Sample records for memory retention test

  1. PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory

    PubMed Central

    Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela; Schrott, Lisa M.; Serrano, Peter A.

    2013-01-01

    It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing. PMID:24244733

  2. GABA[subscript A] Receptors Determine the Temporal Dynamics of Memory Retention

    ERIC Educational Resources Information Center

    McNally, Gavan P.; Augustyn, Katarzyna A.; Richardson, Rick

    2008-01-01

    Four experiments studied the role of GABA[subscript A] receptors in the temporal dynamics of memory retention. Memory for an active avoidance response was a nonmonotonic function of the retention interval. When rats were tested shortly (2 min) or some time (24 h) after training, retention was excellent, but when they were tested at intermediate…

  3. Testing Memories of Personally Experienced Events: The Testing Effect Seems Not to Persist in Autobiographical Memory

    PubMed Central

    Emmerdinger, Kathrin J.; Kuhbandner, Christof

    2018-01-01

    Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the “testing effect”). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure. PMID:29881365

  4. Testing Memories of Personally Experienced Events: The Testing Effect Seems Not to Persist in Autobiographical Memory.

    PubMed

    Emmerdinger, Kathrin J; Kuhbandner, Christof

    2018-01-01

    Numerous studies have shown that retrieving contents from memory in a test improves long-term retention for those contents, even when compared to restudying (i.e., the "testing effect"). The beneficial effect of retrieval practice has been demonstrated for many different types of memory representations; however, one particularly important memory system has not been addressed in previous testing effect research: autobiographical memory. The aim of the present study was to examine the effect of retrieving memories for personally experienced events on long-term memory for those events. In an initial elicitation session, participants described memories for personally experienced events in response to a variety of cue words. In a retrieval practice/restudy session the following day, they repeatedly practiced retrieval for half of their memories by recalling and writing down the previously described events; the other half of memories was restudied by rereading and copying the event descriptions. Long-term retention of all previously collected memories was assessed at two different retention intervals (2 weeks and 13 weeks). In the retrieval practice session, a hypermnesic effect emerged, with memory performance increasing across the practice cycles. Long-term memory performance significantly dropped from the 2-weeks to the 13-weeks retention interval, but no significant difference in memory performance was observed between previously repeatedly retrieved and previously repeatedly restudied memories. Thus, in autobiographical memory, retrieval practice seems to be no more beneficial for long-term retention than repeated re-exposure.

  5. Memory Hazard Functions: A Vehicle for Theory Development and Test

    ERIC Educational Resources Information Center

    Chechile, Richard A.

    2006-01-01

    A framework is developed to rigorously test an entire class of memory retention functions by examining hazard properties. Evidence is provided that the memory hazard function is not monotonically decreasing. Yet most of the proposals for retention functions, which have emerged from the psychological literature, imply that memory hazard is…

  6. Nitric oxide in the dorsal hippocampal area is involved on muscimol state-dependent memory in the step-down passive avoidance test.

    PubMed

    Jafari-Sabet, Majid; Khodadadnejad, Mohammad-Amin; Ghoraba, Saeed; Ataee, Ramin

    2014-02-01

    In the present study, the effects of intra-dorsal hippocampal (intra-CA1) injections of nitric oxide (NO) agents on muscimol state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retrieval in adult male NMRI mice. Post-training intra-CA1 administration of a GABAA receptor agonist, muscimol (0.05 and 0.1 μg/mouse) dose dependently induced impairment of memory retention. Pre-test injection of muscimol (0.05 and 0.1 μg/mouse) induced state-dependent retrieval of the memory acquired under post-training muscimol (0.1 μg/mouse, intra-CA1) influence. Pre-test injection of a NO precursor, L-arginine (1 and 2 μg/mouse, intra-CA1) improved memory retention, although the low dose of the drug (0.5 μg/mouse) did not affect memory retention. Pre-test injection of an inhibitor of NO-synthase, L-NAME (0.5 and 1 μg/mouse, intra-CA1) impaired memory retention, although the low dose of the drug (0.25 μg/mouse) did not affect memory retention. In other series of experiments, pre-test intra-CA1 injection of L-arginine (0.25 and 0.5 μg/mouse) 5 min before the administration of muscimol (0.1 μg/mouse, intra-CA1) dose dependently inhibited muscimol state-dependent memory. Pre-test intra-CA1 administration of L-arginine (0.125, 0.25 and 0.5 μg/mouse) by itself cannot affect memory retention. Pre-test intra-CA1 injection of L-NAME (0.25 μg/mouse, intra-CA1) reversed the memory impairment induced by post-training administration of muscimol (0.1 μg/mouse, intra-CA1). Moreover, pre-test administration of L-NAME (0.125 and 0.25 μg/mouse, intra-CA1) with an ineffective dose of muscimol (0.025 μg/mouse, intra-CA1) significantly restored the retrieval and induced muscimol state-dependent memory. Pre-test intra-CA1 administration of L-NAME (0.0625, 0.125 and 0.25 μg/mouse) by itself cannot affect memory retention. It may be suggested that the nitric oxide in the dorsal hippocampal area play an important role in muscimol state-dependent memory. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. The effects of green Ocimum basilicum hydroalcoholic extract on retention and retrieval of memory in mice

    PubMed Central

    Sarahroodi, Shadi; Esmaeili, Somayyeh; Mikaili, Peyman; Hemmati, Zahra; Saberi, Yousof

    2012-01-01

    The purpose of this study was evaluation of green Ocimum basilicum (sweet basil) hydroalcoholic extract on memory retention and retrieval of mice by using passive avoidance apparatus. For this purpose, after weighting, coding and classifying the mice, they were grouped (n = 8) as follow as: test groups (electric shock plus sweet basil extract by doses: 100, 200, 400 and 800 mg/kg, i.p.), control group (Only electric shock) and blank group (electric shock plus normal saline). In all mentioned groups delay time of leaving the platform for both retention and retrieval test of memory was measured. In retention test, sweet basil extract was administered immediately after receiving electric shock and in retrieval test it was administered 24 hours after receiving electric shock. The results indicated that hydroalcoholic extract of green Ocimum basilicum significantly (P < 0.05) increased memory retention. The best response was achieved with 400 mg/Kg of the extract. Also, results showed that sweet basil extract significantly (P < 0.05) increased memory retrieval and the best result was achieved with 400 mg/Kg too. It can be concluded that memory enhancing effects of green Ocimum basilicum is because of antioxidant activity of flavonoids, tannins and terpenoids. PMID:23661866

  8. Effects of Different Types of True-False Questions on Memory Awareness and Long-Term Retention

    ERIC Educational Resources Information Center

    Schaap, Lydia; Verkoeijen, Peter; Schmidt, Henk

    2014-01-01

    This study investigated the effects of two different true-false questions on memory awareness and long-term retention of knowledge. Participants took four subsequent knowledge tests on curriculum learning material that they studied at different retention intervals prior to the start of this study (i.e. prior to the first test). At the first and…

  9. Effects of standardized Ginkgo biloba extract on the acquisition, retrieval and extinction of conditioned suppression: Evidence that short-term memory and long-term memory are differentially modulated.

    PubMed

    Zamberlam, C R; Vendrasco, N C; Oliveira, D R; Gaiardo, R B; Cerutti, S M

    2016-10-15

    Studies in our laboratory have characterized the putative neuromodulatory effects of a standardized extract of the green leaves of Ginkgo biloba (EGb), which comprises a formulation of 24% ginkgo-flavoglycosides and 6% ginkgo-terpenoid lactones, on conditioned suppression. This model comprises a suitable animal model for investigating the behavioral changes and pharmacological mechanisms that underlie fear memory and anxiety. The characterization of the effects on distinct stages of fear memory or fear extinction will help illustrate both the beneficial and harmful effects. Three hundred adult male Wistar rats were randomly assigned to 30 groups according to the treatment as follows: i-ii) control groups (CS-US and CSno-US); iii) vehicle group (12% Tween®80); and iv-vi) EGb groups (250, 500 and 1000mgkg(-1)); or experimental procedures designed to assess the effects of EGb treatment prior to the acquisition (n=20 per group) and retrieval of conditioned fear (n=10 per group) or prior to the extinction training (n=10 per group) and extinction retention test (n=10 per group). Furthermore, to better understand the effects of acute EGb treatment on fear memory, we conducted two additional analyses: the acquisition of within- and between-session extinction of fear memory (short- and long-term memory, respectively). No difference was identified between the control and treatment groups during the retention test (P>0.05), with the exception of the CSno-US group in relation to all groups (P<0.05). A between-session analysis indicated that EGb at 250mgkg(-1) facilitated the acquisition of extinction fear memory, which was verified by the suppression ration in the first trial of extinction training (SR=0.39) and the extinction retention test session (SR=0.53, P<0.05), without impairments in fear memory acquisition, which were evaluated during the retention test (SR=0.79). Moreover, EGb administered at 1000mgkg(-1) prior to conditioning did not enhance the long-term extinction memory, i.e., it did not prevent the return of extinguished fear memory in the extinction retention test, in which the spontaneous recovery of fear was demonstrated (SR=0.63, P<0.05); however, it significantly facilitated short-term memory as verified by data from the within-session extinction (1 to 8-10 trials) during the retention test (SR=0.73 to SR=0.59; P<0.05) and the extinction retention test (SR=0.63 to SR=0.41; P<0.05). Moreover, spontaneous recovery was identified in response to a higher dose of EGb when administered prior to extinction training (SR=0.75, P<0.05) and the extinction retention test (SR=0.70; P<0.05). At dose of 500mgkg(-1) EGb reduced the suppression ratio when administered prior to the retention test (SR=0.57) and extinction training (SR=0.55; P<0.05) without preventing the acquisition of fear memory, which suggests that EGb has anti-anxiety effects. Taken together, the current findings suggest that EGb differentially modulates short- and long-term memory, as well as anxiety-like behavior. The actions of EGb may provide information regarding the beneficial effects in the prevention and treatment of neurocognitive impairments and anxiety disorders. Additional analyses are necessary to facilitate an understanding of these effects; however, previous data from our group suggest that GABAergic, serotoninergic and glutamatergic receptors are potential targets of the effects of EGb on conditioned suppression. Copyright © 2016. Published by Elsevier Inc.

  10. Divided attention: an undesirable difficulty in memory retention.

    PubMed

    Gaspelin, Nicholas; Ruthruff, Eric; Pashler, Harold

    2013-10-01

    How can we improve memory retention? A large body of research has suggested that difficulty encountered during learning, such as when practice sessions are distributed rather than massed, can enhance later memory performance (see R. A. Bjork & E. L. Bjork, 1992). Here, we investigated whether divided attention during retrieval practice can also constitute a desirable difficulty. Following two initial study phases and one test phase with Swahili-English word pairs (e.g., vuvi-snake), we manipulated whether items were tested again under full or divided attention. Two days later, participants were brought back for a final cued-recall test (e.g., vuvi-?). Across three experiments (combined N = 122), we found no evidence that dividing attention while practicing retrieval enhances memory retention. This finding raises the question of why many types of difficulty during practice do improve long-term retention, but dividing attention does not.

  11. The longevity of adaptive memory: evidence for mnemonic advantages of survival processing 24 and 48 hours later.

    PubMed

    Raymaekers, Linsey H C; Otgaar, Henry; Smeets, Tom

    2014-01-01

    Prior studies have convincingly demonstrated that survival-related processing of information enhances its subsequent retention. This phenomenon, known as the survival recall advantage, generalises to other stimuli, memory domains, and research populations, thereby underscoring its reliability. As previous studies used only short retention intervals between survival processing and the memory test, an important yet hitherto unanswered issue is whether this effect persists over time. The present experiment therefore examined whether survival processing also produces mnemonic benefits when retention is tested after longer delay periods. Participants (N =81) rated the relevance of words according to a survival and a moving scenario, and were then randomly assigned to the typical immediate (3-minute delay) retention test condition or conditions that included a 24- or 48-hour interval between survival processing and memory testing. In each of these conditions survival processing led to higher surprise free recall and recognition rates than processing words according to the moving scenario. Thus this study provides evidence that illustrates the longevity of survival processing advantages on memory performance.

  12. Memory systems in the rat: effects of reward probability, context, and congruency between working and reference memory.

    PubMed

    Roberts, William A; Guitar, Nicole A; Marsh, Heidi L; MacDonald, Hayden

    2016-05-01

    The interaction of working and reference memory was studied in rats on an eight-arm radial maze. In two experiments, rats were trained to perform working memory and reference memory tasks. On working memory trials, they were allowed to enter four randomly chosen arms for reward in a study phase and then had to choose the unentered arms for reward in a test phase. On reference memory trials, they had to learn to visit the same four arms on the maze on every trial for reward. Retention was tested on working memory trials in which the interval between the study and test phase was 15 s, 15 min, or 30 min. At each retention interval, tests were performed in which the correct WM arms were either congruent or incongruent with the correct RM arms. Both experiments showed that congruency interacted with retention interval, yielding more forgetting at 30 min on incongruent trials than on congruent trials. The effect of reference memory strength on the congruency effect was examined in Experiment 1, and the effect of associating different contexts with working and reference memory on the congruency effect was studied in Experiment 2.

  13. Central ghrelin increases anxiety in the Open Field test and impairs retention memory in a passive avoidance task in neonatal chicks.

    PubMed

    Carvajal, Pedro; Carlini, Valeria P; Schiöth, Helgi B; de Barioglio, Susana R; Salvatierra, Nancy A

    2009-05-01

    Ghrelin (Grh) is an endogenous ligand for the growth hormone secretagogue receptor. Although Ghr stimulates feeding in rats, it inhibits feeding in neonatal chicks. However, little is known about other central behavioral effects of Ghr. Therefore, we investigated the Ghr effects, injected intracerebroventricularly, on anxiety and memory retention of neonatal chicks in an Open Field test and in a one-trial passive avoidance task, respectively. In the Open Field test, the administration of Ghr in a dose-dependent manner increased the latency to ambulate but decreased ambulation activity, indicating an anxiogenic effect. Furthermore, chicks trained on a passive avoidance task and injected with a dose of 30pmol of Ghr immediately after training showed an impairment of memory retention. However, there were no significant effects on the number of pecks during the pretraining, training, retention and discrimination. In addition, different doses of Ghr produced an inhibition in food intake at different times after injection. Our results indicate that Ghr induces anxiogenesis in chicks. Moreover, we have shown for the first time that Ghr can decrease memory retention in a non-mammalian species, suggesting that Ghr may play an important role in the processes of memory retention in birds.

  14. Effects of the antidepressant drug moclobemide on learning and memory in rats.

    PubMed

    Getova, D; Dimitrova, D; Roukounakis, I

    2003-12-01

    Moclobemide is a well known drug with antidepressant action. The aim of this study was to investigate the effects of moclobemide on learning and memory processes in Sprague Dawley rats. Over a 5-day period, learning sessions with 30 trials per day and memory retention tests were performed. The conditioned responses (avoidances), the unconditioned responses (escapes) and the intertrial crossings were observed. An active avoidance test was carried out using a shuttle box. Two passive avoidance tests were used: step-through (using a light chamber) and step-down (using a platform). In the step-through passive avoidance test, the learning and retention sessions consisted of three trials each and the latency of reaction times (the rat remaining in the light chamber for more than 180 sec) was used as criterion. In the step-down passive avoidance test, learning and retention sessions consisted of two trials and the latency of reaction times (the rat remaining on the platform for 60 sec) was used as criterion. In the active avoidance tests, moclobemide dose-dependently increased the number of avoidances during learning sessions and maintained this number in memory retention tests. Moclobemide did not alter the number of escapes, but did increase motor activity. In the passive avoidance tests, moclobemide also increased the latency of reaction times in learning and short memory retrieval tests. These findings suggest that moclobemide improves learning and memory processes in active and passive avoidance tests and has a cognition-enhancing effect. (c) 2003 Prous Science

  15. Pigeons exhibit higher accuracy for chosen memory tests than for forced memory tests in duration matching-to-sample.

    PubMed

    Adams, Allison; Santi, Angelo

    2011-03-01

    Following training to match 2- and 8-sec durations of feederlight to red and green comparisons with a 0-sec baseline delay, pigeons were allowed to choose to take a memory test or to escape the memory test. The effects of sample omission, increases in retention interval, and variation in trial spacing on selection of the escape option and accuracy were studied. During initial testing, escaping the test did not increase as the task became more difficult, and there was no difference in accuracy between chosen and forced memory tests. However, with extended training, accuracy for chosen tests was significantly greater than for forced tests. In addition, two pigeons exhibited higher accuracy on chosen tests than on forced tests at the short retention interval and greater escape rates at the long retention interval. These results have not been obtained in previous studies with pigeons when the choice to take the test or to escape the test is given before test stimuli are presented. It appears that task-specific methodological factors may determine whether a particular species will exhibit the two behavioral effects that were initially proposed as potentially indicative of metacognition.

  16. Modulating influences of memory strength and sensitivity of the retrieval test on the detectability of the sleep consolidation effect.

    PubMed

    Schoch, Sarah F; Cordi, Maren J; Rasch, Björn

    2017-11-01

    Emotionality can increase recall probability of memories as emotional information is highly relevant for future adaptive behavior. It has been proposed that memory processes acting during sleep selectively promote the consolidation of emotional memories, so that neutral memories no longer profit from sleep consolidation after learning. This appears as a selective effect of sleep for emotional memories. However, other factors contribute to the appearance of a consolidation benefit and influence this interpretation. Here we show that the strength of the memory trace before sleep and the sensitivity of the retrieval test after sleep are critical factors contributing to the detection of the benefit of sleep on memory for emotional and neutral stimuli. 228 subjects learned emotional and neutral pictures and completed a free recall after a 12-h retention interval of either sleep or wakefulness. We manipulated memory strength by including an immediate retrieval test before the retention interval in half of the participants. In addition, we varied the sensitivity of the retrieval test by including an interference learning task before retrieval testing in half of the participants. We show that a "selective" benefit of sleep for emotional memories only occurs in the condition with high memory strength. Furthermore, this "selective" benefit disappeared when we controlled for the memory strength before the retention interval and used a highly sensitive retrieval test. Our results indicate that although sleep benefits are more robust for emotional memories, neutral memories similarly profit from sleep after learning when more sensitive indicators are used. We conclude that whether sleep benefits on memory appear depends on several factors, including emotion, memory strength and sensitivity of the retrieval test. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Long-lasting effects of prenatal dietary choline availability on object recognition memory ability in adult rats.

    PubMed

    Moreno, Hayarelis C; de Brugada, Isabel; Carias, Diamela; Gallo, Milagros

    2013-11-01

    Choline is an essential nutrient required for early development. Previous studies have shown that prenatal choline availability influences adult memory abilities depending on the medial temporal lobe integrity. The relevance of prenatal choline availability on object recognition memory was assessed in adult Wistar rats. Three groups of pregnant Wistar rats were fed from E12 to E18 with choline-deficient (0 g/kg choline chloride), standard (1.1 g/kg choline chloride), or choline-supplemented (5 g/kg choline chloride) diets. The offspring was cross-fostered to rat dams fed a standard diet during pregnancy and tested at the age of 3 months in an object recognition memory task applying retention tests 24 and 48 hours after acquisition. Although no significant differences have been found in the performance of the three groups during the first retention test, the supplemented group exhibited improved memory compared with both the standard and the deficient group in the second retention test, 48 hours after acquisition. In addition, at the second retention test the deficient group did not differ from chance. Taken together, the results support the notion of a long-lasting beneficial effect of prenatal choline supplementation on object recognition memory which is evident when the rats reach adulthood. The results are discussed in terms of their relevance for improving the understanding of the cholinergic involvement in object recognition memory and the implications of the importance of maternal diet for lifelong cognitive abilities.

  18. Externalising the autobiographical self: sharing personal memories online facilitated memory retention.

    PubMed

    Wang, Qi; Lee, Dasom; Hou, Yubo

    2017-07-01

    Internet technology provides a new means of recalling and sharing personal memories in the digital age. What is the mnemonic consequence of posting personal memories online? Theories of transactive memory and autobiographical memory would make contrasting predictions. In the present study, college students completed a daily diary for a week, listing at the end of each day all the events that happened to them on that day. They also reported whether they posted any of the events online. Participants received a surprise memory test after the completion of the diary recording and then another test a week later. At both tests, events posted online were significantly more likely than those not posted online to be recalled. It appears that sharing memories online may provide unique opportunities for rehearsal and meaning-making that facilitate memory retention.

  19. High-throughput olfactory conditioning and memory retention test show variation in Nasonia parasitic wasps

    PubMed Central

    Hoedjes, K M; Steidle, J L M; Werren, J H; Vet, L E M; Smid, H M

    2012-01-01

    Most of our knowledge on learning and memory formation results from extensive studies on a small number of animal species. Although features and cellular pathways of learning and memory are highly similar in this diverse group of species, there are also subtle differences. Closely related species of parasitic wasps display substantial variation in memory dynamics and can be instrumental to understanding both the adaptive benefit of and mechanisms underlying this variation. Parasitic wasps of the genus Nasonia offer excellent opportunities for multidisciplinary research on this topic. Genetic and genomic resources available for Nasonia are unrivaled among parasitic wasps, providing tools for genetic dissection of mechanisms that cause differences in learning. This study presents a robust, high-throughput method for olfactory conditioning of Nasonia using a host encounter as reward. A T-maze olfactometer facilitates high-throughput memory retention testing and employs standardized odors of equal detectability, as quantified by electroantennogram recordings. Using this setup, differences in memory retention between Nasonia species were shown. In both Nasonia vitripennis and Nasonia longicornis, memory was observed up to at least 5 days after a single conditioning trial, whereas Nasonia giraulti lost its memory after 2 days. This difference in learning may be an adaptation to species-specific differences in ecological factors, for example, host preference. The high-throughput methods for conditioning and memory retention testing are essential tools to study both ultimate and proximate factors that cause variation in learning and memory formation in Nasonia and other parasitic wasp species. PMID:22804968

  20. Role of slow oscillatory activity and slow wave sleep in consolidation of episodic-like memory in rats.

    PubMed

    Oyanedel, Carlos N; Binder, Sonja; Kelemen, Eduard; Petersen, Kimberley; Born, Jan; Inostroza, Marion

    2014-12-15

    Our previous experiments showed that sleep in rats enhances consolidation of hippocampus dependent episodic-like memory, i.e. the ability to remember an event bound into specific spatio-temporal context. Here we tested the hypothesis that this enhancing effect of sleep is linked to the occurrence of slow oscillatory and spindle activity during slow wave sleep (SWS). Rats were tested on an episodic-like memory task and on three additional tasks covering separately the where (object place recognition), when (temporal memory), and what (novel object recognition) components of episodic memory. In each task, the sample phase (encoding) was followed by an 80-min retention interval that covered either a period of regular morning sleep or sleep deprivation. Memory during retrieval was tested using preferential exploration of novelty vs. familiarity. Consistent with previous findings, the rats which had slept during the retention interval showed significantly stronger episodic-like memory and spatial memory, and a trend of improved temporal memory (although not significant). Object recognition memory was similarly retained across sleep and sleep deprivation retention intervals. Recall of episodic-like memory was associated with increased slow oscillatory activity (0.85-2.0Hz) during SWS in the retention interval. Spatial memory was associated with increased proportions of SWS. Against our hypothesis, a relationship between spindle activity and episodic-like memory performance was not detected, but spindle activity was associated with object recognition memory. The results provide support for the role of SWS and slow oscillatory activity in consolidating hippocampus-dependent memory, the role of spindles in this process needs to be further examined. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Implicit memory. Retention without remembering.

    PubMed

    Roediger, H L

    1990-09-01

    Explicit measures of human memory, such as recall or recognition, reflect conscious recollection of the past. Implicit tests of retention measure transfer (or priming) from past experience on tasks that do not require conscious recollection of recent experiences for their performance. The article reviews research on the relation between explicit and implicit memory. The evidence points to substantial differences between standard explicit and implicit tests, because many variables create dissociations between these tests. For example, although pictures are remembered better than words on explicit tests, words produce more priming than do pictures on several implicit tests. These dissociations may implicate different memory systems that subserve distinct memorial functions, but the present argument is that many dissociations can be understood by appealing to general principles that apply to both explicit and implicit tests. Phenomena studied under the rubric of implicit memory may have important implications in many other fields, including social cognition, problem solving, and cognitive development.

  2. Driver memory retention of in-vehicle information system messages

    DOT National Transportation Integrated Search

    1997-01-01

    Memory retention of drivers was tested for traffic- and traveler-related messages displayed on an in-vehicle information system (IVIS). Three research questions were asked: (a) How does in-vehicle visual message format affect comprehension? (b) How d...

  3. Release from proactive interference in rat spatial working memory.

    PubMed

    Roberts, William A; MacDonald, Hayden; Brown, Lyn; Macpherson, Krista

    2017-09-01

    A three-phase procedure was used to produce proactive interference (PI) in one trial on an eight-arm radial maze. Rats were forced to enter four arms for reward on an initial interference phase, to then enter the four remaining arms on a target phase, and to then choose among all eight arms on a retention test, with only the arms not visited in the target phase containing reward. Control trials involved only the target phase and the retention test. Lower accuracy was found on PI trials than on control trials, but performance on PI trials significantly exceeded chance, showing some retention of target memories. Changes in temporal and reward variables between the interference, target, and retention test phases showed release from PI, but changes in context and pattern of arm entry did not. It is suggested that the release from PI paradigm can be used to understand spatial memory encoding in rats and other species.

  4. A test of the reward-contrast hypothesis.

    PubMed

    Dalecki, Stefan J; Panoz-Brown, Danielle E; Crystal, Jonathon D

    2017-12-01

    Source memory, a facet of episodic memory, is the memory of the origin of information. Whereas source memory in rats is sustained for at least a week, spatial memory degraded after approximately a day. Different forgetting functions may suggest that two memory systems (source memory and spatial memory) are dissociated. However, in previous work, the two tasks used baiting conditions consisting of chocolate and chow flavors; notably, the source memory task used the relatively better flavor. Thus, according to the reward-contrast hypothesis, when chocolate and chow were presented within the same context (i.e., within a single radial maze trial), the chocolate location was more memorable than the chow location because of contrast. We tested the reward-contrast hypothesis using baiting configurations designed to produce reward-contrast. The reward-contrast hypothesis predicts that under these conditions, spatial memory will survive a 24-h retention interval. We documented elimination of spatial memory performance after a 24-h retention interval using a reward-contrast baiting pattern. These data suggest that reward contrast does not explain our earlier findings that source memory survives unusually long retention intervals. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. All of the above: When multiple correct response options enhance the testing effect.

    PubMed

    Bishara, Anthony J; Lanzo, Lauren A

    2015-01-01

    Previous research has shown that multiple choice tests often improve memory retention. However, the presence of incorrect lures often attenuates this memory benefit. The current research examined the effects of "all of the above" (AOTA) options. When such options are correct, no incorrect lures are present. In the first three experiments, a correct AOTA option on an initial test led to a larger memory benefit than no test and standard multiple choice test conditions. The benefits of a correct AOTA option occurred even without feedback on the initial test; for both 5-minute and 48-hour retention delays; and for both cued recall and multiple choice final test formats. In the final experiment, an AOTA question led to better memory retention than did a control condition that had identical timing and exposure to response options. However, the benefits relative to this control condition were similar regardless of the type of multiple choice test (AOTA or not). Results suggest that retrieval contributes to multiple choice testing effects. However, the extra testing effect from a correct AOTA option, rather than being due to more retrieval, might be due simply to more exposure to correct information.

  6. Adrenergic enhancement of consolidation of object recognition memory.

    PubMed

    Dornelles, Arethuza; de Lima, Maria Noemia Martins; Grazziotin, Manoela; Presti-Torres, Juliana; Garcia, Vanessa Athaide; Scalco, Felipe Siciliani; Roesler, Rafael; Schröder, Nadja

    2007-07-01

    Extensive evidence indicates that epinephrine (EPI) modulates memory consolidation for emotionally arousing tasks in animals and human subjects. However, previous studies have not examined the effects of EPI on consolidation of recognition memory. Here we report that systemic administration of EPI enhances consolidation of memory for a novel object recognition (NOR) task under different training conditions. Control male rats given a systemic injection of saline (0.9% NaCl) immediately after NOR training showed significant memory retention when tested at 1.5 or 24, but not 96h after training. In contrast, rats given a post-training injection of EPI showed significant retention of NOR at all delays. In a second experiment using a different training condition, rats treated with EPI, but not SAL-treated animals, showed significant NOR retention at both 1.5 and 24-h delays. We next showed that the EPI-induced enhancement of retention tested at 96h after training was prevented by pretraining systemic administration of the beta-adrenoceptor antagonist propranolol. The findings suggest that, as previously observed in experiments using aversively motivated tasks, epinephrine modulates consolidation of recognition memory and that the effects require activation of beta-adrenoceptors.

  7. Lesser Neural Pattern Similarity across Repeated Tests Is Associated with Better Long-Term Memory Retention.

    PubMed

    Karlsson Wirebring, Linnea; Wiklund-Hörnqvist, Carola; Eriksson, Johan; Andersson, Micael; Jonsson, Bert; Nyberg, Lars

    2015-07-01

    Encoding and retrieval processes enhance long-term memory performance. The efficiency of encoding processes has recently been linked to representational consistency: the reactivation of a representation that gets more specific each time an item is further studied. Here we examined the complementary hypothesis of whether the efficiency of retrieval processes also is linked to representational consistency. Alternatively, recurrent retrieval might foster representational variability--the altering or adding of underlying memory representations. Human participants studied 60 Swahili-Swedish word pairs before being scanned with fMRI the same day and 1 week later. On Day 1, participants were tested three times on each word pair, and on Day 7 each pair was tested once. A BOLD signal change in right superior parietal cortex was associated with subsequent memory on Day 1 and with successful long-term retention on Day 7. A representational similarity analysis in this parietal region revealed that beneficial recurrent retrieval was associated with representational variability, such that the pattern similarity on Day 1 was lower for retrieved words subsequently remembered compared with those subsequently forgotten. This was mirrored by a monotonically decreased BOLD signal change in dorsolateral prefrontal cortex on Day 1 as a function of repeated successful retrieval for words subsequently remembered, but not for words subsequently forgotten. This reduction in prefrontal response could reflect reduced demands on cognitive control. Collectively, the results offer novel insights into why memory retention benefits from repeated retrieval, and they suggest fundamental differences between repeated study and repeated testing. Repeated testing is known to produce superior long-term retention of the to-be-learned material compared with repeated encoding and other learning techniques, much because it fosters repeated memory retrieval. This study demonstrates that repeated memory retrieval might strengthen memory by inducing more differentiated or elaborated memory representations in the parietal cortex, and at the same time reducing demands on prefrontal-cortex-mediated cognitive control processes during retrieval. The findings contrast with recent demonstrations that repeated encoding induces less differentiated or elaborated memory representations. Together, this study suggests a potential neurocognitive explanation of why repeated retrieval is more beneficial for long-term retention than repeated encoding, a phenomenon known as the testing effect. Copyright © 2015 the authors 0270-6474/15/359595-08$15.00/0.

  8. Context Preexposure Prevents Forgetting of a Contextual Fear Memory: Implication for Regional Changes in Brain Activation Patterns Associated with Recent and Remote Memory Tests

    ERIC Educational Resources Information Center

    Biedenkapp, Joseph C.; Rudy, Jerry W.

    2007-01-01

    Contextual fear conditioning was maintained over a 15-day retention interval suggesting no forgetting of the conditioning experience. However, a more subtle generalization test revealed that, as the retention interval increased, rats showed enhanced generalized fear to an altered context. Preexposure to the training context prior to conditioning,…

  9. Inhibiting corticosterone synthesis during fear memory formation exacerbates cued fear extinction memory deficits within the single prolonged stress model.

    PubMed

    Keller, Samantha M; Schreiber, William B; Stanfield, Briana R; Knox, Dayan

    2015-01-01

    Using the single prolonged stress (SPS) animal model of post-traumatic stress disorder (PTSD), previous studies suggest that enhanced glucocorticoid receptor (GR) expression leads to cued fear extinction retention deficits. However, it is unknown how the endogenous ligand of GRs, corticosterone (CORT), may contribute to extinction retention deficits in the SPS model. Given that CORT synthesis during fear learning is critical for fear memory consolidation and SPS enhances GR expression, CORT synthesis during fear memory formation could strengthen fear memory in SPS rats by enhancing GR activation during fear learning. In turn, this could lead to cued fear extinction retention deficits. We tested the hypothesis that CORT synthesis during fear learning leads to cued fear extinction retention deficits in SPS rats by administering the CORT synthesis inhibitor metyrapone to SPS and control rats prior to fear conditioning, and observed the effect this had on extinction memory. Inhibiting CORT synthesis during fear memory formation in control rats tended to decrease cued freezing, though this effect never reached statistical significance. Contrary to our hypothesis, inhibiting CORT synthesis during fear memory formation disrupted extinction retention in SPS rats. This finding suggests that even though SPS exposure leads to cued fear extinction memory deficits, CORT synthesis during fear memory formation enhances extinction retention in SPS rats. This suggests that stress-induced CORT synthesis in previously stressed rats can be beneficial. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A test of the reward-value hypothesis.

    PubMed

    Smith, Alexandra E; Dalecki, Stefan J; Crystal, Jonathon D

    2017-03-01

    Rats retain source memory (memory for the origin of information) over a retention interval of at least 1 week, whereas their spatial working memory (radial maze locations) decays within approximately 1 day. We have argued that different forgetting functions dissociate memory systems. However, the two tasks, in our previous work, used different reward values. The source memory task used multiple pellets of a preferred food flavor (chocolate), whereas the spatial working memory task provided access to a single pellet of standard chow-flavored food at each location. Thus, according to the reward-value hypothesis, enhanced performance in the source memory task stems from enhanced encoding/memory of a preferred reward. We tested the reward-value hypothesis by using a standard 8-arm radial maze task to compare spatial working memory accuracy of rats rewarded with either multiple chocolate or chow pellets at each location using a between-subjects design. The reward-value hypothesis predicts superior accuracy for high-valued rewards. We documented equivalent spatial memory accuracy for high- and low-value rewards. Importantly, a 24-h retention interval produced equivalent spatial working memory accuracy for both flavors. These data are inconsistent with the reward-value hypothesis and suggest that reward value does not explain our earlier findings that source memory survives unusually long retention intervals.

  11. An Experimental Analysis of Memory Processing

    ERIC Educational Resources Information Center

    Wright, Anthony A.

    2007-01-01

    Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory…

  12. The spatial learning and memory performance in methamphetamine–sensitized and withdrawn rats

    PubMed Central

    Bigdeli, Imanollah; Asia, Masomeh Nikfarjam- Haft; Miladi-Gorji, Hossein; Fadaei, Atefeh

    2015-01-01

    Objective(s): There is controversial evidence about the effect of methamphetamine (METH) on spatial memory. We tested the time- dependent effects of METH on spatial short-term (working) and long-term (reference) memory in METH –sensitized and withdrawn rats in the Morris water maze. Materials and Methods: Rats were sensitized to METH (2 mg/kg, daily/5 days, SC). Rats were trained in water maze (4 trials/day/for 5 days). Probe test was performed 24 hr after training. Two days after probe test, working memory training (2 trials/day/for 5 days) was conducted. Acquisition–retention interval was 75 min. The treatment was continued per day 30 and 120 min before the test. Two groups of METH –sensitized rats were trained in reference memory after a longer period of withdrawal (30 days). Results: Sensitized rats exhibited significantly longer escape latencies on the training, spent significantly less time in the target zone (all, P<0.05), and their working memory impaired 30 min after injection. While, METH has no effect on the spatial learning process 120 min after injection, and rats spent significantly less time in the target zone (P<0.05), as well it has no effect on working memory. Also, impairment of reference memory persisted after prolonged abstinence. Conclusion: Our findings indicated that METH impaired spatial learning and memory 30 min after injection, but spared spatial learning, either acquisition or retention of spatial working, but partially impaired retention of spatial reference memory following 120 min after injection in sensitized rats, which persisted even after prolonged abstinence. PMID:25945235

  13. Do infants retain the statistics of a statistical learning experience? Insights from a developmental cognitive neuroscience perspective

    PubMed Central

    2017-01-01

    Statistical structure abounds in language. Human infants show a striking capacity for using statistical learning (SL) to extract regularities in their linguistic environments, a process thought to bootstrap their knowledge of language. Critically, studies of SL test infants in the minutes immediately following familiarization, but long-term retention unfolds over hours and days, with almost no work investigating retention of SL. This creates a critical gap in the literature given that we know little about how single or multiple SL experiences translate into permanent knowledge. Furthermore, different memory systems with vastly different encoding and retention profiles emerge at different points in development, with the underlying memory system dictating the fidelity of the memory trace hours later. I describe the scant literature on retention of SL, the learning and retention properties of memory systems as they apply to SL, and the development of these memory systems. I propose that different memory systems support retention of SL in infant and adult learners, suggesting an explanation for the slow pace of natural language acquisition in infancy. I discuss the implications of developing memory systems for SL and suggest that we exercise caution in extrapolating from adult to infant properties of SL. This article is part of the themed issue ‘New frontiers for statistical learning in the cognitive sciences’. PMID:27872372

  14. Do infants retain the statistics of a statistical learning experience? Insights from a developmental cognitive neuroscience perspective.

    PubMed

    Gómez, Rebecca L

    2017-01-05

    Statistical structure abounds in language. Human infants show a striking capacity for using statistical learning (SL) to extract regularities in their linguistic environments, a process thought to bootstrap their knowledge of language. Critically, studies of SL test infants in the minutes immediately following familiarization, but long-term retention unfolds over hours and days, with almost no work investigating retention of SL. This creates a critical gap in the literature given that we know little about how single or multiple SL experiences translate into permanent knowledge. Furthermore, different memory systems with vastly different encoding and retention profiles emerge at different points in development, with the underlying memory system dictating the fidelity of the memory trace hours later. I describe the scant literature on retention of SL, the learning and retention properties of memory systems as they apply to SL, and the development of these memory systems. I propose that different memory systems support retention of SL in infant and adult learners, suggesting an explanation for the slow pace of natural language acquisition in infancy. I discuss the implications of developing memory systems for SL and suggest that we exercise caution in extrapolating from adult to infant properties of SL.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  15. Long-term memory of color stimuli in the jungle crow (Corvus macrorhynchos).

    PubMed

    Bogale, Bezawork Afework; Sugawara, Satoshi; Sakano, Katsuhisa; Tsuda, Sonoko; Sugita, Shoei

    2012-03-01

    Wild-caught jungle crows (n = 20) were trained to discriminate between color stimuli in a two-alternative discrimination task. Next, crows were tested for long-term memory after 1-, 2-, 3-, 6-, and 10-month retention intervals. This preliminary study showed that jungle crows learn the task and reach a discrimination criterion (80% or more correct choices in two consecutive sessions of ten trials) in a few trials, and some even in a single session. Most, if not all, crows successfully remembered the constantly reinforced visual stimulus during training after all retention intervals. These results suggest that jungle crows have a high retention capacity for learned information, at least after a 10-month retention interval and make no or very few errors. This study is the first to show long-term memory capacity of color stimuli in corvids following a brief training that memory rather than rehearsal was apparent. Memory of visual color information is vital for exploitation of biological resources in crows. We suspect that jungle crows could remember the learned color discrimination task even after a much longer retention interval.

  16. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia

    PubMed Central

    Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota

    2008-01-01

    Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder. PMID:18945333

  17. Impaired long-term memory retention and working memory in sdy mutant mice with a deletion in Dtnbp1, a susceptibility gene for schizophrenia.

    PubMed

    Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota

    2008-10-22

    Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.

  18. Mice deficient for striatal Vesicular Acetylcholine Transporter (VAChT) display impaired short-term but normal long-term object recognition memory.

    PubMed

    Palmer, Daniel; Creighton, Samantha; Prado, Vania F; Prado, Marco A M; Choleris, Elena; Winters, Boyer D

    2016-09-15

    Substantial evidence implicates Acetylcholine (ACh) in the acquisition of object memories. While most research has focused on the role of the cholinergic basal forebrain and its cortical targets, there are additional cholinergic networks that may contribute to object recognition. The striatum contains an independent cholinergic network comprised of interneurons. In the current study, we investigated the role of this cholinergic signalling in object recognition using mice deficient for Vesicular Acetylcholine Transporter (VAChT) within interneurons of the striatum. We tested whether these striatal VAChT(D2-Cre-flox/flox) mice would display normal short-term (5 or 15min retention delay) and long-term (3h retention delay) object recognition memory. In a home cage object recognition task, male and female VAChT(D2-Cre-flox/flox) mice were impaired selectively with a 15min retention delay. When tested on an object location task, VAChT(D2-Cre-flox/flox) mice displayed intact spatial memory. Finally, when object recognition was tested in a Y-shaped apparatus, designed to minimize the influence of spatial and contextual cues, only females displayed impaired recognition with a 5min retention delay, but when males were challenged with a 15min retention delay, they were also impaired; neither males nor females were impaired with the 3h delay. The pattern of results suggests that striatal cholinergic transmission plays a role in the short-term memory for object features, but not spatial location. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Nosewitness Identification: Effects of Lineup Size and Retention Interval.

    PubMed

    Alho, Laura; Soares, Sandra C; Costa, Liliana P; Pinto, Elisa; Ferreira, Jacqueline H T; Sorjonen, Kimmo; Silva, Carlos F; Olsson, Mats J

    2016-01-01

    Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities.

  20. Nosewitness Identification: Effects of Lineup Size and Retention Interval

    PubMed Central

    Alho, Laura; Soares, Sandra C.; Costa, Liliana P.; Pinto, Elisa; Ferreira, Jacqueline H. T.; Sorjonen, Kimmo; Silva, Carlos F.; Olsson, Mats J.

    2016-01-01

    Although canine identification of body odor (BO) has been widely used as forensic evidence, the concept of nosewitness identification by human observers was only recently put to the test. The results indicated that BOs associated with male characters in authentic crime videos could later be identified in BO lineup tests well above chance. To further evaluate nosewitness memory, we assessed the effects of lineup size (Experiment 1) and retention interval (Experiment 2), using a forced-choice memory test. The results showed that nosewitness identification works for all lineup sizes (3, 5, and 8 BOs), but that larger lineups compromise identification performance in similarity to observations from eye- and earwitness studies. Also in line with previous eye- and earwitness studies, but in disagreement with some studies on odor memory, Experiment 2 showed significant forgetting between shorter retention intervals (15 min) and longer retention intervals (1-week) using lineups of five BOs. Altogether this study shows that identification of BO in a forensic setting is possible and has limits and characteristics in line with witness identification through other sensory modalities. PMID:27303317

  1. Retrieval and sleep both counteract the forgetting of spatial information.

    PubMed

    Antony, James W; Paller, Ken A

    2018-06-01

    Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through repeated retrieval as well. That is, memories may generally be subject to forgetting that can be counteracted when memories become reactivated, and there are several types of reactivation: (i) via intentional restudying, (ii) via testing, (iii) without provocation during wake, or (iv) during sleep. We thus measured forgetting for spatial material subjected to repeated study or repeated testing followed by retention intervals with sleep versus wake. Four groups of subjects learned a set of visual object-location associations and either restudied the associations or recalled locations given the objects as cues. We found the advantage for restudied over retested information was greater in the PM than AM group. Additional groups tested at 5-min and 1-wk retention intervals confirmed previous findings of greater relative benefits for restudying in the short-term and for retesting in the long-term. Results overall support the conclusion that repeated reactivation through testing or sleeping stabilizes information against forgetting. © 2018 Antony and Paller; Published by Cold Spring Harbor Laboratory Press.

  2. Effects of aging and divided attention on recognition memory processes for single and associative information.

    PubMed

    Kinjo, Hikari

    2011-04-01

    In the divided attention paradigm to test age-related associative memory deficits, whether the effects of divided attention occur at encoding or retrieval has not been clarified, and the effect on retention has not been studied. This study explored whether and how much divided attention at either encoding, retention, or retrieval diminished accuracy in recognizing a single feature (object or location) and associated features (object+location) by 23 elderly people (13 women; M age = 70.6 yr., SD = 2.8) recruited from a neighborhood community circle, and 29 female college students (M age = 20.8 yr., SD = 1.1). The results showed a significant decline in memory performance for both age groups due to divided attention in location and associative memory at retention, suggesting that the retention process demands attentional resources. Overall, regardless of their relative deficiency in associative memory, older adults showed an effect of divided attention comparable to that of younger adults in a recognition task.

  3. The influence of retrieval practice on memory and comprehension of science texts

    NASA Astrophysics Data System (ADS)

    Hinze, Scott R.

    The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not fill-in-the-blank tests, improved performance on new memory items. Experiment 2 manipulated test expectancy and extended cued recall benefits to inference items. Test expectancies established prior to retrieval altered processing to either be ineffective (when expecting a memory test) or effective (when expecting an inference test). In Experiment 3, the processing task engaged in during retrieval practice was manipulated. Explanation during retrieval practice led to more effective transfer than free recall instructions, especially when participants were compliant and effective in their explanations. These experiments demonstrate that some, but not all, processing during retrieval practice can influence both memory and understanding of science texts.

  4. 7-Nitroindazole, a neuronal nitric oxide synthase inhibitor, impairs passive-avoidance and elevated plus-maze memory performance in rats.

    PubMed

    Yildiz Akar, Furuzan; Ulak, Guner; Tanyeri, Pelin; Erden, Faruk; Utkan, Tijen; Gacar, Nejat

    2007-10-01

    The role of nitric oxide (NO) on cognitive performance in a modified elevated plus-maze (mEPM) and passive-avoidance (PA) task was investigated by using the NO synthase (NOS) inhibitor 7-nitroindazole (7-NI) and an NO precursor l-arginine. The interaction between the activation of N-methyl-d-aspartate (NMDA) receptors and NO synthesis on memory retention was also studied. 7-NI, l-arginine or MK-801, a non-competitive NMDA receptor antagonist were injected intraperitoneally (i.p) to male Wistar rats 30 min before the first training session of the PA test or 30 min before on the first day testing (acquisition session) of mEPM task. Transfer latency, the time rat took to move from the open arm to the enclosed arm, was used as an index of learning and memory in a mEPM test. The retention session was performed 24 h after the acquisition one. In the PA task, the retention test was carried out 24 h after training and reduction of retention latency was used to evaluate the acquisition of learning and memory. Blood glucose level and locomotor activity of the rats was also evaluated. 7-NI (10, 20, 25, 50 mg/kg) and MK-801 (0.15 mg/kg) significantly prolonged the transfer latency on retention session in a mEPM test and shortened step-through latency in PA test. 7-NI-induced impairment in memory and learning was partly reversed by l-arginine (200 mg/kg), a competitive substrate for NOS. However subeffective doses of 7-NI (5 mg/kg) and MK-801 (0.075 mg/kg) given in combination significantly impaired plus-maze and PA performances in rats. Thus NMDA receptor mediated NO pathways may be implicated in the PA and mEPM behaviours in rats. Since 7-NI does not affect blood pressure and did not alter blood glucose level and locomotor activity in conscious rats, 7-NI-induced impairment of memory is not due to either hypertension, changes in blood glucose level or effects on locomotor activity.

  5. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment.

    PubMed

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A G; Ullman, Michael T

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI.

  6. Item-location binding in working memory: is it hippocampus-dependent?

    PubMed

    Allen, Richard J; Vargha-Khadem, Faraneh; Baddeley, Alan D

    2014-07-01

    A general consensus is emerging that the hippocampus has an important and active role in the creation of new long-term memory representations of associations or bindings between elements. However, it is less clear whether this contribution can be extended to the creation of temporary bound representations in working memory, involving the retention of small numbers of items over short delays. We examined this by administering a series of recognition and recall tests of working memory for colour-location binding and object-location binding to a patient with highly selective hippocampal damage (Jon), and groups of control participants. Jon achieved high levels of accuracy in all working memory tests of recognition and recall binding across retention intervals of up to 10s. In contrast, Jon performed at chance on an unexpected delayed test of the same object-location binding information. These findings indicate a clear dissociation between working memory and long-term memory, with no evidence for a critical hippocampal contribution to item-location binding in working memory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Achilles' ear? Inferior human short-term and recognition memory in the auditory modality.

    PubMed

    Bigelow, James; Poremba, Amy

    2014-01-01

    Studies of the memory capabilities of nonhuman primates have consistently revealed a relative weakness for auditory compared to visual or tactile stimuli: extensive training is required to learn auditory memory tasks, and subjects are only capable of retaining acoustic information for a brief period of time. Whether a parallel deficit exists in human auditory memory remains an outstanding question. In the current study, a short-term memory paradigm was used to test human subjects' retention of simple auditory, visual, and tactile stimuli that were carefully equated in terms of discriminability, stimulus exposure time, and temporal dynamics. Mean accuracy did not differ significantly among sensory modalities at very short retention intervals (1-4 s). However, at longer retention intervals (8-32 s), accuracy for auditory stimuli fell substantially below that observed for visual and tactile stimuli. In the interest of extending the ecological validity of these findings, a second experiment tested recognition memory for complex, naturalistic stimuli that would likely be encountered in everyday life. Subjects were able to identify all stimuli when retention was not required, however, recognition accuracy following a delay period was again inferior for auditory compared to visual and tactile stimuli. Thus, the outcomes of both experiments provide a human parallel to the pattern of results observed in nonhuman primates. The results are interpreted in light of neuropsychological data from nonhuman primates, which suggest a difference in the degree to which auditory, visual, and tactile memory are mediated by the perirhinal and entorhinal cortices.

  8. Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory.

    PubMed

    Atucha, Erika; Vukojevic, Vanja; Fornari, Raquel V; Ronzoni, Giacomo; Demougin, Philippe; Peter, Fabian; Atsak, Piray; Coolen, Marcel W; Papassotiropoulos, Andreas; McGaugh, James L; de Quervain, Dominique J-F; Roozendaal, Benno

    2017-08-22

    Emotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock-context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkm ζ, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory.

  9. Verapamil enhances acute stress or glucocorticoid-induced deficits in retrieval of long-term memory in rats.

    PubMed

    Rashidy-Pour, Ali; Vafaei, Abbas Ali; Taherian, Abbas Ali; Miladi-Gorji, Hossein; Sadeghi, Hassan; Fathollahi, Yaghoub; Bandegi, Ahmad Reza

    2009-10-12

    This study was designed to investigate an interaction between acute restraint stress and corticosterone with verapamil, a blocker of L-type voltage-dependent calcium (VDC) channels on retrieval of long-term memory. Young adult male rats were trained in one trial inhibitory avoidance task (0.5 mA, 3 s footshock). On retention test given 48 h after training, the latency to re-enter dark compartment of the apparatus was recorded. In Experiment 1, verapamil pretreatment (5, 10, or 20 mg/kg) enhanced the impairing effects of acute stress (which was applied for 10 min in a Plexiglass tube 30 min before the retention test) on memory retrieval. The applied stress increased circulating corticosterone levels as assessed immediately after the retention test, indicating that stress-induced impairment of memory retrieval is mediated, in part, by increased plasma levels of glucocorticoids. Verapamil did not change this response. In Experiment 2, pretreatment of an intermediate dose of verapamil also enhanced corticosterone-induced impairment of memory retrieval. In Experiments 3 and 4, acute stress or corticosterone did not change motor activity with or without prior treatment of verapamil, suggesting that stress or glucocorticoid-induced impairment of memory retrieval is not due to any gross disturbances in motor performance of animals. These findings indicate that blockade of L-type VDC channels enhances stress or glucocorticoid-induced impairment of memory retrieval, and provide evidence for the existence of an interaction between glucocorticoids and L-type VDC channels on memory retrieval.

  10. Sleep-dependent memory consolidation in the epilepsy monitoring unit: A pilot study.

    PubMed

    Sarkis, Rani A; Alam, Javad; Pavlova, Milena K; Dworetzky, Barbara A; Pennell, Page B; Stickgold, Robert; Bubrick, Ellen J

    2016-08-01

    We sought to examine whether patients with focal epilepsy exhibit sleep dependent memory consolidation, whether memory retention rates correlated with particular aspects of sleep physiology, and how the process was affected by seizures. We prospectively recruited patients with focal epilepsy and assessed declarative memory using a task consisting of 15 pairs of colored pictures on a 5×6 grid. Patients were tested 12h after training, once after 12h of wakefulness and once after 12h that included sleep. EMG chin electrodes were placed to enable sleep scoring. The number and density of sleep spindles were assessed using a wavelet-based algorithm. Eleven patients were analyzed age 21-56years. The percentage memory retention over 12h of wakefulness was 62.7% and over 12h which included sleep 83.6% (p=0.04). Performance on overnight testing correlated with the duration of slow wave sleep (SWS) (r=+0.63, p<0.05). Three patients had seizures during the day, and 3 had nocturnal seizures. Day-time seizures did not affect retention rates, while those patients who had night time seizures had a drop in retention from an average of 92% to 60.5%. There is evidence of sleep dependent memory consolidation in patients with epilepsy which mostly correlates with the amount of SWS. Our preliminary findings suggest that nocturnal seizures likely disrupt sleep dependent memory consolidation. Findings highlight the importance of SWS in sleep dependent memory consolidation and the adverse impact of nocturnal seizures on this process. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Sleep-dependent Memory Consolidation in the Epilepsy Monitoring Unit: a Pilot Study

    PubMed Central

    Sarkis, Rani A.; Alam, Javad; Pavlova, Milena K.; Dworetzky, Barbara A.; Pennell, Page B.; Stickgold, Robert; Bubrick, Ellen J.

    2018-01-01

    Objective We sought to examine whether patients with focal epilepsy exhibit sleep dependent memory consolidation, whether memory retention rates correlated with particular aspects of sleep physiology, and how the process was affected by seizures. Methods We prospectively recruited patients with focal epilepsy and assessed declarative memory using a task consisting of 15 pairs of colored pictures on a 5 × 6 grid. Patients were tested 12 hours after training, once after 12 hours of wakefulness and once after 12 hours that included sleep. EMG chin electrodes were placed to enable sleep scoring. The number and density of sleep spindles were assessed using a wavelet-based algorithm. Results Eleven patients were analyzed age 21–56 years. The percentage memory retention over 12 hours of wakefulness was 62.7% % and over 12 hours which included sleep 83.6 % (p = 0.04). Performance on overnight testing correlated with the duration of slow wave sleep (SWS) (r=+0.63, p <0.05). Three patients had seizures during the day, and another 3 had nocturnal seizures. Day-time seizures did not affect retention rates, while those patients who had night time seizures had a drop in retention from an average of 92% to 60.5%. Conclusions There is evidence of sleep dependent memory consolidation in patients with epilepsy which mostly correlates with the amount of SWS. Our preliminary findings suggest that nocturnal seizures likely disrupt sleep dependent memory consolidation. Significance Findings highlight the importance of SWS in sleep dependent memory consolidation and the adverse impact of nocturnal seizures on this process. PMID:27417054

  12. Testing during Study Insulates against the Buildup of Proactive Interference

    ERIC Educational Resources Information Center

    Szpunar, Karl K.; McDermott, Kathleen B.; Roediger, Henry L., III

    2008-01-01

    Recent interest in the benefits of retrieval practice on long-term retention--the testing effect--has spawned a considerable amount of research toward understanding the underlying nature of this ubiquitous memory phenomenon. Taking a test may benefit retention through both direct means (engaging appropriate retrieval processes) and indirect means…

  13. The Effects of an Afternoon Nap on Episodic Memory in Young and Older Adults

    PubMed Central

    Fairley, Jacqueline; Decker, Michael J.; Bliwise, Donald L.

    2017-01-01

    Abstract Study Objectives: In young adults, napping is hypothesized to benefit episodic memory retention (eg, via consolidation). Whether this relationship is present in older adults has not been adequately tested but is an important question because older adults display marked changes in sleep and memory. Design: Between-subjects design. Setting: Sleep laboratory at Emory University School of Medicine. Participants: Fifty healthy young adults (18–29) and 45 community-dwelling older adults (58–83). Intervention: Participants were randomly assigned to a 90-minute nap opportunity or an equal interval of quiet wakefulness. Measurements and Results: Participants underwent an item-wise directed forgetting learning procedure in which they studied words that were individually followed by the instruction to “remember” or “forget.” Following a 90-minute retention interval filled with quiet wakefulness or a nap opportunity, they were asked to free recall and recognize those words. Young adults retained significantly more words following a nap interval than a quiet wakefulness interval on both free recall and recognition tests. There was modest evidence for greater nap-related retention of “remember” items relative to “forget” items for free recall but not recognition. Older adults’ memory retention did not differ across nap and quiet wakefulness conditions, although they demonstrated greater fragmentation, lower N3, and lower rapid eye movement duration than the young adults. Conclusions: In young adults, an afternoon nap benefits episodic memory retention, but such benefits decrease with advancing age. PMID:28329381

  14. Methylene Blue Facilitates Memory Retention in Zebrafish in a Dose-Dependent Manner.

    PubMed

    Echevarria, David J; Caramillo, Erika M; Gonzalez-Lima, Francisco

    2016-12-01

    Methylene blue (MB) is an FDA-grandfathered drug with memory-enhancing effects at low doses, but opposite effects at high doses. We investigated the effects of four MB doses (0.1, 0.5, 5.0, or 10.0 μM) on zebrafish memory retention in the T-maze task. After training fish to swim into a certain arm of the T-maze, the fish were placed into a tank containing one of the four MB doses or a control tank containing blue food dye. Subsequently, fish were placed into the T-maze for memory retention testing. Results indicated that MB produced hormetic dose-response effects on memory. Fish that received the 0.5 μM dose performed significantly better at the T-maze than those that received higher doses. Fish who received 5.0 μM did not exhibit a significant difference in performance from control fish, and the fish that received the 10.0 μM dose performed significantly worse than lower doses. These findings support the utility of zebrafish in comparative research and their potential value for testing of MB and other neuropsychopharmacological treatments in animal models of memory disorders.

  15. Tracking a changing environment: optimal sampling, adaptive memory and overnight effects.

    PubMed

    Dunlap, Aimee S; Stephens, David W

    2012-02-01

    Foraging in a variable environment presents a classic problem of decision making with incomplete information. Animals must track the changing environment, remember the best options and make choices accordingly. While several experimental studies have explored the idea that sampling behavior reflects the amount of environmental change, we take the next logical step in asking how change influences memory. We explore the hypothesis that memory length should be tied to the ecological relevance and the value of the information learned, and that environmental change is a key determinant of the value of memory. We use a dynamic programming model to confirm our predictions and then test memory length in a factorial experiment. In our experimental situation we manipulate rates of change in a simple foraging task for blue jays over a 36 h period. After jays experienced an experimentally determined change regime, we tested them at a range of retention intervals, from 1 to 72 h. Manipulated rates of change influenced learning and sampling rates: subjects sampled more and learned more quickly in the high change condition. Tests of retention revealed significant interactions between retention interval and the experienced rate of change. We observed a striking and surprising difference between the high and low change treatments at the 24h retention interval. In agreement with earlier work we find that a circadian retention interval is special, but we find that the extent of this 'specialness' depends on the subject's prior experience of environmental change. Specifically, experienced rates of change seem to influence how subjects balance recent information against past experience in a way that interacts with the passage of time. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Sleep-dependent memory consolidation and accelerated forgetting

    PubMed Central

    Atherton, Kathryn E.; Nobre, Anna C.; Zeman, Adam Z.; Butler, Christopher R.

    2014-01-01

    Accelerated long-term forgetting (ALF) is a form of memory impairment in which learning and initial retention of information appear normal but subsequent forgetting is excessively rapid. ALF is most commonly associated with epilepsy and, in particular, a form of late-onset epilepsy called transient epileptic amnesia (TEA). ALF provides a novel opportunity to investigate post-encoding memory processes, such as consolidation. Sleep is implicated in the consolidation of memory in healthy people and a deficit in sleep-dependent memory consolidation has been proposed as an explanation for ALF. If this proposal were correct, then sleep would not benefit memory retention in people with ALF as much as in healthy people, and ALF might only be apparent when the retention interval contains sleep. To test this theory, we compared performance on a sleep-sensitive memory task over a night of sleep and a day of wakefulness. We found, contrary to the hypothesis, that sleep benefits memory retention in TEA patients with ALF and that this benefit is no smaller in magnitude than that seen in healthy controls. Indeed, the patients performed significantly more poorly than the controls only in the wake condition and not the sleep condition. Patients were matched to controls on learning rate, initial retention, and the effect of time of day on cognitive performance. These results indicate that ALF is not caused by a disruption of sleep-dependent memory consolidation. Instead, ALF may be due to an encoding abnormality that goes undetected on behavioural assessments of learning, or by a deficit in memory consolidation processes that are not sleep-dependent. PMID:24657478

  17. The short- and long-term fates of memory items retained outside the focus of attention

    PubMed Central

    Eichenbaum, Adam S.; Starrett, Michael J.; Rose, Nathan S.; Emrich, Stephen M.; Postle, Bradley R.

    2015-01-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items. PMID:25472902

  18. The short- and long-term fates of memory items retained outside the focus of attention.

    PubMed

    LaRocque, Joshua J; Eichenbaum, Adam S; Starrett, Michael J; Rose, Nathan S; Emrich, Stephen M; Postle, Bradley R

    2015-04-01

    When a test of working memory (WM) requires the retention of multiple items, a subset of them can be prioritized. Recent studies have shown that, although prioritized (i.e., attended) items are associated with active neural representations, unprioritized (i.e., unattended) memory items can be retained in WM despite the absence of such active representations, and with no decrement in their recognition if they are cued later in the trial. These findings raise two intriguing questions about the nature of the short-term retention of information outside the focus of attention. First, when the focus of attention shifts from items in WM, is there a loss of fidelity for those unattended memory items? Second, could the retention of unattended memory items be accomplished by long-term memory mechanisms? We addressed the first question by comparing the precision of recall of attended versus unattended memory items, and found a significant decrease in precision for unattended memory items, reflecting a degradation in the quality of those representations. We addressed the second question by asking subjects to perform a WM task, followed by a surprise memory test for the items that they had seen in the WM task. Long-term memory for unattended memory items from the WM task was not better than memory for items that had remained selected by the focus of attention in the WM task. These results show that unattended WM representations are degraded in quality and are not preferentially represented in long-term memory, as compared to attended memory items.

  19. Electrical Characterization of the RCA CDP1822SD Random Access Memory, Volume 1, Appendix a

    NASA Technical Reports Server (NTRS)

    Klute, A.

    1979-01-01

    Electrical characteristization tests were performed on 35 RCA CDP1822SD, 256-by-4-bit, CMOS, random access memories. The tests included three functional tests, AC and DC parametric tests, a series of schmoo plots, rise/fall time screening, and a data retention test. All tests were performed on an automated IC test system with temperatures controlled by a thermal airstream unit. All the functional tests, the data retention test, and the AC and DC parametric tests were performed at ambient temperatures of 25 C, -20 C, -55 C, 85 C, and 125 C. The schmoo plots were performed at ambient temperatures of 25 C, -55 C, and 125 C. The data retention test was performed at 25 C. Five devices failed one or more functional tests and four of these devices failed to meet the expected limits of a number of AC parametric tests. Some of the schmoo plots indicated a small degree of interaction between parameters.

  20. Comparing the benefits of caffeine, naps and placebo on verbal, motor and perceptual memory.

    PubMed

    Mednick, Sara C; Cai, Denise J; Kanady, Jennifer; Drummond, Sean P A

    2008-11-03

    Caffeine, the world's most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60-90min) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7h retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task (FTT) and texture discrimination task (TDT)) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7h and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised.

  1. Practicing more retrieval routes leads to greater memory retention.

    PubMed

    Zheng, Jun; Zhang, Wei; Li, Tongtong; Liu, Zhaomin; Luo, Liang

    2016-09-01

    A wealth of research has shown that retrieval practice plays a significant role in improving memory retention. The current study focused on one simple yet rarely examined question: would repeated retrieval using two different retrieval routes or using the same retrieval route twice lead to greater long-term memory retention? Participants elaborately learned 22 Japanese-Chinese translation word pairs using two different mediators. Half an hour after the initial study phase, the participants completed two retrieval sessions using either one mediator (Tm1Tm1) or two different mediators (Tm1Tm2). On the final test, which was performed 1week after the retrieval practice phase, the participants received only the cue with a request to report the mediator (M1 or M2) followed by the target (Experiment 1) or only the mediator (M1 or M2) with a request to report the target (Experiment 2). The results of Experiment 1 indicated that the participants who practiced under the Tm1Tm2 condition exhibited greater target retention than those who practiced under the Tm1Tm1 condition. This difference in performance was due to the significant disadvantage in mediator retrieval and decoding of the unpracticed mediator under the Tm1Tm1 condition. Although mediators were provided to participants on the final test in Experiment 2, decoding of the unpracticed mediators remained less effective than decoding of the practiced mediators. We conclude that practicing multiple retrieval routes leads to greater memory retention than focusing on a single retrieval route. Thus, increasing retrieval variability during repeated retrieval practice indeed significantly improves long-term retention in a delay test. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Learning and Overnight Retention in Declarative Memory in Specific Language Impairment

    PubMed Central

    Lukács, Ágnes; Kemény, Ferenc; Lum, Jarrad A. G.; Ullman, Michael T.

    2017-01-01

    We examined learning and retention in nonverbal and verbal declarative memory in Hungarian children with (n = 21) and without (n = 21) SLI. Recognition memory was tested both 10 minutes and one day after encoding. On nonverbal items, only the children with SLI improved overnight, with no resulting group differences in performance. In the verbal domain, the children with SLI consistently showed worse performance than the typically-developing children, but the two groups showed similar overnight changes. The findings suggest the possibility of spared or even enhanced declarative memory consolidation in SLI. PMID:28046095

  3. Retrieval and Sleep Both Counteract the Forgetting of Spatial Information

    ERIC Educational Resources Information Center

    Antony, James W.; Paller, Ken A.

    2018-01-01

    Repeatedly studying information is a good way to strengthen memory storage. Nevertheless, testing recall often produces superior long-term retention. Demonstrations of this testing effect, typically with verbal stimuli, have shown that repeated retrieval through testing reduces forgetting. Sleep also benefits memory storage, perhaps through…

  4. Robust memory of where from way back when: evidence from behaviour and visual attention.

    PubMed

    Bauer, Patricia J; Stewart, Rebekah; Sirkin, Ruth E; Larkina, Marina

    2017-09-01

    Retention of events typically exhibits a sharp initial decrease followed by levelling off of forgetting. In an apparent exception to this general rule, college students have robust memory for their own locations in obscured versions of photographs of their entering classes taken during orientation-related activities, whether tested 2 months or 42 months after the event. Experiment 1 of the present research was a test for conceptual replication of this finding in photographs depicting more than twice the number of students (and thus potential distracters). There was no difference in memory accuracy for personal spatial location across retention intervals of 6-30 months. Experiment 2 featured 40-h and 2-month retention intervals, thereby providing a more fine-grained test of the forgetting function. The findings replicated Experiment 1. In Experiment 3, eye-tracking measures of visual attention revealed that participants rapidly fixated their own spatial locations within the photographs, even in the absence of explicit awareness. In all three experiments, memory for temporal features of the orientation activities (e.g., day and time the photograph was taken) followed the typical forgetting function. The findings suggest differential preservation of episodic memory for where relative to other aspects of events and experiences, such as when.

  5. When Does Testing Enhance Retention? A Distribution-Based Interpretation of Retrieval as a Memory Modifier

    ERIC Educational Resources Information Center

    Halamish, Vered; Bjork, Robert A.

    2011-01-01

    Tests, as learning events, can enhance subsequent recall more than do additional study opportunities, even without feedback. Such advantages of testing tend to appear, however, only at long retention intervals and/or when criterion tests stress recall, rather than recognition, processes. We propose that the interaction of the benefits of testing…

  6. Neuropeptide Trefoil factor 3 improves learning and retention of novel object recognition memory in mice.

    PubMed

    Shi, Hai-Shui; Yin, Xi; Song, Li; Guo, Qing-Jun; Luo, Xiang-Heng

    2012-02-01

    Accumulating evidence has implicated neuropeptides in modulating recognition, learning and memory. However, to date, no study has investigated the effects of neuropeptide Trefoil factor 3 (TFF3) on the process of learning and memory. In the present study, we evaluated the acute effects of TFF3 administration (0.1 and 0.5mg/kg, i.p.) on the acquisition and retention of object recognition memory in mice. We found that TFF3 administration significantly enhanced both short-term and long-term memory during the retention test, conducted 90 min and 24h after training respectively. Remarkably, acute TFF3 administration transformed a learning event that would not normally result in long-term memory into an event retained for a long-term period and produced no effect on locomotor activity in mice. In conclusion, the present results provide an important role of TFF3 in improving object recognition memory and reserving it for a longer time, which suggests a potential therapeutic application for diseases with recognition and memory impairment. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. The Influence of Retrieval Practice on Memory and Comprehension of Science Texts

    ERIC Educational Resources Information Center

    Hinze, Scott R.

