mobility, ecology and long life of bats, we hypothesized that maintenance of consolidated memory through hibernation is under strong natural selection. We trained bats to find food in one out of three maze arms. After training, the pre-hibernation performance of all individuals was at 100 per cent correct decisions. After this pre-test, one group of bats was kept, with two interruptions, at 7°C for two months, while the other group was kept under conditions that prevented them from going into hibernation. The hibernated bats performed at the same high level as before hibernation and as the non-hibernated controls. Our data suggest that bats benefit from an as yet unknown neuroprotective mechanism to prevent memory loss in the cold brain.

  4. Memory for items and memory for relations in the procedural/declarative memory framework.

    PubMed

    Cohen, N J; Poldrack, R A; Eichenbaum, H

    1997-01-01

    A major area of research in memory and amnesia concerns the item specificity of implicit memory. In this paper we address several issues about the nature of implicit memory phenomena and about what constitutes an "item", using the procedural/declarative memory theory to guide us. We consider the nature of memory for items and of memory for relations among items, within the context of the procedural/declarative framework, providing us with the foundation necessary to analyse the basis for item-specific implicit memory phenomena. We review recent work from our laboratories demonstrating the fundamentally relational and flexible nature of declarative memory representation, in both humans and animals, and the essential role of the hippocampal system in relational memory processing. We show, further, that the memory representations supporting implicit memory phenomena are inflexible and nonrelational, and are tied to specific processing modules. Finally, we introduce empirical approaches that blur the distinction between skill learning and repetition priming, and show computational modelling results that demonstrate how these two implicit memory phenomena can be mediated by a single incremental learning mechanism, in accord with the claims of the procedural-declarative theory. Taken together, these various analyses of memory for items and memory for relations help to illuminate the nature of the functional deficit in amnesia and the memory systems of the brain.

  5. Memory engram storage and retrieval.

    PubMed

    Tonegawa, Susumu; Pignatelli, Michele; Roy, Dheeraj S; Ryan, Tomás J

    2015-12-01

    A great deal of experimental investment is directed towards questions regarding the mechanisms of memory storage. Such studies have traditionally been restricted to investigation of the anatomical structures, physiological processes, and molecular pathways necessary for the capacity of memory storage, and have avoided the question of how individual memories are stored in the brain. Memory engram technology allows the labeling and subsequent manipulation of components of specific memory engrams in particular brain regions, and it has been established that cell ensembles labeled by this method are both sufficient and necessary for memory recall. Recent research has employed this technology to probe fundamental questions of memory consolidation, differentiating between mechanisms of memory retrieval from the true neurobiology of memory storage.

  6. Preeclampsia prevention

    PubMed Central

    Herrera-Medina, Rodolfo; Pineda, Lucia M

    2015-01-01

    Background: Preeclampsia is the main complication of pregnancy in developing countries. Calcium starting at 14 weeks of pregnancy is indicated to prevent the disease. Recent advances in prevention of preeclampsia endorse the addition of conjugated linoleic acid. Objective: To estimate the protective effect from calcium alone, compared to calcium plus conjugated linoleic acid in nulliparous women at risk of preeclampsia. Methods: A case-control design nested in the cohort of nulliparous women attending antenatal care from 2010 to 2014. The clinical histories of 387 cases of preeclampsia were compared with 1,054 normotensive controls. The exposure was prescriptions for calcium alone, the first period, or calcium plus conjugated linoleic acid, the second period, from 12 to 16 weeks of gestational age to labor. Confounding variables were controlled, allowing only nulliparous women into the study and stratifying by age, education and ethnic group. Results: The average age was 26.4 yrs old (range= 13-45), 85% from mixed ethnic backgrounds and with high school education. There were no differences between women who received calcium carbonate and those who did not (OR= 0.96; 95% CI= 0.73-1.27). The group of adolescents (13 to 18 years old) in the calcium plus conjugated linoleic acid was protected for preeclampsia (OR= 0.00; 95% CI= 0.00-0.44) independent of the confounder variables. Conclusions: 1. Calcium supplementation during pregnancy did not have preventive effects on preeclampsia. 2. Calcium plus Conjugated Linoleic acid provided to adolescents was observed to have preventive effect on Preeclampsia. PMID:26848195

  7. Embodied memory: unconscious smiling modulates emotional evaluation of episodic memories

    PubMed Central

    Arminjon, Mathieu; Preissmann, Delphine; Chmetz, Florian; Duraku, Andrea; Ansermet, François; Magistretti, Pierre J.

    2015-01-01

    Since Damasio introduced the somatic markers hypothesis in Damasio (1994), it has spread through the psychological community, where it is now commonly acknowledged that somatic states are a factor in producing the qualitative dimension of our experiences. Present actions are emotionally guided by those somatic states that were previously activated in similar experiences. In this model, somatic markers serve as a kind of embodied memory. Here, we test whether the manipulation of somatic markers can modulate the emotional evaluation of negative memories. Because facial feedback has been shown to be a powerful means of modifying emotional judgements, we used it to manipulate somatic markers. Participants first read a sad story in order to induce a negative emotional memory and then were asked to rate their emotions and memory about the text. Twenty-four hours later, the same participants were asked to assume a predetermined facial feedback (smiling) while reactivating their memory of the sad story. The participants were once again asked to fill in emotional and memory questionnaires about the text. Our results showed that participants who had smiled during memory reactivation later rated the text less negatively than control participants. However, the contraction of the zygomaticus muscles during memory reactivation did not have any impact on episodic memory scores. This suggests that manipulating somatic states modified emotional memory without affecting episodic memory. Thus, modulating memories through bodily states might pave the way to studying memory as an embodied function and help shape new kinds of psychotherapeutic interventions. PMID:26074833

  8. Stereotype threat can reduce older adults' memory errors.

    PubMed

    Barber, Sarah J; Mather, Mara

    2013-01-01

    Stereotype threat often incurs the cost of reducing the amount of information that older adults accurately recall. In the current research, we tested whether stereotype threat can also benefit memory. According to the regulatory focus account of stereotype threat, threat induces a prevention focus in which people become concerned with avoiding errors of commission and are sensitive to the presence or absence of losses within their environment. Because of this, we predicted that stereotype threat might reduce older adults' memory errors. Results were consistent with this prediction. Older adults under stereotype threat had lower intrusion rates during free-recall tests (Experiments 1 and 2). They also reduced their false alarms and adopted more conservative response criteria during a recognition test (Experiment 2). Thus, stereotype threat can decrease older adults' false memories, albeit at the cost of fewer veridical memories, as well.

  9. Tianeptine: an antidepressant with memory-protective properties.

    PubMed

    Zoladz, Phillip R; Park, Collin R; Muñoz, Carmen; Fleshner, Monika; Diamond, David M

    2008-12-01

    The development of effective pharmacotherapy for major depression is important because it is such a widespread and debilitating mental disorder. Here, we have reviewed preclinical and clinical studies on tianeptine, an atypical antidepressant which ameliorates the adverse effects of stress on brain and memory. In animal studies, tianeptine has been shown to prevent stress-induced morphological sequelae in the hippocampus and amygdala, as well as to prevent stress from impairing synaptic plasticity in the prefrontal cortex and hippocampus. Tianeptine also has memory-protective characteristics, as it blocks the adverse effects of stress on hippocampus-dependent learning and memory. We have further extended the findings on stress, memory and tianeptine here with two novel observations: 1) stress impairs spatial memory in adrenalectomized (ADX), thereby corticosterone-depleted, rats; and 2) the stress-induced impairment of memory in ADX rats is blocked by tianeptine. These findings are consistent with previous research which indicates that tianeptine produces anti-stress and memory-protective properties without altering the response of the hypothalamic-pituitary-adrenal axis to stress. We conclude with a discussion of findings which indicate that tianeptine accomplishes its anti-stress effects by normalizing stress-induced increases in glutamate in the hippocampus and amygdala. This finding is potentially relevant to recent research which indicates that abnormalities in glutamatergic neurotransmission are involved in the pathogenesis of depression. Ultimately, tianeptine's prevention of depression-induced sequelae in the brain is likely to be a primary factor in its effectiveness as a pharmacological treatment for depression.

