Effects of a Memory Training Program in Older People with Severe Memory Loss
ERIC Educational Resources Information Center
Mateos, Pedro M.; Valentin, Alberto; González-Tablas, Maria del Mar; Espadas, Verónica; Vera, Juan L.; Jorge, Inmaculada García
2016-01-01
Strategies based memory training programs are widely used to enhance the cognitive abilities of the elderly. Participants in these training programs are usually people whose mental abilities remain intact. Occasionally, people with cognitive impairment also participate. The aim of this study was to test if memory training designed specifically for…
Sweeney, Mary M.; Rass, Olga; Johnson, Patrick S.; Strain, Eric C.; Berry, Meredith S.; Vo, Hoa T.; Fishman, Marc J.; Munro, Cynthia A.; Rebok, George W.; Mintzer, Miriam Z.; Johnson, Matthew W.
2016-01-01
Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 male; 9 female) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support development of this intervention as an adjunctive therapy for substance use disorders. PMID:27690506
Sweeney, Mary M; Rass, Olga; Johnson, Patrick S; Strain, Eric C; Berry, Meredith S; Vo, Hoa T; Fishman, Marc J; Munro, Cynthia A; Rebok, George W; Mintzer, Miriam Z; Johnson, Matthew W
2016-10-01
Individuals with substance use disorders have shown deficits in the ability to implement future intentions, called prospective memory. Deficits in prospective memory and working memory, a critical underlying component of prospective memory, likely contribute to substance use treatment failures. Thus, improvement of prospective memory and working memory in substance use patients is an innovative target for intervention. We sought to develop a feasible and valid prospective memory training program that incorporates working memory training and may serve as a useful adjunct to substance use disorder treatment. We administered a single session of the novel prospective memory and working memory training program to participants (n = 22; 13 men, 9 women) enrolled in outpatient substance use disorder treatment and correlated performance to existing measures of prospective memory and working memory. Generally accurate prospective memory performance in a single session suggests feasibility in a substance use treatment population. However, training difficulty should be increased to avoid ceiling effects across repeated sessions. Consistent with existing literature, we observed superior performance on event-based relative to time-based prospective memory tasks. Performance on the prospective memory and working memory training components correlated with validated assessments of prospective memory and working memory, respectively. Correlations between novel memory training program performance and established measures suggest that our training engages appropriate cognitive processes. Further, differential event- and time-based prospective memory task performance suggests internal validity of our training. These data support the development of this intervention as an adjunctive therapy for substance use disorders. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Effects of Cogmed working memory training on cognitive performance.
Etherton, Joseph L; Oberle, Crystal D; Rhoton, Jayson; Ney, Ashley
2018-04-16
Research on the cognitive benefits of working memory training programs has produced inconsistent results. Such research has frequently used laboratory-specific training tasks, or dual-task n-back training. The current study used the commercial Cogmed Working Memory (WM) Training program, involving several different training tasks involving visual and auditory input. Healthy college undergraduates were assigned to either the full Cogmed training program of 25, 40-min training sessions; an abbreviated Cogmed program of 25, 20-min training sessions; or a no-contact control group. Pretest and posttest measures included multiple measures of attention, working memory, fluid intelligence, and executive functions. Although improvement was observed for the full training group for a digit span task, no training-related improvement was observed for any of the other measures. Results of the study suggest that WM training does not improve performance on unrelated tasks or enhance other cognitive abilities.
What’s working in working memory training? An educational perspective
Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles
2015-01-01
Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children’s academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial research studies, the current review of all of the available evidence of working memory training efficacy is less optimistic. Our conclusion is that working memory training produces limited benefits in terms of specific gains on short-term and working memory tasks that are very similar to the training programs, but no advantage for academic and achievement-based reading and arithmetic outcomes. PMID:26640352
Vranić, Andrea; Španić, Ana Marija; Carretti, Barbara; Borella, Erika
2013-11-01
Several studies have shown an increase in memory performance after teaching mnemonic techniques to older participants. However, transfer effects to non-trained tasks are generally either very small, or not found. The present study investigates the efficacy of a multifactorial memory training program for older adults living in a residential care center. The program combines teaching of memory strategies with activities based on metacognitive (metamemory) and motivational aspects. Specific training-related gains in the Immediate list recall task (criterion task), as well as transfer effects on measures of short-term memory, long-term memory, working memory, motivational (need for cognition), and metacognitive aspects (subjective measure of one's memory) were examined. Maintenance of training benefits was assessed after seven months. Fifty-one older adults living in a residential care center, with no cognitive impairments, participated in the study. Participants were randomly assigned to two programs: the experimental group attended the training program, while the active control group was involved in a program in which different psychological issues were discussed. A benefit in the criterion task and substantial general transfer effects were found for the trained group, but not for the active control, and they were maintained at the seven months follow-up. Our results suggest that training procedures, which combine teaching of strategies with metacognitive-motivational aspects, can improve cognitive functioning and attitude toward cognitive activities in older adults.
Melby-Lervåg, Monica; Redick, Thomas S.; Hulme, Charles
2016-01-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of “real-world” cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. PMID:27474138
Working Memory Training for Children with Cochlear Implants: A Pilot Study
ERIC Educational Resources Information Center
Kronenberger, William G.; Pisoni, David B.; Henning, Shirley C.; Colson, Bethany G.; Hazzard, Lindsey M.
2011-01-01
Purpose: This study investigated the feasibility and efficacy of a working memory training program for improving memory and language skills in a sample of 9 children who are deaf (age 7-15 years) with cochlear implants (CIs). Method: All children completed the Cogmed Working Memory Training program on a home computer over a 5-week period.…
McClure, J T; Browning, R T; Vantrease, C M; Bittle, S T
1994-01-01
Previous research suggests that traumatic brain injury (TBI) results in impairment of iconic memory abilities.We would like to acknowledge the contribution of Jeffrey D. Vantrease, who wrote the software program for the Iconic Memory procedure and measurement. This raises serious implications for brain injury rehabilitation. Most cognitive rehabilitation programs do not include iconic memory training. Instead it is common for cognitive rehabilitation programs to focus on attention and concentration skills, memory skills, and visual scanning skills.This study compared the iconic memory skills of brain-injury survivors and control subjects who all reached criterion levels of visual scanning skills. This involved previous training for the brain-injury survivors using popular visual scanning programs that allowed them to visually scan with response time and accuracy within normal limits. Control subjects required only minimal training to reach normal limits criteria. This comparison allows for the dissociation of visual scanning skills and iconic memory skills.The results are discussed in terms of their implications for cognitive rehabilitation and the relationship between visual scanning training and iconic memory skills.
Melby-Lervåg, Monica; Redick, Thomas S; Hulme, Charles
2016-07-01
It has been claimed that working memory training programs produce diverse beneficial effects. This article presents a meta-analysis of working memory training studies (with a pretest-posttest design and a control group) that have examined transfer to other measures (nonverbal ability, verbal ability, word decoding, reading comprehension, or arithmetic; 87 publications with 145 experimental comparisons). Immediately following training there were reliable improvements on measures of intermediate transfer (verbal and visuospatial working memory). For measures of far transfer (nonverbal ability, verbal ability, word decoding, reading comprehension, arithmetic) there was no convincing evidence of any reliable improvements when working memory training was compared with a treated control condition. Furthermore, mediation analyses indicated that across studies, the degree of improvement on working memory measures was not related to the magnitude of far-transfer effects found. Finally, analysis of publication bias shows that there is no evidential value from the studies of working memory training using treated controls. The authors conclude that working memory training programs appear to produce short-term, specific training effects that do not generalize to measures of "real-world" cognitive skills. These results seriously question the practical and theoretical importance of current computerized working memory programs as methods of training working memory skills. © The Author(s) 2016.
Memory training interventions for older adults: a meta-analysis.
Gross, Alden L; Parisi, Jeanine M; Spira, Adam P; Kueider, Alexandra M; Ko, Jean Y; Saczynski, Jane S; Samus, Quincy M; Rebok, George W
2012-01-01
A systematic review and meta-analysis of memory training research was conducted to characterize the effect of memory strategies on memory performance among cognitively intact, community-dwelling older adults, and to identify characteristics of individuals and of programs associated with improved memory. The review identified 402 publications, of which 35 studies met criteria for inclusion. The overall effect size estimate, representing the mean standardized difference in pre-post change between memory-trained and control groups, was 0.31 standard deviations (SD; 95% confidence interval (CI): 0.22, 0.39). The pre-post training effect for memory-trained interventions was 0.43 SD (95% CI: 0.29, 0.57) and the practice effect for control groups was 0.06 SD (95% CI: 0.05, 0.16). Among 10 distinct memory strategies identified in studies, meta-analytic methods revealed that training multiple strategies was associated with larger training gains (p=0.04), although this association did not reach statistical significance after adjusting for multiple comparisons. Treatment gains among memory-trained individuals were not better after training in any particular strategy, or by the average age of participants, session length, or type of control condition. These findings can inform the design of future memory training programs for older adults.
Memory training interventions for older adults: A meta-analysis
Gross, Alden L.; Parisi, Jeanine M.; Spira, Adam P.; Kueider, Alexandra M.; Ko, Jean Y.; Saczynski, Jane S.; Samus, Quincy M.; Rebok, George W.
2012-01-01
A systematic review and meta-analysis of memory training research was conducted to characterize the effect of memory strategies on memory performance among cognitively intact, community-dwelling older adults, and to identify characteristics of individuals and of programs associated with improved memory. The review identified 402 publications, of which 35 studies met criteria for inclusion. The overall effect size estimate, representing the mean standardized difference in pre-post change between memory-trained and control groups, was 0.31 standard deviations (SD; 95% confidence interval (CI): 0.22, 0.39). The pre-post training effect for memory-trained interventions was 0.43 SD (95% CI: 0.29, 0.57) and the practice effect for control groups was 0.06 SD (95% CI: -0.05, 0.16). Among 10 distinct memory strategies identified in studies, meta-analytic methods revealed that training multiple strategies was associated with larger training gains (p=0.04), although this association did not reach statistical significance after adjusting for multiple comparisons. Treatment gains among memory-trained individuals were not better after training in any particular strategy, or by the average age of participants, session length, or type of control condition. These findings can inform the design of future memory training programs for older adults. PMID:22423647
Virtual reality-based prospective memory training program for people with acquired brain injury.
Yip, Ben C B; Man, David W K
2013-01-01
Acquired brain injuries (ABI) may display cognitive impairments and lead to long-term disabilities including prospective memory (PM) failure. Prospective memory serves to remember to execute an intended action in the future. PM problems would be a challenge to an ABI patient's successful community reintegration. While retrospective memory (RM) has been extensively studied, treatment programs for prospective memory are rarely reported. The development of a treatment program for PM, which is considered timely, can be cost-effective and appropriate to the patient's environment. A 12-session virtual reality (VR)-based cognitive rehabilitation program was developed using everyday PM activities as training content. 37 subjects were recruited to participate in a pretest-posttest control experimental study to evaluate its treatment effectiveness. Results suggest that significantly better changes were seen in both VR-based and real-life PM outcome measures, related cognitive attributes such as frontal lobe functions and semantic fluency. VR-based training may be well accepted by ABI patients as encouraging improvement has been shown. Large-scale studies of a virtual reality-based prospective memory (VRPM) training program are indicated.
Lustig, Cindy; Flegal, Kristin E.
2009-01-01
Cognitive training programs for older adults often result in improvements at the group level. However, there are typically large age and individual differences in the size of training benefits. These differences may be related to the degree to which participants implement the processes targeted by the training program. To test this possibility, we tested older adults in a memory-training procedure either under specific strategy instructions designed to encourage semantic, integrative encoding, or in a condition that encouraged time and attention to encoding but allowed participants to choose their own strategy. Both conditions improved the performance of old-old adults relative to an earlier study (Bissig & Lustig, 2007) and reduced self-reports of everyday memory errors. Performance in the strategy-instruction group was related to pre-existing ability, performance in the strategy-choice group was not. The strategy-choice group performed better on a laboratory transfer test of recognition memory, and training performance was correlated with reduced everyday memory errors. Training programs that target latent but inefficiently-used abilities while allowing flexibility in bringing those abilities to bear may best promote effective training and transfer. PMID:19140647
The effects of drumming on working memory in older adults.
Degé, Franziska; Kerkovius, Katharina
2018-05-04
Our study investigated the effect of a music training program on working memory (verbal memory, visual memory, and as a part of central executive processing working memory) in older adults. The experimental group was musically trained (drumming and singing), whereas one control group received a literature training program and a second control group was untrained. We randomly assigned 24 participants (all females; M = 77 years and 3 months) to the music group, the literature group, and the untrained group. The training groups were trained for 15 weeks. The three groups did not differ significantly in age, socioeconomic status, music education, musical aptitude, cognitive abilities, or depressive symptoms. We did not find differences in the music group in central executive function. However, we found a potential effect of music training on verbal memory and an impact of music training on visual memory. Musically trained participants remembered more words from a word list than both control groups, and they were able to remember more symbol sequences correctly than the control groups. Our findings show a possible effect of music training on verbal and visual memory in older people. © 2018 New York Academy of Sciences.
Cavallini, Elena; Bottiroli, Sara; Capotosto, Emanuela; De Beni, Rossana; Pavan, Giorgio; Vecchi, Tomaso; Borella, Erika
2015-08-01
Cognitive flexibility has repeatedly been shown to improve after training programs in community-dwelling older adults, but few studies have focused on healthy older adults living in other settings. This study investigated the efficacy of self-help training for healthy older adults in a residential care center on memory tasks they practiced (associative and object list learning tasks) and any transfer to other tasks (grocery lists, face-name learning, figure-word pairing, word lists, and text learning). Transfer effects on everyday life (using a problem-solving task) and on participants' beliefs regarding their memory (efficacy and control) were also examined. With the aid of a manual, the training adopted a learner-oriented approach that directly encouraged learners to generalize strategic behavior to new tasks. The maintenance of any training benefits was assessed after 6 months. The study involved 34 residential care center residents (aged 70-99 years old) with no cognitive impairments who were randomly assigned to two programs: the experimental group followed the self-help training program, whereas the active control group was involved in general cognitive stimulation activities. Training benefits emerged in the trained group for the tasks that were practiced. Transfer effects were found in memory and everyday problem-solving tasks and on memory beliefs. The effects of training were generally maintained in both practiced and unpracticed memory tasks. These results demonstrate that learner-oriented self-help training enhances memory performance and memory beliefs, in the short term at least, even in residential care center residents. Copyright © 2014 John Wiley & Sons, Ltd.