    2010-01-01

    The testing effect, where retrieval practice aids performance on later tests, may be a powerful tool for improving learning and retention. Three experiments test the potentials and limitations of retrieval practice for retention and comprehension of the content of science texts. Experiment 1 demonstrated that cued recall of paragraphs, but not…

  8. Verbal and non-verbal memory and hippocampal volumes in a memory clinic population.

    PubMed

    Bonner-Jackson, Aaron; Mahmoud, Shamseldeen; Miller, Justin; Banks, Sarah J

    2015-10-15

    Better characterization of the relationship between episodic memory and hippocampal volumes is crucial in early detection of neurodegenerative disease. We examined these relationships in a memory clinic population. Participants (n = 226) underwent structural magnetic resonance imaging and tests of verbal (Hopkins Verbal Learning Test-Revised, HVLT-R) and non-verbal (Brief Visuospatial Memory Test-Revised, BVMT-R) memory. Correlational analyses were performed, and analyses on clinical subgroups (i.e., amnestic Mild Cognitive Impairment, non-amnestic Mild Cognitive Impairment, probable Alzheimer's disease, intact memory) were conducted. Positive associations were identified between bilateral hippocampal volumes and both memory measures, and BVMT-R learning slope was more strongly positively associated with hippocampal volumes than HVLT-R learning slope. Amnestic Mild Cognitive Impairment (aMCI) participants showed specific positive associations between BVMT-R performance and hippocampal volumes bilaterally. Additionally, analyses of the aMCI group showed trend-level evidence of material-specific lateralization, such that retention of verbal information was positively associated with left hippocampal volume, whereas learning curve and retention of non-verbal information was positively associated with right hippocampal volume. Findings support the link between episodic memory and hippocampal volumes in a memory clinic population. Non-verbal memory measures also may have higher diagnostic value, particularly in individuals at elevated risk for Alzheimer's disease.

  9. Noradrenergic activation of the basolateral amygdala maintains hippocampus-dependent accuracy of remote memory

    PubMed Central

    Atucha, Erika; Vukojevic, Vanja; Fornari, Raquel V.; Ronzoni, Giacomo; Demougin, Philippe; Peter, Fabian; Atsak, Piray; Coolen, Marcel W.; Papassotiropoulos, Andreas; McGaugh, James L.; de Quervain, Dominique J.-F.; Roozendaal, Benno

    2017-01-01

    Emotional enhancement of memory by noradrenergic mechanisms is well-described, but the long-term consequences of such enhancement are poorly understood. Over time, memory traces are thought to undergo a neural reorganization, that is, a systems consolidation, during which they are, at least partly, transferred from the hippocampus to neocortical networks. This transfer is accompanied by a decrease in episodic detailedness. Here we investigated whether norepinephrine (NE) administration into the basolateral amygdala after training on an inhibitory avoidance discrimination task, comprising two distinct training contexts, alters systems consolidation dynamics to maintain episodic-like accuracy and hippocampus dependency of remote memory. At a 2-d retention test, both saline- and NE-treated rats accurately discriminated the training context in which they had received footshock. Hippocampal inactivation with muscimol before retention testing disrupted discrimination of the shock context in both treatment groups. At 28 d, saline-treated rats showed hippocampus-independent retrieval and lack of discrimination. In contrast, NE-treated rats continued to display accurate memory of the shock–context association. Hippocampal inactivation at this remote retention test blocked episodic-like accuracy and induced a general memory impairment. These findings suggest that the NE treatment altered systems consolidation dynamics by maintaining hippocampal involvement in the memory. This shift in systems consolidation was paralleled by time-regulated DNA methylation and transcriptional changes of memory-related genes, namely Reln and Pkmζ, in the hippocampus and neocortex. The findings provide evidence suggesting that consolidation of emotional memories by noradrenergic mechanisms alters systems consolidation dynamics and, as a consequence, influences the maintenance of long-term episodic-like accuracy of memory. PMID:28790188

  10. The mitigating effect of repeated memory reactivations on forgetting

    NASA Astrophysics Data System (ADS)

    MacLeod, Sydney; Reynolds, Michael G.; Lehmann, Hugo

    2018-12-01

    Memory reactivation is a process whereby cueing or recalling a long-term memory makes it enter a new active and labile state. Substantial evidence suggests that during this state the memory can be updated (e.g., adding information) and can become more vulnerable to disruption (e.g., brain insult). Memory reactivations can also prevent memory decay or forgetting. However, it is unclear whether cueing recall of a feature or component of the memory can benefit retention similarly to promoting recall of the entire memory. We examined this possibility by having participants view a series of neutral images and then randomly assigning them to one of four reactivation groups: control (no reactivation), distractor (reactivation of experimental procedures), component (image category reactivation), and descriptive (effortful description of the images). The experiment also included three retention intervals: 1 h, 9 days, and 28 days. Importantly, the participants received three reactivations equally spaced within their respective retention interval. At the end of the interval, all the participants were given an in-lab free-recall test in which they were asked to write down each image they remembered with as many details as possible. The data revealed that both the participants in the descriptive reactivation and component reactivation groups remembered significantly more than the participants in the control groups, with the effect being most pronounced in the 28-day retention interval condition. These findings suggest that memory reactivation, even component reactivation of a memory, makes memories more resistant to decay.

  11. Memory effects of Aronia melanocarpa fruit juice in a passive avoidance test in rats.

    PubMed

    Valcheva-Kuzmanova, Stefka V; Eftimov, Miroslav Tz; Tashev, Roman E; Belcheva, Iren P; Belcheva, Stiliana P

    2014-01-01

    To study the effect of Aronia melanocarpa fruit juice on memory in male Wistar rats. The juice was administered orally for 7, 14, 21 and 30 days at doses of 2.5 ml/kg, 5 ml/kg and 10 ml/kg. Memory was assessed in the one-way passive avoidance task (step through) which consisted of one training session and two retention tests (3 hours and 24 hours after training). The variables measured were the latency time to step into the dark compartment of the apparatus and the learning criterion (remaining in the illuminated compartment for at least 180 sec). Oral administration of Aronia melanocarpa fruit juice for 7 and 14 days resulted in a dose-dependent tendency to increase the latency time and the learning criterion compared to saline-treated controls but the effect failed to reach statistical significance. After 21 days of treatment, the juice dose-dependently prolonged the latency time at the retention tests, the effect being significant at doses of 5 ml/kg and 10 ml/kg. Applied for 30 days, the juice in all the tested doses increased significantly the latency time at the retention tests and the dose of 10 ml/kg significantly increased the percentage of rats reaching the learning criterion. These findings suggest that Aronia melanocarpa fruit juice could improve memory in rats. The effect is probably due to the polyphenolic ingredients of the juice which have been shown to be involved in learning and memory processes.

  12. Recognition memory across the lifespan: the impact of word frequency and study-test interval on estimates of familiarity and recollection

    PubMed Central

    Meier, Beat; Rey-Mermet, Alodie; Rothen, Nicolas; Graf, Peter

    2013-01-01

    The goal of this study was to investigate recognition memory performance across the lifespan and to determine how estimates of recollection and familiarity contribute to performance. In each of three experiments, participants from five groups from 14 up to 85 years of age (children, young adults, middle-aged adults, young-old adults, and old-old adults) were presented with high- and low-frequency words in a study phase and were tested immediately afterwards and/or after a one day retention interval. The results showed that word frequency and retention interval affected recognition memory performance as well as estimates of recollection and familiarity. Across the lifespan, the trajectory of recognition memory followed an inverse u-shape function that was neither affected by word frequency nor by retention interval. The trajectory of estimates of recollection also followed an inverse u-shape function, and was especially pronounced for low-frequency words. In contrast, estimates of familiarity did not differ across the lifespan. The results indicate that age differences in recognition memory are mainly due to differences in processes related to recollection while the contribution of familiarity-based processes seems to be age-invariant. PMID:24198796

  13. Do as I … Did! Long-term memory of imitative actions in dogs (Canis familiaris).

    PubMed

    Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám

    2016-03-01

    This study demonstrates long-term declarative memory of imitative actions in a non-human animal species. We tested 12 pet dogs for their ability to imitate human actions after retention intervals ranging from 1 to 24 h. For comparison, another 12 dogs were tested for the same actions without delay between demonstration and recall. Our test consisted of a modified version of the Do as I Do paradigm, combined with the two-action procedure to control for non-imitative processes. Imitative performance of dogs remained consistently high independent of increasing retention intervals, supporting the idea that dogs are able to retain mental representations of human actions for an extended period of time. The ability to imitate after such delays supports the use of long-term declarative memory.

  14. Involvement of hippocampal NMDA receptors in encoding and consolidation, but not retrieval, processes of spontaneous object location memory in rats.

    PubMed

    Yamada, Kazuo; Arai, Misaki; Suenaga, Toshiko; Ichitani, Yukio

    2017-07-28

    The hippocampus is thought to be involved in object location recognition memory, yet the contribution of hippocampal NMDA receptors to the memory processes, such as encoding, retention and retrieval, is unknown. First, we confirmed that hippocampal infusion of a competitive NMDA receptor antagonist, AP5 (2-amino-5-phosphonopentanoic acid, 20-40nmol), impaired performance of spontaneous object location recognition test but not that of novel object recognition test in Wistar rats. Next, the effects of hippocampal AP5 treatment on each process of object location recognition memory were examined with three different injection times using a 120min delay-interposed test: 15min before the sample phase (Time I), immediately after the sample phase (Time II), and 15min before the test phase (Time III). The blockade of hippocampal NMDA receptors before and immediately after the sample phase, but not before the test phase, markedly impaired performance of object location recognition test, suggesting that hippocampal NMDA receptors play an important role in encoding and consolidation/retention, but not retrieval, of spontaneous object location memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sleep confers a benefit for retention of statistical language learning in 6.5month old infants.

    PubMed

    Simon, Katharine N S; Werchan, Denise; Goldstein, Michael R; Sweeney, Lucia; Bootzin, Richard R; Nadel, Lynn; Gómez, Rebecca L

    2017-04-01

    Infants show robust ability to track transitional probabilities within language and can use this information to extract words from continuous speech. The degree to which infants remember these words across a delay is unknown. Given well-established benefits of sleep on long-term memory retention in adults, we examine whether sleep similarly facilitates memory in 6.5month olds. Infants listened to an artificial language for 7minutes, followed by a period of sleep or wakefulness. After a time-matched delay for sleep and wakefulness dyads, we measured retention using the head-turn-preference procedure. Infants who slept retained memory for the extracted words that was prone to interference during the test. Infants who remained awake showed no retention. Within the nap group, retention correlated with three electrophysiological measures (1) absolute theta across the brain, (2) absolute alpha across the brain, and (3) greater fronto-central slow wave activity (SWA). Copyright © 2016 Elsevier Inc. All rights reserved.

  16. A Diffusion Model Analysis of Decision Biases Affecting Delayed Recognition of Emotional Stimuli.

    PubMed

    Bowen, Holly J; Spaniol, Julia; Patel, Ronak; Voss, Andreas

    2016-01-01

    Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory.

  17. Comparing the benefits of Caffeine, Naps and Placebo on Verbal, Motor and Perceptual Memory

    PubMed Central

    Mednick, Sara C.; Cai, Denise J.; Kanady, Jennifer; Drummond, Sean P.A.

    2008-01-01

    Caffeine, the world’s most common psychoactive substance, is used by approximately 90% of North Americans everyday. Little is known, however, about its benefits for memory. Napping has been shown to increase alertness and promote learning on some memory tasks. We directly compared caffeine (200mg) with napping (60–90 minutes) and placebo on three distinct memory processes: declarative verbal memory, procedural motor skills, and perceptual learning. In the verbal task, recall and recognition for unassociated words were tested after a 7hr retention period (with a between-session nap or drug intervention). A second, different, word list was administered post-intervention and memory was tested after a 20min retention period. The non-declarative tasks (finger tapping task and texture discrimination task) were trained before the intervention and then retested afterwards. Naps enhanced recall of words after a 7hr and 20min retention interval relative to both caffeine and placebo. Caffeine significantly impaired motor learning compared to placebo and naps. Napping produced robust perceptual learning compared with placebo; however, naps and caffeine were not significantly different. These findings provide evidence of the limited benefits of caffeine for memory improvement compared with napping. We hypothesize that impairment from caffeine may be restricted to tasks that contain explicit information; whereas strictly implicit learning is less compromised. PMID:18554731

  18. Learning From Tests: Facilitation of Delayed Recall by Initial Recognition Alternatives.

    ERIC Educational Resources Information Center

    Whitten, William B., II; Leonard, Janet Mauriello

    1980-01-01

    Two experiments were designed to determine the effects of multiple-choice recognition test alternatives on subsequent memory for the correct answers. Results of both experiments are interpreted as demonstrations of the principle that long-term retention is facilitated such that memory evaluation occurs during initial recognition tests. (Author/RD)

  19. Selective interference with image retention and generation: evidence for the workspace model.

    PubMed

    van der Meulen, Marian; Logie, Robert H; Della Sala, Sergio

    2009-08-01

    We address three types of model of the relationship between working memory (WM) and long-term memory (LTM): (a) the gateway model, in which WM acts as a gateway between perceptual input and LTM; (b) the unitary model, in which WM is seen as the currently activated areas of LTM; and (c) the workspace model, in which perceptual input activates LTM, and WM acts as a separate workspace for processing and temporary retention of these activated traces. Predictions of these models were tested, focusing on visuospatial working memory and using dual-task methodology to combine two main tasks (visual short-term retention and image generation) with two interference tasks (irrelevant pictures and spatial tapping). The pictures selectively disrupted performance on the generation task, whereas the tapping selectively interfered with the retention task. Results are consistent with the predictions of the workspace model.

  20. Memory retrieval as a self-propagating process.

    PubMed

    Bäuml, Karl-Heinz T; Schlichting, Andreas

    2014-07-01

    Retrieval of a subset of studied items and the presentation of those items as retrieval cues typically impair retrieval of the other items. Previous research on this self-limiting property of memory retrieval has relied heavily on short retention intervals and similar context between encoding and test. Here, we examined retrieval dynamics also after a prolonged retention interval with different spatial and social context between encoding and test, conditions that mimic people's remembering in many situations of daily life. For both unrelated word lists and more integrated prose material, we found retrieval and cuing to impair recall of other studied items after a short retention interval, but to improve recall in the prolonged retention interval condition. The results demonstrate that retrieval dynamics depend critically on situation, indicating that quite often in daily life, retrieval may be a self-propagating, rather than a self-limiting process. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Long-Term Effects of {sup 56}Fe Irradiation on Spatial Memory of Mice: Role of Sex and Apolipoprotein E Isoform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villasana, Laura E.; Benice, Theodore S.; Raber, Jacob, E-mail: raberj@ohsu.ed

    Purpose: To assess whether the effects of cranial {sup 56}Fe irradiation on the spatial memory of mice in the water maze are sex and apolipoprotein E (apoE) isoform dependent and whether radiation-induced changes in spatial memory are associated with changes in the dendritic marker microtubule-associated protein 2 (MAP-2) and the presynaptic marker synaptophysin. Methods and Materials: Two-month-old male and female mice expressing human apoE3 or apoE4 received either a 3-Gy dose of cranial {sup 56}Fe irradiation (600 MeV/amu) or sham irradiation. Mice were tested in a water maze task 13 months later to assess effects of irradiation on spatial memorymore » retention. After behavioral testing, the brain tissues of these mice were analyzed for synaptophysin and MAP-2 immunoreactivity. Results: After irradiation, spatial memory retention of apoE3 female, but not male, mice was impaired. A general genotype deficit in spatial memory was observed in sham-irradiated apoE4 mice. Strikingly, irradiation prevented this genotype deficit in apoE4 male mice. A similar but nonsignificant trend was observed in apoE4 female mice. Although there was no change in MAP-2 immunoreactivity after irradiation, synaptophysin immunoreactivity was increased in irradiated female mice, independent of genotype. Conclusions: The effects of {sup 56}Fe irradiation on the spatial memory retention of mice are critically influenced by sex, and the direction of these effects is influenced by apoE isoform. Although in female mice synaptophysin immunoreactivity provides a sensitive marker for effects of irradiation, it cannot explain the apoE genotype-dependent effects of irradiation on the spatial memory retention of the mice.« less

  2. Dynamic visual noise reduces confidence in short-term memory for visual information.

    PubMed

    Kemps, Eva; Andrade, Jackie

    2012-05-01

    Previous research has shown effects of the visual interference technique, dynamic visual noise (DVN), on visual imagery, but not on visual short-term memory, unless retention of precise visual detail is required. This study tested the prediction that DVN does also affect retention of gross visual information, specifically by reducing confidence. Participants performed a matrix pattern memory task with three retention interval interference conditions (DVN, static visual noise and no interference control) that varied from trial to trial. At recall, participants indicated whether or not they were sure of their responses. As in previous research, DVN did not impair recall accuracy or latency on the task, but it did reduce recall confidence relative to static visual noise and no interference. We conclude that DVN does distort visual representations in short-term memory, but standard coarse-grained recall measures are insensitive to these distortions.

  3. Mixed evidence for the potential of non-invasive transcutaneous vagal nerve stimulation to improve the extinction and retention of fear.

    PubMed

    Burger, A M; Verkuil, B; Fenlon, H; Thijs, L; Cools, L; Miller, H C; Vervliet, B; Van Diest, I

    2017-10-01

    Extinction memories are fragile and their formation has been proposed to partially rely on vagus nerve activity. We tested whether stimulating the auricular branch of the vagus (transcutaneous VNS; tVNS) accelerates extinction and reduces spontaneous recovery of fear. Forty-two healthy students participated in a 3-day fear conditioning study, where we tested fear acquisition (day 1), fear extinction (day 2) and the retention of the extinction memory (day 3). During extinction, participants were randomly allocated to receive tVNS or sham stimulation concurrently with each CS presentation. During the acquisition and retention phases, all participants received sham stimulation. Indexes of fear included US-expectancy, startle blink EMG and skin conductance responses. Results showed successful acquisition and extinction of fear in all measures. tVNS facilitated the extinction of declarative fear (US expectancy ratings), but did not promote a stronger retention of the declarative extinction memory. No clear effects of tVNS on extinction and retention of extinction were found for the psychophysiological indexes. The present findings provide tentative indications that tVNS could be a promising tool to improve fear extinction and call for larger scale studies to replicate these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The perirhinal cortex of the rat is necessary for spatial memory retention long after but not soon after learning.

    PubMed

    Ramos, Juan M J; Vaquero, Joaquín M M

    2005-09-15

    Many observations in humans and experimental animals support the view that the hippocampus is critical immediately after learning in order for long-term memory formation to take place. However, exactly when the medial temporal cortices adjacent to the hippocampus are necessary for this process to occur normally is not yet well known. Using a spatial task, we studied whether the perirhinal cortex of rats is necessary to establish representations in long-term memory. Results showed that, in a spatial task sensitive to hippocampal lesions, control and perirhinal lesioned rats can both learn at the same rate (Experiment 1). Interestingly, a differential involvement of the perirhinal cortex in memory retention was observed as time passes after learning. Thus, 24 days following the end of learning, lesioned and control rats remembered the task perfectly as measured by a retraining test. In contrast, 74 days after the learning the perirhinal animals showed a profound impairment in the retention of the spatial information (Experiment 2). Taken together, these results suggest that the perirhinal region is critical for the formation of long-term spatial memory. However, its contribution to memory formation and retention is time-dependent, it being necessary only long after learning takes place and not during the phase immediately following acquisition.

  5. Estradiol enhances retention but not organization of hippocampus-dependent memory in intact male mice.

    PubMed

    Al Abed, Alice Shaam; Sellami, Azza; Brayda-Bruno, Laurent; Lamothe, Valérie; Noguès, Xavier; Potier, Mylène; Bennetau-Pelissero, Catherine; Marighetto, Aline

    2016-07-01

    Because estrogens have mostly been studied in gonadectomized females, effects of chronic exposure to environmental estrogens in the general population are underestimated. Estrogens can enhance hippocampus-dependent memory through the modulation of information storage. However, declarative memory, the hippocampus-dependent memory of facts and events, demands more than abilities to retain information. Specifically, memory of repetitive events of everyday life such as "where I parked" requires abilities to organize/update memories to prevent proactive interference from similar memories of previous "parking events". Whether such organizational processes are estrogen-sensitive is unknown. We here studied, in intact young and aged adult mice, drinking-water (1μM) estradiol effects on both retention and organizational components of hippocampus-dependent memory, using a radial-maze task of everyday-like memory. Demand on retention vs organization was manipulated by varying the time-interval separating repetitions of similar events. Estradiol increased performance in young and aged mice under minimized organizational demand, but failed to improve the age-associated memory impairment and diminished performance in young mice under high organizational demand. In fact, estradiol prolonged mnemonic retention of successive events without improving organization abilities, hence resulted in more proactive interference from irrelevant memories. c-Fos imaging of testing-induced brain activations showed that the deterioration of young memory was associated with dentate gyrus dysconnectivity, reminiscent of that seen in aged mice. Our findings support the view that estradiol is promnesic but also reveal that such property can paradoxically impair memory. These findings have important outcomes regarding health issues relative to the impact of environmental estrogens in the general population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Role of kinin B1 and B2 receptors in memory consolidation during the aging process of mice.

    PubMed

    Lemos, Mayra Tolentino Resk; Amaral, Fabio Agostini; Dong, Karis Ester; Bittencourt, Maria Fernanda Queiroz Prado; Caetano, Ariadiny Lima; Pesquero, João Bosco; Viel, Tania Araujo; Buck, Hudson Sousa

    2010-04-01

    Under physiological conditions, elderly people present memory deficit associated with neuronal loss. This pattern is also associated with Alzheimer's disease but, in this case, in a dramatically intensified level. Kinin receptors have been involved in neurodegeneration and increase of amyloid-beta concentration, associated with Alzheimer's disease (AD). Considering these findings, this work evaluated the role of kinin receptors in memory consolidation during the aging process. Male C57Bl/6 (wt), knock-out B1 (koB1) or B2 (koB2) mice (3, 6, 12 and 18-month-old - mo; n=10 per group) were submitted to an acquisition session, reinforcement to learning (24h later: test 1) and final test (7days later: test 2), in an active avoidance apparatus, to evaluate memory. Conditioned avoidance responses (CAR, % of 50 trials) were registered. In acquisition sessions, similar CAR were obtained among age matched animals from all strains. However, a significant decrease in CAR was observed throughout the aging process (3mo: 8.8+/-2.3%; 6mo: 4.1+/-0.6%; 12mo: 2.2+/-0.6%, 18mo: 3.6+/-0.6%, P<0.01), indicating a reduction in the learning process. In test 1, as expected, memory retention increased significantly (P<0.05) in all 3- and 6-month-old animals as well as in 12-month-old-wt and 12-month-old-koB1 (P<0.01), compared to the training session. However, 12-month-old-koB2 and all 18-month-old animals did not show an increase in memory retention. In test 2, 3- and 6-month-old wt and koB1 mice of all ages showed a significant improvement in memory (P<0.05) compared to test 1. However, 12-month-old wt and koB2 mice of all ages showed no difference in memory retention. We suggest that, during the aging process, the B1 receptor could be involved in neurodegeneration and memory loss. Nevertheless, the B2 receptor is apparently acting as a neuroprotective factor. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Paradoxical Effects of Testing: Retrieval Enhances Both Accurate Recall and Suggestibility in Eyewitnesses

    ERIC Educational Resources Information Center

    Chan, Jason C. K.; Langley, Moses M.

    2011-01-01

    Although retrieval practice typically enhances memory retention, it can also impair subsequent eyewitness memory accuracy (Chan, Thomas, & Bulevich, 2009). Specifically, participants who had taken an initial test about a witnessed event were more likely than nontested participants to recall subsequently encountered misinformation--an effect we…

  8. The Effect of Retrieval Cues on Visual Preferences and Memory in Infancy: Evidence for a Four-Phase Attention Function.

    ERIC Educational Resources Information Center

    Bahrick, Lorraine E.; Hernandez-Reif, Maria; Pickens, Jeffrey N.

    1997-01-01

    Tested hypothesis from Bahrick and Pickens' infant attention model that retrieval cues increase memory accessibility and shift visual preferences toward greater novelty to resemble recent memories. Found that after retention intervals associated with remote or intermediate memory, previous familiarity preferences shifted to null or novelty…

  9. Short-term memory across eye blinks.

    PubMed

    Irwin, David E

    2014-01-01

    The effect of eye blinks on short-term memory was examined in two experiments. On each trial, participants viewed an initial display of coloured, oriented lines, then after a retention interval they viewed a test display that was either identical or different by one feature. Participants kept their eyes open throughout the retention interval on some blocks of trials, whereas on others they made a single eye blink. Accuracy was measured as a function of the number of items in the display to determine the capacity of short-term memory on blink and no-blink trials. In separate blocks of trials participants were instructed to remember colour only, orientation only, or both colour and orientation. Eye blinks reduced short-term memory capacity by approximately 0.6-0.8 items for both feature and conjunction stimuli. A third, control, experiment showed that a button press during the retention interval had no effect on short-term memory capacity, indicating that the effect of an eye blink was not due to general motoric dual-task interference. Eye blinks might instead reduce short-term memory capacity by interfering with attention-based rehearsal processes.

  10. Visual-Spatial Attention Aids the Maintenance of Object Representations in Visual Working Memory

    PubMed Central

    Williams, Melonie; Pouget, Pierre; Boucher, Leanne; Woodman, Geoffrey F.

    2013-01-01

    Theories have proposed that the maintenance of object representations in visual working memory is aided by a spatial rehearsal mechanism. In this study, we used two different approaches to test the hypothesis that overt and covert visual-spatial attention mechanisms contribute to the maintenance of object representations in visual working memory. First, we tracked observers’ eye movements while remembering a variable number of objects during change-detection tasks. We observed that during the blank retention interval, participants spontaneously shifted gaze to the locations that the objects had occupied in the memory array. Next, we hypothesized that if attention mechanisms contribute to the maintenance of object representations, then drawing attention away from the object locations during the retention interval would impair object memory during these change-detection tasks. Supporting this prediction, we found that attending to the fixation point in anticipation of a brief probe stimulus during the retention interval reduced change-detection accuracy even on the trials in which no probe occurred. These findings support models of working memory in which visual-spatial selection mechanisms contribute to the maintenance of object representations. PMID:23371773

  11. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice.

    PubMed

    Boccia, M M; Blake, M G; Krawczyk, M C; Baratti, C M

    2011-07-07

    Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Acute Exercise Improves Motor Memory Consolidation in Preadolescent Children

    PubMed Central

    Lundbye-Jensen, Jesper; Skriver, Kasper; Nielsen, Jens B.; Roig, Marc

    2017-01-01

    Objective: The ability to acquire new motor skills is essential both during childhood and later in life. Recent studies have demonstrated that an acute bout of exercise can improve motor memory consolidation in adults. The objective of the present study was to investigate whether acute exercise protocols following motor skill practice in a school setting can also improve long-term retention of motor memory in preadolescent children. Methods: Seventy-seven pre-adolescent children (age 10.5 ± 0.75 (SD)) participated in the study. Prior to the main experiment age, BMI, fitness status and general physical activity level was assessed in all children and they were then randomly allocated to three groups. All children practiced a visuomotor tracking task followed by 20 min of rest (CON), high intensity intermittent floorball (FLB) or running (RUN) with comparable exercise intensity and duration for exercise groups. Delayed retention of motor memory was assessed 1 h, 24 h and 7 days after motor skill acquisition. Results: During skill acquisition, motor performance improved significantly to the immediate retention test with no differences between groups. One hour following skill acquisition, motor performance decreased significantly for RUN. Twenty-four hours following skill acquisition there was a tendency towards improved performance for FLB but no significant effects. Seven days after motor practice however, both FLB and RUN performed better when compared to their immediate retention test indicating significant offline gains. This effect was not observed for CON. In contrast, 7 days after motor practice, retention of motor memory was significantly better for FLB and RUN compared to CON. No differences were observed when comparing FLB and RUN. Conclusions: Acute intense intermittent exercise performed immediately after motor skill acquisition facilitates long-term motor memory in pre-adolescent children, presumably by promoting memory consolidation. The results also demonstrate that the effects can be accomplished in a school setting. The positive effect of both a team game (i.e., FLB) and running indicates that the observed memory improvements are determined to a larger extent by physiological factors rather than the types of movements performed during the exercise protocol. PMID:28473761

  13. Capturing real-life forgetting in transient epileptic amnesia via an incidental memory test.

    PubMed

    Hoefeijzers, Serge; Zeman, Adam; Della Sala, Sergio; Dewar, Michaela

    2017-12-13

    Transient epileptic amnesia (TEA) is an epileptic syndrome characterized by recurrent, brief episodes of amnesia. Patients with TEA often complain of interictal (between attacks) retention deficits, characterised by an 'evaporation' of memories for recent events over days to weeks. Clinical tests of anterograde memory often fail to corroborate these complaints as TEA patients commonly perform within the normal range after the standard 10-30-min delay period. Modified laboratory tests that include a 1-3 week delay period frequently reveal clear evidence of 'accelerated long-term forgetting' (ALF). However, they are not used routinely and lack ecological validity. In the present study we examined whether 'real-life' ALF can be captured via a controlled incidental memory test in TEA patients. To this end, the experimenter told 27 TEA patients and 32 controls a well-rehearsed amusing story, apparently as a way of making light conversation before starting a set of research experiments. Without prior warning, the experimenter subsequently probed the participants' memory of this story via tests of free recall and forced choice recognition after 30 min or 1 week. After 30 min retention was comparable in TEA patients and controls. After 1 week TEA patients retained significantly less story material than controls, and significant ALF was revealed in the TEA patients in the recognition test. Our data show that ALF in a 'real-life' situation can occur even when standard memory tests indicate normal memory function. Moreover, our data suggest that incidental memory tests can capture real-life ALF, and that forced-choice recognition tests might be more sensitive than free recall tests for the detection of real-life ALF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Effects of ketamine, dexmedetomidine and propofol anesthesia on emotional memory consolidation in rats: Consequences for the development of post-traumatic stress disorder.

    PubMed

    Morena, Maria; Berardi, Andrea; Peloso, Andrea; Valeri, Daniela; Palmery, Maura; Trezza, Viviana; Schelling, Gustav; Campolongo, Patrizia

    2017-06-30

    Intensive Care Unit (ICU) or emergency care patients, exposed to traumatic events, are at increased risk for Post-Traumatic Stress Disorder (PTSD) development. Commonly used sedative/anesthetic agents can interfere with the mechanisms of memory formation, exacerbating or attenuating the memory for the traumatic event, and subsequently promote or reduce the risk of PTSD development. Here, we evaluated the effects of ketamine, dexmedetomidine and propofol on fear memory consolidation and subsequent cognitive and emotional alterations related to traumatic stress exposure. Immediately following an inhibitory avoidance training, rats were intraperitoneally injected with ketamine (100-125mg/kg), dexmedetomidine (0.3-0.4mg/kg) or their vehicle and tested for 48h memory retention. Furthermore, the effects of ketamine (125mg/kg), dexmedetomidine (0.4mg/kg), propofol (300mg/kg) or their vehicle on long-term memory and social interaction were evaluated two weeks after drug injection in a rat PTSD model. Ketamine anesthesia increased memory retention without altering the traumatic memory strength in the PTSD model. However, ketamine induced a long-term reduction of social behavior. Conversely, dexmedetomidine markedly impaired memory retention, without affecting long-lasting cognitive or emotional behaviors in the PTSD model. We have previously shown that propofol anesthesia enhanced 48h memory retention. Here, we found that propofol induced an enduring traumatic memory enhancement and anxiogenic effects in the PTSD model. These findings provide new evidence for clinical studies showing that the use of ketamine or propofol anesthesia in emergency care and ICU might be more likely to promote the development of PTSD, while dexmedetomidine might have prophylactic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Transfer of learning on a spatial memory task between the blind and sighted people.

    PubMed

    Akpinar, Selcuk; Popović, Stevo; Kirazci, Sadettin

    2012-12-01

    The purpose of this study was to analyze the effect of two different types of feedback on a spatial memory task between the blind and blindfolded-sighted participants. Participants tried to estimate the predetermined distance by using their dominant hands. Both blind and blindfolded-sighted groups were randomly divided into two feedback subgroups as "100% frequency" and "10% bandwidth". The score of the participants was given verbally to the participants as knowledge of results (KR). The target distance was set as 60 cm. Sixty acquisition trials were performed in 4 sets each including 15 repetition afterwards immediate and delayed retention tests were undertaken. Moreover, 24 hours past the delayed retention test, the participants completed 15 no-KR trials as a transfer test (target distance was 30 cm). The results of the statistical analyses revealed no significant differences for both acquisition and retention tests. However, a significant difference was found at transfer test. 100% frequency blind group performed significantly less accurate than all other groups. As a result, it can be concluded that different types of feedback have similar effect on spatial memory task used in this study. However, types of feedback can change the performance of accuracy on transferring this skill among the blind.

  16. Mechanisms of Memory Dysfunction during High Altitude Hypoxia Training in Military Aircrew.

    PubMed

    Nation, Daniel A; Bondi, Mark W; Gayles, Ellis; Delis, Dean C

    2017-01-01

    Cognitive dysfunction from high altitude exposure is a major cause of civilian and military air disasters. Pilot training improves recognition of the early symptoms of altitude exposure so that countermeasures may be taken before loss of consciousness. Little is known regarding the nature of cognitive impairments manifesting within this critical window when life-saving measures may still be taken. Prior studies evaluating cognition during high altitude simulation have predominantly focused on measures of reaction time and other basic attention or motor processes. Memory encoding, retention, and retrieval represent critical cognitive functions that may be vulnerable to acute hypoxic/ischemic events and could play a major role in survival of air emergencies, yet these processes have not been studied in the context of high altitude simulation training. In a series of experiments, military aircrew underwent neuropsychological testing before, during, and after brief (15 min) exposure to high altitude simulation (20,000 ft) in a pressure-controlled chamber. Acute exposure to high altitude simulation caused rapid impairment in learning and memory with relative preservation of basic visual and auditory attention. Memory dysfunction was predominantly characterized by deficiencies in memory encoding, as memory for information learned during high altitude exposure did not improve after washout at sea level. Retrieval and retention of memories learned shortly before altitude exposure were also impaired, suggesting further impairment in memory retention. Deficits in memory encoding and retention are rapidly induced upon exposure to high altitude, an effect that could impact life-saving situational awareness and response. (JINS, 2017, 23, 1-10).

  17. A Diffusion Model Analysis of Decision Biases Affecting Delayed Recognition of Emotional Stimuli

    PubMed Central

    Bowen, Holly J.; Spaniol, Julia; Patel, Ronak; Voss, Andreas

    2016-01-01

    Previous empirical work suggests that emotion can influence accuracy and cognitive biases underlying recognition memory, depending on the experimental conditions. The current study examines the effects of arousal and valence on delayed recognition memory using the diffusion model, which allows the separation of two decision biases thought to underlie memory: response bias and memory bias. Memory bias has not been given much attention in the literature but can provide insight into the retrieval dynamics of emotion modulated memory. Participants viewed emotional pictorial stimuli; half were given a recognition test 1-day later and the other half 7-days later. Analyses revealed that emotional valence generally evokes liberal responding, whereas high arousal evokes liberal responding only at a short retention interval. The memory bias analyses indicated that participants experienced greater familiarity with high-arousal compared to low-arousal items and this pattern became more pronounced as study-test lag increased; positive items evoke greater familiarity compared to negative and this pattern remained stable across retention interval. The findings provide insight into the separate contributions of valence and arousal to the cognitive mechanisms underlying delayed emotion modulated memory. PMID:26784108

  18. Low-level light therapy improves cortical metabolic capacity and memory retention.

    PubMed

    Rojas, Julio C; Bruchey, Aleksandra K; Gonzalez-Lima, Francisco

    2012-01-01

    Cerebral hypometabolism characterizes mild cognitive impairment and Alzheimer's disease. Low-level light therapy (LLLT) enhances the metabolic capacity of neurons in culture through photostimulation of cytochrome oxidase, the mitochondrial enzyme that catalyzes oxygen consumption in cellular respiration. Growing evidence supports that neuronal metabolic enhancement by LLLT positively impacts neuronal function in vitro and in vivo. Based on its effects on energy metabolism, it is proposed that LLLT will also affect the cerebral cortex in vivo and modulate higher-order cognitive functions such as memory. In vivo effects of LLLT on brain and behavior are poorly characterized. We tested the hypothesis that in vivo LLLT facilitates cortical oxygenation and metabolic energy capacity and thereby improves memory retention. Specifically, we tested this hypothesis in rats using fear extinction memory, a form of memory modulated by prefrontal cortex activation. Effects of LLLT on brain metabolism were determined through measurement of prefrontal cortex oxygen concentration with fluorescent quenching oximetry and by quantitative cytochrome oxidase histochemistry. Experiment 1 verified that LLLT increased the rate of oxygen consumption in the prefrontal cortex in vivo. Experiment 2 showed that LLLT-treated rats had an enhanced extinction memory as compared to controls. Experiment 3 showed that LLLT reduced fear renewal and prevented the reemergence of extinguished conditioned fear responses. Experiment 4 showed that LLLT induced hormetic dose-response effects on the metabolic capacity of the prefrontal cortex. These data suggest that LLLT can enhance cortical metabolic capacity and retention of extinction memories, and implicate LLLT as a novel intervention to improve memory.

  19. Vaginocervical stimulation enhances social recognition memory in rats via oxytocin release in the olfactory bulb.

    PubMed

    Larrazolo-López, A; Kendrick, K M; Aburto-Arciniega, M; Arriaga-Avila, V; Morimoto, S; Frias, M; Guevara-Guzmán, R

    2008-03-27

    The ability of vaginocervical stimulation (VCS) to promote olfactory social recognition memory at different stages of the ovarian cycle was investigated in female rats. A juvenile social recognition paradigm was used and memory retention tested at 30 and 300 min after an adult was exposed to a juvenile during three 4-min trials. Results showed that an intact social recognition memory was present at 30 min in animals with or without VCS and at all stages of the estrus cycle. However, whereas no animals in any stage of the estrus cycle showed retention of the specific recognition memory at 300 min, those in the proestrus/estrus phase that received VCS 10 min before the trial started did. In vivo microdialysis studies showed that there was a significant release of oxytocin after VCS in the olfactory bulb during proestrus. There was also increased oxytocin immunoreactivity within the olfactory bulb after VCS in proestrus animals compared with diestrus ones. Furthermore, when animals received an infusion of an oxytocin antagonist directly into the olfactory bulb, or a systemic administration of alpha or beta noradrenaline-antagonists, they failed to show evidence for maintenance of a selective olfactory recognition memory at 300 min. Animals with vagus or pelvic nerve section also showed no memory retention when tested after 300 min. These results suggest that VCS releases oxytocin in the olfactory bulb to enhance the social recognition memory and that this may be due to modulatory actions on noradrenaline release. The vagus and pelvic nerves are responsible for carrying the information from the pelvic area to the CNS.

  20. General intelligence predicts memory change across sleep.

    PubMed

    Fenn, Kimberly M; Hambrick, David Z

    2015-06-01

    Psychometric intelligence (g) is often conceptualized as the capability for online information processing but it is also possible that intelligence may be related to offline processing of information. Here, we investigated the relationship between psychometric g and sleep-dependent memory consolidation. Participants studied paired-associates and were tested after a 12-hour retention interval that consisted entirely of wake or included a regular sleep phase. We calculated the number of word-pairs that were gained and lost across the retention interval. In a separate session, participants completed a battery of cognitive ability tests to assess g. In the wake group, g was not correlated with either memory gain or memory loss. In the sleep group, we found that g correlated positively with memory gain and negatively with memory loss. Participants with a higher level of general intelligence showed more memory gain and less memory loss across sleep. Importantly, the correlation between g and memory loss was significantly stronger in the sleep condition than in the wake condition, suggesting that the relationship between g and memory loss across time is specific to time intervals that include sleep. The present research suggests that g not only reflects the capability for online cognitive processing, but also reflects capability for offline processes that operate during sleep.

  1. Encoding vs. retention: differential effects of cue manipulation on working memory performance in schizophrenia.

    PubMed

    Javitt, Daniel C; Rabinowicz, Esther; Silipo, Gail; Dias, Elisa C

    2007-03-01

    Deficits in working memory performance are among the most widely replicated findings in schizophrenia. Roles of encoding vs. memory retention in working memory remain unresolved. The present study evaluated working memory performance in schizophrenia using an AX-type continuous performance test (AX-CPT) paradigm. Participants included 48 subjects with schizophrenia and 27 comparison subjects. Behavior was obtained in 3 versions of the task, which differed based upon ease of cue interoperability. In a simple cue version of the task, cue letters were replaced with red or green circles. In the complex cue version, letter/color conjunctions served as cues. In the base version of the task, patients showed increased rates of false alarms to invalidly cued targets, similar to prior reports. However, when the cue stimuli were replaced with green or red circles to ease interpretation, patients showed similar false alarm rates to controls. When feature conjunction cues were used, patients were also disproportionately affected relative to controls. No significant group by interstimulus interval interaction effects were observed in either the simple or complex cue conditions, suggesting normal retention of information even in the presence of overall performance decrements. These findings suggest first, that cue manipulation disproportionately affects AX-CPT performance in schizophrenia and, second, that substantial behavioral deficits may be observed on working memory tasks even in the absence of disturbances in mnemonic retention.

  2. Contributions of the cerebellum and the motor cortex to acquisition and retention of motor memories

    PubMed Central

    Herzfeld, David J.; Pastor, Damien; Haith, Adrian M.; Rossetti, Yves; Shadmehr, Reza; O’Shea, Jacinta

    2014-01-01

    We investigated the contributions of the cerebellum and the motor cortex (M1) to acquisition and retention of human motor memories in a force field reaching task. We found that anodal transcranial direct current stimulation (tDCS) of the cerebellum, a technique that is thought to increase neuronal excitability, increased the ability to learn from error and form an internal model of the field, while cathodal cerebellar stimulation reduced this error-dependent learning. In addition, cathodal cerebellar stimulation disrupted the ability to respond to error within a reaching movement, reducing the gain of the sensory-motor feedback loop. By contrast, anodal M1 stimulation had no significant effects on these variables. During sham stimulation, early in training the acquired motor memory exhibited rapid decay in error-clamp trials. With further training the rate of decay decreased, suggesting that with training the motor memory was transformed from a labile to a more stable state. Surprisingly, neither cerebellar nor M1 stimulation altered these decay patterns. Participants returned 24 hours later and were re-tested in error-clamp trials without stimulation. The cerebellar group that had learned the task with cathodal stimulation exhibited significantly impaired retention, and retention was not improved by M1 anodal stimulation. In summary, non-invasive cerebellar stimulation resulted in polarity-dependent up- or down-regulation of error-dependent motor learning. In addition, cathodal cerebellar stimulation during acquisition impaired the ability to retain the motor memory overnight. Thus, in the force field task we found a critical role for the cerebellum in both formation of motor memory and its retention. PMID:24816533

  3. Revealing past memories: proactive interference and ketamine-induced memory deficits.

    PubMed

    Chrobak, James J; Hinman, James R; Sabolek, Helen R

    2008-04-23

    Memories of events that occur often are sensitive to interference from memories of similar events. Proactive interference plays an important and often unexamined role in memory testing for spatially and temporally unique events ("episodes"). Ketamine (NMDA receptor antagonist) treatment in humans and other mammals induces a constellation of cognitive deficits, including impairments in working and episodic memory. We examined the effects of the ketamine (2.5-100 mg/kg) on the acquisition, retrieval, and retention of memory in a delayed-match-to-place radial water maze task that can be used to assess proactive interference. Ketamine (2.5-25 mg/kg, i.p.) given 20 min before the sample trial, impaired encoding. The first errors made during the test trial were predominantly to arms located spatially adjacent to the goal arm, suggesting an established albeit weakened representation. Ketamine (25-100 mg/kg) given immediately after the sample trial had no effect on retention. Ketamine given before the test trial impaired retrieval. First errors under the influence of ketamine were predominantly to the goal location of the previous session. Thus, ketamine treatment promoted proactive interference. These memory deficits were not state dependent, because ketamine treatment at both encoding and retrieval only increased the number of errors during the test session. These data demonstrate the competing influence of distinct memory representations during the performance of a memory task in the rat. Furthermore, they demonstrate the subtle disruptive effects of the NMDA antagonist ketamine on both encoding and retrieval. Specifically, ketamine treatment disrupted retrieval by promoting proactive interference from previous episodic representations.

  4. Spared Anterograde Memory for Shock-Probe Fear Conditioning After Inactivation of the Amygdala

    PubMed Central

    Lehmann, Hugo; Treit, Dallas; Parent, Marise B.

    2003-01-01

    Previous studies have shown that amygdala lesions impair avoidance of an electrified probe. This finding has been interpreted as indicating that amygdala lesions reduce fear. It is unclear, however, whether amygdala-lesioned rats learn that the probe is associated with shock. If the lesions prevent the formation of this association, then pretraining reversible inactivation of the amygdala should impair both acquisition and retention performance. To test this hypothesis, the amygdala was inactivated (tetrodotoxin; TTX; 1 ng/side) before a shock-probe acquisition session, and retention was tested 4 d later. The data indicated that, compared with rats infused with vehicle, rats infused with TTX received more shocks during the acquisition session, but more importantly, were not impaired on the retention test. In Experiment 2, we assessed whether the spared memory on the retention test was caused by overtraining during acquisition. We used the same procedure as in Experiment 1, with the exception that the number of shocks the rats received during the acquisition session was limited to four. Again the data indicated that amygdala inactivation did not impair performance on the retention test. These results indicate that amygdala inactivation does not prevent the formation of an association between the shock and the probe and that shock-probe deficits during acquisition likely reflect the amygdala's involvement in other processes. PMID:12888544

  5. Memory for non-native language: the role of lexical processing in the retention of surface form.

    PubMed

    Sampaio, Cristina; Konopka, Agnieszka E

    2013-01-01

    Research on memory for native language (L1) has consistently shown that retention of surface form is inferior to that of gist (e.g., Sachs, 1967). This paper investigates whether the same pattern is found in memory for non-native language (L2). We apply a model of bilingual word processing to more complex linguistic structures and predict that memory for L2 sentences ought to contain more surface information than L1 sentences. Native and non-native speakers of English were tested on a set of sentence pairs with different surface forms but the same meaning (e.g., "The bullet hit/struck the bull's eye"). Memory for these sentences was assessed with a cued recall procedure. Responses showed that native and non-native speakers did not differ in the accuracy of gist-based recall but that non-native speakers outperformed native speakers in the retention of surface form. The results suggest that L2 processing involves more intensive encoding of lexical level information than L1 processing.

  6. Deficits in verbal long-term memory and learning in children with poor phonological short-term memory skills.

    PubMed

    Gathercole, Susan E; Briscoe, Josie; Thorn, Annabel; Tiffany, Claire

    2008-03-01

    Possible links between phonological short-term memory and both longer term memory and learning in 8-year-old children were investigated in this study. Performance on a range of tests of long-term memory and learning was compared for a group of 16 children with poor phonological short-term memory skills and a comparison group of children of the same age with matched nonverbal reasoning abilities but memory scores in the average range. The low-phonological-memory group were impaired on longer term memory and learning tasks that taxed memory for arbitrary verbal material such as names and nonwords. However, the two groups performed at comparable levels on tasks requiring the retention of visuo-spatial information and of meaningful material and at carrying out prospective memory tasks in which the children were asked to carry out actions at a future point in time. The results are consistent with the view that poor short-term memory function impairs the longer-term retention and ease of learning of novel verbal material.

  7. Inhibition of transcription and translation in the striatum after memory reactivation: Lack of evidence of reconsolidation.

    PubMed

    Prado-Alcalá, Roberto A; Medina, Andrea Cristina; Bello-Medina, Paola C; Quirarte, Gina L

    2017-07-01

    It has been found that interference with neural activity after a consolidated memory is retrieved produces an amnestic state; this has been taken has indicative of destabilization of the memory trace that would have been produced by a process of reconsolidation (allowing for maintenance of the original trace). However, a growing body of evidence shows that this is not a reliable effect, and that it is dependent upon some experimental conditions, such as the age of the memory, memory reactivation procedures, the predictability of the reactivation stimulus, and strength of training. In some instances, where post-retrieval treatments induce a retention deficit (which would be suggestive of interference with reconsolidation), memory is rescued by simple passing of time or by repeated retention tests. We now report that post-training and post-retrieval inhibition of transcription and translation in dorsal striatum, a structure where both of these manipulations have not been studied, produce interference with consolidation and a transitory retention deficit, respectively. These results do not give support to the reconsolidation hypothesis and lead to the conclusion that the post-activation deficiencies are due to interference with retrieval of information. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Levels of processing and the coding of position cues in motor short-term memory.

    PubMed

    Ho, L; Shea, J B

    1978-06-01

    The present study investigated the appropriateness of the levels-of-processing framework of memory for explaining retention of information in motor short-term memory. Subjects were given labels descriptive of the positions to be remembered by the experimenter (EL), were given no labels (NL), or provided their own labels (SL). A control group (CONT) was required to count backwards during the presentation of the criterion positions. The inclusion of a 30-sec filled retention interval as well as 0-sec and 30-sec unfilled retention intervals tested a prediction by Craik and Lockhart (1972), when attention is diverted from an item, information will be lost at a rate appropriate to its level of processing - that is, slower rates for deeper levels. Groups EL and SL had greater accuracy at recall for all three retention intervals than groups CONT and NL. In addition, there was no significant increase in error between 30-sec unfilled and 30-sec filled intervals for groups EL and SL, while there was a significant increase in error for groups CONT and NL. The data were interpreted in terms of Craik and Lockhart's (1972) levels-of-processing approach to memory.

  9. Verbal and Nonverbal Neuropsychological Test Performance in Subjects With Schizotypal Personality Disorder

    PubMed Central

    Voglmaier, Martina M.; Seidman, Larry J.; Niznikiewicz, Margaret A.; Dickey, Chandlee C.; Shenton, Martha E.; McCarley, Robert W.

    2010-01-01

    Objective The authors contrasted verbal and nonverbal measures of attention and memory in patients with DSM-IV-defined schizotypal personality disorder in order to expand on their previous findings of verbal learning deficits in these patients and to understand better the neuropsychological profile of schizotypal personality disorder. Method Cognitive test performance was examined in 16 right-handed men who met diagnostic criteria for schizotypal personality disorder and 16 matched male comparison subjects. Neuropsychological measures included verbal and nonverbal tests of persistence, supraspan learning, and short- and long-term memory retention. Neuropsychological profiles were constructed by standardizing test scores based on the means and standard deviations of the comparison subject group. Results Subjects with schizotypal personality disorder showed a mild to moderate general reduction in performance on all measures. Verbal measures of persistence, short-term retention, and learning were more severely impaired than their nonverbal analogs. Performance on measures of memory retention was independent of modality. Conclusions The results are consistent with previous reports that have suggested a mild, general decrement in cognitive performance and proportionately greater involvement of the left hemisphere in patients with schizotypal personality disorder. The findings provide further support for a specific deficit in the early processing stages of verbal learning. PMID:10784473

  10. Effects of delays on 6-year-old children’s self-generation and retention of knowledge through integration

    PubMed Central

    Varga, Nicole L.; Bauer, Patricia J.

    2013-01-01

    The present research was an investigation of the effect of delay on self-generation and retention of knowledge derived through integration by 6-year-old children. Children were presented with novel facts from passages read aloud to them (stem facts) and tested for self-generation of new knowledge through integration of the facts. In Experiment 1, children integrated the stem facts at Session 1 and retained the self-generated memory traces over 1 week. In Experiment 2, 1-week delays were imposed either between the to-be-integrated facts (between-stem delay) or after the stem facts but before the test (before-test delay). Integration performance was diminished in both conditions. Moreover, memory for individual stem facts was lower in Experiment 2 than in Experiment 1, suggesting that self-generation through integration promoted memory for explicitly taught information. The results indicate the importance of tests for promoting self-generation through integration as well as for retaining newly self-generated and explicitly taught information. PMID:23563162

  11. An Experimental Analysis of Memory Processing

    PubMed Central

    Wright, Anthony A

    2007-01-01

    Rhesus monkeys were trained and tested in visual and auditory list-memory tasks with sequences of four travel pictures or four natural/environmental sounds followed by single test items. Acquisitions of the visual list-memory task are presented. Visual recency (last item) memory diminished with retention delay, and primacy (first item) memory strengthened. Capuchin monkeys, pigeons, and humans showed similar visual-memory changes. Rhesus learned an auditory memory task and showed octave generalization for some lists of notes—tonal, but not atonal, musical passages. In contrast with visual list memory, auditory primacy memory diminished with delay and auditory recency memory strengthened. Manipulations of interitem intervals, list length, and item presentation frequency revealed proactive and retroactive inhibition among items of individual auditory lists. Repeating visual items from prior lists produced interference (on nonmatching tests) revealing how far back memory extended. The possibility of using the interference function to separate familiarity vs. recollective memory processing is discussed. PMID:18047230

  12. Effects of Varied and Constant Environmental Contexts on Acquisition and Retention

    ERIC Educational Resources Information Center

    Smith, Steven M.; Handy, Justin D.

    2014-01-01

    Four experiments examined the decontextualization of memories, the stage of learning in which memories can be recalled in the absence of episodic memory cues. Face--name pairs were studied with video-recorded environmental contexts in the background, and after 5 practice trials, recall of names associated with faces was tested in the absence of…

  13. Genotype-dependent characteristics of behavior in mice in cognitive tests. The effects of Noopept.

    PubMed

    Bel'nik, A P; Ostrovskaya, R U; Poletaeva, I I

    2009-01-01

    Male C57BL/6J, BALB/c, and DBA/2J mice showed differences in their abilities to perform two cognitive tests. C57BL/6J mice had good learning ability and memory trace retention (at 10 days) in a simplified Morris maze, while BALB/c mice had low levels of memory trace retention and DBA/2J mice had low learning ability in this test. I.p. administration of the nootropic agent Noopept (GVS-111, N-phenylacetyl-L-prolylglycine ethyl ester) at a dose of 0.5 mg/kg 15 min before the start of the test induced significant improvements in long-term memory in this test in BALB/c mice but no further improvement in C57BL/6J mice, and had no effect in DBA/2J mice. On testing the ability to extrapolate the direction of movement of a stimulus, administration of Noopept increased the proportion of correct responses in C57BL/6J and BALB/c mice, but had no effect in DBA/2J mice.

  14. Robust training attenuates TBI-induced deficits in reference and working memory on the radial 8-arm maze

    PubMed Central

    Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.

    2013-01-01

    Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600

  15. The Effect of Verbal Contextual Information in Processing Visual Art.

    ERIC Educational Resources Information Center

    Koroscik, Judith S.; And Others

    1985-01-01

    Verbal contextual information affected photography and nonphotography students' performance on semantic retention tests. For example, correct titles aided the formation and retention of accurate memories, while erroneous titles misled students into remembering meanings that had relatively little to do with what was actually pictured in the…

  16. The Differential Outcomes Procedure Enhances Adherence to Treatment: A Simulated Study with Healthy Adults

    PubMed Central

    Molina, Michael; Plaza, Victoria; Fuentes, Luis J.; Estévez, Angeles F.

    2015-01-01

    Memory for medical recommendations is a prerequisite for good adherence to treatment, and therefore to ameliorate the negative effects of the disease, a problem that mainly affects people with memory deficits. We conducted a simulated study to test the utility of a procedure (the differential outcomes procedure, DOP) that may improve adherence to treatment by increasing the patient’s learning and retention of medical recommendations regarding medication. The DOP requires the structure of a conditional discriminative learning task in which correct choice responses to specific stimulus–stimulus associations are reinforced with a particular reinforcer or outcome. In two experiments, participants had to learn and retain in their memory the pills that were associated with particular disorders. To assess whether the DOP improved long-term retention of the learned disorder/pill associations, participants were asked to perform two recognition memory tests, 1 h and 1 week after completing the learning phase. The results showed that compared with the standard non-differential outcomes procedure, the DOP produced better learning and long-term retention of the previously learned associations. These findings suggest that the DOP can be used as a useful complementary technique in intervention programs targeted at increasing adherence to clinical recommendations. PMID:26913010

  17. Orexin A Differentially Influences the Extinction Retention of Recent and Remote Fear Memory.

    PubMed

    Shi, Le; Chen, Wenhao; Deng, Jiahui; Chen, Sijing; Han, Ying; Khan, Muhammad Z; Liu, Jiajia; Que, Jianyu; Bao, Yanping; Lu, Lin; Shi, Jie

    2018-01-01

    Recently the role of the orexin system in the learning and memory, especially orexin A, which could enhance fear memory through regulating the activity of amygdala, has drawn considerable attention. However, the relationship between orexin A and extinction memory remains unclear. To investigate the effect of orexin A on extinction memory in humans, we recruited 43 male subjects and divided them into a recent group and remote group. After acquiring Pavlovian fear conditioning, individuals in recent group experienced fear extinction 24 h after acquisition, and remote group underwent extinction 2 weeks later. Meanwhile, plasma orexin A levels before extinction were measured by enzyme-linked immunosorbent assay. Both groups received memory test 24 h after fear extinction. The results showed that both recent and remote groups successfully acquired fear conditioning and had spontaneous recovery at test. In particular, the correlational analysis indicated that orexin A levels before extinction were negatively associated with fear responses during test only in recent group, but not in remote group. Moreover, individuals with high orexin A levels still kept low fear responses after extinction in recent group by subgroup analyses. The results suggest that orexin A could influence the retention of recent fear memory extinction, without affecting remote fear extinction. These findings remind us the orexin system can be a potential treatment target for fear-related disorders, and the mechanisms of recent and remote fear extinction may be different.

  18. Sleep Can Reduce the Testing Effect: It Enhances Recall of Restudied Items but Can Leave Recall of Retrieved Items Unaffected

    ERIC Educational Resources Information Center

    Bäuml, Karl-Heinz T.; Holterman, Christoph; Abel, Magdalena

    2014-01-01

    The testing effect refers to the finding that retrieval practice in comparison to restudy of previously encoded contents can improve memory performance and reduce time-dependent forgetting. Naturally, long retention intervals include both wake and sleep delay, which can influence memory contents differently. In fact, sleep immediately after…

  19. Temporal Lobe Epilepsy and the Selective Reminding Test: The Conventional 30-Minute Delay Suffices

    ERIC Educational Resources Information Center

    Bell, Brian D.; Fine, Jason; Dow, Christian; Seidenberg, Michael; Hermann, Bruce P.

    2005-01-01

    Conventional memory assessment may fail to identify memory dysfunction characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed learning and retention after 30-min and 24-hr delays on auditory and visual selective reminding tests (SRTs) in right (n=20) and left (n=22) temporal lobe epilepsy…

  20. Nonverbal working memory of humans and monkeys: rehearsal in the sketchpad?

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Astur, R. S.; Rumbaugh, D. M. (Principal Investigator)

    1998-01-01

    Investigations of working memory tend to focus on the retention of verbal information. The present experiments were designed to characterize the active maintenance rehearsal process used in the retention of visuospatial information. Rhesus monkeys (Macaca mulatta; N = 6) were tested as well as humans (total N = 90) because these nonhuman primates have excellent visual working memory but, unlike humans, cannot verbally recode the stimuli to employ verbal rehearsal mechanisms. A series of experiments was conducted using a distractor-task paradigm, a directed forgetting procedure, and a dual-task paradigm. No evidence was found for an active maintenance process for either species. Rather, it appears that information is maintained in the visuospatial sketchpad without active rehearsal.

  1. Lowering data retention voltage in static random access memory array by post fabrication self-improvement of cell stability by multiple stress application

    NASA Astrophysics Data System (ADS)

    Mizutani, Tomoko; Takeuchi, Kiyoshi; Saraya, Takuya; Kobayashi, Masaharu; Hiramoto, Toshiro

    2018-04-01

    We propose a new version of the post fabrication static random access memory (SRAM) self-improvement technique, which utilizes multiple stress application. It is demonstrated that, using a device matrix array (DMA) test element group (TEG) with intrinsic channel fully depleted (FD) silicon-on-thin-buried-oxide (SOTB) six-transistor (6T) SRAM cells fabricated by the 65 nm technology, the lowering of data retention voltage (DRV) is more effectively achieved than using the previously proposed single stress technique.

  2. Enhancing effects of chronic lithium on memory in the rat.

    PubMed

    Tsaltas, Eleftheria; Kontis, Dimitrios; Boulougouris, Vasileios; Papakosta, Vasiliki-Maria; Giannou, Haralambos; Poulopoulou, Cornelia; Soldatos, Constantine

    2007-02-12

    In spite of recent enrichment of neurochemical and behavioural data establishing a neuroprotective role for lithium, its primary effects on cognitive functioning remain ambiguous. This study examines chronic lithium effects on spatial working memory and long-term retention. In three discrete experiments, rats subjected to 30 daily intraperitoneal injections (2mmol/kg) of lithium (lithium groups: serum lithium=0.5+/-0.4mEq/l, 12h post-injection) or saline (controls) were trained in 0-s delay T-maze alternation and then tested in 30-, 45- and 60-s delay alternation (Experiments 1, 2, 3, respectively). Animals from Experiment 1 were further tested in one-trial step-through passive avoidance under mild shock parameters (0.5mA, 1s). Retention was assessed 6h later. Daily lithium or saline injections continued throughout behavioural testing. Lithium animals were indistinguishable from controls during 0-delay alternation baseline (Experiments 1-3, accuracy>88%) but showed significantly higher accuracy than controls at 30- and 45-s delays (93% versus 85% and 92% versus 82%, Experiments 1 and 2, respectively). At 60-s delay (Experiment 3) this beneficial effect of lithium was no longer apparent (lithium and control accuracy=78%). In Experiment 4, the shock used did not support 6-h passive avoidance retention in controls, whereas lithium animals showed significant step-through latency increases. Chronic lithium enhanced spatial working memory and promoted long-term retention of a weak aversive contingency. The results suggest that lithium may have potential as a cognitive enhancer.

  3. Effect of Radiation Exposure on the Retention of Commercial NAND Flash Memory

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Chen, D.; Friendlich, M.; Carts, M. A.; Seidleck, C. M.; LaBel, K. A.

    2011-01-01

    We have compared the data retention of irradiated commercial NAND flash memories with that of unirradiated controls. Under some circumstanc es, radiation exposure has a significant effect on the retention of f lash memories.

  4. Visual short-term memory capacity for simple and complex objects.

    PubMed

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-03-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.

  5. Adaptive memory: the comparative value of survival processing.

    PubMed

    Nairne, James S; Pandeirada, Josefa N S; Thompson, Sarah R

    2008-02-01

    We recently proposed that human memory systems are "tuned" to remember information that is processed for survival, perhaps as a result of fitness advantages accrued in the ancestral past. This proposal was supported by experiments in which participants showed superior memory when words were rated for survival relevance, at least relative to when words received other forms of deep processing. The current experiments tested the mettle of survival memory by pitting survival processing against conditions that are universally accepted as producing excellent retention, including conditions in which participants rated words for imagery, pleasantness, and self-reference; participants also generated words, studied words with the intention of learning them, or rated words for relevance to a contextually rich (but non-survival-related) scenario. Survival processing yielded the best retention, which suggests that it may be one of the best encoding procedures yet discovered in the memory field.

  6. Test Expectation Enhances Memory Consolidation across Both Sleep and Wake

    PubMed Central

    Wamsley, Erin J.; Hamilton, Kelly; Graveline, Yvette; Manceor, Stephanie; Parr, Elaine

    2016-01-01

    Memory consolidation benefits from post-training sleep. However, recent studies suggest that sleep does not uniformly benefit all memory, but instead prioritizes information that is important to the individual. Here, we examined the effect of test expectation on memory consolidation across sleep and wakefulness. Following reports that information with strong “future relevance” is preferentially consolidated during sleep, we hypothesized that test expectation would enhance memory consolidation across a period of sleep, but not across wakefulness. To the contrary, we found that expectation of a future test enhanced memory for both spatial and motor learning, but that this effect was equivalent across both wake and sleep retention intervals. These observations differ from those of least two prior studies, and fail to support the hypothesis that the “future relevance” of learned material moderates its consolidation selectively during sleep. PMID:27760193

  7. Episodic, semantic and procedural memory in a case of amnesia at an early age.

    PubMed

    Ostergaard, A L

    1987-01-01

    The patient C.C. developed an amnesic syndrome at the age of 10 yr. Like adult amnesics, C.C. demonstrated impaired episodic memory for both verbal and visual materials although immediate memory span was spared. However, striking deficits were also observed on a wide variety of semantic memory tasks, including reading vocabulary and verbal fluency tests, semantic classification and lexical decision tasks and tests of verbal intelligence. On the other hand, C.C. showed normal learning and retention of two procedural tasks. It was argued that this evidence is inconsistent with the view that the amnesic syndrome represents a selective defect of episodic memory that leaves semantic memory relatively unaffected.

  8. RBANS memory percentage retention: No evidence of incremental validity beyond RBANS scores for diagnostic classification of mild cognitive impairment and dementia and for prediction of daily function.

    PubMed

    Jodouin, Kara A; O'Connell, Megan E; Morgan, Debra G

    2017-01-01

    RBANS percentage retention scores may be useful for diagnosis, but their incremental validity is unclear. Percentage retention versus RBANS immediate and delayed memory subtests and delayed index scores were compared for diagnostic classification and for prediction of function. Data from 173 memory clinic patients with an interdisciplinary diagnosis (no cognitive impairment, amnestic mild cognitive impairment [aMCI], and dementia due to Alzheimer's disease [AD]) and complete RBANS data were analyzed. Across diagnostic contrasts, list percentage retention classification accuracy was similar to List Learning delayed recall, but below the Delayed Memory Index (DMI). Similarly, for classifying no cognitive impairment versus aMCI or dementia due to AD, story percentage retention was similar to Story Memory subtests and below the DMI. For classifying aMCI versus AD; however, Story Memory exceeded the DMI, but was similar to Story Memory subtest scores. Similarly, for prediction of function percentage retention measures did not predict variance beyond that predicted by the RBANS subtest or index scores. In sum, there is no evidence that calculation of percentage retention for RBANS adds clinical utility beyond those provided by the standard RBANS scores.

  9. CB1 receptors in the formation of the different phases of memory-related processes in the inhibitory avoidance test in mice.

    PubMed

    Kruk-Slomka, Marta; Biala, Grażyna

    2016-03-15

    The endocannabinoid system, through the cannabinoid type 1 (CB1) and 2 (CB2) receptors modulates many physiological functions, including different aspects of memory-related processes. The aim of the present experiments was to explore the role of the endocannabinoid system, through CB1 receptors in the different stages of short-term (acquisition, retention and retrieval) and long-term (acquisition, consolidation and retrieval) memory-related responses, using the inhibitory avoidance (IA) test in mice. Our results revealed that an acute injection of oleamide (10 and 20mg/kg), a CB1 receptor agonist, impairs the short-term or/and long-term acquisition, retention/consolidation, retrieval memory and learning processes in the IA test in mice. In turn, in this test an acute injection of AM 251 (1 and 3mg/kg), a CB1 receptor antagonist, improves the short-term or/and long-term memory stages, described above. Moreover, this memory impairment induced by effective dose of oleamide (20mg/kg) is reversed by non-effective dose of AM 251 (0.25mg/kg) in the IA task, which proves the selectivity of oleamide to CB1 receptors and confirms that the CB1 receptor-related mechanism is one of the possible mechanisms, responsible for memory and learning responses. Obtained results provide clear evidence that the endocannabinoid system, through CB1 receptors, participates in the different stages of short- and long-term memory-related behavior. This knowledge may open in the future new possibilities for the development of CB-based therapies, especially for memory impairment human disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. BDNF and TNF-α polymorphisms in memory.

    PubMed

    Yogeetha, B S; Haupt, L M; McKenzie, K; Sutherland, H G; Okolicsyani, R K; Lea, R A; Maher, B H; Chan, R C K; Shum, D H K; Griffiths, L R

    2013-09-01

    Here, we investigate the genetic basis of human memory in healthy individuals and the potential role of two polymorphisms, previously implicated in memory function. We have explored aspects of retrospective and prospective memory including semantic, short term, working and long-term memory in conjunction with brain derived neurotrophic factor (BDNF) and tumor necrosis factor-alpha (TNF-α). The memory scores for healthy individuals in the population were obtained for each memory type and the population was genotyped via restriction fragment length polymorphism for the BDNF rs6265 (Val66Met) SNP and via pyrosequencing for the TNF-α rs113325588 SNP. Using univariate ANOVA, a significant association of the BDNF polymorphism with visual and spatial memory retention and a significant association of the TNF-α polymorphism was observed with spatial memory retention. In addition, a significant interactive effect between BDNF and TNF-α polymorphisms was observed in spatial memory retention. In practice visual memory involves spatial information and the two memory systems work together, however our data demonstrate that individuals with the Val/Val BDNF genotype have poorer visual memory but higher spatial memory retention, indicating a level of interaction between TNF-α and BDNF in spatial memory retention. This is the first study to use genetic analysis to determine the interaction between BDNF and TNF-α in relation to memory in normal adults and provides important information regarding the effect of genetic determinants and gene interactions on human memory.