  10. Perirhinal Cortex Muscarinic Receptor Blockade Impairs Taste Recognition Memory Formation

    ERIC Educational Resources Information Center

    Gutierrez, Ranier; De la Cruz, Vanesa; Rodriguez-Ortiz, Carlos J.; Bermudez-Rattoni, Federico

    2004-01-01

    The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition…

  11. Repeatedly Reactivated Memories Become More Resistant to Hippocampal Damage

    ERIC Educational Resources Information Center

    Lehmann, Hugo; McNamara, Kathryn C.

    2011-01-01

    We examined whether repeated reactivations of a context memory would prevent the typical amnesic effects of post-training damage to the hippocampus (HPC). Rats were given a single contextual fear-conditioning session followed by 10 reactivations, involving a brief return to the conditioning context (no shock). Subsequently, the rats received sham…

  12. MEMORIAL WALK WITH MEMORIALS, TOWARD ENTRANCE GATE. VIEW TO WEST. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MEMORIAL WALK WITH MEMORIALS, TOWARD ENTRANCE GATE. VIEW TO WEST. - Rock Island National Cemetery, Rock Island Arsenal, 0.25 mile north of southern tip of Rock Island, Rock Island, Rock Island County, IL

  13. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain

    PubMed Central

    Gautam, Akash; Wadhwa, Renu; Thakur, Mahendra K.

    2016-01-01

    Background In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. Purpose However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. Methods In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. Results The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. Conclusion Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction. PMID:27647956

  14. Assessment of Cholinergic Properties of Ashwagandha Leaf-Extract in the Amnesic Mouse Brain

    PubMed Central

    Gautam, Akash; Wadhwa, Renu; Thakur, Mahendra K.

    2016-01-01

    Background In our earlier study, we have shown the memory enhancing and scopolamine-induced amnesia recovery properties of Ashwagandha leaf extract using behavioral paradigm and expression analysis of synaptic plasticity genes. Purpose However, the exact mechanism through which Ashwagandha demonstrates these effects is still unknown. Methods In the present study, we hypothesized that the alcoholic extract of Ashwagandha leaves (i-Extract) possesses cholinergic properties, which in turn inhibit the anti-cholinergic nature of scopolamine. Therefore, the potential of i-Extract to recover from the scopolamine-induced cholinergic deficits was assessed by measuring acetylcholine (neurotransmitter) and Arc (synaptic activity-related gene) expression level in the mouse brain. Results The enzymatic activity of acetyl cholinesterase and choline acetyltransferase was assessed through colorimetric assays, and expression level of Arc protein was examined by Western blotting. Furthermore, mRNA level of these genes was examined by semi-quantitative reverse-transcriptase PCR. We observed that the treatment of i-Extract in scopolamine-induced amnesic mouse attenuates scopolamine-induced detrimental alterations in the cholinergic system. Conclusion Thus, our study provided biochemical and molecular evidence of cholinergic properties of Ashwagandha leaf extract during brain disorders associated with cholinergic dysfunction.

  15. Emotion and autobiographical memory

    NASA Astrophysics Data System (ADS)

    Holland, Alisha C.; Kensinger, Elizabeth A.

    2010-03-01

    Autobiographical memory encompasses our recollections of specific, personal events. In this article, we review the interactions between emotion and autobiographical memory, focusing on two broad ways in which these interactions occur. First, the emotional content of an experience can influence the way in which the event is remembered. Second, emotions and emotional goals experienced at the time of autobiographical retrieval can influence the information recalled. We discuss the behavioral manifestations of each of these types of interactions and describe the neural mechanisms that may support those interactions. We discuss how findings from the clinical literature (e.g., regarding depression) and the social psychology literature (e.g., on emotion regulation) might inform future investigations of the interplay between the emotions experienced at the time of retrieval and the memories recalled, and we present ideas for future research in this domain.

  16. Carbon Nanotube Memory Elements

    SciTech Connect

    Meunier, Vincent; Sumpter, Bobby G

    2010-01-01

    Carbon nanotubes are among the most cited prototypical materials for nanoelectronics and information storage devices, a dominant position that originates from their intrinsic structural and electronic properties. In this chapter we review the developments in memory elements that directly exploit the unique properties of carbon nanotubes. Fundamental operational principles and characteristics are examined for the different types of carbon nanotube-based memory devices along with the current status of experimental fabrication and scalability. These include memory elements based on carbon nanotube field-effect transistors (CNFET), nanoelectromechanical systems (NEMS), and electromigration. Many of these devices show tremendous promise for providing enhanced densities, lower power requirements, more efficient read/write processes, and non-volatility of data.

  17. Emotion and Autobiographical Memory

    PubMed Central

    Holland, Alisha C.; Kensinger, Elizabeth A.

    2010-01-01

    Autobiographical memory encompasses our recollections of specific, personal events. In this article, we review the interactions between emotion and autobiographical memory, focusing on two broad ways in which these interactions occur. First, the emotional content of an experience can influence the way in which the event is remembered. Second, emotions and emotional goals experienced at the time of autobiographical retrieval can influence the information recalled. We discuss the behavioral manifestations of each of these types of interactions and describe the neural mechanisms that may support those interactions. We discuss how findings from the clinical literature (e.g., regarding depression) and the social psychology literature (e.g., on emotion regulation) might inform future investigations of the interplay between the emotions experienced at the time of retrieval and the memories recalled, and we present ideas for future research in this domain. PMID:20374933

  18. Amygdala Dopamine Receptors Are Required for the Destabilization of a Reconsolidating Appetitive Memory(1,2).

    PubMed

    Merlo, Emiliano; Ratano, Patrizia; Ilioi, Elena C; Robbins, Miranda A L S; Everitt, Barry J; Milton, Amy L

    2015-01-01

    Disrupting maladaptive memories may provide a novel form of treatment for neuropsychiatric disorders, but little is known about the neurochemical mechanisms underlying the induction of lability, or destabilization, of a retrieved consolidated memory. Destabilization has been theoretically linked to the violation of expectations during memory retrieval, which, in turn, has been suggested to correlate with prediction error (PE). It is well-established that PE correlates with dopaminergic signaling in limbic forebrain structures that are critical for emotional learning. The basolateral amygdala is a key neural substrate for the reconsolidation of pavlovian reward-related memories, but the involvement of dopaminergic mechanisms in inducing lability of amygdala-dependent memories has not been investigated. Therefore, we tested the hypothesis that dopaminergic signaling within the basolateral amygdala is required for the destabilization of appetitive pavlovian memories by investigating the effects dopaminergic and protein synthesis manipulations on appetitive memory reconsolidation in rats. Intra-amygdala administration of either the D1-selective dopamine receptor antagonist SCH23390 or the D2-selective dopamine receptor antagonist raclopride prevented memory destabilization at retrieval, thereby protecting the memory from the effects of an amnestic agent, the protein synthesis inhibitor anisomycin. These data show that dopaminergic transmission within the basolateral amygdala is required for memory labilization during appetitive memory reconsolidation.