Rourke, James; Asghari, Shabnam; Hurley, Oliver; Ravalia, Mohamed; Jong, Michael; Parsons, Wanda; Duggan, Norah; Stringer, Katherine; O'Keefe, Danielle; Moffatt, Scott; Graham, Wendy; Sturge Sparkes, Carolyn; Hippe, Janelle; Harris Walsh, Kristin; McKay, Donald; Samarasena, Asoka
2018-03-01
This report describes the community context, concept and mission of The Faculty of Medicine at Memorial University of Newfoundland (Memorial), Canada, and its 'pathways to rural practice' approach, which includes influences at the pre-medical school, medical school experience, postgraduate residency training, and physician practice levels. Memorial's pathways to practice helped Memorial to fulfill its social accountability mandate to populate the province with highly skilled rural generalist practitioners. Programs/interventions/initiatives: The 'pathways to rural practice' include initiatives in four stages: (1) before admission to medical school; (2) during undergraduate medical training (medical degree (MD) program); (3) during postgraduate vocational residency training; and (4) after postgraduate vocational residency training. Memorial's Learners & Locations (L&L) database tracks students through these stages. The Aboriginal initiative - the MedQuest program and the admissions process that considers geographic or minority representation in terms of those selecting candidates and the candidates themselves - occurs before the student is admitted. Once a student starts Memorial's MD program, the student has ample opportunities to have rural-based experiences through pre-clerkship and clerkship, of which some take place exclusively outside of St. John's tertiary hospitals. Memorial's postgraduate (PG) Family Medicine (FM) residency (vocational) training program allows for deeper community integration and longer periods of training within the same community, which increases the likelihood of a physician choosing rural family medicine. After postgraduate training, rural physicians were given many opportunities for professional development as well as faculty development opportunities. Each of the programs and initiatives were assessed through geospatial rurality analysis of administrative data collected upon entry into and during the MD program and PG training (L&L). Among Memorial MD-graduating classes of 2011-2020, 56% spent the majority of their lives before their 18th birthday in a rural location and 44% in an urban location. As of September 2016, 23 Memorial MD students self-identified as Aboriginal, of which 2 (9%) were from an urban location and 20 (91%) were from rural locations. For Year 3 Family Medicine, graduating classes 2011 to 2019, 89% of placement weeks took place in rural communities and 8% took place in rural towns. For Memorial MD graduating classes 2011-2013 who completed Memorial Family Medicine vocational training residencies, (N=49), 100% completed some rural training. For these 49 residents (vocational trainees), the average amount of time spent in rural areas was 52 weeks out of a total average FM training time of 95 weeks. For Family Medicine residencies from July 2011 to October 2016, 29% of all placement weeks took place in rural communities and 21% of all placement weeks took place in rural towns. For 2016-2017 first-year residents, 53% of the first year training is completed in rural locations, reflecting an even greater rural experiential learning focus. Memorial's pathways approach has allowed for the comprehensive training of rural generalists for Newfoundland and Labrador and the rest of Canada and may be applicable to other settings. More challenges remain, requiring ongoing collaboration with governments, medical associations, health authorities, communities, and their physicians to help achieve reliable and feasible healthcare delivery for those living in rural and remote areas.
What's Working in Working Memory Training? An Educational Perspective
ERIC Educational Resources Information Center
Redick, Thomas S.; Shipstead, Zach; Wiemers, Elizabeth A.; Melby-Lervåg, Monica; Hulme, Charles
2015-01-01
Working memory training programs have generated great interest, with claims that the training interventions can have profound beneficial effects on children's academic and intellectual attainment. We describe the criteria by which to evaluate evidence for or against the benefit of working memory training. Despite the promising results of initial…
Lustig, Cindy; Flegal, Kristin E
2008-12-01
Cognitive training programs for older adults often result in improvements at the group level. However, there are typically large age and individual differences in the size of training benefits. These differences may be related to the degree to which participants implement the processes targeted by the training program. To test this possibility, we tested older adults in a memory-training procedure either under specific strategy instructions designed to encourage semantic, integrative encoding, or in a condition that encouraged time and attention to encoding but allowed participants to choose their own strategy. Both conditions improved the performance of old-old adults relative to an earlier study (D. Bissig & C. Lustig, 2007) and reduced self-reports of everyday memory errors. Performance in the strategy-instruction group was related to preexisting ability; performance in the strategy?choice group was not. The strategy-choice group performed better on a laboratory transfer test of recognition memory, and training performance was correlated with reduced everyday memory errors. Training programs that target participants' latent but inefficiently used abilities while allowing flexibility in bringing those abilities to bear may best promote effective training and transfer. Copyright (c) 2009 APA, all rights reserved.
Aasvik, Julie K; Woodhouse, Astrid; Stiles, Tore C; Jacobsen, Henrik B; Landmark, Tormod; Glette, Mari; Borchgrevink, Petter C; Landrø, Nils I
2016-01-01
Introduction: The current study examined if adaptive working memory training (Cogmed QM) has the potential to improve inhibitory control, working memory capacity, and perceptions of memory functioning in a group of patients currently on sick leave due to symptoms of pain, insomnia, fatigue, depression and anxiety. Participants who were referred to a vocational rehabilitation center volunteered to take part in the study. Methods: Participants were randomly assigned to either a training condition ( N = 25) or a control condition ( N = 29). Participants in the training condition received working memory training in addition to the clinical intervention offered as part of the rehabilitation program, while participants in the control condition received treatment as usual i.e., the rehabilitation program only. Inhibitory control was measured by The Stop Signal Task, working memory was assessed by the Spatial Working Memory Test, while perceptions of memory functioning were assessed by The Everyday Memory Questionnaire-Revised. Results: Participants in the training group showed a significant improvement on the post-tests of inhibitory control when compared with the comparison group ( p = 0.025). The groups did not differ on the post-tests of working memory. Both groups reported less memory problems at post-testing, but there was no sizeable difference between the two groups. Conclusions: Results indicate that working memory training does not improve general working memory capacity per se . Nor does it seem to give any added effects in terms of targeting and improving self-perceived memory functioning. Results do, however, provide evidence to suggest that inhibitory control is accessible and susceptible to modification by adaptive working memory training.
Roden, Ingo; Kreutz, Gunter; Bongard, Stephan
2012-01-01
This study examined the effects of a school-based instrumental training program on the development of verbal and visual memory skills in primary school children. Participants either took part in a music program with weekly 45 min sessions of instrumental lessons in small groups at school, or they received extended natural science training. A third group of children did not receive additional training. Each child completed verbal and visual memory tests three times over a period of 18 months. Significant Group by Time interactions were found in the measures of verbal memory. Children in the music group showed greater improvements than children in the control groups after controlling for children’s socio-economic background, age, and IQ. No differences between groups were found in the visual memory tests. These findings are consistent with and extend previous research by suggesting that children receiving music training may benefit from improvements in their verbal memory skills. PMID:23267341
Carretti, Barbara; Facchini, Giulia; Nicolini, Chiara
2011-02-01
A large body of research has demonstrated that, although specific memory activities can enhance the memory performance of healthy older adults, the extent of the increment is negatively associated with age. Conversely, few studies have examined the case of healthy elderly people not living alone. This study has two mains goals: to understand whether older adults with limited autonomy can benefit from activities devoted to increasing their episodic memory performance, and to test the efficacy of a memory training program based on autobiographical memories, in terms of transfer and maintenance effect. We postulated that being able to rely on stable autobiographical memories (intrinsically associated with emotions) would be a valuable memory aid. Memory training was given to healthy older adults (aged 75-85) living in a retirement home. Two programs were compared: in the first, participants were primed to recall autobiographical memories around certain themes, and then to complete a set of episodic memory tasks (experimental group); in the second, participants were only given the episodic tasks (control group). Both groups improved their performance from pre- to post-test. However, the experimental group reported a greater feeling of well-being after the training, and maintained the training gains relating to episodic performance after three months. Our findings suggest that specific memory activities are beneficial to elderly people living in a retirement home context. In addition, training based on reactivation of autobiographical memories is shown to produce a long-lasting effect on memory performance.
Failure of Working Memory Training to Enhance Cognition or Intelligence
Thompson, Todd W.; Waskom, Michael L.; Garel, Keri-Lee A.; Cardenas-Iniguez, Carlos; Reynolds, Gretchen O.; Winter, Rebecca; Chang, Patricia; Pollard, Kiersten; Lala, Nupur; Alvarez, George A.; Gabrieli, John D. E.
2013-01-01
Fluid intelligence is important for successful functioning in the modern world, but much evidence suggests that fluid intelligence is largely immutable after childhood. Recently, however, researchers have reported gains in fluid intelligence after multiple sessions of adaptive working memory training in adults. The current study attempted to replicate and expand those results by administering a broad assessment of cognitive abilities and personality traits to young adults who underwent 20 sessions of an adaptive dual n-back working memory training program and comparing their post-training performance on those tests to a matched set of young adults who underwent 20 sessions of an adaptive attentional tracking program. Pre- and post-training measurements of fluid intelligence, standardized intelligence tests, speed of processing, reading skills, and other tests of working memory were assessed. Both training groups exhibited substantial and specific improvements on the trained tasks that persisted for at least 6 months post-training, but no transfer of improvement was observed to any of the non-trained measurements when compared to a third untrained group serving as a passive control. These findings fail to support the idea that adaptive working memory training in healthy young adults enhances working memory capacity in non-trained tasks, fluid intelligence, or other measures of cognitive abilities. PMID:23717453
ERIC Educational Resources Information Center
Bennett, Stephanie J.; Holmes, Joni; Buckley, Sue
2013-01-01
This study evaluated the impact of a computerized visuospatial memory training intervention on the memory and behavioral skills of children with Down syndrome. Teaching assistants were trained to support the delivery of a computerized intervention program to individual children over a 10-16 week period in school. Twenty-one children aged 7-12…
The Relative Success of a Self-Help and a Group-Based Memory Training Program for Older Adults
Hastings, Erin C.; West, Robin L.
2011-01-01
This study evaluates self-help and group-based memory training programs to test for their differential impact on memory beliefs and performance. Self-help participants used a manual that presented strategies for name, story, and list recall and practice exercises. Matched content from that same manual was presented by the trainer in 2-hr weekly group sessions for the group-based trainees. Relative to a wait-list control group, most memory measures showed significant gains for both self-help and group-based training, with no significant training condition differences, and these gains were maintained at follow-up. Belief measures showed that locus of control was significantly higher for the self-help and group-based training than the control group; memory self-efficacy significantly declined for controls, increased for group-trained participants, and remained constant in the self-help group. Self-efficacy change in a self-help group may require more opportunities for interacting with peers and/or an instructor emphasizing one's potential for memory change. PMID:19739914
ERIC Educational Resources Information Center
Zhang, Dake
2017-01-01
We examined the effectiveness of (a) a working memory (WM) training program and (b) a combination program involving both WM training and direct instruction for students with geometry difficulties (GD). Four students with GD participated. A multiple-baseline design across participants was employed. During the Phase 1, students received six sessions…
ERIC Educational Resources Information Center
Lee, Linda; Weston, W. Wayne; Hillier, Loretta M.
2013-01-01
Introduction: Primary care is challenged to meet the needs of patients with dementia. A training program was developed to increase capacity for dementia care through the development of Family Health Team (FHT)-based interprofessional memory clinics. The interprofessional training program consisted of a 2-day workshop, 1-day observership, and 2-day…
Grunewaldt, Kristine Hermansen; Skranes, Jon; Brubakk, Ann-Mari; Lähaugen, Gro C C
2016-02-01
Working memory deficits are frequently found in children born preterm and have been linked to learning disabilities, and cognitive and behavioural problems. Our aim was to evaluate if a computerized working memory training program has long-term positive effects on memory, learning, and behaviour in very-low-birthweight (VLBW) children at age 5 to 6 years. This prospective, intervention study included 20 VLBW preschool children in the intervention group and 17 age-matched, non-training VLBW children in the comparison group. The intervention group trained with the Cogmed JM working memory training program daily for 5 weeks (25 training sessions). Extensive neuropsychological assessment and parental questionnaires were performed 4 weeks after intervention and at follow-up 7 months later. For most of the statistical analyses, general linear models were applied. At follow-up, higher scores and increased or equal performance gain were found in the intervention group than the comparison group on memory for faces (p=0.012), narrative memory (p=0.002), and spatial span (p=0.003). No group differences in performance gain were found for attention and behaviour. Computerized working memory training seems to have positive and persisting effects on working memory, and visual and verbal learning, at 7-month follow-up in VLBW preschool children. We speculate that such training is beneficial by improving the ability to learn from the teaching at school and for further cognitive development. © 2015 Mac Keith Press.
Effects of Working Memory Training on Reading in Children with Special Needs
ERIC Educational Resources Information Center
Dahlin, Karin I. E.
2011-01-01
This study examines the relationship between working memory and reading achievement in 57 Swedish primary-school children with special needs. First, it was examined whether children's working memory could be enhanced by a cognitive training program, and how the training outcomes would relate to their reading development. Next, it was explored how…
Richey, J. Elizabeth; Phillips, Jeffrey S.; Schunn, Christian D.; Schneider, Walter
2014-01-01
Analogical reasoning has been hypothesized to critically depend upon working memory through correlational data [1], but less work has tested this relationship through experimental manipulation [2]. An opportunity for examining the connection between working memory and analogical reasoning has emerged from the growing, although somewhat controversial, body of literature suggests complex working memory training can sometimes lead to working memory improvements that transfer to novel working memory tasks. This study investigated whether working memory improvements, if replicated, would increase analogical reasoning ability. We assessed participants’ performance on verbal and visual analogy tasks after a complex working memory training program incorporating verbal and spatial tasks [3], [4]. Participants’ improvements on the working memory training tasks transferred to other short-term and working memory tasks, supporting the possibility of broad effects of working memory training. However, we found no effects on analogical reasoning. We propose several possible explanations for the lack of an impact of working memory improvements on analogical reasoning. PMID:25188356
Lawlor-Savage, Linette; Goghari, Vina M.
2016-01-01
Enhancing cognitive ability is an attractive concept, particularly for middle-aged adults interested in maintaining cognitive functioning and preventing age-related declines. Computerized working memory training has been investigated as a safe method of cognitive enhancement in younger and older adults, although few studies have considered the potential impact of working memory training on middle-aged adults. This study investigated dual n-back working memory training in healthy adults aged 30–60. Fifty-seven adults completed measures of working memory, processing speed, and fluid intelligence before and after a 5-week web-based dual n-back or active control (processing speed) training program. Results: Repeated measures multivariate analysis of variance failed to identify improvements across the three cognitive composites, working memory, processing speed, and fluid intelligence, after training. Follow-up Bayesian analyses supported null findings for training effects for each individual composite. Findings suggest that dual n-back working memory training may not benefit working memory or fluid intelligence in healthy adults. Further investigation is necessary to clarify if other forms of working memory training may be beneficial, and what factors impact training-related benefits, should they occur, in this population. PMID:27043141
Eggenberger, Patrick; Schumacher, Vera; Angst, Marius; Theill, Nathan; de Bruin, Eling D
2015-01-01
Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive-physical components would add training specific cognitive benefits compared to exclusively physical training. Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated. Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive-physical programs were found in two dimensions of executive function. "Shifting attention" showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and "working memory" showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R (2)=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups. Particular executive functions benefit from simultaneous cognitive-physical training compared to exclusively physical multicomponent training. Cognitive-physical training programs may counteract widespread cognitive impairments in the elderly.
Han, Ji Won; Oh, Kyusoo; Yoo, Sooyoung; Kim, Eunhye; Ahn, Ki-Hwan; Son, Yeon-Joo; Kim, Tae Hui; Chi, Yeon Kyung
2014-01-01
Objective The Ubiquitous Spaced Retrieval-based Memory Advancement and Rehabilitation Training (USMART) program was developed by transforming the spaced retrieval-based memory training which consisted of 24 face-to-face sessions into a self-administered program with an iPAD app. The objective of this study was to evaluate the feasibility and efficacy of USMART in elderly subjects with mild cognitive impairment (MCI). Methods Feasibility was evaluated by checking the satisfaction of the participants with a 5-point Likert scale. The efficacy of the program on cognitive functions was evaluated by the Korean version of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Assessment Battery before and after USMART. Results Among the 10 participants, 7 completed both pre- and post-USMART assessments. The overall satisfaction score was 8.0±1.0 out of 10. The mean Word List Memory Test (WLMT) scores significantly increased after USMART training after adjusting for age, educational levels, baseline Mini-Mental Status Examination scores, and the number of training sessions (pre-USMART, 16.0±4.1; post-USMART, 17.9±4.5; p=0.014, RM-ANOVA). The magnitude of the improvements in the WLMT scores significantly correlated with the number of training sessions during 4 weeks (r=0.793; p=0.033). Conclusion USMART was effective in improving memory and was well tolerated by most participants with MCI, suggesting that it may be a convenient and cost-effective alternative for the cognitive rehabilitation of elderly subjects with cognitive impairments. Further studies with large numbers of participants are necessary to examine the relationship between the number of training sessions and the improvements in memory function. PMID:24605124
Carretti, Barbara; Borella, Erika; Fostinelli, Silvia; Zavagnin, Michela
2013-04-01
A growing number of studies are attempting to understand how effective cognitive interventions may be for patients with amnestic mild cognitive impairment (aMCI), particularly in relation to their memory problems. The present study aimed to explore the benefits of a working memory (WM) training program in aMCI patients. Patients (N = 20) were randomly assigned to two training programs: the experimental group practiced with a verbal WM task, while the active control group conducted educational activities on memory. Results showed that the aMCI patients completing the WM training obtained specific gains in the task trained with some transfer effects on other WM measures (visuospatial WM) and on processes involved in or related to WM, e.g. fluid intelligence (the Cattell test) and long-term memory. This was not the case for the aMCI control group, who experienced only a very limited improvement. This pilot study suggests that WM training could be a valuable method for improving cognitive performance in aMCI patients, possibly delaying the onset of Alzheimer's disease.