  11. Time course of scopolamine effect on memory consolidation and forgetting in rats.

    PubMed

    Popović, Miroljub; Giménez de Béjar, Verónica; Popović, Natalija; Caballero-Bleda, María

    2015-02-01

    The effect of scopolamine on the consolidation and forgetting of emotional memory has not been completely elucidated yet. The aim of the present study was to investigate the time course of scopolamine effect on consolidation and forgetting of passive avoidance response. In a first experiment of the present study, we tested the effect of scopolamine (1mg/kg, i.p., immediately after acquisition), on 24h and 48h retention performance of the step-through passive avoidance task, in adult male Wistar rats. On the 24h retested trial, the latency of the passive avoidance response was significantly lower, while on the 48h retested trial it was significantly higher in scopolamine than in the saline-treated group. In a second experiment, we assessed the 24h time course of scopolamine (1mg/kg) effect on memory consolidation in passive avoidance task. We found that scopolamine administration only within the first six and half hours after acquisition improved memory consolidation in 48h retention performance. Finally, a third experiment was performed on the saline- and scopolamine-treated rats (given immediately after acquisition) that on the 48h retention test did not step through into the dark compartment during the cut-off time. These animals were retested weekly for up to first three months, and after that, every three months until the end of experiment (i.e., 15 months after acquisition). The passive avoidance response in the saline treated group lasted up to 6 weeks after acquisition, while in the scopolamine treated group 50% of animals conserved the initial level of passive avoidance response until the experiment end point. In conclusion, the present data suggest that (1) improving or impairment effect of scopolamine given in post-training periods depends on delay of retention trial, (2) memory consolidation process could be modify by scopolamine within first six and half hours after training and (3) scopolamine could delay forgetting of emotional memory. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Immediate and Long-Term Retention For Pictorial and Verbal Stimuli.

    ERIC Educational Resources Information Center

    Purdy, Jesse E.; Luepnitz, Roy R.

    1982-01-01

    Sixty-four subjects were presented pictures and later asked to draw them or provide one-word descriptions to test the hypothesis that decreased retention effectiveness occurs because images stored in long-term memory are accessible only through their verbal labels. Recall of pictures was significantly greater than recall of words. (Author/PN)

  13. Post-learning hippocampal dynamics promote preferential retention of rewarding events

    PubMed Central

    Gruber, Matthias J.; Ritchey, Maureen; Wang, Shao-Fang; Doss, Manoj K.; Ranganath, Charan

    2016-01-01

    Reward motivation is known to modulate memory encoding, and this effect depends on interactions between the substantia nigra/ ventral tegmental area complex (SN/VTA) and the hippocampus. It is unknown, however, whether these interactions influence offline neural activity in the human brain that is thought to promote memory consolidation. Here, we used functional magnetic resonance imaging (fMRI) to test the effect of reward motivation on post-learning neural dynamics and subsequent memory for objects that were learned in high- or low-reward motivation contexts. We found that post-learning increases in resting-state functional connectivity between the SN/VTA and hippocampus predicted preferential retention of objects that were learned in high-reward contexts. In addition, multivariate pattern classification revealed that hippocampal representations of high-reward contexts were preferentially reactivated during post-learning rest, and the number of hippocampal reactivations was predictive of preferential retention of items learned in high-reward contexts. These findings indicate that reward motivation alters offline post-learning dynamics between the SN/VTA and hippocampus, providing novel evidence for a potential mechanism by which reward could influence memory consolidation. PMID:26875624

  14. Evidence for the involvement of extinction-associated inhibitory learning in the forced swimming test.

    PubMed

    Campus, P; Colelli, V; Orsini, C; Sarra, D; Cabib, S

    2015-02-01

    The forced swimming test (FST) remains one of the most used tools for screening antidepressants in rodent models. Nonetheless, the nature of immobility, its main behavioral measure, is still a matter of debate. The present study took advantage of our recent finding that mice of the inbred DBA/2J strain require a functioning left dorsolateral striatum (DLS) to consolidate long-term memory of FST to test whether immobility is the outcome of stress-related learning. Infusion of the GABA-A agonist muscimol in the left DLS immediately after a single experience of FST prevented and infusion in the left or the right amygdala impaired recall of the acquired levels of immobility in a probe test performed 24h later. Post-training left DLS infusion of muscimol, at a dose capable of preventing retention of FST-induced immobility, did not influence 24h retention of inhibitory avoidance training or of the escape response acquired in a water T-maze. However, this same treatment prevented 24h retention of the extinction training of the consolidated escape response. These results indicate that a left DLS-centered memory system selectively mediates memory consolidation of FST and of escape extinction and support the hypothesis that immobility is the result of extinction-like inhibitory learning involving all available escape responses due to the inescapable/unavoidable nature of FST experience. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. The Dark Side of Testing Memory: Repeated Retrieval Can Enhance Eyewitness Suggestibility

    ERIC Educational Resources Information Center

    Chan, Jason C. K.; LaPaglia, Jessica A.

    2011-01-01

    Eyewitnesses typically recount their experiences many times before trial. Such repeated retrieval can enhance memory retention of the witnessed event. However, recent studies (e.g., Chan, Thomas, & Bulevich, 2009) have found that initial retrieval can exacerbate eyewitness suggestibility to later misleading information--a finding termed…

  16. Short-term memory for spatial configurations in the tactile modality: a comparison with vision.

    PubMed

    Picard, Delphine; Monnier, Catherine

    2009-11-01

    This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.

  17. The Memory That's Right and the Memory That's Left: Event-Related Potentials Reveal Hemispheric Asymmetries in the Encoding and Retention of Verbal Information

    ERIC Educational Resources Information Center

    Evans, Karen M.; Federmeier, Kara D.

    2007-01-01

    We examined the nature and timecourse of hemispheric asymmetries in verbal memory by recording event-related potentials (ERPs) in a continuous recognition task. Participants made overt recognition judgments to test words presented in central vision that were either novel (new words) or had been previously presented in the left or right visual…

  18. Verbal memory decline from hippocampal depth electrodes in temporal lobe surgery for epilepsy.

    PubMed

    Ljung, Hanna; Nordlund, Arto; Strandberg, Maria; Bengzon, Johan; Källén, Kristina

    2017-12-01

    To explore whether patients with refractory mesial temporal lobe epilepsy risk aggravated verbal memory loss from intracranial electroencephalography (EEG) recording with longitudinal hippocampal electrodes in the language-dominant hemisphere. A long-term neuropsychological follow-up (mean 61.5 months, range 22-111 months) was performed in 40 patients after ictal registration with left hippocampal depth electrodes (study group, n = 16) or no invasive EEG, only extracranial registration (reference group, n = 24). The groups were equal with respect to education, age at seizure onset, epilepsy duration, and prevalence of pharmacoresistant temporal lobe epilepsy (TLE; 75%) versus seizure freedom (25%). Retrospective neuropsychological data from preoperative surgical workup (T1) and prospective follow-up neuropsychological data (T2) were compared. A ≥1 SD intrapatient decline was considered as clinically relevant deterioration of verbal memory. Significant decline in verbal memory was seen in 56% of the patients in the study group compared to 21% in the reference group. At T1, there were no statistical between-group differences in memory performance. At T2, between-group comparison showed significantly greater verbal memory decline for the study group (Claeson Dahl Learning and Retention Test, Verbal Learning: p = 0.05; Rey Auditory Verbal Learning Test, Total Learning: p = 0.04; Claeson Dahl Learning and Retention Test, Verbal Retention: p = 0.04). An odds ratio (OR) of 7.1 (90% confidence interval [CI] 1.3-37.7) for verbal memory decline was seen if right temporal lobe resection (R TLR) had been performed between T1 and T2. The difference between groups remained unchanged when patients who had undergone R TLR were excluded from the analysis, with a remaining aggravated significant decline in verbal memory performance for the study group compared to the reference group. Our results suggest a risk of verbal memory deterioration after the use of depth electrodes along the longitudinal axis of the hippocampus. Until this issue is further investigated, caution regarding depth electrodes in the language-dominant hemisphere hippocampus seems advisable. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  19. Retrieval Practice and Spacing Effects in Young and Older Adults: An Examination of the Benefits of Desirable Difficulty

    PubMed Central

    Maddox, Geoffrey B.; Balota, David A.

    2015-01-01

    The present study examined how the function relating continued retrieval practice (e.g., 1, 3, or 5 tests) and long-term memory retention is modulated by desirable difficulty (Bjork, 1994). Of particular interest was how retrieval difficulty differed across young and older adults and across manipulations of lag (Experiment 1) and spacing (Experiment 2). To extend on previous studies, acquisition phase response latency was used as a proxy for retrieval difficulty, and analysis of final test performance was conditionalized on acquisition phase retrieval success to more directly examine the influence of desirable difficulty on retention. Results from Experiment 1 revealed that continued testing in the short lag condition led to consistent increases in retention, whereas continued testing in the long lag condition led to increasingly smaller benefits in retention for both age groups. Results from Experiment 2 revealed that repeated spaced testing enhanced retention relative to taking one spaced test for both age groups; however, repeated massed testing only enhanced retention over taking one test for young adults. Across both experiments, the response latency results were overall consistent with an influence of desirable difficulty on retention. Discussion focuses on the role of desirable difficulty during encoding in producing the benefits of lag, spacing, and testing. PMID:25616776

  20. Differentiation of subsequent memory effects between retrieval practice and elaborative study.

    PubMed

    Liu, Yi; Rosburg, Timm; Gao, Chuanji; Weber, Christine; Guo, Chunyan

    2017-07-01

    Retrieval practice enhances memory retention more than re-studying. The underlying mechanisms of this retrieval practice effect have remained widely unclear. According to the elaborative retrieval hypothesis, activation of elaborative information occurs to a larger extent during testing than re-studying. In contrast, the episodic context account has suggested that recollecting prior episodic information (especially the temporal context) contributes to memory retention. To adjudicate the distinction between these two accounts, the present study used the classical retrieval practice effect paradigm to compare retrieval practice and elaborative study. In an initial behavioral experiment, retrieval practice produced greater retention than elaboration and re-studying in a one-week delayed test. In a subsequent event-related potential (ERP) experiment, retrieval practice resulted in reliably superior accuracy in the delayed test compared to elaborative study. In the ERPs, a frontally distributed subsequent memory effect (SME), starting at 300ms, occurred in the elaborative study condition, but not in the retrieval practice condition. A parietal SME emerged in the retrieval practice condition from 500 to 700ms, but was absent in the elaborative study condition. After 700ms, a late SME was present in the retrieval practice condition, but not in the elaborative study condition. Moreover, SMEs lasted longer in retrieval practice than in elaboration. The frontal SME in the elaborative study condition might be related to semantic processing or working memory-based elaboration, whereas the parietal and widespread SME in the retrieval practice condition might be associated with episodic recollection processes. These findings contradict the elaborative retrieval theory, and suggest that contextual recollection rather than activation of semantic information contributes to the retrieval practice effect, supporting the episodic context account. Copyright © 2017. Published by Elsevier B.V.

  1. Sleep spindles during a nap correlate with post sleep memory performance for highly rewarded word-pairs.

    PubMed

    Studte, Sara; Bridger, Emma; Mecklinger, Axel

    2017-04-01

    The consolidation of new associations is thought to depend in part on physiological processes engaged during non-REM (NREM) sleep, such as slow oscillations and sleep spindles. Moreover, NREM sleep is thought to selectively benefit associations that are adaptive for the future. In line with this, the current study investigated whether different reward cues at encoding are associated with changes in sleep physiology and memory retention. Participants' associative memory was tested after learning a list of arbitrarily paired words both before and after taking a 90-min nap. During learning, word-pairs were preceded by a cue indicating either a high or a low reward for correct memory performance at test. The motivation manipulation successfully impacted retention such that memory declined to a greater extent from pre- to post sleep for low rewarded than for high rewarded word-pairs. In line with previous studies, positive correlations between spindle density during NREM sleep and general memory performance pre- and post-sleep were found. In addition to this, however, a selective positive relationship between memory performance for highly rewarded word-pairs at posttest and spindle density during NREM sleep was also observed. These results support the view that motivationally salient memories are preferentially consolidated and that sleep spindles may be an important underlying mechanism for selective consolidation. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Chronic treatment with the new anticonvulsant drug lacosamide impairs learning and memory processes in rats: A possible role of BDNF/TrkB ligand receptor system.

    PubMed

    Shishmanova-Doseva, Michaela; Peychev, Lyudmil; Koeva, Yvetta; Terzieva, Dora; Georgieva, Katerina; Peychev, Zhivko

    2018-06-01

    Cognitive impairment is considered a frequent side effect in the drug treatment of epilepsy. The objective of the present study was to investigate the effects of lacosamide (LCM) on learning and memory processes in rats, on the serum level of brain-derived neurotrophic factor (BDNF) and BDNF/TrkB ligand receptor system expression in the hippocampal formation. Male Wistar rats underwent long-term treatment with three different doses of lacosamide - 3 mg/kg (LCM 3), 10 mg/kg (LCM 10) and 30 mg/kg (LCM 30). All rats were subjected to one active and one passive avoidance tests. The BDNF/TrkB immunohistochemical expression in the hippocampus was measured and serum BDNF was determined. The LCM-treated rats made fewer avoidance responses than controls during acquisition training and in the memory retention test. The number of escapes in the LCM 10 and LCM 30 groups decreased throughout the test, while the rats in the LCM 3 group showed fewer escapes only in the memory test in the active avoidance task. In the step-down test, the latency time of the LCM-30 treated rats was reduced as compared with the controls during the learning session and the short- and long-term memory retention tests. Lacosamide induced a dose-dependent reduction of the hippocampal expression of BDNF and its receptor TrkB. We found no significant difference between BDNF serum levels in the test animals and controls. The results of the study suggest that LCM suppresses the learning and memory processes in rats, with the inhibition of hippocampal BDNF/TrkB ligand receptor system being one of the possible mechanisms causing this effect. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Orexin A Differentially Influences the Extinction Retention of Recent and Remote Fear Memory

    PubMed Central

    Shi, Le; Chen, Wenhao; Deng, Jiahui; Chen, Sijing; Han, Ying; Khan, Muhammad Z.; Liu, Jiajia; Que, Jianyu; Bao, Yanping; Lu, Lin; Shi, Jie

    2018-01-01

    Recently the role of the orexin system in the learning and memory, especially orexin A, which could enhance fear memory through regulating the activity of amygdala, has drawn considerable attention. However, the relationship between orexin A and extinction memory remains unclear. To investigate the effect of orexin A on extinction memory in humans, we recruited 43 male subjects and divided them into a recent group and remote group. After acquiring Pavlovian fear conditioning, individuals in recent group experienced fear extinction 24 h after acquisition, and remote group underwent extinction 2 weeks later. Meanwhile, plasma orexin A levels before extinction were measured by enzyme-linked immunosorbent assay. Both groups received memory test 24 h after fear extinction. The results showed that both recent and remote groups successfully acquired fear conditioning and had spontaneous recovery at test. In particular, the correlational analysis indicated that orexin A levels before extinction were negatively associated with fear responses during test only in recent group, but not in remote group. Moreover, individuals with high orexin A levels still kept low fear responses after extinction in recent group by subgroup analyses. The results suggest that orexin A could influence the retention of recent fear memory extinction, without affecting remote fear extinction. These findings remind us the orexin system can be a potential treatment target for fear-related disorders, and the mechanisms of recent and remote fear extinction may be different. PMID:29773974

  4. Aging and memory: corrections for age, sex and education for three widely used memory tests.

    PubMed

    Zappalà, G; Measso, G; Cavarzeran, F; Grigoletto, F; Lebowitz, B; Pirozzolo, F; Amaducci, L; Massari, D; Crook, T

    1995-04-01

    The associate learning subtest from the Wechsler Memory Scale; Benton's Visual Retention test and a Controlled Word Association Task (FAS) were administered to a random sample of normal, healthy individuals whose age ranged from 20 to 79 years, recruited within the Italian peninsula. The neuropsychological examination took place on a mobile unit and the tests were given by the same team of neuropsychologists to reduce variability among examiners. The Research Project was known as Progetto Memoria. Corrections to the scores of these tests were calculated for age, sex, and education. These corrected values will allow clinicians to screen for memory impairment with greater precision among normally aging individuals, thus improving differential diagnosis between physiologic and pathologic deterioration of cognitive functions.

  5. Infralimbic GluN2A-Containing NMDA Receptors Modulate Reconsolidation of Cocaine Self-Administration Memory.

    PubMed

    Hafenbreidel, Madalyn; Rafa Todd, Carolynn; Mueller, Devin

    2017-04-01

    Addiction is characterized by high relapse susceptibility, and relapse can be triggered by drug-associated cues. Cue presentation induces retrieval of the drug-cue memory, which becomes labile and must be reconsolidated into long-term storage. Repeated unpaired cue presentation, however, promotes extinction. Cue-reactivity can be reduced by blocking reconsolidation or facilitating extinction, which are mediated by NMDA receptors (NMDArs). However, the role of NMDArs in either process following self-administration is unclear. Thus, to determine their role in extinction, rats learned to self-administer cocaine before receiving injections of the NMDAr antagonist CPP immediately after four 45-min extinction sessions. During a subsequent 90-min extinction retention test, CPP-treated rats lever pressed less than saline-treated rats indicating that NMDAr blockade facilitated extinction or disrupted drug-cue memory reconsolidation. In addition, infusing CPP into the infralimbic medial prefrontal cortex (IL-mPFC), a structure implicated in extinction, before four 45-min or immediately after four 30min extinction sessions, had similar results during the extinction retention tests. Next, the GluN2A-selective antagonist NVP or GluN2B-selective antagonist Ro25 was infused into IL-mPFC or nucleus accumbens (NAc) shell, another structure implicated in extinction, after four 45-min extinction sessions. Blocking GluN2A-, but not GluN2B-, containing NMDArs, in IL-mPFC or NAc shell reduced lever pressing during the extinction retention tests. Finally, to dissociate reconsolidation from extinction, NVP was infused into IL-mPFC after four 10-min reactivation sessions, which resulted in reduced lever pressing during the retention test. These results indicate that IL-mPFC GluN2A-containing NMDArs modulate reconsolidation, and suggest a novel treatment strategy, as reducing cue reactivity could limit relapse susceptibility.

  6. Effects of Sleep on Word Pair Memory in Children - Separating Item and Source Memory Aspects.

    PubMed

    Wang, Jing-Yi; Weber, Frederik D; Zinke, Katharina; Noack, Hannes; Born, Jan

    2017-01-01

    Word paired-associate learning is a well-established task to demonstrate sleep-dependent memory consolidation in adults as well as children. Sleep has also been proposed to benefit episodic features of memory, i.e., a memory for an event (item) bound into the spatiotemporal context it has been experienced in (source). We aimed to explore if sleep enhances word pair memory in children by strengthening the episodic features of the memory, in particular. Sixty-one children (8-12 years) studied two lists of word pairs with 1 h in between. Retrieval testing comprised cued recall of the target word of each word pair (item memory) and recalling in which list the word pair had appeared in (source memory). Retrieval was tested either after 1 h (short retention interval) or after 11 h, with this long retention interval covering either nocturnal sleep or daytime wakefulness. Compared with the wake interval, sleep enhanced separate recall of both word pairs and the lists per se , while recall of the combination of the word pair and the list it had appeared in remained unaffected by sleep. An additional comparison with adult controls ( n = 37) suggested that item-source bound memory (combined recall of word pair and list) is generally diminished in children. Our results argue against the view that the sleep-induced enhancement in paired-associate learning in children is a consequence of sleep specifically enhancing the episodic features of the memory representation. On the contrary, sleep in children might strengthen item and source representations in isolation, while leaving the episodic memory representations (item-source binding) unaffected.

  7. Testing Unsuccessfully: A Specification of the Underlying Mechanisms Supporting Its Influence on Retention

    ERIC Educational Resources Information Center

    Knight, Justin B.; Ball, B. Hunter; Brewer, Gene A.; DeWitt, Michael R.; Marsh, Richard L.

    2012-01-01

    Five experiments were conducted to examine how unsuccessful retrieval influences learning and subsequent memory. We used a cued-recall paradigm that produces many unsuccessful retrieval attempts (followed by feedback) and allows comparisons to be made between later memory for these trials and trials that only required reading or studying the…

  8. The Impact of Pointing on the Short-Term Memory (STM) of Heterophonic Homographs

    ERIC Educational Resources Information Center

    Vaknin-Nusbaum, Vered; Miller, Paul

    2014-01-01

    This study entailed two short-term memory (STM) experiments investigating the importance of vowel diacritics for the temporary retention of three distinct Hebrew word list types: heterophonic homographs, non-homographs and homophonic homographs. Eighty university students participated in each experiment, with half of them tested with word lists…

  9. Social Isolation During Adolescence Strengthens Retention of Fear Memories and Facilitates Induction of Late-Phase Long-Term Potentiation.

    PubMed

    Liu, Ji-Hong; You, Qiang-Long; Wei, Mei-Dan; Wang, Qian; Luo, Zheng-Yi; Lin, Song; Huang, Lang; Li, Shu-Ji; Li, Xiao-Wen; Gao, Tian-Ming

    2015-12-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation that often manifests as abnormal behavior in adulthood. The enduring consequence of isolation might be caused by a weakened ability to forget unpleasant memories. However, it remains unclear whether isolation affects unpleasant memories. To address this, we used a model of associative learning to induce the fear memories and evaluated the influence of isolation mice during adolescence on the subsequent retention of fear memories and its underlying cellular mechanisms. Following adolescent social isolation, we found that mice decreased their social interaction time and had an increase in anxiety-related behavior. Interestingly, when we assessed memory retention, we found that isolated mice were unable to forget aversive memories when tested 4 weeks after the original event. Consistent with this, we observed that a single train of high-frequency stimulation (HFS) enabled a late-phase long-term potentiation (L-LTP) in the hippocampal CA1 region of isolated mice, whereas only an early-phase LTP was observed with the same stimulation in the control mice. Social isolation during adolescence also increased brain-derived neurotrophic factor (BDNF) expression in the hippocampus, and application of a tropomyosin-related kinase B (TrkB) receptor inhibitor ameliorated the facilitated L-LTP seen after isolation. Together, our results suggest that adolescent isolation may result in mental disorders during adulthood and that this may stem from an inability to forget the unpleasant memories via BDNF-mediated synaptic plasticity. These findings may give us a new strategy to prevent mental disorders caused by persistent unpleasant memories.

  10. Recognition memory for social and non-social odors: differential effects of neurotoxic lesions to the hippocampus and perirhinal cortex.

    PubMed

    Feinberg, Leila M; Allen, Timothy A; Ly, Denise; Fortin, Norbert J

    2012-01-01

    The contributions of the hippocampus (HC) and perirhinal cortex (PER) to recognition memory are currently topics of debate in neuroscience. Here we used a rapidly-learned (seconds) spontaneous novel odor recognition paradigm to assess the effects of pre-training N-methyl-D-aspartate lesions to the HC or PER on odor recognition memory. We tested memory for both social and non-social odor stimuli. Social odors were acquired from conspecifics, while non-social odors were household spices. Conspecific odor stimuli are ethologically-relevant and have a high degree of overlapping features compared to non-social household spices. Various retention intervals (5 min, 20 min, 1h, 24h, or 48 h) were used between study and test phases, each with a unique odor pair, to assess changes in novelty preference over time. Consistent with findings in other paradigms, modalities, and species, we found that HC lesions yielded no significant recognition memory deficits. In contrast, PER lesions caused significant deficits for social odor recognition memory at long retention intervals, demonstrating a critical role for PER in long-term memory for social odors. PER lesions had no effect on memory for non-social odors. The results are consistent with a general role for PER in long-term recognition memory for stimuli that have a high degree of overlapping features, which must be distinguished by conjunctive representations. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Sensitive maintenance: a cognitive process underlying individual differences in memory for threatening information.

    PubMed

    Peters, Jan H; Hock, Michael; Krohne, Heinz Walter

    2012-01-01

    Dispositional styles of coping with threat influence memory for threatening information. In particular, sensitizers excel over repressors in their memory for threatening information after long retention intervals, but not after short ones. We therefore suggested that sensitizers, but not repressors, employ active maintenance processes during the retention interval to selectively retain threatening material. Sensitive maintenance was studied in 2 experiments in which participants were briefly exposed to threatening and nonthreatening pictures (Experiment 1, N = 128) or words (Experiment 2, N = 145). Following, we administered unannounced recognition tests before and after an intervening task that generated either high or low cognitive load, assuming that high cognitive load would impede sensitizers' memory maintenance of threatening material. Supporting our hypotheses, the same pattern of results was obtained in both experiments: Under low cognitive load, sensitizers forgot less threat material than repressors did; no such differences were observed under high cognitive load.

  12. Leveling the playing field: attention mitigates the effects of intelligence on memory.

    PubMed

    Markant, Julie; Amso, Dima

    2014-05-01

    Effective attention and memory skills are fundamental to typical development and essential for achievement during the formal education years. It is critical to identify the specific mechanisms linking efficiency of attentional selection of an item and the quality of its memory retention. The present study capitalized on the spatial cueing paradigm to examine the role of selection via suppression in modulating children and adolescents' memory encoding. By varying a single parameter, the spatial cueing task can elicit either a simple orienting mechanism (i.e., facilitation) or one that involves both target selection and simultaneous suppression of competing information (i.e., IOR). We modified this paradigm to include images of common items in target locations. Participants were not instructed to learn the items and were not told they would be completing a memory test later. Following the cueing task, we imposed a 7-min delay and then asked participants to complete a recognition memory test. Results indicated that selection via suppression promoted recognition memory among 7-17year-olds. Moreover, individual differences in the extent of suppression during encoding predicted recognition memory accuracy. When basic cueing facilitated orienting to target items during encoding, IQ was the best predictor of recognition memory performance for the attended items. In contrast, engaging suppression (i.e., IOR) during encoding counteracted individual differences in intelligence, effectively improving recognition memory performance among children with lower IQs. This work demonstrates that engaging selection via suppression during learning and encoding improves memory retention and has broad implications for developing effective educational techniques. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Leveling the playing field: Attention mitigates the effects of intelligence on memory

    PubMed Central

    Markant, Julie; Amso, Dima

    2014-01-01

    Effective attention and memory skills are fundamental to typical development and essential for achievement during the formal education years. It is critical to identify the specific mechanisms linking efficiency of attentional selection of an item and the quality of its memory retention. The present study capitalized on the spatial cueing paradigm to examine the role of selection via suppression in modulating children and adolescents’ memory encoding. By varying a single parameter, the spatial cueing task can elicit either a simple orienting mechanism (i.e., facilitation) or one that involves both target selection and simultaneous suppression of competing information (i.e., IOR). We modified this paradigm to include images of common items in target locations. Participants were not instructed to learn the items and were not told they would be completing a memory test later. Following the cueing task, we imposed a seven-minute delay and then asked participants to complete a recognition memory test. Results indicated that selection via suppression promoted recognition memory among 7-17 year-olds. Moreover, individual differences in the extent of suppression during encoding predicted recognition memory accuracy. When basic cueing facilitated orienting to target items during encoding, IQ was the best predictor of recognition memory performance for the attended items. In contrast, engaging suppression (i.e, IOR) during encoding counteracted individual differences in intelligence, effectively improving recognition memory performance among children with lower IQs. This work demonstrates that engaging selection via suppression during learning and encoding improves memory retention and has broad implications for developing effective educational techniques. PMID:24549142

  14. The impact of cognitive load on delayed recall.

    PubMed

    Camos, Valérie; Portrat, Sophie

    2015-08-01

    Recent studies have suggested that long-term retention of items studied in a working memory span task depends on the refreshing of memory items-more specifically, on the number of refreshing opportunities. However, it was previously shown that refreshing depends on the cognitive load of the concurrent task introduced in the working memory span task. Thus, cognitive load should determine the long-term retention of items assessed in a delayed-recall test if such retention relies on refreshing. In two experiments, while the amount of refreshing opportunities remained constant, we varied the cognitive load of the concurrent task by either introducing tasks differing in their attentional demands or varying the pace of the concurrent task. To verify that this effect was related to refreshing and not to any maintenance mechanism, we also manipulated the availability of subvocal rehearsal. Replicating previous results, increasing cognitive load reduced immediate recall. This increase also had a detrimental effect on delayed recall. Conversely, the addition of concurrent articulation reduced immediate but not delayed recall. This study shows that both working and episodic memory traces depend on the cognitive load of the concurrent task, whereas the use of rehearsal affects only working memory performance. These findings add further evidence of the dissociation between subvocal rehearsal and attentional refreshing.

  15. Intraseptal infusion of oxotremorine impairs memory in a delayed-non-match-to-sample radial maze task.

    PubMed

    Bunce, J G; Sabolek, H R; Chrobak, J J

    2003-01-01

    The medial septal nucleus is part of the forebrain circuitry that supports memory. This nucleus is rich in cholinergic receptors and is a putative target for the development of cholinomimetic cognitive-enhancing drugs. Septal neurons, primarily cholinergic and GABAergic, innervate the entire hippocampal formation and regulate hippocampal formation physiology and emergent function. Direct intraseptal drug infusions can produce amnestic or promnestic effects depending upon the type of drug administered. However, intraseptal infusion of the cholinomimetic oxotremorine has been reported to produce both promnestic and amnestic effects when administered prior to task performance. The present study examined whether post-acquisition intraseptal infusion of oxotremorine would be promnestic or amnestic in a delayed-non-match-to-sample radial maze task. In this task rats must remember information about spatial locations visited during a daily sample session and maintain that information over extended retention intervals (hours) in order to perform accurately on the daily test session. Treatments may then be administered during the retention interval. Alterations in maze performance during the test session an hour or more after treatment evidences effects on memory. In the present study, intraseptal infusion of oxotremorine (1.0-10.0 microg) produced a linear dose-related impairment of memory performance. Importantly, we also observed disrupted performance on the day after treatment. This persistent deficit was related only to memory over the retention interval and did not affect indices of short-term memory (ability to avoid repetitive or proactive errors during both the pre- and post-delay sessions). The persistent deficit contrasts with the acute amnestic effects of other intraseptally administered drugs including the cholinomimetics carbachol and tacrine. Thus, intraseptal oxotremorine produced a preferential disruption of memory consolidation as well as a persistent alteration of medial septal circuits. These findings are discussed with regards to multi-stage models of hippocampal-dependent memory formation and the further development of therapeutic strategies in the treatment of mild cognitive impairment as well as age-related decline and Alzheimer's dementia.

  16. The Central Nucleus of the Amygdala and Corticotropin-Releasing Factor: Insights into Contextual Fear Memory

    PubMed Central

    Pitts, Matthew W.; Todorovic, Cedomir; Blank, Thomas; Takahashi, Lorey K.

    2009-01-01

    The central nucleus of the amygdala (CeA) has been traditionally viewed in fear conditioning to serve as an output neural center that transfers conditioned information formed in the basolateral amygdala to brain structures that generate emotional responses. Recent studies suggest that the CeA may also be involved in fear memory consolidation. In addition, corticotropin-releasing factor systems were shown to facilitate memory consolidation in the amygdala, which contains a high density of CRF immunoreactive cell bodies and fibers in the lateral part of the CeA (CeAl). However, the involvement of CeA CRF in contextual fear conditioning remains poorly understood. Therefore, we first conducted a series of studies using fiber-sparing lesion and reversible inactivation methods to assess the general role of the CeA in contextual fear. We then used identical training and testing procedures to compare and evaluate the specific function of CeA CRF using CRF antisense oligonucleotides (CRF ASO). Rats microinjected with ibotenic acid, muscimol, or a CRF ASO into the CeA prior to contextual fear conditioning showed typical levels of freezing during acquisition training but exhibited significant reductions in contextual freezing in a retention test 48 h later. Furthermore, CeA inactivation induced by either muscimol or CRF ASO administration immediately prior to retention testing did not impair freezing, suggesting that the previously observed retention deficits were due to inhibition of consolidation rather than fear expression. Collectively, our results suggest CeA involvement in the consolidation of contextual fear memory and specifically implicate CeA CRF as an important mediator. PMID:19494159

  17. Participation of muscarinic receptors in memory consolidation in passive avoidance learning.

    PubMed

    Dobryakova, Yulia V; Gurskaya, Olga; Markevich, Vladimir A

    2014-01-01

    It is well-known that the cholinergic system and the muscarinic cholinergic receptors are associated with cognitive functions. Here we examined whether a non-selective muscarinic receptor antagonist scopolamine affects learning performance and/or synaptic plasticity during the memory consolidation period. Adult male Wistar rats (250-300 g) were injected with scopolamine (2 mg/kg) or saline immediately after training in a "passive avoidance" task. Memory retention test was conducted 24 h after training. The changes in the latency of the first entry into a dark compartment of a test chamber was chosen as a criterion of learning. The efficacy of synaptic transmission was estimated by the changes in the basal level of focal potentials (fEPSP amplitude and slope ratio) before training (baseline), 90 min after the training (consolidation period), and 24 hour after the training (retention period). We found that foot-shock presentation by itself had no effect on fEPSP within the first 90 min after training, but in 24 hour fEPSPs were decreased. In untrained rats administration of scopolamine had no effect on the fEPSP amplitude within the first 90 min after the injection, but in 24 h we observed an increase in the fEPSP amplitude. In trained animals, scopolamine decreased the fEPSP amplitude in the hippocampal CA1 area during first 1.5 h after the injection. However, the drug had no effect on the memory retention in the passive avoidance task. Taken together our data suggest that scopolamine modifies the synaptic placticity of the hippocampal network but does not induce significant changes in the retention of the passive avoidance skill.

  18. Picturing survival memories: enhanced memory after fitness-relevant processing occurs for verbal and visual stimuli.

    PubMed

    Otgaar, Henry; Smeets, Tom; van Bergen, Saskia

    2010-01-01

    Recent studies have shown that processing words according to a survival scenario leads to superior retention relative to control conditions. Here, we examined whether a survival recall advantage could be elicited by using pictures. Furthermore, in Experiment 1, we were interested in whether survival processing also results in improved memory for details. Undergraduates rated the relevance of pictures in a survival, moving, or pleasantness scenario and were subsequently given a surprise free recall test. We found that survival processing yielded superior retention. We also found that distortions occurred more often in the survival condition than in the pleasantness condition. In Experiment 2, we directly compared the survival recall effect between pictures and words. A comparable survival recall advantage was found for pictures and words. The present findings support the idea that memory is enhanced by processing information in terms of fitness value, yet at the same time, the present results suggest that this may increase the risk for memory distortions.

  19. Bigger is better! Hippocampal volume and declarative memory performance in healthy young men.

    PubMed

    Pohlack, Sebastian T; Meyer, Patric; Cacciaglia, Raffaele; Liebscher, Claudia; Ridder, Stephanie; Flor, Herta

    2014-01-01

    The importance of the hippocampus for declarative memory processes is firmly established. Nevertheless, the issue of a correlation between declarative memory performance and hippocampal volume in healthy subjects still remains controversial. The aim of the present study was to investigate this relationship in more detail. For this purpose, 50 healthy young male participants performed the California Verbal Learning Test. Hippocampal volume was assessed by manual segmentation of high-resolution 3D magnetic resonance images. We found a significant positive correlation between putatively hippocampus-dependent memory measures like short-delay retention, long-delay retention and discriminability and percent hippocampal volume. No significant correlation with measures related to executive processes was found. In addition, percent amygdala volume was not related to any of these measures. Our data advance previous findings reported in studies of brain-damaged individuals in a large and homogeneous young healthy sample and are important for theories on the neural basis of episodic memory.

  20. Recognition of student names past: a longitudinal study with N = 1.

    PubMed

    Huang, I N

    1997-01-01

    Recognition of names of former students taught at different times by a middle-aged college professor was tested, to investigate recognition memory over a time span ranging from 6 months to 26.5 years. The relationship between the d', a measure of strength of memory, and the retention interval can be best described by a logarithmic function characterized by a rapid initial drop followed by a slow forgetting rate. The correct responses (hits and rejections) had higher confidence and shorter response time than did the incorrect responses (false alarms and misses). The results show that an ecologically realistic longitudinal study with N = 1 can provide a valuable means in the study of human memory with very long retention intervals, which have not yet been investigated in the laboratory.

  1. Using Instructional and Motivational Techniques in the Art Classroom To Increase Memory Retention.

    ERIC Educational Resources Information Center

    Calverley, Ann; Grafer, Bonnie; Hauser, Michelle

    This report describes a program for improving memory retention through instructional and motivational techniques in elementary art. Targeted population consisted of third grade students at three sites in a middle class suburb of a large midwestern city. The problems of memory retention were documented through teacher pre-surveys and art memory…

  2. The development of adaptive memory: Young children show enhanced retention of animacy-related information.

    PubMed

    Aslan, Alp; John, Thomas

    2016-12-01

    Previous developmental work has indicated that animacy is a foundational ontogenetic category that is given priority already early in life. Here, we investigated whether such priority is also present in children's episodic memory, examining whether young children show enhanced retention of animacy-related information. Kindergartners and younger and older elementary school children were presented with fictitious (non)words (e.g., BULA, LAFE) paired with properties characteristic of humans (e.g., "likes music"), (nonhuman) animals (e.g., "builds nests"), and inanimate things (e.g., "has four edges") and were asked to rate the animacy status of each nonword. After a retention interval, a surprise recognition test for the nonwords was administered. We found enhanced recognition of nonwords paired with human and animal properties compared with (the same) nonwords paired with inanimate properties. The size of this animacy advantage was comparable across age groups, suggesting developmental invariance of the advantage over the age range examined (i.e., 4-11years). The results support a functional-evolutionary view on memory, suggesting that already young children's memory is "tuned" to process and retain animacy. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effect of organizational strategy on visual memory in patients with schizophrenia.

    PubMed

    Kim, Myung-Sun; Namgoong, Yoon; Youn, Tak

    2008-08-01

    The aim of the present study was to examine how copy organization mediated immediate recall among patients with schizophrenia using the Rey-Osterrieth Complex Figure Test (ROCF). The Boston Qualitative Scoring System (BQSS) was applied for qualitative and quantitative analyses of ROCF performances. Subjects included 20 patients with schizophrenia and 20 age- and gender-matched healthy controls. During the copy condition, the schizophrenia group and the control group differed in fragmentation; during the immediate recall condition, the two groups differed in configural presence and planning; and during the delayed recall condition, they differed in several qualitative measurements, including configural presence, cluster presence/placement, detail presence/placement, fragmentation, planning, and neatness. The two groups also differed in several quantitative measurements, including immediate presence and accuracy, immediate retention, delayed retention, and organization. Although organizational strategies used during the copy condition mediated the difference between the two groups during the immediate recall condition, group also had a significant direct effect on immediate recall. Schizophrenia patients are deficient in visual memory, and a piecemeal approach to the figure and organizational deficit seem to be related to the visual memory deficit. But schizophrenia patients also appeared to have some memory problems, including retention and/or retrieval deficits.

  4. Bombesin administration impairs memory and does not reverse memory deficit caused by sleep deprivation.

    PubMed

    Ferreira, L B T; Oliveira, S L B; Raya, J; Esumi, L A; Hipolide, D C

    2017-07-28

    Sleep deprivation impairs performance in emotional memory tasks, however this effect on memory is not completely understood. Possible mechanisms may involve an alteration in neurotransmission systems, as shown by the fact that many drugs that modulate neural pathways can prevent memory impairment by sleep loss. Gastrin releasing peptide (GRP) is a neuropeptide that emerged as a regulatory molecule of emotional memory through the modulation of other neurotransmission systems. Thus, the present study addressed the effect of intraperitoneal (IP) administration of bombesin (BB) (2.5, 5.0 and 10.0μg/kg), a GRP agonist, on the performance of Wistar rats in a multiple trail inhibitory avoidance (MTIA) task, after sleep deprivation, using the modified multiple platforms method (MMPM). Sleep deprived animals exhibited acquisition and retention impairment that was not prevented by BB injection. In addition, non-sleep deprived animals treated with BB before and after the training session, but not before the test, have shown a retention deficit. In summary, BB did not improve the memory impairment by sleep loss and, under normal conditions, produced a memory consolidation deficit. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The inhibitory avoidance discrimination task to investigate accuracy of memory.

    PubMed

    Atucha, Erika; Roozendaal, Benno

    2015-01-01

    The present study was aimed at developing a new inhibitory avoidance task, based on training and/or testing rats in multiple contexts, to investigate accuracy of memory. In the first experiment, male Sprague-Dawley rats were given footshock in an inhibitory avoidance apparatus and, 48 h later, retention latencies of each rat were assessed in the training apparatus (Shock box) as well as in a novel, contextually modified, apparatus. Retention latencies in the Shock box were significantly longer than those in the Novel box, indicating accurate memory of the training context. When the noradrenergic stimulant yohimbine (0.3 mg/kg, sc) was administered after the training, 48-h retention latencies in the Shock box, but not Novel box, were increased, indicating that the noradrenergic activation enhanced memory of the training experience without reducing memory accuracy. In the second experiment, rats were trained on an inhibitory avoidance discrimination task: They were first trained in an inhibitory avoidance apparatus without footshock (Non-Shock box), followed 1 min later by footshock training in a contextually modified apparatus (Shock box). Forty-eight-hour retention latencies in the Shock and Non-Shock boxes did not differ from each other but were both significantly longer than those in a Novel box, indicating that rats remembered the two training contexts but did not have episodic-like memory of the association of footshock with the correct training context. When the interval between the two training episodes was increased to 2 min, rats showed accurate memory of the association of footshock with the training context. Yohimbine administered after the training also enhanced rats' ability to remember in which training context they had received actual footshock. These findings indicate that the inhibitory avoidance discrimination task is a novel variant of the well-established inhibitory avoidance task suitable to investigate accuracy of memory.

  6. Evaluation of Data Retention Characteristics for Ferroelectric Random Access Memories (FRAMs)

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovsky, Alexander

    2001-01-01

    Data retention and fatigue characteristics of 64 Kb lead zirconate titanate (PZT)-based Ferroelectric Random Access Memories (FRAMs) microcircuits manufactured by Ramtron were examined over temperature range from -85 C to +310 C for ceramic packaged parts and from -85 C to +175 C for plastic parts, during retention periods up to several thousand hours. Intrinsic failures, which were caused by a thermal degradation of the ferroelectric cells, occurred in ceramic parts after tens or hundreds hours of aging at temperatures above 200 C. The activation energy of the retention test failures was 1.05 eV and the extrapolated mean-time-to-failure (MTTF) at room temperature was estimated to be more than 280 years. Multiple write-read cycling (up to 3x10(exp 7)) during the fatigue testing of plastic and ceramic parts did not result in any parametric or functional failures. However, operational currents linearly decreased with the logarithm of number of cycles thus indicating fatigue process in PZT films. Plastic parts, that had more recent date code as compared to ceramic parts, appeared to be using die with improved process technology and showed significantly smaller changes in operational currents and data access times.

  7. Verbal memory in drug-naive, newly diagnosed Parkinson's disease. The retrieval deficit hypothesis revisited.

    PubMed

    Brønnick, Kolbjørn; Alves, Guido; Aarsland, Dag; Tysnes, Ole-Bjørn; Larsen, Jan Petter

    2011-01-01

    The retrieval deficit hypothesis on memory impairment in patients with Parkinson's disease (PD) implies a selective impairment in recall of learned material with normal encoding, retention, and recognition. This hypothesis has been challenged by new data. We have therefore investigated verbal memory and learning in a large sample of newly diagnosed, drug naïve, non-demented patients with PD. From a sample of patients with PD from the Norwegian ParkWest study, 133 PD patients and 133 controls matched on sex, age, and education were included. The California Verbal Learning Test-2 (CVLT-2) was used to assess verbal memory. Patients performed significantly worse than controls on free and cued recall as well as on recognition memory. Patients used the semantic clustering learning strategy significantly less extensively than the controls and the learning slope of the PD patients was significantly less steep. There was no difference in retention when controlling for encoding. Patients did not perform better on the recognition measure or on cued recall (d-prime), as compared to free recall. Executive functions explained a substantial part of the memory deficits. This study suggests that memory impairment in drug naïve early PD to a large degree is a deficit of learning/ encoding and not of retention or retrieval. An implication is that the retrieval deficit hypothesis should be moderated in its general form. Executive deficits and less extensive use of the efficient semantic clustering learning strategy had a strong impact on learning and memory. (c) 2010 APA, all rights reserved.

  8. Using electrophysiology to demonstrate that cuing affects long-term memory storage over the short term

    PubMed Central

    Maxcey, Ashleigh M.; Fukuda, Keisuke; Song, Won S.; Woodman, Geoffrey F.

    2015-01-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cued presented during a stream of objects, followed by a short retention interval and immediate memory test, change how information is handled by long-term memory. We tested this hypothesis using a family of frontal event-related potentials (ERPs) believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when objects repeat frequently such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate how frequent stimulus repetitions fail to isolate the role of working memory mechanisms. PMID:25604772

  9. Using electrophysiology to demonstrate that cueing affects long-term memory storage over the short term.

    PubMed

    Maxcey, Ashleigh M; Fukuda, Keisuke; Song, Won S; Woodman, Geoffrey F

    2015-10-01

    As researchers who study working memory, we often assume that participants keep a representation of an object in working memory when we present a cue that indicates that the object will be tested in a couple of seconds. This intuitively accounts for how well people can remember a cued object, relative to their memory for that same object presented without a cue. However, it is possible that this superior memory does not purely reflect storage of the cued object in working memory. We tested the hypothesis that cues presented during a stream of objects, followed by a short retention interval and immediate memory test, can change how information is handled by long-term memory. We tested this hypothesis by using a family of frontal event-related potentials believed to reflect long-term memory storage. We found that these frontal indices of long-term memory were sensitive to the task relevance of objects signaled by auditory cues, even when the objects repeated frequently, such that proactive interference was high. Our findings indicate the problematic nature of assuming process purity in the study of working memory, and demonstrate that frequent stimulus repetitions fail to isolate the role of working memory mechanisms.

  10. Comparison of the effects of rapid maxillary expansion caused by treatment with either a memory screw or a Hyrax screw on the dentofacial structures--transversal effects.

    PubMed

    Halıcıoğlu, Koray; Yavuz, Ibrahim

    2014-04-01

    The aim of the present study was to investigate and compare the effects of conventional Hyrax screw treatment and memory screw treatment on skeletal and dentoalveolar structures. Thirty-two patients with maxillary transversal deficiency were divided into two groups. The memory-screw group included 17 patients (nine females and eight males), while the Hyrax-screw group comprised 15 patients (eight females and seven males). Mean ages of the subjects in the memory-screw and Hyrax-screw groups were 13.00 ± 1.29 and 12.58 ± 1.50 years, respectively. Plaster models and postero-anterior cephalograms were taken from the patients at the beginning of the treatment (T1) and at the end of expansion (T2) and retention periods (T3). The mean expansion period was 7.76 ± 1.04 days in the memory-screw group and 35.46 ± 9.39 days in the Hyrax-screw group. 'Shapiro-Wilk Normality test' was used to determine whether the investigated parameters were homogeneous or not. To determine the treatment changes within the group, 'paired t-test' and 'Wilcoxon signed-ranks test' were applied to the homogeneous and non-homogeneous parameters, respectively. Comparison between the groups was carried out using 'Student's t-test' for homogeneous parameters and 'Mann-Whitney U-test' for the rest. Rapid maxillary expansion was carried out successfully in both the groups. However, the use of memory screw may be advantageous because it shortens the maxillary expansion period, provides additional expansion in the retention period, and generates light forces relative to the conventional Hyrax screw.

  11. Selective maintenance in visual working memory does not require sustained visual attention.

    PubMed

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M

    2013-08-01

    In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in visual working memory (VWM). Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change-detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. 2013 APA, all rights reserved

  12. Pictorial Superiority Effects in Oldest-Old People

    PubMed Central

    Cherry, Katie E.; Hawley, Karri S.; Jackson, Erin M.; Volaufova, Julia; Su, L. Joseph; Jazwinski, S. Michal

    2008-01-01

    In this article, we examined memory for pictures and words in middle-age (45-59 years), young-old (60-74 years), old-old (75-89 years) and the oldest-old adults (90-97 years) in the Louisiana Healthy Aging Study. Stimulus items were presented and retention was tested in a blocked order where half of the participants studied 16 simple line drawings and the other half studied matching words during acquisition. Free recall and recognition followed. In the next acquisition/test block, a new set of items was used where the stimulus format was changed relative to the first block. Results yielded pictorial superiority effects in both retention measures for all age groups. Follow-up analyses of clustering in free recall revealed a greater number of categories were accessed (which reflects participants' retrieval plan) and more items were recalled per category (which reflects participants' encoding strategy) when pictures served as stimuli compared to words. Cognitive status and working memory span were correlated with picture and word recall. Regression analyses confirmed that these individual difference variables accounted for significant age-related variance in recall. These data strongly suggest that the oldest-old can utilize nonverbal memory codes to support long-term retention as effectively as do younger adults. PMID:18651263

  13. Gap junctions and memory: an investigation using a single trial discrimination avoidance task for the neonate chick.

    PubMed

    Verwey, L J; Edwards, T M

    2010-02-01

    Gap junctions are important to how the brain functions but are relatively under-investigated with respect to their contribution towards behaviour. In the present study a single trial discrimination avoidance task was used to investigate the effect of the gap junction inhibitor 18-alpha-glycyrrhetinic acid (alphaGA) on retention. Past studies within our research group have implied a potential role for gap junctions during the short-term memory (STM) stage which decays by 15 min post-training. A retention function study comparing 10 microM alphaGA and vehicle given immediately post-training demonstrated a significant main effect for drug with retention loss at all times of test (10-180 min post-training). Given that the most common gap junction in the brain is that forming the astrocytic network it is reasonable to conclude that alphaGA was acting upon these. To confirm this finding and interpretation two additional investigations were undertaken using endothelin-1 (ET-1) and ET-1+tolbutamide. Importantly, a retention function study using 10nM ET-1 replicated the retention loss observed for alphaGA. In order to confirm that ET-1 was acting on astrocytic gap junctions the amnestic action of ET-1 was effectively challenged with increasing concentrations of tolbutamide. The present findings suggest that astrocytic gap junctions are important for memory processing. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Oxygen plasma immersion ion implantation treatment to enhance data retention of tungsten nanocrystal nonvolatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jer-Chyi, E-mail: jcwang@mail.cgu.edu.tw; Chang, Wei-Cheng; Lai, Chao-Sung, E-mail: cslai@mail.cgu.edu.tw

    Data retention characteristics of tungsten nanocrystal (W-NC) memory devices using an oxygen plasma immersion ion implantation (PIII) treatment are investigated. With an increase of oxygen PIII bias voltage and treatment time, the capacitance–voltage hysteresis memory window is increased but the data retention characteristics become degraded. High-resolution transmission electron microscopy images show that this poor data retention is a result of plasma damage on the tunneling oxide layer, which can be prevented by lowering the bias voltage to 7 kV. In addition, by using the elevated temperature retention measurement technique, the effective charge trapping level of the WO{sub 3} film surrounding themore » W-NCs can be extracted. This measurement reveals that a higher oxygen PIII bias voltage and treatment time induces more shallow traps within the WO{sub 3} film, degrading the retention behavior of the W-NC memory.« less

  15. Sauroxine reduces memory retention in rats and impairs hippocampal long-term potentiation generation.

    PubMed

    Vallejo, Mariana; Carlini, Valeria; Gabach, Laura; Ortega, M G; L Cabrera, José; de Barioglio, Susana Rubiales; Pérez, Mariela; Agnese, Alicia M

    2017-07-01

    In the present paper it was investigated the role of sauroxine, an alkaloid of Phlegmariurus saururus, as a modulator of some types of learning and memory, considering the potential nootropic properties previously reported for the alkaloid extract and the main alkaloid sauroine. Sauroxine was isolated by means of an alkaline extraction, purified by several chromatographic techniques, and assayed in electrophysiological experiments on rat hippocampus slices, tending towards the elicitation of the long-term potentiation (LTP) phenomena. It was also studied the effects of intrahippocampal administration of sauroxine on memory retention in vivo using a Step-down test. Being the bio distribution of a drug an important parameter to be considered, the concentration of sauroxine in rat brain was determined by GLC-MS. Sauroxine blocked LTP generation at both doses used, 3.65 and 3.610 -2 μM. In the behavioral test, the animals injected with this alkaloid (3.6510 -3 nmol) exhibited a significant decrease on memory retention compared with control animals. It was also showed that sauroxine reached the brain (3.435μg/g tissue), after an intraperitoneal injection, displaying its ability to cross the blood-brain barrier. Thus, sauroxine demonstrated to exert an inhibition on these mnemonic phenomena. The effect here established for 1 is defeated by other constituents according to the excellent results obtained for P. saururus alkaloid extract as well as for the isolated alkaloid sauroine. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Infants long-term memory for complex music

    NASA Astrophysics Data System (ADS)

    Ilari, Beatriz; Polka, Linda; Costa-Giomi, Eugenia

    2002-05-01

    In this study we examined infants' long-term memory for two complex pieces of music. A group of thirty 7.5 month-old infants was exposed daily to one short piano piece (i.e., either the Prelude or the Forlane by Maurice Ravel) for ten consecutive days. Following the 10-day exposure period there was a two-week retention period in which no exposure to the piece occurred. After the retention period, infants were tested on the Headturn Preference Procedure. At test, 8 different excerpts of the familiar piece were mixed with 8 different foil excerpts of the unfamiliar one. Infants showed a significant preference for the familiar piece of music. A control group of fifteen nonexposed infants was also tested and showed no preferences for either piece of music. These results suggest that infants in the exposure group retained the familiar music in their long-term memory. This was demonstrated by their ability to discriminate between the different excerpts of both the familiar and the unfamiliar pieces of music, and by their preference for the familiar piece. Confirming previous findings (Jusczyk and Hohne, 1993; Saffran et al., 2000), in this study we suggest that infants can retain complex pieces of music in their long-term memory for two weeks.

  17. Hippocampal activation during the recall of remote spatial memories in radial maze tasks.

    PubMed

    Schlesiger, Magdalene I; Cressey, John C; Boublil, Brittney; Koenig, Julie; Melvin, Neal R; Leutgeb, Jill K; Leutgeb, Stefan

    2013-11-01

    Temporally graded retrograde amnesia is observed in human patients with medial temporal lobe lesions as well as in animal models of medial temporal lobe lesions. A time-limited role for these structures in memory recall has also been suggested by the observation that the rodent hippocampus and entorhinal cortex are activated during the retrieval of recent but not of remote memories. One notable exception is the recall of remote memories for platform locations in the water maze, which requires an intact hippocampus and results in hippocampal activation irrespective of the age of the memory. These findings raise the question whether the hippocampus is always involved in the recall of spatial memories or, alternatively, whether it might be required for procedural computations in the water maze task, such as for calculating a path to a hidden platform. We performed spatial memory testing in radial maze tasks to distinguish between these possibilities. Radial maze tasks require a choice between spatial locations on a center platform and thus have a lesser requirement for navigation than the water maze. However, we used a behavioral design in the radial maze that retained other aspects of the standard water maze task, such as the use of multiple start locations and retention testing in a single trial. Using the immediate early gene c-fos as a marker for neuronal activation, we found that all hippocampal subregions were more activated during the recall of remote compared to recent spatial memories. In areas CA3 and CA1, activation during remote memory testing was higher than in rats that were merely reexposed to the testing environment after the same time interval. Conversely, Fos levels in the dentate gyrus were increased after retention testing to the extent that was also observed in the corresponding exposure control group. This pattern of hippocampal activation was also obtained in a second version of the task that only used a single start arm instead of multiple start arms. The CA3 and CA1 activation during remote memory recall is consistent with the interpretation that an older memory might require increased pattern completion and/or relearning after longer time intervals. Irrespective of whether the hippocampus is required for remote memory recall, the hippocampus might engage in computations that either support recall of remote memories or that update remote memories. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Evaluation of Data Retention and Imprint Characteristics of FRAMs Under Environmental Stresses for NASA Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Ashok K.; Teverovsky, Alexander; Dowdy, Terry W.; Hamilton, Brett

    2000-01-01

    A major reliability issue for all advanced nonvolatile memory (NVM) technology devices including FRAMs (Ferroelectric random access memories) is the data retention characteristics over extended period of time, under environmental stresses and exposure to total ionizing dose (TID) radiation effects. For this testing, 256 Kb FRAMs in 28-pin plastic DIPS, rated for industrial grade temperature range of -40 C to +85 C, were procured. These are two-transistor, two-capacitor (2T-2C) design FRAMs. In addition to data retention characteristics, the parts were also evaluated for imprint failures, which are defined as the failure of cells to change from a "preferred" state, where it has been for a significant period of time to an opposite state (e.g., from 1 to 0, or 0 to 1). These 256 K FRAMs were subjected to scanning acoustic microscopy (C-SAM); 1,000 temperature cycles from -65 C to +150 C; high temperature aging at 150 C, 175 C, and 200 C for 1,000 hours; highly accelerated stress test (HAST) for 500 hours; 1,000 hours of operational life test at 125 C; and total ionizing dose radiation testing. As a preconditioning, 10 K read/write cycles were performed on all devices. Interim electrical measurements were performed throughout this characterization, including special imprint testing and final electrical testing. Some failures were observed during high temperature aging test at 200 C, during HAST testing, and during 1,000 hours of operational life at 125 C. The parts passed 10 Krad exposure, but began showing power supply current increases during the dose increment from 10 Krad to 30 Krad, and at 40 Krad severe data retention and parametric failures were observed. Failures from various environmental group testing are currently being analyzed.

  19. Cue Strength as a Moderator of the Testing Effect: The Benefits of Elaborative Retrieval

    ERIC Educational Resources Information Center

    Carpenter, Shana K.

    2009-01-01

    The current study explored the elaborative retrieval hypothesis as an explanation for the testing effect: the tendency for a memory test to enhance retention more than restudying. In particular, the retrieval process during testing may activate elaborative information related to the target response, thereby increasing the chances that activation…

  20. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    PubMed

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress may affect memory processes beyond the hippocampus and that these stress effects are due to the action of glucocorticoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state

    PubMed Central

    Kelemen, Eduard; Bahrendt, Marie; Born, Jan; Inostroza, Marion

    2014-01-01

    We studied the interaction between glucocorticoid (GC) level and sleep/wake state during memory consolidation. Recent research has accumulated evidence that sleep supports memory consolidation in a unique physiological process, qualitatively distinct from consolidation occurring during wakefulness. This appears particularly true for memories that rely on the hippocampus, a region with abundant expression of GC receptors. Against this backdrop we hypothesized that GC effects on consolidation depend on the brain state, i.e., sleep and wakefulness. Following exploration of two objects in an open field, during 80 min retention periods rats received an intrahippocampal infusion of corticosterone (10 ng) or vehicle while asleep or awake. Then the memory was tested in the hippocampus-dependent object-place recognition paradigm. GCs impaired memory consolidation when administered during sleep but improved consolidation during the wake retention interval. Intrahippocampal infusion of GC or sleep/wake manipulations did not alter novel-object recognition performance that does not require the hippocampus. This work corroborates the notion of distinct consolidation processes occurring in sleep and wakefulnesss, and identifies GCs as a key player controlling distinct hippocampal memory consolidation processes in sleep and wake conditions. © 2014 Wiley Periodicals, Inc. PMID:24596244

  2. Effects of corticosterone on contextual fear consolidation in intact and ovariectomized female rats.

    PubMed

    Kashefi, Adel; Rashidy-Pour, Ali

    2014-10-01

    Previous studies have shown that post-training administration of glucocorticoids enhances memory consolidation in male rats, but theirs effects on female rats are not known. Thus, this study was conducted to examine the effects of corticosterone (CORT) on contextual fear memory consolidation in intact and ovariectomized (OVX) female rats. In Experiment 1, post-training administration of CORT (0.3, 3, and 10 mg/kg) to OVX female rats impaired memory consolidation at a 0.3 mg dose of CORT. In Experiment 2, post-training injection of CORT (0.3 mg/kg) to female rats in proestrus stage (when the levels of estrogens are highest) enhances and in the estrus stage (when the levels of estrogens are lowest) impaired memory retention. In Experiment 3, OVX female rats injected with CORT (0.3 mg/kg) and one of the three doses of 17β-estradiol (1, 10 or 100 μg/kg) following training. 48-h memory retention test indicated that CORT enhanced memory retention in OVX female rats that received concurrent injection of 10 or 100 μg doses of 17β-estradiol. These findings indicate that cognitive effects of CORT in female rats can be modulated with the plasma levels of estrogens: when the levels of estrogens are low, corticosterone has a negative effect, while when the levels of estrogens are high; the corticosterone has a positive enhancing effect. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Something worth remembering: visual discrimination in sharks.

    PubMed

    Fuss, Theodora; Schluessel, Vera

    2015-03-01

    This study investigated memory retention capabilities of juvenile gray bamboo sharks (Chiloscyllium griseum) using two-alternative forced-choice experiments. The sharks had previously been trained in a range of visual discrimination tasks, such as distinguishing between squares, triangles and lines, and their corresponding optical illusions (i.e., the Kanizsa figures or Müller-Lyer illusions), and in the present study, we tested them for memory retention. Despite the absence of reinforcement, sharks remembered the learned information for a period of up to 50 weeks, after which testing was terminated. In fish, as in other vertebrates, memory windows vary in duration depending on species and task; while it may seem beneficial to retain some information for a long time or even indefinitely, other information may be forgotten more easily to retain flexibility and save energy. The results of this study indicate that sharks are capable of long-term memory within the framework of selected cognitive skills. These could aid sharks in activities such as food retrieval, predator avoidance, mate choice or habitat selection and therefore be worth being remembered for extended periods of time. As in other cognitive tasks, intraspecific differences reflected the behavioral breadth of the species.

  4. The memory that’s right and the memory that’s left: Event-related potentials reveal hemispheric asymmetries in the encoding and retention of verbal information

    PubMed Central

    Evans, Karen M.; Federmeier, Kara D.

    2009-01-01

    We examined the nature and timecourse of hemispheric asymmetries in verbal memory by recording event-related potentials (ERPs) in a continuous recognition task. Participants made overt recognition judgments to test words presented in central vision that were either novel (new words) or had been previously presented in the left or right visual field (old words). An ERP memory effect linked to explicit retrieval revealed no asymmetries for words repeated at short and medium retention intervals, but at longer repetition lags (20–50 intervening words) this ‘old/new effect’ was more pronounced for words whose study presentation had been biased to the right hemisphere (RH). Additionally, a repetition effect linked to more implicit recognition processes (P2 amplitude changes) was observed at all lags for words preferentially encoded by the RH but was not observed for left hemisphere (LH)-encoded words. These results are consistent with theories that the RH encodes verbal stimuli more veridically whereas the LH encodes in a more abstract manner. The current findings provide a critical link between prior work on memory asymmetries, which has emphasized general LH advantages for verbal material, and on language comprehension, which has pointed to an important role for the RH in language processes that require the retention and integration of verbal information over long time spans. PMID:17291547

  5. Semantic and phonological contributions to short-term repetition and long-term cued sentence recall.

    PubMed

    Meltzer, Jed A; Rose, Nathan S; Deschamps, Tiffany; Leigh, Rosie C; Panamsky, Lilia; Silberberg, Alexandra; Madani, Noushin; Links, Kira A

    2016-02-01

    The function of verbal short-term memory is supported not only by the phonological loop, but also by semantic resources that may operate on both short and long time scales. Elucidation of the neural underpinnings of these mechanisms requires effective behavioral manipulations that can selectively engage them. We developed a novel cued sentence recall paradigm to assess the effects of two factors on sentence recall accuracy at short-term and long-term stages. Participants initially repeated auditory sentences immediately following a 14-s retention period. After this task was complete, long-term memory for each sentence was probed by a two-word recall cue. The sentences were either concrete (high imageability) or abstract (low imageability), and the initial 14-s retention period was filled with either an undemanding finger-tapping task or a more engaging articulatory suppression task (Exp. 1, counting backward by threes; Exp. 2, repeating a four-syllable nonword). Recall was always better for the concrete sentences. Articulatory suppression reduced accuracy in short-term recall, especially for abstract sentences, but the sentences initially recalled following articulatory suppression were retained better at the subsequent cued-recall test, suggesting that the engagement of semantic mechanisms for short-term retention promoted encoding of the sentence meaning into long-term memory. These results provide a basis for using sentence imageability and subsequent memory performance as probes of semantic engagement in short-term memory for sentences.

  6. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch

    PubMed Central

    Makeyeva, Yekaterina V.; Paitel, Elizabeth R.; Pedersen, Alyssa L.; Hon, Angel T.; Gunderson, Jordan A.; Saldanha, Colin J.

    2017-01-01

    The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only–implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength. PMID:28324066

  7. Hippocampal Aromatization Modulates Spatial Memory and Characteristics of the Synaptic Membrane in the Male Zebra Finch.

    PubMed

    Bailey, David J; Makeyeva, Yekaterina V; Paitel, Elizabeth R; Pedersen, Alyssa L; Hon, Angel T; Gunderson, Jordan A; Saldanha, Colin J

    2017-04-01

    The estrogen-synthesizing enzyme aromatase is abundant at the synapse in the zebra finch hippocampus (HP), and its inhibition impairs spatial memory function. To more fully test the role of local estradiol (E2) synthesis in memory, the HP of adult male zebra finches was exposed to either control pellets or those containing the aromatase inhibitor 1,4,6-androstatriene-3,17-dione (ATD), ATD and E2, ATD and the G protein-coupled estrogen receptor (GPER) agonist G1, or the antagonist G15 alone. Birds were tested for spatial memory acquisition and performance, and HP levels of the postsynaptic protein PSD95 were measured. ATD-treated birds took longer to reach criterion than control birds, whereas acquisition in ATD+E2 and ATD+G1 birds was indistinguishable from control and ATD treatments. Interestingly, all G15 birds failed to acquire the task. Following a retention interval, ATD birds took the longest to reach the (formerly) baited cup and made the most mistakes. ATD+E2 animals displayed the lowest retention latencies and made fewer mistakes than ATD-treated birds, and ATD+G1 birds did not significantly differ from controls in retention latencies. The amount of PSD95 in the HP was lowest in ATD-treated animals compared with birds with silicone-only-implanted craniotomies, ATD+E2, and ATD+G1 birds, who did not differ in this expression. Thus, spatial memory acquisition and performance appear aromatase and E2 dependent, an effect more reliably revealed after consolidation and/or recall compared to acquisition. E2 may exert this effect via GPERs, resulting in an increase in PSD95 levels that may modify receptor activity or intracellular signaling pathways to increase synaptic strength. Copyright © 2017 Endocrine Society.

  8. A FPGA-based Measurement System for Nonvolatile Semiconductor Memory Characterization

    NASA Astrophysics Data System (ADS)

    Bu, Jiankang; White, Marvin

    2002-03-01

    Low voltage, long retention, high density SONOS nonvolatile semiconductor memory (NVSM) devices are ideally suited for PCMCIA, FLASH and 'smart' cards. The SONOS memory transistor requires characterization with an accurate, rapid measurement system with minimum disturbance to the device. The FPGA-based measurement system includes three parts: 1) a pattern generator implemented with XILINX FPGAs and corresponding software, 2) a high-speed, constant-current, threshold voltage detection circuit, 3) and a data evaluation program, implemented with a LABVIEW program. Fig. 1 shows the general block diagram of the FPGA-based measurement system. The function generator is designed and simulated with XILINX Foundation Software. Under the control of the specific erase/write/read pulses, the analog detect circuit applies operational modes to the SONOS device under test (DUT) and determines the change of the memory-state of the SONOS nonvolatile memory transistor. The TEK460 digitizes the analog threshold voltage output and sends to the PC computer. The data is filtered and averaged with a LABVIEWTM program running on the PC computer and displayed on the monitor in real time. We have implemented the pattern generator with XILINX FPGAs. Fig. 2 shows the block diagram of the pattern generator. We realized the logic control by a method of state machine design. Fig. 3 shows a small part of the state machine. The flexibility of the FPGAs enhances the capabilities of this system and allows measurement variations without hardware changes. The characterization of the nonvolatile memory transistor device under test (DUT), as function of programming voltage and time, is achieved by a high-speed, constant-current threshold voltage detection circuit. The analog detection circuit incorporating fast analog switches controlled digitally with the FPGAs. The schematic circuit diagram is shown in Fig. 4. The various operational modes for the DUT are realized with control signals applied to the analog switches (SW) as shown in Fig. 5. A LABVIEWTM program, on a PC platform, collects and processes the data. The data is displayed on the monitor in real time. This time-domain filtering reduces the digitizing error. Fig. 6 shows the data processing. SONOS nonvolatile semiconductor memories are characterized by erase/write, retention and endurance measurements. Fig. 7 shows the erase/write characteristics of an n-Channel, 5V prog-rammable SONOS memory transistor. Fig.8 shows the retention characteristic of the same SONOS transistor. We have used this system to characterize SONOS nonvolatile semiconductor memory transistors. The attractive features of the test system design lies in the cost-effectiveness and flexibility of the test pattern implementation, fast read-out of memory state, low power, high precision determination of the device threshold voltage, and perhaps most importantly, minimum disturbance, which is indispensable for nonvolatile memory characterization.