  19. Negative Affect Impairs Associative Memory but Not Item Memory

    ERIC Educational Resources Information Center

    Bisby, James A.; Burgess, Neil

    2014-01-01

    The formation of associations between items and their context has been proposed to rely on mechanisms distinct from those supporting memory for a single item. Although emotional experiences can profoundly affect memory, our understanding of how it interacts with different aspects of memory remains unclear. We performed three experiments to examine…

  20. Psychobiology of Active and Inactive Memory.

    ERIC Educational Resources Information Center

    Lewis, Donald J.

    1979-01-01

    Argues that the distinction between short-term memory and long-term memory is no longer adequate for either human or animal memory data. Recommends additional research on the physiological brain processes underlying memory interference and retrieval. (MP)

  1. Natural Killer Cell Memory.

    PubMed

    O'Sullivan, Timothy E; Sun, Joseph C; Lanier, Lewis L

    2015-10-20

    Natural killer (NK) cells have historically been considered short-lived cytolytic cells that can rapidly respond against pathogens and tumors in an antigen-independent manner and then undergo cell death. Recently, however, NK cells have been shown to possess traits of adaptive immunity and can acquire immunological memory in a manner similar to that of T and B cells. In this review, we discuss evidence of NK cell memory and the mechanisms involved in the generation and survival of these innate lymphocytes.

  2. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  3. Making sense of memory.

    PubMed

    Bernstein, Daniel M

    2005-09-01

    The current work explores how people make recognition and belief judgments in the presence of obvious repetition primes. In two experiments, subjects received a 200-ms prime ("cheetah"), either before or after reading a trivia question ("What is the fastest animal?") but always before being presented with the target answer ("cheetah"). Results showed that repetition priming decreased "old" claims (Recognition--Experiment 1), while it increased truth claims (Belief--Experiment 2). Furthermore, repetition prime placement affected recognition but not belief. Combined, these results suggest that dissociations in memory performance are a natural outcome of task and processing demands and reflect the dynamic, flexible nature of memory.

  4. Antiepileptic drugs and memory.

    PubMed

    Thompson, P J

    1992-01-01

    Assessing the effects of medication on cognitive functions including memory is fraught with methodological problems. This article illustrates the range of approaches that have been employed. Medication effects have been more readily demonstrated in patients with intractable epilepsy, in whom drug dosages are higher and the risk of polytherapy is greater. Newly diagnosed cases and individuals treated with monotherapy show fewer effects. Evaluation of memory functions in most studies has been very limited, and where effects have been recorded these may well be secondary to changes in attentional level or mental processing speed.

  5. Involuntary memories and restrained eating.

    PubMed

    Ball, Christopher T

    2015-05-01

    Most involuntary memories are elicited by external cues (e.g., smells, sounds) that have unique associations with specific memories (Berntsen's cue-retrieval hypothesis), but involuntary memories can sometimes be elicited by weak, even imperceptible, cues that raise the activation level of an already primed memory (Berntsen's motivation-priming hypothesis) to also reach conscious awareness during times of low attentional focus. The current study examined the effects of a motivation bias (restrained eating) on the involuntary memories recorded in daily diaries for seven days by 56 female participants. A large proportion of the involuntary memories were elicited by food-related cues and occurred in food-related contexts. A significant correlation was found between the participants' scores on a restrained eating scale and the percentage of involuntary memories involving cooking and eating content. These results parallel previous research involving voluntary memory retrievals during restrained eating.

  6. Memory for syntax despite amnesia.

    PubMed

    Ferreira, Victor S; Bock, Kathryn; Wilson, Michael P; Cohen, Neal J

    2008-09-01

    Syntactic persistence is a tendency for speakers to reproduce sentence structures independently of accompanying meanings, words, or sounds. The memory mechanisms behind syntactic persistence are not fully understood. Although some properties of syntactic persistence suggest a role for procedural memory, current evidence suggests that procedural memory (unlike declarative memory) does not maintain the abstract, relational features that are inherent to syntactic structures. In a study evaluating the contribution of procedural memory to syntactic persistence, patients with anterograde amnesia and matched control speakers reproduced prime sentences with different syntactic structures; reproduced 0, 1, 6, or 10 neutral sentences; then spontaneously described pictures that elicited the primed structures; and finally made recognition judgments for the prime sentences. Amnesic and control speakers showed significant and equivalent syntactic persistence, despite the amnesic speakers' profoundly impaired recognition memory for the primes. Thus, syntax is maintained by procedural-memory mechanisms. This result reveals that procedural memory is capable of supporting abstract, relational knowledge.

  7. Memory for syntax despite amnesia

    PubMed Central

    Ferreira, Victor S.; Bock, Kathryn; Wilson, Michael P.; Cohen, Neal J.

    2009-01-01

    Syntactic persistence is a tendency for speakers to reproduce sentence structures independently of accompanying meanings, words, or sounds. The memory mechanisms behind syntactic persistence are not fully understood. Though some properties of syntactic persistence suggest a role for procedural memory, current evidence suggests that procedural memory (unlike declarative memory) does not maintain the abstract, relational features that are inherent to syntactic structures. To evaluate the contribution of procedural memory to syntactic persistence, patients with anterograde amnesia and matched control speakers (a) reproduced prime sentences with different syntactic structures; (b) reproduced 0, 1, 6, or 10 neutral sentences; (c) described pictures that elicited the primed structures spontaneously; and (d) made recognition judgments for the prime sentences. Amnesic and control speakers showed significant and equivalent syntactic persistence, despite the amnesic speakers’ profoundly impaired recognition memory for primes. Syntax is thus maintained by procedural memory mechanisms, revealing that procedural memory is capable of supporting abstract, relational knowledge. PMID:18947361

  8. Procognitive effect of AC-3933 in aged mice, and synergistic effect of combination with donepezil in scopolamine-treated mice.

    PubMed

    Hashimoto, Takashi; Hatayama, Yuki; Nakamichi, Keiko; Yoshida, Naoyuki

    2014-12-15

    We have previously reported that AC-3933, a newly developed benzodiazepine receptor partial inverse agonist, facilitates acetylcholine release in the hippocampus and ameliorates scopolamine-induced memory deficits in rats. To further confirm the procognitive effect of AC-3933, we assessed in this study the beneficial effects of this compound in aged mice using the Y-maze and object recognition tests. In addition, we investigated the synergistic effect of AC-3933 and donepezil, a cholinesterase inhibitor, on scopolamine-induced memory impairment in mice. In aged mice, oral administration of AC-3933 at doses of 0.05-0.1 mg/kg and 0.05 mg/kg significantly improved spatial working memory and episodic memory, respectively. In scopolamine-treated mice, both AC-3933 and donepezil significantly ameliorated memory deficits in the Y-maze test at doses of 0.3-3 mg/kg and 10-15 mg/kg, respectively. The beneficial effect of AC-3933, but not that of donepezil, on scopolamine-induced memory impairment was antagonized by flumazenil, a benzodiazepine receptor antagonist, indicating that the procognitive action of AC-3933 arises via a mechanism different from that of donepezil. Co-administration of donepezil at the suboptimal dose of 3 mg/kg with AC-3933 at doses of 0.1-1 mg/kg significantly ameliorated scopolamine-induced memory impairment, suggesting that AC-3933 potentiates the effect of donepezil on memory impairment induced by cholinergic hypofunction. These findings indicate that AC-3933 not only has good potential as a cognitive enhancer by itself, but also is useful as a concomitant drug for the treatment of Alzheimer׳s disease.