Nelwan, Michel; Vissers, Constance; Kroesbergen, Evelyn H
2018-05-01
The goal of the present study was to test whether the amount of coaching influenced the results of working memory training on both visual and verbal working memory. Additionally, the effects of the working memory training on the amount of progress after specific training in mathematics were evaluated. In this study, 23 children between 9 and 12 years of age with both attentional and mathematical difficulties participated in a working memory training program with a high amount of coaching, while another 25 children received no working memory training. Results of these groups were compared to 21 children who completed the training with a lower amount of coaching. The quality of working memory, as well as mathematic skills, were measured three times using untrained transfer tasks. Bayesian statistics were used to test informative hypotheses. After receiving working memory training, the highly coached group performed better than the group that received less coaching on visual working memory and mathematics, but not on verbal working memory. The highly coached group retained their advantage in mathematics, even though the effect on visual working memory decreased. However, no added effect of working memory training was found on the learning curve during mathematical training. Moreover, the less-coached group was outperformed by the group that did not receive working memory training, both in visual working memory and mathematics. These results suggest that motivation and proper coaching might be crucial for ensuring compliance and effects of working memory training, and that far transfer might be possible. Copyright © 2018 Elsevier Ltd. All rights reserved.
Practice makes imperfect: Working memory training can harm recognition memory performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matzen, Laura E.; Trumbo, Michael C.; Haass, Michael J.
There is a great deal of debate concerning the benefits of working memory (WM) training and whether that training can transfer to other tasks. Although a consistent finding is that WM training programs elicit a short-term near-transfer effect (i.e., improvement in WM skills), results are inconsistent when considering persistence of such improvement and far transfer effects. In this study, we compared three groups of participants: a group that received WM training, a group that received training on how to use a mental imagery memory strategy, and a control group that received no training. Although the WM training group improved onmore » the trained task, their posttraining performance on nontrained WM tasks did not differ from that of the other two groups. In addition, although the imagery training group’s performance on a recognition memory task increased after training, the WM training group’s performance on the task decreased after training. Participants’ descriptions of the strategies they used to remember the studied items indicated that WM training may lead people to adopt memory strategies that are less effective for other types of memory tasks. Our results indicate that WM training may have unintended consequences for other types of memory performance.« less
ERIC Educational Resources Information Center
Laws, Glynis; And Others
1996-01-01
A study of 27 British children (ages 5-19) with Down syndrome investigated the effects of using a memory training program at schools for children with severe learning difficulties. Results found a small but significant improvement in memory spans for children who were trained by teachers or teaching assistants.(Author/CR)
Cognitive training with casual video games: points to consider.
Baniqued, Pauline L; Kranz, Michael B; Voss, Michelle W; Lee, Hyunkyu; Cosman, Joshua D; Severson, Joan; Kramer, Arthur F
2014-01-07
Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory-reasoning group, an adaptive working memory-reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory-reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games.
Fernandez, Elizabeth; Bergado Rosado, Jorge A.; Rodriguez Perez, Daymi; Salazar Santana, Sonia; Torres Aguilar, Maydane; Bringas, Maria Luisa
2017-01-01
Many training programs have been designed using modern software to restore the impaired cognitive functions in patients with acquired brain damage (ABD). The objective of this study was to evaluate the effectiveness of a computer-based training program of attention and memory in patients with ABD, using a two-armed parallel group design, where the experimental group (n = 50) received cognitive stimulation using RehaCom software, and the control group (n = 30) received the standard cognitive stimulation (non-computerized) for eight weeks. In order to assess the possible cognitive changes after the treatment, a post-pre experimental design was employed using the following neuropsychological tests: Wechsler Memory Scale (WMS) and Trail Making test A and B. The effectiveness of the training procedure was statistically significant (p < 0.05) when it established the comparison between the performance in these scales, before and after the training period, in each patient and between the two groups. The training group had statistically significant (p < 0.001) changes in focused attention (Trail A), two subtests (digit span and logical memory), and the overall score of WMS. Finally, we discuss the advantages of computerized training rehabilitation and further directions of this line of work. PMID:29301194
Eggenberger, Patrick; Schumacher, Vera; Angst, Marius; Theill, Nathan; de Bruin, Eling D
2015-01-01
Background Cognitive impairment is a health problem that concerns almost every second elderly person. Physical and cognitive training have differential positive effects on cognition, but have been rarely applied in combination. This study evaluates synergistic effects of multicomponent physical exercise complemented with novel simultaneous cognitive training on cognition in older adults. We hypothesized that simultaneous cognitive–physical components would add training specific cognitive benefits compared to exclusively physical training. Methods Seniors, older than 70 years, without cognitive impairment, were randomly assigned to either: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Cognitive performance was assessed at baseline, after 3 and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were calculated. Results Eighty-nine participants were randomized to the three groups initially, 71 completed the training, while 47 were available at 1-year follow-up. Advantages of the simultaneous cognitive–physical programs were found in two dimensions of executive function. “Shifting attention” showed a time×intervention interaction in favor of DANCE/MEMORY versus PHYS (F[2, 68] =1.95, trend P=0.075, r=0.17); and “working memory” showed a time×intervention interaction in favor of DANCE versus MEMORY (F[1, 136] =2.71, trend P=0.051, R2=0.006). Performance improvements in executive functions, long-term visual memory (episodic memory), and processing speed were maintained at follow-up in all groups. Conclusion Particular executive functions benefit from simultaneous cognitive–physical training compared to exclusively physical multicomponent training. Cognitive–physical training programs may counteract widespread cognitive impairments in the elderly. PMID:26316729
The effect of strategic memory training in older adults: who benefits most?
Rosi, Alessia; Del Signore, Federica; Canelli, Elisa; Allegri, Nicola; Bottiroli, Sara; Vecchi, Tomaso; Cavallini, Elena
2017-12-07
Previous research has suggested that there is a degree of variability among older adults' response to memory training, such that some individuals benefit more than others. The aim of the present study was to identify the profile of older adults who were likely to benefit most from a strategic memory training program that has previously proved to be effective in improving memory in healthy older adults. In total, 44 older adults (60-83 years) participated in a strategic memory training. We examined memory training benefits by measuring changes in memory practiced (word list learning) and non-practiced tasks (grocery list and associative learning). In addition, a battery of cognitive measures was administered in order to assess crystallized and fluid abilities, short-term memory, working memory, and processing speed. Results confirmed the efficacy of the training in improving performance in both practiced and non-practiced memory tasks. For the practiced memory tasks, results showed that memory baseline performance and crystallized ability predicted training gains. For the non-practiced memory tasks, analyses showed that memory baseline performance was a significant predictor of gain in the grocery list learning task. For the associative learning task, the significant predictors were memory baseline performance, processing speed, and marginally the age. Our results indicate that older adults with a higher baseline memory capacity and with more efficient cognitive resources were those who tended to benefit most from the training. The present study provides new avenues in designing personalized intervention according to the older adults' cognitive profile.
Greenberg, Jonathan; Romero, Victoria L; Elkin-Frankston, Seth; Bezdek, Matthew A; Schumacher, Eric H; Lazar, Sara W
2018-03-17
Proactive interference occurs when previously relevant information interferes with retaining newer material. Overcoming proactive interference has been linked to the hippocampus and deemed critical for cognitive functioning. However, little is known about whether and how this ability can be improved or about the neural correlates of such improvement. Mindfulness training emphasizes focusing on the present moment and minimizing distraction from competing thoughts and memories. It improves working memory and increases hippocampal density. The current study examined whether mindfulness training reduces proactive interference in working memory and whether such improvements are associated with changes in hippocampal volume. 79 participants were randomized to a 4-week web-based mindfulness training program or a similarly structured creative writing active control program. The mindfulness group exhibited lower proactive interference error rates compared to the active control group following training. No group differences were found in hippocampal volume, yet proactive interference improvements following mindfulness training were significantly associated with volume increases in the left hippocampus. These results provide the first evidence to suggest that (1) mindfulness training can protect against proactive interference, and (2) that these benefits are related to hippocampal volumetric increases. Clinical implications regarding the application of mindfulness training in conditions characterized by impairments to working memory and reduced hippocampal volume such as aging, depression, PTSD, and childhood adversity are discussed.
Eskilsson, Therese; Slunga Järvholm, Lisbeth; Malmberg Gavelin, Hanna; Stigsdotter Neely, Anna; Boraxbekk, Carl-Johan
2017-09-02
Patients with stress-related exhaustion suffer from cognitive impairments, which often remain after psychological treatment or work place interventions. It is important to find effective treatments that can address this problem. Therefore, the aim of this study was to investigate the effects on cognitive performance and psychological variables of a 12-week aerobic training program performed at a moderate-vigorous intensity for patients with exhaustion disorder who participated in a multimodal rehabilitation program. In this open-label, parallel, randomized and controlled trial, 88 patients diagnosed with exhaustion disorder participated in a 24-week multimodal rehabilitation program. After 12 weeks in the program the patients were randomized to either a 12-week aerobic training intervention or to a control group with no additional training. Primary outcome measure was cognitive function, and secondary outcome measures were psychological health variables and aerobic capacity. In total, 51% patients in the aerobic training group and 78% patients in the control group completed the intervention period. The aerobic training group significantly improved in maximal oxygen uptake and episodic memory performance. No additional improvement in burnout, depression or anxiety was observed in the aerobic group compared with controls. Aerobic training at a moderate-vigorous intensity within a multimodal rehabilitation program for patients with exhaustion disorder facilitated episodic memory. A future challenge would be the clinical implementation of aerobic training and methods to increase feasibility in this patient group. ClinicalTrials.gov: NCT03073772 . Retrospectively registered 21 February 2017.
ERIC Educational Resources Information Center
Lundine, Jennifer P.
2017-01-01
Clinical Question: For children and adolescents with memory impairments after traumatic brain injury (TBI), do computerized cognitive training (CCT) programs used in conjunction with traditional therapy vs. traditional therapy alone lead to memory gains in daily activities? Method: Literature Review. Study Sources: Google Scholar, CINAHL via…
A Controlled Trial of Working Memory Training for Children and Adolescents with ADHD
ERIC Educational Resources Information Center
Beck, Steven J.; Hanson, Christine A.; Puffenberger, Synthia S.; Benninger, Kristen L.; Benninger, William B.
2010-01-01
This study assessed the efficacy of a 5-week, intensive working memory training program for 52 children and adolescents (ages 7-17) who had Attention-Deficit/Hyperactivity Disorder (ADHD) and other comorbid diagnoses. This study provided a treatment replication since the waitlist control group also completed training and was included in the…
Carretti, Barbara; Borella, Erika; Zavagnin, Michela; De Beni, Rossana
2011-01-01
The current study examines the contribution of a number of metacognitive and motivational variables in explaining specific, transfer and maintenance effects of a strategic memory training program, based on the use of mental imagery, in older adults. Participants were assessed before and after the training (immediately post-test, and at 3- and 6-month follow-up) on list recall (criterion) and working memory (transfer) tasks. At the pre-test, metacognition (use of strategies, belief about memory, control on memory) and motivational measures (cognitive engagement, self-efficacy) were also collected. The training produced a benefit in both the criterion and transfer tasks, which was maintained at follow-up. Some of the metacognitive and motivational measures, over and above the level of performance obtained at pre-test, predicted the gains in the objective memory measures. The findings confirmed the importance of considering the role of metacognitive attitudes of older adults in memory training activities. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Talking Typewriter Training Program in a Rehabilitation Setting.
ERIC Educational Resources Information Center
Kupshunas, Sue
1984-01-01
As part of a state residential center's 16-week training program to assist blind adults, aged 16-65, in acquiring employability skills, clients receive hands-on training in mastering the IBM Memory 100 Audio Unit typewriter. Training includes assessing prerequisite secretarial skills, using self-instructional materials, and evaluating performance.…
ERIC Educational Resources Information Center
Yilmaz, Yavuz; Yetkin, Yalçin
2014-01-01
The relationship between mean intelligence quotient (IQ), hand preferences and visual memory (VM) were investigated on (N = 612) males and females students trained in different educational programs in viewpoint of laterality. IQ was assessed by cattle's culture Fair intelligence test-A (CCFIT-A). The laterality of the one side of the body was…
Effects of working memory training on children born preterm.
Lee, Clara S C; Pei, Jacqueline; Andrew, Gail; A Kerns, Kimberly; Rasmussen, Carmen
2017-01-01
Researchers have reported benefits of working memory training in various populations, however, the training gains in preterm population is still inadequately studied. This study aimed to investigate the transfer and lasting effects of an online working memory training program on a group of preterm children aged between 4 and 6 years (mean gestational age = 28.3 weeks; mean birth weight = 1153 grams). Children were asked to perform the Cogmed JM at home for approximately 15 minutes a day, 5 days a week for 5 weeks. Their nontrained working memory and attention were assessed pre-training, post-training, and at 5-week follow-up. Parent ratings on children's executive functions were obtained at the three time points. Results revealed that significant improvements in verbal working memory was emerging in preterm children at 5-week follow-up, while significant gains in visuospatial working memory was found post-training and at 5-week follow-up in age-matched term-born children. These results indicated that working memory training has benefits on preterm children; however, the gains are different from those observed in term-born children. No significant differences in attention and parent-rated EF were found in either group across time. The possible explanations for the training benefits observed in preterm children were discussed.
Working memory training in old age: an examination of transfer and maintenance effects.
Borella, Erika; Carretti, Barbara; Zanoni, Giulia; Zavagnin, Michela; De Beni, Rossana
2013-06-01
The present study examined the efficacy of a verbal working memory (WM) training program in old-old individuals (over 75 years of age). Thirty-six adults aged 75-87 took part in the study: 18 were randomly assigned to receive training and the remainder served as active controls. Specific training gains in a verbal WM task (criterion task), and transfer effects on measures of visuospatial WM, short-term memory, inhibition, processing speed, and fluid intelligence were examined. The trained old-old adults performed better than the controls in the criterion task, and this benefit persisted after 8 months; they also showed an increase in the efficiency of inhibitory mechanisms at follow-up compared with pretest. The results of this study suggest that the present WM training program produces benefits maintained over time even in old-old adults. These findings confirm that there is still room for plasticity in the basic mechanisms of cognition in advance old age.
2014-01-01
Background Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI. Methods/Designs The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up. Discussion If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI. Trial registration ClinicalTrials.gov NCT01991405. November 18, 2013. PMID:24886034
Flak, Marianne M; Hernes, Susanne S; Chang, Linda; Ernst, Thomas; Douet, Vanessa; Skranes, Jon; Løhaugen, Gro C C
2014-05-03
Mild cognitive impairment (MCI) is a condition characterized by memory problems that are more severe than the normal cognitive changes due to aging, but less severe than dementia. Reduced working memory (WM) is regarded as one of the core symptoms of an MCI condition. Recent studies have indicated that WM can be improved through computer-based training. The objective of this study is to evaluate if WM training is effective in improving cognitive function in elderly patients with MCI, and if cognitive training induces structural changes in the white and gray matter of the brain, as assessed by structural MRI. The proposed study is a blinded, randomized, controlled trail that will include 90 elderly patients diagnosed with MCI at a hospital-based memory clinic. The participants will be randomized to either a training program or a placebo version of the program. The intervention is computerized WM training performed for 45 minutes of 25 sessions over 5 weeks. The placebo version is identical in duration but is non-adaptive in the difficulty level of the tasks. Neuropsychological assessment and structural MRI will be performed before and 1 month after training, and at a 5-month folllow-up. If computer-based training results in positive changes to memory functions in patients with MCI this may represent a new, cost-effective treatment for MCI. Secondly, evaluation of any training-induced structural changes to gray or white matter will improve the current understanding of the mechanisms behind effective cognitive interventions in patients with MCI. ClinicalTrials.gov NCT01991405. November 18, 2013.