  9. Topographic contribution of early visual cortex to short-term memory consolidation: a transcranial magnetic stimulation study.

    PubMed

    van de Ven, Vincent; Jacobs, Christianne; Sack, Alexander T

    2012-01-04

    The neural correlates for retention of visual information in visual short-term memory are considered separate from those of sensory encoding. However, recent findings suggest that sensory areas may play a role also in short-term memory. We investigated the functional relevance, spatial specificity, and temporal characteristics of human early visual cortex in the consolidation of capacity-limited topographic visual memory using transcranial magnetic stimulation (TMS). Topographically specific TMS pulses were delivered over lateralized occipital cortex at 100, 200, or 400 ms into the retention phase of a modified change detection task with low or high memory loads. For the high but not the low memory load, we found decreased memory performance for memory trials in the visual field contralateral, but not ipsilateral to the side of TMS, when pulses were delivered at 200 ms into the retention interval. A behavioral version of the TMS experiment, in which a distractor stimulus (memory mask) replaced the TMS pulses, further corroborated these findings. Our findings suggest that retinotopic visual cortex contributes to the short-term consolidation of topographic visual memory during early stages of the retention of visual information. Further, TMS-induced interference decreased the strength (amplitude) of the memory representation, which most strongly affected the high memory load trials.

  10. Electrophysiological correlates of the retention of tones differing in timbre in auditory short-term memory.

    PubMed

    Nolden, Sophie; Bermudez, Patrick; Alunni-Menichini, Kristelle; Lefebvre, Christine; Grimault, Stephan; Jolicoeur, Pierre

    2013-11-01

    We examined the electrophysiological correlates of retention in auditory short-term memory (ASTM) for sequences of one, two, or three tones differing in timbre but having the same pitch. We focused on event-related potentials (ERPs) during the retention interval and revealed a sustained fronto-central ERP component (most likely a sustained anterior negativity; SAN) that became more negative as memory load increased. Our results are consistent with recent ERP studies on the retention of pitch and suggest that the SAN reflects brain activity mediating the low-level retention of basic acoustic features in ASTM. The present work shows that the retention of timbre shares common features with the retention of pitch, hence supporting the notion that the retention of basic sensory features is an active process that recruits modality-specific brain areas. © 2013 Elsevier Ltd. All rights reserved.

  11. Sex differences in retention after a visual or a spatial discrimination learning task in brood parasitic shiny cowbirds.

    PubMed

    Astié, Andrea A; Scardamaglia, Romina C; Muzio, Rubén N; Reboreda, Juan C

    2015-10-01

    Females of avian brood parasites, like the shiny cowbird (Molothrus bonariensis), locate host nests and on subsequent days return to parasitize them. This ecological pressure for remembering the precise location of multiple host nests may have selected for superior spatial memory abilities. We tested the hypothesis that shiny cowbirds show sex differences in spatial memory abilities associated with sex differences in host nest searching behavior and relative hippocampus volume. We evaluated sex differences during acquisition, reversal and retention after extinction in a visual and a spatial discrimination learning task. Contrary to our prediction, females did not outperform males in the spatial task in either the acquisition or the reversal phases. Similarly, there were no sex differences in either phase in the visual task. During extinction, in both tasks the retention of females was significantly higher than expected by chance up to 50 days after the last rewarded session (∼85-90% of the trials with correct responses), but the performance of males at that time did not differ than that expected by chance. This last result shows a long-term memory capacity of female shiny cowbirds, which were able to remember information learned using either spatial or visual cues after a long retention interval. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. POST-RETRIEVAL PROPRANOLOL TREATMENT DOES NOT MODULATE RECONSOLIDATION OR EXTINCTION OF ETHANOL-INDUCED CONDITIONED PLACE PREFERENCE

    PubMed Central

    Font, Laura; Cunningham, Christopher L.

    2012-01-01

    The reconsolidation hypothesis posits that established emotional memories, when reactivated, become labile and susceptible to disruption. Post-retrieval injection of propranolol (PRO), a nonspecific β-adrenergic receptor antagonist, impairs subsequent retention performance of a cocaine- and a morphine-induced conditioned place preference (CPP), implicating the noradrenergic system in the reconsolidation processes of drug-seeking behavior. An important question is whether post-retrieval PRO disrupts memory for the drug-cue associations, or instead interferes with extinction. In the present study, we evaluated the role of the β-adrenergic system on the reconsolidation and extinction of ethanol-induced CPP. Male DBA/2J mice were trained using a weak or a strong conditioning procedure, achieved by varying the ethanol conditioning dose (1 or 2 g/kg) and the number of ethanol trials (2 or 4). After acquisition of ethanol CPP, animals were given a single post-retrieval injection of PRO (0, 10 or 30 mg/kg) and tested for memory reconsolidation 24 h later. Also, after the first reconsolidation test, mice received 18 additional 15-min choice extinction tests in which PRO was injected immediately after every test. Contrary to the prediction of the reconsolidation hypothesis, a single PRO injection after the retrieval test did not modify subsequent memory retention. In addition, repeated post-retrieval administration of PRO did not interfere with extinction of CPP in mice. Overall, our data suggest that the β-adrenergic receptor does not modulate the associative processes underlying ethanol CPP. PMID:22285323

  13. Memory for pictures and words as a function of level of processing: Depth or dual coding?

    PubMed

    D'Agostino, P R; O'Neill, B J; Paivio, A

    1977-03-01

    The experiment was designed to test differential predictions derived from dual-coding and depth-of-processing hypotheses. Subjects under incidental memory instructions free recalled a list of 36 test events, each presented twice. Within the list, an equal number of events were assigned to structural, phonemic, and semantic processing conditions. Separate groups of subjects were tested with a list of pictures, concrete words, or abstract words. Results indicated that retention of concrete words increased as a direct function of the processing-task variable (structural < phonemic

  14. Chronic cyanidin-3-glucoside administration improves short-term spatial recognition memory but not passive avoidance learning and memory in streptozotocin-diabetic rats.

    PubMed

    Nasri, Sima; Roghani, Mehrdad; Baluchnejadmojarad, Tourandokht; Balvardi, Mahboubeh; Rabani, Tahereh

    2012-08-01

    This research study was conducted to evaluate the efficacy of chronic cyanidin-3-glucoside (C3G) on alleviation of learning and memory deficits in diabetic rats as a result of the observed antidiabetic and antioxidant activity of C3G. Male Wistar rats were divided into control, diabetic, C3G-treated-control and -diabetic groups. The C3G was administered i.p. at a dose of 10 mg/kg on alternate days for eight weeks. For evaluation of learning and memory, initial latency (IL) and step-through latency (STL) were determined at the end of study using passive avoidance test. Meanwhile, spatial recognition memory was assessed as alternation in the Y-maze task. Oxidative stress markers in brain tissue were also measured. It was found that the alternation score of the diabetic rats was lower than that of control (p < 0.01) and C3G-treated diabetic rats showed a higher alternation score as compared to diabetic group (p < 0.05). Diabetic rats also developed a significant impairment in retention and recall in passive avoidance test (p < 0.01) and C3G treatment of diabetic rats did not produce any significant improvement. Meanwhile, increased level of malondialdehyde (MDA) in diabetic rats was significantly reduced following C3G treatment (p < 0.05). Taken together, chronic C3G could improve short-term spatial recognition memory disturbance in the Y-maze test but not retention and recall capability in passive avoidance test in STZ-diabetic rats. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Impaired long-term memory retention: common denominator for acutely or genetically reduced hippocampal neurogenesis in adult mice.

    PubMed

    Ben Abdallah, Nada M-B; Filipkowski, Robert K; Pruschy, Martin; Jaholkowski, Piotr; Winkler, Juergen; Kaczmarek, Leszek; Lipp, Hans-Peter

    2013-09-01

    In adult rodents, decreasing hippocampal neurogenesis experimentally using different approaches often impairs performance in hippocampus-dependent processes. Nonetheless, functional relevance of adult neurogenesis is far from being unraveled, and deficits so far described in animal models often lack reproducibility. One hypothesis is that such differences might be the consequence of the extent of the methodological specificity used to alter neurogenesis rather than the extent to which adult neurogenesis is altered. To address this, we focused on cranial irradiation, the most widely used technique to impair hippocampal neurogenesis and consequentially induce hippocampus-dependent behavioral deficits. To investigate the specificity of the technique, we thus exposed 4-5 months old female cyclin D2 knockout mice, a model lacking physiological levels of olfactory and hippocampal neurogenesis, to an X-ray dose of 10 Gy, reported to specifically affect transiently amplifying precursors. After a recovery period of 1.5 months, behavioral tests were performed and probed for locomotor activity, habituation, anxiety, and spatial learning and memory. Spatial learning in the Morris water maze was intact in all experimental groups. Although spatial memory retention assessed 24h following acquisition was also intact in all mice, irradiated wild type and cyclin D2 knockout mice displayed memory deficits one week after acquisition. In addition, we observed significant differences in tests addressing anxiety and locomotor activity dependent on the technique used to alter neurogenesis. Whereas irradiated mice were hyperactive regardless of their genotype, cyclin D2 knockout mice were hypoactive in most of the tests and displayed altered habituation. The present study emphasizes that different approaches aimed at decreasing adult hippocampal neurogenesis may result in distinct behavioral impairments related to locomotion and anxiety. In contrast, spatial long-term memory retention is consistently altered after both approaches suggesting a plausible implication of hippocampal neurogenesis in this cognitive process. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Roles of α- and β-estrogen receptors in mouse social recognition memory: effects of gender and the estrous cycle.

    PubMed

    Sánchez-Andrade, G; Kendrick, K M

    2011-01-01

    Establishing clear effects of gender and natural hormonal changes during female ovarian cycles on cognitive function has often proved difficult. Here we have investigated such effects on the formation and long-term (24 h) maintenance of social recognition memory in mice together with the respective involvement of α- and β-estrogen receptors using α- and β-estrogen receptor knockout mice and wildtype controls. Results in wildtype animals showed that while females successfully formed a memory in the context of a habituation/dishabituation paradigm at all stages of their ovarian cycle, only when learning occurred during proestrus (when estrogen levels are highest) was it retained after 24 h. In α-receptor knockout mice (which showed no ovarian cycles) both formation and maintenance of this social recognition memory were impaired, whereas β-receptor knockouts showed no significant deficits and exhibited the same proestrus-dependent retention of memory at 24 h. To investigate possible sex differences, male α- and β-estrogen receptor knockout mice were also tested and showed similar effects to females excepting that α-receptor knockouts had normal memory formation and only exhibited a 24 h retention deficit. This indicates a greater dependence in females on α-receptor expression for memory formation in this task. Since non-specific motivational and attentional aspects of the task were unaffected, our findings suggest a general α-receptor dependent facilitation of memory formation by estrogen as well as an enhanced long-term retention during proestrus. Results are discussed in terms of the differential roles of the two estrogen receptors, the neural substrates involved and putative interactions with oxytocin. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Learning Efficiency: Identifying Individual Differences in Learning Rate and Retention in Healthy Adults.

    PubMed

    Zerr, Christopher L; Berg, Jeffrey J; Nelson, Steven M; Fishell, Andrew K; Savalia, Neil K; McDermott, Kathleen B

    2018-06-01

    People differ in how quickly they learn information and how long they remember it, yet individual differences in learning abilities within healthy adults have been relatively neglected. In two studies, we examined the relation between learning rate and subsequent retention using a new foreign-language paired-associates task (the learning-efficiency task), which was designed to eliminate ceiling effects that often accompany standardized tests of learning and memory in healthy adults. A key finding was that quicker learners were also more durable learners (i.e., exhibited better retention across a delay), despite studying the material for less time. Additionally, measures of learning and memory from this task were reliable in Study 1 ( N = 281) across 30 hr and Study 2 ( N = 92; follow-up n = 46) across 3 years. We conclude that people vary in how efficiently they learn, and we describe a reliable and valid method for assessing learning efficiency within healthy adults.

  18. Prose memory deficits associated with schizophrenia.

    PubMed

    Lee, Tatia M C; Chan, Michelle W C; Chan, Chetwyn C H; Gao, Junling; Wang, Kai; Chen, Eric Y H

    2006-01-31

    Memory of contextual information is essential to one's quality of living. This study investigated if the different components of prose memory, across three recall conditions: first learning trial immediate recall, fifth learning trial immediate recall, and 30-min delayed recall, are differentially impaired in people with schizophrenia, relative to healthy controls. A total of 39 patients with schizophrenia and 39 matched healthy controls were recruited. Their prose memory, in terms of recall accuracy, temporal sequence, recognition accuracy and false positives, commission of distortions, and rates of learning, forgetting, and retention were tested and compared. After controlling for the level of intelligence and depression, the patients with schizophrenia were found to commit more distortions. Furthermore, they performed poorer on recall accuracy and temporal sequence accuracy only during the first initial immediate recall. On the other hand, the rates of forgetting/retention and recognition accuracy were comparable between the two groups. These findings suggest that people with schizophrenia could be benefited by repeated exposure to the materials to be remembered. These results may have important implications for rehabilitation of verbal declarative memory deficits in schizophrenia.

  19. Verbal Cues Facilitate Memory Retrieval during Infancy

    ERIC Educational Resources Information Center

    Hayne, Harlene; Herbert, Jane

    2004-01-01

    In three experiments, 18-month-olds were tested in a deferred imitation paradigm. Some infants received verbal information during the demonstration and at the time of the test (full narration), and some did not (empty narration). When tested after a 4-week delay, infants given full narration exhibited superior retention relative to infants given…

  20. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    PubMed Central

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the last decade a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals necessarily result in more forgetting. An obstacle to directly comparing conflicting reports is a divergence in methodology across studies. Studies which find no forgetting as a function of retention-interval duration tend to use sequential presentation of memory items, while studies which find forgetting as a function of retention-interval duration tend to use simultaneous presentation of memory items. Here, we manipulate the duration of retention and the presentation method of memory items, presenting items either sequentially or simultaneously. We find that these differing presentation methods can lead to different rates of forgetting because they tend to differ in the time available for consolidation into working memory. The experiments detailed here show that equating the time available for working memory consolidation equates the rates of forgetting across presentation methods. We discuss the meaning of this finding in the interpretation of previous forgetting studies and in the construction of working memory models. PMID:24059859

  1. Assessing the associative deficit of older adults in long-term and short-term/working memory.

    PubMed

    Chen, Tina; Naveh-Benjamin, Moshe

    2012-09-01

    Older adults exhibit a deficit in associative long-term memory relative to younger adults. However, the literature is inconclusive regarding whether this deficit is attenuated in short-term/working memory. To elucidate the issue, three experiments assessed younger and older adults' item and interitem associative memory and the effects of several variables that might potentially contribute to the inconsistent pattern of results in previous studies. In Experiment 1, participants were tested on item and associative recognition memory with both long-term and short-term retention intervals in a single, continuous recognition paradigm. There was an associative deficit for older adults in the short-term and long-term intervals. Using only short-term intervals, Experiment 2 utilized mixed and blocked test designs to examine the effect of test event salience. Blocking the test did not attenuate the age-related associative deficit seen in the mixed test blocks. Finally, an age-related associative deficit was found in Experiment 3, under both sequential and simultaneous presentation conditions. Even while accounting for some methodological issues, the associative deficit of older adults is evident in short-term/working memory.

  2. Investing the effectiveness of retention performance in a non-volatile floating gate memory device with a core-shell structure of CdSe nanoparticles

    NASA Astrophysics Data System (ADS)

    Lee, Dong-Hoon; Kim, Jung-Min; Lim, Ki-Tae; Cho, Hyeong Jun; Bang, Jin Ho; Kim, Yong-Sang

    2016-03-01

    In this paper, we empirically investigate the retention performance of organic non-volatile floating gate memory devices with CdSe nanoparticles (NPs) as charge trapping elements. Core-structured CdSe NPs or core-shell-structured ZnS/CdSe NPs were mixed in PMMA and their performance in pentacene based device was compared. The NPs and self-organized thin tunneling PMMA inside the devices exhibited hysteresis by trapping hole during capacitance-voltage characterization. Despite of core-structured NPs showing a larger memory window, the retention time was too short to be adopted by an industry. By contrast core-shell structured NPs showed an improved retention time of >10000 seconds than core-structure NCs. Based on these results and the energy band structure, we propose the retention mechanism of each NPs. This investigation of retention performance provides a comparative and systematic study of the charging/discharging behaviors of NPs based memory devices. [Figure not available: see fulltext.

  3. Infralimbic GluN2A-Containing NMDA Receptors Modulate Reconsolidation of Cocaine Self-Administration Memory

    PubMed Central

    Hafenbreidel, Madalyn; Rafa Todd, Carolynn; Mueller, Devin

    2017-01-01

    Addiction is characterized by high relapse susceptibility, and relapse can be triggered by drug-associated cues. Cue presentation induces retrieval of the drug-cue memory, which becomes labile and must be reconsolidated into long-term storage. Repeated unpaired cue presentation, however, promotes extinction. Cue-reactivity can be reduced by blocking reconsolidation or facilitating extinction, which are mediated by NMDA receptors (NMDArs). However, the role of NMDArs in either process following self-administration is unclear. Thus, to determine their role in extinction, rats learned to self-administer cocaine before receiving injections of the NMDAr antagonist CPP immediately after four 45-min extinction sessions. During a subsequent 90-min extinction retention test, CPP-treated rats lever pressed less than saline-treated rats indicating that NMDAr blockade facilitated extinction or disrupted drug-cue memory reconsolidation. In addition, infusing CPP into the infralimbic medial prefrontal cortex (IL-mPFC), a structure implicated in extinction, before four 45-min or immediately after four 30min extinction sessions, had similar results during the extinction retention tests. Next, the GluN2A-selective antagonist NVP or GluN2B-selective antagonist Ro25 was infused into IL-mPFC or nucleus accumbens (NAc) shell, another structure implicated in extinction, after four 45-min extinction sessions. Blocking GluN2A-, but not GluN2B-, containing NMDArs, in IL-mPFC or NAc shell reduced lever pressing during the extinction retention tests. Finally, to dissociate reconsolidation from extinction, NVP was infused into IL-mPFC after four 10-min reactivation sessions, which resulted in reduced lever pressing during the retention test. These results indicate that IL-mPFC GluN2A-containing NMDArs modulate reconsolidation, and suggest a novel treatment strategy, as reducing cue reactivity could limit relapse susceptibility. PMID:28042872

  4. Resting state EEG correlates of memory consolidation.

    PubMed

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (<1Hz), in concert with reduced alpha (8-12Hz) activity. Mindwandering during the retention interval was also associated with improved memory. These observations suggest that a short period of quiet rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Working memory, long-term memory, and medial temporal lobe function

    PubMed Central

    Jeneson, Annette; Squire, Larry R.

    2012-01-01

    Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance in patients with MTL lesions on tasks with short retention intervals, or no retention interval, and neuroimaging findings with similar tasks have been interpreted to mean that the MTL is sometimes needed for working memory and possibly even for visual perception itself. We present a reappraisal of this interpretation. Our main conclusion is that, if the material to be learned exceeds working memory capacity, if the material is difficult to rehearse, or if attention is diverted, performance depends on long-term memory even when the retention interval is brief. This fundamental notion is better captured by the terms subspan memory and supraspan memory than by the terms short-term memory and long-term memory. We propose methods for determining when performance on short-delay tasks must depend on long-term (supraspan) memory and suggest that MTL lesions impair performance only when immediate memory and working memory are insufficient to support performance. In neuroimaging studies, MTL activity during encoding is influenced by the memory load and correlates positively with long-term retention of the material that was presented. The most parsimonious and consistent interpretation of all the data is that subspan memoranda are supported by immediate memory and working memory and are independent of the MTL. PMID:22180053

  6. Benefits from retrieval practice are greater for students with lower working memory capacity.

    PubMed

    Agarwal, Pooja K; Finley, Jason R; Rose, Nathan S; Roediger, Henry L

    2017-07-01

    We examined the effects of retrieval practice for students who varied in working memory capacity as a function of the lag between study of material and its initial test, whether or not feedback was given after the test, and the retention interval of the final test. We sought to determine whether a blend of these conditions exists that maximises benefits from retrieval practice for lower and higher working memory capacity students. College students learned general knowledge facts and then restudied the facts or were tested on them (with or without feedback) at lags of 0-9 intervening items. Final cued recall performance was better for tested items than for restudied items after both 10 minutes and 2 days, particularly for longer study-test lags. Furthermore, on the 2-day delayed test the benefits from retrieval practice with feedback were significantly greater for students with lower working memory capacity than for students with higher working memory capacity (r = -.42). Retrieval practice may be an especially effective learning strategy for lower ability students.

  7. Time gradient for post-test vulnerability to scopolamine-induced amnesia following the initial acquisition session of a spatial reference memory task in mice.

    PubMed

    Toumane, A; Durkin, T P

    1993-09-01

    The time course for vulnerability to the amnestic effects of the cholinergic antagonist, scopolamine, during the postacquisition period has been investigated. We have examined the effects of post-test injections of scopolamine (1 mg/kg ip) given at different times from 30 s for up to 6 h following the end of the first acquisition session of a concurrent spatial discrimination (reference memory) protocol in an 8-arm radial maze on subsequent long-term (24 h) retention performance in C57BL/6 mice. Results show that the immediate (30 s) post-test injection of scopolamine-HCl on Day 1 produces marked perturbation (amnesia) of long-term retention as attested to by significant deficits in various indices of spatial discrimination performance gain on Day 2 as compared to control subjects injected either with scopolamine-MBr or saline. The severity of this scopolamine-induced amnesia declines only slightly as a function of the treatment period 30 s-3 h post-test. However, no evidence for amnesia is observed if scopolamine-HCl injections are delayed for 6 h postsession. This important latter observation attests to the absence of any significant proactive effects of scopolamine on the ability of mice to perform the retention test via possible long-term effects on attention, motivation, or locomotor performance. These results thus constitute evidence for the existence of a limited (30 s-3 h) time gradient for vulnerability of the early memory trace to disruption by scopolamine. The present results are discussed in relation to our previous direct neurochemical observations describing the differential time courses of intervention of the ascending septohippocampal and nBM-cortical cholinergic pathways in the postlearning period. In particular, the presently observed time window concerning post-test vulnerability to scopolamine-induced amnesia corresponds more closely to the time course of the acute activation of the nBM-cortical cholinergic pathway, induced by testing with the same spatial memory protocol as used in the present study in mice.

  8. Evidence against decay in verbal working memory.

    PubMed

    Oberauer, Klaus; Lewandowsky, Stephan

    2013-05-01

    The article tests the assumption that forgetting in working memory for verbal materials is caused by time-based decay, using the complex-span paradigm. Participants encoded 6 letters for serial recall; each letter was preceded and followed by a processing period comprising 4 trials of difficult visual search. Processing duration, during which memory could decay, was manipulated via search set size. This manipulation increased retention interval by up to 100% without having any effect on recall accuracy. This result held with and without articulatory suppression. Two experiments using a dual-task paradigm showed that the visual search process required central attention. Thus, even when memory maintenance by central attention and by articulatory rehearsal was prevented, a large delay had no effect on memory performance, contrary to the decay notion. Most previous experiments that manipulated the retention interval and the opportunity for maintenance processes in complex span have confounded these variables with time pressure during processing periods. Three further experiments identified time pressure as the variable that affected recall. We conclude that time-based decay does not contribute to the capacity limit of verbal working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  9. The loss of short-term visual representations over time: decay or temporal distinctiveness?

    PubMed

    Mercer, Tom

    2014-12-01

    There has been much recent interest in the loss of visual short-term memories over the passage of time. According to decay theory, visual representations are gradually forgotten as time passes, reflecting a slow and steady distortion of the memory trace. However, this is controversial and decay effects can be explained in other ways. The present experiment aimed to reexamine the maintenance and loss of visual information over the short term. Decay and temporal distinctiveness models were tested using a delayed discrimination task, in which participants compared complex and novel objects over unfilled retention intervals of variable length. Experiment 1 found no significant change in the accuracy of visual memory from 2 to 6 s, but the gap separating trials reliably influenced task performance. Experiment 2 found evidence for information loss at a 10-s retention interval, but temporally separating trials restored the fidelity of visual memory, possibly because temporally isolated representations are distinct from older memory traces. In conclusion, visual representations lose accuracy at some point after 6 s, but only within temporally crowded contexts. These findings highlight the importance of temporal distinctiveness within visual short-term memory. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  10. The electrophysiological correlates of recent and remote recollection.

    PubMed

    Roberts, J S; Tsivilis, D; Mayes, A R

    2013-09-01

    Research using event related potentials (ERPs) to explore recognition memory has linked late parietal old/new effects to the recollection of episodic information. In the vast majority of these studies, the retrieval phase immediately follows encoding and consequently, very little is known about the ERP correlates of long term recollection. This is despite the fact that in other areas of the memory literature there is considerable interest in consolidation theories and the way episodic memory changes over time. The present study explored the idea that consolidation and forgetting processes operating over a moderate retention interval can alter the ERP markers of recollection memory. A remember/know test probed memory for stimuli studied either 15 minutes (recent memory) or 1 week (remote memory) prior to the test phase. Results revealed an attenuated late parietal effect for remote compared to recent remember responses, a finding that remained significant even when these recognition judgments were matched for reaction time. Experiments 2a and 2b identified characteristic differences between recent and remote recognition at the behavioural level. The 1 week delay produced an overall decline in recognition confidence and a dramatic loss of episodic detail. These behavioural changes are thought to underlie the ERP effects reported in the first experiment. The results highlight that although the neural basis of memory may exhibit significant changes as the length of the retention interval increases, it is important to consider the extent to which this is a direct effect of time or an indirect effect due to changes in memory quality, such as the amount of detail that can be recollected. © 2013 Elsevier Ltd. All rights reserved.

  11. Test-retest reliability and validity of the Sniffin' TOM odor memory test.

    PubMed

    Croy, Ilona; Zehner, Cora; Larsson, Maria; Zucco, Gesualdo M; Hummel, Thomas

    2015-03-01

    Few attempts have been made to develop an olfactory test that captures episodic retention of olfactory information. Assessment of episodic odor memory is of particular interest in aging and in the cognitively impaired as both episodic memory deficits and olfactory loss have been targeted as reliable hallmarks of cognitive decline and impending dementia. Here, 96 healthy participants (18-92 years) and an additional 19 older people with mild cognitive impairment were tested (73-82 years). Participants were presented with 8 common odors with intentional encoding instructions that were followed by a yes-no recognition test. After recognition completion, participants were asked to identify all odors by means of free or cued identification. A retest of the odor memory test (Sniffin' TOM = test of odor memory) took place 17 days later. The results revealed satisfactory test-retest reliability (0.70) of odor recognition memory. Both recognition and identification performance were negatively affected by age and more pronounced among the cognitively impaired. In conclusion, the present work presents a reliable, valid, and simple test of episodic odor recognition memory that may be used in clinical groups where both episodic memory deficits and olfactory loss are prevalent preclinically such as Alzheimer's disease. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Comparison of learning ability and memory retention in altricial (Bengalese finch, Lonchura striata var. domestica) and precocial (blue-breasted quail, Coturnix chinensis) birds using a color discrimination task.

    PubMed

    Ueno, Aki; Suzuki, Kaoru

    2014-02-01

    The present study sought to assess the potential application of avian models with different developmental modes to studies on cognition and neuroscience. Six altricial Bengalese finches (Lonchura striata var. domestica), and eight precocial blue-breasted quails (Coturnix chinensis) were presented with color discrimination tasks to compare their respective faculties for learning and memory retention within the context of the two developmental modes. Tasks consisted of presenting birds with discriminative cues in the form of colored feeder lids, and birds were considered to have learned a task when 80% of their attempts at selecting the correctly colored lid in two consecutive blocks of 10 trials were successful. All of the finches successfully performed the required experimental tasks, whereas only half of the quails were able to execute the same tasks. In the learning test, finches required significantly fewer trials than quails to learn the task (finches: 13.5 ± 9.14 trials, quails: 45.8 ± 4.35 trials, P < 0.05), with finches scoring significantly more correct responses than quails (finches: 98.3 ± 4.08%, quails: 85.0 ± 5.77% at the peak of the learning curve). In the memory retention tests, which were conducted 45 days after the learning test, finches retained the ability to discriminate between colors correctly (95.0 ± 4.47%), whereas quails did not retain any memory of the experimental procedure and so could not be tested. These results suggested that altricial and precocial birds both possess the faculty for learning and retaining discrimination-type tasks, but that altricial birds perform better than precocial birds in both faculties. The present findings imply that developmental mode is an important consideration for assessing the suitability of bird species for particular experiments. © 2013 Japanese Society of Animal Science.

  13. Examination of long-term visual memorization capacity in the Clark's nutcracker (Nucifraga columbiana).

    PubMed

    Qadri, Muhammad A J; Leonard, Kevin; Cook, Robert G; Kelly, Debbie M

    2018-02-15

    Clark's nutcrackers exhibit remarkable cache recovery behavior, remembering thousands of seed locations over the winter. No direct laboratory test of their visual memory capacity, however, has yet been performed. Here, two nutcrackers were tested in an operant procedure used to measure different species' visual memory capacities. The nutcrackers were incrementally tested with an ever-expanding pool of pictorial stimuli in a two-alternative discrimination task. Each picture was randomly assigned to either a right or a left choice response, forcing the nutcrackers to memorize each picture-response association. The nutcrackers' visual memorization capacity was estimated at a little over 500 pictures, and the testing suggested effects of primacy, recency, and memory decay over time. The size of this long-term visual memory was less than the approximately 800-picture capacity established for pigeons. These results support the hypothesis that nutcrackers' spatial memory is a specialized adaptation tied to their natural history of food-caching and recovery, and not to a larger long-term, general memory capacity. Furthermore, despite millennia of separate and divergent evolution, the mechanisms of visual information retention seem to reflect common memory systems of differing capacities across the different species tested in this design.

  14. Experience and information loss in auditory and visual memory.

    PubMed

    Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K

    2017-07-01

    Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.

  15. Spatial Memory in Rats after 25 Hours

    ERIC Educational Resources Information Center

    Crystal, Jonathon D.; Babb, Stephanie J.

    2008-01-01

    We investigated the time course of spatial-memory decay in rats using an eight-arm radial maze. It is well established that performance remains high with retention intervals as long as 4 h, but declines to chance with a 24-h retention interval (Beatty, W. W., & Shavalia, D. A. (1980b). Spatial memory in rats: time course of working memory and…

  16. The role of visual imagery in the retention of information from sentences.

    PubMed

    Drose, G S; Allen, G L

    1994-01-01

    We conducted two experiments to evaluate a multiple-code model for sentence memory that posits both propositional and visual representational systems. Both sentences involved recognition memory. The results of Experiment 1 indicated that subjects' recognition memory for concrete sentences was superior to their recognition memory for abstract sentences. Instructions to use visual imagery to enhance recognition performance yielded no effects. Experiment 2 tested the prediction that interference by a visual task would differentially affect recognition memory for concrete sentences. Results showed the interference task to have had a detrimental effect on recognition memory for both concrete and abstract sentences. Overall, the evidence provided partial support for both a multiple-code model and a semantic integration model of sentence memory.

  17. Remembering September 11th: the role of retention interval and rehearsal on flashbulb and event memory.

    PubMed

    Shapiro, Lauren R

    2006-02-01

    Retention interval and rehearsal effects on flashbulb and event memory for 11th September 2001 (9/11) were examined. In Experiment 1, college students were assessed three times (Groups 1 and 2) or once (Group 3) over 11 weeks. In Experiment 2, three new groups assessed initially at 23 weeks (Group 4), 1 year (Group 5), or 2 years (Group 6) were compared at 1 year and at 2 years with subsamples of those assessed previously. No effects of retention interval length or rehearsal were found for flashbulb memory, which contained details at each assessment. Event memory, but not consistency, was detrimentally affected by long retention intervals, but improved with rehearsal. Recall was higher for the reception event than for the main events. Also, consistency from 1 day to 11 weeks, but not 1 year to 2 years, was higher for flashbulb memory than for event memory. Event recall was enhanced when respondents conceived of their memory as vivid, frozen, and encompassing a longer period of time. Positive correlations were found for event memory with confidence in accuracy and with rehearsal through discussion at 2 years.

  18. Machine Learning Analysis Identifies Drosophila Grunge/Atrophin as an Important Learning and Memory Gene Required for Memory Retention and Social Learning.

    PubMed

    Kacsoh, Balint Z; Greene, Casey S; Bosco, Giovanni

    2017-11-06

    High-throughput experiments are becoming increasingly common, and scientists must balance hypothesis-driven experiments with genome-wide data acquisition. We sought to predict novel genes involved in Drosophila learning and long-term memory from existing public high-throughput data. We performed an analysis using PILGRM, which analyzes public gene expression compendia using machine learning. We evaluated the top prediction alongside genes involved in learning and memory in IMP, an interface for functional relationship networks. We identified Grunge/Atrophin ( Gug/Atro ), a transcriptional repressor, histone deacetylase, as our top candidate. We find, through multiple, distinct assays, that Gug has an active role as a modulator of memory retention in the fly and its function is required in the adult mushroom body. Depletion of Gug specifically in neurons of the adult mushroom body, after cell division and neuronal development is complete, suggests that Gug function is important for memory retention through regulation of neuronal activity, and not by altering neurodevelopment. Our study provides a previously uncharacterized role for Gug as a possible regulator of neuronal plasticity at the interface of memory retention and memory extinction. Copyright © 2017 Kacsoh et al.

  19. [Learning to solve a spatial task in a water maze in aggressive and submissive mice].

    PubMed

    Dubrovina, N I; Tomilenko, R A

    2007-01-01

    Learning and retention of the spatial memory were studied in mice with alternative under conditions of various experimental protocols. Visible and hidden platform acquisition in a simple model of the water maze was similarly fast both in aggressive and submissive mice, but extinction differed. Retention of the platform location preference persisted in aggressive mice in four testing trials. In submissive mice, extiction of the spatial memory was accompanied with a prolongation of search with parallel production of episodes of "passive drift". Differences in spatial learning between aggressive and submissive mice were revealed in a water maze complicated with partitions. In this case, aggressors were able to learn the position of a hidden platform (in contrast to submissive mice with the dominant response of "passive drift"). During testing the response, aggressive mice longer retained the spatial preference without extinction.

  20. A comparison of progestins within three classes: Differential effects on learning and memory in the aging surgically menopausal rat.

    PubMed

    Braden, B Blair; Andrews, Madeline G; Acosta, Jazmin I; Mennenga, Sarah E; Lavery, Courtney; Bimonte-Nelson, Heather A

    2017-03-30

    For decades, progestins have been included in hormone therapies (HT) prescribed to women to offset the risk of unopposed estrogen-induced endometrial hyperplasia. However, the potential effects on cognition of subcategories of clinically used progestins have been largely unexplored. In two studies, the present investigation evaluated the cognitive effects of norethindrone acetate (NETA), levonorgestrel (LEVO), and medroxyprogesterone acetate (MPA) on the water radial-arm maze (WRAM) and Morris water maze (MM) in middle-aged ovariectomized rats. In Study 1, six-weeks of a high-dose NETA treatment impaired learning and delayed retention on the WRAM, and impaired reference memory on the MM. Low-dose NETA treatment impaired delayed retention on the WRAM. In Study 2, high-dose NETA treatment was reduced to four-weeks and compared to MPA and LEVO. As previously shown, MPA impaired working memory performance during the lattermost portion of testing, at the highest working memory load, impaired delayed retention on the WRAM, and impaired reference memory on the MM. NETA also impaired performance on these WRAM and MM measures. Interestingly, LEVO did not impair performance, but instead enhanced learning on the WRAM. The current study corroborates previous evidence that the most commonly prescribed FDA-approved progestin for HT, MPA, impairs learning and memory in the ovariectomized middle-aged rat. When progestins from two different additional subcategories were investigated, NETA impaired learning and memory similarly to MPA, but LEVO enhanced learning. Future research is warranted to determine LEVO's potential as an ideal progestin for optimal health in women, including for cognition. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Sex-based memory advantages and cognitive aging: a challenge to the cognitive reserve construct?

    PubMed

    Caselli, Richard J; Dueck, Amylou C; Locke, Dona E C; Baxter, Leslie C; Woodruff, Bryan K; Geda, Yonas E

    2015-02-01

    Education and related proxies for cognitive reserve (CR) are confounded by associations with environmental factors that correlate with cerebrovascular disease possibly explaining discrepancies between studies examining their relationships to cognitive aging and dementia. In contrast, sex-related memory differences may be a better proxy. Since they arise developmentally, they are less likely to reflect environmental confounds. Women outperform men on verbal and men generally outperform women on visuospatial memory tasks. Furthermore, memory declines during the preclinical stage of AD, when it is clinically indistinguishable from normal aging. To determine whether CR mitigates age-related memory decline, we examined the effects of gender and APOE genotype on longitudinal memory performances. Memory decline was assessed in a cohort of healthy men and women enriched for APOE ɛ4 who completed two verbal [Rey Auditory Verbal Learning Test (AVLT), Buschke Selective Reminding Test (SRT)] and two visuospatial [Rey-Osterrieth Complex Figure Test (CFT), and Benton Visual Retention Test (VRT)] memory tests, as well as in a separate larger and older cohort [National Alzheimer's Coordinating Center (NACC)] who completed a verbal memory test (Logical Memory). Age-related memory decline was accelerated in APOE ɛ4 carriers on all verbal memory measures (AVLT, p=.03; SRT p<.001; logical memory p<.001) and on the VRT p=.006. Baseline sex associated differences were retained over time, but no sex differences in rate of decline were found for any measure in either cohort. Sex-based memory advantage does not mitigate age-related memory decline in either APOE ɛ4 carriers or non-carriers.

  2. Aniracetam reverses memory impairment in rats.

    PubMed

    Martin, J R; Moreau, J L; Jenck, F

    1995-02-01

    The pyrrolidinone derivative aniracetam given orally immediately after acquisition of an inhibitory avoidance response reproducibly ameliorated scopolamine-induced amnesia in female rats in an extensive series of test sessions conducted over a 1-year period. In a dose-response experiment it was demonstrated that 50 mg kg-1 was the lowest oral dose of aniracetam to significantly ameliorate scopolamine-induced amnesia. Combined results from these numerous test sessions demonstrated that 50 mg kg-1 aniracetam administered to scopolamine-treated rats resulted in 53% of the animals exhibiting correct passive avoidance responding in the retention evaluation versus 9% of the scopolamine-treated rats given vehicle (in comparison, 64% of the rats injected with vehicle rather than scopolamine in this experimental situation exhibited correct responding in the retention test). There was minimal variation in this pattern of results over the successive 1-month blocks constituting the complete experimental period. Thus, the nootropic compound aniracetam replicably exhibited memory enhancing effects in this animal model of reduced cholinergic function.

  3. Quizzing Promotes Deeper Acquisition in Middle School Science: Transfer of Quizzed Content to Summative Exams

    ERIC Educational Resources Information Center

    Agarwal, Pooja K.; McDaniel, Mark A.; Thomas, Ruthann C.; McDermott, Kathleen B.; Roediger, Henry L., III

    2011-01-01

    The use of summative testing to evaluate students' acquisition, retention, and transfer of instructed material is a fundamental aspect of educational practice and theory. However, a substantial basic literature has established that testing is not a neutral event--testing can also enhance and modify memory (Carpenter & DeLosh, 2006; Hogan &…

  4. Memory Deficits in Early Infantile Autism: Some Similarities to the Amnesiac Syndrome

    ERIC Educational Resources Information Center

    Boucher, Jill; Warrington, Elizabeth K.

    1976-01-01

    Autistic children were compared with control children on tasks in which retention was tested by different methods. In three tests of recall, using named pictures, written words and spoken words as test stimuli, autistic children were impaired in comparison with age-matched normal children and with controls matched for verbal and non-verbal…

  5. Long-Term Memory for the Terrorist Attack of September 11: Flashbulb Memories, Event Memories, and the Factors that Influence Their Retention

    ERIC Educational Resources Information Center

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lustig, Cindy; Lyle, Keith B.; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2009-01-01

    More than 3,000 individuals from 7 U.S. cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, 1 week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas…

  6. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall.

    PubMed

    Hampson, Robert E; Song, Dong; Robinson, Brian S; Fetterhoff, Dustin; Dakos, Alexander S; Roeder, Brent M; She, Xiwei; Wicks, Robert T; Witcher, Mark R; Couture, Daniel E; Laxton, Adrian W; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J; Whitlow, Christopher T; Marmarelis, Vasilis Z; Berger, Theodore W; Deadwyler, Sam A

    2018-06-01

    We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient's own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  7. Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Robinson, Brian S.; Fetterhoff, Dustin; Dakos, Alexander S.; Roeder, Brent M.; She, Xiwei; Wicks, Robert T.; Witcher, Mark R.; Couture, Daniel E.; Laxton, Adrian W.; Munger-Clary, Heidi; Popli, Gautam; Sollman, Myriam J.; Whitlow, Christopher T.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2018-06-01

    Objective. We demonstrate here the first successful implementation in humans of a proof-of-concept system for restoring and improving memory function via facilitation of memory encoding using the patient’s own hippocampal spatiotemporal neural codes for memory. Memory in humans is subject to disruption by drugs, disease and brain injury, yet previous attempts to restore or rescue memory function in humans typically involved only nonspecific, modulation of brain areas and neural systems related to memory retrieval. Approach. We have constructed a model of processes by which the hippocampus encodes memory items via spatiotemporal firing of neural ensembles that underlie the successful encoding of short-term memory. A nonlinear multi-input, multi-output (MIMO) model of hippocampal CA3 and CA1 neural firing is computed that predicts activation patterns of CA1 neurons during the encoding (sample) phase of a delayed match-to-sample (DMS) human short-term memory task. Main results. MIMO model-derived electrical stimulation delivered to the same CA1 locations during the sample phase of DMS trials facilitated short-term/working memory by 37% during the task. Longer term memory retention was also tested in the same human subjects with a delayed recognition (DR) task that utilized images from the DMS task, along with images that were not from the task. Across the subjects, the stimulated trials exhibited significant improvement (35%) in both short-term and long-term retention of visual information. Significance. These results demonstrate the facilitation of memory encoding which is an important feature for the construction of an implantable neural prosthetic to improve human memory.

  8. Post-Retrieval Effects of ICV Infusions of Hemicholinium in Mice Are Dependent on the Age of the Original Memory

    ERIC Educational Resources Information Center

    Boccia, Mariano M.; Blake, Mariano G.; Acosta, Gabriela B.; Baratti, Carlos M.

    2006-01-01

    CF-1 male mice were trained in an inhibitory avoidance task using a high footshock (1,2 mA, 50 Hz, 1 sec) in order to reduce the influence of extinction on retention performance. At 2, 7, 14, or 30 d after training, the first retention test was performed and hemicholinium (HC-3, 1.0 microgram/mice), a specific inhibitor of high-affinity choline…

  9. Study on cognitive impairment in diabetic rats by different behavioral experiments

    NASA Astrophysics Data System (ADS)

    Yu-bin, Ji; Zeng-yi, Li; Guo-song, Xin; Chi, Wei; Hong-jian, Zhu

    2017-12-01

    Object recognition test and Y maze test are widely used in learning and memory behavior evaluation techniques and methods. It was found that in the new object recognition experiment, the diabetic rats did more slowly than the normal rats in the discrimination of the old and new objects, and the learning and memory of the rats in the diabetic rats were injured. And the ratio of retention time and the number of errors in the Y maze test was much higher than that in the blank control group. These two methods can reflect the cognitive impairment in diabetic rats.

  10. Circadian Rhythms in Human Memory.

    ERIC Educational Resources Information Center

    Folkard, Simon; Monk, Timothy H.

    1980-01-01

    Two experiments are described that examined the influence of time-of-day of presentation on immediate and delayed retention and its potential effects on retrieval from long-term memory. Time of presentation was found to influence both immediate and delayed (28 day) retention, but not retrieval from long-term memory. (Author/SJL)

  11. Temporal Dynamics of Recovery from Extinction Shortly after Extinction Acquisition

    ERIC Educational Resources Information Center

    Archbold, Georgina E.; Dobbek, Nick; Nader, Karim

    2013-01-01

    Evidence suggests that extinction is new learning. Memory acquisition involves both short-term memory (STM) and long-term memory (LTM) components; however, few studies have examined early phases of extinction retention. Retention of auditory fear extinction was examined at various time points. Shortly (1-4 h) after extinction acquisition…

  12. Aging memories: differential decay of episodic memory components.

    PubMed

    Talamini, Lucia M; Gorree, Eva

    2012-05-17

    Some memories about events can persist for decades, even a lifetime. However, recent memories incorporate rich sensory information, including knowledge on the spatial and temporal ordering of event features, while old memories typically lack this "filmic" quality. We suggest that this apparent change in the nature of memories may reflect a preferential loss of hippocampus-dependent, configurational information over more cortically based memory components, including memory for individual objects. The current study systematically tests this hypothesis, using a new paradigm that allows the contemporaneous assessment of memory for objects, object pairings, and object-position conjunctions. Retention of each memory component was tested, at multiple intervals, up to 3 mo following encoding. The three memory subtasks adopted the same retrieval paradigm and were matched for initial difficulty. Results show differential decay of the tested episodic memory components, whereby memory for configurational aspects of a scene (objects' co-occurrence and object position) decays faster than memory for featured objects. Interestingly, memory requiring a visually detailed object representation decays at a similar rate as global object recognition, arguing against interpretations based on task difficulty and against the notion that (visual) detail is forgotten preferentially. These findings show that memories undergo qualitative changes as they age. More specifically, event memories become less configurational over time, preferentially losing some of the higher order associations that are dependent on the hippocampus for initial fast encoding. Implications for theories of long-term memory are discussed.

  13. Memory systems interaction in the pigeon: working and reference memory.

    PubMed

    Roberts, William A; Strang, Caroline; Macpherson, Krista

    2015-04-01

    Pigeons' performance on a working memory task, symbolic delayed matching-to-sample, was used to examine the interaction between working memory and reference memory. Reference memory was established by training pigeons to discriminate between the comparison cues used in delayed matching as S+ and S- stimuli. Delayed matching retention tests then measured accuracy when working and reference memory were congruent and incongruent. In 4 experiments, it was shown that the interaction between working and reference memory is reciprocal: Strengthening either type of memory leads to a decrease in the influence of the other type of memory. A process dissociation procedure analysis of the data from Experiment 4 showed independence of working and reference memory, and a model of working memory and reference memory interaction was shown to predict the findings reported in the 4 experiments. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  14. The neuropsychological differentiation of patients with very mild Alzheimer's disease and/or major depression.

    PubMed

    desRosiers, G; Hodges, J R; Berrios, G

    1995-11-01

    To evaluate the usefulness of standardized neuropsychological tests in the psychometric differentiation of patients with very mild or mild Alzheimer's Disease (AD) and/or major depression presenting in a tertiary clinic with memory/attention complaints. Controlled prospective clinicoexperimental design. Multidisciplinary Memory Clinic at Addenbroke's Hospital, Cambridge, England. Twenty-four patients with a clinical diagnosis of Alzheimer's disease (12 with major depression and 12 without), 12 patients with major depressive illness but without AD, and 12 healthy control subjects, all matched for age, sex, education levels, and estimates of premorbid intellectual potential. Mini-Mental State Examination (MMSE), Wechsler's Logical Memory (WLM) and Visual Reproduction (WVR), immediate and delayed reproduction, Wechsler's paired Associate Learning (WPAL), including the Easy and Hard subsets. Warrington's Recognition Memory for Faces (WRMF), Kendrick's Object Learning (KOLT) and Digit Copying (KDCT) Tests. Minimum 2-year follow-up diagnosis. Statistically, patients with very mild AD were distinguished clearly from those without AD on most tests of memory functions. Psychometrically, only KOLT and an index of retention on WLM and WVR were specific enough to avoid false positives, a requirement for second-stage tools. They also proved sensitive enough to suggest their role as first-stage instruments when screening for primary dementia in high-functioning patients scoring above the cut-point on MMSE. As efforts intensify to develop more powerful means to identify patients with Alzheimer's disease in its earliest stages, inclusion of specialist tests posing greater cognitive challenge than standard mental status scales has been one strategy. Our study explored how some of these neuropsychological tools behave psychometrically when analyzed on a single-case basis, and the results suggest a few are sensitive enough to boost detection above base rates alone while also being specific enough to reduce false alarms. Retention on Wechsler's Logical Memory and Visual Reproduction tasks and scores on Kendrick's Object Learning Test helped decrease the degree of ambiguity when cognitive profiles were used to distinguish depressed patients with Alzheimer disease from those without.

  15. Method matters: Systematic effects of testing procedure on visual working memory sensitivity

    PubMed Central

    Makovski, Tal; Watson, Leah M.; Koutstaal, Wilma; Jiang, Yuhong V.

    2010-01-01

    Visual working memory (WM) is traditionally considered a robust form of visual representation that survives changes in object motion, observer's position, and other visual transients. This study presents data that are inconsistent with the traditional view. We show that memory sensitivity is dramatically influenced by small variations in the testing procedure, supporting the idea that representations in visual WM are susceptible to interference from testing. In this study, participants were shown an array of colors to remember. After a short retention interval, memory for one of the items was tested with either a same-different task or a 2-alternative-forced-choice (2AFC) task. Memory sensitivity was much lower in the 2AFC task than in the same-different task. This difference was found regardless of encoding similarity or whether visual WM required a fine memory resolution or a coarse resolution. The 2AFC disadvantage was reduced when participants were informed shortly before testing which item would be probed. The 2AFC disadvantage diminished in perceptual tasks and was not found in tasks probing visual long-term memory. These results support memory models that acknowledge the labile nature of visual WM, and have implications for the format of visual WM and its assessment. PMID:20854011

  16. Contralateral Cortical Organisation of Information in Visual Short-Term Memory: Evidence from Lateralized Brain Activity during Retrieval

    ERIC Educational Resources Information Center

    Fortier-Gauthier, Ulysse; Moffat, Nicolas; Dell'Acqua, Robert; McDonald, John J.; Jolicoeur, Pierre

    2012-01-01

    We studied brain activity during retention and retrieval phases of two visual short-term memory (VSTM) experiments. Experiment 1 used a balanced memory array, with one color stimulus in each hemifield, followed by a retention interval and a central probe, at the fixation point that designated the target stimulus in memory about which to make a…

  17. Effects of spacing of item repetitions in continuous recognition memory: does item retrieval difficulty promote item retention in older adults?

    PubMed

    Kılıç, Aslı; Hoyer, William J; Howard, Marc W

    2013-01-01

    BACKGROUND/STUDY CONTEXT: Older adults exhibit an age-related deficit in item memory as a function of the length of the retention interval, but older adults and young adults usually show roughly equivalent benefits due to the spacing of item repetitions in continuous memory tasks. The current experiment investigates the seemingly paradoxical effects of retention interval and spacing in young and older adults using a continuous recognition memory procedure. Fifty young adults and 52 older adults gave memory confidence ratings to words that were presented once (P1), twice (P2), or three times (P3), and the effects of the lag length and retention interval were assessed at P2 and at P3, respectively. Response times at P2 were disproportionately longer for older adults than for younger adults as a function of the number of items occurring between P1 and P2, suggestive of age-related loss in item memory. Ratings of confidence in memory responses revealed that older adults remembered fewer items at P2 with a high degree of certainty. Confidence ratings given at P3 suggested that young and older adults derived equivalent benefits from the spacing between P1 and P2. Findings of this study support theoretical accounts that suggest that recursive reminding and/or item retrieval difficulty promote item retention in older adults.

  18. Intracarotid amobarbital procedure: I. Prediction of decreased modality-specific memory scores after temporal lobectomy.

    PubMed

    Wyllie, E; Naugle, R; Awad, I; Chelune, G; Lüders, H; Dinner, D; Skibinski, C; Ahl, J

    1991-01-01

    To assess predictive value of the intracarotid amobarbital procedure (IAP) for decreased postoperative modality-specific memory, we studied 37 temporal lobectomy patients with intractable partial epilepsy who were selected for operation independent of preoperative IAP findings. When ipsilateral IAP failure was defined by an absolute method as a retention score less than 67%, the results were not associated with decreased modality-specific memory after operation. When ipsilateral IAP failure was defined by a comparative method as a retention score at least 20% lower after ipsilateral than contralateral injection, the results showed greater differences between groups, but differences still did not achieve statistical significance. Four left-resection patients who failed the ipsilateral IAP had a median postoperative change in the Wechsler Memory Scale-Revised (WMS-R) Verbal Memory Index score of -14%, whereas 16 left-resection patients who passed the ipsilateral IAP had a mean postoperative change in the WMS-R Verbal Memory Index score of -7.5% (p = 0.12). These results suggested that the IAP interpreted comparatively may be a helpful adjunctive test in assessment of relative risk for modality-specific memory dysfunction after temporal lobectomy, but larger series of operated patients are needed to confirm this possibility. In this series, complete amnesia was not noted after ipsilateral injection, even in patients with postoperative modality-specific memory decline.

  19. Glucocorticoid effects on object recognition memory require training-associated emotional arousal.

    PubMed

    Okuda, Shoki; Roozendaal, Benno; McGaugh, James L

    2004-01-20

    Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.

  20. Exploring the Use of Discrete Gestures for Authentication

    NASA Astrophysics Data System (ADS)

    Chong, Ming Ki; Marsden, Gary

    Research in user authentication has been a growing field in HCI. Previous studies have shown that peoples’ graphical memory can be used to increase password memorability. On the other hand, with the increasing number of devices with built-in motion sensors, kinesthetic memory (or muscle memory) can also be exploited for authentication. This paper presents a novel knowledge-based authentication scheme, called gesture password, which uses discrete gestures as password elements. The research presents a study of multiple password retention using PINs and gesture passwords. The study reports that although participants could use kinesthetic memory to remember gesture passwords, retention of PINs is far superior to retention of gesture passwords.

  1. The effect of testing versus restudy on retention: a meta-analytic review of the testing effect.

    PubMed

    Rowland, Christopher A

    2014-11-01

    Engaging in a test over previously studied information can serve as a potent learning event, a phenomenon referred to as the testing effect. Despite a surge of research in the past decade, existing theories have not yet provided a cohesive account of testing phenomena. The present study uses meta-analysis to examine the effects of testing versus restudy on retention. Key results indicate support for the role of effortful processing as a contributor to the testing effect, with initial recall tests yielding larger testing benefits than recognition tests. Limited support was found for existing theoretical accounts attributing the testing effect to enhanced semantic elaboration, indicating that consideration of alternative mechanisms is warranted in explaining testing effects. Future theoretical accounts of the testing effect may benefit from consideration of episodic and contextually derived contributions to retention resulting from memory retrieval. Additionally, the bifurcation model of the testing effect is considered as a viable framework from which to characterize the patterns of results present across the literature. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  2. Retrieval Practice Makes Procedure from Remembering: An Automatization Account of the Testing Effect

    ERIC Educational Resources Information Center

    Racsmány, Mihály; Szollosi, Ágnes; Bencze, Dorottya

    2018-01-01

    The "testing effect" refers to the striking phenomenon that repeated retrieval practice is one of the most effective learning strategies, and certainly more advantageous for long-term learning, than additional restudying of the same information. How retrieval can boost the retention of memories is still without unanimous explanation. In…

  3. A ten-year follow-up of a study of memory for the attack of September 11, 2001: Flashbulb memories and memories for flashbulb events.

    PubMed

    Hirst, William; Phelps, Elizabeth A; Meksin, Robert; Vaidya, Chandan J; Johnson, Marcia K; Mitchell, Karen J; Buckner, Randy L; Budson, Andrew E; Gabrieli, John D E; Lustig, Cindy; Mather, Mara; Ochsner, Kevin N; Schacter, Daniel; Simons, Jon S; Lyle, Keith B; Cuc, Alexandru F; Olsson, Andreas

    2015-06-01

    Within a week of the attack of September 11, 2001, a consortium of researchers from across the United States distributed a survey asking about the circumstances in which respondents learned of the attack (their flashbulb memories) and the facts about the attack itself (their event memories). Follow-up surveys were distributed 11, 25, and 119 months after the attack. The study, therefore, examines retention of flashbulb memories and event memories at a substantially longer retention interval than any previous study using a test-retest methodology, allowing for the study of such memories over the long term. There was rapid forgetting of both flashbulb and event memories within the first year, but the forgetting curves leveled off after that, not significantly changing even after a 10-year delay. Despite the initial rapid forgetting, confidence remained high throughout the 10-year period. Five putative factors affecting flashbulb memory consistency and event memory accuracy were examined: (a) attention to media, (b) the amount of discussion, (c) residency, (d) personal loss and/or inconvenience, and (e) emotional intensity. After 10 years, none of these factors predicted flashbulb memory consistency; media attention and ensuing conversation predicted event memory accuracy. Inconsistent flashbulb memories were more likely to be repeated rather than corrected over the 10-year period; inaccurate event memories, however, were more likely to be corrected. The findings suggest that even traumatic memories and those implicated in a community's collective identity may be inconsistent over time and these inconsistencies can persist without the corrective force of external influences. (c) 2015 APA, all rights reserved).

  4. Memory Retention in Second Language Acquisition and Instruction: Insights from Literature and Research

    ERIC Educational Resources Information Center

    Sanatullova-Allison , Elvira

    2014-01-01

    This article reviews some essential theoretical and empirical research literature that discusses the role of memory in second language acquisition and instruction. Two models of literature review--thematic and study-by-study--were used to analyze and synthesize the existing research. First, issues of memory retention in second language acquisition…

  5. The two faces of selective memory retrieval: Earlier decline of the beneficial than the detrimental effect with older age.

    PubMed

    Aslan, Alp; Schlichting, Andreas; John, Thomas; Bäuml, Karl-Heinz T

    2015-12-01

    Recent work with young adults has shown that, depending on study context access, selective memory retrieval can both impair and improve recall of other memories (Bäuml & Samenieh, 2010). Here, we investigated the 2 opposing effects of selective retrieval in older age. In Experiment 1, we examined 64 younger (20-35 years) and 64 older participants (above 60 years), and manipulated study context access using list-method directed forgetting. Whereas both age groups showed a detrimental effect of selective retrieval on to-be-remembered items, only younger but not older adults showed a beneficial effect on to-be-forgotten items. In Experiment 2, we examined 112 participants from a relatively wide age range (40-85 years), and manipulated study context access by varying the retention interval between study and test. Overall, a detrimental effect of selective retrieval arose when the retention interval was relatively short, but a beneficial effect when the retention interval was prolonged. Critically, the size of the beneficial but not the detrimental effect of retrieval decreased with age and this age-related decline was mediated by individuals' working memory capacity, as measured by the complex operation span task. Together, the results suggest an age-related dissociation in retrieval dynamics, indicating an earlier decline of the beneficial than the detrimental effect of selective retrieval with older age. (c) 2015 APA, all rights reserved).

  6. Further differentiating item and order information in semantic memory: students' recall of words from the "CU Fight Song", Harry Potter book titles, and Scooby Doo theme song.

    PubMed

    Overstreet, Michael F; Healy, Alice F; Neath, Ian

    2017-01-01

    University of Colorado (CU) students were tested for both order and item information in their semantic memory for the "CU Fight Song". Following an earlier study by Overstreet and Healy [(2011). Item and order information in semantic memory: Students' retention of the "CU fight song" lyrics. Memory & Cognition, 39, 251-259. doi: 10.3758/s13421-010-0018-3 ], a symmetrical bow-shaped serial position function (with both primacy and recency advantages) was found for reconstructing the order of the nine lines in the song, whereas a function with no primacy advantage was found for recalling a missing word from each line. This difference between order and item information was found even though students filled in missing words without any alternatives provided and missing words came from the beginning, middle, or end of each line. Similar results were found for CU students' recall of the sequence of Harry Potter book titles and the lyrics of the Scooby Doo theme song. These findings strengthen the claim that the pronounced serial position function in semantic memory occurs largely because of the retention of order, rather than item, information.

  7. Switching characteristics in Cu:SiO2 by chemical soak methods for resistive random access memory (ReRAM)

    NASA Astrophysics Data System (ADS)

    Chin, Fun-Tat; Lin, Yu-Hsien; Yang, Wen-Luh; Liao, Chin-Hsuan; Lin, Li-Min; Hsiao, Yu-Ping; Chao, Tien-Sheng

    2015-01-01

    A limited copper (Cu)-source Cu:SiO2 switching layer composed of various Cu concentrations was fabricated using a chemical soaking (CS) technique. The switching layer was then studied for developing applications in resistive random access memory (ReRAM) devices. Observing the resistive switching mechanism exhibited by all the samples suggested that Cu conductive filaments formed and ruptured during the set/reset process. The experimental results indicated that the endurance property failure that occurred was related to the joule heating effect. Moreover, the endurance switching cycle increased as the Cu concentration decreased. In high-temperature tests, the samples demonstrated that the operating (set/reset) voltages decreased as the temperature increased, and an Arrhenius plot was used to calculate the activation energy of the set/reset process. In addition, the samples demonstrated stable data retention properties when baked at 85 °C, but the samples with low Cu concentrations exhibited short retention times in the low-resistance state (LRS) during 125 °C tests. Therefore, Cu concentration is a crucial factor in the trade-off between the endurance and retention properties; furthermore, the Cu concentration can be easily modulated using this CS technique.

  8. A dual memory theory of the testing effect.

    PubMed

    Rickard, Timothy C; Pan, Steven C

    2017-06-05

    A new theoretical framework for the testing effect-the finding that retrieval practice is usually more effective for learning than are other strategies-is proposed, the empirically supported tenet of which is that separate memories form as a consequence of study and test events. A simplest case quantitative model is derived from that framework for the case of cued recall. With no free parameters, that model predicts both proportion correct in the test condition and the magnitude of the testing effect across 10 experiments conducted in our laboratory, experiments that varied with respect to material type, retention interval, and performance in the restudy condition. The model also provides the first quantitative accounts of (a) the testing effect as a function of performance in the restudy condition, (b) the upper bound magnitude of the testing effect, (c) the effect of correct answer feedback, (d) the testing effect as a function of retention interval for the cases of feedback and no feedback, and (e) the effect of prior learning method on subsequent learning through testing. Candidate accounts of several other core phenomena in the literature, including test-potentiated learning, recognition versus cued recall training effects, cued versus free recall final test effects, and other select transfer effects, are also proposed. Future prospects and relations to other theories are discussed.

  9. Not all order memory is equal: Test demands reveal dissociations in memory for sequence information.

    PubMed

    Jonker, Tanya R; MacLeod, Colin M

    2017-02-01

    Remembering the order of a sequence of events is a fundamental feature of episodic memory. Indeed, a number of formal models represent temporal context as part of the memory system, and memory for order has been researched extensively. Yet, the nature of the code(s) underlying sequence memory is still relatively unknown. Across 4 experiments that manipulated encoding task, we found evidence for 3 dissociable facets of order memory. Experiment 1 introduced a test requiring a judgment of which of 2 alternatives had immediately followed a word during encoding. This measure revealed better retention of interitem associations following relational encoding (silent reading) than relatively item-specific encoding (judging referent size), a pattern consistent with that observed in previous research using order reconstruction tests. In sharp contrast, Experiment 2 demonstrated the reverse pattern: Memory for the studied order of 2 sequentially presented items was actually better following item-specific encoding than following relational encoding. Experiment 3 reproduced this dissociation in a single experiment using both tests. Experiment 4 extended these findings by further dissociating the roles of relational encoding and item strength in the 2 tests. Taken together, these results indicate that memory for event sequence is influenced by (a) interitem associations, (b) the emphasized directionality of an association, and (c) an item's strength independent of other items. Memory for order is more complicated than has been portrayed in theories of memory and its nuances should be carefully considered when designing tests and models of temporal and relational memory. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  10. Effects of clinically relevant doses of methyphenidate on spatial memory, behavioral sensitization and open field habituation: a time related study.

    PubMed

    Haleem, Darakhshan Jabeen; Inam, Qurrat-ul-Aen; Haleem, Muhammad Abdul

    2015-03-15

    The psychostimulant methylphenidate (MPD) is a first-line drug for the treatment of attention deficit hyperactivity disorder (ADHD). Despite acceptable therapeutic efficacy, there is limited data regarding the long-term consequences of MPD exposure over extended periods. The present study concerns effects of clinically relevant doses of MPD, administered orally to rats for an extended period, on spatial memory, behavioral sensitization and habituation to an open field. Water maze test was used to monitor memory acquisition (2 h after training), retention (day next to training), extinction (1 week after training) and reconsolidation (weekly for 4 weeks). Administration of MPD at doses of 0.25-1.0 mg/kg improved memory acquisition, retention, reconsolidation and impaired memory extinction. Treatment with 0.25 and 0.5 mg/kg MPD for 6 weeks produced a sustained increase in motor activity but higher dose (1.0 mg/kg) elicited behavioral sensitization. High as well as low doses MPD impaired open field habituation. We conclude that clinically relevant doses of MPD enhance memory even if used for extended period. It is suggested that higher (1.0 mg/kg) clinically relevant doses of MPD, if used for extended period, may exacerbate hyperactivity and impulsivity associated with the disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Regional hippocampal volumes and development predict learning and memory.

    PubMed

    Tamnes, Christian K; Walhovd, Kristine B; Engvig, Andreas; Grydeland, Håkon; Krogsrud, Stine K; Østby, Ylva; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2014-01-01

    The hippocampus is an anatomically and functionally heterogeneous structure, but longitudinal studies of its regional development are scarce and it is not known whether protracted maturation of the hippocampus in adolescence is related to memory development. First, we investigated hippocampal subfield development using 170 longitudinally acquired brain magnetic resonance imaging scans from 85 participants aged 8-21 years. Hippocampal subfield volumes were estimated by the use of automated segmentation of 7 subfields, including the cornu ammonis (CA) sectors and the dentate gyrus (DG), while longitudinal subfield volumetric change was quantified using a nonlinear registration procedure. Second, associations between subfield volumes and change and verbal learning/memory across multiple retention intervals (5 min, 30 min and 1 week) were tested. It was hypothesized that short and intermediate memory would be more closely related to CA2-3/CA4-DG and extended, remote memory to CA1. Change rates were significantly different across hippocampal subfields, but nearly all subfields showed significant volume decreases over time throughout adolescence. Several subfield volumes were larger in the right hemisphere and in males, while for change rates there were no hemisphere or sex differences. Partly in support of the hypotheses, greater volume of CA1 and CA2-3 was related to recall and retention after an extended delay, while longitudinal reduction of CA2-3 and CA4-DG was related to learning. This suggests continued regional development of the hippocampus across adolescence and that volume and volume change in specific subfields differentially predict verbal learning and memory over different retention intervals, but future high-resolution studies are called for. © 2014 S. Karger AG, Basel.

  12. Regular rehearsal helps in consolidation of long term memory.

    PubMed

    Parle, Milind; Singh, Nirmal; Vasudevan, Mani

    2006-01-01

    Memory, one of the most complex functions of the brain comprises of multiple components such as perception, registration, consolidation, storage, retrieval and decay. The present study was undertaken to evaluate the impact of different training sessions on the retention capacity of rats. The capacity of retention of learnt task was measured using exteroceptive behavioral models such as Hexagonal swimming pool apparatus, Hebb-Williams maze and Elevated plus-maze. A total of 150 rats divided into fifteen groups were employed in the present study. The animals were subjected to different training sessions during first three days. The ability to retain the learned task was tested after single, sub-acute, acute, sub-chronic and chronic exposure to above exteroceptive memory models in separate groups of animals. The memory score of all animals was recorded after 72 h, 192 h and 432 h of their last training trial. Rats of single exposure group did not show any effect on memory. Sub-acute training group animals showed improved memory up to 72 h only, where as in acute and sub-chronic training groups this memory improvement was extended up to 192 h. The rats, which were subjected to chronic exposures showed a significant improvement in retention capacity that lasted up to a period of eighteen days. These observations suggest that repeated rehearsals at regular intervals are probably necessary for consolidation of long-term memory. It was observed that sub-acute, acute and sub-chronic exposures, improved the retrieval ability of rats but this memory improving effect was short lived. Thus, rehearsal or training plays a crucial role in enhancing one's capacity of retaining the learnt information. Key PointsThe present study underlines the importance of regular rehearsals in enhancing one's capacity of retaining the learnt information. " Sub-acute, acute & sub-chronic rehearsals result in storing of information for a limited period of time.Quick decay of information or forgetting is a natural continuously active process designed to wipe out unnecessary and useless information.The capacities of grasping, understanding and memory are all crucial for career growth.Single exposure to a new environment is not sufficient enough to form a permanent memory trace in brain.

  13. Selective loss of dopaminergic neurons in the substantia nigra pars compacta after systemic administration of MPTP facilitates extinction learning.