  9. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  10. About sleep's role in memory.

    PubMed

    Rasch, Björn; Born, Jan

    2013-04-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of "sleep and memory" research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems.

  11. [The elderly and memory complaints. A study of self-knowledge about memory, depression and memory abilities].

    PubMed

    Ponds, R W; Bruning, H A; Jolles, J

    1992-10-01

    A group of 24 elderly persons who applied for a memory training because of memory complaints is compared with a control group of 24 healthy persons (matched for age, sex, and education). The comparison concerned several memory tests, complaints above everyday memory, depression and aspects of meta-memory. Before training, the memory training group had more complaints about everyday memory and depression compared to the control group. The training group reported more decline in memory capacity and functioning compared to their earlier days. They also reported feelings of stress and anxiety related to memory performance in daily life. Before training, the training group had more general knowledge about basic memory processes and used memory strategies more frequently. On most memory tests no differences were found. Memory complaints of elderly people may therefore not only be related to memory abilities according to tests but also to individual (negative) beliefs in memory capacity and abilities. PMID:1440759

  12. Motor Action and Emotional Memory

    ERIC Educational Resources Information Center

    Casasanto, Daniel; Dijkstra, Katinka

    2010-01-01

    Can simple motor actions affect how efficiently people retrieve emotional memories, and influence what they choose to remember? In Experiment 1, participants were prompted to retell autobiographical memories with either positive or negative valence, while moving marbles either upward or downward. They retrieved memories faster when the direction…

  13. Black phosphorus nonvolatile transistor memory.

    PubMed

    Lee, Dain; Choi, Yongsuk; Hwang, Euyheon; Kang, Moon Sung; Lee, Seungwoo; Cho, Jeong Ho

    2016-04-28

    We demonstrated nanofloating gate transistor memory devices (NFGTMs) using mechanically-exfoliated few-layered black phosphorus (BP) channels and gold nanoparticle (AuNPs) charge trapping layers. The resulting BP-NFGTMs exhibited excellent memory performances, including the five-level data storage, large memory window (58.2 V), stable retention (10(4) s), and cyclic endurance (1000 cycles). PMID:27074903

  14. Memory Storage and Neural Systems.

    ERIC Educational Resources Information Center

    Alkon, Daniel L.

    1989-01-01

    Investigates memory storage and molecular nature of associative-memory formation by analyzing Pavlovian conditioning in marine snails and rabbits. Presented is the design of a computer-based memory system (neural networks) using the rules acquired in the investigation. Reports that the artificial network recognized patterns well. (YP)

  15. Memory Processes in Media Effects.

    ERIC Educational Resources Information Center

    Kellermann, Kathy

    1985-01-01

    Explores the role of memory in mediating mass communication effects. Examines (1) the nature of memory, (2) issues in retention and recall of media messages, (3) methods of promoting retention and recall of media messages, and (4) implications of memory processes for mass media effects. (PD)

  16. Improving Memory in the Aged.

    ERIC Educational Resources Information Center

    Richardson, Linda M.; Pratt, Mary Alice

    This paper reports the results of an evaluation of a didactic-experiential program designed to improve memory functioning in healthy older adults with memory complaints, and to allay their concerns (in this case, largely unfounded) about the decline of their memory. The 7-week workshop met weekly for 2 hours, each session consisting of a lecture…

  17. Origins of Adolescents' Autobiographical Memories

    ERIC Educational Resources Information Center

    Reese, Elaine; Jack, Fiona; White, Naomi

    2010-01-01

    Adolescents (N = 46; M = 12.46 years) who had previously participated in a longitudinal study of autobiographical memory development narrated their early childhood memories, interpreted life events, and completed a family history questionnaire and language assessment. Three distinct components of adolescent memory emerged: (1) age of earliest…

  18. Storing Memories of Recent Events

    MedlinePlus

    ... that come with normal aging and dementia. The hippocampus plays a critical role in memory. Much prior memory research has focused on semantic ... to a small number of neurons in the hippocampus; these neurons then fire when the memory is recalled. But how the brain forms episodic ...

  19. First Words and First Memories

    ERIC Educational Resources Information Center

    Morrison, Catriona M.; Conway, Martin A.

    2010-01-01

    In two experiments autobiographical memories from childhood were recalled to cue words naming common objects, locations, activities and emotions. Participants recalled their earliest specific memory associated with each word and dated their age at the time of the remembered event. A striking and specific finding emerged: age of earliest memory was…

  20. Stroke and Episodic Memory Disorders

    ERIC Educational Resources Information Center

    Lim, Chun; Alexander, Michael P.

    2009-01-01

    Memory impairments are common after stroke, and the anatomical basis for impairments may be quite variable. To determine the range of stroke-related memory impairment, we identified all case reports and group studies through the Medline database and the Science Citation Index. There is no hypothesis about memory that is unique to stroke, but there…

  1. The contribution of epigenetic memory to immunologic memory.

    PubMed

    Zediak, Valerie P; Wherry, E John; Berger, Shelley L

    2011-04-01

    Memory T lymphocytes are distinct from antigen-inexperienced naïve T cells in that memory T cells can respond more rapidly when they re-encounter a pathogen. Work over the past decade has begun to define the epigenetic underpinnings of the transcriptional component of the memory T cell response. An emerging theme is the persistence of an active chromatin signature at relevant gene loci in resting memory T cells, even when those genes are transcriptionally inactive. This gives strength to the concept of gene poising, and has shown that memory T lymphocytes are an ideal model in which to further define various mechanisms of epigenetic poising.

  2. Higher social intelligence can impair source memory.

    PubMed

    Barber, Sarah J; Franklin, Nancy; Naka, Makiko; Yoshimura, Hiroki

    2010-03-01

    Source monitoring is made difficult when the similarity between candidate sources increases. The current work examines how individual differences in social intelligence and perspective-taking abilities serve to increase source similarity and thus negatively impact source memory. Strangers first engaged in a cooperative storytelling task. On each trial, a single word was shown to both participants, but only 1 participant was designated to add a story sentence, using this assigned word. As predicted, social intelligence negatively predicted performance in a subsequent source-monitoring task. In a 2nd study, preventing participants from being able to anticipate their partner's next contribution to the story eliminated the effect. PMID:20192549

  3. The Grammar of Memory

    ERIC Educational Resources Information Center

    Sawyer, Wayne

    2016-01-01

    This essay focuses on two sites of memory in my professional life. One is from my very early years of teaching, the second from about 10 years later. Each is centred on a moment of controversy in English curriculum in New South Wales, Australia, and each is to do with the teaching of writing and the supposed neglect of language study, including…

  4. Memory Loss and Retrieval

    ERIC Educational Resources Information Center

    Reid, Ian

    2016-01-01

    Underlying the generally oblivious attitude of teachers and learners towards the past is insufficient respect for the role of memory in giving meaning to experience and access to knowledge. We shape our identity by making sense of our past and its relationship to present and future selves, a process that should be intensively cultivated when we…

  5. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  6. Dreams Memories & Photography