ERIC Educational Resources Information Center
Rickard, Nikki S.; Vasquez, Jorge T.; Murphy, Fintan; Gill, Anneliese; Toukhsati, Samia R.
2010-01-01
Previous research has demonstrated a benefit of music training on a number of cognitive functions including verbal memory performance. The impact of school-based music programs on memory processes is however relatively unknown. The current study explored the effect of increasing frequency and intensity of classroom-based instrumental training…
Baniqued, Pauline L.; Ward, Nathan; Geyer, Alexandra; Kramer, Arthur F.
2015-01-01
Although some studies have shown that cognitive training can produce improvements to untrained cognitive domains (far transfer), many others fail to show these effects, especially when it comes to improving fluid intelligence. The current study was designed to overcome several limitations of previous training studies by incorporating training expectancy assessments, an active control group, and “Mind Frontiers,” a video game-based mobile program comprised of six adaptive, cognitively demanding training tasks that have been found to lead to increased scores in fluid intelligence (Gf) tests. We hypothesize that such integrated training may lead to broad improvements in cognitive abilities by targeting aspects of working memory, executive function, reasoning, and problem solving. Ninety participants completed 20 hour-and-a-half long training sessions over four to five weeks, 45 of whom played Mind Frontiers and 45 of whom completed visual search and change detection tasks (active control). After training, the Mind Frontiers group improved in working memory n-back tests, a composite measure of perceptual speed, and a composite measure of reaction time in reasoning tests. No training-related improvements were found in reasoning accuracy or other working memory tests, nor in composite measures of episodic memory, selective attention, divided attention, and multi-tasking. Perceived self-improvement in the tested abilities did not differ between groups. A general expectancy difference in problem-solving was observed between groups, but this perceived benefit did not correlate with training-related improvement. In summary, although these findings provide modest evidence regarding the efficacy of an integrated cognitive training program, more research is needed to determine the utility of Mind Frontiers as a cognitive training tool. PMID:26555341
Cognitive Skills Training Improves Listening and Visual Memory for Academic and Career Success.
ERIC Educational Resources Information Center
Erland, Jan
The Mem-ExSpan Accelerative Cognitive Training System (MESACTS) is described as a cognitive skills training program for schools, businesses, and industry. The program achieves extraordinary academic results in reading and mathematics with 1 semester of input 4 days a week for 30 minutes a day. Intensive versions of the program accelerate…
Gray, S A; Chaban, P; Martinussen, R; Goldberg, R; Gotlieb, H; Kronitz, R; Hockenberry, M; Tannock, R
2012-12-01
Youths with coexisting learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) are at risk for poor academic and social outcomes. The underlying cognitive deficits, such as poor working memory (WM), are not well targeted by current treatments for either LD or ADHD. Emerging evidence suggests that WM might be improved by intensive and adaptive computerized training, but it remains unclear whether this intervention would be effective for adolescents with severe LD and comorbid ADHD. A total of sixty 12- to 17-year olds with LD/ADHD (52 male, 8 female, IQ > 80) were randomized to one of two computerized intervention programs: working memory training (Cogmed RM) or math training (Academy of Math) and evaluated before and 3 weeks after completion. The criterion measures of WM included auditory-verbal and visual-spatial tasks. Near and far transfer measures included indices of cognitive and behavioral attention and academic achievement. Adolescents in the WM training group showed greater improvements in a subset of WM criterion measures compared with those in the math-training group, but no training effects were observed on the near or far measures. Those who showed the most improvement on the WM training tasks at school were rated as less inattentive/hyperactive at home by parents. Results suggest that WM training may enhance some aspects of WM in youths with LD/ADHD, but further development of the training program is required to promote transfer effects to other domains of function. © 2012 The Authors. Journal of Child Psychology and Psychiatry © 2012 Association for Child and Adolescent Mental Health.
Working memory training in survivors of pediatric cancer: a randomized pilot study.
Hardy, Kristina K; Willard, Victoria W; Allen, Taryn M; Bonner, Melanie J
2013-08-01
Survivors of pediatric brain tumors and acute lymphoblastic leukemia (ALL) are at increased risk for neurocognitive deficits, but few empirically supported treatment options exist. We examined the feasibility and preliminary efficacy of a home-based, computerized working memory training program, CogmedRM, with survivors of childhood cancer. Survivors of brain tumors or ALL (n = 20) with identified deficits in attention and/or working memory were randomized to either the success-adapted computer intervention or a non-adaptive, active control condition. Specifically, children in the adaptive condition completed exercises that became more challenging with each correct trial, whereas those in the non-adaptive version trained with exercises that never increased in difficulty. All participants were asked to complete 25 training sessions at home, with weekly, phone-based coaching support. Brief assessments were completed pre-intervention and post-intervention; outcome measures included both performance-based and parent-report measures of working memory and attention. Eighty-five percent of survivors were compliant with the intervention, with no adverse events reported. After controlling for baseline intellectual functioning, survivors who completed the intervention program evidenced significant post-training improvements in their visual working memory and in parent-rated learning problems compared with those in the active control group. No differences in verbal working memory functioning were evident between groups, however. Home-based, computerized cognitive training demonstrates good feasibility and acceptability in our sample. Children with higher intellectual functioning at baseline appeared to benefit more from the training, although further study is needed to clarify the strength, scope, and particularly the generalizability of potential treatment effects. Copyright © 2012 John Wiley & Sons, Ltd.
Is Working Memory Training Effective? A Meta-Analytic Review
ERIC Educational Resources Information Center
Melby-Lervag, Monica; Hulme, Charles
2013-01-01
It has been suggested that working memory training programs are effective both as treatments for attention-deficit/hyperactivity disorder (ADHD) and other cognitive disorders in children and as a tool to improve cognitive ability and scholastic attainment in typically developing children and adults. However, effects across studies appear to be…
Towe, Sheri L; Patel, Puja; Meade, Christina S
HIV-associated neurocognitive impairments that impact daily function persist in the era of effective antiretroviral therapy. Cognitive training, a promising low-cost intervention, has been shown to improve neurocognitive functioning in some clinical populations. We tested the feasibility, acceptability, and preliminary effects of computerized cognitive training to improve working memory in persons living with HIV infection (PLWH) and working memory impairment. In this randomized clinical trial, we assigned 21 adult PLWH to either an experimental cognitive training intervention or an attention-matched control training intervention. Participants completed 12 training sessions across 10 weeks with assessments at baseline and post-training. Session attendance was excellent and participants rated the program positively. Participants in the experimental arm demonstrated improved working memory function over time; participants in the control arm showed no change. Our results suggest that cognitive training may be a promising intervention for working memory impairment in PLWH and should be evaluated further. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Gauggel, S.; Niemann, T.
1996-01-01
This study evaluated a computer-assisted training program used by four patients (ages 40 to 53) who had attentional deficits caused by cerebrovascular accident and closed head injury. Patients demonstrated improvements in training tasks, attention, and visual memory, but no improvements in two verbal memory tests and a general intelligence test.…
Diamond, Keri; Mowszowski, Loren; Cockayne, Nicole; Norrie, Louisa; Paradise, Matthew; Hermens, Daniel F; Lewis, Simon J G; Hickie, Ian B; Naismith, Sharon L
2015-01-01
With the rise in the ageing population and absence of a cure for dementia, cost-effective prevention strategies for those 'at risk' of dementia including those with depression and/or mild cognitive impairment are urgently required. This study evaluated the efficacy of a multifaceted Healthy Brain Ageing Cognitive Training (HBA-CT) program for older adults 'at risk' of dementia. Using a single-blinded design, 64 participants (mean age = 66.5 years, SD = 8.6) were randomized to an immediate treatment (HBA-CT) or treatment-as-usual control arm. The HBA-CT intervention was conducted twice-weekly for seven weeks and comprised group-based psychoeducation about cognitive strategies and modifiable lifestyle factors pertaining to healthy brain ageing, and computerized cognitive training. In comparison to the treatment-as-usual control arm, the HBA-CT program was associated with improvements in verbal memory (p = 0.03), self-reported memory (p = 0.03), mood (p = 0.01), and sleep (p = 0.01). While the improvements in memory (p = 0.03) and sleep (p = 0.02) remained after controlling for improvements in mood, only a trend in verbal memory improvement was apparent after controlling for sleep. The HBA-CT program improves cognitive, mood, and sleep functions in older adults 'at risk' of dementia, and therefore offers promise as a secondary prevention strategy.
Decreased Self-Reported Cognitive Failures after Memory Training
ERIC Educational Resources Information Center
Preiss, Marek; Lukavsky, Jiri; Steinova, Dana
2010-01-01
In recent years, attention has been focused on investigating the effectiveness of composite memory intervention programs with different age and diagnostics groups. The goal of this study was to measure changes in cognitive lapses by Cognitive Failure Questionnaire (CFQ) in a large trained, dementia free group (Mini-Mental State Examination [MMSE]…
Wiegand, Melanie A; Troyer, Angela K; Gojmerac, Christina; Murphy, Kelly J
2013-01-01
Many older adults are concerned about memory changes with age and consequently seek ways to optimize their memory function. Memory programs are known to be variably effective in improving memory knowledge, other aspects of metamemory, and/or objective memory, but little is known about their impact on implementing and sustaining lifestyle and healthcare-seeking intentions and behaviors. We evaluated a multidimensional, evidence-based intervention, the Memory and Aging Program, that provides education about memory and memory change, training in the use of practical memory strategies, and support for implementation of healthy lifestyle behavior changes. In a randomized controlled trial, 42 healthy older adults participated in a program (n = 21) or a waitlist control (n = 21) group. Relative to the control group, participants in the program implemented more healthy lifestyle behaviors by the end of the program and maintained these changes 1 month later. Similarly, program participants reported a decreased intention to seek unnecessary medical attention for their memory immediately after the program and 1 month later. Findings support the use of multidimensional memory programs to promote healthy lifestyles and influence healthcare-seeking behaviors. Discussion focuses on implications of these changes for maximizing cognitive health and minimizing impact on healthcare resources.
Programming Programmable Logic Controller. High-Technology Training Module.
ERIC Educational Resources Information Center
Lipsky, Kevin
This training module on programming programmable logic controllers (PLC) is part of the memory structure and programming unit used in a packaging systems equipment control course. In the course, students assemble, install, maintain, and repair industrial machinery used in industry. The module contains description, objectives, content outline,…
The Memory Fitness Program: Cognitive Effects of a Healthy Aging Intervention
Miller, Karen J.; Siddarth, Prabha; Gaines, Jean M.; Parrish, John M.; Ercoli, Linda M.; Marx, Katherine; Ronch, Judah; Pilgram, Barbara; Burke, Kasey; Barczak, Nancy; Babcock, Bridget; Small, Gary W.
2014-01-01
Context Age-related memory decline affects a large proportion of older adults. Cognitive training, physical exercise, and other lifestyle habits may help to minimize self-perception of memory loss and a decline in objective memory performance. Objective The purpose of this study was to determine whether a 6-week educational program on memory training, physical activity, stress reduction, and healthy diet led to improved memory performance in older adults. Design A convenience sample of 115 participants (mean age: 80.9 [SD: 6.0 years]) was recruited from two continuing care retirement communities. The intervention consisted of 60-minute classes held twice weekly with 15–20 participants per class. Testing of both objective and subjective cognitive performance occurred at baseline, preintervention, and postintervention. Objective cognitive measures evaluated changes in five domains: immediate verbal memory, delayed verbal memory, retention of verbal information, memory recognition, and verbal fluency. A standardized metamemory instrument assessed four domains of memory self-awareness: frequency and severity of forgetting, retrospective functioning, and mnemonics use. Results The intervention program resulted in significant improvements on objective measures of memory, including recognition of word pairs (t[114] = 3.62, p < 0.001) and retention of verbal information from list learning (t[114] = 2.98, p < 0.01). No improvement was found for verbal fluency. Regarding subjective memory measures, the retrospective functioning score increased significantly following the intervention (t[114] = 4.54, p < 0.0001), indicating perception of a better memory. Conclusions These findings indicate that a 6-week healthy lifestyle program can improve both encoding and recalling of new verbal information, as well as self-perception of memory ability in older adults residing in continuing care retirement communities. PMID:21765343
The Garrett Lee Smith Memorial Suicide Prevention Program
Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.
2011-01-01
Responding to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act to date has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs including gatekeeper training, screening activities, infrastructure for improved linkages to services, crisis hotlines, and community partnerships. Through participation in both local- and cross-site evaluations, GLS grantees are generating data regarding the local context, proximal outcomes, and implementation of programs, as well as opportunities for improvement of suicide prevention efforts. PMID:20560746
The Garrett Lee Smith memorial suicide prevention program.
Goldston, David B; Walrath, Christine M; McKeon, Richard; Puddy, Richard W; Lubell, Keri M; Potter, Lloyd B; Rodi, Michael S
2010-06-01
In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs (including gatekeeper training), screening activities, infrastructure for improved linkages to services, crisis hotlines, and community partnerships. Through participation in both local- and cross-site evaluations, GLS grantees are generating data regarding the local context, proximal outcomes, and implementation of programs, as well as opportunities for improvement of suicide prevention efforts.