    PubMed

    Kinoshita, Ken-ichi; Tada, Yayoi; Muroi, Yoshikage; Unno, Toshihiro; Ishii, Toshiaki

    2015-09-15

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive loss of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNpc). In PD, thinking and retrieval deficits often arise from cognitive impairments. However, the mechanism of cognitive disorders in PD remains unknown. Therefore, we investigated cognitive function in PD model mice produced by intraperitoneal administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which specifically destroys the DAergic neurons in the SNpc. We evaluated the cognitive function of MPTP-treated mice (PD mice) using the contextual fear conditioning test. In the test, each experiment consists of three phases: training, re-exposure, and testing. Mice were trained with a foot shock (a weak unconditioned stimulus: 1mA/2s duration, once, or an intense unconditioned stimulus: 2mA/2s duration, twice), and 24h later, mice were re-exposed to the training context for 3min to determine reconsolidation or 30min to determine extinction. The percentage of time spent freezing was measured during the test session as indexes of memory consolidation, reconsolidation, and extinction. Reconsolidation of PD mice occurred normally but memory extinction was facilitated in PD mice compared to control mice. Moreover, memory retention in PD mice was attenuated earlier than in controls following repeated conditioned stimuli every day. PD mice with selective loss of DAergic neurons in the SNpc showed attenuated memory retention, probably via facilitated extinction learning. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Memory Fitness Program: Cognitive Effects of a Healthy Aging Intervention

    PubMed Central

    Miller, Karen J.; Siddarth, Prabha; Gaines, Jean M.; Parrish, John M.; Ercoli, Linda M.; Marx, Katherine; Ronch, Judah; Pilgram, Barbara; Burke, Kasey; Barczak, Nancy; Babcock, Bridget; Small, Gary W.

    2014-01-01

    Context Age-related memory decline affects a large proportion of older adults. Cognitive training, physical exercise, and other lifestyle habits may help to minimize self-perception of memory loss and a decline in objective memory performance. Objective The purpose of this study was to determine whether a 6-week educational program on memory training, physical activity, stress reduction, and healthy diet led to improved memory performance in older adults. Design A convenience sample of 115 participants (mean age: 80.9 [SD: 6.0 years]) was recruited from two continuing care retirement communities. The intervention consisted of 60-minute classes held twice weekly with 15–20 participants per class. Testing of both objective and subjective cognitive performance occurred at baseline, preintervention, and postintervention. Objective cognitive measures evaluated changes in five domains: immediate verbal memory, delayed verbal memory, retention of verbal information, memory recognition, and verbal fluency. A standardized metamemory instrument assessed four domains of memory self-awareness: frequency and severity of forgetting, retrospective functioning, and mnemonics use. Results The intervention program resulted in significant improvements on objective measures of memory, including recognition of word pairs (t[114] = 3.62, p < 0.001) and retention of verbal information from list learning (t[114] = 2.98, p < 0.01). No improvement was found for verbal fluency. Regarding subjective memory measures, the retrospective functioning score increased significantly following the intervention (t[114] = 4.54, p < 0.0001), indicating perception of a better memory. Conclusions These findings indicate that a 6-week healthy lifestyle program can improve both encoding and recalling of new verbal information, as well as self-perception of memory ability in older adults residing in continuing care retirement communities. PMID:21765343

  15. Silent memory engrams as the basis for retrograde amnesia

    PubMed Central

    Roy, Dheeraj S.; Muralidhar, Shruti; Smith, Lillian M.

    2017-01-01

    Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams “silent engrams” and the cells bearing them “silent engram cells.” The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21–activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells. PMID:29078397

  16. Silent memory engrams as the basis for retrograde amnesia.

    PubMed

    Roy, Dheeraj S; Muralidhar, Shruti; Smith, Lillian M; Tonegawa, Susumu

    2017-11-14

    Recent studies identified neuronal ensembles and circuits that hold specific memory information (memory engrams). Memory engrams are retained under protein synthesis inhibition-induced retrograde amnesia. These engram cells can be activated by optogenetic stimulation for full-fledged recall, but not by stimulation using natural recall cues (thus, amnesia). We call this state of engrams "silent engrams" and the cells bearing them "silent engram cells." The retention of memory information under amnesia suggests that the time-limited protein synthesis following learning is dispensable for memory storage, but may be necessary for effective memory retrieval processes. Here, we show that the full-fledged optogenetic recall persists at least 8 d after learning under protein synthesis inhibition-induced amnesia. This long-term retention of memory information correlates with equally persistent retention of functional engram cell-to-engram cell connectivity. Furthermore, inactivation of the connectivity of engram cell ensembles with its downstream counterparts, but not upstream ones, prevents optogenetic memory recall. Consistent with the previously reported lack of retention of augmented synaptic strength and reduced spine density in silent engram cells, optogenetic memory recall under amnesia is stimulation strength-dependent, with low-power stimulation eliciting only partial recall. Finally, the silent engram cells can be converted to active engram cells by overexpression of α-p-21-activated kinase 1, which increases spine density in engram cells. These results indicate that memory information is retained in a form of silent engram under protein synthesis inhibition-induced retrograde amnesia and support the hypothesis that memory is stored as the specific connectivity between engram cells.

  17. Spatial recognition test: A novel cognition task for assessing topographical memory in mice.

    PubMed

    Havolli, Enes; Hill, Mark Dw; Godley, Annie; Goetghebeur, Pascal Jd

    2017-06-01

    Dysfunction in topographical memory is a core feature of several neurological disorders. There is a large unmet medical need to address learning and memory deficits as a whole in central nervous system disease. There are considerable efforts to identify pro-cognitive compounds but current methods are either lengthy or labour intensive. Our test used a two chamber apparatus and is based on the preference of rodents to explore novel environments. It was used firstly to assess topographical memory in mice at different retention intervals (RI) and secondly to investigate the effect of three drugs reported to be beneficial for cognitive decline associated with Alzheimer's disease, namely: donepezil, memantine and levetiracetam. Animals show good memory performance at all RIs tested under four hours. At the four-hour RI, animals show a significantly poorer memory performance which can be rescued using donepezil, memantine and levetiracetam. Using this test we established and validated a spatial recognition paradigm to address topographical memory in mice by showing a decremental time-induced forgetting response and reversing this decrease in performance using pharmacological tools. The spatial recognition test differs from more commonly used visuospatial laboratory tests in both throughput capability and potentially neuroanatomical substrate. This test has the potential to be used to assess cognitive performance in transgenic animals, disease models and to screen putative cognitive enhancers or depressors.

  18. Place Learning in the Morris Water Task: Making the Memory Stick

    ERIC Educational Resources Information Center

    Bolding, Kevin; Rudy, Jerry W.

    2006-01-01

    Although the Morris water task has been used in hundreds of studies of place learning, there have been no systematic studies of retention of the place memory. We report that retention, as measured by selective search behavior on a probe trial, is excellent when the retention interval is short (5-10 min). However, performance rapidly deteriorates,…

  19. Age differences in fear retention and extinction in male Sprague-Dawley rats: Effects of ethanol challenge during conditioning

    PubMed Central

    Broadwater, Margaret; Spear, Linda P.

    2013-01-01

    Pavlovian fear conditioning is an ideal model to investigate how learning and memory are influenced by alcohol use during adolescence because the neural mechanisms involved have been studied extensively. In Exp 1, adolescent and adult male Sprague-Dawley rats were non-injected or injected with saline, 1 or 1.5 g/kg ethanol intraperitoneally 10 minutes prior to tone or context conditioning. Twenty-four hours later, animals were tested for tone or context retention and extinction, with examination of extinction retention conducted 24 hours thereafter. In Exp 2, a context extinction session was inserted between the tone conditioning and the tone fear retention/extinction days to reduce pre-CS baseline freezing levels at test. Basal levels of acquisition, fear retention, extinction, and extinction retention after tone conditioning were similar between adolescent and adult rats. In contrast adolescents showed faster context extinction than adults, while again not differing from adults during context acquisition, retention or extinction retention. In terms of ethanol effects, adolescents were less sensitive to ethanol-induced context retention deficits than adults. No age differences emerged in terms of tone fear retention, with ethanol disrupting tone fear retention at both ages in Exp1, but at neither age in Exp 2, a difference seemingly due to group differences in pre-CS freezing during tone testing in Exp 1, but not Exp 2. These results suggest that age differences in the acute effects of ethanol on cognitive function are task-specific, and provide further evidence for age differences cognitive functioning in a task thought to be hippocampally-related. PMID:23810415

  20. Sleep directly following learning benefits consolidation of spatial associative memory.

    PubMed

    Talamini, Lucia M; Nieuwenhuis, Ingrid L C; Takashima, Atsuko; Jensen, Ole

    2008-04-01

    The last decade has brought forth convincing evidence for a role of sleep in non-declarative memory. A similar function of sleep in episodic memory is supported by various correlational studies, but direct evidence is limited. Here we show that cued recall of face-location associations is significantly higher following a 12-h retention interval containing sleep than following an equally long period of waking. Furthermore, retention is significantly higher over a 24-h sleep-wake interval than over an equally long wake-sleep interval. This difference occurs because retention during sleep was significantly better when sleep followed learning directly, rather than after a day of waking. These data demonstrate a beneficial effect of sleep on memory that cannot be explained solely as a consequence of reduced interference. Rather, our findings suggest a competitive consolidation process, in which the fate of a memory depends, at least in part, on its relative stability at sleep onset: Strong memories tend to be preserved, while weaker memories erode still further. An important aspect of memory consolidation may thus result from the removal of irrelevant memory "debris."

  1. Middle-aged human apoE4 targeted-replacement mice show retention deficits on a wide range of spatial memory tasks.

    PubMed

    Bour, Alexandra; Grootendorst, Jeannette; Vogel, Elise; Kelche, Christian; Dodart, Jean-Cosme; Bales, Kelly; Moreau, Pierre-Henri; Sullivan, Patrick M; Mathis, Chantal

    2008-11-21

    Apolipoprotein (apo) E4, one of three human apoE (h-apoE) isoforms, has been identified as a major genetic risk factor for Alzheimer's disease and for cognitive deficits associated with aging. However, the biological mechanisms involving apoE in learning and memory processes are unclear. A potential isoform-dependent role of apoE in cognitive processes was studied in human apoE targeted-replacement (TR) mice. These mice express either the human apoE3 or apoE4 gene under the control of endogenous murine apoE regulatory sequences, resulting in physiological expression of h-apoE in both a temporal and spatial pattern similar to humans. Male and female apoE3-TR, apoE4-TR, apoE-knockout and C57BL/6J mice (15-18 months) were tested with spatial memory and avoidance conditioning tasks. Compared to apoE3-TR mice, spatial memory in female apoE4-TR mice was impaired based on their poor performances in; (i) the probe test of the water-maze reference memory task, (ii) the water-maze working memory task and (iii) an active avoidance Y-maze task. Retention performance on a passive avoidance task was also impaired in apoE4-TR mice, but not in other genotypes. These deficits in both spatial and avoidance memory tasks may be related to the anatomical and functional abnormalities previously reported in the hippocampus and the amygdala of apoE4-TR mice. We conclude that the apoE4-TR mice provide an excellent model for understanding the mechanisms underlying apoE4-dependent susceptibility to cognitive decline.

  2. Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress.

    PubMed

    Knox, Dayan; Stanfield, Briana R; Staib, Jennifer M; David, Nina P; DePietro, Thomas; Chamness, Marisa; Schneider, Elizabeth K; Keller, Samantha M; Lawless, Caroline

    2018-04-02

    Neural circuits via which stress leads to disruptions in fear extinction is often explored in animal stress models. Using the single prolonged stress (SPS) model of post traumatic stress disorder and the immediate early gene (IEG) c-Fos as a measure of neural activity, we previously identified patterns of neural activity through which SPS disrupts extinction retention. However, none of these stress effects were specific to fear or extinction learning and memory. C-Jun is another IEG that is sometimes regulated in a different manner to c-Fos and could be used to identify emotional learning/memory specific patterns of neural activity that are sensitive to SPS. Animals were either fear conditioned (CS-fear) or presented with CSs only (CS-only) then subjected to extinction training and testing. C-Jun was then assayed within neural substrates critical for extinction memory. Inhibited c-Jun levels in the hippocampus (Hipp) and enhanced functional connectivity between the ventromedial prefrontal cortex (vmPFC) and basolateral amygdala (BLA) during extinction training was disrupted by SPS in the CS-fear group only. As a result, these effects were specific to emotional learning/memory. SPS also disrupted inhibited Hipp c-Jun levels, enhanced BLA c-Jun levels, and altered functional connectivity among the vmPFC, BLA, and Hipp during extinction testing in SPS rats in the CS-fear and CS-only groups. As a result, these effects were not specific to emotional learning/memory. Our findings suggest that SPS disrupts neural activity specific to extinction memory, but may also disrupt the retention of fear extinction by mechanisms that do not involve emotional learning/memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    PubMed

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. Premarin improves memory, prevents scopolamine-induced amnesia and increases number of basal forebrain choline acetyltransferase positive cells in middle-aged surgically menopausal rats.

    PubMed

    Acosta, Jazmin I; Mayer, Loretta; Talboom, Joshua S; Zay, Cynthia; Scheldrup, Melissa; Castillo, Jonathan; Demers, Laurence M; Enders, Craig K; Bimonte-Nelson, Heather A

    2009-03-01

    Conjugated equine estrogen (CEE) is the most commonly prescribed estrogen therapy, and is the estrogen used in the Women's Health Initiative study. While in-vitro studies suggest that CEE is neuroprotective, no study has evaluated CEE's effects on a cognitive battery and brain immunohistochemistry in an animal model. The current experiment tested whether CEE impacted: I) spatial learning, reference memory, working memory and long-term retention, as well as ability to handle mnemonic delay and interference challenges; and, II) the cholinergic system, via pharmacological challenge during memory testing and ChAT-immunoreactive cell counts in the basal forebrain. Middle-aged ovariectomized (Ovx) rats received chronic cyclic injections of either Oil (vehicle), CEE-Low (10 microg), CEE-Medium (20 microg) or CEE-High (30 microg) treatment. Relative to the Oil group, all three CEE groups showed less overnight forgetting on the spatial reference memory task, and the CEE-High group had enhanced platform localization during the probe trial. All CEE groups exhibited enhanced learning on the spatial working memory task, and CEE dose-dependently protected against scopolamine-induced amnesia with every rat receiving the highest CEE dose maintaining zero errors after scopolamine challenge. CEE also increased number of ChAT-immunoreactive neurons in the vertical diagonal band of the basal forebrain. Neither the ability to remember after a delay nor interference, nor long-term retention, was influenced by the CEE regimen used in this study. These findings are similar to those reported previously for 17 beta-estradiol, and suggest that CEE can provide cognitive benefits on spatial learning, reference and working memory, possibly through cholinergic mechanisms.

  5. Slow Wave Sleep Induced by GABA Agonist Tiagabine Fails to Benefit Memory Consolidation

    PubMed Central

    Feld, Gordon B.; Wilhelm, Ines; Ma, Ying; Groch, Sabine; Binkofski, Ferdinand; Mölle, Matthias; Born, Jan

    2013-01-01

    Study Objectives: Slow wave sleep (SWS) plays a pivotal role in consolidating memories. Tiagabine has been shown to increase SWS in favor of REM sleep without impacting subjective sleep. However, it is unknown whether this effect is paralleled by an improved sleep-dependent consolidation of memory. Design: This double-blind within-subject crossover study tested sensitivity of overnight retention of declarative neutral and emotional materials (word pairs, pictures) as well as a procedural memory task (sequence finger tapping) to oral administration of placebo or 10 mg tiagabine (at 22:30). Participants: Fourteen healthy young men aged 21.9 years (range 18-28 years). Measurements and Results: Tiagabine significantly increased the time spent in SWS and decreased REM sleep compared to placebo. Tiagabine also enhanced slow wave activity (0.5-4.0 Hz) and density of < 1 Hz slow oscillations during NREM sleep. Fast (12-15 Hz) and slow (9-12 Hz) spindle activity, in particular that occurring phase-locked to the slow oscillation cycle, was decreased following tiagabine. Despite signs of deeper and more SWS, overnight retention of memory tested after sleep the next evening (19:30) was generally not improved after tiagabine, but on average even lower than after placebo, with this impairing effect reaching significance for procedural sequence finger tapping. Conclusions: Our data show that increasing slow wave sleep with tiagabine does not improve memory consolidation. Possibly this is due to functional differences from normal slow wave sleep, i.e., the concurrent suppressive influence of tiagabine on phase-locked spindle activity. Citation: Feld GB; Wilhelm I; Ma Y; Groch S; Binkofski F; Mölle M; Born J. Slow wave sleep induced by GABA agonist tiagabine fails to benefit memory consolidation. SLEEP 2013;36(9):1317-1326. PMID:23997364

  6. Effects of postnatal malnutrition and senescence on learning, long-term memory, and extinction in the rat.

    PubMed

    Martínez, Yvonne; Díaz-Cintra, Sofía; León-Jacinto, Uriel; Aguilar-Vázquez, Azucena; Medina, Andrea C; Quirarte, Gina L; Prado-Alcalá, Roberto A

    2009-10-12

    There is a wealth of information indicating that the hippocampal formation is important for learning and memory consolidation. The hippocampus is very sensitive to ageing and developmentally stressful factors such as prenatal malnutrition, which produces anatomical alterations of hippocampal pyramidal cells as well as impaired spatial learning. On the other hand, there are no reports about differential effects of postnatal malnutrition, installed at birth and maintained all through life in young and aged rats, on learning and memory of active avoidance, a task with an important procedural component. We now report that learning and long-term retention of this task were impaired in young malnourished animals, but not in young control, senile control, and senile malnourished Sprague-Dawley rats; young and senile rats were 90 and 660 days of age, respectively. Extinction tests showed, however, that long-term memory of the malnourished groups and senile control animals is impaired as compared with the young control animals. These data strongly suggest that the learning and long-term retention impairments seen in the young animals were due to postnatal malnutrition; in the senile groups, this cognitive alteration did not occur, probably because ageing itself is an important factor that enables the brain to engage in compensatory mechanisms that reduce the effects of malnutrition. Nonetheless, ageing and malnutrition, conditions known to produce anatomic and functional hippocampal alterations, impede the maintenance of long-term memory, as seen during the extinction test.

  7. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation.

    PubMed

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-07-01

    Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Sleep laboratory. Twenty healthy male subjects (age: 23.3 ± 2.1 y). Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. © 2015 Associated Professional Sleep Societies, LLC.

  8. Face distinctiveness and delayed testing: differential effects on performance and confidence.

    PubMed

    Metzger, Mitchell M

    2006-04-01

    The author investigated the effect of delayed testing on participants' memory for distinctive and typical faces. Participants viewed distinctive and typical faces and were then tested for recognition immediately or after a delay of 3, 6, or 12 weeks. Consistent with prior research, analysis of measure of sensitivity (d') showed that participants performed better on distinctive rather than typical faces, and memory performance declined with longer retention intervals between study and testing. Furthermore, the superior performance on distinctive faces had vanished by the 12-week test. Contrary to d' data, however, an analysis of confidence scores indicated that participants were still significantly more confident on trials depicting distinctive faces, even with a 12-week delay between study and recognition testing.

  9. Development of non-volatile semiconductor memory

    NASA Technical Reports Server (NTRS)

    Heikkila, W. W.

    1979-01-01

    A 256 word by 8-bit random access memory chip was developed utilizing p channel, metal gate metal-nitride-oxide-silicon (MNOS) technology; with operational characteristics of a 2.5 microsecond read cycle, a 6.0 microsecond write cycle, 800 milliwatts of power dissipation; and retention characteristics of 10 to the 8th power read cycles before data refresh and 5000 hours of no power retention. Design changes were implemented to reduce switching currents that caused parasitic bipolar transistors inherent in the MNOS structure to turn on. Final wafer runs exhibited acceptable yields for a die 250 mils on a side. Evaluation testing was performed on the device in order to determine the maturity of the device. A fixed gate breakdown mechanism was found when operated continuously at high temperature.

  10. Effect of harmane, an endogenous β-carboline, on learning and memory in rats.

    PubMed

    Celikyurt, Ipek Komsuoglu; Utkan, Tijen; Gocmez, Semil Selcen; Hudson, Alan; Aricioglu, Feyza

    2013-01-01

    Our aim was to investigate the effects of acute harmane administration upon learning and memory performance of rats using the three-panel runway paradigm and passive avoidance test. Male rats received harmane (2.5, 5, and 7.5mg/kg, i.p.) or saline 30 min. before each session of experiments. In the three panel runway paradigm, harmane did not affect the number of errors and latency in reference memory. The effect of harmane on the errors of working memory was significantly higher following the doses of 5mg/kg and 7.5mg/kg. The latency was changed significantly at only 7.5mg/kg in comparison to control group. Animals were given pre-training injection of harmane in the passive avoidance test in order to determine the learning function. Harmane treatment decreased the retention latency significantly and dose dependently, which indicates an impairment in learning. In this study, harmane impaired working memory in three panel runway test and learning in passive avoidance test. As an endogenous bioactive molecule, harmane might have a critical role in the modulation of learning and memory functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effects of the novel compound aniracetam (Ro 13-5057) upon impaired learning and memory in rodents.

    PubMed

    Cumin, R; Bandle, E F; Gamzu, E; Haefely, W E

    1982-01-01

    The effect of aniracetam (Ro 13-5057, 1-anisoyl-2-pyrrolidinone) was studied on various forms of experimentally impaired cognitive functions (learning and memory) in rodents and produced the following effects: (1) almost complete prevention of the incapacity to learn a discrete escape response in rats exposed to sublethal hypercapnia immediately before the acquisition session; (2) partial (rats) or complete (mice) prevention of the scopolamine-induced short-term amnesia for a passive avoidance task; (3) complete protection against amnesia for a passive avoidance task in rats submitted to electroconvulsive shock immediately after avoidance acquisition; (4) prevention of the long-term retention- or retrieval-deficit for a passive avoidance task induced in rats and mice by chloramphenicol or cycloheximide administered immediately after acquisition; (5) reversal, when administered as late as 1 h before the retention test, of the deficit in retention or retrieval of a passive avoidance task induced by cycloheximide injected 2 days previously; (6) prevention of the deficit in the retrieval of an active avoidance task induced in mice by subconvulsant electroshock or hypercapnia applied immediately before retrieval testing (24 h after acquisition). These improvements or normalizations of impaired cognitive functions were seen at oral aniracetam doses of 10-100 mg/kg. Generally, the dose-response curves were bell-shaped. The mechanisms underlying the activity of aniracetam and its 'therapeutic window' are unknown. Piracetam, another pyrrolidinone derivative was used for comparison. It was active only in six of nine tests and had about one-tenth the potency of aniracetam. The results indicate that aniracetam improves cognitive functions which are impaired by different procedure and in different phases of the learning and memory process.

  12. Perturbation schedule does not alter retention of a locomotor adaptation across days.

    PubMed

    Hussain, Sara J; Morton, Susanne M

    2014-06-15

    Motor adaptation in response to gradual vs. abrupt perturbation schedules may involve different neural mechanisms, potentially leading to different levels of motor memory. However, no study has investigated whether perturbation schedules alter memory of a locomotor adaptation across days. We measured adaptation and retention (memory) of altered interlimb symmetry during walking in two groups of participants over 2 days. On day 1, participants adapted to either a single, large perturbation (abrupt schedule) or a series of small perturbations that increased in size over time (gradual schedule). Retention was examined on day 2. On day 1, initial swing time and foot placement symmetry error sizes differed between groups but overall adaptation magnitudes were similar. On day 2, participants in both groups showed similar retention, readaptation, and aftereffect sizes, although there were some trends for improved memory in the abrupt group. These results conflict with previous data but are consistent with newer studies reporting no behavioral differences following adaptation using abrupt vs. gradual schedules. Although memory levels were very similar between groups, we cannot rule out the possibility that the neural mechanisms underlying this memory storage differ. Overall, it appears that adaptation of locomotor patterns via abrupt and gradual perturbation schedules produces similar expression of locomotor memories across days. Copyright © 2014 the American Physiological Society.

  13. Retention interval affects visual short-term memory encoding.

    PubMed

    Bankó, Eva M; Vidnyánszky, Zoltán

    2010-03-01

    Humans can efficiently store fine-detailed facial emotional information in visual short-term memory for several seconds. However, an unresolved question is whether the same neural mechanisms underlie high-fidelity short-term memory for emotional expressions at different retention intervals. Here we show that retention interval affects the neural processes of short-term memory encoding using a delayed facial emotion discrimination task. The early sensory P100 component of the event-related potentials (ERP) was larger in the 1-s interstimulus interval (ISI) condition than in the 6-s ISI condition, whereas the face-specific N170 component was larger in the longer ISI condition. Furthermore, the memory-related late P3b component of the ERP responses was also modulated by retention interval: it was reduced in the 1-s ISI as compared with the 6-s condition. The present findings cannot be explained based on differences in sensory processing demands or overall task difficulty because there was no difference in the stimulus information and subjects' performance between the two different ISI conditions. These results reveal that encoding processes underlying high-precision short-term memory for facial emotional expressions are modulated depending on whether information has to be stored for one or for several seconds.

  14. Cognitive effects of methylphenidate and levodopa in healthy volunteers.

    PubMed

    Linssen, A M W; Sambeth, A; Vuurman, E F P M; Riedel, W J

    2014-02-01

    Our previous study showed enhanced declarative memory consolidation after acute methylphenidate (MPH) administration. The primary aim of the current study was to investigate the duration of this effect. Secondary, the dopaminergic contribution of MPH effects, the electrophysiological correlates of declarative memory, and the specificity of memory enhancing effects of MPH to declarative memory were assessed. Effects of 40 mg of MPH on memory performance were compared to 100mg of levodopa (LEV) in a placebo-controlled crossover study with 30 healthy volunteers. Memory performance testing included a word learning test, the Sternberg memory scanning task, a paired associates learning task, and a spatial working memory task. During the word learning test, event-related brain potentials (ERPs) were measured. MPH failed to enhance retention of words at a 30 min delay, but it improved 24 h delayed memory recall relative to PLA and LEV. Furthermore, during encoding, the P3b and P600 ERP latencies were prolonged and the P600 amplitude was larger after LEV compared to PLA and MPH. MPH speeded response times on the Sternberg Memory Scanning task and improved performance on the Paired Associates Learning task, relative to LEV, but not PLA. Performance on the Spatial working memory task was not affected by the treatments. These findings suggest that MPH and LEV might have opposite effects on memory. © 2013 Published by Elsevier B.V. and ECNP.

  15. When Does Retrieval Induce Forgetting and when Does It Induce Facilitation? Implications for Retrieval Inhibition, Testing Effect, and Text Processing

    ERIC Educational Resources Information Center

    Chan, Jason C. K.

    2009-01-01

    Retrieval practice can enhance long-term retention of the tested material (the testing effect), but it can also impair later recall of the nontested material--a phenomenon known as retrieval-induced forgetting (Anderson, M. C., Bjork, R. A., & Bjork, E. L. (1994). "Remembering can cause forgetting: retrieval dynamics in long-term memory." "Journal…

  16. The effects of intersensory redundancy on attention and memory: infants' long-term memory for orientation in audiovisual events.

    PubMed

    Flom, Ross; Bahrick, Lorraine E

    2010-03-01

    This research examined the effects of bimodal audiovisual and unimodal visual stimulation on infants' memory for the visual orientation of a moving toy hammer following a 5-min, 2-week, or 1-month retention interval. According to the intersensory redundancy hypothesis (L. E. Bahrick & R. Lickliter, 2000; L. E. Bahrick, R. Lickliter, & R. Flom, 2004) detection of and memory for nonredundantly specified properties, including the visual orientation of an event, are facilitated in unimodal stimulation and attenuated in bimodal stimulation in early development. Later in development, however, nonredundantly specified properties can be perceived and remembered in both multimodal and unimodal stimulation. The current study extended tests of these predictions to the domain of memory in infants of 3, 5, and 9 months of age. Consistent with predictions of the intersensory redundancy hypothesis, in unimodal stimulation, memory for visual orientation emerged by 5 months and remained stable across age, whereas in bimodal stimulation, memory did not emerge until 9 months of age. Memory for orientation was evident even after a 1-month delay and was expressed as a shifting preference, from novelty to null to familiarity, across increasing retention time, consistent with Bahrick and colleagues' four-phase model of attention. Together, these findings indicate that infant memory for nonredundantly specified properties of events is a consequence of selective attention to those event properties and is facilitated in unimodal stimulation. Memory for nonredundantly specified properties thus emerges in unimodal stimulation, is later extended to bimodal stimulation, and lasts across a period of at least 1 month.

  17. Dissociation of long-term verbal memory and fronto-executive impairment in first-episode psychosis

    PubMed Central

    Leeson, V. C.; Robbins, T. W.; Franklin, C.; Harrison, M.; Harrison, I.; Ron, M. A.; Barnes, T. R. E.; Joyce, E. M.

    2009-01-01

    Background Verbal memory is frequently and severely affected in schizophrenia and has been implicated as a mediator of poor clinical outcome. Whereas encoding deficits are well demonstrated, it is unclear whether retention is impaired. This distinction is important because accelerated forgetting implies impaired consolidation attributable to medial temporal lobe (MTL) dysfunction whereas impaired encoding and retrieval implicates involvement of prefrontal cortex. Method We assessed a group of healthy volunteers (n=97) and pre-morbid IQ- and sex-matched first-episode psychosis patients (n=97), the majority of whom developed schizophrenia. We compared performance of verbal learning and recall with measures of visuospatial working memory, planning and attentional set-shifting, and also current IQ. Results All measures of performance, including verbal memory retention, a memory savings score that accounted for learning impairments, were significantly impaired in the schizophrenia group. The difference between groups for delayed recall remained even after the influence of learning and recall was accounted for. Factor analyses showed that, in patients, all variables except verbal memory retention loaded on a single factor, whereas in controls verbal memory and fronto-executive measures were separable. Conclusions The results suggest that IQ, executive function and verbal learning deficits in schizophrenia may reflect a common abnormality of information processing in prefrontal cortex rather than specific impairments in different cognitive domains. Verbal memory retention impairments, however, may have a different aetiology. PMID:19419594

  18. Novel Technologies for Next Generation Memory

    DTIC Science & Technology

    2013-07-25

    charge in the capacitor) eventually fades unless the capacitor charge is refreshed , so the memory cells must be periodically refreshed (rewritten). The...reliability issues (such as poor data retention problem and refresh failure). In order to avoid those problems, a 3-dimensional channel structure...states during the refresh cycle (retention time). When the channel length is scaled down, it is difficult to guarantee sufficient retention time

  19. Measuring memory with the order of fractional derivative

    NASA Astrophysics Data System (ADS)

    Du, Maolin; Wang, Zaihua; Hu, Haiyan

    2013-12-01

    Fractional derivative has a history as long as that of classical calculus, but it is much less popular than it should be. What is the physical meaning of fractional derivative? This is still an open problem. In modeling various memory phenomena, we observe that a memory process usually consists of two stages. One is short with permanent retention, and the other is governed by a simple model of fractional derivative. With the numerical least square method, we show that the fractional model perfectly fits the test data of memory phenomena in different disciplines, not only in mechanics, but also in biology and psychology. Based on this model, we find that a physical meaning of the fractional order is an index of memory.

  20. Dynamic visual noise affects visual short-term memory for surface color, but not spatial location.

    PubMed

    Dent, Kevin

    2010-01-01

    In two experiments participants retained a single color or a set of four spatial locations in memory. During a 5 s retention interval participants viewed either flickering dynamic visual noise or a static matrix pattern. In Experiment 1 memory was assessed using a recognition procedure, in which participants indicated if a particular test stimulus matched the memorized stimulus or not. In Experiment 2 participants attempted to either reproduce the locations or they picked the color from a whole range of possibilities. Both experiments revealed effects of dynamic visual noise (DVN) on memory for colors but not for locations. The implications of the results for theories of working memory and the methodological prospects for DVN as an experimental tool are discussed.

  1. Manipulating memory efficacy affects the behavioral and neural profiles of deterministic learning and decision-making.

    PubMed

    Tremel, Joshua J; Ortiz, Daniella M; Fiez, Julie A

    2018-06-01

    When making a decision, we have to identify, collect, and evaluate relevant bits of information to ensure an optimal outcome. How we approach a given choice can be influenced by prior experience. Contextual factors and structural elements of these past decisions can cause a shift in how information is encoded and can in turn influence later decision-making. In this two-experiment study, we sought to manipulate declarative memory efficacy and decision-making in a concurrent discrimination learning task by altering the amount of information to be learned. Subjects learned correct responses to pairs of items across several repetitions of a 50- or 100-pair set and were tested for memory retention. In one experiment, this memory test interrupted learning after an initial encoding experience in order to test for early encoding differences and associate those differences with changes in decision-making. In a second experiment, we used fMRI to probe neural differences between the two list-length groups related to decision-making across learning and assessed subsequent memory retention. We found that a striatum-based system was associated with decision-making patterns when learning a longer list of items, while a medial cortical network was associated with patterns when learning a shorter list. Additionally, the hippocampus was exclusively active for the shorter list group. Altogether, these behavioral, computational, and imaging results provide evidence that multiple types of mnemonic representations contribute to experienced-based decision-making. Moreover, contextual and structural factors of the task and of prior decisions can influence what types of evidence are drawn upon during decision-making. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Significant long-term, but not short-term, hippocampal-dependent memory impairment in adult rats exposed to alcohol in early postnatal life.

    PubMed

    Goodfellow, Molly J; Lindquist, Derick H

    2014-09-01

    In rodents, ethanol exposure in early postnatal life is known to induce structural and functional impairments throughout the brain, including the hippocampus. Herein, rat pups were administered one of three ethanol doses over postnatal days (PD) 4-9, a period of brain development comparable to the third trimester of human pregnancy. As adults, control and ethanol rats were trained and tested in a variant of hippocampal-dependent one-trial context fear conditioning. In Experiment 1, subjects were placed into a novel context and presented with an immediate footshock (i.e., within ∼8 sec). When re-exposed to the same context 24 hr later low levels of conditioned freezing were observed. Context pre-exposure 24 hr prior to the immediate shock reversed the deficit in sham-intubated and unintubated control rats, enhancing freezing behavior during the context retention test. Even with context pre-exposure, however, significant dose-dependent reductions in contextual freezing were seen in ethanol rats. In Experiment 2, the interval between context pre-exposure and the immediate shock was shortened to 2 hr, in addition to the standard 24 hr. Ethanol rats trained with the 2 hr, but not 24 hr, interval displayed retention test freezing levels roughly equal to controls. Results suggest the ethanol rats can encode a short-term context memory and associate it with the aversive footshock 2 hr later. In the 24 hr ethanol rats the short-term context memory is poorly transferred or consolidated into long-term memory, we propose, impeding the memory's subsequent retrieval and association with shock. © 2014 Wiley Periodicals, Inc.

  3. Similarities and Differences Between Working Memory and Long-Term Memory: Evidence From the Levels-of-Processing Span Task

    PubMed Central

    Rose, Nathan S.; Myerson, Joel; Roediger, Henry L.; Hale, Sandra

    2010-01-01

    Two experiments compared the effects of depth of processing on working memory (WM) and long-term memory (LTM) using a levels-of-processing (LOP) span task, a newly developed WM span procedure that involves processing to-be-remembered words based on their visual, phonological, or semantic characteristics. Depth of processing had minimal effect on WM tests, yet subsequent memory for the same items on delayed tests showed the typical benefits of semantic processing. Although the difference in LOP effects demonstrates a dissociation between WM and LTM, we also found that the retrieval practice provided by recalling words on the WM task benefited long-term retention, especially for words initially recalled from supraspan lists. The latter result is consistent with the hypothesis that WM span tasks involve retrieval from secondary memory, but the LOP dissociation suggests the processes engaged by WM and LTM tests may differ. Therefore, similarities and differences between WM and LTM depend on the extent to which retrieval from secondary memory is involved and whether there is a match (or mismatch) between initial processing and subsequent retrieval, consistent with transfer-appropriate-processing theory. PMID:20192543

  4. The emotional carryover effect in memory for words.

    PubMed

    Schmidt, Stephen R; Schmidt, Constance R

    2016-08-01

    Emotional material rarely occurs in isolation; rather it is experienced in the spatial and temporal proximity of less emotional items. Some previous researchers have found that emotional stimuli impair memory for surrounding information, whereas others have reported evidence for memory facilitation. Researchers have not determined which types of emotional items or memory tests produce effects that carry over to surrounding items. Six experiments are reported that measured carryover from emotional words varying in arousal to temporally adjacent neutral words. Taboo, non-taboo emotional, and neutral words were compared using different stimulus onset asynchronies (SOAs), recognition and recall tests, and intentional and incidental memory instructions. Strong emotional memory effects were obtained in all six experiments. However, emotional items influenced memory for temporally adjacent words under limited conditions. Words following taboo words were more poorly remembered than words following neutral words when relatively short SOAs were employed. Words preceding taboo words were affected only when recall tests and relatively short retention intervals were used. These results suggest that increased attention to the emotional items sometimes produces emotional carryover effects; however, retrieval processes also contribute to retrograde amnesia and may extend the conditions under which anterograde amnesia is observed.

  5. The role of pregnenolone sulphate in spatial orientation-acquisition and retention: an interplay between cognitive potentiation and mood regulation.

    PubMed

    Plescia, Fulvio; Marino, Rosa A M; Cannizzaro, Emanuele; Brancato, Anna; Cannizzaro, Carla

    2013-10-01

    Neurosteroids can alter neuronal excitability interacting with specific neurotransmitter receptors, thus affecting several functions such as cognition and emotionality. In this study, we investigated, in adult male rats, the effects of the acute administration of pregnenolone-sulfate (PREGS) (10 mg/Kg, s.c.) on cognitive processes using the Can test, a non aversive spatial/visual task which allows the assessment of spatial information-acquisition during the baseline training, and of memory retention in the longitudinal study. Furthermore, on the basis of PREGS pharmacological profile, the modulation of depressive-like behaviour was also evaluated in the forced swim test (FST). Our results indicate that acute PREGS induces: an improvement in spatial orientation-acquisition and in reference memory, during the baseline training; a strengthening effect on reference and working memory during the longitudinal study. A decrease in immobility time in the FST has also been recorded. In conclusion, PREGS exerts enhancing properties on acquisition, consolidation and retrieval of spatial information, probably due of improved hippocampal-dependent memory processes. The additional antidepressant effect observed in the FST can provide further evidence in support of the potential of PREGS as a therapeutic tool for the treatment of cognitive deficits associated with mood disorders. This article is part of a Special Issue entitled: insert SI title. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Repetition and lag effects in movement recognition.

    PubMed

    Hall, C R; Buckolz, E

    1982-03-01

    Whether repetition and lag improve the recognition of movement patterns was investigated. Recognition memory was tested for one repetition, two-repetitions massed, and two-repetitions distributed with movement patterns at lags of 3, 5, 7, and 13. Recognition performance was examined both immediately afterwards and following a 48 hour delay. Both repetition and lag effects failed to be demonstrated, providing some support for the claim that memory is unaffected by repetition at a constant level of processing (Craik & Lockhart, 1972). There was, as expected, a significant decrease in recognition memory following the retention interval, but this appeared unrelated to repetition or lag.

  7. Associative Learning during Early Adulthood Enhances Later Memory Retention in Honeybees

    PubMed Central

    Arenas, Andrés; Fernández, Vanesa M.; Farina, Walter M.

    2009-01-01

    Background Cognitive experiences during the early stages of life play an important role in shaping the future behavior in mammals but also in insects, in which precocious learning can directly modify behaviors later in life depending on both the timing and the rearing environment. However, whether olfactory associative learning acquired early in the adult stage of insects affect memorizing of new learning events has not been studied yet. Methodology Groups of adult honeybee workers that experienced an odor paired with a sucrose solution 5 to 8 days or 9 to 12 days after emergence were previously exposed to (i) a rewarded experience through the offering of scented food, or (ii) a non-rewarded experience with a pure volatile compound in the rearing environment. Principal Findings Early rewarded experiences (either at 1–4 or 5–8 days of adult age) enhanced retention performance in 9–12-day-conditioned bees when they were tested at 17 days of age. The highest retention levels at this age, which could not be improved with prior rewarded experiences, were found for memories established at 5–8 days of adult age. Associative memories acquired at 9–12 days of age showed a weak effect on retention for some pure pre-exposed volatile compounds; whereas the sole exposure of an odor at any younger age did not promote long-term effects on learning performance. Conclusions The associative learning events that occurred a few days after adult emergence improved memorizing in middle-aged bees. In addition, both the timing and the nature of early sensory inputs interact to enhance retention of new learning events acquired later in life, an important matter in the social life of honeybees. PMID:19956575

  8. Paradoxical effects of testing: retrieval enhances both accurate recall and suggestibility in eyewitnesses.

    PubMed

    Chan, Jason C K; Langley, Moses M

    2011-01-01

    Although retrieval practice typically enhances memory retention, it can also impair subsequent eyewitness memory accuracy (Chan, Thomas, & Bulevich, 2009). Specifically, participants who had taken an initial test about a witnessed event were more likely than nontested participants to recall subsequently encountered misinformation—an effect we called retrieval-enhanced suggestibility (RES). Here, we sought to test the generality of RES and to further elucidate its underlying mechanisms. To that end, we tested a dual mechanism account, which suggests that RES occurs because initial testing (a) enhances learning of the later misinformation by reducing proactive interference and (b) causes the reactivated memory trace to be more susceptible to later interference (i.e., a reconsolidation account). Three major findings emerged. First, RES was found after a 1-week delay, where a robust testing benefit occurred for event details that were not contradicted by later misinformation. Second, blockage of reconsolidation was unnecessary for RES to occur. Third, initial testing enhanced learning of the misinformation even when proactive interference played a minimal role.

  9. The influence of music-elicited emotions and relative pitch on absolute pitch memory for familiar melodies.

    PubMed

    Jakubowski, Kelly; Müllensiefen, Daniel

    2013-01-01

    Levitin's findings that nonmusicians could produce from memory the absolute pitches of self-selected pop songs have been widely cited in the music psychology literature. These findings suggest that latent absolute pitch (AP) memory may be a more widespread trait within the population than traditional AP labelling ability. However, it has been left unclear what factors may facilitate absolute pitch retention for familiar pieces of music. The aim of the present paper was to investigate factors that may contribute to latent AP memory using Levitin's sung production paradigm for AP memory and comparing results to the outcomes of a pitch labelling task, a relative pitch memory test, measures of music-induced emotions, and various measures of participants' musical backgrounds. Our results suggest that relative pitch memory and the quality and degree of music-elicited emotions impact on latent AP memory.

  10. Evaluating spatial memory function in mice: a within-subjects comparison between the water maze test and its adaptation to dry land.

    PubMed

    Llano Lopez, L; Hauser, J; Feldon, J; Gargiulo, P A; Yee, B K

    2010-05-01

    The Morris water maze (WM) is a common spatial memory test in rats. It has been adapted for evaluating genetic manipulations in mice. One major acknowledged problem of this cross-species translation is floating. We investigated here in mice the feasibility and practicality of an alternative paradigm-the cheeseboard (CB), which is a dry version of the WM, in a within-subject design allowing direct comparison with the conventional WM. Under identical task demands (reference or working memory), mice learned in the CB as efficiently as in the WM. Furthermore, individual differences in learning rate correlated between the two reference memory tests conducted separately in the two mazes. However, no such correlation was found with respect to reference memory retention or working memory performance. This study demonstrated that the CB is an effective alternative to the WM as spatial cognition test. Additional tests in the CB confirmed that the mice relied on extra maze cues in their spatial search. We would recommend the CB as a valuable addition to, rather than a replacement of the WM in phenotyping transgenic mice, because the two apparatus might diverge in the ability to detect individual differences in various domains of mnemonic functions.

  11. The Effect of Teaching Memory Strategies on Iranian EFL Learner's Vocabulary Retention in Terms of Learners' Multiple Intelligences

    ERIC Educational Resources Information Center

    Abbassi, Adele; Hassaskhah, Jaleh; Tahriri, Abdorreza

    2018-01-01

    This study targeted to explore the effect of memory strategy on EFL learners' vocabulary retention with a consideration of learners' multiple intelligences. In this study, the memory strategy consisted of three parts of grouping, acronym and images. The participants of this study were 80 male and female EFL learners of intermediate level who…

  12. mTORC1 controls long-term memory retrieval.

    PubMed

    Pereyra, Magdalena; Katche, Cynthia; de Landeta, Ana Belén; Medina, Jorge H

    2018-06-08

    Understanding how stored information emerges is a main question in the neurobiology of memory that is now increasingly gaining attention. However, molecular events underlying this memory stage, including involvement of protein synthesis, are not well defined. Mammalian target of rapamycin complex 1 (mTORC1), a central regulator of protein synthesis, has been implicated in synaptic plasticity and is required for memory formation. Using inhibitory avoidance (IA), we evaluated the role of mTORC1 in memory retrieval. Infusion of a selective mTORC1 inhibitor, rapamycin, into the dorsal hippocampus 15 or 40 min but not 3 h before testing at 24 h reversibly disrupted memory expression even in animals that had already expressed IA memory. Emetine, a general protein synthesis inhibitor, provoked a similar impairment. mTORC1 inhibition did not interfere with short-term memory retrieval. When infused before test at 7 or 14 but not at 28 days after training, rapamycin impaired memory expression. mTORC1 blockade in retrosplenial cortex, another structure required for IA memory, also impaired memory retention. In addition, pretest intrahippocampal rapamycin infusion impaired object location memory retrieval. Our results support the idea that ongoing protein synthesis mediated by activation of mTORC1 pathway is necessary for long but not for short term memory.

  13. Flashbulb Memories

    PubMed Central

    Hirst, William; Phelps, Elizabeth A.

    2015-01-01

    We review and analyze the key theories, debates, findings, and omissions of the existing literature on flashbulb memories (FBMs), including what factors affect their formation, retention, and degree of confidence. We argue that FBMs do not require special memory mechanisms and are best characterized as involving both forgetting and mnemonic distortions, despite a high level of confidence. Factual memories for FBM-inducing events generally follow a similar pattern. Although no necessary and sufficient factors straightforwardly account for FBM retention, media attention particularly shapes memory for the events themselves. FBMs are best characterized in term of repetitions, even of mnemonic distortions, whereas event memories evidence corrections. The bearing of this literature on social identity and traumatic memories is also discussed. PMID:26997762

  14. Memory Functioning in Children and Adolescents With Autism

    PubMed Central

    Southwick, Jason S.; Bigler, Erin D.; Froehlich, Alyson; DuBray, Molly B.; Alexander, Andrew L.; Lange, Nicholas; Lainhart, Janet E.

    2012-01-01

    Objective Memory functioning in children and adolescents ages 5–19 with autism (n = 50) and typically developing controls (n = 36) was assessed using a clinical assessment battery, the Test of Memory and Learning (TOMAL). Method Participant groups were statistically comparable in age, nonverbal IQ, handedness, and head circumference, and were administered the TOMAL. Results Test performance on the TOMAL demonstrated broad differences in memory functioning in the autism group, across multiple task formats, including verbal and nonverbal, immediate and delayed, attention and concentration, sequential recall, free recall, associative recall, and multiple-trial learning memory. All index and nearly all subtest differences remained significant even after comparing a subset of the autism group (n = 36) and controls that were matched for verbal IQ ( p >.05). However, retention of previously remembered information after a delay was similar in autism and controls. Conclusions These findings indicate that performance on measures of episodic memory is broadly reduced in autism, and support the conclusion that information encoding and organization, possibly due to inefficient cognitive processing strategies, rather than storage and retrieval, are the primary factors that limit memory performance in autism. PMID:21843004

  15. Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation

    PubMed Central

    Lambon Ralph, Matthew A.; Kempkes, Marleen; Cousins, James N.; Lewis, Penelope A.

    2016-01-01

    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation. PMID:27030764

  16. Effect of a synesthete's photisms on name recall.

    PubMed

    Mills, Carol Bergfeld; Innis, Joanne; Westendorf, Taryn; Owsianiecki, Lauren; McDonald, Angela

    2006-02-01

    A multilingual, colored-letter synesthete professor (MLS), 9 nonsynesthete multilingual professors and 4 nonsynesthete art professors learned 30 names of individuals (first and last name pairs) in three trials. They recalled the names after each trial and six months later, as well as performed cued recall trials initially and after six months. As hypothesized, MLS recalled significantly more names than control groups on all free recall tests (except after the first trial) and on cued recall tests. In addition, MLS gave qualitatively different reasons for remembering names than any individual control participant. MLS gave mostly color reasons for remembering the names, whereas nonsynesthetes gave reasons based on familiarity or language or art knowledge. Results on standardized memory tests showed that MLS had average performance on non-language visual memory tests (the Benton Visual Retention Test-Revised--BURT-R, and the Rey-Osterrieth Complex Figure Test--CFT), but had superior memory performance on a verbal test consisting of lists of nouns (Rey Auditory-Verbal Learning Test--RAVLT). MLS's synesthesia seems to aid memory for visually or auditorily presented language stimuli (names and nouns), but not for non-language visual stimuli (simple and complex figures).

  17. Differential Effects of Paced and Unpaced Responding on delayed Serial Order Recall in Schizophrenia

    PubMed Central

    Hill, S. Kristian; Griffin, Ginny B.; Houk, James C.; Sweeney, John A.

    2011-01-01

    Working memory for temporal order is a component of working memory that is especially dependent on striatal systems, but has not been extensively studied in schizophrenia. This study was designed to characterize serial order reproduction by adapting a spatial serial order task developed for nonhuman primate studies, while controlling for working memory load and whether responses were initiated freely (unpaced) or in an externally paced format. Clinically stable schizophrenia patients (n=27) and psychiatrically healthy individuals (n=25) were comparable on demographic variables and performance on standardized tests of immediate serial order recall (Digit Span, Spatial Span). No group differences were observed for serial order recall when read sequence reproduction was unpaced. However, schizophrenia patients exhibited significant impairments when responding was paced, regardless of sequence length or retention delay. Intact performance by schizophrenia patients during the unpaced condition indicates that prefrontal storage and striatal output systems are sufficiently intact to learn novel response sequences and hold them in working memory to perform serial order tasks. However, retention for newly learned response sequences was disrupted in schizophrenia patients by paced responding, when read-out of each element in the response sequence was externally controlled. The disruption of memory for serial order in paced read-out condition indicates a deficit in frontostriatal interaction characterized by an inability to update working memory stores and deconstruct ‘chunked’ information. PMID:21705197

  18. Departing from PowerPoint default mode: Applying Mayer's multimedia principles for enhanced learning of parasitology.

    PubMed

    Nagmoti, Jyoti Mahantesh

    2017-01-01

    PowerPoint (PPT™) presentation has become an integral part of day-to-day teaching in medicine. Most often, PPT™ is used in its default mode which in fact, is known to cause boredom and ineffective learning. Research has shown improved short-term memory by applying multimedia principles for designing and delivering lectures. However, such evidence in medical education is scarce. Therefore, we attempted to evaluate the effect of multimedia principles on enhanced learning of parasitology. Second-year medical students received a series of lectures, half of the lectures used traditionally designed PPT™ and the rest used slides designed by Mayer's multimedia principles. Students answered pre and post-tests at the end of each lecture (test-I) and an essay test after six months (test-II) which assessed their short and long term knowledge retention respectively. Students' feedback on quality and content of lectures were collected. Statistically significant difference was found between post test scores of traditional and modified lectures (P = 0.019) indicating, improved short-term memory after modified lectures. Similarly, students scored better in test II on the contents learnt through modified lectures indicating, enhanced comprehension and improved long-term memory (P < 0.001). Many students appreciated learning through multimedia designed PPT™ and suggested for their continued use. It is time to depart from default PPT™ and adopt multimedia principles to enhance comprehension and improve short and long term knowledge retention. Further, medical educators may be trained and encouraged to apply multimedia principles for designing and delivering effective lectures.

  19. Testing the item-order account of design effects using the production effect.

    PubMed

    Jonker, Tanya R; Levene, Merrick; Macleod, Colin M

    2014-03-01

    A number of memory phenomena evident in recall in within-subject, mixed-lists designs are reduced or eliminated in between-subject, pure-list designs. The item-order account (McDaniel & Bugg, 2008) proposes that differential retention of order information might underlie this pattern. According to this account, order information may be encoded when a common form of processing is used alone in a list (e.g., reading), but not when an unusual form of processing is used (e.g., generation) or when a common form and an unusual form are mixed within a list. The production effect--better memory for words said aloud than for words read silently--shows this same design-contingent pattern. In 2 experiments, we investigated whether differential order retention might underlie the production effect. Consistent with the item-order account, we found that retention of order information was better in pure silent lists than in either pure aloud lists or mixed lists, as measured using an order reconstruction test. Moreover, in Experiment 2, order was better preserved in free recall of pure silent lists than of either pure aloud or mixed lists. Thus, production joins the set of tasks identified by McDaniel and Bugg (2008), and our findings suggest a role for order processing in explaining the production effect.

  20. Relaxing music counters heightened consolidation of emotional memory.

    PubMed

    Rickard, Nikki S; Wong, Wendy Wing; Velik, Lauren

    2012-02-01

    Emotional events tend to be retained more strongly than other everyday occurrences, a phenomenon partially regulated by the neuromodulatory effects of arousal. Two experiments demonstrated the use of relaxing music as a means of reducing arousal levels, thereby challenging heightened long-term recall of an emotional story. In Experiment 1, participants (N=84) viewed a slideshow, during which they listened to either an emotional or neutral narration, and were exposed to relaxing or no music. Retention was tested 1 week later via a forced choice recognition test. Retention for both the emotional content (Phase 2 of the story) and material presented immediately after the emotional content (Phase 3) was enhanced, when compared with retention for the neutral story. Relaxing music prevented the enhancement for material presented after the emotional content (Phase 3). Experiment 2 (N=159) provided further support to the neuromodulatory effect of music by post-event presentation of both relaxing music and non-relaxing auditory stimuli (arousing music/background sound). Free recall of the story was assessed immediately afterwards and 1 week later. Relaxing music significantly reduced recall of the emotional story (Phase 2). The findings provide further insight into the capacity of relaxing music to attenuate the strength of emotional memory, offering support for the therapeutic use of music for such purposes. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Radiation exposure prior to traumatic brain injury induces responses that differ as a function of animal age

    PubMed Central

    2014-01-01

    Purpose: Uncontrolled radiation exposure due to radiological terrorism, industrial accidents or military circumstances is a continuing threat for the civilian population. Age plays a major role in the susceptibility to radiation; younger children are at higher risk of developing cognitive deterioration when compared to adults. Our objective was to determine if an exposure to radiation affected the vulnerability of the juvenile hippocampus to a subsequent moderate traumatic injury. Materials and methods: Three-week-old (juvenile) and eight-week-old young adult C57BL/J6 male mice received whole body cesium-137 (137Cs) irradiation with 4 gray (Gy). One month later, unilateral traumatic brain injury was induced using a controlled cortical impact system. Two months post-irradiation, animals were tested for hippocampus-dependent cognitive performance in the Morris water-maze. After cognitive testing, animals were euthanized and their brains frozen for immunohistochemical assessment of activated microglia and neurogenesis in the hippocampal dentate gyrus. Results: All animals were able to learn the water maze task; however, treatment effects were seen when spatial memory retention was assessed. Animals that received irradiation as juveniles followed by a moderate traumatic brain injury one month later did not show spatial memory retention, i.e., were cognitively impaired. In contrast, all groups of animals that were treated as adults showed spatial memory retention in the probe trials. Conclusion: Although the mechanisms involved are not clear, our results suggest that irradiation enhanced a young animal's vulnerability to develop cognitive injury following a subsequent traumatic injury. PMID:24164494

  2. Long-term memory-based control of attention in multi-step tasks requires working memory: evidence from domain-specific interference

    PubMed Central

    Foerster, Rebecca M.; Carbone, Elena; Schneider, Werner X.

    2014-01-01

    Evidence for long-term memory (LTM)-based control of attention has been found during the execution of highly practiced multi-step tasks. However, does LTM directly control for attention or are working memory (WM) processes involved? In the present study, this question was investigated with a dual-task paradigm. Participants executed either a highly practiced visuospatial sensorimotor task (speed stacking) or a verbal task (high-speed poem reciting), while maintaining visuospatial or verbal information in WM. Results revealed unidirectional and domain-specific interference. Neither speed stacking nor high-speed poem reciting was influenced by WM retention. Stacking disrupted the retention of visuospatial locations, but did not modify memory performance of verbal material (letters). Reciting reduced the retention of verbal material substantially whereas it affected the memory performance of visuospatial locations to a smaller degree. We suggest that the selection of task-relevant information from LTM for the execution of overlearned multi-step tasks recruits domain-specific WM. PMID:24847304

  3. Attention during memory retrieval enhances future remembering.

    PubMed

    Dudukovic, Nicole M; Dubrow, Sarah; Wagner, Anthony D

    2009-10-01

    Memory retrieval is a powerful learning event that influences whether an experience will be remembered in the future. Although retrieval can succeed in the presence of distraction, dividing attention during retrieval may reduce the power of remembering as an encoding event. In the present experiments, participants studied pictures of objects under full attention and then engaged in item recognition and source memory retrieval under full or divided attention. Two days later, a second recognition and source recollection test assessed the impact of attention during initial retrieval on long-term retention. On this latter test, performance was superior for items that had been tested initially under full versus divided attention. More importantly, even when items were correctly recognized on the first test, divided attention reduced the likelihood of subsequent recognition on the second test. The same held true for source recollection. Additionally, foils presented during the first test were also less likely to be later recognized if they had been encountered initially under divided attention. These findings demonstrate that attentive retrieval is critical for learning through remembering.

  4. Selective verbal recognition memory impairments are associated with atrophy of the language network in non-semantic variants of primary progressive aphasia.

    PubMed

    Nilakantan, Aneesha S; Voss, Joel L; Weintraub, Sandra; Mesulam, M-Marsel; Rogalski, Emily J

    2017-06-01

    Primary progressive aphasia (PPA) is clinically defined by an initial loss of language function and preservation of other cognitive abilities, including episodic memory. While PPA primarily affects the left-lateralized perisylvian language network, some clinical neuropsychological tests suggest concurrent initial memory loss. The goal of this study was to test recognition memory of objects and words in the visual and auditory modality to separate language-processing impairments from retentive memory in PPA. Individuals with non-semantic PPA had longer reaction times and higher false alarms for auditory word stimuli compared to visual object stimuli. Moreover, false alarms for auditory word recognition memory were related to cortical thickness within the left inferior frontal gyrus and left temporal pole, while false alarms for visual object recognition memory was related to cortical thickness within the right-temporal pole. This pattern of results suggests that specific vulnerability in processing verbal stimuli can hinder episodic memory in PPA, and provides evidence for differential contributions of the left and right temporal poles in word and object recognition memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. The Vasopressin 1b Receptor Antagonist A-988315 Blocks Stress Effects on the Retrieval of Object-Recognition Memory

    PubMed Central

    Barsegyan, Areg; Atsak, Piray; Hornberger, Wilfried B; Jacobson, Peer B; van Gaalen, Marcel M; Roozendaal, Benno

    2015-01-01

    Stress-induced activation of the hypothalamo–pituitary–adrenocortical (HPA) axis and high circulating glucocorticoid levels are well known to impair the retrieval of memory. Vasopressin can activate the HPA axis by stimulating vasopressin 1b (V1b) receptors located on the pituitary. In the present study, we investigated the effect of A-988315, a selective and highly potent non-peptidergic V1b-receptor antagonist with good pharmacokinetic properties, in blocking stress effects on HPA-axis activity and memory retrieval. To study cognitive performance, male Sprague-Dawley rats were trained on an object-discrimination task during which they could freely explore two identical objects. Memory for the objects and their location was tested 24 h later. A-988315 (20 or 60 mg/kg) or water was administered orally 90 min before retention testing, followed 60 min later by stress of footshock exposure. A-988315 dose-dependently dampened stress-induced increases in corticosterone plasma levels, but did not significantly alter HPA-axis activity of non-stressed control rats. Most importantly, A-988315 administration prevented stress-induced impairment of memory retrieval on both the object-recognition and the object-location tasks. A-988315 did not alter the retention of non-stressed rats and did not influence the total time spent exploring the objects or experimental context in either stressed or non-stressed rats. Thus, these findings indicate that direct antagonism of V1b receptors is an effective treatment to block stress-induced activation of the HPA axis and the consequent impairment of retrieval of different aspects of recognition memory. PMID:25669604

  6. Memory for relations in the short term and the long term after medial temporal lobe damage.

    PubMed

    Squire, Larry R

    2017-05-01

    A central idea about the organization of declarative memory and the function of the hippocampus is that the hippocampus provides for the coding of relationships between items. A question arises whether this idea refers to the process of forming long-term memory or whether, as some studies have suggested, memory for relations might depend on the hippocampus even at short retention intervals and even when the task falls within the province of short-term (working) memory. The latter formulation appears to place the operation of relational memory into conflict with the idea that working memory is independent of medial temporal lobe (MTL) structures. In this report, the concepts of relational memory and working memory are discussed in the light of a simple demonstration experiment. Patients with MTL lesions successfully learned and recalled two word pairs when tested directly after learning but failed altogether when tested after a delay. The results do not contradict the idea that the hippocampus has a fundamental role in relational memory. However, there is a need for further elaboration and specification of the idea in order to explain why patients with MTL lesions can establish relational memory in the short term but not in long-term memory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Gastrodia elata Bl. Attenuated learning deficits induced by forced-swimming stress in the inhibitory avoidance task and Morris water maze.

    PubMed

    Chen, Pei-Ju; Liang, Keng-Chen; Lin, Hui-Chen; Hsieh, Ching-Liang; Su, Kuan-Pin; Hung, Mei-Chu; Sheen, Lee-Yan

    2011-06-01

    This study adopted the forced-swimming paradigm to induce depressive symptoms in rats and evaluated the effects on learning and memory processing. Furthermore, the effects of the water extract of Gastrodia elata Bl., a well-known Chinese traditional medicine, on amnesia in rats subjected to the forced-swimming procedure were studied. Rats were subjected to the forced-swimming procedure, and the inhibitory avoidance task and Morris water maze were used to assess learning and memory performance. The acquisition of the two tasks was mostly impaired after the 15-minute forced-swimming procedure. Administration of the water extract of G. elata Bl. for 21 consecutive days at a dosage of 0.5 or 1.0 g/kg of body weight significantly improved retention in the inhibitory avoidance test, and the lower dose showed a better effect than the higher one and the antidepressant fluoxetine (18 mg/kg of body weight). In the Morris water maze, the lower dose of the water extract of G. elata Bl. significantly improved retention by shortening escape latency in the first test session and increasing the time in searching the target zone during the probe test. These findings suggest that water extracts of G. elata Bl. ameliorate the learning and memory deficits induced by forced swimming.

  8. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study

    PubMed Central

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed. PMID:26136720

  9. Examination of mechanisms underlying enhanced memory performance in action video game players: a pilot study.

    PubMed

    Li, Xianchun; Cheng, Xiaojun; Li, Jiaying; Pan, Yafeng; Hu, Yi; Ku, Yixuan

    2015-01-01

    Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1) or test array (Task 2), during the retention interval in a change detection task. In Task 1, action video game players demonstrated steady performance while non-action video game players showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the test array, but to the interactions between the two processes of protection from decay and resistance from interference, or from alternative hypotheses. Implications for future studies were discussed.

  10. Retro-cue benefits in working memory without sustained focal attention.

    PubMed

    Rerko, Laura; Souza, Alessandra S; Oberauer, Klaus

    2014-07-01

    In working memory (WM) tasks, performance can be boosted by directing attention to one memory object: When a retro-cue in the retention interval indicates which object will be tested, responding is faster and more accurate (the retro-cue benefit). We tested whether the retro-cue benefit in WM depends on sustained attention to the cued object by inserting an attention-demanding interruption task between the retro-cue and the memory test. In the first experiment, the interruption task required participants to shift their visual attention away from the cued representation and to a visual classification task on colors. In the second and third experiments, the interruption task required participants to shift their focal attention within WM: Attention was directed away from the cued representation by probing another representation from the memory array prior to probing the cued object. The retro-cue benefit was not attenuated by shifts of perceptual attention or by shifts of attention within WM. We concluded that sustained attention is not needed to maintain the cued representation in a state of heightened accessibility.

  11. Development of Next Generation Memory Test Experiment for Deployment on a Small Satellite

    NASA Technical Reports Server (NTRS)

    MacLeod, Todd; Ho, Fat D.

    2012-01-01

    The original Memory Test Experiment successfully flew on the FASTSAT satellite launched in November 2010. It contained a single Ramtron 512K ferroelectric memory. The memory device went through many thousands of read/write cycles and recorded any errors that were encountered. The original mission length was schedule to last 6 months but was extended to 18 months. New opportunities exist to launch a similar satellite and considerations for a new memory test experiment should be examined. The original experiment had to be designed and integrated in less than two months, so the experiment was a simple design using readily available parts. The follow-on experiment needs to be more sophisticated and encompass more technologies. This paper lays out the considerations for the design and development of this follow-on flight memory experiment. It also details the results from the original Memory Test Experiment that flew on board FASTSAT. Some of the design considerations for the new experiment include the number and type of memory devices to be used, the kinds of tests that will be performed, other data needed to analyze the results, and best use of limited resources on a small satellite. The memory technologies that are considered are FRAM, FLASH, SONOS, Resistive Memory, Phase Change Memory, Nano-wire Memory, Magneto-resistive Memory, Standard DRAM, and Standard SRAM. The kinds of tests that could be performed are read/write operations, non-volatile memory retention, write cycle endurance, power measurements, and testing Error Detection and Correction schemes. Other data that may help analyze the results are GPS location of recorded errors, time stamp of all data recorded, radiation measurements, temperature, and other activities being perform by the satellite. The resources of power, volume, mass, temperature, processing power, and telemetry bandwidth are extremely limited on a small satellite. Design considerations must be made to allow the experiment to not interfere with the satellite s primary mission.

  12. Artistic drawing as a mnemonic device

    NASA Astrophysics Data System (ADS)

    Baker Christensen, Leslie

    Despite art-based learning being widely used, existing data are primarily qualitative, and most research has not isolated particular variables such as memory for empirical study. The few experiments that have been conducted demonstrated that drawing improves free recall of unpaired words, and retention improves after lessons integrated with drawing, drama, and narrative exercises. To help fill the gap in the current literature, the present study compared the effectiveness of encoding and the rate of memory decay between a drawing mnemonic and note taking on a paired associates task. Using a within-subjects experimental design, participants were presented with word pairs and asked to complete either a drawing mnemonic (DM) or note taking (NT) to assist memorization. Participants were tested immediately after the word pair presentation and after a 20-minute delay. Results supported the hypothesis that the DM condition would produce superior encoding, as evidenced by greater retention on the immediate test. However, no memory decay was observed in the experiment, and therefore results on the delayed test were inconclusive. In fact, scores for the NT condition improved over time whereas the scores for the DM condition did not, which might imply that note taking results in a different consolidation process than drawing. Findings from this study suggested that arts integration can be an effective method to support memory for learned information. Future studies that examine the effect of rehearsal and the long-term effectiveness of a drawing mnemonic are warranted. This dissertation is available in open access at AURA, http://aura.antioch.edu/ and Ohio Link ETD Center, https://etd.ohiolink.edu/etd.

  13. Post-Learning Sleep Transiently Boosts Context Specific Operant Extinction Memory.

    PubMed

    Borquez, Margarita; Contreras, María P; Vivaldi, Ennio; Born, Jan; Inostroza, Marion

    2017-01-01

    Operant extinction is learning to supress a previously rewarded behavior. It is known to be strongly associated with the specific context in which it was acquired, which limits the therapeutic use of operant extinction in behavioral treatments, e.g., of addiction. We examined whether sleep influences contextual memory of operant extinction over time, using two different recall tests (Recent and Remote). Rats were trained in an operant conditioning task (lever press) in context A, then underwent extinction training in context B, followed by a 3-h retention period that contained either spontaneous morning sleep, morning sleep deprivation, or spontaneous evening wakefulness. A recall test was performed either immediately after the 3-h experimental retention period (Recent recall) or after 48 h (Remote), in the extinction context B and in a novel context C. The two main findings were: (i) at the Recent recall test, sleep in comparison with sleep deprivation and spontaneous wakefulness enhanced extinction memory but, only in the extinction context B; (ii) at the Remote recall, extinction performance after sleep was enhanced in both contexts B and C to an extent comparable to levels at Recent recall in context B. Interestingly, extinction performance at Remote recall was also improved in the sleep deprivation groups in both contexts, with no difference to performance in the sleep group. Our results suggest that 3 h of post-learning sleep transiently facilitate the context specificity of operant extinction at a Recent recall. However, the improvement and contextual generalization of operant extinction memory observed in the long-term, i.e., after 48 h, does not require immediate post-learning sleep.