    ERIC Educational Resources Information Center

    Young, Bernard

    2012-01-01

    Photography students spend a considerable amount of time working on technical issues in shooting, composing, editing, and processing prints. Another aspect of their learning should include the conception and communication of their ideas. A student's memories and dreams can serve as motivation to create images in visual art. Some artists claim that…

  7. A Balanced Memory Network

    PubMed Central

    Roudi, Yasser; Latham, Peter E

    2007-01-01

    A fundamental problem in neuroscience is understanding how working memory—the ability to store information at intermediate timescales, like tens of seconds—is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons. PMID:17845070

  8. A MEMORY SCHEDULE.

    ERIC Educational Resources Information Center

    PIMSLEUR, PAUL

    A POSSIBLE SOLUTION FOR PROBLEMS OF MEMORY IN FOREIGN LANGUAGE LEARNING IS THE "GRADUATED INTERVAL RECALL," A PROCEDURE FOR AIDING STUDENTS TO REMEMBER THE VOCABULARY AND STRUCTURES THEY HAVE LEARNED. WHEN A NEW WORD IS LEARNED, THE PROCESS OF FORGETTING BEGINS AT ONCE AND PROCEEDS VERY RAPIDLY. IF THE STUDENT IS REMINDED OF THE WORD BEFORE HE HAS…

  9. When Autobiographical Memory Begins

    ERIC Educational Resources Information Center

    Howe, Mark L.; Courage, Mary L.; Edison, Shannon C.

    2003-01-01

    The authors review competing theories concerning the emergence and early development of autobiographical memory. It is argued that the differences between these accounts, although important, may be more apparent than real. The crux of these disagreements lies not in "what" processes are important, but rather, the role these different processes…

  10. On immunological memory.

    PubMed Central

    Zinkernagel, R M

    2000-01-01

    Immunological memory may not represent a special characteristic of lymphocytes but simply reflect low-level responses driven by antigen that is re-encountered or persists within the host. T-cell memory is important to control persistent infections within the individual host and cannot be transmitted to offspring because of MHC polymorphism and MHC-restricted T-cell recognition. In contrast, antibody memory is transmissible from mother to offspring and may function essentially to protect offspring during the phase of physiological immuno-incompetence before, at and shortly after birth. This physiological immuno-incompetence is a result of MHC polymorphism and the dangers of the graft-versus-host and host-versus-graft reaction between mother and embryo, which necessitate immunosuppression of the mother and immuno-incompetence of the offspring. One may argue therefore that immunological memory of transmissible immunological experience is the basis on which MHC-restricted T-cell recognition could develop or coevolve. PMID:10794057

  11. Memory, consciousness and neuroimaging.

    PubMed Central

    Schacter, D L; Buckner, R L; Koutstaal, W

    1998-01-01

    Neuroimaging techniques that allow the assessment of memory performance in healthy human volunteers while simultaneously obtaining measurements of brain activity in vivo may offer new information on the neural correlates of particular forms of memory retrieval and their association with consciousness and intention. We consider evidence from studies with positron emission tomography and functional magnetic resonance imaging indicating that priming, a form of implicit retrieval, is associated with decreased activity in various cortical regions. We also consider evidence concerning the question of whether two components of explicit retrieval--intentional or effortful search and successful conscious recollection--are preferentially associated with increased activity in prefrontal and medial temporal regions, respectively. Last, we consider recent efforts to probe the relation between the phenomenological character of remembering and neural activity. In this instance we broaden our scope to include studies employing event-related potentials and consider evidence concerning the neural correlates of qualitatively different forms of memory, including memory that is specifically associated with a sense of self, and the recollection of particular temporal or perceptual features that might contribute to a rich and vivid experience of the past. PMID:9854258

  12. High density associative memory

    NASA Technical Reports Server (NTRS)

    Moopenn, Alexander W. (Inventor); Thakoor, Anilkumar P. (Inventor); Daud, Taher (Inventor); Lambe, John J. (Inventor)

    1989-01-01

    A multi-layered, thin-film, digital memory having associative recall. There is a first memory matrix and a second memory matrix. Each memory matrix comprises, a first layer comprising a plurality of electrically separated row conductors; a second layer comprising a plurality of electrically separated column conductors intersecting but electrically separated from the row conductors; and, a plurality of resistance elements electrically connected between the row condutors and the column conductors at respective intersections of the row conductors and the column conductors, each resistance element comprising, in series, a first resistor of sufficiently high ohmage to conduct a sensible element current therethrough with virtually no heat-generating power consumption when a low voltage as employed in thin-film applications is applied thereacross and a second resistor of sufficiently high ohmage to conduct no sensible current therethrough when a low voltage as employed in thin-film applications is applied thereacross, the second resistor having the quality of breaking down to create a short therethrough upon the application of a breakdown level voltage across the first and second resistors.

  13. Memory and Aging

    MedlinePlus

    ... Vain” to remember the first letters of the colors of the rainbow in order of their wave lengths: red, orange, yellow, green, blue, indigo, and violet.) Don’t buy into ageist stereotypes about memory decline. Studies have shown that having positive beliefs ...

  14. Advanced image memory architecture

    NASA Astrophysics Data System (ADS)

    Vercillo, Richard; McNeill, Kevin M.

    1994-05-01

    A workstation for radiographic images, known as the Arizona Viewing Console (AVC), was developed at the University of Arizona Health Sciences Center in the Department of Radiology. This workstation has been in use as a research tool to aid us in investigating how a radiologist interacts with a workstation, to determine which image processing features are required to aid the radiologist, to develop user interfaces and to support psychophysical and clinical studies. Results from these studies have show a need to increase the current image memory's available storage in order to accommodate high resolution images. The current triple-ported image memory can be allocated to store any number of images up to a combined total of 4 million pixels. Over the past couple of years, higher resolution images have become easier to generate with the advent of laser digitizers and computed radiology systems. As part of our research, a larger 32 million pixel image memory for AVC has been designed to replace the existing image memory.

  15. The role of stress during memory reactivation on intrusive memories.

    PubMed

    Cheung, Jessica; Garber, Benjamin; Bryant, Richard A

    2015-09-01

    Intrusive memories are unwanted recollections that maintain distress in psychological disorders. Increasing evidence suggests that memories that are reactivated through retrieval become temporarily vulnerable to environmental or pharmacological manipulation, including changes in levels of circulating stress hormones. This study investigated the influence of stress during memory reactivation of an emotionally arousing trauma film on subsequent intrusive memories. Three groups of participants (N=63) viewed a trauma film depicting a serious car accident at baseline. Two days later (Time 2), one group received a reactivation induction following a socially evaluated cold pressor test (SECPT; Stress/Reactivation condition), whilst the second group reactivated the memory after a control procedure (Reactivation condition). A third group underwent the SECPT but was not asked to reactivate memory of the trauma film (Stress condition). Two days later (Time 3), all participants received a surprise cued memory recall test and intrusions questionnaire which they completed online. Results showed that those in the Stress/Reactivation group had higher intrusions scores than the other two groups, suggesting that acute stress promotes intrusive memories only when the memory trace is reactivated shortly afterwards. Increased cortisol predicted enhanced intrusive experiences in the Stress/Reactivation condition but not in the other conditions. This pattern of results suggests that acute stress during the reactivation of emotional material impacts on involuntary emotional memories. These findings suggest a possible explanation for the mechanism underlying the maintenance of intrusive memories in clinical disorders.