ERIC Educational Resources Information Center
Judge, Katherine S.; Yarry, Sarah J.; Orsulic-Jeras, Silvia
2010-01-01
Purpose: The current article provides an in-depth description of a dyadic intervention for individuals with dementia and their family caregivers. Using a strength-based approach, caregiving dyads received skills training across 5 key areas: (a) education regarding dementia and memory loss, (b) effective communication, (c) managing memory loss, (d)…
Efficacy of a short cognitive training program in patients with multiple sclerosis
Pérez-Martín, María Yaiza; González-Platas, Montserrat; Eguía-del Río, Pablo; Croissier-Elías, Cristina; Jiménez Sosa, Alejandro
2017-01-01
Background Cognitive impairment is a common feature in multiple sclerosis (MS) and may have a substantial impact on quality of life. Evidence about the effectiveness of neuropsychological rehabilitation is still limited, but current data suggest that computer-assisted cognitive training improves cognitive performance. Objective The objective of this study was to evaluate the efficacy of combined computer-assisted training supported by home-based neuropsychological training to improve attention, processing speed, memory and executive functions during 3 consecutive months. Methods In this randomized controlled study blinded for the evaluators, 62 MS patients with clinically stable disease and mild-to-moderate levels of cognitive impairment were randomized to receive a computer-assisted neuropsychological training program (n=30) or no intervention (control group [CG]; n=32). The cognitive assessment included the Brief Repeatable Battery of Neuropsychological Test. Other secondary measures included subjective cognitive impairment, anxiety and depression, fatigue and quality of life measures. Results The treatment group (TG) showed significant improvements in measures of verbal memory, working memory and phonetic fluency after intervention, and repeated measures analysis of covariance revealed a positive effect in most of the functions. The control group (CG) did not show changes. The TG showed a significant reduction in anxiety symptoms and significant improvement in quality of life. There were no improvements in fatigue levels and depressive symptoms. Conclusion Cognitive intervention with a computer-assisted training supported by home training between face-to-face sessions is a useful tool to treat patients with MS and improve functions such as verbal memory, working memory and phonetic fluency. PMID:28223806
McDaniel, Mark A.; Binder, Ellen F.; Bugg, Julie M.; Waldum, Emily R.; Dufault, Carolyn; Meyer, Amanda; Johanning, Jennifer; Zheng, Jie; Schechtman, Kenneth B.; Kudelka, Chris
2015-01-01
We investigated the potential benefits of a novel cognitive training protocol and an aerobic exercise intervention, both individually and in concert, on older adults’ performances in laboratory simulations of select real-world tasks. The cognitive training focused on a range of cognitive processes, including attentional coordination, prospective memory, and retrospective-memory retrieval, processes that are likely involved in many everyday tasks, and that decline with age. Primary outcome measures were three laboratory tasks that simulated everyday activities: Cooking Breakfast, Virtual Week, and Memory for Health Information. Two months of cognitive training improved older adults’ performance on prospective memory tasks embedded in Virtual Week. Cognitive training, either alone or in combination with six months of aerobic exercise, did not significantly improve Cooking Breakfast or Memory for Health Information. Although gains in aerobic power were comparable to previous reports, aerobic exercise did not produce improvements for the primary outcome measures. Discussion focuses on the possibility that cognitive training programs that include explicit strategy instruction and varied practice contexts may confer gains to older adults for performance on cognitively challenging everyday tasks. PMID:25244489
Ordonez, Tiago Nascimento; Borges, Felipe; Kanashiro, Camila Sato; Santos, Carolina Carneiro das Neves; Hora, Samara Santos; Lima-Silva, Thais Bento
2017-01-01
Studies show that aging is accompanied by decline in cognitive functions but also indicate that interventions, such as training on electronic games, can enhance performance and promote maintenance of cognitive abilities in healthy older adults. Objective To investigate the effects of an electronic game program, called Actively Station, on the performance of global cognition of adults aged over 50 years. Methods 124 mature and elderly adults enrolled in the "Actively Station" cognitive stimulation program of São Caetano do Sul City, in the State of São Paulo, participated in training for learning of electronic games. Participants were divided into two groups: training group (TG) n=102 and control group (CG) n=22. Protocol: a sociodemographic questionnaire, the Mini-Mental State Examination (MMSE), the Addenbrooke's Cognitive Examination Revised (ACE-R), the Memory Complaint Questionnaire (MAC-Q), the scale of frequency of forgetfulness, the Geriatric Depression Scale (GDS-15), the Geriatric Anxiety Inventory (GAI), the Global Satisfaction with Life Scale, and two scales on learning in the training. Results The cognitive performance of the TG improved significantly after the program, particularly in the domains of language and memory, and there was a decrease on the anxiety index and frequency of memory complaints, when compared to the CG. Conclusion These findings suggest that the acquisition of new knowledge and the use of new stimuli, such as electronic games, can promote improvements in cognition and mood and reduce the frequency of memory complaints. PMID:29213510
Trained immunity: a program of innate immune memory in health and disease
Netea, Mihai G.; Joosten, Leo A.B.; Latz, Eicke; Mills, Kingston H.G.; Natoli, Gioacchino; Stunnenberg, Hendrik G.; O’Neill, Luke A.J.; Xavier, Ramnik J.
2016-01-01
The general view that only adaptive immunity can build immunological memory has recently been challenged. In organisms lacking adaptive immunity as well as in mammals, the innate immune system can mount resistance to reinfection, a phenomenon termed trained immunity or innate immune memory. Trained immunity is orchestrated by epigenetic reprogramming, broadly defined as sustained changes in gene expression and cell physiology that do not involve permanent genetic changes such as mutations and recombination, which are essential for adaptive immunity. The discovery of trained immunity may open the door for novel vaccine approaches, for new therapeutic strategies for the treatment of immune deficiency states, and for modulation of exaggerated inflammation in autoinflammatory diseases. PMID:27102489
Cognitive training with casual video games: points to consider
Baniqued, Pauline L.; Kranz, Michael B.; Voss, Michelle W.; Lee, Hyunkyu; Cosman, Joshua D.; Severson, Joan; Kramer, Arthur F.
2014-01-01
Brain training programs have proliferated in recent years, with claims that video games or computer-based tasks can broadly enhance cognitive function. However, benefits are commonly seen only in trained tasks. Assessing generalized improvement and practicality of laboratory exercises complicates interpretation and application of findings. In this study, we addressed these issues by using active control groups, training tasks that more closely resemble real-world demands and multiple tests to determine transfer of training. We examined whether casual video games can broadly improve cognition, and selected training games from a study of the relationship between game performance and cognitive abilities. A total of 209 young adults were randomized into a working memory–reasoning group, an adaptive working memory–reasoning group, an active control game group, and a no-contact control group. Before and after 15 h of training, participants completed tests of reasoning, working memory, attention, episodic memory, perceptual speed, and self-report measures of executive function, game experience, perceived improvement, knowledge of brain training research, and game play outside the laboratory. Participants improved on the training games, but transfer to untrained tasks was limited. No group showed gains in reasoning, working memory, episodic memory, or perceptual speed, but the working memory–reasoning groups improved in divided attention, with better performance in an attention-demanding game, a decreased attentional blink and smaller trail-making costs. Perceived improvements did not differ across training groups and those with low reasoning ability at baseline showed larger gains. Although there are important caveats, our study sheds light on the mixed effects in the training and transfer literature and offers a novel and potentially practical training approach. Still, more research is needed to determine the real-world benefits of computer programs such as casual games. PMID:24432009
Goghari, Vina M; Lawlor-Savage, Linette
2017-01-01
Recent attention has focused on the benefits of cognitive training in healthy adults. Many commercial cognitive training programs are available given the attraction of not only bettering one's cognitive capacity, but also potentially preventing age-related declines, which is of particular interest to older adults. The issue of whether cognitive training can improve performance within cognitive domains not trained (i.e., far transfer) is controversial, with meta-analyses of cognitive training both supporting and falsifying this claim. More support is present for the near transfer (i.e., transfer in cognitive domain trained) of cognitive training; however, not in all studies. To date, no studies have compared working memory training to training higher-level processes themselves, namely logic and planning. We studied 97 healthy older adults above the age of 65. Healthy older adults completed either an 8-week web-based cognitive training program on working memory or logic and planning. An additional no-training control group completed two assessments 8-weeks apart. Participants were assessed on cognitive measures of near and far transfer, including working memory, planning, reasoning, processing speed, verbal fluency, cognitive flexibility, and creativity. Participants improved on the trained tasks from the first day to last day of training. Bayesian analyses demonstrated no near or far transfer effects after cognitive training. These results support the conclusion that performance-adaptive computerized cognitive training may not enhance cognition in healthy older adults. Our lack of findings could be due to a variety of reasons, including studying a cohort of healthy older adults that were performing near their cognitive ceiling, employing a training protocol that was not sufficient to produce a change, or that no true findings exist. Research suggests numerous study factors that can moderate the results. In addition, the role of psychological variables, such as expectations and motivation to train, are critical in understanding the effects of cognitive training.
Treating verbal working memory in a boy with intellectual disability
Orsolini, Margherita; Melogno, Sergio; Latini, Nausica; Penge, Roberta; Conforti, Sara
2015-01-01
The present case study investigates the effects of a cognitive training of verbal working memory that was proposed for Davide, a 14-year-old boy diagnosed with mild intellectual disability. The program stimulated attention, inhibition, switching, and the ability to engage either in verbal dual tasks or in producing inferences after the content of a short passage had been encoded in episodic memory. Key elements in our program included (1) core training of target cognitive mechanisms; (2) guided practice emphasizing concrete strategies to engage in exercises; and (3) a variable amount of adult support. The study explored whether such a complex program produced “near transfer” effects on an untrained dual task assessing verbal working memory and whether effects on this and other target cognitive mechanisms (i.e., attention, inhibition, and switching) were long-lasting and produced “far transfer” effects on cognitive flexibility. The effects of the intervention program were investigated with a research design consisting of four subsequent phases lasting 8 or 10 weeks, each preceded and followed by testing. There was a control condition (phase 1) in which the boy received, at home, a stimulation focused on the visuospatial domain. Subsequently, there were three experimental training phases, in which stimulation in the verbal domain was first focused on attention and inhibition (phase 2a), then on switching and simple working memory tasks (phase 2b), then on complex working memory tasks (phase 3). A battery of neuropsychological tests was administered before and after each training phase and 7 months after the conclusion of the intervention. The main finding was that Davide changed from being incapable of addressing the dual task request of the listening span test in the initial assessment to performing close to the normal limits of a 13-year-old boy in the follow-up assessment with this test, when he was 15 years old. PMID:26284014
Working memory training in older adults: evidence of transfer and maintenance effects.
Borella, Erika; Carretti, Barbara; Riboldi, Francesco; De Beni, Rossana
2010-12-01
Few studies have examined working memory (WM) training-related gains and their transfer and maintenance effects in older adults. This present research investigates the efficacy of a verbal WM training program in adults aged 65-75 years, considering specific training gains on a verbal WM (criterion) task as well as transfer effects on measures of visuospatial WM, short-term memory, inhibition, processing speed, and fluid intelligence. Maintenance of training benefits was evaluated at 8-month follow-up. Trained older adults showed higher performance than did controls on the criterion task and maintained this benefit after 8 months. Substantial general transfer effects were found for the trained group, but not for the control one. Transfer maintenance gains were found at follow-up, but only for fluid intelligence and processing speed tasks. The results are discussed in terms of cognitive plasticity in older adults. (c) 2010 APA, all rights reserved).
Cameron, Jan; Rendell, Peter G; Ski, Chantal F; Kure, Christina E; McLennan, Skye N; Rose, Nathan S; Prior, David L; Thompson, David R
2015-04-29
Cognitive impairment is seen in up to three quarters of heart failure (HF) patients and has a significant negative impact on patients' health outcomes. Prospective memory, which is defined as memory to carry out future intentions, is important for functional independence in older adults and involves application of multiple cognitive processes that are often impaired in HF patients. The objective of this study is to examine the effects of prospective memory training on patients' engagement in HF self-care and health outcomes, carer strain and quality of life. The proposed study is a randomised, controlled trial in which 200 patients diagnosed with HF, and their carers will be recruited from 3 major hospitals across Melbourne. Eligible patients with HF will be randomised to receive either: 1) The Virtual Week Training Program - a computerised prospective memory (PM) training program (intervention) or 2) non-adaptive computer-based word puzzles (active control). HF patients' baseline cognitive function will be compared to a healthy control group (n = 60) living independently in the community. Patients will undergo a comprehensive assessment of PM, neuropsychological functioning, self-care, physical, and emotional functioning. Assessments will take place at baseline, 4 weeks and 12 months following intervention. Carers will complete measures assessing quality of life, strain, perceived control in the management of the patients' HF symptoms, and ratings of the patients' level of engagement in HF self-care behaviours. If the Virtual Week Training Program is effective in improving: 1) prospective memory; 2) self-care behaviours, and 3) wellbeing in HF patients, this study will enhance our understanding of impaired cognitive processes in HF and potentially is a mechanism to reduce healthcare costs. Australian New Zealand Clinical Trials Registry #366376; 27 May 2014. https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366376&isClinicalTrial=False .
Silva, Ana Rita; Pinho, Maria Salomé; Macedo, Luís; Souchay, Céline; Moulin, Christopher
2017-06-01
There is a debate about the ability of patients with Alzheimer's disease to build an up-to-date representation of their memory function, which has been termed mnemonic anosognosia. This form of anosognosia is typified by accurate online evaluations of performance, but dysfunctional or outmoded representations of function more generally. We tested whether people with Alzheimer's disease could adapt or change their representations of memory performance across three different six-week memory training programs using global judgements of learning. We showed that whereas online assessments of performance were accurate, patients continued to make inaccurate overestimations of their memory performance. This was despite the fact that the magnitude of predictions shifted according to the memory training. That is, on some level patients showed an ability to change and retain a representation of performance over time, but it was a dysfunctional one. For the first time in the literature we were able to use an analysis using correlations to support this claim, based on a large heterogeneous sample of 51 patients with Alzheimer's disease. The results point not to a failure to retain online metamemory information, but rather that this information is never used or incorporated into longer term representations, supporting but refining the mnemonic anosognosia hypothesis.
Surgical simulation tasks challenge visual working memory and visual-spatial ability differently.
Schlickum, Marcus; Hedman, Leif; Enochsson, Lars; Henningsohn, Lars; Kjellin, Ann; Felländer-Tsai, Li
2011-04-01
New strategies for selection and training of physicians are emerging. Previous studies have demonstrated a correlation between visual-spatial ability and visual working memory with surgical simulator performance. The aim of this study was to perform a detailed analysis on how these abilities are associated with metrics in simulator performance with different task content. The hypothesis is that the importance of visual-spatial ability and visual working memory varies with different task contents. Twenty-five medical students participated in the study that involved testing visual-spatial ability using the MRT-A test and visual working memory using the RoboMemo computer program. Subjects were also trained and tested for performance in three different surgical simulators. The scores from the psychometric tests and the performance metrics were then correlated using multivariate analysis. MRT-A score correlated significantly with the performance metrics Efficiency of screening (p = 0.006) and Total time (p = 0.01) in the GI Mentor II task and Total score (p = 0.02) in the MIST-VR simulator task. In the Uro Mentor task, both the MRT-A score and the visual working memory 3-D cube test score as presented in the RoboMemo program (p = 0.02) correlated with Total score (p = 0.004). In this study we have shown that some differences exist regarding the impact of visual abilities and task content on simulator performance. When designing future cognitive training programs and testing regimes, one might have to consider that the design must be adjusted in accordance with the specific surgical task to be trained in mind.
Broughton, Megan; Smith, Erin R; Baker, Rosemary; Angwin, Anthony J; Pachana, Nancy A; Copland, David A; Humphreys, Michael S; Gallois, Cindy; Byrne, Gerard J; Chenery, Helen J
2011-11-01
There is a need for simple multimedia training programs designed to upskill the dementia care workforce. A DVD-based training program entitled RECAPS and MESSAGE has been designed to provide caregivers with strategies to support memory and communication in people with dementia. The aims of this study were: (1) to evaluate the effects of the RECAPS and MESSAGE training on knowledge of support strategies, and caregiver satisfaction, in nursing home care staff, and (2) to evaluate staff opinion of the training. A multi-centre controlled pretest-posttest trial was conducted between June 2009 and January 2010, with baseline, immediately post-training and 3-month follow-up assessment. Four nursing homes in Queensland, Australia. All care staff were invited to participate. Of the 68 participants who entered the study, 52 (37 training participants and 15 controls) completed outcome measures at baseline and 3-month follow-up. 63.5% of participants were nursing assistants, 25% were qualified nurses and 11.5% were recreational/activities officers. The training and control groups were compared on the following outcomes: (1) knowledge of memory and communication support strategies, and (2) caregiver satisfaction. In the training group, the immediate effects of training on knowledge, and the effects of role (nurse, nursing assistant, recreational staff) on both outcome measures, were also examined. Staff opinion of the training was assessed immediately post-training and at 3-month follow-up. The training group showed a significant improvement in knowledge of support strategies from baseline to immediately post-training (p=0.001). Comparison of the training and control groups revealed a significant increase in knowledge for the training group (p=0.011), but not for the control group (p=0.33), between baseline and 3-month follow-up. Examination of caregiver satisfaction by care staff role in the training group revealed that only the qualified nurses showed higher levels of caregiver satisfaction at 3-month follow-up (p=0.013). Staff rated the training positively both for usefulness and applicability. The RECAPS and MESSAGE training improved nursing home care staff's knowledge of support strategies for memory and communication, and gains were maintained at 3-month follow-up. Moreover, the training was well received by staff. Copyright © 2011 Elsevier Ltd. All rights reserved.