  14. Fast but fleeting: adaptive motor learning processes associated with aging and cognitive decline.

    PubMed

    Trewartha, Kevin M; Garcia, Angeles; Wolpert, Daniel M; Flanagan, J Randall

    2014-10-01

    Motor learning has been shown to depend on multiple interacting learning processes. For example, learning to adapt when moving grasped objects with novel dynamics involves a fast process that adapts and decays quickly-and that has been linked to explicit memory-and a slower process that adapts and decays more gradually. Each process is characterized by a learning rate that controls how strongly motor memory is updated based on experienced errors and a retention factor determining the movement-to-movement decay in motor memory. Here we examined whether fast and slow motor learning processes involved in learning novel dynamics differ between younger and older adults. In addition, we investigated how age-related decline in explicit memory performance influences learning and retention parameters. Although the groups adapted equally well, they did so with markedly different underlying processes. Whereas the groups had similar fast processes, they had different slow processes. Specifically, the older adults exhibited decreased retention in their slow process compared with younger adults. Within the older group, who exhibited considerable variation in explicit memory performance, we found that poor explicit memory was associated with reduced retention in the fast process, as well as the slow process. These findings suggest that explicit memory resources are a determining factor in impairments in the both the fast and slow processes for motor learning but that aging effects on the slow process are independent of explicit memory declines. Copyright © 2014 the authors 0270-6474/14/3413411-11$15.00/0.

  15. Visual Working Memory Load-Related Changes in Neural Activity and Functional Connectivity

    PubMed Central

    Li, Ling; Zhang, Jin-Xiang; Jiang, Tao

    2011-01-01

    Background Visual working memory (VWM) helps us store visual information to prepare for subsequent behavior. The neuronal mechanisms for sustaining coherent visual information and the mechanisms for limited VWM capacity have remained uncharacterized. Although numerous studies have utilized behavioral accuracy, neural activity, and connectivity to explore the mechanism of VWM retention, little is known about the load-related changes in functional connectivity for hemi-field VWM retention. Methodology/Principal Findings In this study, we recorded electroencephalography (EEG) from 14 normal young adults while they performed a bilateral visual field memory task. Subjects had more rapid and accurate responses to the left visual field (LVF) memory condition. The difference in mean amplitude between the ipsilateral and contralateral event-related potential (ERP) at parietal-occipital electrodes in retention interval period was obtained with six different memory loads. Functional connectivity between 128 scalp regions was measured by EEG phase synchronization in the theta- (4–8 Hz), alpha- (8–12 Hz), beta- (12–32 Hz), and gamma- (32–40 Hz) frequency bands. The resulting matrices were converted to graphs, and mean degree, clustering coefficient and shortest path length was computed as a function of memory load. The results showed that brain networks of theta-, alpha-, beta-, and gamma- frequency bands were load-dependent and visual-field dependent. The networks of theta- and alpha- bands phase synchrony were most predominant in retention period for right visual field (RVF) WM than for LVF WM. Furthermore, only for RVF memory condition, brain network density of theta-band during the retention interval were linked to the delay of behavior reaction time, and the topological property of alpha-band network was negative correlation with behavior accuracy. Conclusions/Significance We suggest that the differences in theta- and alpha- bands between LVF and RVF conditions in functional connectivity and topological properties during retention period may result in the decline of behavioral performance in RVF task. PMID:21789253

  16. Acute Exercise and Motor Memory Consolidation: The Role of Exercise Timing

    PubMed Central

    Christiansen, Lasse; Roig, Marc

    2016-01-01

    High intensity aerobic exercise amplifies offline gains in procedural memory acquired during motor practice. This effect seems to be evident when exercise is placed immediately after acquisition, during the first stages of memory consolidation, but the importance of temporal proximity of the exercise bout used to stimulate improvements in procedural memory is unknown. The effects of three different temporal placements of high intensity exercise were investigated following visuomotor skill acquisition on the retention of motor memory in 48 young (24.0 ± 2.5 yrs), healthy male subjects randomly assigned to one of four groups either performing a high intensity (90% Maximal Power Output) exercise bout at 20 min (EX90), 1 h (EX90+1), 2 h (EX90+2) after acquisition or rested (CON). Retention tests were performed at 1 d (R1) and 7 d (R7). At R1 changes in performance scores after acquisition were greater for EX90 than CON (p < 0.001) and EX90+2 (p = 0.001). At R7 changes in performance scores for EX90, EX90+1, and EX90+2 were higher than CON (p < 0.001, p = 0.008, and p = 0.008, resp.). Changes for EX90 at R7 were greater than EX90+2 (p = 0.049). Exercise-induced improvements in procedural memory diminish as the temporal proximity of exercise from acquisition is increased. Timing of exercise following motor practice is important for motor memory consolidation. PMID:27446616

  17. Changes in corticospinal excitability during consolidation predict acute exercise-induced off-line gains in procedural memory.

    PubMed

    Ostadan, Fatemeh; Centeno, Carla; Daloze, Jean-Felix; Frenn, Mira; Lundbye-Jensen, Jesper; Roig, Marc

    2016-12-01

    A single bout of cardiovascular exercise performed immediately after practicing a motor task improves the long-term retention of the skill through an optimization of memory consolidation. However, the specific brain mechanisms underlying the effects of acute cardiovascular exercise on procedural memory are poorly understood. We sought to determine if a single bout of exercise modifies corticospinal excitability (CSE) during the early stages of memory consolidation. In addition, we investigated if changes in CSE are associated with exercise-induced off-line gains in procedural memory. Participants practiced a serial reaction time task followed by either a short bout of acute exercise or a similar rest period. To monitor changes in CSE we used transcranial magnetic stimulation applied to the primary motor cortex (M1) at baseline, 15, 35, 65 and 125min after exercise or rest. Participants in the exercise condition showed larger (∼24%) improvements in procedural memory through consolidation although differences between groups did not reach statistical significance. Exercise promoted an increase in CSE, which remained elevated 2h after exercise. More importantly, global increases in CSE following exercise correlated with the magnitude of off-line gains in skill level assessed in a retention test performed 8h after motor practice. A single bout of exercise modulates short-term neuroplasticity mechanisms subserving consolidation processes that predict off-line gains in procedural memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Ecstasy Exposure & Gender: Examining Components of Verbal Memory Functioning

    PubMed Central

    Price, Jenessa S.; Shear, Paula; Lisdahl, Krista M.

    2014-01-01

    Objective Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables. Method Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18–35; 48 ecstasy and 17 marijuana users; 0–2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview. Results Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users. Conclusion Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed. PMID:25545890

  19. Ecstasy exposure & gender: examining components of verbal memory functioning.

    PubMed

    Price, Jenessa S; Shear, Paula; Lisdahl, Krista M

    2014-01-01

    Studies have demonstrated verbal memory deficits associated with past year ecstasy use, although specific underlying components of these deficits are less understood. Further, prior research suggests potential gender differences in ecstasy-induced serotonergic changes. Therefore, the current study investigated whether gender moderated the relationship between ecstasy exposure and components of verbal memory after controlling for polydrug use and confounding variables. Data were collected from 65 polydrug users with a wide range of ecstasy exposure (ages 18-35; 48 ecstasy and 17 marijuana users; 0-2310 ecstasy tablets). Participants completed a verbal learning and memory task, psychological questionnaires, and a drug use interview. Increased past year ecstasy exposure predicted poorer short and long delayed free and cued recalls, retention, and recall discrimination. Male ecstasy users were more susceptible to dose-dependent deficits in retention than female users. Past year ecstasy consumption was associated with verbal memory retrieval, retention, and discrimination deficits in a dose-dependent manner in a sample of healthy young adult polydrug users. Male ecstasy users were at particular risk for deficits in retention following a long delay. Gender difference may be reflective of different patterns of polydrug use as well as increased hippocampal sensitivity. Future research examining neuronal correlates of verbal memory deficits in ecstasy users are needed.

  20. Fast Mapping Across Time: Memory Processes Support Children's Retention of Learned Words.

    PubMed

    Vlach, Haley A; Sandhofer, Catherine M

    2012-01-01

    Children's remarkable ability to map linguistic labels to referents in the world is commonly called fast mapping. The current study examined children's (N = 216) and adults' (N = 54) retention of fast-mapped words over time (immediately, after a 1-week delay, and after a 1-month delay). The fast mapping literature often characterizes children's retention of words as consistently high across timescales. However, the current study demonstrates that learners forget word mappings at a rapid rate. Moreover, these patterns of forgetting parallel forgetting functions of domain-general memory processes. Memory processes are critical to children's word learning and the role of one such process, forgetting, is discussed in detail - forgetting supports extended mapping by promoting the memory and generalization of words and categories.

  1. Effects of repeated administration of chemotherapeutic agents tamoxifen, methotrexate, and 5-fluorouracil on the acquisition and retention of a learned response in mice

    PubMed Central

    Foley, John J.; Clark-Vetri, Rachel; Raffa, Robert B.

    2011-01-01

    Rationale A number of cancer chemotherapeutic agents have been associated with a loss of memory in breast cancer patients although little is known of the causality of this effect. Objectives To assess the potential cognitive effects of repeated exposure to chemotherapeutic agents, we administered the selective estrogen receptor modulator tamoxifen or the antimetabolite chemotherapy, methotrexate, and 5-fluorouracil, alone and in combination to mice and tested them in a learning and memory assay. Methods Swiss-Webster male mice were injected with saline, 32 mg/kg tamoxifen, 3.2 or 32 mg/kg methotrexate, 75 mg/kg 5-fluorouracil, 3.2 or 32 mg/kg methotrexate in combination with 75 mg/kg 5-fluorouracil once per week for 3 weeks. On days 23 and 24, mice were tested for acquisition and retention of a nose-poke response in a learning procedure called autoshaping. In addition, the acute effects of tamoxifen were assessed in additional mice in a similar procedure. Results The chemotherapeutic agents alone and in combination reduced body weight relative to saline treatment over the course of 4 weeks. Repeated treatment with tamoxifen produced both acquisition and retention effects relative to the saline-treated group although acute tamoxifen was without effect except at a behaviorally toxic dose. Repeated treatment with methotrexate in combination with 5-fluorouracil produced effects on retention, but the magnitude of these changes depended on the methotrexate dose. Conclusions These data demonstrate that repeated administration of tamoxifen or certain combination of methotrexate and 5-fluorouracil may produce deficits in the acquisition or retention of learned responses which suggest potential strategies for prevention or remediation might be considered in vulnerable patient populations. PMID:21537942

  2. Is selective mutism associated with deficits in memory span and visual memory?: An exploratory case-control study.

    PubMed

    Kristensen, Hanne; Oerbeck, Beate

    2006-01-01

    Our main aim in this study was to explore the association between selective mutism (SM) and aspects of nonverbal cognition such as visual memory span and visual memory. Auditory-verbal memory span was also examined. The etiology of SM is unclear, and it probably represents a heterogeneous condition. SM is associated with language impairment, but nonspecific neurodevelopmental factors, including motor problems, are also reported in SM without language impairment. Furthermore, SM is described in Asperger's syndrome. Studies on nonverbal cognition in SM thus merit further investigation. Neuropsychological tests were administered to a clinical sample of 32 children and adolescents with SM (ages 6-17 years, 14 boys and 18 girls) and 62 nonreferred controls matched for age, gender, and socioeconomic status. We used independent t-tests to compare groups with regard to auditory-verbal memory span, visual memory span, and visual memory (Benton Visual Retention Test), and employed linear regression analysis to study the impact of SM on visual memory, controlling for IQ and measures of language and motor function. The SM group differed from controls on auditory-verbal memory span but not on visual memory span. Controlled for IQ, language, and motor function, the SM group did not differ from controls on visual memory. Motor function was the strongest predictor of visual memory performance. SM does not appear to be associated with deficits in visual memory span or visual memory. The reduced auditory-verbal memory span supports the association between SM and language impairment. More comprehensive neuropsychological studies are needed.

  3. Lexical Information in Memory for Text.

    ERIC Educational Resources Information Center

    Hayes-Roth, Barbara

    Cued-recall and two-alternative, forced-choice recognition measures were used to evaluate subjects' retention of the specific wordings of studied texts. Results obtained after 10-minute and 24 hour retention intervals suggest that the studied wordings of texts are functional components of their memory representations. Theories that assume…

  4. What drives sleep-dependent memory consolidation: greater gain or less loss?

    PubMed

    Fenn, Kimberly M; Hambrick, David Z

    2013-06-01

    When memory is tested after a delay, performance is typically better if the retention interval includes sleep. However, it is unclear what accounts for this well-established effect. It is possible that sleep enhances the retrieval of information, but it is also possible that sleep protects against memory loss that normally occurs during waking activity. We developed a new research approach to investigate these possibilities. Participants learned a list of paired-associate items and were tested on the items after a 12-h interval that included waking or sleep. We analyzed the number of items gained versus the number of items lost across time. The sleep condition showed more items gained and fewer items lost than did the wake condition. Furthermore, the difference between the conditions (favoring sleep) in lost items was greater than the difference in gain, suggesting that loss prevention may primarily account for the effect of sleep on declarative memory consolidation. This finding may serve as an empirical constraint on theories of memory consolidation.

  5. Variations in working memory capacity predict individual differences in general learning abilities among genetically diverse mice.

    PubMed

    Kolata, Stefan; Light, Kenneth; Townsend, David A; Hale, Gregory; Grossman, Henya C; Matzel, Louis D

    2005-11-01

    Up to 50% of an individuals' performance across a wide variety of distinct cognitive tests can be accounted for by a single factor (i.e., "general intelligence"). Despite its ubiquity, the processes or mechanisms regulating this factor are a matter of considerable debate. Although it has been hypothesized that working memory may impact cognitive performance across various domains, tests have been inconclusive due to the difficulty in isolating working memory from its overlapping operations, such as verbal ability. We address this problem using genetically diverse mice, which exhibit a trait analogous to general intelligence. The general cognitive abilities of CD-1 mice were found to covary with individuals' working memory capacity, but not with variations in long-term retention. These results provide evidence that independent of verbal abilities, variations in working memory are associated with general cognitive abilities, and further, suggest a conservation across species of mechanisms and/or processes that regulate cognitive abilities.

  6. Effects of enhanced zinc and copper in drinking water on spatial memory and fear conditioning

    USGS Publications Warehouse

    Chrosniak, L.D.; Smith, L.N.; McDonald, C.G.; Jones, B.F.; Flinn, J.M.

    2006-01-01

    Ingestion of enhanced zinc can cause memory impairments and copper deficiencies. This study examined the effect of zinc supplementation, with and without copper, on two types of memory. Rats raised pre- and post-natally on 10 mg/kg ZnCO3 or ZnSO4 in the drinking water were tested in a fear-conditioning experiment at 11 months of age. Both zinc groups showed a maladaptive retention of fearful memories compared to controls raised on tap water. Rats raised on 10 mg/kg ZnCO3, 10 mg/kg ZnCO3 + 0.25 mg/kg CuCl2, or tap water, were tested for spatial memory ability at 3 months of age. Significant improvements in performance were found in the ZnCO3 + CuCl2 group compared to the ZnCO3 group, suggesting that some of the cognitive deficits associated with zinc supplementation may be remediated by addition of copper. ?? 2005 Elsevier B.V. All rights reserved.

  7. Cognitive intervention through a training program for picture book reading in community-dwelling older adults: a randomized controlled trial.

    PubMed

    Suzuki, Hiroyuki; Kuraoka, Masataka; Yasunaga, Masashi; Nonaka, Kumiko; Sakurai, Ryota; Takeuchi, Rumi; Murayama, Yoh; Ohba, Hiromi; Fujiwara, Yoshinori

    2014-11-21

    Non-pharmacological interventions are expected to be important strategies for reducing the age-adjusted prevalence of senile dementia, considering that complete medical treatment for cognitive decline has not yet been developed. From the viewpoint of long-term continuity of activity, it is necessary to develop various cognitive stimulating programs. The aim of this study is to examine the effectiveness of a cognitive intervention through a training program for picture book reading for community-dwelling older adults. Fifty-eight Japanese older participants were divided into the intervention and control groups using simple randomization (n =29 vs 29). In the intervention group, participants took part in a program aimed at learning and mastering methods of picture book reading as a form of cognitive training intervention. The control group listened to lectures about elderly health maintenance. Cognitive tests were conducted individually before and after the programs. The rate of memory retention, computed by dividing Logical Memory delayed recall by immediate recall, showed a significant interaction (p < .05) in analysis of covariance. Simple main effects showed that the rate of memory retention of the intervention group improved after the program completion (p < .05). In the participants with mild cognitive impairment (MCI) examined by Japanese version of the Montreal Cognitive Assessment (MoCA-J) (n =14 vs 15), significant interactions were seen in Trail Making Test-A (p < .01), Trail Making Test-B (p < .05), Kana pick-out test (p < .05) and the Mini-Mental State Examination (p < .05). The intervention effect was found in delayed verbal memory. This program is also effective for improving attention and executive function in those with MCI. The short-term interventional findings suggest that this program might contribute to preventing a decline in memory and executive function. UMIN000014712 (Date of ICMJE and WHO compliant trial information disclosure: 30 July 2014).

  8. Embedded performance validity tests within the Hopkins Verbal Learning Test - Revised and the Brief Visuospatial Memory Test - Revised.

    PubMed

    Sawyer, R John; Testa, S Marc; Dux, Moira

    2017-01-01

    Various research studies and neuropsychology practice organizations have reiterated the importance of developing embedded performance validity tests (PVTs) to detect potentially invalid neurocognitive test data. This study investigated whether measures within the Hopkins Verbal Learning Test - Revised (HVLT-R) and the Brief Visuospatial Memory Test - Revised (BVMT-R) could accurately classify individuals who fail two or more PVTs during routine clinical assessment. The present sample of 109 United States military veterans (Mean age = 52.4, SD = 13.3), all consisted of clinically referred patients and received a battery of neuropsychological tests. Based on performance validity findings, veterans were assigned to valid (n = 86) or invalid (n = 23) groups. Of the 109 patients in the overall sample, 77 were administered the HLVT-R and 75 were administered the BVMT-R, which were examined for classification accuracy. The HVLT-R Recognition Discrimination Index and the BVMT-R Retention Percentage showed good to adequate discrimination with an area under the curve of .78 and .70, respectively. The HVLT-R Recognition Discrimination Index showed sensitivity of .53 with specificity of .93. The BVMT-R Retention Percentage demonstrated sensitivity of .31 with specificity of .92. When used in conjunction with other PVTs, these new embedded PVTs may be effective in the detection of invalid test data, although they are not intended for use in patients with dementia.

  9. Elaborative Retrieval: Do Semantic Mediators Improve Memory?

    ERIC Educational Resources Information Center

    Lehman, Melissa; Karpicke, Jeffrey D.

    2016-01-01

    The elaborative retrieval account of retrieval-based learning proposes that retrieval enhances retention because the retrieval process produces the generation of semantic mediators that link cues to target information. We tested 2 assumptions that form the basis of this account: that semantic mediators are more likely to be generated during…

  10. Taking on Multitasking

    ERIC Educational Resources Information Center

    Rekart, Jerome L.

    2011-01-01

    Multitasking impedes learning and performance in the short-term and may affect long-term memory and retention. The implications of these findings make it critical that educators and parents impress upon students the need to focus and reduce extraneous stimuli while studying or reading. Course-based quizzes and tests can be used for more than…

  11. Tramadol state-dependent memory: involvement of dorsal hippocampal muscarinic acetylcholine receptors.

    PubMed

    Jafari-Sabet, Majid; Jafari-Sabet, Ali-Reza; Dizaji-Ghadim, Ali

    2016-08-01

    The effects on tramadol state-dependent memory of bilateral intradorsal hippocampal (intra-CA1) injections of physostigmine, an acetylcholinesterase inhibitor, and atropine, a muscarinic acetylcholine receptor antagonist, were examined in adult male NMRI mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention. Post-training intra-CA1 administration of an atypical μ-opioid receptor agonist, tramadol (0.5 and 1 μg/mouse), dose dependently impaired memory retention. Pretest injection of tramadol (0.5 and 1 μg/mouse, intra-CA1) induced state-dependent retrieval of the memory acquired under the influence of post-training tramadol (1 μg/mouse, intra-CA1). A pretest intra-CA1 injection of physostigmine (1 μg/mouse) reversed the memory impairment induced by post-training administration of tramadol (1 μg/mouse, intra-CA1). Moreover, pretest administration of physostigmine (0.5 and 1 μg/mouse, intra-CA1) with an ineffective dose of tramadol (0.25 μg/mouse, intra-CA1) also significantly restored retrieval. Pretest administration of physostigmine (0.25, 0.5, and 1 μg/mouse, intra-CA1) by itself did not affect memory retention. A pretest intra-CA1 injection of the atropine (1 and 2 μg/mouse) 5 min before the administration of tramadol (1 μg/mouse, intra-CA1) dose dependently inhibited tramadol state-dependent memory. Pretest administration of atropine (0.5, 1, and 2 μg/mouse, intra-CA1) by itself did not affect memory retention. It can be concluded that dorsal hippocampal muscarinic acetylcholine receptor mechanisms play an important role in the modulation of tramadol state-dependent memory.

  12. Investigating the encoding-retrieval match in recognition memory: effects of experimental design, specificity, and retention interval.

    PubMed

    Dewhurst, Stephen A; Knott, Lauren M

    2010-12-01

    Five experiments investigated the encoding-retrieval match in recognition memory by manipulating read and generate conditions at study and at test. Experiments 1A and 1B confirmed previous findings that reinstating encoding operations at test enhances recognition accuracy in a within-groups design but reduces recognition accuracy in a between-groups design. Experiment 2A showed that generating from anagrams at study and at test enhanced recognition accuracy even when study and test items were generated from different anagrams. Experiment 2B showed that switching from one generation task at study (e.g., anagram solution) to a different generation task at test (e.g., fragment completion) eliminated this recognition advantage. Experiment 3 showed that the recognition advantage found in Experiment 1A is reliably present up to 1 week after study. The findings are consistent with theories of memory that emphasize the importance of the match between encoding and retrieval operations.

  13. Is lorazepam-induced amnesia specific to the type of memory or to the task used to assess it?

    PubMed

    File, S E; Sharma, R; Shaffer, J

    1992-01-01

    Retrieval tasks can be classified along a continuum from conceptually driven (relying on the encoded meaning of the material) to data driven (relying on the perceptual record and surface features of the material). Since most explicit memory tests are conceptually driven and most implicit memory tests are data driven there has been considerable confounding of the memory system being assessed and the processing required by the retrieval task. The purpose of the present experiment was to investigate the effects of lorazepam on explicit memory, using both types of retrieval task. Lorazepam (2.5 mg) or matched placebo was administered to healthy volunteers and changes in subjective mood ratings and in performance in tests of memory were measured. Lorazepam made subjects significantly more drowsy, feeble, clumsy, muzzy, lethargic and mentally slow. Lorazepam significantly impaired recognition memory for slides, impaired the number of words remembered when the retrieval was cued by the first two letters and reduced the number of pictures remembered when retention was cued with picture fragments. Thus episodic memory was impaired whether the task used was conceptually driven (as in slide recognition) or data driven, as in the other two tasks. Analyses of covariance indicated that the memory impairments were independent of increased sedation, as assessed by self-ratings. In contrast to the deficits in episodic memory, there were no lorazepam-induced impairments in tests of semantic memory, whether this was measured in the conceptually driven task of category generation or in the data-driven task of wordstem completion.

  14. Are Asians Forgetful? Perception, Retention, and Recall in Episodic Remembering

    ERIC Educational Resources Information Center

    Wang, Qi

    2009-01-01

    Cross-cultural studies have shown that Asians exhibit less accessibility to episodic memories than Euro-Americans. This difference is often attributed to differential cognitive and social influences on memory retention, although there have been no empirical data concerning the underlying mechanism. Three studies were conducted to examine encoding…

  15. Evaluation of Magnetoresistive RAM for Space Applications

    NASA Technical Reports Server (NTRS)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  16. Immediate and long-term retention for pictorial and verbal stimuli.

    PubMed

    Purdy, J E; Luepnitz, R R

    1982-12-01

    Although nouns of high imagery are generally recalled better than nouns of low imagery, both Palermo and Yuille have shown that retention for the former decreases with time. The present study tested the hypothesis that this decreased effectiveness occurs because images stored in long-term memory are accessible only through their verbal labels. 64 subjects were presented pictures and later asked to draw them or provide one-word descriptions. Other subjects were presented words and asked to recall them or draw representational pictures. Recall was tested immediately and 48 hr. later. Regardless of recall mode, subjects viewing pictures showed significantly greater recall than subjects viewing words, and for all subjects immediate recall was better.

  17. Elevated paternal glucocorticoid exposure modifies memory retention in female offspring.

    PubMed

    Yeshurun, Shlomo; Rogers, Jake; Short, Annabel K; Renoir, Thibault; Pang, Terence Y; Hannan, Anthony J

    2017-09-01

    Recent studies have demonstrated that behavioral traits are subject to transgenerational modification by paternal environmental factors. We previously reported on the transgenerational influences of increased paternal stress hormone levels on offspring anxiety and depression-related behaviors. Here, we investigated whether offspring sociability and cognition are also influenced by paternal stress. Adult C57BL/6J male mice were treated with corticosterone (CORT; 25mg/L) for four weeks prior to paired-matings to generate F1 offspring. Paternal CORT treatment was associated with decreased body weights of female offspring and a marked reduction of the male offspring. There were no differences in social behavior of adult F1 offspring in the three-chamber social interaction test. Despite male offspring of CORT-treated fathers displaying hyperactivity in the Y-maze, there was no observable difference in short-term spatial working memory. Spatial learning and memory testing in the Morris water maze revealed that female, but not male, F1 offspring of CORT-treated fathers had impaired memory retention. We used our recently developed methodology to analyze the spatial search strategy of the mice during the learning trials and determined that the impairment could not be attributed to underlying differences in search strategy. These results provide evidence for the impact of paternal corticosterone administration on offspring cognition and complement the cumulative knowledge of transgenerational epigenetic inheritance of acquired traits in rodents and humans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Long-term memory for the terrorist attack of September 11: Flashbulb memories, event memories, and the factors that influence their retention

    PubMed Central

    Hirst, William; Phelps, Elizabeth A.; Buckner, Randy L.; Budson, Andrew E.; Cuc, Alexandru; Gabrieli, John D. E.; Johnson, Marcia K.; Lyle, Keith B.; Lustig, Cindy; Mather, Mara; Meksin, Robert; Mitchell, Karen J.; Ochsner, Kevin N.; Schacter, Daniel L.; Simons, Jon S.; Vaidya, Chandan J.

    2010-01-01

    More than 3,000 individuals from seven US cities reported on their memories of learning of the terrorist attacks of September 11, as well as details about the attack, one week, 11 months, and/or 35 months after the assault. Some studies of flashbulb memories examining long-term retention show slowing in the rate of forgetting after a year, whereas others demonstrate accelerated forgetting. The present paper indicates that (1) the rate of forgetting for flashbulb memories and event memory (memory for details about the event itself) slows after a year, (2) the strong emotional reactions elicited by flashbulb events are remembered poorly, worse than non-emotional features such as where and from whom one learned of the attack, and (3) the content of flashbulb and event memories stabilizes after a year. The results are discussed in terms of community memory practices. PMID:19397377

  19. Time-dependent reorganization of the brain components underlying memory retention in trace eyeblink conditioning.

    PubMed

    Takehara, Kaori; Kawahara, Shigenori; Kirino, Yutaka

    2003-10-29

    Many studies have confirmed the time-limited involvement of the hippocampus in mnemonic processes and suggested that there is reorganization of the responsible brain circuitry during memory consolidation. To clarify such reorganization, we chose trace classical eyeblink conditioning, in which hippocampal ablation produces temporally graded retrograde amnesia. Here, we extended the temporal characterization of retrograde amnesia to other regions that are involved in acquisition during this task: the medial prefrontal cortex (mPFC) and the cerebellum. At a various time interval after establishing the trace conditioned response (CR), rats received an aspiration of one of the three regions. After recovery, the animals were tested for their CR retention. When ablated 1 d after the learning, both the hippocampal lesion and the cerebellar lesion group of rats exhibited a severe impairment in retention of the CR, whereas the mPFC lesion group showed only a slight decline. With an increase in interval between the lesion and the learning, the effect of the hippocampal lesion diminished and that of the mPFC lesion increased. When ablated 4 weeks after the learning, the hippocampal lesion group exhibited as robust CRs as its corresponding control group. In contrast, the mPFC lesion and the cerebellar lesion groups failed to retain the CRs. These results indicate that the hippocampus and the cerebellum, but only marginally the mPFC, constitute a brain circuitry that mediates recently acquired memory. As time elapses, the circuitry is reorganized to use mainly the mPFC and the cerebellum, but not the hippocampus, for remotely acquired memory.

  20. Analysis of mechanisms for memory enhancement using novel and potent 5-HT1A receptor ligands.

    PubMed

    Pittalà, Valeria; Siracusa, Maria A; Salerno, Loredana; Romeo, Giuseppe; Modica, Maria N; Madjid, Nather; Ogren, Sven Ove

    2015-08-01

    In light of the involvement of serotonergic 5-HT1A receptors in the mediation of the memory of aversive events, the potent and selective 5-HT1A receptor antagonists, MC18 fumarate and VP08/34 fumarate, were tested in the passive avoidance task (PA), a rodent model of instrumental conditioning. Either alone or in combination with the prototypical agonist 8-OH-DPAT, MC18 fumarate at doses (0.1, 0.3 and 1mg/kg given 15min prior to training) exerted a dose-dependent facilitation of PA memory retention. When administered 15min prior to 8-OH-DPAT (0.3 and 1mg/kg), MC18 fumarate at a dose of 0.3mg/kg, enhanced significantly the impairment of PA retention caused by 8-OH-DPAT (1mg/kg). However, VP08/34 fumarate given at the same doses exerted no statistically effect on PA retention memory. Furthermore, VP08/34 fumarate given 15min prior to 8-OH-DPAT (0.3 and 1mg/kg) only slightly enhanced the PA impairment induced by 8-OH-DPAT. In conclusion, the profile of MC18 fumarate is intriguing since it behaves in a manner which differs from both full receptor antagonists such as NAD-299 or partial receptor agonists. The results also illustrate the importance of subtle receptor interaction and probably ligand efficacy in determining the actions of two almost identical 5-HT1A receptor ligands in cognitive function such as instrumental learning. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. The Multidimensional Aspects of Sleep Spindles and Their Relationship to Word-Pair Memory Consolidation

    PubMed Central

    Lustenberger, Caroline; Wehrle, Flavia; Tüshaus, Laura; Achermann, Peter; Huber, Reto

    2015-01-01

    Study Objectives: Several studies proposed a link between sleep spindles and sleep dependent memory consolidation in declarative learning tasks. In addition to these state-like aspects of sleep spindles, they have also trait-like characteristics, i.e., were related to general cognitive performance, an important distinction that has often been neglected in correlative studies. Furthermore, from the multitude of different sleep spindle measures, often just one specific aspect was analyzed. Thus, we aimed at taking multidimensional aspects of sleep spindles into account when exploring their relationship to word-pair memory consolidation. Design: Each subject underwent 2 study nights with all-night high-density electroencephalographic (EEG) recordings. Sleep spindles were automatically detected in all EEG channels. Subjects were trained and tested on a word-pair learning task in the evening, and retested in the morning to assess sleep related memory consolidation (overnight retention). Trait-like aspects refer to the mean of both nights and state-like aspects were calculated as the difference between night 1 and night 2. Setting: Sleep laboratory. Participants: Twenty healthy male subjects (age: 23.3 ± 2.1 y) Measurements and Results: Overnight retention was negatively correlated with trait-like aspects of fast sleep spindle density and positively with slow spindle density on a global level. In contrast, state-like aspects were observed for integrated slow spindle activity, which was positively related to the differences in overnight retention in specific regions. Conclusion: Our results demonstrate the importance of a multidimensional approach when investigating the relationship between sleep spindles and memory consolidation and thereby provide a more complete picture explaining divergent findings in the literature. Citation: Lustenberger C, Wehrle F, Tüshaus L, Achermann P, Huber R. The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. SLEEP 2015;38(7):1093–1103. PMID:25845686

  2. Effects of age on a real-world What-Where-When memory task

    PubMed Central

    Mazurek, Adèle; Bhoopathy, Raja Meenakshi; Read, Jenny C. A.; Gallagher, Peter; Smulders, Tom V.

    2015-01-01

    Many cognitive abilities decline with aging, making it difficult to detect pathological changes against a background of natural changes in cognition. Most of the tests to assess cognitive decline are artificial tasks that have little resemblance to the problems faced by people in everyday life. This means both that people may have little practice doing such tasks (potentially contributing to the decline in performance) and that the tasks may not be good predictors of real-world cognitive problems. In this study, we test the performance of young people (18–25 years) and older people (60+-year-olds) on a novel, more ecologically valid test of episodic memory: the real-world What-Where-When (WWW) memory test. We also compare them on a battery of other cognitive tests, including working memory, psychomotor speed, executive function, and episodic memory. Older people show the expected age-related declines on the test battery. In the WWW memory task, older people were more likely to fail to remember any WWW combination than younger people were, although they did not significantly differ in their overall WWW score due to some older people performing as well as or better than most younger people. WWW memory performance was significantly predicted by other measures of episodic memory, such as the single-trial learning and long-term retention in the Rey Auditory Verbal Learning task and Combined Object Location Memory in the Object Relocation task. Self-reported memory complaints also predicted performance on the WWW task. These findings confirm that our real-world WWW memory task is a valid measure of episodic memory, with high ecological validity, which may be useful as a predictor of everyday memory abilities. The task will require a bit more development to improve its sensitivity to cognitive declines in aging and to potentially distinguish between mentally healthy older adults and those with early signs of cognitive pathologies. PMID:26042030

  3. Extent of resection in temporal lobectomy for epilepsy. II. Memory changes and neurologic complications.

    PubMed

    Katz, A; Awad, I A; Kong, A K; Chelune, G J; Naugle, R I; Wyllie, E; Beauchamp, G; Lüders, H

    1989-01-01

    We present correlations of extent of temporal lobectomy for intractable epilepsy with postoperative memory changes (20 cases) and abnormalities of visual field and neurologic examination (45 cases). Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify anteroposterior extent of resection of various quadrants of the temporal lobe, using a 20-compartment model of that structure. The Wechsler Memory Scale-Revised (WMS-R) was administered preoperatively and postoperatively. Postoperative decrease in percentage of retention of verbal material correlated with extent of medial resection of left temporal lobe, whereas decrease in percentage of retention of visual material correlated with extent of medial resection of right temporal lobe. These correlations approached but did not reach statistical significance. Extent of resection correlated significantly with the presence of visual field defect on perimetry testing but not with severity, denseness, or congruity of the defect. There was no correlation between postoperative dysphasia and extent of resection in any quadrant. Assessment of extent of resection after temporal lobectomy allows a rational interpretation of postoperative neurologic deficits in light of functional anatomy of the temporal lobe.

  4. Forming competing fear learning and extinction memories in adolescence makes fear difficult to inhibit

    PubMed Central

    Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages. We examined neural correlates of impaired extinction retention by detection of phosphorylated mitogen-activated protein kinase immunoreactivity (pMAPK-IR) in several brain regions. Unexpectedly, adolescent rats exhibited good extinction retention if fear was acquired before adolescence. Further, fear acquired in adolescence could be successfully extinguished in adulthood but not within adolescence. Adolescent rats did not show extinction-induced increases in pMAPK-IR in the medial prefrontal cortex or the basolateral amygdala, or a pattern of reduced caudal central amygdala pMAPK-IR, as was observed in juveniles. This dampened prefrontal and basolateral amygdala MAPK activation following extinction in adolescence occurred even when there was no impairment in extinction retention. In contrast, only adolescent animals that exhibited impaired extinction retention showed elevated pMAPK-IR in the posterior paraventricular thalamus. These data suggest that neither the animal's age at the time of fear acquisition or extinction determines whether impaired extinction retention is exhibited. Rather, it appears that forming competing fear conditioning and extinction memories in adolescence renders this a vulnerable developmental period in which fear is difficult to inhibit. Furthermore, even under conditions that promote good extinction, the neural correlates of extinction in adolescence are different than those recruited in animals of other ages. PMID:26472643

  5. Attention Effects During Visual Short-Term Memory Maintenance: Protection or Prioritization?

    PubMed Central

    Matsukura, Michi; Luck, Steven J.; Vecera, Shaun P.

    2007-01-01

    Interactions between visual attention and visual short-term memory (VSTM) play a central role in cognitive processing. For example, attention can assist in selectively encoding items into visual memory. Attention appears to be able to influence items already stored in visual memory as well; cues that appear long after the presentation of an array of objects can affect memory for those objects (Griffin & Nobre, 2003). In five experiments, we distinguished two possible mechanisms for the effects of cues on items currently stored in VSTM. A protection account proposes that attention protects the cued item from becoming degraded during the retention interval. By contrast, a prioritization account suggests that attention increases a cued item’s priority during the comparison process that occurs when memory is tested. The results of the experiments were consistent with the first of these possibilities, suggesting that attention can serve to protect VSTM representations while they are being maintained. PMID:18078232

  6. Gypenosides ameliorate memory deficits in MPTP-lesioned mouse model of Parkinson's disease treated with L-DOPA.

    PubMed

    Zhao, Ting Ting; Kim, Kyung Sook; Shin, Keon Sung; Park, Hyun Jin; Kim, Hyun Jeong; Lee, Kyung Eun; Lee, Myung Koo

    2017-09-06

    Previous studies have revealed that gypenosides (GPS) improve the symptoms of anxiety disorders in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned rat model of Parkinson's disease (PD). The present study aimed to investigate the effects of GPS on memory deficits in an MPTP-lesioned mouse model of PD treated with L-3,4-dihydroxyphenylalanine (L-DOPA). MPTP (30 mg/kg/day, 5 days)-lesioned mice were treated with GPS (50 mg/kg) and/or L-DOPA (10 and 25 mg/kg) for 21 days. After the final treatments, behavioral changes were assessed in all mice using passive avoidance and elevated plus-maze tests. We then evaluated the biochemical influences of GPS treatment on levels of tyrosine hydroxylase (TH), dopamine, N-methyl-D-aspartate (NMDA) receptors, extracellular signal-regulated kinase (ERK1/2), and cyclic AMP-response element binding protein (CREB) phosphorylation. MPTP-lesioned mice exhibited deficits associated with habit learning and spatial memory, which were further aggravated by treatment with L-DOPA (25 mg/kg). However, treatment with GPS (50 mg/kg) ameliorated memory deficits. Treatment with GPS (50 mg/kg) also improved L-DOPA (25 mg/kg)-treated MPTP lesion-induced decreases in retention latency on the passive avoidance test, as well as levels of TH-immunopositive cells and dopamine in the substantia nigra and striatum. GPS treatment also attenuated increases in retention transfer latency on the elevated plus-maze test and in NMDA receptor expression, as well as decreases in the phosphorylation of ERK1/2 and CREB in the hippocampus. Treatment with L-DOPA (10 mg/kg) also ameliorated deficits in habit learning and spatial memory in MPTP-lesioned mice, and this effect was further enhanced by treatment with GPS (50 mg/kg). GPS ameliorate deficits in habit learning and spatial memory by modulating the dopaminergic neuronal and N-methyl-D-aspartate receptor-mediated signaling systems in MPTP-lesioned mice treated with L-DOPA. GPS may serve as an adjuvant therapeutic agent for memory deficits in patients with PD receiving L-DOPA.

  7. Involvement of the cholinergic system of CA1 on harmane-induced amnesia in the step-down passive avoidance test.

    PubMed

    Nasehi, Mohammad; Sharifi, Shahrbano; Zarrindast, Mohammad Reza

    2012-08-01

    β-carboline alkaloids such as harmane (HA) are naturally present in the human food chain. They are derived from the plant Peganum harmala and have many cognitive effects. In the present study, effects of the nicotinic system of the dorsal hippocampus (CA1) on HA-induced amnesia and exploratory behaviors were examined. One-trial step-down and hole-board paradigms were used to assess memory retention and exploratory behaviors in adult male mice. Pre-training (15 mg/kg) but not pre-testing intraperitoneal (i.p.) administration of HA decreased memory formation but did not alter exploratory behaviors. Moreover, pre-testing administration of nicotine (0.5 µg/mouse, intra-CA1) decreased memory retrieval, but induced anxiogenic-like behaviors. On the other hand, pre-test intra-CA1 injection of ineffective doses of nicotine (0.1 and 0.25 µg/mouse) fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which did not alter exploratory behaviors. Furthermore, pre-testing administration of mecamylamine (0.5, 1 and 2 µg/mouse, intra-CA1) did not alter memory retrieval but fully reversed HA-induced impairment of memory after pre-training injection of HA (15 mg/kg, i.p.) which had no effect on exploratory behaviors. In conclusion, the present findings suggest the involvement of the nicotinic cholinergic system in the HA-induced impairment of memory formation.

  8. Contextual Richness and Word Learning: Context Enhances Comprehension but Retrieval Enhances Retention

    ERIC Educational Resources Information Center

    van den Broek, Gesa S. E.; Takashima, Atsuko; Segers, Eliane; Verhoeven, Ludo

    2018-01-01

    Learning new vocabulary from context typically requires multiple encounters during which word meaning can be retrieved from memory or inferred from context. We compared the effect of memory retrieval and context inferences on short- and long-term retention in three experiments. Participants studied novel words and then practiced the words either…

  9. Improved performance of Ta2O5-x resistive switching memory by Gd-doping: Ultralow power operation, good data retention, and multilevel storage

    NASA Astrophysics Data System (ADS)

    Shi, K. X.; Xu, H. Y.; Wang, Z. Q.; Zhao, X. N.; Liu, W. Z.; Ma, J. G.; Liu, Y. C.

    2017-11-01

    Resistive-switching memory with ultralow-power consumption is very promising technology for next-generation data storage and high-energy-efficiency neurosynaptic chips. Herein, Ta2O5-x-based multilevel memories with ultralow-power consumption and good data retention were achieved by simple Gd-doping. The introduction of a Gd ion, as an oxygen trapper, not only suppresses the generation of oxygen vacancy defects and greatly increases the Ta2O5-x resistance but also increases the oxygen-ion migration barrier. As a result, the memory cells can operate at an ultralow current of 1 μA with the extrapolated retention time of >10 years at 85 °C and the high switching speeds of 10 ns/40 ns for SET/RESET processes. The energy consumption of the device is as low as 60 fJ/bit, which is comparable to emerging ultralow-energy consumption (<100 fJ/bit) memory devices.

  10. WAY 267,464, a non-peptide oxytocin receptor agonist, impairs social recognition memory in rats through a vasopressin 1A receptor antagonist action.

    PubMed

    Hicks, Callum; Ramos, Linnet; Reekie, Tristan A; Narlawar, Rajeshwar; Kassiou, Michael; McGregor, Iain S

    2015-08-01

    Recent in vitro studies suggest that the oxytocin receptor (OTR) agonist WAY 267,464 has vasopressin 1A receptor (V1AR) antagonist effects. This might limit its therapeutic potential due to the positive involvement of the V1AR in social behavior. The objective of this study was to assess functional V1AR antagonist-like effects of WAY 267,464 in vivo using a test of social recognition memory. Adult experimental rats were tested for their recognition of a juvenile conspecific rat that they had briefly met 30 or 120 min previously. The modulatory effects of vasopressin (AVP), the selective V1AR antagonist SR49059, and WAY 267,464 were examined together with those of the selective OTR antagonist Compound 25 (C25). Drugs were administered immediately after the first meeting. Control rats showed recognition of juveniles at a 30 min, but not a 120 min retention interval. AVP (0.005, but not 0.001 mg/kg intraperitoneal (i.p.)) improved memory such that recognition was evident after 120 min. This was prevented by pretreatment with SR49059 (1 mg/kg) and WAY 267,464 (10, 30, and 100 mg/kg). Given alone, SR49059 (1 mg/kg) and WAY 267,464 (30 and 100 mg/kg) impaired memory at a 30 min retention interval. The impairment with WAY 267,464 was not prevented by C25 (5 mg/kg), suggesting V1AR rather than OTR mediation of the effect. Given alone, C25 also impaired memory. These results highlight a tonic role for endogenous AVP (and oxytocin) in social recognition memory and indicate that WAY 267,464 functions in vivo as a V1AR antagonist to prevent the memory-enhancing effects of AVP.

  11. Verbal and visual memory in patients with early Parkinson's disease: effect of levodopa.

    PubMed

    Singh, Sumit; Behari, Madhuri

    2006-03-01

    The effect of initiation of levodopa therapy on the memory functions in patients with Parkinson's disease remains poorly understood. To evaluate the effect of initiation of levodopa therapy on memory, in patients with early Parkinson's disease. Prospective case control study. Seventeen patients with early Parkinson's disease were evaluated for verbal memory using Rey's auditory verbal learning test, and visual memory using the Benton's visual retention test and Form sequence learning test. UPDRS scores, Hoehn and Yahr's Staging and Schwab and England scores of Activities of daily living. Hamilton's depression rating scale and MMSE were also evaluated. Six controls were also evaluated according to similar study protocol. Levodopa was then prescribed to the cases. Same tests were repeated on all the subjects after 12 weeks. The mean age of the patients was 59.8 (+ 12.9 yrs); mean disease duration of 3.26 (+ 2.06 yrs). The mean UPDRS scores of patients were 36.52 (+ 15.84). Controls were of a similar age and sex distribution. A statistically significant improvement in the scores on the UPDRS, Hamilton's depression scale, Schwab and England scale, and a statistically significant deterioration in the scores of visual memory was observed in patients with PD after starting levodopa, as compared to their baseline scores. There was no correlation between degree of deterioration and the dose of levodopa. Initiation of levodopa therapy in patients with early and stable Parkinson's disease is associated with deterioration in visual memory functions, with relative preservation of the verbal memory.

  12. Interaction between morphine and noradrenergic system of basolateral amygdala on anxiety and memory in the elevated plus-maze test based on a test-retest paradigm.

    PubMed

    Valizadegan, Farhad; Oryan, Shahrbanoo; Nasehi, Mohammad; Zarrindast, Mohammad Reza

    2013-05-01

    The amygdala is the key brain structure for anxiety and emotional memory storage. We examined the involvement of β-adrenoreceptors in the basolateral amygdala (BLA) and their interaction with morphine in modulating these behaviors. The elevated plus-maze has been employed for investigating anxiety and memory. Male Wistar rats were used for this test. We injected morphine (4, 5, and 6 mg/kg) intraperitoneally, while salbutamol (albuterol) (1, 2, and 4 μg/rat) and propranolol (1, 2, and 4 μg/rat) were injected into the BLA. Open- arms time percentage (%OAT), open- arms entry percentage (%OAE), and locomotor activity were determined by this behavioral test. Retention was tested 24 hours later. Intraperitoneal injection of morphine (6 mg/kg) had an anxiolytic-like effect and improvement of memory. The highest dose of salbutamol decreased the anxiety parameters in test session and improved the memory in retest session. Coadministration of salbutamol and ineffective dose of morphine presenting anxiolytic response. In this case, the memory was improved. Intra-BLA administration of propranolol (4 μg/rat) decreased %OAT in the test session, while had no effect on memory formation. Coadministration of propranolol and morphine (6 mg/kg) showed an increase in %OAT. There was not any significant change in the above- mentioned parameter in the retest session. Coadministration of morphine and propranolol with the effective dose of salbutamol showed that propranolol could reverse anxiolytic-like effect. We found that opioidergic and β-adrenergic systems have the same effects on anxiety and memory in the BLA; but these effects are independent of each other.

  13. TrkB blockade in the hippocampus after training or retrieval impairs memory: protection from consolidation impairment by histone deacetylase inhibition.

    PubMed

    Blank, Martina; Petry, Fernanda S; Lichtenfels, Martina; Valiati, Fernanda E; Dornelles, Arethuza S; Roesler, Rafael

    2016-03-01

    Relatively little is known about the requirement of signaling initiated by brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), in the early phases of memory consolidation, as well as about its possible functional interactions with epigenetic mechanisms. Here we show that blocking TrkB in the dorsal hippocampus after learning or retrieval impairs retention of memory for inhibitory avoidance (IA). More importantly, the impairing effect of TrkB antagonism on consolidation was completely prevented by the histone deacetylase (HDAC) inhibitor sodium butyrate (NaB). Male Wistar rats were given an intrahippocampal infusion of saline (SAL) or NaB before training, followed by an infusion of either vehicle (VEH) or the selective TrkB antagonist ANA-12 immediately after training. In a second experiment, the infusions were administered before and after retrieval. ANA-12 after either training or retrieval produced a significant impairment in a subsequent memory retention test. Pretraining administration of NaB prevented the effect of ANA-12, although NaB given before retrieval did not alter the impairment resulting from TrkB blockade. The results indicate that inhibition of BDNF/TrkB in the hippocampus can hinder consolidation and reconsolidation of IA memory. However, TrkB activity is not required for consolidation in the presence of NaB, suggesting that a dysfunction in BDNF/TrkB signaling can be fully compensated by HDAC inhibition to allow hippocampal memory formation.

  14. Difficulties with Pitch Discrimination Influences Pitch Memory Performance: Evidence from Congenital Amusia

    PubMed Central

    Jiang, Cunmei; Lim, Vanessa K.; Wang, Hang; Hamm, Jeff P.

    2013-01-01

    Music processing is influenced by pitch perception and memory. Additionally these features interact, with pitch memory performance decreasing as the perceived distance between two pitches decreases. This study examined whether or not the difficulty of pitch discrimination influences pitch retention by testing individuals with congenital amusia. Pitch discrimination difficulty was equated by determining an individual’s threshold with a two down one up staircase procedure and using this to create conditions where two pitches (the standard and the comparison tones) differed by 1x, 2x, and 3x the threshold setting. For comparison with the literature a condition that employed a constant pitch difference of four semitones was also included. The results showed that pitch memory performance improved as the discrimination between the standard and the comparison tones was made easier for both amusic and control groups, and more importantly, that amusics did not show any pitch retention deficits when the discrimination difficulty was equated. In contrast, consistent with previous literature, amusics performed worse than controls when the physical pitch distance was held constant at four semitones. This impaired performance has been interpreted as evidence for pitch memory impairment in the past. However, employing a constant pitch distance always makes the difference closer to the discrimination threshold for the amusic group than for the control group. Therefore, reduced performance in this condition may simply reflect differences in the perceptual difficulty of the discrimination. The findings indicate the importance of equating the discrimination difficulty when investigating memory. PMID:24205375

  15. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder.

    PubMed

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2015-01-01

    Healthy sleep is essential in children's cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain.

  16. Declarative and Non-declarative Memory Consolidation in Children with Sleep Disorder

    PubMed Central

    Csábi, Eszter; Benedek, Pálma; Janacsek, Karolina; Zavecz, Zsófia; Katona, Gábor; Nemeth, Dezso

    2016-01-01

    Healthy sleep is essential in children’s cognitive, behavioral, and emotional development. However, remarkably little is known about the influence of sleep disorders on different memory processes in childhood. Such data could give us a deeper insight into the effect of sleep on the developing brain and memory functions and how the relationship between sleep and memory changes from childhood to adulthood. In the present study we examined the effect of sleep disorder on declarative and non-declarative memory consolidation by testing children with sleep-disordered breathing (SDB) which is characterized by disrupted sleep structure. We used a story recall task to measure declarative memory and Alternating Serial Reaction time (ASRT) task to assess non-declarative memory. This task enables us to measure two aspects of non-declarative memory, namely general motor skill learning and sequence-specific learning. There were two sessions: a learning phase and a testing phase, separated by a 12 h offline period with sleep. Our data showed that children with SDB exhibited a generally lower declarative memory performance both in the learning and testing phase; however, both the SDB and control groups exhibited retention of the previously recalled items after the offline period. Here we showed intact non-declarative consolidation in SDB group in both sequence-specific and general motor skill. These findings suggest that sleep disorders in childhood have a differential effect on different memory processes (online vs. offline) and give us insight into how sleep disturbances affects developing brain. PMID:26793090

  17. Encoding Deficits Impede Word Learning and Memory in Adults With Developmental Language Disorders

    PubMed Central

    Gordon, Katherine; Eden, Nichole; Arbisi-Kelm, Tim; Oleson, Jacob

    2017-01-01

    Purpose The aim of this study was to determine whether the word-learning challenges associated with developmental language disorder (DLD) result from encoding or retention deficits. Method In Study 1, 59 postsecondary students with DLD and 60 with normal development (ND) took the California Verbal Learning Test–Second Edition, Adult Version (Delis, Kramer, Kaplan, & Ober, 2000). In Study 2, 23 postsecondary students with DLD and 24 with ND attempted to learn 9 novel words in each of 3 training conditions: uncued test, cued test, and no test (passive study). Retention was measured 1 day and 1 week later. Results By the end of training, students with DLD had encoded fewer familiar words (Study 1) and fewer novel words (Study 2) than their ND peers as evinced by word recall. They also demonstrated poorer encoding as evinced by slower growth in recall from Trials 1 to 2 (Studies 1 and 2), less semantic clustering of recalled words, and poorer recognition (Study 1). The DLD and ND groups were similar in the relative amount of information they could recall after retention periods of 5 and 20 min (Study 1). After a 1-day retention period, the DLD group recalled less information that had been encoded via passive study, but they performed as well as their ND peers when recalling information that had been encoded via tests (Study 2). Compared to passive study, encoding via tests also resulted in more robust lexical engagement after a 1-week retention for DLD and ND groups. Conclusions Encoding, not retention, is the problematic stage of word learning for adults with DLD. Self-testing with feedback lessens the deficit. Supplemental Materials https://doi.org/10.23641/asha.5435200 PMID:28980007

  18. The Picmonic(®) Learning System: enhancing memory retention of medical sciences, using an audiovisual mnemonic Web-based learning platform.

    PubMed

    Yang, Adeel; Goel, Hersh; Bryan, Matthew; Robertson, Ron; Lim, Jane; Islam, Shehran; Speicher, Mark R

    2014-01-01

    Medical students are required to retain vast amounts of medical knowledge on the path to becoming physicians. To address this challenge, multimedia Web-based learning resources have been developed to supplement traditional text-based materials. The Picmonic(®) Learning System (PLS; Picmonic, Phoenix, AZ, USA) is a novel multimedia Web-based learning platform that delivers audiovisual mnemonics designed to improve memory retention of medical sciences. A single-center, randomized, subject-blinded, controlled study was conducted to compare the PLS with traditional text-based material for retention of medical science topics. Subjects were randomly assigned to use two different types of study materials covering several diseases. Subjects randomly assigned to the PLS group were given audiovisual mnemonics along with text-based materials, whereas subjects in the control group were given the same text-based materials with key terms highlighted. The primary endpoints were the differences in performance on immediate, 1 week, and 1 month delayed free-recall and paired-matching tests. The secondary endpoints were the difference in performance on a 1 week delayed multiple-choice test and self-reported satisfaction with the study materials. Differences were calculated using unpaired two-tailed t-tests. PLS group subjects demonstrated improvements of 65%, 161%, and 208% compared with control group subjects on free-recall tests conducted immediately, 1 week, and 1 month after study of materials, respectively. The results of performance on paired-matching tests showed an improvement of up to 331% for PLS group subjects. PLS group subjects also performed 55% greater than control group subjects on a 1 week delayed multiple choice test requiring higher-order thinking. The differences in test performance between the PLS group subjects and the control group subjects were statistically significant (P<0.001), and the PLS group subjects reported higher overall satisfaction with the material. The data of this pilot site demonstrate marked improvements in the retention of disease topics when using the PLS compared with traditional text-based materials. The use of the PLS in medical education is supported.

  19. Oxytocin receptor antagonist atosiban impairs consolidation, but not reconsolidation of contextual fear memory in rats.

    PubMed

    Abdullahi, Payman Rasise; Eskandarian, Sharaf; Ghanbari, Ali; Rashidy-Pour, Ali

    2018-05-23

    There is increasing evidence that oxytocin is involved in learning and memory process. This study investigated the effects of blockade of oxytocin receptors using the selective oxytocin receptor antagonist atosiban (ATO) on contextual fear memory consolidation and reconsolidation in male rats. Post-training injections of different doses of ATO (1, 10, 100 or 1000 µg/kg) impaired the 48 h retention performance in a dose-dependent manner. The same doses of ATO following memory reactivation did not impair subsequent expression of contextual fear memories which formed under low or high shock intensities and tested 24 h or one week following memory reactivation. Also, no effect was found when ATO was administrated in the absence of memory reactivation. Our finding is the first report that indicates endogenous oxytocin released during training play an important role in the consolidation, but not reconsolidation of contextual fear memory in rats. Copyright © 2018. Published by Elsevier B.V.

  20. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task.

    PubMed

    Ewolds, Harald E; Bröker, Laura; de Oliveira, Rita F; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system.

  1. Implicit and Explicit Knowledge Both Improve Dual Task Performance in a Continuous Pursuit Tracking Task

    PubMed Central

    Ewolds, Harald E.; Bröker, Laura; de Oliveira, Rita F.; Raab, Markus; Künzell, Stefan

    2017-01-01

    The goal of this study was to investigate the effect of predictability on dual-task performance in a continuous tracking task. Participants practiced either informed (explicit group) or uninformed (implicit group) about a repeated segment in the curves they had to track. In Experiment 1 participants practices the tracking task only, dual-task performance was assessed after by combining the tracking task with an auditory reaction time task. Results showed both groups learned equally well and tracking performance on a predictable segment in the dual-task condition was better than on random segments. However, reaction times did not benefit from a predictable tracking segment. To investigate the effect of learning under dual-task situation participants in Experiment 2 practiced the tracking task while simultaneously performing the auditory reaction time task. No learning of the repeated segment could be demonstrated for either group during the training blocks, in contrast to the test-block and retention test, where participants performed better on the repeated segment in both dual-task and single-task conditions. Only the explicit group improved from test-block to retention test. As in Experiment 1, reaction times while tracking a predictable segment were no better than reaction times while tracking a random segment. We concluded that predictability has a positive effect only on the predictable task itself possibly because of a task-shielding mechanism. For dual-task training there seems to be an initial negative effect of explicit instructions, possibly because of fatigue, but the advantage of explicit instructions was demonstrated in a retention test. This might be due to the explicit memory system informing or aiding the implicit memory system. PMID:29312083

  2. Making Physiology Learning Memorable: A Mobile Phone-Assisted Case-Based Instructional Strategy

    ERIC Educational Resources Information Center

    Kukolja Taradi, S.; Taradi, M.

    2016-01-01

    The goal of the present study was to determine whether an active learning/teaching strategy facilitated with mobile technologies can improve students' levels of memory retention of key physiological concepts. We used a quasiexperimental pretest/posttest nonequivalent group design to compare the test performances of second-year medical students (n…

  3. Retention over a Period of REM or non-REM Sleep.

    ERIC Educational Resources Information Center

    Tilley, Andrew J.

    1981-01-01

    Subjects, awaked, presented with a word list, and tested with arousal measures, were reawaked during REM or non-REM sleep and retested. Recall was facilitated by REM sleep. It was hypothesized that the high arousal level associated with REM sleep incidentally maintained the memory trace in a more retrievable form. (Author/SJL)

  4. Test-Enhanced Learning in Third-Grade Children

    ERIC Educational Resources Information Center

    Jaeger, Antonio; Eisenkraemer, Raquel Eloísa; Stein, Lilian Milnitsky

    2015-01-01

    Several recent studies have shown that retrieval is more efficient than restudy in enhancing the long-term retention of memories. However, studies investigating this effect in children are still rare. Here, we report an experiment in which third-grade children initially read a brief encyclopaedic text twice and then either performed a cued recall…

  5. Methylphenidate does not enhance visual working memory but benefits motivation in macaque monkeys.

    PubMed

    Oemisch, Mariann; Johnston, Kevin; Paré, Martin

    2016-10-01

    Working memory is a limited-capacity cognitive process that retains relevant information temporarily to guide thoughts and behavior. A large body of work has suggested that catecholamines exert a major modulatory influence on cognition, but there is only equivocal evidence of a direct influence on working memory ability, which would be reflected in a dependence on working memory load. Here we tested the contribution of catecholamines to working memory by administering a wide range of acute oral doses of the dopamine and norepinephrine reuptake inhibitor methylphenidate (MPH, 0.1-9 mg/kg) to three female macaque monkeys (Macaca mulatta), whose working memory ability was measured from their performance in a visual sequential comparison task. This task allows the systematic manipulation of working memory load, and we therefore tested the specific hypothesis that MPH modulates performance in a manner that depends on both dose and memory load. We found no evidence of a dose- or memory load-dependent effect of MPH on performance. In contrast, significant effects on measures of motivation were observed. These findings suggest that an acute increase in catecholamines does not seem to affect the retention of visual information per se. As such, these results help delimit the effects of MPH on cognition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Neural circuit basis of visuo-spatial working memory precision: a computational and behavioral study.

    PubMed

    Almeida, Rita; Barbosa, João; Compte, Albert

    2015-09-01

    The amount of information that can be retained in working memory (WM) is limited. Limitations of WM capacity have been the subject of intense research, especially in trying to specify algorithmic models for WM. Comparatively, neural circuit perspectives have barely been used to test WM limitations in behavioral experiments. Here we used a neuronal microcircuit model for visuo-spatial WM (vsWM) to investigate memory of several items. The model assumes that there is a topographic organization of the circuit responsible for spatial memory retention. This assumption leads to specific predictions, which we tested in behavioral experiments. According to the model, nearby locations should be recalled with a bias, as if the two memory traces showed attraction or repulsion during the delay period depending on distance. Another prediction is that the previously reported loss of memory precision for an increasing number of memory items (memory load) should vanish when the distances between items are controlled for. Both predictions were confirmed experimentally. Taken together, our findings provide support for a topographic neural circuit organization of vsWM, they suggest that interference between similar memories underlies some WM limitations, and they put forward a circuit-based explanation that reconciles previous conflicting results on the dependence of WM precision with load. Copyright © 2015 the American Physiological Society.

  7. Weight and See: Loading Working Memory Improves Incidental Identification of Irrelevant Faces

    PubMed Central

    Carmel, David; Fairnie, Jake; Lavie, Nilli

    2012-01-01

    Are task-irrelevant stimuli processed to a level enabling individual identification? This question is central both for perceptual processing models and for applied settings (e.g., eye-witness testimony). Lavie’s load theory proposes that working memory actively maintains attentional prioritization of relevant over irrelevant information. Loading working memory thus impairs attentional prioritization, leading to increased processing of task-irrelevant stimuli. Previous research has shown that increased working memory load leads to greater interference effects from response-competing distractors. Here we test the novel prediction that increased processing of irrelevant stimuli under high working memory load should lead to a greater likelihood of incidental identification of entirely irrelevant stimuli. To test this, we asked participants to perform a word-categorization task while ignoring task-irrelevant images. The categorization task was performed during the retention interval of a working memory task with either low or high load (defined by memory set size). Following the final experimental trial, a surprise question assessed incidental identification of the irrelevant image. Loading working memory was found to improve identification of task-irrelevant faces, but not of building stimuli (shown in a separate experiment to be less distracting). These findings suggest that working memory plays a critical role in determining whether distracting stimuli will be subsequently identified. PMID:22912623

  8. Effects of acidic fibroblast growth factor on cholinergic neurons of nucleus basalis magnocellularis and in a spatial memory task following cortical devascularization.

    PubMed

    Figueiredo, B C; Piccardo, P; Maysinger, D; Clarke, P B; Cuello, A C

    1993-10-01

    The ability of acidic fibroblast growth factor to elicit a trophic response in the nervous system of the rat was tested in vitro and in vivo. Treatment of cultured septal cells with acidic fibroblast growth factor resulted in an elongation of glial processes as assessed by immunostaining for glial fibrillary acidic protein. Increased choline acetyltransferase was also observed. The responses to acidic fibroblast growth factor in vivo were studied in rats trained in a spatial memory task, using the Morris water maze. Randomly selected animals were subjected to unilateral cortical devascularization. This lesion results in partial unilateral infarction of the neocortex, and in retrograde degeneration of the nucleus basalis magnocellularis. Animals were tested post-lesion for memory retention and were then killed for morphological studies. Intracerebroventricular administration of acidic fibroblast growth factor (0.6 microgram/h for seven days starting at surgery) prevented the lesion-induced impairment in this test, and reduced the nucleus basalis magnocellularis cholinergic degeneration, as assessed by morphometric choline acetyltransferase-like immunoreactivity and radioenzymatic assay for choline acetyltransferase activity. The preservation of the phenotype of injured cholinergic neurons of the nucleus basalis magnocellularis by acidic fibroblast growth factor was indicated by the maintenance of the cross-sectional area of cell bodies and mean length of neuritic processes one month after surgery. The effect of acidic fibroblast growth factor in non-cholinergic cells remains to be investigated. It is suggested that acidic fibroblast growth factor may alleviate the lesion-induced deficit in the memory retention task by preventing disruption of functional connections between nucleus basalis magnocellularis and intact cortical areas.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Visual mental image generation does not overlap with visual short-term memory: a dual-task interference study.

    PubMed

    Borst, Gregoire; Niven, Elaine; Logie, Robert H

    2012-04-01

    Visual mental imagery and working memory are often assumed to play similar roles in high-order functions, but little is known of their functional relationship. In this study, we investigated whether similar cognitive processes are involved in the generation of visual mental images, in short-term retention of those mental images, and in short-term retention of visual information. Participants encoded and recalled visually or aurally presented sequences of letters under two interference conditions: spatial tapping or irrelevant visual input (IVI). In Experiment 1, spatial tapping selectively interfered with the retention of sequences of letters when participants generated visual mental images from aural presentation of the letter names and when the letters were presented visually. In Experiment 2, encoding of the sequences was disrupted by both interference tasks. However, in Experiment 3, IVI interfered with the generation of the mental images, but not with their retention, whereas spatial tapping was more disruptive during retention than during encoding. Results suggest that the temporary retention of visual mental images and of visual information may be supported by the same visual short-term memory store but that this store is not involved in image generation.

  10. Recall of Others' Actions after Incidental Encoding Reveals Episodic-like Memory in Dogs.

    PubMed

    Fugazza, Claudia; Pogány, Ákos; Miklósi, Ádám

    2016-12-05

    The existence of episodic memory in non-human animals is a debated topic that has been investigated using different methodologies that reflect diverse theoretical approaches to its definition. A fundamental feature of episodic memory is recalling after incidental encoding, which can be assessed if the recall test is unexpected [1]. We used a modified version of the "Do as I Do" method [2], relying on dogs' ability to imitate human actions, to test whether dogs can rely on episodic memory when recalling others' actions from the past. Dogs were first trained to imitate human actions on command. Next, they were trained to perform a simple training exercise (lying down), irrespective of the previously demonstrated action. This way, we substituted their expectation to be required to imitate with the expectation to be required to lie down. We then tested whether dogs recalled the demonstrated actions by unexpectedly giving them the command to imitate, instead of lying down. Dogs were tested with a short (1 min) and a long (1 hr) retention interval. They were able to recall the demonstrated actions after both intervals; however, their performance declined more with time compared to conditions in which imitation was expected. These findings show that dogs recall past events as complex as human actions even if they do not expect the memory test, providing evidence for episodic-like memory. Dogs offer an ideal model to study episodic memory in non-human species, and this methodological approach allows investigating memory of complex, context-rich events. VIDEO ABSTRACT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Feature bindings are maintained in visual short-term memory without sustained focused attention.

    PubMed

    Delvenne, Jean-François; Cleeremans, Axel; Laloyaux, Cédric

    2010-01-01

    Does the maintenance of feature bindings in visual short-term memory (VSTM) require sustained focused attention? This issue was investigated in three experiments, in which memory for single features (i.e., colors or shapes) was compared with memory for feature bindings (i.e., the link between the color and shape of an object). Attention was manipulated during the memory retention interval with a retro-cue, which allows attention to be directed and focused on a subset of memory items. The retro-cue was presented 700 ms after the offset of the memory display and 700 ms before the onset of the test display. If the maintenance of feature bindings - but not of individual features - in memory requires sustained focused attention, the retro-cue should not affect memory performance. Contrary to this prediction, we found that both memory for feature bindings and memory for individual features were equally improved by the retro-cue. Therefore, this finding does not support the view that the sustained focused attention is needed to properly maintain feature bindings in VSTM.