  16. Working memory capacity and controlled serial memory search.

    PubMed

    Mızrak, Eda; Öztekin, Ilke

    2016-08-01

    The speed-accuracy trade-off (SAT) procedure was used to investigate the relationship between working memory capacity (WMC) and the dynamics of temporal order memory retrieval. High- and low-span participants (HSs, LSs) studied sequentially presented five-item lists, followed by two probes from the study list. Participants indicated the more recent probe. Overall, accuracy was higher for HSs compared to LSs. Crucially, in contrast to previous investigations that observed no impact of WMC on speed of access to item information in memory (e.g., Öztekin & McElree, 2010), recovery of temporal order memory was slower for LSs. While accessing an item's representation in memory can be direct, recovery of relational information such as temporal order information requires a more controlled serial memory search. Collectively, these data indicate that WMC effects are particularly prominent during high demands of cognitive control, such as serial search operations necessary to access temporal order information from memory. PMID:27135712

  17. Bilateral parietal cortex damage does not impair associative memory for paired stimuli.

    PubMed

    Berryhill, Marian E; Drowos, David B; Olson, Ingrid R

    2009-10-01

    Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for nonverbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and, instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378

  18. Bilateral Parietal Cortex Damage Does Not Impair Associative Memory for Paired Stimuli

    PubMed Central

    Berryhill, Marian E.; Drowos, David B.; Olson, Ingrid R.

    2010-01-01

    Recent neuroimaging and neuropsychological findings indicate that the posterior parietal cortex (PPC) plays an important, albeit undefined, role in episodic memory. Here we ask whether this region is specifically involved in associative aspects of episodic memory. Experiment 1 tested whether PPC damage affects the ability to learn and retrieve novel word-pair associations. Experiment 2 tested whether PPC damage affects the retrieval of object-location associations, in a spatial fan task. In both experiments, patients showed normal levels of associative memory. These findings demonstrated that PPC damage did not prevent association memory for verbal items. Finally Experiment 3 tested whether PPC damage affects memory for non-verbal audio-visual pairs. The patients performed with normal accuracy, but with significantly reduced confidence. These findings indicate that the PPC does not have a central role in association formation per se and instead, indicate that the PPC is involved in other aspects of episodic memory. PMID:20104378

  19. About Sleep's Role in Memory

    PubMed Central

    2013-01-01

    Over more than a century of research has established the fact that sleep benefits the retention of memory. In this review we aim to comprehensively cover the field of “sleep and memory” research by providing a historical perspective on concepts and a discussion of more recent key findings. Whereas initial theories posed a passive role for sleep enhancing memories by protecting them from interfering stimuli, current theories highlight an active role for sleep in which memories undergo a process of system consolidation during sleep. Whereas older research concentrated on the role of rapid-eye-movement (REM) sleep, recent work has revealed the importance of slow-wave sleep (SWS) for memory consolidation and also enlightened some of the underlying electrophysiological, neurochemical, and genetic mechanisms, as well as developmental aspects in these processes. Specifically, newer findings characterize sleep as a brain state optimizing memory consolidation, in opposition to the waking brain being optimized for encoding of memories. Consolidation originates from reactivation of recently encoded neuronal memory representations, which occur during SWS and transform respective representations for integration into long-term memory. Ensuing REM sleep may stabilize transformed memories. While elaborated with respect to hippocampus-dependent memories, the concept of an active redistribution of memory representations from networks serving as temporary store into long-term stores might hold also for non-hippocampus-dependent memory, and even for nonneuronal, i.e., immunological memories, giving rise to the idea that the offline consolidation of memory during sleep represents a principle of long-term memory formation established in quite different physiological systems. PMID:23589831

  20. The Relationships of Working Memory, Secondary Memory, and General Fluid Intelligence: Working Memory Is Special

    ERIC Educational Resources Information Center

    Shelton, Jill Talley; Elliott, Emily M.; Matthews, Russell A.; Hill, B. D.; Gouvier, Wm. Drew

    2010-01-01

    Recent efforts have been made to elucidate the commonly observed link between working memory and reasoning ability. The results have been inconsistent, with some work suggesting that the emphasis placed on retrieval from secondary memory by working memory tests is the driving force behind this association (Mogle, Lovett, Stawski, & Sliwinski,…

  1. Atomic memory access hardware implementations

    DOEpatents

    Ahn, Jung Ho; Erez, Mattan; Dally, William J

    2015-02-17

    Atomic memory access requests are handled using a variety of systems and methods. According to one example method, a data-processing circuit having an address-request generator that issues requests to a common memory implements a method of processing the requests using a memory-access intervention circuit coupled between the generator and the common memory. The method identifies a current atomic-memory access request from a plurality of memory access requests. A data set is stored that corresponds to the current atomic-memory access request in a data storage circuit within the intervention circuit. It is determined whether the current atomic-memory access request corresponds to at least one previously-stored atomic-memory access request. In response to determining correspondence, the current request is implemented by retrieving data from the common memory. The data is modified in response to the current request and at least one other access request in the memory-access intervention circuit.

  2. Prospective memory in the rat

    PubMed Central

    Wilson, A. George; Crystal, Jonathon D.

    2011-01-01

    The content of prospective memory is comprised of representations of an action to perform in the future. When people form prospective memories, they temporarily put the memory representation in an inactive state while engaging in other activities, and then activate the representation in the future. Ultimately, successful activation of the memory representation yields an action at an appropriate, but temporally distant, time. A hallmark of prospective memory is that activation of the memory representation has a deleterious effect on current ongoing activity. Recent evidence suggests that scrub jays and non-human primates, but not other species, are capable of future planning. We hypothesized that prospective memory produces a selective deficit in performance at the time when rats access a memory representation but not when the memory representation is inactive. Rats were trained in a temporal bisection task (90 min/day). Immediately after the bisection task, half of the rats received an 8-g meal (meal group) and the other rats received no additional food (no-meal group). Sensitivity to time in the bisection task was reduced as the 90-min interval elapsed for the meal group but not for the no-meal group. This time-based prospective-memory effect was not based on response competition, an attentional limit, anticipatory contrast, or fatigue. Our results suggest that rats form prospective memories, which produces a negative side effect on ongoing activity. PMID:21922257

  3. Episodic memory in nonhuman animals

    PubMed Central

    Templer, Victoria L.

    2013-01-01

    Summary Episodic memories differ from other types of memory because they represent aspects of the past not present in other memories, such as the time, place, or social context in which the memories were formed. Focus on phenomenal experience in human memory, such as the sense of “having been there” has resulted in conceptualizations of episodic memory that are difficult or impossible to apply to nonhumans. It is therefore a significant challenge for investigators to agree on objective behavioral criteria that can be applied in nonhumans and still capture features of memory thought to be critical in humans. Some investigators have attempted to use neurobiological parallels to bridge this gap. However, defining memory types on the basis of the brain structures involved rather than on identified cognitive mechanisms risks missing the most crucial functional aspects of episodic memory, which are ultimately behavioral. The most productive way forward is likely a combination of neurobiology and sophisticated cognitive testing that identifies the mental representations present in episodic memory. Investigators that have refined their approach from asking the naïve question “do nonhuman animals have episodic memory” to instead asking “what aspects of episodic memory are shared by humans and nonhumans” are making progress. PMID:24028963

  4. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, D. H.

    1985-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  5. Vector computer memory bank contention

    NASA Technical Reports Server (NTRS)

    Bailey, David H.

    1987-01-01

    A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.