Suzuki, Hiroyuki; Kuraoka, Masataka; Yasunaga, Masashi; Nonaka, Kumiko; Sakurai, Ryota; Takeuchi, Rumi; Murayama, Yoh; Ohba, Hiromi; Fujiwara, Yoshinori
2014-11-21
Non-pharmacological interventions are expected to be important strategies for reducing the age-adjusted prevalence of senile dementia, considering that complete medical treatment for cognitive decline has not yet been developed. From the viewpoint of long-term continuity of activity, it is necessary to develop various cognitive stimulating programs. The aim of this study is to examine the effectiveness of a cognitive intervention through a training program for picture book reading for community-dwelling older adults. Fifty-eight Japanese older participants were divided into the intervention and control groups using simple randomization (n =29 vs 29). In the intervention group, participants took part in a program aimed at learning and mastering methods of picture book reading as a form of cognitive training intervention. The control group listened to lectures about elderly health maintenance. Cognitive tests were conducted individually before and after the programs. The rate of memory retention, computed by dividing Logical Memory delayed recall by immediate recall, showed a significant interaction (p < .05) in analysis of covariance. Simple main effects showed that the rate of memory retention of the intervention group improved after the program completion (p < .05). In the participants with mild cognitive impairment (MCI) examined by Japanese version of the Montreal Cognitive Assessment (MoCA-J) (n =14 vs 15), significant interactions were seen in Trail Making Test-A (p < .01), Trail Making Test-B (p < .05), Kana pick-out test (p < .05) and the Mini-Mental State Examination (p < .05). The intervention effect was found in delayed verbal memory. This program is also effective for improving attention and executive function in those with MCI. The short-term interventional findings suggest that this program might contribute to preventing a decline in memory and executive function. UMIN000014712 (Date of ICMJE and WHO compliant trial information disclosure: 30 July 2014).
Kao, Chieh-Chun; Lin, Li-Chan; Wu, Shiao-Chi; Lin, Ker-Neng; Liu, Ching-Kuan
2016-01-01
Background Hyperphagia increases eating-associated risks for people with dementia and distress for caregivers. The purpose of this study was to compare the long-term effectiveness of spaced retrieval (SR) training and SR training combined with Montessori activities (SR + M) for improving hyperphagic behaviors of special care unit residents with dementia. Methods The study enrolled patients with dementia suffering from hyperphagia resident in eight institutions and used a cluster-randomized single-blind design, with 46 participants in the SR group, 49 in the SR + M group, and 45 participants in the control group. For these three groups, trained research assistants collected baseline data on hyperphagic behavior, pica, changes in eating habits, short meal frequency, and distress to caregivers. The SR and SR + M groups underwent memory training over a 6-week training period (30 sessions), and a generalized estimating equation was used to compare data of all the three groups of subjects obtained immediately after the training period and at follow-ups 1 month, 3 months, and 6 months later. Results Results showed that the hyperphagic and pica behaviors of both the SR and SR + M groups were significantly improved (P<0.001) and that the effect lasted for 3 months after training. The improvement of fast eating was significantly superior in the SR + M group than in the SR group. The improvement in distress to caregivers in both intervention groups lasted only until the posttest. Improvement in changes in eating habits of the two groups was not significantly different from that of the control group. Conclusion SR and SR + M training programs can improve hyperphagic behavior of patients with dementia. The SR + M training program is particularly beneficial for the improvement of rapid eating. Caregivers can choose a suitable memory training program according to the eating problems of their residents. PMID:27307717
Kao, Chieh-Chun; Lin, Li-Chan; Wu, Shiao-Chi; Lin, Ker-Neng; Liu, Ching-Kuan
2016-01-01
Hyperphagia increases eating-associated risks for people with dementia and distress for caregivers. The purpose of this study was to compare the long-term effectiveness of spaced retrieval (SR) training and SR training combined with Montessori activities (SR + M) for improving hyperphagic behaviors of special care unit residents with dementia. The study enrolled patients with dementia suffering from hyperphagia resident in eight institutions and used a cluster-randomized single-blind design, with 46 participants in the SR group, 49 in the SR + M group, and 45 participants in the control group. For these three groups, trained research assistants collected baseline data on hyperphagic behavior, pica, changes in eating habits, short meal frequency, and distress to caregivers. The SR and SR + M groups underwent memory training over a 6-week training period (30 sessions), and a generalized estimating equation was used to compare data of all the three groups of subjects obtained immediately after the training period and at follow-ups 1 month, 3 months, and 6 months later. Results showed that the hyperphagic and pica behaviors of both the SR and SR + M groups were significantly improved (P<0.001) and that the effect lasted for 3 months after training. The improvement of fast eating was significantly superior in the SR + M group than in the SR group. The improvement in distress to caregivers in both intervention groups lasted only until the posttest. Improvement in changes in eating habits of the two groups was not significantly different from that of the control group. SR and SR + M training programs can improve hyperphagic behavior of patients with dementia. The SR + M training program is particularly beneficial for the improvement of rapid eating. Caregivers can choose a suitable memory training program according to the eating problems of their residents.
Horowitz-Kraus, Tzipi; DiFrancesco, Mark; Kay, Benjamin; Wang, Yingying; Holland, Scott K.
2015-01-01
The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8–12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task. PMID:26199874
Horowitz-Kraus, Tzipi; DiFrancesco, Mark; Kay, Benjamin; Wang, Yingying; Holland, Scott K
2015-01-01
The Reading Acceleration Program, a computerized reading-training program, increases activation in neural circuits related to reading. We examined the effect of the training on the functional connectivity between independent components related to visual processing, executive functions, attention, memory, and language during rest after the training. Children 8-12 years old with reading difficulties and typical readers participated in the study. Behavioral testing and functional magnetic resonance imaging were performed before and after the training. Imaging data were analyzed using an independent component analysis approach. After training, both reading groups showed increased single-word contextual reading and reading comprehension scores. Greater positive correlations between the visual-processing component and the executive functions, attention, memory, or language components were found after training in children with reading difficulties. Training-related increases in connectivity between the visual and attention components and between the visual and executive function components were positively correlated with increased word reading and reading comprehension, respectively. Our findings suggest that the effect of the Reading Acceleration Program on basic cognitive domains can be detected even in the absence of an ongoing reading task.
An Evaluation of a Teacher Training Program at the United States Holocaust Memorial Museum
ERIC Educational Resources Information Center
DeBerry, LaMonnia Edge
2015-01-01
The purpose of this mixed methods study was to explore the effects of the United States Holocaust Memorial Museum's work in partnering with professors from universities across the United States during a 1-year collaborative partnership through an educational program referred to as Belfer First Step Holocaust Institute for Teacher Educators (BFS…
Past, Present and Future. Dull Knife Memorial College (Indian Action Program Inc.).
ERIC Educational Resources Information Center
1978
Five vocational training programs as well as academic coursework are offered on the Northern Cheyenne Reservation by Dull Knife Memorial College. Established and operated by the Northern Cheyenne, and located in Lame Deer, Montana, the college was chartered by a tribal ordinance in 1975. Approximately 75 trainees are currently involved in the…
Cognitive Training Program to Improve Working Memory in Older Adults with MCI.
Hyer, Lee; Scott, Ciera; Atkinson, Mary Michael; Mullen, Christine M; Lee, Anna; Johnson, Aaron; Mckenzie, Laura C
2016-01-01
Deficits in working memory (WM) are associated with age-related decline. We report findings from a clinical trial that examined the effectiveness of Cogmed, a computerized program that trains WM. We compare this program to a Sham condition in older adults with Mild Cognitive Impairment (MCI). Older adults (N = 68) living in the community were assessed. Participants reported memory impairment and met criteria for MCI, either by poor delayed memory or poor performance in other cognitive areas. The Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Delayed Memory Index) and the Clinical Dementia Rating scale (CDR) were utilized. All presented with normal Mini Mental State Exams (MMSE) and activities of daily living (ADLs). Participants were randomized to Cogmed or a Sham computer program. Twenty-five sessions were completed over five to seven weeks. Pre, post, and follow-up measures included a battery of cognitive measures (three WM tests), a subjective memory scale, and a functional measure. Both intervention groups improved over time. Cogmed significantly outperformed Sham on Span Board and exceeded in subjective memory reports at follow-up as assessed by the Cognitive Failures Questionnaire (CFQ). The Cogmed group demonstrated better performance on the Functional Activities Questionnaire (FAQ), a measure of adjustment and far transfer, at follow-up. Both groups, especially Cogmed, enjoyed the intervention. Results suggest that WM was enhanced in both groups of older adults with MCI. Cogmed was better on one core WM measure and had higher ratings of satisfaction. The Sham condition declined on adjustment.
Cognitive training on stroke patients via virtual reality-based serious games.
Gamito, Pedro; Oliveira, Jorge; Coelho, Carla; Morais, Diogo; Lopes, Paulo; Pacheco, José; Brito, Rodrigo; Soares, Fabio; Santos, Nuno; Barata, Ana Filipa
2017-02-01
Use of virtual reality environments in cognitive rehabilitation offers cost benefits and other advantages. In order to test the effectiveness of a virtual reality application for neuropsychological rehabilitation, a cognitive training program using virtual reality was applied to stroke patients. A virtual reality-based serious games application for cognitive training was developed, with attention and memory tasks consisting of daily life activities. Twenty stroke patients were randomly assigned to two conditions: exposure to the intervention, and waiting list control. The results showed significant improvements in attention and memory functions in the intervention group, but not in the controls. Overall findings provide further support for the use of VR cognitive training applications in neuropsychological rehabilitation. Implications for Rehabilitation Improvements in memory and attention functions following a virtual reality-based serious games intervention. Training of daily-life activities using a virtual reality application. Accessibility to training contents.
Selling points: What cognitive abilities are tapped by casual video games?
Baniqued, Pauline L.; Lee, Hyunkyu; Voss, Michelle W.; Basak, Chandramallika; Cosman, Joshua D.; DeSouza, Shanna; Severson, Joan; Salthouse, Timothy A.; Kramer, Arthur F.
2013-01-01
The idea that video games or computer-based applications can improve cognitive function has led to a proliferation of programs claiming to “train the brain.” However, there is often little scientific basis in the development of commercial training programs, and many research-based programs yield inconsistent or weak results. In this study, we sought to better understand the nature of cognitive abilities tapped by casual video games and thus reflect on their potential as a training tool. A moderately large sample of participants (n=209) played 20 web-based casual games and performed a battery of cognitive tasks. We used cognitive task analysis and multivariate statistical techniques to characterize the relationships between performance metrics. We validated the cognitive abilities measured in the task battery, examined a task analysis-based categorization of the casual games, and then characterized the relationship between game and task performance. We found that games categorized to tap working memory and reasoning were robustly related to performance on working memory and fluid intelligence tasks, with fluid intelligence best predicting scores on working memory and reasoning games. We discuss these results in the context of overlap in cognitive processes engaged by the cognitive tasks and casual games, and within the context of assessing near and far transfer. While this is not a training study, these findings provide a methodology to assess the validity of using certain games as training and assessment devices for specific cognitive abilities, and shed light on the mixed transfer results in the computer-based training literature. Moreover, the results can inform design of a more theoretically-driven and methodologically-sound cognitive training program. PMID:23246789
Selling points: What cognitive abilities are tapped by casual video games?
Baniqued, Pauline L; Lee, Hyunkyu; Voss, Michelle W; Basak, Chandramallika; Cosman, Joshua D; Desouza, Shanna; Severson, Joan; Salthouse, Timothy A; Kramer, Arthur F
2013-01-01
The idea that video games or computer-based applications can improve cognitive function has led to a proliferation of programs claiming to "train the brain." However, there is often little scientific basis in the development of commercial training programs, and many research-based programs yield inconsistent or weak results. In this study, we sought to better understand the nature of cognitive abilities tapped by casual video games and thus reflect on their potential as a training tool. A moderately large sample of participants (n=209) played 20 web-based casual games and performed a battery of cognitive tasks. We used cognitive task analysis and multivariate statistical techniques to characterize the relationships between performance metrics. We validated the cognitive abilities measured in the task battery, examined a task analysis-based categorization of the casual games, and then characterized the relationship between game and task performance. We found that games categorized to tap working memory and reasoning were robustly related to performance on working memory and fluid intelligence tasks, with fluid intelligence best predicting scores on working memory and reasoning games. We discuss these results in the context of overlap in cognitive processes engaged by the cognitive tasks and casual games, and within the context of assessing near and far transfer. While this is not a training study, these findings provide a methodology to assess the validity of using certain games as training and assessment devices for specific cognitive abilities, and shed light on the mixed transfer results in the computer-based training literature. Moreover, the results can inform design of a more theoretically-driven and methodologically-sound cognitive training program. Copyright © 2012 Elsevier B.V. All rights reserved.
Neuroenhancement of Memory for Children with Autism by a Mind–Body Exercise
Chan, Agnes S.; Han, Yvonne M. Y.; Sze, Sophia L.; Lau, Eliza M.
2015-01-01
The memory deficits found in individuals with autism spectrum disorder (ASD) may be caused by the lack of an effective strategy to aid memory. The executive control of memory processing is mediated largely by the timely coupling between frontal and posterior brain regions. The present study aimed to explore the potential effect of a Chinese mind–body exercise, namely Nei Gong, for enhancing learning and memory in children with ASD, and the possible neural basis of the improvement. Sixty-six children with ASD were randomly assigned to groups receiving Nei Gong training (NGT), progressive muscle relaxation (PMR) training, or no training for 1 month. Before and after training, the participants were tested individually on a computerized visual memory task while EEG signals were acquired during the memory encoding phase. Children in the NGT group demonstrated significantly enhanced memory performance and more effective use of a memory strategy, which was not observed in the other two groups. Furthermore, the improved memory after NGT was consistent with findings of elevated EEG theta coherence between frontal and posterior brain regions, a measure of functional coupling. The scalp EEG signals were localized by the standardized low resolution brain electromagnetic tomography method and found to originate from a neural network that promotes effective memory processing, including the prefrontal cortex, the parietal cortex, and the medial and inferior temporal cortex. This alteration in neural processing was not found in children receiving PMR or in those who received no training. The present findings suggest that the mind–body exercise program may have the potential effect on modulating neural functional connectivity underlying memory processing and hence enhance memory functions in individuals with autism. PMID:26696946
Neuroenhancement of Memory for Children with Autism by a Mind-Body Exercise.
Chan, Agnes S; Han, Yvonne M Y; Sze, Sophia L; Lau, Eliza M
2015-01-01
The memory deficits found in individuals with autism spectrum disorder (ASD) may be caused by the lack of an effective strategy to aid memory. The executive control of memory processing is mediated largely by the timely coupling between frontal and posterior brain regions. The present study aimed to explore the potential effect of a Chinese mind-body exercise, namely Nei Gong, for enhancing learning and memory in children with ASD, and the possible neural basis of the improvement. Sixty-six children with ASD were randomly assigned to groups receiving Nei Gong training (NGT), progressive muscle relaxation (PMR) training, or no training for 1 month. Before and after training, the participants were tested individually on a computerized visual memory task while EEG signals were acquired during the memory encoding phase. Children in the NGT group demonstrated significantly enhanced memory performance and more effective use of a memory strategy, which was not observed in the other two groups. Furthermore, the improved memory after NGT was consistent with findings of elevated EEG theta coherence between frontal and posterior brain regions, a measure of functional coupling. The scalp EEG signals were localized by the standardized low resolution brain electromagnetic tomography method and found to originate from a neural network that promotes effective memory processing, including the prefrontal cortex, the parietal cortex, and the medial and inferior temporal cortex. This alteration in neural processing was not found in children receiving PMR or in those who received no training. The present findings suggest that the mind-body exercise program may have the potential effect on modulating neural functional connectivity underlying memory processing and hence enhance memory functions in individuals with autism.