  12. No Evidence for Memory Decontextualization across One Night of Sleep

    PubMed Central

    Jurewicz, Katarzyna; Cordi, Maren Jasmin; Staudigl, Tobias; Rasch, Björn

    2016-01-01

    Sleep after learning strengthens memory consolidation. According to the active system consolidation hypothesis, sleep supports the integration of newly acquired memories into cortical knowledge networks, presumably accompanied by a process of decontextualization of the memory trace (i.e., a gradual loss of memory for the learning context). However, the availability of contextual information generally facilitates memory recall and studies on the interaction of sleep and context on memory retrieval have revealed inconsistent results. Here, we do not find any evidence for a role of sleep in the decontextualization of newly learned declarative memories. In two separate studies, 104 healthy young adults incidentally learned words associated with a context. After a 12 h retention interval filled with either sleep or wakefulness, recall (Experiment 1) or recognition (Experiment 2) was tested with the same or different context. Overall, memory retrieval was significantly improved when the learning context was reinstated, as compared to a different context. However, this context effect of memory was not modulated by sleep vs. wakefulness. These findings argue against a decontextualization of memories, at least across a single night of sleep. PMID:26858622

  13. Mood-congruent false memories persist over time.

    PubMed

    Knott, Lauren M; Thorley, Craig

    2014-01-01

    In this study, we examined the role of mood-congruency and retention interval on the false recognition of emotion laden items using the Deese/Roediger-McDermott (DRM) paradigm. Previous research has shown a mood-congruent false memory enhancement during immediate recognition tasks. The present study examined the persistence of this effect following a one-week delay. Participants were placed in a negative or neutral mood, presented with negative-emotion and neutral-emotion DRM word lists, and administered with both immediate and delayed recognition tests. Results showed that a negative mood state increased remember judgments for negative-emotion critical lures, in comparison to neutral-emotion critical lures, on both immediate and delayed testing. These findings are discussed in relation to theories of spreading activation and emotion-enhanced memory, with consideration of the applied forensic implications of such findings.

  14. Peripheral Administration of GSK-3β Antisense Oligonucleotide Improves Learning and Memory in SAMP8 and Tg2576 Mouse Models of Alzheimer's Disease.

    PubMed

    Farr, Susan A; Sandoval, Karin E; Niehoff, Michael L; Witt, Ken A; Kumar, Vijaya B; Morley, John E

    2016-10-18

    Glycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier. Herein the impact of peripherally administered GAO in both the non-transgenic SAMP8 and transgenic Tg2576 (APPswe) models of AD were examined respective to learning and memory. Brain tissues were then evaluated for expression changes in the phosphorylated-Tyr 216 residue, which leads to GSK-3β activation, and the phosphorylated-Ser9 residue, which reduces GSK-3β activity. SAMP8 GAO-treated mice showed improved acquisition and retention using aversive T-maze, and improved declarative memory as measured by the novel object recognition (NOR) test. Expression of the phosphorylated-Tyr 216 was decreased and the phosphorylated-Ser9 was increased in GAO-treated SAMP8 mice. Tg2576 GAO-treated mice improved acquisition and retention in both the T-maze and NOR tests, with an increased phosphorylated-Ser9 GSK-3β expression. Results demonstrate that peripheral administration of GAO improves learning and memory, corresponding with alterations in GSK-3β phosphorylation state. This study supports peripherally administered GAO as a viable means to mediate GSK-3β activity within the brain and a possible treatment for AD.

  15. Nicotinic α7 and α4β2 agonists enhance the formation and retrieval of recognition memory: Potential mechanisms for cognitive performance enhancement in neurological and psychiatric disorders.

    PubMed

    McLean, Samantha L; Grayson, Ben; Marsh, Samuel; Zarroug, Samah H O; Harte, Michael K; Neill, Jo C

    2016-04-01

    Cholinergic dysfunction has been shown to be central to the pathophysiology of Alzheimer's disease and has also been postulated to contribute to cognitive dysfunction observed in various psychiatric disorders, including schizophrenia. Deficits are found across a number of cognitive domains and in spite of several attempts to develop new therapies, these remain an unmet clinical need. In the current study we investigated the efficacy of donepezil, risperidone and selective nicotinic α7 and α4β2 receptor agonists to reverse a delay-induced deficit in recognition memory. Adult female Hooded Lister rats received drug treatments and were tested in the novel object recognition (NOR) task following a 6h inter-trial interval (ITI). In all treatment groups, there was no preference for the left or right identical objects in the acquisition trial. Risperidone failed to enhance recognition memory in this paradigm whereas donepezil was effective such that rats discriminated between the novel and familiar object in the retention trial following a 6h ITI. Although a narrow dose range of PNU-282987 and RJR-2403 was tested, only one dose of each increased recognition memory, the highest dose of PNU-282987 (10mg/kg) and the lowest dose of RJR-2403 (0.1mg/kg), indicative of enhanced cognitive performance. Interestingly, these compounds were also efficacious when administered either before the acquisition or the retention trial of the task, suggesting an important role for nicotinic receptor subtypes in the formation and retrieval of recognition memory. Copyright © 2016. Published by Elsevier B.V.

  16. Cannabinoid facilitation of fear extinction memory recall in humans

    PubMed Central

    Rabinak, Christine A.; Angstadt, Mike; Sripada, Chandra S.; Abelson, James L.; Liberzon, Israel; Milad, Mohammed R.; Phan, K. Luan

    2012-01-01

    A first-line approach to treat anxiety disorders is exposure-based therapy, which relies on extinction processes such as repeatedly exposing the patient to stimuli (conditioned stimuli; CS) associated with the traumatic, fear-related memory. However, a significant number of patients fail to maintain their gains, partly attributed to the fact that this inhibitory learning and its maintenance is temporary and conditioned fear responses can return. Animal studies have shown that activation of the cannabinoid system during extinction learning enhances fear extinction and its retention. Specifically, CB1 receptor agonists, such as Δ9-tetrahydrocannibinol (THC), can facilitate extinction recall by preventing recovery of extinguished fear in rats. However, this phenomenon has not been investigated in humans. We conducted a study using a randomized, double-blind, placebo-controlled, between-subjects design, coupling a standard Pavlovian fear extinction paradigm and simultaneous skin conductance response (SCR) recording with an acute pharmacological challenge with oral dronabinol (synthetic THC) or placebo (PBO) 2 hours prior to extinction learning in 29 healthy adult volunteers (THC = 14; PBO = 15) and tested extinction retention 24 hours after extinction learning. Compared to subjects that received PBO, subjects that received THC showed low SCR to a previously extinguished CS when extinction memory recall was tested 24 hours after extinction learning, suggesting that THC prevented the recovery of fear. These results provide the first evidence that pharmacological enhancement of extinction learning is feasible in humans using cannabinoid system modulators, which may thus warrant further development and clinical testing. PMID:22796109

  17. Training-Associated Emotional Arousal Shapes Endocannabinoid Modulation of Spatial Memory Retrieval in Rats.

    PubMed

    Morena, Maria; De Castro, Valentina; Gray, J Megan; Palmery, Maura; Trezza, Viviana; Roozendaal, Benno; Hill, Matthew N; Campolongo, Patrizia

    2015-10-14

    Variations in environmental aversiveness influence emotional memory processes in rats. We have previously shown that cannabinoid effects on memory are dependent on the stress level at the time of training as well as on the aversiveness of the environmental context. Here, we investigated whether the hippocampal endocannabinoid system modulates memory retrieval depending on the training-associated arousal level. Male adult Sprague Dawley rats were trained on a water maze spatial task at two different water temperatures (19°C and 25°C) to elicit either higher or lower stress levels, respectively. Rats trained under the higher stress condition had better memory and higher corticosterone concentrations than rats trained at the lower stress condition. The cannabinoid receptor agonist WIN55212-2 (10-30 ng/side), the 2-arachidonoyl glycerol (2-AG) hydrolysis inhibitor JZL184 (0.1-1 μg/side), and the anandamide (AEA) hydrolysis inhibitor URB597 (10-30 ng/side) were administered bilaterally into the hippocampus 60 min before probe-trial retention testing. WIN55212-2 or JZL184, but not URB597, impaired probe-trial performances only of rats trained at the higher stressful condition. Furthermore, rats trained under higher stress levels displayed an increase in hippocampal 2-AG, but not AEA, levels at the time of retention testing and a decreased affinity of the main 2-AG-degrading enzyme for its substrate. The present findings indicate that the endocannabinoid 2-AG in the hippocampus plays a key role in the selective regulation of spatial memory retrieval of stressful experience, shedding light on the neurobiological mechanisms involved in the impact of stress effects on memory processing. Endogenous cannabinoids play a central role in the modulation of memory for emotional events. Here we demonstrate that the endocannabinoid 2-arachidonoylglycerol in the hippocampus, a brain region crucially involved in the regulation of memory processes, selectively modulates spatial memory recall of stressful experiences. Thus, our findings provide evidence that the endocannabinoid 2-arachidonoylglycerol is a key player in mediating the impact of stress on memory retrieval. These findings can pave the way to new potential therapeutic intervention for the treatment of neuropsychiatric disorders, such as post-traumatic stress disorder, where a previous exposure to traumatic events could alter the response to traumatic memory recall leading to mental illness. Copyright © 2015 the authors 0270-6474/15/3513963-13$15.00/0.

  18. Effects of social instability stress in adolescence on long-term, not short-term, spatial memory performance.

    PubMed

    Green, Matthew R; McCormick, Cheryl M

    2013-11-01

    There is evidence that exposure to stressors in adolescence leads to lasting deficits on hippocampal-dependent tasks, but whether medial prefrontal cortical function is also impaired is unknown. We previously found that rats exposed to social instability stress in adolescence (SS; daily 1h isolation and subsequent change of cage partner between postnatal days 30 and 45) had impaired memory performance on a Spatial Object Location test and in memory for fear conditioning context, tasks that depend on the integrity of the hippocampus. Here we investigated whether impaired performance would be evident after adolescent SS in male rats on a different test of hippocampal function, spatial learning and memory in the Morris water maze (MWM) and on a working memory task for which performance depends on the integrity of the medial prefrontal cortex, the Delayed Alternation task (DAT). During MWM testing, SS rats showed greater improvements in performance across trials within days compared to control (CTL) rats, but showed less retention of learning between days (48 h) compared to CTL rats. Similarly, SS rats had impaired long-term memory in the Spatial Object Location test after a long delay (240 min), but not after shorter delays (15 or 60 min) compared to CTL rats. No group differences were observed on the DAT, which assessed working memory across brief delays (5-90 s). Thus, deficits in memory performance after chronic social stress in adolescence may be limited to long-term memory. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Normalizing memory recall in fibromyalgia with rehearsal: a distraction-counteracting effect.

    PubMed

    Leavitt, Frank; Katz, Robert S

    2009-06-15

    To examine the impact of distraction on the retention of rehearsed information in patients with fibromyalgia syndrome (FMS). Data refer to the neurocognitive examination of 134 patients (91 with FMS and 43 control subjects) presenting with memory loss. Four neurocognitive measures free of distraction, along with 2 measures with added distraction, were completed. Differences in the retention of rehearsed and unrehearsed information with a source of distraction present were calculated. Patients with FMS showed normal cognitive functioning on verbal memory tests free of distraction. Adding a source of distraction caused unrefreshed information to be lost at a disproportionate rate in patients with FMS. Over 87% of patients with FMS scored in the impaired range on a task of unrehearsed verbal memory. Adding a source of distraction to well-rehearsed information produced a normal rate of recall in FMS. Rehearsal mechanisms are intact in patients with FMS and play beneficial roles in managing interference from a source of distraction. In the absence of rehearsal, a source of distraction added to unrefreshed information signals a remarkable level of cognitive deficit in FMS that goes undetected by conventionally relied-upon neurocognitive measures. We present a theory to promote understanding of the cognitive deficit of people with FMS based on reduced speed of lexical activation and poor recall after distraction.

  20. The impact of monetary reward on memory in schizophrenia spectrum disorder.

    PubMed

    Thornton, Allen E; Boudreau, Vanessa G; Griffiths, Stephanie Y; Woodward, Todd S; Fawkes-Kirby, Tanya; Honer, William G

    2007-09-01

    The impact of monetary reward on verbal working memory (vWM) and verbal long-term memory (vLTM) was evaluated in 50 patients with schizophrenia spectrum disorders and 52 matched healthy participants. This research was motivated by the observations that negative symptoms in schizophrenia are associated with reduced drive and that patients with these symptoms exhibit greater mnemonic impairments. Reward-related gains were evaluated across two levels of vWM load on the n-back task and across three aspects of vLTM derived from the California Verbal Learning Test-II (i.e., learning, total immediate recall, and retention). Although healthy individuals benefited from reward at a high vWM load level, schizophrenia patients exhibited no reward-related improvements in vWM. In contrast, improvement in vLTM retention was induced by reward for both patients and controls. Finally, symptomatic and pharmacology treatment factors were associated with reward-related gains in persons with schizophrenia. In conclusion, contingent monetary rewards delivered during vWM and vLTM enhanced specific aspects of memory. The influence was relatively small and dependent on the specific neurocognitive operation examined, the mental health status of the participants, and for patients, their particular symptoms and pharmacological treatments. (PsycINFO Database Record (c) 2007 APA, all rights reserved).

  1. Colour in Learning: Its Effect on the Retention Rate of Graduate Students

    ERIC Educational Resources Information Center

    Olurinola, Oluwakemi; Tayo, Omoniyi

    2015-01-01

    Cognitive psychologists have discovered different design principles to enhance memory performance. It has been said that retrieving process depends on many variables and one of them is colour. This paper provides an overview of research on colour and learning. It includes the effect of colour on attention, retention and memory performance, and…

  2. Visual Short-Term Memory in Low IQ Adult Functional Illiterates.

    ERIC Educational Resources Information Center

    Fischer, Joan

    The purposes of this study were to determine if differences in acquisition and retention existed between low IQ adults and normal twelve-year-olds, and to discover if differences in acquisition and retention of low IQ adults were affected by contrast conditions. Procedures established by Mahoney when he investigated visual short-term memory in…

  3. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition.

    PubMed

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance-contingent reward in a test can undermine long-term knowledge acquisition.

  4. Providing Extrinsic Reward for Test Performance Undermines Long-Term Memory Acquisition

    PubMed Central

    Kuhbandner, Christof; Aslan, Alp; Emmerdinger, Kathrin; Murayama, Kou

    2016-01-01

    Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance–contingent reward in a test can undermine long-term knowledge acquisition. PMID:26869978

  5. Memory Before and After Sleep in Patients with Moderate Obstructive Sleep Apnea

    PubMed Central

    Kloepfer, Corinna; Riemann, Dieter; Nofzinger, Eric A.; Feige, Bernd; Unterrainer, Josef; O'Hara, Ruth; Sorichter, Stephan; Nissen, Christoph

    2009-01-01

    Objective: The aim of this study was to investigate the effects of obstructive sleep apnea (OSA) on procedural and declarative memory encoding in the evening prior to sleep, on memory consolidation during subsequent sleep, and on retrieval in the morning after sleep. Methods: Memory performance (procedural mirror-tracing task, declarative visual and verbal memory task) and general neuropsychological performance were assessed before and after one night of polysomnographic monitoring in 15 patients with moderate OSA and 20 age-, sex-, and IQ-matched healthy subjects. Results: Encoding levels prior to sleep were similar across groups for all tasks. Conventional analyses of averaged mirror tracing performance suggested a significantly reduced overnight improvement in OSA patients. Single trial analyses, however, revealed that this effect was due to significantly flattened learning curves in the evening and morning session in OSA patients. OSA patients showed a significantly lower verbal retention rate and a non-significantly reduced visual retention rate after sleep compared to healthy subjects. Polysomnography revealed a significantly reduced REM density, increased frequency of micro-arousals, elevated apnea-hypopnea index, and subjectively disturbed sleep quality in OSA patients compared to healthy subjects. Conclusions: The results suggest that moderate OSA is associated with a significant impairment of procedural and verbal declarative memory. Future work is needed to further determine the contribution of structural or functional alterations in brain circuits relevant for memory, and to test whether OSA treatment improves or normalizes the observed deficits in learning. Citation: Kloepfer C; Riemann D; Nofzinger EA; Feige B; Unterrainer J; O'Hara R; Sorichter S; Nissen C. Memory before and after sleep in patients with moderate obstructive sleep apnea. J Clin Sleep Med 2009;5(6):540-548. PMID:20465021

  6. Dissociating the contributions of slow-wave sleep and rapid eye movement sleep to emotional item and source memory.

    PubMed

    Groch, S; Zinke, K; Wilhelm, I; Born, J

    2015-07-01

    Sleep benefits the consolidation of emotional memories, and this influence is commonly attributed to the rapid eye movement (REM) stage of sleep. However, the contributions of sleep stages to memory for an emotional episode may differ for the event per se (i.e., item memory), and the context in which it occurred (source memory). Here, we examined the effects of slow wave sleep (SWS) and REM sleep on the consolidation of emotionally negative and neutral item (picture recognition) and source memory (recall of picture-location and picture-frame color association) in humans. In Study 1, the participants (n=18) learned 48 negative and 48 neutral pictures which were presented at specific locations and preceded by colored frames that had to be associated with the picture. In a within-subject design, learning was either followed by a 3-h early-night SWS-rich or by a late-night REM sleep-rich retention interval, then retrieval was tested. Only after REM-rich sleep, and not after SWS-rich sleep, was there a significant emotional enhancement, i.e., a significantly superior retention of emotional over neutral pictures. On the other hand, after SWS-rich sleep the retention of picture-frame color associations was better than after REM-rich sleep. However, this benefit was observed only for neutral pictures; and it was completely absent for the emotional pictures. To examine whether this absent benefit reflected a suppressive effect of emotionality on associations of minor task relevance, in Study 2 we manipulated the relevance of the picture-frame color association by combining it with information about monetary reward, following otherwise comparable procedures. Here, rewarded picture-frame color associations were equally well retained over SWS-rich early sleep no matter if the frames were associated with emotional or neutral pictures. Results are consistent with the view that REM sleep favors the emotional enhancement of item memory whereas SWS appears to contribute primarily to the consolidation of context-color information associated with the item. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Drift in Neural Population Activity Causes Working Memory to Deteriorate Over Time.

    PubMed

    Schneegans, Sebastian; Bays, Paul M

    2018-05-23

    Short-term memories are thought to be maintained in the form of sustained spiking activity in neural populations. Decreases in recall precision observed with increasing number of memorized items can be accounted for by a limit on total spiking activity, resulting in fewer spikes contributing to the representation of each individual item. Longer retention intervals likewise reduce recall precision, but it is unknown what changes in population activity produce this effect. One possibility is that spiking activity becomes attenuated over time, such that the same mechanism accounts for both effects of set size and retention duration. Alternatively, reduced performance may be caused by drift in the encoded value over time, without a decrease in overall spiking activity. Human participants of either sex performed a variable-delay cued recall task with a saccadic response, providing a precise measure of recall latency. Based on a spike integration model of decision making, if the effects of set size and retention duration are both caused by decreased spiking activity, we would predict a fixed relationship between recall precision and response latency across conditions. In contrast, the drift hypothesis predicts no systematic changes in latency with increasing delays. Our results show both an increase in latency with set size, and a decrease in response precision with longer delays within each set size, but no systematic increase in latency for increasing delay durations. These results were quantitatively reproduced by a model based on a limited neural resource in which working memories drift rather than decay with time. SIGNIFICANCE STATEMENT Rapid deterioration over seconds is a defining feature of short-term memory, but what mechanism drives this degradation of internal representations? Here, we extend a successful population coding model of working memory by introducing possible mechanisms of delay effects. We show that a decay in neural signal over time predicts that the time required for memory retrieval will increase with delay, whereas a random drift in the stored value predicts no effect of delay on retrieval time. Testing these predictions in a multi-item memory task with an eye movement response, we identified drift as a key mechanism of memory decline. These results provide evidence for a dynamic spiking basis for working memory, in contrast to recent proposals of activity-silent storage. Copyright © 2018 Schneegans and Bays.

  8. Episodic and Semantic Aspects of Memory for Prose.

    ERIC Educational Resources Information Center

    Dooling, D. James

    This report describes research on Bartlett's theory of constructive memory. In experiment one, schematic retention is related to Tulving's distinction between episodic and semantic memory. With the passage of time, memory for prose reflects decreasing output from episodic memory and increasing output from semantic memory. In experiment two,…

  9. Cortisol reduces recall of explicit contextual pain memory in healthy young men.

    PubMed

    Schwegler, Kyrill; Ettlin, Dominik; Buser, Iris; Klaghofer, Richard; Goetzmann, Lutz; Buddeberg, Claus; Alon, Eli; Brügger, Mike; de Quervain, Dominique J-F

    2010-09-01

    Remembering painful incidents has important adaptive value but may also contribute to clinical symptoms of posttraumatic stress disorder and chronic pain states. Because glucocorticoids are known to impair memory retrieval processes, we investigated whether cortisol affects recall of previously experienced pain in healthy young men. In a double-blind, placebo-controlled crossover study, 20 male participants were presented pictures, half of them combined with a heat-pain stimulus. The next day, the same pictures were shown in the absence of pain. Cortisol (20 mg) administered 1h before retention testing reduced recall of explicit contextual pain memory, whereas it did not affect pain threshold or pain tolerance. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Get the gist? The effects of processing depth on false recognition in short-term and long-term memory.

    PubMed

    Flegal, Kristin E; Reuter-Lorenz, Patricia A

    2014-07-01

    Gist-based processing has been proposed to account for robust false memories in the converging-associates task. The deep-encoding processes known to enhance verbatim memory also strengthen gist memory and increase distortions of long-term memory (LTM). Recent research has demonstrated that compelling false memory illusions are relatively delay-invariant, also occurring under canonical short-term memory (STM) conditions. To investigate the contributions of gist to false memory at short and long delays, processing depth was manipulated as participants encoded lists of four semantically related words and were probed immediately, following a filled 3- to 4-s retention interval, or approximately 20 min later, in a surprise recognition test. In two experiments, the encoding manipulation dissociated STM and LTM on the frequency, but not the phenomenology, of false memory. Deep encoding at STM increases false recognition rates at LTM, but confidence ratings and remember/know judgments are similar across delays and do not differ as a function of processing depth. These results suggest that some shared and some unique processes underlie false memory illusions at short and long delays.

  11. A brief period of eyes-closed rest enhances motor skill consolidation.

    PubMed

    Humiston, Graelyn B; Wamsley, Erin J

    2018-06-05

    Post-training sleep benefits both declarative and procedural memory consolidation. However, recent research suggests that eyes-closed waking rest may provide a similar benefit. Brokaw et al. (2016), for example, recently demonstrated that verbal declarative memory improved more following a 15 min period of waking rest, in comparison to 15 min of active wake. Here, we used the same procedures to test whether procedural memory similarly benefits from waking rest. Participants were trained on the Motor Sequence Task (MST), followed by a 15 min retention interval during which they either rested with their eyes closed or completed a distractor task. Rest significantly enhanced MST performance, mirroring the effect observed in Brokaw et al. (2016) and demonstrating that waking rest benefits the early stages of procedural memory. An additional group of participants tested 4 h later displayed no effect of rest. Overall, these results suggest that the early MST performance "boost" described in prior studies may depend on post-learning state. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Short-term memory affects color perception in context.

    PubMed

    Olkkonen, Maria; Allred, Sarah R

    2014-01-01

    Color-based object selection - for instance, looking for ripe tomatoes in the market - places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly.

  13. Control of information in working memory: Encoding and removal of distractors in the complex-span paradigm.

    PubMed

    Oberauer, Klaus; Lewandowsky, Stephan

    2016-11-01

    The article reports four experiments with complex-span tasks in which encoding of memory items alternates with processing of distractors. The experiments test two assumptions of a computational model of complex span, SOB-CS: (1) distractor processing impairs memory because distractors are encoded into working memory, thereby interfering with memoranda; and (2) free time following distractors is used to remove them from working memory by unbinding their representations from list context. Experiment 1 shows that distractors are erroneously chosen for recall more often than not-presented stimuli, demonstrating that distractors are encoded into memory. Distractor intrusions declined with longer free time, as predicted by distractor removal. Experiment 2 shows these effects even when distractors precede the memory list, ruling out an account based on selective rehearsal of memoranda during free time. Experiments 3 and 4 test the notion that distractors decay over time. Both experiments show that, contrary to the notion of distractor decay, the chance of a distractor intruding at test does not decline with increasing time since encoding of that distractor. Experiment 4 provides additional evidence against the prediction from distractor decay that distractor intrusions decline over an unfilled retention interval. Taken together, the results support SOB-CS and rule out alternative explanations. Data and simulation code are available on Open Science Framework: osf.io/3ewh7. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Role of state-dependent learning in the cognitive effects of caffeine in mice.

    PubMed

    Sanday, Leandro; Zanin, Karina A; Patti, Camilla L; Fernandes-Santos, Luciano; Oliveira, Larissa C; Longo, Beatriz M; Andersen, Monica L; Tufik, Sergio; Frussa-Filho, Roberto

    2013-08-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine before training and/or before testing both in the plus-maze discriminative avoidance task (an animal model that concomitantly evaluates learning, memory, anxiety-like behaviour and general activity) and in the inhibitory avoidance task, a classic paradigm for evaluating memory in rodents. Pre-training caffeine administration did not modify learning, but produced an anxiogenic effect and impaired memory retention. While pre-test administration of caffeine did not modify retrieval on its own, the pre-test administration counteracted the memory deficit induced by the pre-training caffeine injection in both the plus-maze discriminative and inhibitory avoidance tasks. Our data demonstrate that caffeine-induced memory deficits are critically related to state-dependent learning, reinforcing the importance of considering the participation of state-dependency on the interpretation of the cognitive effects of caffeine. The possible participation of caffeine-induced anxiety alterations in state-dependent memory deficits is discussed.

  15. Timing matters: negative emotion elicited 5 min but not 30 min or 45 min after learning enhances consolidation of internal-monitoring source memory.

    PubMed

    Wang, Bo; Bukuan, Sun

    2015-05-01

    Two experiments examined the time-dependent effects of negative emotion on consolidation of item and internal-monitoring source memory. In Experiment 1, participants (n=121) learned a list of words. They were asked to read aloud half of the words and to think about the remaining half. They were instructed to memorize each word and its associative cognitive operation ("reading" versus "thinking"). Immediately following learning they conducted free recall and then watched a 3-min either neutral or negative video clip when 5 min, 30 min or 45 min had elapsed after learning. Twenty-four hours later they returned to take surprise tests for item and source memory. Experiment 2 was similar to Experiment 1 except that participants, without conducting an immediate test of free recall, took tests of source memory for all encoded words both immediately and 24 h after learning. Experiment 1 showed that negative emotion enhanced consolidation of item memory (as measured by retention ratio of free recall) regardless of delay of emotion elicitation and that negative emotion enhanced consolidation of source memory when it was elicited at a 5 min delay but reduced consolidation of source memory when it was elicited at a 30 min delay; when elicited at a 45 min delay, negative emotion had little effect. Furthermore, Experiment 2 replicated the enhancement effect on source memory in the 5 min delay even when participants were tested on all the encoded words. The current study partially replicated prior studies on item memory and extends the literature by providing evidence for a time-dependent effect of negative emotion on consolidation of source memory based on internal monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Revisiting the rise and fall of false recall: presentation rate effects depend on retention interval.

    PubMed

    Smith, Troy A; Kimball, Daniel R

    2012-01-01

    Leading theories of false memory predict that veridical and false recall of lists of semantically associated words can be dissociated by varying the presentation speed during study. Specifically, as presentation rate increases from milliseconds to seconds, veridical recall is predicted to increase monotonically while false recall is predicted to show a rapid rise and then a slow decrease--a pattern shown by McDermott and Watson (2001) in a study using immediate recall tests. In three experiments we tested the generality of the effects of rapid presentation rates on veridical and false memory. In Experiments 1 and 2 participants exhibited high levels of false recall on a delayed recall test, even for very fast stimulus onset asynchronies (SOA)--contrary to predictions from leading theories of false memory. When we switched to an immediate recall test in Experiment 3 we replicated the pattern predicted by the theories and observed by McDermott and Watson. Follow-up analyses further showed that the relative output position of false recalls is not affected by presentation rate, contrary to predictions from fuzzy trace theory. Implications for theories of false memory, including activation monitoring theory and fuzzy trace theory, are discussed.

  17. Improved speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiwei; Huo, Zongliang; Zhang, Manhong; Zhu, Chenxin; Liu, Jing; Liu, Ming

    2011-10-01

    This paper reports the simultaneous improvements in erase speed and data retention characteristics in flash memory using a stacked HfO2/Ta2O5 charge-trapping layer. In comparison to a memory capacitor with a single HfO2 trapping layer, the erase speed of a memory capacitor with a stacked HfO2/Ta2O5 charge-trapping layer is 100 times faster and its memory window is enlarged from 2.7 to 4.8 V for the same ±16 V sweeping voltage range. With the same initial window of ΔVFB = 4 V, the device with a stacked HfO2/Ta2O5 charge-trapping layer has a 3.5 V extrapolated 10-year retention window, while the control device with a single HfO2 trapping layer has only 2.5 V for the extrapolated 10-year window. The present results demonstrate that the device with the stacked HfO2/Ta2O5 charge-trapping layer has a strong potential for future high-performance nonvolatile memory application.

  18. Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor)

    1992-01-01

    Thin film ferroelectric capacitors comprising a ferroelectric film sandwiched between electrodes for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode. The anneal is done so as to form the interface between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550 to 600 C for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the nonswitching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the nonswitching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.

  19. Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top electrode anneal treatment

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor)

    1994-01-01

    Thin film ferroelectric capacitors (10) comprising a ferroelectric film (18) sandwiched between electrodes (16 and 20) for nonvolatile memory operations are rendered more stable by subjecting the capacitors to an anneal following deposition of the top electrode (20). The anneal is done so as to form the interface (22) between the ferroelectric film and the top electrode. Heating in an air oven, laser annealing, or electron bombardment may be used to form the interface. Heating in an air oven is done at a temperature at least equal to the crystallization temperature of the ferroelectric film. Where the ferroelectric film comprises lead zirconate titanate, annealing is done at about 550.degree. to 600.degree. C. for about 10 to 15 minutes. The formation treatment reduces the magnitude of charge associated with the non-switching pulse in the thin film ferroelectric capacitors. Reduction of this charge leads to significantly more stable nonvolatile memory operations in both digital and analog memory devices. The formation treatment also reduces the ratio of change of the charge associated with the non-switching pulse as a function of retention time. These improved memory devices exhibit greater performance in retention and reduced fatigue in memory arrays.

  20. No recovery of memory when cognitive load is decreased.

    PubMed

    Ricker, Timothy J; Vergauwe, Evie; Hinrichs, Garrett A; Blume, Christopher L; Cowan, Nelson

    2015-05-01

    There is substantial debate in the field of short-term memory (STM) as to whether the process of active maintenance occurs through memory-trace reactivation or repair. A key difference between these 2 potential mechanisms is that a repair mechanism should lead to recovery of forgotten information. The ability to recover forgotten memories would be a panacea for STM and if possible, would warrant much future research. We examine the topic of STM recovery by varying the cognitive load of a secondary task and duration of retention of word pairs. In our key manipulation, we lighten the cognitive load partway through the retention interval, resulting in an easier task during the later portion of retention and more time for active maintenance processes to take place. Although the natural prediction arising from a repair mechanism is that memory accuracy should increase after transitioning to an easier load, we find that accuracy decreases or levels off at this point. We see this pattern across 3 experiments and can only conclude that the panacea of STM recovery does not exist. Implications for the debate over memory maintenance mechanisms are discussed. (c) 2015 APA, all rights reserved).

  1. Rapid learning dynamics in individual honeybees during classical conditioning.

    PubMed

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla-Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled.

  2. Rapid learning dynamics in individual honeybees during classical conditioning

    PubMed Central

    Pamir, Evren; Szyszka, Paul; Scheiner, Ricarda; Nawrot, Martin P.

    2014-01-01

    Associative learning in insects has been studied extensively by a multitude of classical conditioning protocols. However, so far little emphasis has been put on the dynamics of learning in individuals. The honeybee is a well-established animal model for learning and memory. We here studied associative learning as expressed in individual behavior based on a large collection of data on olfactory classical conditioning (25 datasets, 3298 animals). We show that the group-averaged learning curve and memory retention score confound three attributes of individual learning: the ability or inability to learn a given task, the generally fast acquisition of a conditioned response (CR) in learners, and the high stability of the CR during consecutive training and memory retention trials. We reassessed the prevailing view that more training results in better memory performance and found that 24 h memory retention can be indistinguishable after single-trial and multiple-trial conditioning in individuals. We explain how inter-individual differences in learning can be accommodated within the Rescorla–Wagner theory of associative learning. In both data-analysis and modeling we demonstrate how the conflict between population-level and single-animal perspectives on learning and memory can be disentangled. PMID:25309366

  3. Cortical networks dynamically emerge with the interplay of slow and fast oscillations for memory of a natural scene.

    PubMed

    Mizuhara, Hiroaki; Sato, Naoyuki; Yamaguchi, Yoko

    2015-05-01

    Neural oscillations are crucial for revealing dynamic cortical networks and for serving as a possible mechanism of inter-cortical communication, especially in association with mnemonic function. The interplay of the slow and fast oscillations might dynamically coordinate the mnemonic cortical circuits to rehearse stored items during working memory retention. We recorded simultaneous EEG-fMRI during a working memory task involving a natural scene to verify whether the cortical networks emerge with the neural oscillations for memory of the natural scene. The slow EEG power was enhanced in association with the better accuracy of working memory retention, and accompanied cortical activities in the mnemonic circuits for the natural scene. Fast oscillation showed a phase-amplitude coupling to the slow oscillation, and its power was tightly coupled with the cortical activities for representing the visual images of natural scenes. The mnemonic cortical circuit with the slow neural oscillations would rehearse the distributed natural scene representations with the fast oscillation for working memory retention. The coincidence of the natural scene representations could be obtained by the slow oscillation phase to create a coherent whole of the natural scene in the working memory. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Human area MT+ shows load-dependent activation during working memory maintenance with continuously morphing stimulation.

    PubMed

    Galashan, Daniela; Fehr, Thorsten; Kreiter, Andreas K; Herrmann, Manfred

    2014-07-11

    Initially, human area MT+ was considered a visual area solely processing motion information but further research has shown that it is also involved in various different cognitive operations, such as working memory tasks requiring motion-related information to be maintained or cognitive tasks with implied or expected motion.In the present fMRI study in humans, we focused on MT+ modulation during working memory maintenance using a dynamic shape-tracking working memory task with no motion-related working memory content. Working memory load was systematically varied using complex and simple stimulus material and parametrically increasing retention periods. Activation patterns for the difference between retention of complex and simple memorized stimuli were examined in order to preclude that the reported effects are caused by differences in retrieval. Conjunction analysis over all delay durations for the maintenance of complex versus simple stimuli demonstrated a wide-spread activation pattern. Percent signal change (PSC) in area MT+ revealed a pattern with higher values for the maintenance of complex shapes compared to the retention of a simple circle and with higher values for increasing delay durations. The present data extend previous knowledge by demonstrating that visual area MT+ presents a brain activity pattern usually found in brain regions that are actively involved in working memory maintenance.

  5. Testing the Item-Order Account of Design Effects Using the Production Effect

    ERIC Educational Resources Information Center

    Jonker, Tanya R.; Levene, Merrick; MacLeod, Colin M.

    2014-01-01

    A number of memory phenomena evident in recall in within-subject, mixed-lists designs are reduced or eliminated in between-subject, pure-list designs. The item-order account (McDaniel & Bugg, 2008) proposes that differential retention of order information might underlie this pattern. According to this account, order information may be encoded…

  6. Differential Forgetting of Superordinate and Subordinate Information Acquired from Prose Material

    ERIC Educational Resources Information Center

    Miller, Raymond B.; And Others

    1977-01-01

    The superior retention of superordinate ideas over time was replicated in this study which demonstrated the construct validity of a recognition test based upon the structure of a prose passage. A link was made between existing data on memory for prose and past theory: Ausubel's subsumption theory and Craik and Lockhart's levels-of-processing…

  7. Forming Competing Fear Learning and Extinction Memories in Adolescence Makes Fear Difficult to Inhibit

    ERIC Educational Resources Information Center

    Baker, Kathryn D.; Richardson, Rick

    2015-01-01

    Fear inhibition is markedly impaired in adolescent rodents and humans. The present experiments investigated whether this impairment is critically determined by the animal's age at the time of fear learning or their age at fear extinction. Male rats (n = 170) were tested for extinction retention after conditioning and extinction at different ages.…

  8. A Developmental Study of Short-Term Memory Characteristics for Kinesthetic Movement Information.

    ERIC Educational Resources Information Center

    Ashby, Alan A.

    Age-related characteristics of children's short-term retention of kinesthetic movement information were examined in this study. Three age levels (6-, 8-, and 10-year old children) were tested for recall of preselected location movements on a linear slide apparatus. Immediate and delayed recall were used in 16 trials. The results indicate that…

  9. Encoding Deficits Impede Word Learning and Memory in Adults with Developmental Language Disorders

    ERIC Educational Resources Information Center

    McGregor, Karla K.; Gordon, Katherine; Eden, Nichole; Arbisi-Kelm, Tim; Oleson, Jacob

    2017-01-01

    Purpose: The aim of this study was to determine whether the word-learning challenges associated with developmental language disorder (DLD) result from encoding or retention deficits. Method In Study 1, 59 postsecondary students with DLD and 60 with normal development (ND) took the California Verbal Learning Test-Second Edition, Adult Version…

  10. Post-training reversible disconnection of the ventral hippocampal-basolateral amygdaloid circuits impairs consolidation of inhibitory avoidance memory in rats.

    PubMed

    Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin

    2017-11-01

    The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats with implanted guide cannulae were trained with a one-trial IA task, then received immediate intracerebral injections of muscimol or saline, and were tested 24 h later. Muscimol injection into the bilateral BLA, or the unilateral VH and contralateral BLA, but not the unilateral VH and ipsilateral BLA, significantly decreased the retention latencies (versus saline treatment). The results suggest that the VH-BLA circuit could be an important circuit to modulate consolidation of IA memory in rats. © 2017 Wang et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Attentive Tracking Disrupts Feature Binding in Visual Working Memory

    PubMed Central

    Fougnie, Daryl; Marois, René

    2009-01-01

    One of the most influential theories in visual cognition proposes that attention is necessary to bind different visual features into coherent object percepts (Treisman & Gelade, 1980). While considerable evidence supports a role for attention in perceptual feature binding, whether attention plays a similar function in visual working memory (VWM) remains controversial. To test the attentional requirements of VWM feature binding, here we gave participants an attention-demanding multiple object tracking task during the retention interval of a VWM task. Results show that the tracking task disrupted memory for color-shape conjunctions above and beyond any impairment to working memory for object features, and that this impairment was larger when the VWM stimuli were presented at different spatial locations. These results demonstrate that the role of visuospatial attention in feature binding is not unique to perception, but extends to the working memory of these perceptual representations as well. PMID:19609460

  12. Effects of Length of Retention Interval on Proactive Interference in Short-Term Visual Memory

    ERIC Educational Resources Information Center

    Meudell, Peter R.

    1977-01-01

    These experiments show two things: (a) In visual memory, long-term interference on a current item from items previously stored only seems to occur when the current item's retention interval is relatively long, and (b) the visual code appears to decay rapidly, reaching asymptote within 3 seconds of input in the presence of an interpolated task.…

  13. The Effects of Blue Ink Print on Students' Memory Retention of Math Terms and Definitions.

    ERIC Educational Resources Information Center

    Din, Feng S.; Barnes, Kahlon

    This study investigated whether students' memory retention rate improved when they were provided with blue ink printed material. A pretest, treatment, posttest with control group design was used. The participants were 93 10th and 11th grade students in algebra and geometry courses, and there were 2 classes in each course. The treatment lasted for…

  14. The Effectiveness of Keyword-Based Instruction in Enhancing English Vocabulary Achievement and Retention of Intermediate Stage Pupils with Different Working Memory Capacities

    ERIC Educational Resources Information Center

    Al-Zahrani, Mona Abdullah Bakheet

    2011-01-01

    The current study aimed at investigating the effectiveness of keyword-based instruction in enhancing English vocabulary achievement and retention of intermediate stage pupils with different working memory capacities. The study adopted a quasi experimental design employing two groups (experimental and control). The design included an independent…

  15. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  16. A Study of the Effect of Color in Memory Retention When Used in Presentation Software.

    ERIC Educational Resources Information Center

    McConnohie, Bruce Vernon

    A study of the effects of color as used in presentation software on short-range (immediately following treatment) and long-range (one hour following treatment) memory retention was conducted. Previous studies have concentrated on color as cueing or coding mechanisms primarily in print media and have not explored the effect of individual colors as…

  17. Neural principles of memory and a neural theory of analogical insight

    NASA Astrophysics Data System (ADS)

    Lawson, David I.; Lawson, Anton E.

    1993-12-01

    Grossberg's principles of neural modeling are reviewed and extended to provide a neural level theory to explain how analogies greatly increase the rate of learning and can, in fact, make learning and retention possible. In terms of memory, the key point is that the mind is able to recognize and recall when it is able to match sensory input from new objects, events, or situations with past memory records of similar objects, events, or situations. When a match occurs, an adaptive resonance is set up in which the synaptic strengths of neurons are increased; thus a long term record of the new input is formed in memory. Systems of neurons called outstars and instars are presumably the underlying units that enable this to occur. Analogies can greatly facilitate learning and retention because they activate the outstars (i.e., the cells that are sampling the to-be-learned pattern) and cause the neural activity to grow exponentially by forming feedback loops. This increased activity insures the boost in synaptic strengths of neurons, thus causing storage and retention in long-term memory (i.e., learning).

  18. Sleep and eyewitness memory: Fewer false identifications after sleep when the target is absent from the lineup.

    PubMed

    Stepan, Michelle E; Dehnke, Taylor M; Fenn, Kimberly M

    2017-01-01

    Inaccurate eyewitness identifications are the leading cause of known false convictions in the United States. Moreover, improving eyewitness memory is difficult and often unsuccessful. Sleep consistently strengthens and protects memory from interference, particularly when a recall test is used. However, the effect of sleep on recognition memory is more equivocal. Eyewitness identification tests are often recognition based, thus leaving open the question of how sleep affects recognition performance in an eyewitness context. In the current study, we investigated the effect of sleep on eyewitness memory. Participants watched a video of a mock-crime and attempted to identify the perpetrator from a simultaneous lineup after a 12-hour retention interval that either spanned a waking day or night of sleep. In Experiment 1, we used a target-present lineup and, in Experiment 2, we used a target-absent lineup in order to investigate correct and false identifications, respectively. Sleep reduced false identifications in the target-absent lineup (Experiment 2) but had no effect on correct identifications in the target-present lineup (Experiment 1). These results are discussed with respect to memory strength and decision making strategies.

  19. Sleep and eyewitness memory: Fewer false identifications after sleep when the target is absent from the lineup

    PubMed Central

    Dehnke, Taylor M.; Fenn, Kimberly M.

    2017-01-01

    Inaccurate eyewitness identifications are the leading cause of known false convictions in the United States. Moreover, improving eyewitness memory is difficult and often unsuccessful. Sleep consistently strengthens and protects memory from interference, particularly when a recall test is used. However, the effect of sleep on recognition memory is more equivocal. Eyewitness identification tests are often recognition based, thus leaving open the question of how sleep affects recognition performance in an eyewitness context. In the current study, we investigated the effect of sleep on eyewitness memory. Participants watched a video of a mock-crime and attempted to identify the perpetrator from a simultaneous lineup after a 12-hour retention interval that either spanned a waking day or night of sleep. In Experiment 1, we used a target-present lineup and, in Experiment 2, we used a target-absent lineup in order to investigate correct and false identifications, respectively. Sleep reduced false identifications in the target-absent lineup (Experiment 2) but had no effect on correct identifications in the target-present lineup (Experiment 1). These results are discussed with respect to memory strength and decision making strategies. PMID:28877169

  20. Walking through doorways causes forgetting: Event structure or updating disruption?

    PubMed

    Pettijohn, Kyle A; Radvansky, Gabriel A

    2016-11-01

    According to event cognition theory, people segment experience into separate event models. One consequence of this segmentation is that when people transport objects from one location to another, memory is worse than if people move across a large location. In two experiments participants navigated through a virtual environment, and recognition memory was tested in either the presence or the absence of a location shift for objects that were recently interacted with (i.e., just picked up or set down). Of particular concern here is whether this location updating effect is due to (a) differences in retention intervals as a result of the navigation process, (b) a temporary disruption in cognitive processing that may occur as a result of the updating processes, or (c) a need to manage multiple event models, as has been suggested in prior research. Experiment 1 explored whether retention interval is driving this effect by recording travel times from the acquisition of an object and the probe time. The results revealed that travel times were similar, thereby rejecting a retention interval explanation. Experiment 2 explored whether a temporary disruption in processing is producing the effect by introducing a 3-second delay prior to the presentation of a memory probe. The pattern of results was not affected by adding a delay, thereby rejecting a temporary disruption account. These results are interpreted in the context of the event horizon model, which suggests that when there are multiple event models that contain common elements there is interference at retrieval, which compromises performance.

  1. What is the evidence for retrieval problems in the elderly?

    PubMed

    White, N; Cunningham, W R

    1982-01-01

    To determine whether older adults experience particular problems with retrieval, groups of young and elderly adults were given free recall and recognition tests of supraspan lists of unrelated words. Analysis of number of words correctly recalled and recognized yielded a significant age by retention test interaction: greater age differences were observed for recall than for recognition. In a second analysis of words recalled and recognized, corrected for guessing, the interaction disappeared. It was concluded that previous interpretations that age by retention test interactions are indicative of retrieval problems of the elderly may have been confounded by methodological problems. Furthermore, it was suggested that researchers in aging and memory need to be explicit in identifying their underlying models of error processes when analyzing recognition scores: different error models may lead to different results and interpretations.

  2. One bipolar transistor selector - One resistive random access memory device for cross bar memory array

    NASA Astrophysics Data System (ADS)

    Aluguri, R.; Kumar, D.; Simanjuntak, F. M.; Tseng, T.-Y.

    2017-09-01

    A bipolar transistor selector was connected in series with a resistive switching memory device to study its memory characteristics for its application in cross bar array memory. The metal oxide based p-n-p bipolar transistor selector indicated good selectivity of about 104 with high retention and long endurance showing its usefulness in cross bar RRAM devices. Zener tunneling is found to be the main conduction phenomena for obtaining high selectivity. 1BT-1R device demonstrated good memory characteristics with non-linearity of 2 orders, selectivity of about 2 orders and long retention characteristics of more than 105 sec. One bit-line pull-up scheme shows that a 650 kb cross bar array made with this 1BT1R devices works well with more than 10 % read margin proving its ability in future memory technology application.

  3. Highly Superior Autobiographical Memory: Quality and Quantity of Retention Over Time

    PubMed Central

    LePort, Aurora K. R.; Stark, Shauna M.; McGaugh, James L.; Stark, Craig E. L.

    2016-01-01

    Individuals who have Highly Superior Autobiographical Memory (HSAM) are able to recall, with considerable accuracy, details of daily experiences that occurred over many previous decades. The present study parametrically investigates the quantity and quality of details of autobiographical memories acquired 1-week, 1-month, 1-year, and 10-years prior in HSAMs and controls. In addition, we tested the consistency of details provided at the 1-week delay by testing the subjects 1 month later with a surprise assessment. At the 1-week delay, HSAMs and controls recalled an equivalent number of events. In contrast, HSAM recall performance was superior at more remote delays, with remarkable consistency following a 1-month delay. Further, we revealed a relationship between the consistency of recall and HSAMs’ obsessive–compulsive tendencies. These data suggest that HSAMs experience normal encoding, yet enhanced consolidation and later recall of autobiographical events. PMID:26834661

  4. Methadone disrupts performance on the working memory version of the Morris water task.

    PubMed

    Hepner, Ilana J; Homewood, Judi; Taylor, Alan J

    2002-05-01

    The aim of the study was to examine if administration of the mu-opiate agonist methadone hydrochloride resulted in deficits in performance on the Morris water tank task, a widely used test of spatial cognition. To this end, after initial training on the task, Long-Evans rats were administered saline or methadone at either 1.25, 2.5 or 5 mg/kg ip 15 min prior to testing. The performance of the highest-dose methadone group was inferior to that of the controls on the working memory version of the Morris task. There were also differences between the groups on the reference memory version of the task, but this result cannot be considered reliable. These data show that methadone has its most profound effect on cognition in rats when efficient performance on the task requires attention to and retention of new information, in this case, the relationship between platform location and the extramaze cues.

  5. Accounting for Change in Declarative Memory: A Cognitive Neuroscience Perspective

    ERIC Educational Resources Information Center

    Richmond, Jenny; Nelson, Charles A.

    2007-01-01

    The medial temporal lobe memory system matures relatively early and supports rudimentary declarative memory in young infants. There is considerable development, however, in the memory processes that underlie declarative memory performance during infancy. Here we consider age-related changes in encoding, retention, and retrieval in the context of…

  6. Visual attention to meaningful stimuli by 1- to 3-year olds: implications for the measurement of memory.

    PubMed

    Hayne, Harlene; Jaeger, Katja; Sonne, Trine; Gross, Julien

    2016-11-01

    The visual recognition memory (VRM) paradigm has been widely used to measure memory during infancy and early childhood; it has also been used to study memory in human and nonhuman adults. Typically, participants are familiarized with stimuli that have no special significance to them. Under these conditions, greater attention to the novel stimulus during the test (i.e., novelty preference) is used as the primary index of memory. Here, we took a novel approach to the VRM paradigm and tested 1-, 2-, and 3-year olds using photos of meaningful stimuli that were drawn from the participants' own environment (e.g., photos of their mother, father, siblings, house). We also compared their performance to that of participants of the same age who were tested in an explicit pointing version of the VRM task. Two- and 3-year olds exhibited a strong familiarity preference for some, but not all, of the meaningful stimuli; 1-year olds did not. At no age did participants exhibit the kind of novelty preference that is commonly used to define memory in the VRM task. Furthermore, when compared to pointing, looking measures provided a rough approximation of recognition memory, but in some instances, the looking measure underestimated retention. The use of meaningful stimuli raise important questions about the way in which visual attention is interpreted in the VRM paradigm, and may provide new opportunities to measure memory during infancy and early childhood. © 2016 Wiley Periodicals, Inc.

  7. The retention and disruption of color information in human short-term visual memory.

    PubMed

    Nemes, Vanda A; Parry, Neil R A; Whitaker, David; McKeefry, Declan J

    2012-01-27

    Previous studies have demonstrated that the retention of information in short-term visual perceptual memory can be disrupted by the presentation of masking stimuli during interstimulus intervals (ISIs) in delayed discrimination tasks (S. Magnussen & W. W. Greenlee, 1999). We have exploited this effect in order to determine to what extent short-term perceptual memory is selective for stimulus color. We employed a delayed hue discrimination paradigm to measure the fidelity with which color information was retained in short-term memory. The task required 5 color normal observers to discriminate between spatially non-overlapping colored reference and test stimuli that were temporally separated by an ISI of 5 s. The points of subjective equality (PSEs) on the resultant psychometric matching functions provided an index of performance. Measurements were made in the presence and absence of mask stimuli presented during the ISI, which varied in hue around the equiluminant plane in DKL color space. For all reference stimuli, we found a consistent mask-induced, hue-dependent shift in PSE compared to the "no mask" conditions. These shifts were found to be tuned in color space, only occurring for a range of mask hues that fell within bandwidths of 29-37 deg. Outside this range, masking stimuli had little or no effect on measured PSEs. The results demonstrate that memory masking for color exhibits selectivity similar to that which has already been demonstrated for other visual attributes. The relatively narrow tuning of these interference effects suggests that short-term perceptual memory for color is based on higher order, non-linear color coding. © ARVO

  8. The effect of exogenous cortisol during sleep on the behavioral and neural correlates of emotional memory consolidation in humans.

    PubMed

    van Marle, Hein J F; Hermans, Erno J; Qin, Shaozheng; Overeem, Sebastiaan; Fernández, Guillén

    2013-09-01

    A host of animal work demonstrates that the retention benefit for emotionally aversive over neutral memories is regulated by glucocorticoid action during memory consolidation. Particularly, glucocorticoids may affect systems-level processes that promote the gradual reorganization of emotional memory traces. These effects remain largely uninvestigated in humans. Therefore, in this functional magnetic resonance imaging study we administered hydrocortisone during a polysomnographically monitored night of sleep directly after healthy volunteers studied negative and neutral pictures in a double-blind, placebo-controlled, between-subjects design. The following evening memory consolidation was probed during a recognition memory test in the MR scanner by assessing the difference in brain activity associated with memory for the consolidated items studied before sleep and new, unconsolidated items studied shortly before test (remote vs. recent memory paradigm). Hydrocortisone administration resulted in elevated cortisol levels throughout the experimental night with no group difference at recent encoding or test. Behaviorally, we showed that cortisol enhanced the difference between emotional and neutral consolidated memory, effectively prioritizing emotional memory consolidation. On a neural level, we found that cortisol reduced amygdala reactivity related to the retrieval of these same consolidated, negative items. These findings show that cortisol administration during first post-encoding sleep had a twofold effect on the first 24h of emotional memory consolidation. While cortisol prioritized recognition memory for emotional items, it reduced reactivation of the neural circuitry underlying emotional responsiveness during retrieval. These findings fit recent theories on emotional depotentiation following consolidation during sleep, although future research should establish the sleep-dependence of this effect. Moreover, our data may shed light on mechanisms underlying potential therapeutic effects of cortisol administration following psychological trauma. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The role of retrieval mode and retrieval orientation in retrieval practice: insights from comparing recognition memory testing formats and restudying.

    PubMed

    Gao, Chuanji; Rosburg, Timm; Hou, Mingzhu; Li, Bingbing; Xiao, Xin; Guo, Chunyan

    2016-12-01

    The effectiveness of retrieval practice for aiding long-term memory, referred to as the testing effect, has been widely demonstrated. However, the specific neurocognitive mechanisms underlying this phenomenon remain unclear. In the present study, we sought to explore the role of pre-retrieval processes at initial testing on later recognition performance by using event-related potentials (ERPs). Subjects studied two lists of words (Chinese characters) and then performed a recognition task or a source memory task, or restudied the word lists. At the end of the experiment, subjects received a final recognition test based on the remember-know paradigm. Behaviorally, initial testing (active retrieval) enhanced memory retention relative to restudying (passive retrieval). The retrieval mode at initial testing was indexed by more positive-going ERPs for unstudied items in the active-retrieval tasks than in passive retrieval from 300 to 900 ms. Follow-up analyses showed that the magnitude of the early ERP retrieval mode effect (300-500 ms) was predictive of the behavioral testing effect later on. In addition, the ERPs for correctly rejected new items during initial testing differed between the two active-retrieval tasks from 500 to 900 ms, and this ERP retrieval orientation effect predicted differential behavioral testing gains between the two active-retrieval conditions. Our findings confirm that initial testing promotes later retrieval relative to restudying, and they further suggest that adopting pre-retrieval processing in the forms of retrieval mode and retrieval orientation might contribute to these memory enhancements.

  10. Post-Session Administration of USP Methylene Blue Facilitates the Retention of Pathological Fear Extinction and Contextual Memory in Phobic Adults

    PubMed Central

    Telch, Michael J.; Bruchey, Aleksandra K.; Rosenfield, David; Cobb, Adam R.; Smits, Jasper; Pahl, Sandra; Gonzalez-Lima, F.

    2015-01-01

    Objective Preclinical studies have shown that low-dose USP methylene blue increases mitochondrial cytochrome oxidase activity in the brain and improves memory retention after learning tasks, including fear extinction. We report on the first controlled experiment to examine the memory-enhancing effects of post-training methylene blue administration on retention of fear extinction and contextual memory following fear extinction training. Method Adults (N = 42) displaying marked claustrophobic fear were randomized to double-blind administration of 260 mg of methylene blue versus placebo immediately following six five-minute extinction trials to an enclosed chamber. Retesting occurred one month later to assess fear renewal as indexed by peak fear during exposure to a non-trained enclosed chamber with the prediction that methylene blue's effects would vary as a function of fear reduction achieved during extinction training. Incidental contextual memory was assessed 1 and 30 days after training to assess the cognitive enhancing effects of methylene blue independent of its effects on fear attenuation. Results Consistent with predictions, participants displaying low end fear at post-training showed significantly less fear at follow-up if they received methylene blue post-training relative to placebo. In contrast, participants displaying moderate to high levels of post-training fear tended to fare worse at follow-up relative to placebo. Methylene blue's enhancement of contextual memory was unrelated to initial or post-training claustrophobic fear. Conclusions Methylene blue enhances memory and the retention of fear extinction when administered after a successful exposure session, but may have a deleterious effect on extinction when administered after an unsuccessful exposure session. PMID:25018057

  11. Attenuation of cadmium-induced decline in spatial, habituation and recognition memory by long-term administration of almond and walnut supplementation: Role of cholinergic function.

    PubMed

    Batool, Zehra; Agha, Faiza; Ahmad, Saara; Liaquat, Laraib; Tabassum, Saiqa; Khaliq, Saima; Anis, Lubna; Sajid, Irfan; Emad, Shaista; Perveen, Tahira; Haider, Saida

    2017-01-01

    Excessive exposure of cadmium which is regarded as a neurotoxin can stimulate aging process by inducing abnormality in neuronal function. It has been reported that supplementation of almond and walnut attenuate age-related memory loss. Present study was designed to investigate the weekly administration of cadmium for one month on learning and memory function with relation to cholinergic activity. Cadmium was administered at the dose of 50 mg/kg/week. Whereas, almond and walnut was supplemented at the dose of 400 mg/kg/day along with cadmium administration to separate set of rats. At the end of experiment, memory function was assessed by Morris water maze, open field test and novel object recognition test. Results of the present study showed that cadmium administration significantly reduced memory retention. Reduced acetylcholine levels and elevated acetyl cholinesterase activity were also observed in frontal cortex and hippocampus of cadmium treated rats. Malondialdehyde levels were also significantly increased following the administration of cadmium. Daily supplementation of almond and walnut for 28 days significantly attenuated cadmium-induced memory impairment in rats. Results of the present study are discussed in term of cholinergic activity in cadmium-induced memory loss and its attenuation by nuts supplementation in rats.

  12. Adaptive memory: enhanced location memory after survival processing.

    PubMed

    Nairne, James S; Vanarsdall, Joshua E; Pandeirada, Josefa N S; Blunt, Janell R

    2012-03-01

    Two experiments investigated whether survival processing enhances memory for location. From an adaptive perspective, remembering that food has been located in a particular area, or that potential predators are likely to be found in a given territory, should increase the chances of subsequent survival. Participants were shown pictures of food or animals located at various positions on a computer screen. The task was to rate the ease of collecting the food or capturing the animals relative to a central fixation point. Surprise retention tests revealed that people remembered the locations of the items better when the collection or capturing task was described as relevant to survival. These data extend the generality of survival processing advantages to a new domain (location memory) by means of a task that does not involve rating the relevance of words to a scenario. 2012 APA, all rights reserved

  13. Explicit processing demands reveal language modality-specific organization of working memory.

    PubMed

    Rudner, Mary; Rönnberg, Jerker

    2008-01-01

    The working memory model for Ease of Language Understanding (ELU) predicts that processing differences between language modalities emerge when cognitive demands are explicit. This prediction was tested in three working memory experiments with participants who were Deaf Signers (DS), Hearing Signers (HS), or Hearing Nonsigners (HN). Easily nameable pictures were used as stimuli to avoid confounds relating to sensory modality. Performance was largely similar for DS, HS, and HN, suggesting that previously identified intermodal differences may be due to differences in retention of sensory information. When explicit processing demands were high, differences emerged between DS and HN, suggesting that although working memory storage in both groups is sensitive to temporal organization, retrieval is not sensitive to temporal organization in DS. A general effect of semantic similarity was also found. These findings are discussed in relation to the ELU model.

  14. Intraperirhinal cortex administration of the synthetic cannabinoid, HU210, disrupts object recognition memory in rats.

    PubMed

    Sticht, Martin A; Jacklin, Derek L; Mechoulam, Raphael; Parker, Linda A; Winters, Boyer D

    2015-03-25

    Cannabinoids disrupt learning and memory in human and nonhuman participants. Object recognition memory, which is particularly susceptible to the impairing effects of cannabinoids, relies critically on the perirhinal cortex (PRh); however, to date, the effects of cannabinoids within PRh have not been assessed. In the present study, we evaluated the effects of localized administration of the synthetic cannabinoid, HU210 (0.01, 1.0 μg/hemisphere), into PRh on spontaneous object recognition in Long-Evans rats. Animals received intra-PRh infusions of HU210 before the sample phase, and object recognition memory was assessed at various delays in a subsequent retention test. We found that presample intra-PRh HU210 dose dependently (1.0 μg but not 0.01 μg) interfered with spontaneous object recognition performance, exerting an apparently more pronounced effect when memory demands were increased. These novel findings show that cannabinoid agonists in PRh disrupt object recognition memory. Copyright © 2015 Wolters Kluwer Health, Inc. All rights reserved.

  15. [Visual representation of natural scenes in flicker changes].

    PubMed

    Nakashima, Ryoichi; Yokosawa, Kazuhiko

    2010-08-01

    Coherence theory in scene perception (Rensink, 2002) assumes the retention of volatile object representations on which attention is not focused. On the other hand, visual memory theory in scene perception (Hollingworth & Henderson, 2002) assumes that robust object representations are retained. In this study, we hypothesized that the difference between these two theories is derived from the difference of the experimental tasks that they are based on. In order to verify this hypothesis, we examined the properties of visual representation by using a change detection and memory task in a flicker paradigm. We measured the representations when participants were instructed to search for a change in a scene, and compared them with the intentional memory representations. The visual representations were retained in visual long-term memory even in the flicker paradigm, and were as robust as the intentional memory representations. However, the results indicate that the representations are unavailable for explicitly localizing a scene change, but are available for answering the recognition test. This suggests that coherence theory and visual memory theory are compatible.

  16. Investigation of neuropsychopharmacological effects of a polyherbal formulation on the learning and memory process in rats.

    PubMed

    Shah, Js; Goyal, Rk

    2011-04-01

    To investigate the neuropsychopharmacological effect of a polyherbal formulation (PHF) on the learning and memory processes in rats. PHF contains Withania somnifera (Ashwagandha), Nardostachys jatamansi (Jatamansi), Rauwolfia serpentina (Sarpagandha), Evolvulus alsinoides (Shankhpushpi), Asparagus racemosus (Shatavari), Emblica officinalis (Amalki), Mucuna pruriens (Kauch bij extract), Hyoscyamus niger (Khurasani Ajmo), Mineral resin (Shilajit), Pearl (Mukta Shukhti Pishti), and coral calcium (Praval pishti). Its effect (500 mg / kg, p.o.) on the learning and memory processes was tested. The activity of PHF on memory acquisition and retention was studied using passive avoidance learning and elevated plus maze model (EPM) in rats. The animals treated with PHF showed a significant decrease in transfer latency as compared to the control group in EPM. PHF also produced significant improvement in passive avoidance acquisition and memory retrieval, as compared to the controls and reduced the latency to reach the shock free zone (SFZ) after 24 hours. The PHF produces significant improvement in passive avoidance acquisition and memory retrieval in rats, which needs further investigation.

  17. Sleep enhances false memories depending on general memory performance.

    PubMed

    Diekelmann, Susanne; Born, Jan; Wagner, Ullrich

    2010-04-02

    Memory is subject to dynamic changes, sometimes giving rise to the formation of false memories due to biased processes of consolidation or retrieval. Sleep is known to benefit memory consolidation through an active reorganization of representations whereas acute sleep deprivation impairs retrieval functions. Here, we investigated whether sleep after learning and sleep deprivation at retrieval enhance the generation of false memories in a free recall test. According to the Deese, Roediger, McDermott (DRM) false memory paradigm, subjects learned lists of semantically associated words (e.g., "night", "dark", "coal", etc.), lacking the strongest common associate or theme word (here: "black"). Free recall was tested after 9h following a night of sleep, a night of wakefulness (sleep deprivation) or daytime wakefulness. Compared with memory performance after a retention period of daytime wakefulness, both post-learning nocturnal sleep as well as acute sleep deprivation at retrieval significantly enhanced false recall of theme words. However, these effects were only observed in subjects with low general memory performance. These data point to two different ways in which sleep affects false memory generation through semantic generalization: one acts during consolidation on the memory trace per se, presumably by active reorganization of the trace in the post-learning sleep period. The other is related to the recovery function of sleep and affects cognitive control processes of retrieval. Both effects are unmasked when the material is relatively weakly encoded. Crown Copyright 2009. Published by Elsevier B.V. All rights reserved.

  18. Sleep benefits in parallel implicit and explicit measures of episodic memory.

    PubMed

    Weber, Frederik D; Wang, Jing-Yi; Born, Jan; Inostroza, Marion

    2014-03-14

    Research in rats using preferences during exploration as a measure of memory has indicated that sleep is important for the consolidation of episodic-like memory, i.e., memory for an event bound into specific spatio-temporal context. How these findings relate to human episodic memory is unclear. We used spontaneous preferences during visual exploration and verbal recall as, respectively, implicit and explicit measures of memory, to study effects of sleep on episodic memory consolidation in humans. During encoding before 10-h retention intervals that covered nighttime sleep or daytime wakefulness, two groups of young adults were presented with two episodes that were 1-h apart. Each episode entailed a spatial configuration of four different faces in a 3 × 3 grid of locations. After the retention interval, implicit spatio-temporal recall performance was assessed by eye-tracking visual exploration of another configuration of four faces of which two were from the first and second episode, respectively; of the two faces one was presented at the same location as during encoding and the other at another location. Afterward explicit verbal recall was assessed. Measures of implicit and explicit episodic memory retention were positively correlated (r = 0.57, P < 0.01), and were both better after nighttime sleep than daytime wakefulness (P < 0.05). In the sleep group, implicit episodic memory recall was associated with increased fast spindles during nonrapid eye movement (NonREM) sleep (r = 0.62, P < 0.05). Together with concordant observations in rats our results indicate that consolidation of genuinely episodic memory benefits from sleep.

  19. Sleep benefits in parallel implicit and explicit measures of episodic memory

    PubMed Central

    Weber, Frederik D.; Wang, Jing-Yi; Born, Jan; Inostroza, Marion

    2014-01-01

    Research in rats using preferences during exploration as a measure of memory has indicated that sleep is important for the consolidation of episodic-like memory, i.e., memory for an event bound into specific spatio-temporal context. How these findings relate to human episodic memory is unclear. We used spontaneous preferences during visual exploration and verbal recall as, respectively, implicit and explicit measures of memory, to study effects of sleep on episodic memory consolidation in humans. During encoding before 10-h retention intervals that covered nighttime sleep or daytime wakefulness, two groups of young adults were presented with two episodes that were 1-h apart. Each episode entailed a spatial configuration of four different faces in a 3 × 3 grid of locations. After the retention interval, implicit spatio-temporal recall performance was assessed by eye-tracking visual exploration of another configuration of four faces of which two were from the first and second episode, respectively; of the two faces one was presented at the same location as during encoding and the other at another location. Afterward explicit verbal recall was assessed. Measures of implicit and explicit episodic memory retention were positively correlated (r = 0.57, P < 0.01), and were both better after nighttime sleep than daytime wakefulness (P < 0.05). In the sleep group, implicit episodic memory recall was associated with increased fast spindles during nonrapid eye movement (NonREM) sleep (r = 0.62, P < 0.05). Together with concordant observations in rats our results indicate that consolidation of genuinely episodic memory benefits from sleep. PMID:24634354

  20. Differences in Active Avoidance Conditioning in Male and Female Rats with Experimental Anxiety-Depressive Disorder.

    PubMed

    Khlebnikova, N N; Krupina, N A; Kushnareva, E Yu; Orlova, I N

    2015-07-01

    Using rat model of experimental anxiety-depressive disorder caused by postnatal administration of methionyl-2(S)-cyanopyrrolidine, an inhibitor of dipeptidyl peptidase IV, we compared conditioned active avoidance response and memory retention in males and females. In experimental males and females, conditioning was impaired in comparison with the control. In experimental groups, females were worse learners than males, while in control groups, females were better learners than males. Memory retention in experimental animals did not differ from that in controls 24 h after learning. Two months after learning, control females demonstrated better retention than control males.

  1. Characterisation of retention properties of charge-trapping memory cells at low temperatures

    NASA Astrophysics Data System (ADS)

    Yurchuk, E.; Bollmann, J.; Mikolajick, T.

    2009-09-01

    The density of states of deep level centers in silicon oxynitride layer of SONOS memory cells are calculated from temperature dependent retention measurement. The dominating charge loss mechanisms are direct trap-to-band tunneling (TB) and thermally stimulated emission (TE). Retention measurements at low temperatures (80 - 300K) will be dominated by TE from more "shallow" traps with energies below 1eV and by TB. Taking into account both independent and rival processes the density of states could be calculated self consisting. The results are in excellent agreement with elsewhere published data.

  2. Possible cause for altered spatial cognition of prepubescent rats exposed to chronic radiofrequency electromagnetic radiation.