  6. Memory loss in Alzheimer's disease.

    PubMed

    Jahn, Holger

    2013-12-01

    Loss of memory is among the first symptoms reported by patients suffering from Alzheimer's disease (AD) and by their caretakers. Working memory and long-term declarative memory are affected early during the course of the disease. The individual pattern of impaired memory functions correlates with parameters of structural or functional brain integrity. AD pathology interferes with the formation of memories from the molecular level to the framework of neural networks. The investigation of AD memory loss helps to identify the involved neural structures, such as the default mode network, the influence of epigenetic and genetic factors, such as ApoE4 status, and evolutionary aspects of human cognition. Clinically, the analysis of memory assists the definition of AD subtypes, disease grading, and prognostic predictions. Despite new AD criteria that allow the earlier diagnosis of the disease by inclusion of biomarkers derived from cerebrospinal fluid or hippocampal volume analysis, neuropsychological testing remains at the core of AD diagnosis.

  7. Flashbulb memories in older adults.

    PubMed

    Cohen, G; Conway, M A; Maylor, E A

    1994-09-01

    In this study of age differences in flashbulb memory, groups of young and older adults gave detailed accounts of how they heard the news of the resignation of the British Prime Minister Margaret Thatcher. They were tested within 14 days after the event and again 11 months later. They also gave ratings for the encoding variables (surprise, emotion, importance, knowledge, and interest) and for frequency of rehearsal. Memories that met a strict criterion of consistency between the original and delayed responses were classified as flashbulb memories. Although 90% of young Ss had flashbulb memories, only 42% of the elderly met the criterion. The age groups also differed in the type of details remembered and in the relationship between the encoding and rehearsal variables and the occurrence of flashbulb memory. The age-related deficit in flashbulb memory is related to source amnesia and to a deficit in memory for context.

  8. The Illusion of Perfect Memory.

    PubMed

    Wick, Jeannette Y

    2016-09-01

    Memory is not infallible, and certain memory problems or glitches are normal. Most people notice that they experience more memory shortcomings as they age. Omission deficits and commission deficits are common and include transience, absentmindedness, tip-of-the-tongue experience, misattribution, suggestibility, bias, and persistence. Each of these has a different cause, and researchers have looked for interventions that can decrease the frequency and severity of these common problems. Though some people worry that memory glitches foreshadow dementia, that is not usually the case. Understanding how memory falters can assist pharmacists in helping patients provide better medical histories and improve adherence. It is useful when collecting reliable information if incident reports rely on eyewitness accounts. It can also help them improve pharmacists' own memories, and understand why memory may change over time. PMID:27636872

  9. Longevity pathways and memory aging.

    PubMed

    Gkikas, Ilias; Petratou, Dionysia; Tavernarakis, Nektarios

    2014-01-01

    The aging process has been associated with numerous pathologies at the cellular, tissue, and organ level. Decline or loss of brain functions, including learning and memory, is one of the most devastating and feared aspects of aging. Learning and memory are fundamental processes by which animals adjust to environmental changes, evaluate various sensory signals based on context and experience, and make decisions to generate adaptive behaviors. Age-related memory impairment is an important phenotype of brain aging. Understanding the molecular mechanisms underlying age-related memory impairment is crucial for the development of therapeutic strategies that may eventually lead to the development of drugs to combat memory loss. Studies in invertebrate animal models have taught us much about the physiology of aging and its effects on learning and memory. In this review we survey recent progress relevant to conserved molecular pathways implicated in both aging and memory formation and consolidation. PMID:24926313

  10. Constructive memory: past and future

    PubMed Central

    Schacter, Daniel L.

    2012-01-01

    Human memory is not a literal reproduction of the past, but instead relies on constructive processes that are sometimes prone to error and distortion. Understanding of constructive memory has accelerated during recent years as a result of research that has linked together its cognitive and neural bases. This article focuses on three aspects of constructive memory that have been the target of recent research: (i) the idea that certain kinds of memory distortions reflect the operation of adaptive cognitive processes that contribute to the efficient functioning of memory; (ii) the role of a constructive memory system in imagining or simulating possible future events; and (iii) differences between true and false memories that have been revealed by functional neuroimaging techniques. The article delineates the theoretical implications of relevant research, and also considers some clinical and applied implications. PMID:22577300

  11. Sleep deprivation and false memories.

    PubMed

    Frenda, Steven J; Patihis, Lawrence; Loftus, Elizabeth F; Lewis, Holly C; Fenn, Kimberly M

    2014-09-01

    Many studies have investigated factors that affect susceptibility to false memories. However, few have investigated the role of sleep deprivation in the formation of false memories, despite overwhelming evidence that sleep deprivation impairs cognitive function. We examined the relationship between self-reported sleep duration and false memories and the effect of 24 hr of total sleep deprivation on susceptibility to false memories. We found that under certain conditions, sleep deprivation can increase the risk of developing false memories. Specifically, sleep deprivation increased false memories in a misinformation task when participants were sleep deprived during event encoding, but did not have a significant effect when the deprivation occurred after event encoding. These experiments are the first to investigate the effect of sleep deprivation on susceptibility to false memories, which can have dire consequences.

  12. The selective power of causality on memory errors.

    PubMed

    Marsh, Jessecae K; Kulkofsky, Sarah

    2015-01-01

    We tested the influence of causal links on the production of memory errors in a misinformation paradigm. Participants studied a set of statements about a person, which were presented as either individual statements or pairs of causally linked statements. Participants were then provided with causally plausible and causally implausible misinformation. We hypothesised that studying information connected with causal links would promote representing information in a more abstract manner. As such, we predicted that causal information would not provide an overall protection against memory errors, but rather would preferentially help in the rejection of misinformation that was causally implausible, given the learned causal links. In two experiments, we measured whether the causal linkage of information would be generally protective against all memory errors or only selectively protective against certain types of memory errors. Causal links helped participants reject implausible memory lures, but did not protect against plausible lures. Our results suggest that causal information may promote an abstract storage of information that helps prevent only specific types of memory errors.

  13. Wnt signaling in amygdala-dependent learning and memory

    PubMed Central

    Maguschak, Kimberly A.; Ressler, Kerry J.

    2011-01-01

    In addition to its role in cellular development and proliferation, there are emerging in vitro data implicating the Wnt/β-catenin pathway in synaptic plasticity. Yet in vivo studies have not examined if Wnt activity is required for learning and memory. In the amygdala during fear memory formation, we found that many Wnt-signaling genes were dynamically regulated, with an immediate decrease, followed by an eventual normalization during memory consolidation. This rapid decrease in Wnt mRNA was confirmed with individual quantitative PCR and in situ hybridization. We then manipulated Wnt signaling with a specific peptide antagonist (Dkk-1) or agonist (Wnt1) injected stereotaxically into the adult amygdala during fear learning. We found that neither manipulation had an effect on locomotion, anxiety, fear acquisition or fear expression. However, both Wnt modulators prevented long-term fear memory consolidation without affecting short-term memory. Dkk-1 and Wnt infusions had destabilizing, but opposite, effects on the requisite β-catenin/cadherin dynamic interactions that occur during consolidation. These data suggest that dynamic modulation of Wnt/β-catenin signaling during consolidation is critical for the structural basis of long-term memory formation. PMID:21917789