ERIC Educational Resources Information Center
Garcia-Madruga, Juan A.; Elosua, Maria Rosa; Gil, Laura; Gomez-Veiga, Isabel; Vila, Jose Oscar; Orjales, Isabel; Contreras, Antonio; Rodriguez, Raquel; Melero, Maria Angeles; Duque, Gonzalo
2013-01-01
Reading comprehension is a highly demanding task that involves the simultaneous process of extracting and constructing meaning in which working memory's executive processes play a crucial role. In this article, a training program on working memory's executive processes to improve reading comprehension is presented and empirically tested in two…
Lee, Linda; Weston, W Wayne; Hillier, Loretta; Archibald, Douglas; Lee, Joseph
2018-06-21
Family physicians often find themselves inadequately prepared to manage dementia. This article describes the curriculum for a resident training intervention in Primary Care Collaborative Memory Clinics (PCCMC), outlines its underlying educational principles, and examines its impact on residents' ability to provide dementia care. PCCMCs are family physician-led interprofessional clinic teams that provide evidence-informed comprehensive assessment and management of memory concerns. Within PCCMCs residents learn to apply a structured approach to assessment, diagnosis, and management; training consists of a tutorial covering various topics related to dementia followed by work-based learning within the clinic. Significantly more residents who trained in PCCMCs (sample = 98), as compared to those in usual training programs (sample = 35), reported positive changes in knowledge, ability, and confidence in ability to assess and manage memory problems. The PCCMC training intervention for family medicine residents provides a significant opportunity for residents to learn about best clinical practices and interprofessional care needed for optimal dementia care integrated within primary care practice.
Computerized cognitive training in survivors of childhood cancer: a pilot study.
Hardy, Kristina K; Willard, Victoria W; Bonner, Melanie J
2011-01-01
The objective of the current study was to pilot a computerized cognitive training program, Captain's Log, in a small sample of survivors of childhood cancer. A total of 9 survivors of acute lymphoblastic leukemia and brain tumors with attention and working memory deficits were enrolled in a home-based 12-week cognitive training program. Survivors returned for follow-up assessments postintervention and 3 months later. The intervention was associated with good feasibility and acceptability. Participants exhibited significant increases in working memory and decreases in parent-rated attention problems following the intervention. Findings indicate that home-based, computerized cognitive intervention is a promising intervention for survivors with cognitive late effects; however, further study is warranted with a larger sample.
Cognitive Training for Improving Executive Function in Chemotherapy-Treated Breast Cancer Survivors
Kesler, Shelli; Hosseini, S. M. Hadi; Heckler, Charles; Janelsins, Michelle; Palesh, Oxana; Mustian, Karen; Morrow, Gary
2013-01-01
Difficulties with thinking and problem solving are very common among breast cancer survivors. We tested a computerized cognitive training program for 41 breast cancer survivors. The training program was associated with significant improvements in thinking and problem-solving skills. Our findings demonstrate potential for our online, home-based cognitive training program to improve cognitive difficulties among breast cancer survivors. Background A majority of breast cancer (BC) survivors, particularly those treated with chemotherapy, experience long-term cognitive deficits that significantly reduce quality of life. Among the cognitive domains most commonly affected include executive functions (EF), such as working memory, cognitive flexibility, multitasking, planning, and attention. Previous studies in other populations have shown that cognitive training, a behavioral method for treating cognitive deficits, can result in significant improvements in a number of cognitive skills, including EF. Materials and Methods In this study, we conducted a randomized controlled trial to investigate the feasibility and preliminary effectiveness of a novel, online EF training program in long-term BC survivors. A total of 41 BC survivors (21 active, 20 wait list) completed the 48 session training program over 12 weeks. The participants were, on average, 6 years after therapy. Results Cognitive training led to significant improvements in cognitive flexibility, verbal fluency and processing speed, with marginally significant downstream improvements in verbal memory as assessed via standardized measures. Self-ratings of EF skills, including planning, organizing, and task monitoring, also were improved in the active group compared with the wait list group. Conclusions Our findings suggest that EF skills may be improved even in long-term survivors by using a computerized, home-based intervention program. These improvements may potentially include subjective EF skills, which suggest a transfer of the training program to real-world behaviors. PMID:23647804
Benefits of computer-based memory and attention training in healthy older adults.
Chambon, Caroline; Herrera, Cathy; Romaiguere, Patricia; Paban, Véronique; Alescio-Lautier, Béatrice
2014-09-01
Multifactorial cognitive training programs have a positive effect on cognition in healthy older adults. Among the age-sensitive cognitive domains, episodic memory is the most affected. In the present study, we evaluated the benefits on episodic memory of a computer-based memory and attention training. We targeted consciously controlled processes at encoding and minimizing processing at retrieval, by using more familiarity than recollection during recognition. Such an approach emphasizes processing at encoding and prevents subjects from reinforcing their own errors. Results showed that the training improved recognition performances and induced near transfer to recall. The largest benefits, however, were for tasks with high mental load. Improvement in free recall depended on the modality to recall; semantic recall was improved but not spatial recall. In addition, a far transfer was also observed with better memory self-perception and self-esteem of the participants. Finally, at 6-month follow up, maintenance of benefits was observed only for semantic free recall. The challenge now is to corroborate far transfer by objective measures of everyday life executive functioning. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Neurofeedback training improves attention and working memory performance.
Wang, Jinn-Rong; Hsieh, Shulan
2013-12-01
The present study aimed to investigate the effectiveness of the frontal-midline theta (fmθ) activity uptraining protocol on attention and working memory performance of older and younger participants. Thirty-two participants were recruited. Participants within each age group were randomly assigned to either the neurofeedback training (fmθ uptraining) group or the sham-neurofeedback training group. There was a significant improvement in orienting scores in the older neurofeedback training group. In addition, there was a significant improvement in conflict scores in both the older and young neurofeedback training groups. However, alerting scores failed to increase. In addition, the fmθ training was found to improve working memory function in the older participants. The results further showed that fmθ training can modulate resting EEG for both neurofeedback groups. Our study demonstrated that fmθ uptraining improved attention and working memory performance and theta activity in the resting state for normal aging adults. In addition, younger participants also benefited from the present protocol in terms of improving their executive function. The current findings contribute to a better understanding of the mechanisms underlying neurofeedback training in cognitive function, and suggest that the fmθ uptraining protocol is an effective intervention program for cognitive aging. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Evaluation of a teacher training program to enhance executive functions in preschool children.
Walk, Laura M; Evers, Wiebke F; Quante, Sonja; Hille, Katrin
2018-01-01
Executive functions (EFs) play a critical role in cognitive and social development. During preschool years, children show not only rapid improvement in their EFs, but also appear sensitive to developmentally appropriate interventions. EMIL is a training program for German preschool teachers that was developed and implemented to improve the EFs of preschoolers. The aim of the present study was to evaluate its effects on the EFs of children between three and six years old. The teacher training (eight sessions, 28.5 hours) was implemented in four preschools. The EFs of children of the intervention group (n = 72, 32 girls, Mage = 48 months) and the control group of four other matched preschools (n = 61, 27 girls, Mage = 48 months) were tested before, during, and after the intervention using different measures assessing working memory, inhibitory control, and cognitive flexibility. The intervention group showed significant gains on three out of seven EF tests (behavioral inhibition, visual-spatial working memory, and combined EFs) compared to the control group. Post hoc analyses for children with low initial EFs scores revealed that participation in the intervention led to significant gains in inhibitory control, visual-spatial working memory, and phonological working memory as well as a marginally significant difference for combined EFs. However, effect sizes were rather small. The results suggest that teacher training can lead to significant improvements in preschooler's EFs. Although preliminary, the results could contribute to the discussion on how teacher training can facilitate the improvement of EFs in preschool children.
López-Higes, Ramón; Martín-Aragoneses, María T; Rubio-Valdehita, Susana; Delgado-Losada, María L; Montejo, Pedro; Montenegro, Mercedes; Prados, José M; de Frutos-Lucas, Jaisalmer; López-Sanz, David
2018-01-01
The present study explores the role of cognitive reserve, executive functions, and working memory (WM) span, as factors that might explain training outcomes in cognitive status. Eighty-one older adults voluntarily participated in the study, classified either as older adults with subjective cognitive decline or cognitively intact. Each participant underwent a neuropsychological assessment that was conducted both at baseline (entailing cognitive reserve, executive functions, WM span and depressive symptomatology measures, as well as the Mini-Mental State Exam regarding initial cognitive status), and then 6 months later, once each participant had completed the training program (Mini-Mental State Exam at the endpoint). With respect to cognitive status the training program was most beneficial for subjective cognitive decline participants with low efficiency in inhibition at baseline (explaining a 33% of Mini-Mental State Exam total variance), whereas for cognitively intact participants training gains were observed for those who presented lower WM span.
Lakhina, Vanisha; Arey, Rachel N.; Kaletsky, Rachel; Kauffman, Amanda; Stein, Geneva; Keyes, William; Xu, Daniel; Murphy, Coleen T.
2014-01-01
SUMMARY Induced CREB activity is a hallmark of long-term memory, but the full repertoire of CREB transcriptional targets required specifically for memory is not known in any system. To obtain a more complete picture of the mechanisms involved in memory, we combined memory training with genome-wide transcriptional analysis of C. elegans CREB mutants. This approach identified 757 significant CREB/memory-induced targets and confirmed the involvement of known memory genes from other organisms, but also suggested new mechanisms and novel components that may be conserved through mammals. CREB mediates distinct basal and memory transcriptional programs at least partially through spatial restriction of CREB activity: basal targets are regulated primarily in nonneuronal tissues, while memory targets are enriched for neuronal expression, emanating from CREB activity in AIM neurons. This suite of novel memory-associated genes will provide a platform for the discovery of orthologous mammalian long-term memory components. PMID:25611510
Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults.
Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan
2016-01-01
As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. www.chictr.org.cn, identifier ChiCTR-OON-16007793.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.
Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D
2015-01-01
Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719
Brain Training Draws Questions about Benefits
ERIC Educational Resources Information Center
Sparks, Sarah D.
2012-01-01
While programs to improve students' working memory are among the hottest new education interventions, new studies are calling into question whether exercises to improve this foundational skill can actually translate into greater intelligence, problem-solving ability, or academic achievement. Working memory is the system the mind uses to hold…
Combined Cognitive Training vs. Memory Strategy Training in Healthy Older Adults
Li, Bing; Zhu, Xinyi; Hou, Jianhua; Chen, Tingji; Wang, Pengyun; Li, Juan
2016-01-01
As mnemonic utilization deficit in older adults associates with age-related decline in executive function, we hypothesized that memory strategy training combined with executive function training might induce larger training effect in memory and broader training effects in non-memory outcomes than pure memory training. The present study compared the effects of combined cognitive training (executive function training plus memory strategy training) to pure memory strategy training. Forty healthy older adults were randomly assigned to a combined cognitive training group or a memory strategy training group. A control group receiving no training was also included. Combined cognitive training group received 16 sessions of training (eight sessions of executive function training followed by eight sessions of memory strategy training). Memory training group received 16 sessions of memory strategy training. The results partly supported our hypothesis in that indeed improved performance on executive function was only found in combined training group, whereas memory performance increased less in combined training compared to memory strategy group. Results suggest that combined cognitive training may be less efficient than pure memory training in memory outcomes, though the influences from insufficient training time and less closeness between trained executive function and working memory could not be excluded; however it has broader training effects in non-memory outcomes. Clinical Trial Registration: www.chictr.org.cn, identifier ChiCTR-OON-16007793. PMID:27375521
Cognitive Training through mHealth for Individuals with Substance Use Disorder.
Gamito, Pedro; Oliveira, Jorge; Lopes, Paulo; Brito, Rodrigo; Morais, Diogo; Caçoete, Cristina; Leandro, André; Almeida, Teresa; Oliveira, Hugo
2017-03-23
Heroin addiction has a negative impact on cognitive functions, and even recovering addicts suffer from cognitive impairment. Recent approaches to cognitive intervention have been taking advantage of what new technologies have to offer. We report a study testing the efficacy of a serious games approach using tablets to stimulate and rehabilitate cognitive functions in recovering addicts. A small-scale cognitive training program with serious games was run with a sample of 14 male heroin addicts undergoing a rehabilitation program. We found consistent improvements in cognitive functioning between baseline and follow-up assessments for frontal lobe functions, verbal memory and sustained attention, as well as in some aspects of cognitive flexibility, decision-making and in depression levels. More than two thirds of patients in cognitive training had positive outcomes related to indicators of verbal memory cognitive flexibility, which contrasts to patients not in training, in which only one patient improved between baseline and follow-up. The results are promising but still require randomized control trials to determine the efficiency of this approach to cognitive rehabilitation programs for the cognitive recovery of heroin addicts.
Liu, Zhong-Xu; Glizer, Daniel; Tannock, Rosemary; Woltering, Steven
2016-02-01
The present study examined whether neural indices of working memory maintenance differ between young adults with ADHD and their healthy peers (Study 1), and whether this neural index would change after working memory training (Study 2). Study 1 involved 136 college students with ADHD and 41 healthy peers (aged 18-35 years) and measured their posterior alpha activity during a visual delayed-match-to-sample task using electroencephalography (EEG). Study 2 involved 99 of the participants with ADHD who were randomized into a standard-length or shortened-length Cogmed working memory training program or a waitlist control group. The ADHD group tended to be less accurate than the peers. Similarly, the ADHD group exhibited lower posterior alpha power at a trend level compared to their healthy peers. There were no training effects on participants' performance and only marginal increases in posterior alpha power in training groups compared to the waitlist group. Considering that the training effects were small and there was no load and dose effect, we conclude that the current study provides no convincing evidence for specific effects of Cogmed. These findings provide unique insights into neuroplasticity, or lack thereof, with near-transfer tasks in individuals with ADHD. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Roberts, Gehan; Quach, Jon; Spencer-Smith, Megan; Anderson, Peter J; Gathercole, Susan; Gold, Lisa; Sia, Kah-Ling; Mensah, Fiona; Rickards, Field; Ainley, John; Wake, Melissa
2016-05-02
Working memory training may help children with attention and learning difficulties, but robust evidence from population-level randomized controlled clinical trials is lacking. To test whether a computerized adaptive working memory intervention program improves long-term academic outcomes of children 6 to 7 years of age with low working memory compared with usual classroom teaching. Population-based randomized controlled clinical trial of first graders from 44 schools in Melbourne, Australia, who underwent a verbal and visuospatial working memory screening. Children were classified as having low working memory if their scores were below the 15th percentile on either the Backward Digit Recall or Mister X subtest from the Automated Working Memory Assessment, or if their scores were below the 25th percentile on both. These children were randomly assigned by an independent statistician to either an intervention or a control arm using a concealed computerized random number sequence. Researchers were blinded to group assignment at time of screening. We conducted our trial from March 1, 2012, to February 1, 2015; our final analysis was on October 30, 2015. We used intention-to-treat analyses. Cogmed working memory training, comprising 20 to 25 training sessions of 45 minutes' duration at school. Directly assessed (at 12 and 24 months) academic outcomes (reading, math, and spelling scores as primary outcomes) and working memory (also assessed at 6 months); parent-, teacher-, and child-reported behavioral and social-emotional functioning and quality of life; and intervention costs. Of 1723 children screened (mean [SD] age, 6.9 [0.4] years), 226 were randomized to each arm (452 total), with 90% retention at 1 year and 88% retention at 2 years; 90.3% of children in the intervention arm completed at least 20 sessions. Of the 4 short-term and working memory outcomes, 1 outcome (visuospatial short-term memory) benefited the children at 6 months (effect size, 0.43 [95% CI, 0.25-0.62]) and 12 months (effect size, 0.49 [95% CI, 0.28-0.70]), but not at 24 months. There were no benefits to any other outcomes; in fact, the math scores of the children in the intervention arm were worse at 2 years (mean difference, -3.0 [95% CI, -5.4 to -0.7]; P = .01). Intervention costs were A$1035 per child. Working memory screening of children 6 to 7 years of age is feasible, and an adaptive working memory training program may temporarily improve visuospatial short-term memory. Given the loss of classroom time, cost, and lack of lasting benefit, we cannot recommend population-based delivery of Cogmed within a screening paradigm. anzctr.org.au Identifier: ACTRN12610000486022.