    PubMed

    Narayanan, Sareesh Naduvil; Kumar, Raju Suresh; Karun, Kalesh M; Nayak, Satheesha B; Bhat, P Gopalakrishna

    2015-10-01

    The effects of chronic and repeated radiofrequency electromagnetic radiation (RFEMR) exposure on spatial cognition and hippocampal architecture were investigated in prepubescent rats. Four weeks old male Wistar rats were exposed to RF-EMR (900 MHz; SAR-1.15 W/kg with peak power density of 146.60 μW/cm(2)) for 1 h/day, for 28 days. Followed by this, spatial cognition was evaluated by Morris water maze test. To evaluate the hippocampal morphology; H&E staining, cresyl violet staining, and Golgi-Cox staining were performed on hippocampal sections. CA3 pyramidal neuron morphology and surviving neuron count (in CA3 region) were studied using H&E and cresyl violet stained sections. Dendritic arborization pattern of CA3 pyramidal neuron was investigated by concentric circle method. Progressive learning abilities were found to be decreased in RF-EMR exposed rats. Memory retention test performed 24 h after the last training revealed minor spatial memory deficit in RF-EMR exposed group. However, RF-EMR exposed rats exhibited poor spatial memory retention when tested 48 h after the final trial. Hirano bodies and Granulovacuolar bodies were absent in the CA3 pyramidal neurons of different groups studied. Nevertheless, RF-EMR exposure affected the viable cell count in dorsal hippocampal CA3 region. RF-EMR exposure influenced dendritic arborization pattern of both apical and basal dendritic trees in RF-EMR exposed rats. Structural changes found in the hippocampus of RF-EMR exposed rats could be one of the possible reasons for altered cognition.

  3. Learning-performance distinction and memory processes for motor skills: a focused review and perspective.

    PubMed

    Kantak, Shailesh S; Winstein, Carolee J

    2012-03-01

    Behavioral research in cognitive psychology provides evidence for an important distinction between immediate performance that accompanies practice and long-term performance that reflects the relative permanence in the capability for the practiced skill (i.e. learning). This learning-performance distinction is strikingly evident when challenging practice conditions may impair practice performance, but enhance long-term retention of motor skills. A review of motor learning studies with a specific focus on comparing differences in performance between that at the end of practice and at delayed retention suggests that the delayed retention or transfer performance is a better indicator of motor learning than the performance at (or end of) practice. This provides objective evidence for the learning-performance distinction. This behavioral evidence coupled with an understanding of the motor memory processes of encoding, consolidation and retrieval may provide insight into the putative mechanism that implements the learning-performance distinction. Here, we propose a simplistic empirically-based framework--motor behavior-memory framework--that integrates the temporal evolution of motor memory processes with the time course of practice and delayed retention frequently used in behavioral motor learning paradigms. In the context of the proposed framework, recent research has used noninvasive brain stimulation to decipher the role of each motor memory process, and specific cortical brain regions engaged in motor performance and learning. Such findings provide beginning insights into the relationship between the time course of practice-induced performance changes and motor memory processes. This in turn has promising implications for future research and practical applications. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Working Memory Systems in the Rat.

    PubMed

    Bratch, Alexander; Kann, Spencer; Cain, Joshua A; Wu, Jie-En; Rivera-Reyes, Nilda; Dalecki, Stefan; Arman, Diana; Dunn, Austin; Cooper, Shiloh; Corbin, Hannah E; Doyle, Amanda R; Pizzo, Matthew J; Smith, Alexandra E; Crystal, Jonathon D

    2016-02-08

    A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Information Processing Models of Skilled Reading: The Relationship Between Chinese Orthography and Coding Tactics in Primary Memory.

    ERIC Educational Resources Information Center

    Shwedel, Allan M.

    A probe recall short-term retention task was used to test the applicability of the "phonological recoding" (Conrad, 1972) and "flexible decoding" (Smith, 1972) models to processing tactics used by readers of Chinese. Subjects were 45 adult speakers of Cantonese. Stimuli were lists of Chinese characters which varied in terms of phonological and…

  6. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory

    PubMed Central

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the specific mechanisms of these deficits in the CDKL5 deficiency disorder. PMID:29702698

  7. Comprehensive behavioral analysis of the Cdkl5 knockout mice revealed significant enhancement in anxiety- and fear-related behaviors and impairment in both acquisition and long-term retention of spatial reference memory.

    PubMed

    Okuda, Kosuke; Takao, Keizo; Watanabe, Aya; Miyakawa, Tsuyoshi; Mizuguchi, Masashi; Tanaka, Teruyuki

    2018-01-01

    Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders. Recently we have generated Cdkl5 KO mice by targeting exon 2 on the C57BL/6N background, and demonstrated postsynaptic overaccumulation of GluN2B-containing N-methyl-D-aspartate (NMDA) receptors in the hippocampus. In the current study, we subjected the Cdkl5 KO mice to a battery of comprehensive behavioral tests, aiming to reveal the effects of loss of CDKL5 in a whole perspective of motor, emotional, social, and cognition/memory functions, and to identify its undetermined roles. The neurological screen, rotarod, hot plate, prepulse inhibition, light/dark transition, open field, elevated plus maze, Porsolt forced swim, tail suspension, one-chamber and three-chamber social interaction, 24-h home cage monitoring, contextual and cued fear conditioning, Barnes maze, and T-maze tests were applied on adult Cdkl5 -/Y and +/Y mice. Cdkl5 -/Y mice showed a mild alteration in the gait. Analyses of emotional behaviors revealed significantly enhanced anxiety-like behaviors of Cdkl5 -/Y mice. Depressive-like behaviors and social interaction of Cdkl5 -/Y mice were uniquely altered. The contextual and cued fear conditioning of Cdkl5 -/Y mice were comparable to control mice; however, Cdkl5 -/Y mice showed a significantly increased freezing time and a significantly decreased distance traveled during the pretone period in the altered context. Both acquisition and long-term retention of spatial reference memory were significantly impaired. The morphometric analysis of hippocampal CA1 pyramidal neurons revealed impaired dendritic arborization and immature spine development in Cdkl5 -/Y mice. These results indicate that CDKL5 plays significant roles in regulating emotional behaviors especially on anxiety- and fear-related responses, and in both acquisition and long-term retention of spatial reference memory, which suggests that focus and special attention should be paid to the specific mechanisms of these deficits in the CDKL5 deficiency disorder.

  8. The PKC-β selective inhibitor, Enzastaurin, impairs memory in middle-aged rats.

    PubMed

    Willeman, Mari N; Mennenga, Sarah E; Siniard, Ashley L; Corneveaux, Jason J; De Both, Matt; Hewitt, Lauren T; Tsang, Candy W S; Caselli, Jason; Braden, B Blair; Bimonte-Nelson, Heather A; Huentelman, Matthew J

    2018-01-01

    Enzastaurin is a Protein Kinase C-β selective inhibitor that was developed to treat cancers. Protein Kinase C-β is an important enzyme for a variety of neuronal functions; in particular, previous rodent studies have reported deficits in spatial and fear-conditioned learning and memory with lower levels of Protein Kinase C-β. Due to Enzastaurin's mechanism of action, the present study investigated the consequences of Enzastaurin exposure on learning and memory in 12-month-old Fischer-344 male rats. Rats were treated daily with subcutaneous injections of either vehicle or Enzastaurin, and behaviorally tested using the spatial reference memory Morris Water Maze. Rats treated with Enzastaurin exhibited decreased overnight retention and poorer performance on the latter testing day, indicating a mild, but significant, memory impairment. There were no differences during the probe trial indicating that all animals were able to spatially localize the platform to the proper quadrant by the end of testing. RNA isolated from the hippocampus was analyzed using Next Generation Sequencing (Illumina). No statistically significant transcriptional differences were noted. Our findings suggest that acute Enzastaurin treatment can impair hippocampal-based learning and memory performance, with no effects on transcription in the hippocampus. We propose that care should be taken in future clinical trials that utilize Protein Kinase C-ß inhibitors, to monitor for possible cognitive effects, future research should examine if these effects are fully reversible.

  9. Disentangling working memory processes during spatial span assessment: a modeling analysis of preferred eye movement strategies.

    PubMed

    Patt, Virginie M; Thomas, Michael L; Minassian, Arpi; Geyer, Mark A; Brown, Gregory G; Perry, William

    2014-01-01

    The neurocognitive processes involved during classic spatial working memory (SWM) assessment were investigated by examining naturally preferred eye movement strategies. Cognitively healthy adult volunteers were tested in a computerized version of the Corsi Block-Tapping Task--a spatial span task requiring the short term maintenance of a series of locations presented in a specific order--coupled with eye tracking. Modeling analysis was developed to characterize eye-tracking patterns across all task phases, including encoding, retention, and recall. Results revealed a natural preference for local gaze maintenance during both encoding and retention, with fewer than 40% fixated targets. These findings contrasted with the stimulus retracing pattern expected during recall as a result of task demands, with 80% fixated targets. Along with participants' self-reported strategies of mentally "making shapes," these results suggest the involvement of covert attention shifts and higher order cognitive Gestalt processes during spatial span tasks, challenging instrument validity as a single measure of SWM storage capacity.

  10. The Effect of an Acute Bout of Moderate-Intensity Aerobic Exercise on Motor Learning of a Continuous Tracking Task

    PubMed Central

    Snow, Nicholas J.; Mang, Cameron S.; Roig, Marc; Boyd, Lara A.

    2016-01-01

    Introduction There is evidence for beneficial effects of acute and long-term exercise interventions on several forms of memory, including procedural motor learning. In the present study we examined how performing a single bout of continuous moderate intensity aerobic exercise would impact motor skill acquisition and retention in young healthy adults, compared to a period of rest. We hypothesized that exercise would improve motor skill acquisition and retention, compared to motor practice alone. Materials and Methods Sixteen healthy adults completed sessions of aerobic exercise or seated rest that were immediately followed by practice of a novel motor task (practice). Exercise consisted of 30 minutes of continuous cycling at 60% peak O2 uptake. Twenty-four hours after practice, we assessed motor learning with a no-exercise retention test (retention). We also quantified changes in offline motor memory consolidation, which occurred between practice and retention (offline). Tracking error was separated into indices of temporal precision and spatial accuracy. Results There were no differences between conditions in the timing of movements during practice (p = 0.066), at retention (p = 0.761), or offline (p = 0.966). However, the exercise condition enabled participants to maintain spatial accuracy during practice (p = 0.477); whereas, following rest performance diminished (p = 0.050). There were no significant differences between conditions at retention (p = 0.532) or offline (p = 0.246). Discussion An acute bout of moderate-intensity aerobic exercise facilitated the maintenance of motor performance during skill acquisition, but did not influence motor learning. Given past work showing that pairing high intensity exercise with skilled motor practice benefits learning, it seems plausible that intensity is a key modulator of the effects of acute aerobic exercise on changes in complex motor behavior. Further work is necessary to establish a dose-response relationship between aerobic exercise and motor learning. PMID:26901664

  11. Unimodal and crossmodal working memory representations of visual and kinesthetic movement trajectories.

    PubMed

    Seemüller, Anna; Fiehler, Katja; Rösler, Frank

    2011-01-01

    The present study investigated whether visual and kinesthetic stimuli are stored as multisensory or modality-specific representations in unimodal and crossmodal working memory tasks. To this end, angle-shaped movement trajectories were presented to 16 subjects in delayed matching-to-sample tasks either visually or kinesthetically during encoding and recognition. During the retention interval, a secondary visual or kinesthetic interference task was inserted either immediately or with a delay after encoding. The modality of the interference task interacted significantly with the encoding modality. After visual encoding, memory was more impaired by a visual than by a kinesthetic secondary task, while after kinesthetic encoding the pattern was reversed. The time when the secondary task had to be performed interacted with the encoding modality as well. For visual encoding, memory was more impaired, when the secondary task had to be performed at the beginning of the retention interval. In contrast, memory after kinesthetic encoding was more affected, when the secondary task was introduced later in the retention interval. The findings suggest that working memory traces are maintained in a modality-specific format characterized by distinct consolidation processes that take longer after kinesthetic than after visual encoding. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Scandium doped Ge2Sb2Te5 for high-speed and low-power-consumption phase change memory

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Zheng, Yonghui; Liu, Guangyu; Li, Tao; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Song, Sannian; Ren, Kun; Song, Zhitang

    2018-03-01

    To bridge the gap of access time between memories and storage systems, the concept of storage class memory has been put forward based on emerging nonvolatile memory technologies. For all the nonvolatile memory candidates, the unpleasant tradeoff between operation speed and retention seems to be inevitable. To promote both the write speed and the retention of phase change memory (PCM), Sc doped Ge2Sb2Te5 (SGST) has been proposed as the storage medium. Octahedral Sc-Te motifs, acting as crystallization precursors to shorten the nucleation incubation period, are the possible reason for the high write speed of 6 ns in PCM cells, five-times faster than that of Ge2Sb2Te5 (GST) cells. Meanwhile, an enhanced 10-year data retention of 119 °C has been achieved. Benefiting from both the increased crystalline resistance and the inhibited formation of the hexagonal phase, the SGST cell has a 77% reduction in power consumption compared to the GST cell. Adhesion of the SGST/SiO2 interface has been strengthened, attributed to the reduced stress by forming smaller grains during crystallization, guaranteeing the reliability of the device. These improvements have made the SGST material a promising candidate for PCM application.

  13. Associations between basal cortisol levels and memory retrieval in healthy young individuals.

    PubMed

    Ackermann, Sandra; Hartmann, Francina; Papassotiropoulos, Andreas; de Quervain, Dominique J F; Rasch, Björn

    2013-11-01

    Cortisol is known to affect memory processes. On the one hand, stress-induced or pharmacologically induced elevations of cortisol levels enhance memory consolidation. On the other hand, such experimentally induced elevations of cortisol levels have been shown to impair memory retrieval. However, the effects of individual differences in basal cortisol levels on memory processes remain largely unknown. Here we tested whether individual differences in cortisol levels predict picture learning and recall in a large sample. A total of 1225 healthy young women and men viewed two different sets of emotional and neutral pictures on two consecutive days. Both sets were recalled after a short delay (10 min). On Day 2, the pictures seen on Day 1 were additionally recalled, resulting in a long-delay (20 hr) recall condition. Cortisol levels were measured three times on Days 1 and 2 via saliva samples before encoding, between encoding and recall as well as after recall testing. We show that stronger decreases in cortisol levels during retrieval testing were associated with better recall performance of pictures, regardless of emotional valence of the pictures or length of the retention interval (i.e., 10 min vs. 20 hr). In contrast, average cortisol levels during retrieval were not related to picture recall. Remarkably during encoding, individual differences in average cortisol levels as well as changes in cortisol did not predict memory recall. Our results support previous findings indicating that higher cortisol levels during retrieval testing hinders recall of episodic memories and extend this view onto interindividual changes in basal cortisol levels.

  14. Gummed-up memory: chewing gum impairs short-term recall.

    PubMed

    Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M

    2012-01-01

    Several studies have suggested that short-term memory is generally improved by chewing gum. However, we report the first studies to show that chewing gum impairs short-term memory for both item order and item identity. Experiment 1 showed that chewing gum reduces serial recall of letter lists. Experiment 2 indicated that chewing does not simply disrupt vocal-articulatory planning required for order retention: Chewing equally impairs a matched task that required retention of list item identity. Experiment 3 demonstrated that manual tapping produces a similar pattern of impairment to that of chewing gum. These results clearly qualify the assertion that chewing gum improves short-term memory. They also pose a problem for short-term memory theories asserting that forgetting is based on domain-specific interference given that chewing does not interfere with verbal memory any more than tapping. It is suggested that tapping and chewing reduce the general capacity to process sequences.

  15. A Novel Metal-Ferroelectric-Semiconductor Field-Effect Transistor Memory Cell Design

    NASA Technical Reports Server (NTRS)

    Phillips, Thomas A.; Bailey, Mark; Ho, Fat Duen

    2004-01-01

    The use of a Metal-Ferroelectric-Semiconductor Field-Effect Transistor (MFSFET) in a resistive-load SRAM memory cell has been investigated A typical two-transistor resistive-load SRAM memory cell architecture is modified by replacing one of the NMOS transistors with an n-channel MFSFET. The gate of the MFSFET is connected to a polling voltage pulse instead of the other NMOS transistor drain. The polling voltage pulses are of sufficient magnitude to saturate the ferroelectric gate material and force the MFSFET into a particular logic state. The memory cell circuit is further modified by the addition of a PMOS transistor and a load resistor in order to improve the retention characteristics of the memory cell. The retention characteristics of both the "1" and "0" logic states are simulated. The simulations show that the MFSFET memory cell design can maintain both the "1" and "0" logic states for a long period of time.

  16. Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning.

    PubMed

    Cambon, K; Venero, C; Berezin, V; Bock, E; Sandi, C

    2003-01-01

    The neural cell adhesion molecule (NCAM) plays a key role in synaptic plasticity and memory formation. We have recently developed a synthetic peptide, termed C3d, which, through the binding to the first, N-terminal immunoglobulin-like (Ig) module in the extracellular portion of NCAM, has been shown to promote neurite outgrowth and synapse formation in vitro, and to interfere with passive avoidance memory in rats in vivo. In this study, we investigated whether the i.c.v. administration of C3d, either 5.5 h after or 2 days before training, could be effective to modulate the strength at which emotional memory for aversive situations is established into a long-term memory. The effects of the peptide were evaluated in adult male Wistar rats trained in the contextual fear conditioning task. The results indicated that C3d significantly reduced the subsequent long-term retention of the conditioned fear response when administered 5.5 h post-training, as indicated by retention tests performed 2-3 and 7 days post-training. However, this treatment failed to influence conditioning for this task when injected 2 days pre-training. Additional experiments showed that C3d did not influence the emotional or locomotor behaviour of the animals, when tested in the open field task. Furthermore, hippocampal levels of microtubule-associated protein 2 (MAP2), Synaptophysin and NCAM were found unchanged when evaluated by enzyme-linked immunosorbent assay in crude synaptosomal preparations 2 days after peptide i.c.v. injection. Therefore, post-training injection of this synthetic peptide was efficient to attenuate the strength at which memory for contextual fear conditioning was enduringly stored, whilst it did not affect the acquisition of new memories. In addition to further support the view that NCAM is critically involved in memory consolidation, the current findings suggest that the NCAM IgI module is a potential target for the development of therapeutic drugs capable to reduce the cognitive impact induced by exposure to intensive stress experiences.

  17. Electrophysiological Evidence for a Sensory Recruitment Model of Somatosensory Working Memory.

    PubMed

    Katus, Tobias; Grubert, Anna; Eimer, Martin

    2015-12-01

    Sensory recruitment models of working memory assume that information storage is mediated by the same cortical areas that are responsible for the perceptual processing of sensory signals. To test this assumption, we measured somatosensory event-related brain potentials (ERPs) during a tactile delayed match-to-sample task. Participants memorized a tactile sample set at one task-relevant hand to compare it with a subsequent test set on the same hand. During the retention period, a sustained negativity (tactile contralateral delay activity, tCDA) was elicited over primary somatosensory cortex contralateral to the relevant hand. The amplitude of this component increased with memory load and was sensitive to individual limitations in memory capacity, suggesting that the tCDA reflects the maintenance of tactile information in somatosensory working memory. The tCDA was preceded by a transient negativity (N2cc component) with a similar contralateral scalp distribution, which is likely to reflect selection of task-relevant tactile stimuli at the encoding stage. The temporal sequence of N2cc and tCDA components mirrors previous observations from ERP studies of working memory in vision. The finding that the sustained somatosensory delay period activity varies as a function of memory load supports a sensory recruitment model for spatial working memory in touch. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Impairment of learning and memory after photothrombosis of the prefrontal cortex in rat brain: effects of Noopept.

    PubMed

    Romanova, G A; Shakova, F M; Gudasheva, T A; Ostrovskaya, R U

    2002-12-01

    Experiments were performed on rats trained conditioned passive avoidance response. Acquisition and retention of memory traces were impaired after photothrombosis of the prefrontal cortex. The acyl-prolyl-containing dipeptide Noopept facilitated retention and retrieval of a conditioned passive avoidance response, normalized learning capacity in animals with ischemic damage to the cerebral cortex, and promoted finish training in rats with hereditary learning deficit. These results show that Noopept improves all three stages of memory. It should be emphasized that the effect of Noopept was most pronounced in animals with impaired mnesic function.

  19. Enhancing retention through reconsolidation: negative emotional arousal following retrieval enhances later recall.

    PubMed

    Finn, Bridgid; Roediger, Henry L

    2011-06-01

    When information is retrieved from memory, it enters a labile state rendering it amenable to change. This process of reconsolidation may explain, in part, the benefits that are observed in later retention following retrieval of information on an initial test. We examined whether the benefits of retrieval could be modulated by an emotional event occurring after retrieval. Participants studied Swahili-English vocabulary pairs. On a subsequent cued-recall test, each retrieval was followed by a blank screen, a neutral picture, or a picture inducing negative affect. Performance on a final cued-recall test was best for items whose initial retrieval was followed by negative pictures. This outcome occurred when a negative picture was presented immediately after (Experiment 1) or 2 s after (Experiment 2) successful retrieval, but not when it was presented after restudy of the vocabulary pair (Experiment 3). Postretrieval reconsolidation via emotional processing may enhance the usual positive effects of retrieval.

  20. Selective Maintenance in Visual Working Memory Does Not Require Sustained Visual Attention

    PubMed Central

    Hollingworth, Andrew; Maxcey-Richard, Ashleigh M.

    2012-01-01

    In four experiments, we tested whether sustained visual attention is required for the selective maintenance of objects in VWM. Participants performed a color change-detection task. During the retention interval, a valid cue indicated the item that would be tested. Change detection performance was higher in the valid-cue condition than in a neutral-cue control condition. To probe the role of visual attention in the cuing effect, on half of the trials, a difficult search task was inserted after the cue, precluding sustained attention on the cued item. The addition of the search task produced no observable decrement in the magnitude of the cuing effect. In a complementary test, search efficiency was not impaired by simultaneously prioritizing an object for retention in VWM. The results demonstrate that selective maintenance in VWM can be dissociated from the locus of visual attention. PMID:23067118

  1. Testing a dynamic-field account of interactions between spatial attention and spatial working memory.

    PubMed

    Johnson, Jeffrey S; Spencer, John P

    2016-05-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: If attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal was reexamined in light of a neural-process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color discrimination task during the delay interval of a spatial-recall task. In the critical shifting-attention condition, the color stimulus could appear either toward or away from the midline reference axis, relative to the memorized location. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors, but no change in directional errors, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations-as predicted by the model-systematic changes in the patterns of spatial-recall errors should occur that would depend on the direction of the shift. The results were consistent with the latter possibility-recall errors were biased toward the locations of discrimination targets appearing during the delay.

  2. Testing a Dynamic Field Account of Interactions between Spatial Attention and Spatial Working Memory

    PubMed Central

    Johnson, Jeffrey S.; Spencer, John P.

    2016-01-01

    Studies examining the relationship between spatial attention and spatial working memory (SWM) have shown that discrimination responses are faster for targets appearing at locations that are being maintained in SWM, and that location memory is impaired when attention is withdrawn during the delay. These observations support the proposal that sustained attention is required for successful retention in SWM: if attention is withdrawn, memory representations are likely to fail, increasing errors. In the present study, this proposal is reexamined in light of a neural process model of SWM. On the basis of the model's functioning, we propose an alternative explanation for the observed decline in SWM performance when a secondary task is performed during retention: SWM representations drift systematically toward the location of targets appearing during the delay. To test this explanation, participants completed a color-discrimination task during the delay interval of a spatial recall task. In the critical shifting attention condition, the color stimulus could appear either toward or away from the memorized location relative to a midline reference axis. We hypothesized that if shifting attention during the delay leads to the failure of SWM representations, there should be an increase in the variance of recall errors but no change in directional error, regardless of the direction of the shift. Conversely, if shifting attention induces drift of SWM representations—as predicted by the model—there should be systematic changes in the pattern of spatial recall errors depending on the direction of the shift. Results were consistent with the latter possibility—recall errors were biased toward the location of discrimination targets appearing during the delay. PMID:26810574

  3. Spatial Working Memory Effects in Early Visual Cortex

    ERIC Educational Resources Information Center

    Munneke, Jaap; Heslenfeld, Dirk J.; Theeuwes, Jan

    2010-01-01

    The present study investigated how spatial working memory recruits early visual cortex. Participants were required to maintain a location in working memory while changes in blood oxygen level dependent (BOLD) signals were measured during the retention interval in which no visual stimulation was present. We show working memory effects during the…

  4. Differences between Presentation Methods in Working Memory Procedures: A Matter of Working Memory Consolidation

    ERIC Educational Resources Information Center

    Ricker, Timothy J.; Cowan, Nelson

    2014-01-01

    Understanding forgetting from working memory, the memory used in ongoing cognitive processing, is critical to understanding human cognition. In the past decade, a number of conflicting findings have been reported regarding the role of time in forgetting from working memory. This has led to a debate concerning whether longer retention intervals…

  5. Protective effect of curcumin (Curcuma longa), against aluminium toxicity: Possible behavioral and biochemical alterations in rats.

    PubMed

    Kumar, Anil; Dogra, Samrita; Prakash, Atish

    2009-12-28

    Aluminium is a potent neurotoxin and has been associated with Alzheimer's disease (AD) causality for decades. Prolonged aluminium exposure induces oxidative stress and increases amyloid beta levels in vivo. Current treatment modalities for AD provide only symptomatic relief thus necessitating the development of new drugs with fewer side effects. The aim of the study was to demonstrate the protective effect of chronic curcumin administration against aluminium-induced cognitive dysfunction and oxidative damage in rats. Aluminium chloride (100 mg/kg, p.o.) was administered to rats daily for 6 weeks. Rats were concomitantly treated with curcumin (per se; 30 and 60 mg/kg, p.o.) daily for a period of 6 weeks. On the 21st and 42nd day of the study behavioral studies to evaluate memory (Morris water maze and elevated plus maze task paradigms) and locomotion (photoactometer) were done. The rats were sacrificed on 43rd day following the last behavioral test and various biochemical tests were performed to assess the extent of oxidative damage. Chronic aluminium chloride administration resulted in poor retention of memory in Morris water maze, elevated plus maze task paradigms and caused marked oxidative damage. It also caused a significant increase in the acetylcholinesterase activity and aluminium concentration in aluminium treated rats. Chronic administration of curcumin significantly improved memory retention in both tasks, attenuated oxidative damage, acetylcholinesterase activity and aluminium concentration in aluminium treated rats (P<0.05). Curcumin has neuroprotective effects against aluminium-induced cognitive dysfunction and oxidative damage.

  6. Sleep-dependent consolidation patterns reveal insights into episodic memory structure.

    PubMed

    Oyanedel, Carlos N; Sawangjit, Anuck; Born, Jan; Inostroza, Marion

    2018-05-18

    Episodic memory formation is considered a genuinely hippocampal function. Its study in rodents has relied on two different task paradigms, i.e. the so called "what-where-when" (WW-When) task and "what-where-which" (WW-Which) task. The WW-When task aims to assess the memory for an episode as an event bound into its context defined by spatial and distinct temporal information, the WW-Which task lacks the temporal component and introduces, instead, an "occasion setter" marking the broader contextual configuration in which the event occurred. Whether both tasks measure episodic memory in an equivalent manner in terms of recollection has been controversially discussed. Here, we compared in two groups of rats the consolidating effects of sleep on episodic-like memory between both task paradigms. Sampling and test phases were separated by a 90-min morning retention interval which did or did not allow for spontaneous sleep. Results show that sleep is crucial for the consolidation of the memory on both tasks. However, consolidating effects of sleep were stronger for the WW-Which than WW-When task. Comparing performance during the post-sleep test phase revealed that WW-When memory only gradually emerged during the 3-min test period whereas WW-Which memory was readily expressed already from the first minute onward. Separate analysis of the temporal and spatial components of WW-When performance showed that the delayed episodic memory on this task originated from the temporal component which also did not emerge until the third minute of the test phase, whereas the spatial component already showed up in the first minute. In conclusion, sleep differentially affects consolidation on the two episodic-like memory tasks, with the delayed expression of WW-When memory after sleep resulting from preferential coverage of temporal aspects by this task. Copyright © 2018. Published by Elsevier Inc.

  7. Developmental changes in visual short-term memory in infancy: evidence from eye-tracking.

    PubMed

    Oakes, Lisa M; Baumgartner, Heidi A; Barrett, Frederick S; Messenger, Ian M; Luck, Steven J

    2013-01-01

    We assessed visual short-term memory (VSTM) for color in 6- and 8-month-old infants (n = 76) using a one-shot change detection task. In this task, a sample array of two colored squares was visible for 517 ms, followed by a 317-ms retention period and then a 3000-ms test array consisting of one unchanged item and one item in a new color. We tracked gaze at 60 Hz while infants looked at the changed and unchanged items during test. When the two sample items were different colors (Experiment 1), 8-month-old infants exhibited a preference for the changed item, indicating memory for the colors, but 6-month-olds exhibited no evidence of memory. When the two sample items were the same color and did not need to be encoded as separate objects (Experiment 2), 6-month-old infants demonstrated memory. These results show that infants can encode information in VSTM in a single, brief exposure that simulates the timing of a single fixation period in natural scene viewing, and they reveal rapid developmental changes between 6 and 8 months in the ability to store individuated items in VSTM.

  8. Short-Term Memory Affects Color Perception in Context

    PubMed Central

    Olkkonen, Maria; Allred, Sarah R.

    2014-01-01

    Color-based object selection — for instance, looking for ripe tomatoes in the market — places demands on both perceptual and memory processes: it is necessary to form a stable perceptual estimate of surface color from a variable visual signal, as well as to retain multiple perceptual estimates in memory while comparing objects. Nevertheless, perceptual and memory processes in the color domain are generally studied in separate research programs with the assumption that they are independent. Here, we demonstrate a strong failure of independence between color perception and memory: the effect of context on color appearance is substantially weakened by a short retention interval between a reference and test stimulus. This somewhat counterintuitive result is consistent with Bayesian estimation: as the precision of the representation of the reference surface and its context decays in memory, prior information gains more weight, causing the retained percepts to be drawn toward prior information about surface and context color. This interaction implies that to fully understand information processing in real-world color tasks, perception and memory need to be considered jointly. PMID:24475131

  9. Sleep-mediated memory consolidation depends on the level of integration at encoding.

    PubMed

    Himmer, Lea; Müller, Elias; Gais, Steffen; Schönauer, Monika

    2017-01-01

    There is robust evidence that sleep facilitates declarative memory consolidation. Integration of newly acquired memories into existing neocortical knowledge networks has been proposed to underlie this effect. Here, we test whether sleep affects memory retention for word-picture associations differently when it was learned explicitly or using a fast mapping strategy. Fast mapping is an incidental form of learning that references new information to existing knowledge and possibly allows neocortical integration already during encoding. If the integration of information into neocortical networks is a main function of sleep-dependent memory consolidation, material learned via fast mapping should therefore benefit less from sleep. Supporting this idea, we find that sleep has a protective effect on explicitly learned associations. In contrast, memory for associations learned by fast mapping does not benefit from sleep and remains stable regardless of whether sleep or wakefulness follows learning. Our results thus indicate that the need for sleep-mediated consolidation depends on the strategy used for learning and might thus be related to the level of integration of newly acquired memory achieved during encoding. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The Contribution of Cognitive Factors to Individual Differences in Understanding Noise-Vocoded Speech in Young and Older Adults

    PubMed Central

    Rosemann, Stephanie; Gießing, Carsten; Özyurt, Jale; Carroll, Rebecca; Puschmann, Sebastian; Thiel, Christiane M.

    2017-01-01

    Noise-vocoded speech is commonly used to simulate the sensation after cochlear implantation as it consists of spectrally degraded speech. High individual variability exists in learning to understand both noise-vocoded speech and speech perceived through a cochlear implant (CI). This variability is partly ascribed to differing cognitive abilities like working memory, verbal skills or attention. Although clinically highly relevant, up to now, no consensus has been achieved about which cognitive factors exactly predict the intelligibility of speech in noise-vocoded situations in healthy subjects or in patients after cochlear implantation. We aimed to establish a test battery that can be used to predict speech understanding in patients prior to receiving a CI. Young and old healthy listeners completed a noise-vocoded speech test in addition to cognitive tests tapping on verbal memory, working memory, lexicon and retrieval skills as well as cognitive flexibility and attention. Partial-least-squares analysis revealed that six variables were important to significantly predict vocoded-speech performance. These were the ability to perceive visually degraded speech tested by the Text Reception Threshold, vocabulary size assessed with the Multiple Choice Word Test, working memory gauged with the Operation Span Test, verbal learning and recall of the Verbal Learning and Retention Test and task switching abilities tested by the Comprehensive Trail-Making Test. Thus, these cognitive abilities explain individual differences in noise-vocoded speech understanding and should be considered when aiming to predict hearing-aid outcome. PMID:28638329

  11. Working Memory Capacity Limits Motor Learning When Implementing Multiple Instructions

    PubMed Central

    Buszard, Tim; Farrow, Damian; Verswijveren, Simone J. J. M.; Reid, Machar; Williams, Jacqueline; Polman, Remco; Ling, Fiona Chun Man; Masters, Rich S. W.

    2017-01-01

    Although it is generally accepted that certain practice conditions can place large demands on working memory (WM) when performing and learning a motor skill, the influence that WM capacity has on the acquisition of motor skills remains unsubstantiated. This study examined the role of WM capacity in a motor skill practice context that promoted WM involvement through the provision of explicit instructions. A cohort of 90 children aged 8 to 10 years were assessed on measures of WM capacity and attention. Children who scored in the lowest and highest thirds on the WM tasks were allocated to lower WM capacity (n = 24) and higher WM capacity (n = 24) groups, respectively. The remaining 42 participants did not participate in the motor task. The motor task required children to practice basketball shooting for 240 trials in blocks of 20 shots, with pre- and post-tests occurring before and after the intervention. A retention test was administered 1 week after the post-test. Prior to every practice block, children were provided with five explicit instructions that were specific to the technique of shooting a basketball. Results revealed that the higher WM capacity group displayed consistent improvements from pre- to post-test and through to the retention test, while the opposite effect occurred in the lower WM capacity group. This implies that the explicit instructions had a negative influence on learning by the lower WM capacity children. Results are discussed in relation to strategy selection for dealing with instructions and the role of attention control. PMID:28878701

  12. Impact of high-κ dielectric and metal nanoparticles in simultaneous enhancement of programming speed and retention time of nano-flash memory

    NASA Astrophysics Data System (ADS)

    Pavel, Akeed A.; Khan, Mehjabeen A.; Kirawanich, Phumin; Islam, N. E.

    2008-10-01

    A methodology to simulate memory structures with metal nanocrystal islands embedded as floating gate in a high-κ dielectric material for simultaneous enhancement of programming speed and retention time is presented. The computational concept is based on a model for charge transport in nano-scaled structures presented earlier, where quantum mechanical tunneling is defined through the wave impedance that is analogous to the transmission line theory. The effects of substrate-tunnel dielectric conduction band offset and metal work function on the tunneling current that determines the programming speed and retention time is demonstrated. Simulation results confirm that a high-κ dielectric material can increase programming current due to its lower conduction band offset with the substrate and also can be effectively integrated with suitable embedded metal nanocrystals having high work function for efficient data retention. A nano-memory cell designed with silver (Ag) nanocrystals embedded in Al 2O 3 has been compared with similar structure consisting of Si nanocrystals in SiO 2 to validate the concept.

  13. Role of the anterior cingulate cortex in the retrieval of novel object recognition memory after a long delay

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin CF.; Cassaday, Helen J.

    2017-01-01

    Previous in vivo electrophysiological studies suggest that the anterior cingulate cortex (ACgx) is an important substrate of novel object recognition (NOR) memory. However, intervention studies are needed to confirm this conclusion and permanent lesion studies cannot distinguish effects on encoding and retrieval. The interval between encoding and retrieval tests may also be a critical determinant of the role of the ACgx. The current series of experiments used micro-infusion of the GABAA receptor agonist, muscimol, into ACgx to reversibly inactivate the area and distinguish its role in encoding and retrieval. ACgx infusions of muscimol, before encoding did not alter NOR assessed after a delay of 20 min or 24 h. However, when infused into the ACgx before retrieval muscimol impaired NOR assessed after a delay of 24 h, but not after a 20-min retention test. Together these findings suggest that the ACgx plays a time-dependent role in the retrieval, but not the encoding, of NOR memory, neuronal activation being required for the retrieval of remote (24 h old), but not recent (20 min old) visual memory. PMID:28620078

  14. Neural mechanisms of motivated forgetting

    PubMed Central

    Anderson, Michael C.; Hanslmayr, Simon

    2014-01-01

    Not all memories are equally welcome in awareness. People limit the time they spend thinking about unpleasant experiences, a process that begins during encoding, but that continues when cues later remind someone of the memory. Here, we review the emerging behavioural and neuroimaging evidence that suppressing awareness of an unwelcome memory, at encoding or retrieval, is achieved by inhibitory control processes mediated by the lateral prefrontal cortex. These mechanisms interact with neural structures that represent experiences in memory, disrupting traces that support retention. Thus, mechanisms engaged to regulate momentary awareness introduce lasting biases in which experiences remain accessible. We argue that theories of forgetting that neglect the motivated control of awareness omit a powerful force shaping the retention of our past. PMID:24747000

  15. Deficient attention modulation of lateralized alpha power in schizophrenia.

    PubMed

    Kustermann, Thomas; Rockstroh, Brigitte; Kienle, Johanna; Miller, Gregory A; Popov, Tzvetan

    2016-06-01

    Modulation of 8-14 Hz (alpha) activity in posterior brain regions is associated with covert attention deployment in visuospatial tasks. Alpha power decrease contralateral to to-be-attended stimuli is believed to foster subsequent processing, such as retention of task-relevant input. Degradation of this alpha-regulation mechanism may reflect an early stage of disturbed attention regulation contributing to impaired attention and working memory commonly found in schizophrenia. The present study tested this hypothesis of early disturbed attention regulation by examining alpha power modulation in a lateralized cued delayed response task in 14 schizophrenia patients (SZ) and 25 healthy controls (HC). Participants were instructed to remember the location of a 100-ms saccade-target cue in the left or right visual hemifield in order to perform a delayed saccade to that location after a retention interval. As expected, alpha power decrease during the retention interval was larger in contralateral than ipsilateral posterior regions, and SZ showed less of this lateralization than did HC. In particular, SZ failed to show hemifield-specific alpha modulation in posterior right hemisphere. Results suggest less efficient modulation of alpha oscillations that are considered critical for attention deployment and item encoding and, hence, may affect subsequent spatial working memory performance. © 2016 Society for Psychophysiological Research.

  16. Memory strength and lineup presentation moderate effects of administrator influence on mistaken identifications.

    PubMed

    Zimmerman, David M; Chorn, Jacqueline Austin; Rhead, Lindsey M; Evelo, Andrew J; Kovera, Margaret Bull

    2017-12-01

    Administrator/witness pairs (N = 313) were randomly assigned to target-absent lineups in a 2 (Suspect/Perpetrator Similarity: High Suspect Similarity vs. Low Suspect Similarity) × 2 (Retention Interval: 30 min vs. 1 week) × 2 (Lineup Presentation: Simultaneous vs. Sequential) × 2 (Administrator Knowledge: Single-Blind vs. Double-Blind) factorial design to test whether suspect similarity and memory strength constrain interpersonal expectancy effects on eyewitness identification accuracy. Administrators who knew which lineup member was the suspect (single-blind) or who administered simultaneous lineups were more likely to emit verbal and nonverbal behaviors that suggested to the witness who the suspect was. Additionally, single-blind administrators exerted more pressure on witnesses to choose the suspect as opposed to fillers. Administrator knowledge interacted with retention interval and lineup presentation to influence mistaken identifications of innocent suspects; witnesses were more likely to mistakenly identify an innocent suspect from single-blind than double-blind lineups when witness retention intervals were long and photographs were presented simultaneously. Contrary to our predictions, suspect/perpetrator similarity did not interact with other manipulated variables to influence identification decisions. Both sequential and double-blind procedures should be used to reduce the use of suggestive behavior during lineup administration. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans.

    PubMed

    Grillon, Christian; Cordova, Jeremy; Morgan, Charles Andrew; Charney, Dennis S; Davis, Michael

    2004-09-01

    Beta-adrenergic receptors are involved in the consolidation of emotional memories. Yet, a number of studies using Pavlovian cued fear conditioning have been unable to demonstrate an effect of beta-adrenergic blockade on acquisition or retention of fear conditioning. Evidence for the involvement of beta-adrenergic receptors in emotional memories comes mostly from studies using fear inhibitory avoidance in rodents. It is possible that fear inhibitory avoidance is more akin to contextual conditioning than to cued fear conditioning, suggesting that context conditioning may be disrupted by beta-adrenergic blockade. This study investigated the effects of the beta-adrenergic blocker propranolol on cued and contextual fear conditioning in humans. Subjects were given either placebo (n=15) or 40 mg propranolol (n=15) prior to differential cued conditioning. A week later, they were tested for retention of context and cued fear conditioning using physiological (startle reflex and electrodermal activity) and subjective measures of emotional arousal. The results were consistent with the hypothesis. The skin conductance level (SCL) and the subjective measure of arousal suggested reduced emotional arousal upon returning to the conditioning context in the propranolol group, compared to the placebo group. The acquisition and retention of cued fear conditioning were not affected by propranolol. These results suggest that beta-adrenergic receptors are involved in contextual fear conditioning.

  18. A stochastic simulation method for the assessment of resistive random access memory retention reliability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berco, Dan, E-mail: danny.barkan@gmail.com; Tseng, Tseung-Yuen, E-mail: tseng@cc.nctu.edu.tw

    This study presents an evaluation method for resistive random access memory retention reliability based on the Metropolis Monte Carlo algorithm and Gibbs free energy. The method, which does not rely on a time evolution, provides an extremely efficient way to compare the relative retention properties of metal-insulator-metal structures. It requires a small number of iterations and may be used for statistical analysis. The presented approach is used to compare the relative robustness of a single layer ZrO{sub 2} device with a double layer ZnO/ZrO{sub 2} one, and obtain results which are in good agreement with experimental data.

  19. Staying Cool when Things Get Hot: Emotion Regulation Modulates Neural Mechanisms of Memory Encoding

    PubMed Central

    Hayes, Jasmeet Pannu; Morey, Rajendra A.; Petty, Christopher M.; Seth, Srishti; Smoski, Moria J.; McCarthy, Gregory; LaBar, Kevin S.

    2010-01-01

    During times of emotional stress, individuals often engage in emotion regulation to reduce the experiential and physiological impact of negative emotions. Interestingly, emotion regulation strategies also influence memory encoding of the event. Cognitive reappraisal is associated with enhanced memory while expressive suppression is associated with impaired explicit memory of the emotional event. However, the mechanism by which these emotion regulation strategies affect memory is unclear. We used event-related fMRI to investigate the neural mechanisms that give rise to memory formation during emotion regulation. Twenty-five participants viewed negative pictures while alternately engaging in cognitive reappraisal, expressive suppression, or passive viewing. As part of the subsequent memory design, participants returned to the laboratory two weeks later for a surprise memory test. Behavioral results showed a reduction in negative affect and a retention advantage for reappraised stimuli relative to the other conditions. Imaging results showed that successful encoding during reappraisal was uniquely associated with greater co-activation of the left inferior frontal gyrus, amygdala, and hippocampus, suggesting a possible role for elaborative encoding of negative memories. This study provides neurobehavioral evidence that engaging in cognitive reappraisal is advantageous to both affective and mnemonic processes. PMID:21212840

  20. Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults.

    PubMed

    Witte, A Veronica; Kerti, Lucia; Margulies, Daniel S; Flöel, Agnes

    2014-06-04

    Dietary habits such as caloric restriction or nutrients that mimic these effects may exert beneficial effects on brain aging. The plant-derived polyphenol resveratrol has been shown to increase memory performance in primates; however, interventional studies in older humans are lacking. Here, we tested whether supplementation of resveratrol would enhance memory performance in older adults and addressed potential mechanisms underlying this effect. Twenty-three healthy overweight older individuals that successfully completed 26 weeks of resveratrol intake (200 mg/d) were pairwise matched to 23 participants that received placebo (total n = 46, 18 females, 50-75 years). Before and after the intervention/control period, subjects underwent memory tasks and neuroimaging to assess volume, microstructure, and functional connectivity (FC) of the hippocampus, a key region implicated in memory functions. In addition, anthropometry, glucose and lipid metabolism, inflammation, neurotrophic factors, and vascular parameters were assayed. We observed a significant effect of resveratrol on retention of words over 30 min compared with placebo (p = 0.038). In addition, resveratrol led to significant increases in hippocampal FC, decreases in glycated hemoglobin (HbA1c) and body fat, and increases in leptin compared with placebo (all p < 0.05). Increases in FC between the left posterior hippocampus and the medial prefrontal cortex correlated with increases in retention scores and with decreases in HbA1c (all p < 0.05). This study provides initial evidence that supplementary resveratrol improves memory performance in association with improved glucose metabolism and increased hippocampal FC in older adults. Our findings offer the basis for novel strategies to maintain brain health during aging. Copyright © 2014 the authors 0270-6474/14/347862-09$15.00/0.

  1. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal.

    PubMed

    Garfinkel, Sarah N; Abelson, James L; King, Anthony P; Sripada, Rebecca K; Wang, Xin; Gaines, Laura M; Liberzon, Israel

    2014-10-01

    Post-traumatic stress disorder (PTSD) patients display pervasive fear memories, expressed indiscriminately. Proposed mechanisms include enhanced fear learning and impaired extinction or extinction recall. Documented extinction recall deficits and failure to use safety signals could result from general failure to use contextual information, a hippocampus-dependent process. This can be probed by adding a renewal phase to standard conditioning and extinction paradigms. Human subjects with PTSD and combat controls were conditioned (skin conductance response), extinguished, and tested for extinction retention and renewal in a scanner (fMRI). Fear conditioning (light paired with shock) occurred in one context, followed by extinction in another, to create danger and safety contexts. The next day, the extinguished conditioned stimulus (CS+E) was re-presented to assess extinction recall (safety context) and fear renewal (danger context). PTSD patients showed impaired extinction recall, with increased skin conductance and heightened amygdala activity to the extinguished CS+ in the safety context. However, they also showed impaired fear renewal; in the danger context, they had less skin conductance response to CS+E and lower activity in amygdala and ventral-medial prefrontal cortex compared with combat controls. Control subjects displayed appropriate contextual modulation of memory recall, with extinction (safety) memory prevailing in the safety context, and fear memory prevailing in the danger context. PTSD patients could not use safety context to sustain suppression of extinguished fear memory, but they also less effectively used danger context to enhance fear. They did not display globally enhanced fear expression, but rather showed a globally diminished capacity to use contextual information to modulate fear expression. Copyright © 2014 the authors 0270-6474/14/3413435-09$15.00/0.

  2. Acute effect of essential oil of Eugenia caryophyllata on cognition and pain in mice.

    PubMed

    Halder, Sumita; Mehta, Ashish K; Mediratta, Pramod K; Sharma, Krishna K

    2012-06-01

    The essential oil of Eugenia caryophyllata (clove oil; Family: Myrtaceae) is used in dental care as an antiseptic and analgesic. The study aims to evaluate the effect of clove oil on experimental models of pain and cognition in mice. To observe the acute effects of clove oil at different doses, the elevated plus maze was used for the assessment of cognition, and the tail flick and formalin tests were used for the study of pain. The formalin test showed that clove oil (0.1 ml/kg, i.p.) demonstrated significantly reduced pain response in both the phases. The lower doses (0.025 and 0.05 ml/kg, i.p.) reduced the formalin-induced pain response significantly in the second phase only. The tail-flick test showed variable response. The dose 0.1 ml/kg, clove oil, significantly decreased the tail-flick latency at 30 min and this effect was reversed by naloxone (1 mg/kg). On the contrary, the dose 0.025 ml/kg of clove oil, at 30 and 60 min increased the mean tail-flick latency compared to control group, but this effect was not statistically significant. Yet naloxone significantly (p < 0.05) reversed the effect of clove oil 0.025 ml/kg at 30 min. Clove oil (0.025 and 0.05 ml/kg, i.p.) significantly reversed the scopolamine-induced retention memory deficit induced by scopolamine, but clove oil (0.1 ml/kg, i.p.) significantly reversed both acquisition as well as retention deficits in elevated plus maze induced by the scopolamine. Clove oil exhibits reduced pain response by a predominantly peripheral action as evidenced by formalin test and the tail flick test showed the involvement of opioid receptors. Clove oil also significantly improved scopolamine-induced retention memory deficit at all doses.

  3. Suppressing unwanted memories reduces their unconscious influence via targeted cortical inhibition

    PubMed Central

    Gagnepain, Pierre; Henson, Richard N.; Anderson, Michael C.

    2014-01-01

    Suppressing retrieval of unwanted memories reduces their later conscious recall. It is widely believed, however, that suppressed memories can continue to exert strong unconscious effects that may compromise mental health. Here we show that excluding memories from awareness not only modulates medial temporal lobe regions involved in explicit retention, but also neocortical areas underlying unconscious expressions of memory. Using repetition priming in visual perception as a model task, we found that excluding memories of visual objects from consciousness reduced their later indirect influence on perception, literally making the content of suppressed memories harder for participants to see. Critically, effective connectivity and pattern similarity analysis revealed that suppression mechanisms mediated by the right middle frontal gyrus reduced activity in neocortical areas involved in perceiving objects and targeted the neural populations most activated by reminders. The degree of inhibitory modulation of the visual cortex while people were suppressing visual memories predicted, in a later perception test, the disruption in the neural markers of sensory memory. These findings suggest a neurobiological model of how motivated forgetting affects the unconscious expression of memory that may be generalized to other types of memory content. More generally, they suggest that the century-old assumption that suppression leaves unconscious memories intact should be reconsidered. PMID:24639546

  4. Scaled CMOS Technology Reliability Users Guide

    NASA Technical Reports Server (NTRS)

    White, Mark

    2010-01-01

    The desire to assess the reliability of emerging scaled microelectronics technologies through faster reliability trials and more accurate acceleration models is the precursor for further research and experimentation in this relevant field. The effect of semiconductor scaling on microelectronics product reliability is an important aspect to the high reliability application user. From the perspective of a customer or user, who in many cases must deal with very limited, if any, manufacturer's reliability data to assess the product for a highly-reliable application, product-level testing is critical in the characterization and reliability assessment of advanced nanometer semiconductor scaling effects on microelectronics reliability. A methodology on how to accomplish this and techniques for deriving the expected product-level reliability on commercial memory products are provided.Competing mechanism theory and the multiple failure mechanism model are applied to the experimental results of scaled SDRAM products. Accelerated stress testing at multiple conditions is applied at the product level of several scaled memory products to assess the performance degradation and product reliability. Acceleration models are derived for each case. For several scaled SDRAM products, retention time degradation is studied and two distinct soft error populations are observed with each technology generation: early breakdown, characterized by randomly distributed weak bits with Weibull slope (beta)=1, and a main population breakdown with an increasing failure rate. Retention time soft error rates are calculated and a multiple failure mechanism acceleration model with parameters is derived for each technology. Defect densities are calculated and reflect a decreasing trend in the percentage of random defective bits for each successive product generation. A normalized soft error failure rate of the memory data retention time in FIT/Gb and FIT/cm2 for several scaled SDRAM generations is presented revealing a power relationship. General models describing the soft error rates across scaled product generations are presented. The analysis methodology may be applied to other scaled microelectronic products and their key parameters.

  5. Facilitation of learning and modulation of frontal cortex acetylcholine by ventral pallidal injection of heparin glucosaminoglycan.

    PubMed

    De Souza Silva, M A; Jezek, K; Weth, K; Müller, H W; Huston, J P; Brandao, M L; Hasenöhrl, R U

    2002-01-01

    We examined the effects of heparin on learning and frontal cortex acetylcholine parameters following injection of the glucosaminoglycan into the ventral pallidum. In Experiment 1, possible mnemoactive effects of intrapallidal heparin injection were assessed. Rats with chronically implanted cannulae were administered heparin (0.1, 1.0, 10 ng) or vehicle (0.5 microl) and were tested on a one-trial step-through avoidance task. Two retention tests were carried out in each animal, one at 1.5 h after training to measure short-term memory and another at 24 h to measure long-term memory. Post-trial intrapallidal injection of 1.0 ng heparin improved both short- and long-term retention of the task, whereas the lower and the higher dose of the glucosaminoglycan had no effect. When the effective dose of heparin was injected 5 h, rather than immediately after training, it no longer facilitated long-term retention of the conditioned avoidance response. In Experiment 2, the effects of ventral pallidal heparin injection on frontal cortex acetylcholine and choline concentrations were investigated with in vivo microdialysis in anaesthetized rats. Heparin, administered in the dose of 1.0 ng, which was effective in facilitating avoidance performance, produced a delayed increase in cortical acetylcholine levels ipsi- and contralaterally to the side of intrabasalis injection, resembling the known neurochemical effects obtained for another glycosaminoglycan, chondroitin sulfate, which recently was shown to facilitate inhibitory avoidance learning and to increase frontal cortex acetylcholine. The present findings indicate that heparin, like other extracellular matrix proteoglycans, can exert beneficial effects on memory and strengthen the presumptive relationship between such promnestic effects of proteoglycans and basal forebrain cholinergic mechanisms. The data are discussed with respect to the presumed roles of matrix molecules in extrasynaptic volume transmission and in the 'cross-talk' between synapses.

  6. Decay, Transfer, and the Reacquisition of a Complex Skill: An Investigation of Practice Schedules, Observational Rehearsal, and Individual Differences

    DTIC Science & Technology

    2007-12-01

    Academic Press. Battig, W. F. (1979). The flexibility of human memory. In L. S. Cermak & F. I. Craik (Eds.), Levels of processing in human memory...with retention, transfer, and reacquisition, overall levels of prediction were relatively weak, especially for transfer. Differences in motivation...Although some individual differences (e.g., self-efficacy) were consistently associated with retention, transfer, and reacquisition, overall levels

  7. The effect of self-reported habitual sleep quality and sleep length on autobiographical memory.

    PubMed

    Murre, Jaap M J; Kristo, Gert; Janssen, Steve M J

    2014-01-01

    A large number of studies have recently shown effects of sleep on memory consolidation. In this study the effects of the sleep quality and sleep length on the retention of autobiographical memories are examined, using an Internet-based diary technique (Kristo, Janssen, & Murre, 2009). Each of over 600 participants recorded one recent personal event and was contacted after a retention interval that ranged from 2 to 46 days. Recall of the content, time, and details of the event were scored and related to sleep quality and sleep length as measured with the Pittsburgh Sleep Quality Index. Hierarchical regression analyses indicated that poor sleep quality, but not short sleep length, was associated with significantly lower recall at the longer retention periods (30-46 days), but not at the shorter ones (2-15 days), although the difference in recall between good and poor sleepers was small.

  8. Quantifying data retention of perpendicular spin-transfer-torque magnetic random access memory chips using an effective thermal stability factor method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Le, Son

    The thermal stability of perpendicular Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) devices is investigated at chip level. Experimental data are analyzed in the framework of the Néel-Brown model including distributions of the thermal stability factor Δ. We show that in the low error rate regime important for applications, the effect of distributions of Δ can be described by a single quantity, the effective thermal stability factor Δ{sub eff}, which encompasses both the median and the standard deviation of the distributions. Data retention of memory chips can be assessed accurately by measuring Δ{sub eff} as a function of device diameter andmore » temperature. We apply this method to show that 54 nm devices based on our perpendicular STT-MRAM design meet our 10 year data retention target up to 120 °C.« less

  9. Using Multiple Intelligences To Improve Retention in Foreign Language Vocabulary Study.

    ERIC Educational Resources Information Center

    Anderson, Virginia B.

    The report describes an experiment for increasing retention of foreign language vocabulary by using multiple intelligence approaches and memory enhancement tools. The targeted population was approximately 100 seventh- and eighth-grade Latin students. Student difficulty with vocabulary retention had been ascribed to the teacher's emphasis on…

  10. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning

    PubMed Central

    Lichtenstein, Leonie; Sommerlandt, Frank M. J.; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects’ antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation. PMID:26230643

  11. Dumb and Lazy? A Comparison of Color Learning and Memory Retrieval in Drones and Workers of the Buff-Tailed Bumblebee, Bombus terrestris, by Means of PER Conditioning.

    PubMed

    Lichtenstein, Leonie; Sommerlandt, Frank M J; Spaethe, Johannes

    2015-01-01

    More than 100 years ago, Karl von Frisch showed that honeybee workers learn and discriminate colors. Since then, many studies confirmed the color learning capabilities of females from various hymenopteran species. Yet, little is known about visual learning and memory in males despite the fact that in most bee species males must take care of their own needs and must find rewarding flowers to obtain food. Here we used the proboscis extension response (PER) paradigm to study the color learning capacities of workers and drones of the bumblebee, Bombus terrestris. Light stimuli were paired with sucrose reward delivered to the insects' antennae and inducing a reflexive extension of the proboscis. We evaluated color learning (i.e. conditioned PER to color stimuli) in absolute and differential conditioning protocols and mid-term memory retention was measured two hours after conditioning. Different monochromatic light stimuli in combination with neutral density filters were used to ensure that the bumblebees could only use chromatic and not achromatic (e.g. brightness) information. Furthermore, we tested if bees were able to transfer the learned information from the PER conditioning to a novel discrimination task in a Y-maze. Both workers and drones were capable of learning and discriminating between monochromatic light stimuli and retrieved the learned stimulus after two hours. Drones performed as well as workers during conditioning and in the memory test, but failed in the transfer test in contrast to workers. Our data clearly show that bumblebees can learn to associate a color stimulus with a sugar reward in PER conditioning and that both workers and drones reach similar acquisition and mid-term retention performances. Additionally, we provide evidence that only workers transfer the learned information from a Pavlovian to an operant situation.

  12. Transfer of Information from Short- to Long-Term Memory

    ERIC Educational Resources Information Center

    Modigliani, Vito; Seamon, John G.

    1974-01-01

    The present study examined current hypotheses concerning information transfer from short-term memory (STM) to long-term memory (LTM) using a Peterson STM task with word triplets presented over retention intervals of 0, 3, 6, 9, and 18 sec. (Editor)

  13. Diminished testing benefits in young adults with attention-deficit hyperactivity disorder.

    PubMed

    Dudukovic, Nicole M; Gottshall, Jackie L; Cavanaugh, Patricia A; Moody, Christine T

    2015-01-01

    Memory retrieval has been shown to enhance the long-term retention of tested material; however, recent research suggests that limiting attention during retrieval can decrease the benefits of testing memory. The present study examined whether testing benefits are reduced in young adults with attention-deficit hyperactivity disorder (ADHD). College students with and without ADHD read three short prose passages, each followed by a free recall test, a restudy period or a distractor task. Two days later participants recalled the passages. Although participants without ADHD did not show a significant benefit of testing over restudying, testing did produce recall benefits relative to not taking a test. These testing benefits were diminished in participants with ADHD, who did not show any advantage of testing over either restudying or no test. The absence of testing benefits in the ADHD group is likely due in part to decreased recall on the initial test. These findings have implications for improving educational practices among individuals with ADHD and also speak to the need to examine individual differences in the effectiveness of testing as a learning strategy.

  14. Reversal of Long-Term Potentiation-Like Plasticity Processes after Motor Learning Disrupts Skill Retention

    PubMed Central

    Cantarero, Gabriela; Lloyd, Ashley

    2013-01-01

    Plasticity of synaptic connections in the primary motor cortex (M1) is thought to play an essential role in learning and memory. Human and animal studies have shown that motor learning results in long-term potentiation (LTP)-like plasticity processes, namely potentiation of M1 and a temporary occlusion of additional LTP-like plasticity. Moreover, biochemical processes essential for LTP are also crucial for certain types of motor learning and memory. Thus, it has been speculated that the occlusion of LTP-like plasticity after learning, indicative of how much LTP was used to learn, is essential for retention. Here we provide supporting evidence of it in humans. Induction of LTP-like plasticity can be abolished using a depotentiation protocol (DePo) consisting of brief continuous theta burst stimulation. We used transcranial magnetic stimulation to assess whether application of DePo over M1 after motor learning affected (1) occlusion of LTP-like plasticity and (2) retention of motor skill learning. We found that the magnitude of motor memory retention is proportional to the magnitude of occlusion of LTP-like plasticity. Moreover, DePo stimulation over M1, but not over a control site, reversed the occlusion of LTP-like plasticity induced by motor learning and disrupted skill retention relative to control subjects. Altogether, these results provide evidence of a link between occlusion of LTP-like plasticity and retention and that this measure could be used as a biomarker to predict retention. Importantly, attempts to reverse the occlusion of LTP-like plasticity after motor learning comes with the cost of reducing retention of motor learning. PMID:23904621

  15. How does intentionality of encoding affect memory for episodic information?

    PubMed Central

    Craig, Michael; Butterworth, Karla; Nilsson, Jonna; Hamilton, Colin J.; Gallagher, Peter

    2016-01-01

    Episodic memory enables the detailed and vivid recall of past events, including target and wider contextual information. In this paper, we investigated whether/how encoding intentionality affects the retention of target and contextual episodic information from a novel experience. Healthy adults performed (1) a What-Where-When (WWW) episodic memory task involving the hiding and delayed recall of a number of items (what) in different locations (where) in temporally distinct sessions (when) and (2) unexpected tests probing memory for wider contextual information from the WWW task. Critically, some participants were informed that memory for WWW information would be subsequently probed (intentional group), while this came as a surprise for others (incidental group). The probing of contextual information came as a surprise for all participants. Participants also performed several measures of episodic and nonepisodic cognition from which common episodic and nonepisodic factors were extracted. Memory for target (WWW) and contextual information was superior in the intentional group compared with the incidental group. Memory for target and contextual information was unrelated to factors of nonepisodic cognition, irrespective of encoding intentionality. In addition, memory for target information was unrelated to factors of episodic cognition. However, memory for wider contextual information was related to some factors of episodic cognition, and these relationships differed between the intentional and incidental groups. Our results lead us to propose the hypothesis that intentional encoding of episodic information increases the coherence of the representation of the context in which the episode took place. This hypothesis remains to be tested. PMID:27918286

  16. The effects of DHEA, 3beta-hydroxy-5alpha-androstane-6,17-dione, and 7-amino-DHEA analogues on short term and long term memory in the mouse.

    PubMed

    Bazin, Marc-Antoine; El Kihel, Laïla; Boulouard, Michel; Bouët, Valentine; Rault, Sylvain

    2009-11-01

    Neurosteroids have been reported to modulate memory processes in rodents. Three analogues of dehydroepiandrosterone (DHEA), two of them previously described (7beta-aminoDHEA and 7beta-amino-17-ethylenedioxy-DHEA), and a new one (3beta-hydroxy-5alpha-androstane-6,17-dione) were synthesized, and their effects were evaluated on memory. This study examined their effects on long term and short term memory in male (6 weeks old) NMRI mice in comparison with the reference drug. Long term memory was assessed using the passive avoidance task and short term memory (spatial working memory) using the spontaneous alternation task in a Y maze. Moreover, the effects of DHEA and its analogues on spontaneous locomotion were measured. In all tests, DHEA and analogues were injected at three equimolar doses (0.300-1.350-6.075 microM/kg). DHEA and its three analogues administered immediately post-training at the highest doses (6.075 microM/kg, s.c.) improved retention in passive avoidance test. Without effect per se in the spatial working memory task, the four compounds failed to reverse scopolamine (1mg/kg, i.p.)-induced deficit in spontaneous alternation. These data suggested an action of DHEA and analogues in consolidation of long term memory particularly when emotional components are implied. Moreover, data indicated that pharmacological modulation of DHEA as performed in this study provides derivatives giving the same mnemonic profile than reference molecule.

  17. Evaluation of Data Retention and Imprint Characteristics of FRAMs Under Environmental Stresses for NASA Applications

    NASA Technical Reports Server (NTRS)

    Sharma, Asbok K.; Teverovsky, Alexander; Dowdy, Terry W.; Hamilton, Brett

    2002-01-01

    A major reliability issue for all advanced nonvolatile memory (NVM) technology devices including FRAMs is the data retention characteristics over extended period of time, under environmental stresses and exposure to total ionizing dose (TID) radiation effects. For this testing, 256 Kb FRAMs in 28-pin plastic DIPS, rated for industrial grade temperature range of -40 C to +85 C, were procured. These are two-transistor, two-capacitor (2T-2C) design FRAMs. In addition to data retention characteristics, the parts were also evaluated for imprint failures, which are defined as the failure of cells to change from a "preferred" state, where it has been for a significant period of time to an opposite state (e.g., from 1 to 0, or 0 to 1). These 256 K FRAMs were subjected to scanning acoustic microscopy (C-SAM); 1,000 temperature cycles from -65 C to +150 C; high temperature aging at 150 C, 175 C, and 200 C for 1,000 hours; highly accelerated stress test (HAST) for 500 hours; 1,000 hours of operational life test at 125 C; and total ionizing dose radiation testing. As a preconditioning, 10 K read/write cycles were performed on all devices. Interim electrical measurements were performed throughout this characterization, including special imprint testing and final electrical testing. Some failures were observed during high temperature aging test at 200 C, during HAST testing, and during 1,000 hours of operational life at 125 C. The parts passed 10 Krad exposure, but began showing power supply current increases during the dose increment from 10 Krad to 30 Krad, and at 40 Krad severe data retention and parametric failures were observed. Failures from various environmental group testing are currently being analyzed.

  18. Nonsteroidal anti-inflammatory drugs, aspirin, and cognitive function in the Baltimore longitudinal study of aging.

    PubMed

    Waldstein, Shari R; Wendell, Carrington Rice; Seliger, Stephen L; Ferrucci, Luigi; Metter, E Jeffrey; Zonderman, Alan B

    2010-01-01

    To examine the relations between the use of nonaspirin, nonsteroidal anti-inflammatory drugs (NSAIDs) and aspirin and age-related change in multiple domains of cognitive function in community-dwelling individuals without dementia. Longitudinal, with measures obtained on one to 18 occasions over up to 45 years. General community. A volunteer sample of up to 2,300 participants from the Baltimore Longitudinal Study of Aging free of diagnosed dementia. At each visit, reported NSAID or aspirin use (yes/no) and tests of verbal and visual memory, attention, perceptuo-motor speed, confrontation naming, executive function, and mental status. Mixed-effects regression models revealed that NSAID use was associated with less prospective decline on the Blessed Information-Memory-Concentration (I-M-C) Test, a mental status test weighted for memory and concentration (P<.001), and Part B of the Trail Making Test, a test of perceptuo-motor speed and mental flexibility (P<.05). In contrast, aspirin use was related to greater prospective decline on the Blessed I-M-C Test (P<.05) and the Benton Visual Retention Test, a test of visual memory (P<.001). Consistent with studies of incident dementia, NSAID users without dementia displayed less prospective decline in cognitive function, but on only two cognitive measures. In contrast, aspirin use was associated with greater prospective cognitive decline on select measures, potentially reflecting its common use for vascular disease prophylaxis. Effect sizes were small, calling into question clinical significance, although overall public health significance may be meaningful.

  19. Effects of testing on subsequent re-encoding and long-term forgetting of action-relevant materials: On the influence of recall type.

    PubMed

    Kubik, Veit; Nilsson, Lars-Göran; Olofsson, Jonas K; Jönsson, Fredrik U

    2015-10-01

    Testing one's memory of previously studied information reduces the rate of forgetting, compared to restudy. However, little is known about how this direct testing effect applies to action phrases (e.g., "wash the car") - a learning material relevant to everyday memory. As action phrases consist of two different components, a verb (e.g., "wash") and a noun (e.g., "car"), testing can either be implemented as noun-cued recall of verbs or verb-cued recall of nouns, which may differently affect later memory performance. In the present study, we investigated the effect of testing for these two recall types, using verbally encoded action phrases as learning materials. Results showed that repeated study-test practice, compared to repeated study-restudy practice, decreased the forgetting rate across 1 week to a similar degree for both noun-cued and verb-cued recall types. However, noun-cued recall of verbs initiated more new subsequent learning during the first restudy, compared to verb-cued recall of nouns. The study provides evidence that testing has benefits on both subsequent restudy and long-term retention of action-relevant materials, but that these benefits are differently expressed with testing via noun-cued versus verb-cued recall. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.

  20. Short-term memory to long-term memory transition in a nanoscale memristor.

    PubMed

    Chang, Ting; Jo, Sung-Hyun; Lu, Wei

    2011-09-27

    "Memory" is an essential building block in learning and decision-making in biological systems. Unlike modern semiconductor memory devices, needless to say, human memory is by no means eternal. Yet, forgetfulness is not always a disadvantage since it releases memory storage for more important or more frequently accessed pieces of information and is thought to be necessary for individuals to adapt to new environments. Eventually, only memories that are of significance are transformed from short-term memory into long-term memory through repeated stimulation. In this study, we show experimentally that the retention loss in a nanoscale memristor device bears striking resemblance to memory loss in biological systems. By stimulating the memristor with repeated voltage pulses, we observe an effect analogous to memory transition in biological systems with much improved retention time accompanied by additional structural changes in the memristor. We verify that not only the shape or the total number of stimuli is influential, but also the time interval between stimulation pulses (i.e., the stimulation rate) plays a crucial role in determining the effectiveness of the transition. The memory enhancement and transition of the memristor device was explained from the microscopic picture of impurity redistribution and can be qualitatively described by the same equations governing biological memories. © 2011 American Chemical Society

Top