  14. Neural suppression of irrelevant information underlies optimal working memory performance

    PubMed Central

    Zanto, Theodore P.; Gazzaley, Adam

    2009-01-01

    Our ability to focus attention on task-relevant information and ignore distractions is reflected by differential enhancement and suppression of neural activity in sensory cortex (i.e., top-down modulation). Such selective, goal-directed modulation of activity may be intimately related to memory, such that the focus of attention biases the likelihood of successfully maintaining relevant information by limiting interference from irrelevant stimuli. Despite recent studies elucidating the mechanistic overlap between attention and memory, the relationship between top-down modulation of visual processing during working memory (WM) encoding and subsequent recognition performance has not yet been established. Here, we provide neurophysiological evidence in healthy, young adults that top-down modulation of early visual processing (< 200 ms from stimulus onset) is intimately related to subsequent WM performance, such that the likelihood of successfully remembering relevant information is associated with limiting interference from irrelevant stimuli. The consequences of a failure to ignore distractors on recognition performance was replicated for two types of feature-based memory, motion direction and color. Moreover, attention to irrelevant stimuli was reflected neurally during the WM maintenance period as an increased memory load. These results suggest that neural enhancement of relevant information is not the primary determinant of high-level performance, but rather, optimal WM performance is dependent on effectively filtering irrelevant information through neural suppression to prevent overloading a limited memory capacity. PMID:19279242

  15. Sleep supports cued fear extinction memory consolidation independent of circadian phase.

    PubMed

    Melo, Irene; Ehrlich, Ingrid

    2016-07-01

    Sleep promotes memory, particularly for declarative learning. However, its role in non-declarative, emotional memories is less well understood. Some studies suggest that sleep may influence fear-related memories, and thus may be an important factor determining the outcome of treatments for emotional disorders such as post-traumatic stress disorder. Here, we investigated the effect of sleep deprivation and time of day on fear extinction memory consolidation. Mice were subjected to a cued Pavlovian fear and extinction paradigm at the beginning of their resting or active phase. Immediate post-extinction learning sleep deprivation for 5h compromised extinction memory when tested 24h after learning. Context-dependent extinction memory recall was completely prevented by sleep-manipulation during the resting phase, while impairment was milder during the active phase and extinction memory retained its context-specificity. Importantly, control experiments excluded confounding factors such as differences in baseline locomotion, fear generalization and stress hormone levels. Together, our findings indicate that post-learning sleep supports cued fear extinction memory consolidation in both circadian phases. The lack of correlation between memory efficacy and sleep time suggests that extinction memory may be influenced by specific sleep events in the early consolidation period. PMID:27109918

  16. Computer Game Play Reduces Intrusive Memories of Experimental Trauma via Reconsolidation-Update Mechanisms

    PubMed Central

    James, Ella L.; Bonsall, Michael B.; Hoppitt, Laura; Tunbridge, Elizabeth M.; Geddes, John R.; Milton, Amy L.

    2015-01-01

    Memory of a traumatic event becomes consolidated within hours. Intrusive memories can then flash back repeatedly into the mind’s eye and cause distress. We investigated whether reconsolidation—the process during which memories become malleable when recalled—can be blocked using a cognitive task and whether such an approach can reduce these unbidden intrusions. We predicted that reconsolidation of a reactivated visual memory of experimental trauma could be disrupted by engaging in a visuospatial task that would compete for visual working memory resources. We showed that intrusive memories were virtually abolished by playing the computer game Tetris following a memory-reactivation task 24 hr after initial exposure to experimental trauma. Furthermore, both memory reactivation and playing Tetris were required to reduce subsequent intrusions (Experiment 2), consistent with reconsolidation-update mechanisms. A simple, noninvasive cognitive-task procedure administered after emotional memory has already consolidated (i.e., > 24 hours after exposure to experimental trauma) may prevent the recurrence of intrusive memories of those emotional events. PMID:26133572

  17. Memory retrieval by activating engram cells in mouse models of early Alzheimer’s disease

    PubMed Central

    Roy, Dheeraj S.; Arons, Autumn; Mitchell, Teryn I.; Pignatelli, Michele; Ryan, Tomás J.; Tonegawa, Susumu

    2016-01-01

    Summary Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions1. Memory decline in early stages of Alzheimer’s is mostly limited to episodic memory, for which the hippocampus (HPC) plays a crucial role2. However, it has been uncertain whether the observed amnesia in early stages of Alzheimer’s is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early Alzheimer’s, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are utilized, revealing a retrieval, rather than a storage impairment. Prior to amyloid plaque deposition, the amnesia in these mice is age-dependent3–5, which correlates with a progressive reduction of spine density of hippocampal dentate gyrus (DG) engram cells. We show that optogenetic induction of long-term potentiation (LTP) at perforant path (PP) synapses of DG engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of DG engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in early stages of Alzheimer’s disease. PMID:26982728

  18. Memory retrieval by activating engram cells in mouse models of early Alzheimer's disease.

    PubMed

    Roy, Dheeraj S; Arons, Autumn; Mitchell, Teryn I; Pignatelli, Michele; Ryan, Tomás J; Tonegawa, Susumu

    2016-03-24

    Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory decline and subsequent loss of broader cognitive functions. Memory decline in the early stages of AD is mostly limited to episodic memory, for which the hippocampus has a crucial role. However, it has been uncertain whether the observed amnesia in the early stages of AD is due to disrupted encoding and consolidation of episodic information, or an impairment in the retrieval of stored memory information. Here we show that in transgenic mouse models of early AD, direct optogenetic activation of hippocampal memory engram cells results in memory retrieval despite the fact that these mice are amnesic in long-term memory tests when natural recall cues are used, revealing a retrieval, rather than a storage impairment. Before amyloid plaque deposition, the amnesia in these mice is age-dependent, which correlates with a progressive reduction in spine density of hippocampal dentate gyrus engram cells. We show that optogenetic induction of long-term potentiation at perforant path synapses of dentate gyrus engram cells restores both spine density and long-term memory. We also demonstrate that an ablation of dentate gyrus engram cells containing restored spine density prevents the rescue of long-term memory. Thus, selective rescue of spine density in engram cells may lead to an effective strategy for treating memory loss in the early stages of AD. PMID:26982728

  19. Making Physical Activity Accessible to Older Adults with Memory Loss: A Feasibility Study

    ERIC Educational Resources Information Center

    Logsdon, Rebecca G.; McCurry, Susan M.; Pike, Kenneth C.; Teri, Linda

    2009-01-01

    Purpose: For individuals with mild cognitive impairment (MCI), memory loss may prevent successful engagement in exercise, a key factor in preventing additional disability. The Resources and Activities for Life Long Independence (RALLI) program uses behavioral principles to make exercise more accessible for these individuals. Exercises are broken…

  20. Method and apparatus for faulty memory utilization

    DOEpatents

    Cher, Chen-Yong; Andrade Costa, Carlos H.; Park, Yoonho; Rosenburg, Bryan S.; Ryu, Kyung D.

    2016-04-19

    A method for faulty memory utilization in a memory system includes: obtaining information regarding memory health status of at least one memory page in the memory system; determining an error tolerance of the memory page when the information regarding memory health status indicates that a failure is predicted to occur in an area of the memory system affecting the memory page; initiating a migration of data stored in the memory page when it is determined that the data stored in the memory page is non-error-tolerant; notifying at least one application regarding a predicted operating system failure and/or a predicted application failure when it is determined that data stored in the memory page is non-error-tolerant and cannot be migrated; and notifying at least one application regarding the memory failure predicted to occur when it is determined that data stored in the memory page is error-tolerant.