Green, Chloe T; Long, Debra L; Green, David; Iosif, Ana-Maria; Dixon, J Faye; Miller, Meghan R; Fassbender, Catherine; Schweitzer, Julie B
2012-07-01
Computerized working memory and executive function training programs designed to target specific impairments in executive functioning are becoming increasingly available, yet how well these programs generalize to improve functional deficits in disorders, such as attention-deficit/hyperactivity disorder (ADHD), beyond the training context is not well-established. The aim of this study was to examine the extent to which working memory (WM) training in children with ADHD would diminish a core dysfunctional behavior associated with the disorder, "off-task" behavior during academic task performance. The effect of computerized WM training (adaptive) was compared to a placebo condition (nonadaptive) in a randomized, double-blind, placebo-controlled design in 26 children (18 males; age, 7 to 14 years old) diagnosed with ADHD. Participants completed the training in approximately 25 sessions. The Restricted Academic Situations Task (RAST) observational system was used to assess aspects of off-task behavior during the completion of an academic task. Traditional measures of ADHD symptoms (Conners' Parent Rating Scale) and WM ability (standardized WM tests) were also collected. WM training led to significant reductions in off-task ADHD-associated behavior on the RAST system and improvement on WM tests. There were no significant differences between groups in improvement on parent rating scales. Findings lend insight into the generalizability of the effects of WM training and the relation between deficits in WM and off-task behavioral components of ADHD. These preliminary data suggest WM training may provide a mechanism for indirectly altering academic performance in children with ADHD.
Effects of Childhood Gymnastics Program on Spatial Working Memory.
Hsieh, Shu-Shih; Lin, Chih-Chien; Chang, Yu-Kai; Huang, Chung-Ju; Hung, Tsung-Min
2017-12-01
A growing body of evidence has demonstrated the positive effects of physical exercise on cognition in children, and recent studies have specifically investigated the cognitive benefits of exercises involving cognitive-motor interactions, such as gymnastics. This study examined the effect of 8 wk of gymnastics training on behavioral and neurophysiological measures of spatial working memory in children. Forty-four children age 7 to 10 yr were recruited. The experimental group (n = 24; age, 8.7 ± 1.1 yr) was recruited from Yilan County in Taiwan, while the control group (n = 20; age, 8.6 ± 1.1 yr) resided in Taipei City. The experimental group undertook 8 wk of after-school gymnastics training (2 sessions per week, 90 min per session), whereas the control group received no intervention and were instructed to maintain their routine daily activities. Working memory was assessed by performance on a modified delayed match-to-sample test and by event-related potential including the P3 component. Data were collected before and after treatment for the experimental group and at the same time interval for the control group. Response accuracy improved after the experimental intervention regardless of working memory demands. Likewise, the P3 amplitude was larger at the parietal site after gymnastics training regardless of the task difficulty. Our results suggest that a short period of gymnastics training had a general facilitative effect on spatial working memory at both behavioral and neurophysiological levels in children. These finding highlight the potential importance of exercise programs involving cognitive-motor interactions in stimulating development of spatial cognition during childhood.
Marsh, Pamela; Langdon, Robyn; McGuire, Jonathan; Harris, Anthony; Polito, Vince; Coltheart, Max
2013-04-01
Social cognition is profoundly impaired in patients with schizophrenia. This study describes 'Mental-State Reasoning Training for Social Cognitive Impairment' (SoCog-MSRT), a 5-week program developed to improve social cognition in patients with schizophrenia. We aimed to investigate the feasibility of implementing SoCog-MSRT in a rehabilitation setting and to evaluate whether our training methods produced improvements. METHOD The feasibility and benefits of SoCog-MSRT were evaluated in an open clinical trial with 14 participants with schizophrenia or schizoaffective disorder. Training comprised 10 twice-weekly sessions, for 5 weeks, with a pre- and post-training assessment. There were significant improvements on: (a) a classic false-belief test of Theory of Mind (ToM); (b) inferring complex mental states from the eyes; and (c) a self-reported measure of social understanding. Some of these improvements were associated with baseline levels of working memory and premorbid Intelligence Quotient (IQ). CONCLUSIONS SoCog-MSRT can improve ToM abilities and social understanding, but individuals with poorer working memory and lower premorbid IQ may be less able to benefit from this type of training.
Layes, Smail; Lalonde, Robert; Bouakkaz, Yamina; Rebai, Mohamed
2017-12-22
We examined whether the working memory (WM) capacity of developmentally dyscalculic children can be improved by a WM training program and whether outcomes relate to mathematical performance. The experimental design comprised two groups with developmental dyslexia with grade 4 schooling: an experimental group (n = 14; mean age = 129.74 months) and a control group (n = 14; mean age = 126.9 months). All participants were assessed on measures of WM, mathematic attainment, and nonverbal mental ability (Raven test) before and after training. The WM training program focused on manipulating and maintaining arithmetic information. The results show that both WM and mathematical performances improved significantly after intervention, indicating a strong relationship between these two constructs. The control group improved slightly in Raven's progressive matrices and a reading number task. These findings are discussed in terms of near and far transfer toward trained and untrained skills and stress the positive impact of WM training on learning mathematics in children with dyscalculia.
Feasibility of computerized working memory training in individuals with Huntington disease
Sadeghi, Mahsa; Barlow-Krelina, Emily; Gibbons, Clare; Shaikh, Komal T.; Fung, Wai Lun Alan; Meschino, Wendy S.; Till, Christine
2017-01-01
Objectives Huntington disease (HD) is associated with a variety of cognitive deficits, with prominent difficulties in working memory (WM). WM deficits are notably compromised in early-onset and prodromal HD patients. This study aimed to determine the feasibility of a computerized WM training program (Cogmed QM), novel to the HD population. Methods Nine patients, aged 26–62, with early stage HD underwent a 25-session (5 days/week for 5 weeks) WM training program (Cogmed QM). Training exercises involved the manipulation and storage of verbal and visuospatial information, with difficulty adapted as a function of individual performance. Neuropsychological testing was conducted before and after training, and performance on criterion WM measures (Digit Span and Spatial Span), near-transfer WM measures (Symbol Span and Auditory WM), and control measures were evaluated. Post-training interviews about patient experience were thematically analyzed using NVivo software. Results Seven of nine patients demonstrated adherence to the training and completed all sessions within the recommended timeframe of 5 weeks. All adherent patients showed improvement on the Cogmed tasks as defined by the Improvement Index (M = 22.17, SD = 8.84, range = 13–36). All adherent patients reported that they found training helpful (n = 7), and almost all felt that their memory improved (n = 6). Participants also expressed that the training was difficult, sometimes frustrating, and time consuming. Conclusions This pilot study provides support for feasibility of computerized WM training in early-stage patients with HD. Results suggest that HD patients perceive benefits of intensive WM training, though a full-scale and controlled intervention project is needed to understand the size of the effect and reliability of changes over time. Trial registration ClinicalTrials.gov, Registry number NCT02926820 PMID:28453532
Effectiveness of Therapeutic Programs for Students with ADHD with Executive Function Deficits
ERIC Educational Resources Information Center
Chaimaha, Napalai; Sriphetcharawut, Sarinya; Lersilp, Suchitporn; Chinchai, Supaporn
2017-01-01
The purpose of this study was to investigate the effectiveness of therapeutic programs, an executive function training program and a collaborative program, for students with attention-deficit/hyperactivity disorder (ADHD) with executive function deficits (EFDs), especially regarding working memory, planning, and monitoring. The participants were…
Rourke, James; Asghari, Shabnam; Hurley, Oliver; Ravalia, Mohamed; Jong, Michael; Graham, Wendy; Parsons, Wanda; Duggan, Norah; O'Keefe, Danielle; Moffatt, Scott; Stringer, Katherine; Sturge Sparkes, Carolyn; Hippe, Janelle; Harris Walsh, Kristin; McKay, Donald; Samarasena, Asoka
2018-03-01
Rural recruitment and retention of physicians is a global issue. The Faculty of Medicine at Memorial University of Newfoundland, Canada, was established as a rural-focused medical school with a social accountability mandate that aimed to meet the healthcare needs of a sparse population distributed over a large landmass as well as the needs of other rural and remote areas of Canada. This study aimed to assess whether Memorial medical degree (MD) and postgraduate (PG) programs were effective at producing physicians for their province and rural physicians for Canada compared with other Canadian medical schools. This retrospective cohort study included medical school graduates who completed their PG training between 2004 and 2013 in Canada. Practice locations of study subjects were georeferenced and assigned to three geographic classes: Large Urban; Small City/Town; and Rural. Analyses were performed at two levels. (1) Provincial level analysis compared Memorial PG graduates practicing where they received their MD and/or PG training with other medical schools who are the only medical school in their province (n=4). (2) National-level analysis compared Memorial PG graduates practicing in rural Canada with all other Canadian medical schools (n=16). Descriptive and bivariate analyses were performed. Overall, 18 766 physicians practicing in Canada completed Canadian PG training (2004-2013), and of those, 8091 (43%) completed Family Medicine (FM) training. Of all physicians completing Canadian PG training, 1254 (7%) physicians were practicing rurally and of those, 1076 were family physicians. There were 379 Memorial PG graduates and of those, 208 (55%) completed FM training and 72 (19%) were practicing rurally, and of those practicing rurally, 56 were family physicians. At the national level, the percentage of all Memorial PG graduates (19.0%) and FM PG graduates (26.9%) practicing rurally was significantly better than the national average for PG (6.4%, p<0.000) and FM (12.9%, p<0.000). Among 391 physicians practicing in Newfoundland and Labrador (NL), 257 (65.7%) were Memorial PG graduates and 247 (63.2%) were Memorial MD graduates. Of the 163 FM graduates, 148 (90.8%) were Memorial FM graduates and 118 (72.4%) were Memorial MD graduates. Of the 68 in rural practice, 51 (75.0%) were Memorial PG graduates and 31 (45.6%) were Memorial MD graduates. Of the 41 FM graduates in rural practice, 39 (95.1%) were Memorial FM graduates and 22 (53.7%) were Memorial MD graduates. Two-sample proportion tests demonstrated Memorial University provided a larger proportion of its provincial physician resource supply than the other four single provincial medical schools, by medical school MD for FM (72.4% vs 44.3%, p<0.000) and for overall (63.2% vs 43.5% p<0.000), and by medical school PG for FM (90.8 % vs 72.0%, p<0.000). This study found Memorial University graduates were more likely to establish practice in rural areas compared with the national average for most program types as well as more likely to establish practice in NL compared with other single medical schools' graduates in their provinces. This study highlights the impact a comprehensive rural-focused social accountability approach can have at supplying the needs of a population both at the regional and rural national levels.
The Microsurgery Fellowship at Chang Gung Memorial Hospital: Blossom of Caterpillars
2015-01-01
Summary: Against a background of globalization and medical migration, issues have been raised regarding training outside the clinician’s own context. Fellowship was not commonly used as a career step, or a means of migration, but as a process of professional and personal development. Taking Chang Gung Memorial Hospital Microsurgery Fellowship as the case study, I would like to highlight an example of a long-running successful training program in a special field such as plastic surgery. PMID:25973354
The Garrett Lee Smith Memorial Suicide Prevention Program
ERIC Educational Resources Information Center
Goldston, David B.; Walrath, Christine M.; McKeon, Richard; Puddy, Richard W.; Lubell, Keri M.; Potter, Lloyd B.; Rodi, Michael S.
2010-01-01
In response to calls for greater efforts to reduce youth suicide, the Garrett Lee Smith (GLS) Memorial Act has provided funding for 68 state, territory, and tribal community grants, and 74 college campus grants for suicide prevention efforts. Suicide prevention activities supported by GLS grantees have included education, training programs…
The relaxation response: reducing stress and improving cognition in healthy aging adults.
Galvin, Jennifer A; Benson, Herbert; Deckro, Gloria R; Fricchione, Gregory L; Dusek, Jeffery A
2006-08-01
Aging adults are vulnerable to the effects of a negative emotional state. The relaxation response (RR) is a mind-body intervention that counteracts the harmful effects of stress. Previous studies with relaxation techniques have shown the non-pharmacological benefit of reducing stress and improving the memory of healthy older adults. Our pilot study evaluated whether a RR training program would decrease anxiety levels, improve attention, declarative memory performance and/or decrease salivary cortisol levels in healthy older adults. Fifteen adults participated and were randomly assigned to a RR training or control groups. Mean age was 71.3 years and mean education level was 17.9 years. Reaction time on a simple attention/psychomotor task was significantly improved (p<0.0025) with RR training, whereas there was no significant improvement on complex tasks of attention, verbal, or visual declarative memory tests. Self-reported state anxiety levels showed a marginally significant reduction (p<0.066). All subjects' salivary cortisol levels were within low-normal range and did not significantly change. Our 5-week program in highly educated, mobile, healthy, aging adults significantly improved performance on a simple attention task.
Han, Ji Won; Son, Kyung Lak; Byun, Hye Jin; Ko, Ji Won; Kim, Kayoung; Hong, Jong Woo; Kim, Tae Hyun; Kim, Ki Woong
2017-06-06
Spaced retrieval training (SRT) is a nonpharmacological intervention for mild cognitive impairment (MCI) and dementia that trains the learning and retention of target information by recalling it over increasingly long intervals. We recently developed the Ubiquitous Spaced Retrieval-based Memory Advancement and Rehabilitation Training (USMART) program as a convenient, self-administered tablet-based SRT program. We also demonstrated the utility of USMART for improving memory in individuals with MCI through an open-label uncontrolled trial. This study had an open-label, single-blind, randomized, controlled, two-period crossover design. Fifty patients with MCI were randomized into USMART-usual care and usual care-USMART treatment sequences. USMART was completed or usual care was provided biweekly over a 4-week treatment period with a 2-week washout period between treatment periods. Primary outcome measures included the Word List Memory Test, Word List Recall Test (WLRT), and Word List Recognition Test. Outcomes were measured at baseline, week 5, and week 11 by raters who were blinded to intervention type. An intention-to-treat analysis and linear mixed modeling were used. Of 50 randomized participants, 41 completed the study (18% dropout rate). The USMART group had larger improvements in WLRT score (effect size = 0.49, p = 0.031) than the usual care group. There were no significant differences in other primary or secondary measures between the USMART and usual care groups. Moreover, no USMART-related adverse events were reported. The 4-week USMART modestly improved information retrieval in older people with MCI, and was well accepted with minimal technical support. ClinicalTrials.gov NCT01688128 . Registered 12 September 2012.
Choi, Jimmy; Wang, Yuanjia; Feng, Tianshu; Prudic, Joan
2017-09-01
Although electroconvulsive therapy (ECT) remains the most effective treatment for severe depression, some patients report persistent memory problems following ECT that impact their quality of life and their willingness to consent to further ECT. While cognitive training has been shown to improve memory performance in various conditions, this approach has never been applied to help patients regain their memory after ECT. In a double-blind study, we tested the efficacy of a new cognitive training program called Memory Training for ECT (Mem-ECT), specifically designed to target anterograde and retrograde memory that can be compromised following ECT. Fifty-nine patients with treatment-resistant depression scheduled to undergo ultra-brief right unilateral ECT were randomly assigned to either: (a) Mem-ECT, (b) active control comprised of nonspecific mental stimulation, or (c) treatment as usual. Participants were evaluated within one week prior to the start of ECT and then again within 2 weeks following the last ECT session. All three groups improved in global function, quality of life, depression, and self-reported memory abilities without significant group differences. While there was a decline in verbal delayed recall and mental status, there was no decline in general retrograde memory or autobiographical memory in any of the groups, with no significant memory or clinical benefit for the Mem-ECT or active control conditions compared to treatment as usual. While we report negative findings, these results continue to promote the much needed discussion on developing effective strategies to minimize the adverse memory side effects of ECT, in hopes it will make ECT a better and more easily tolerated treatment for patients with severe depression who need this therapeutic option. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Qian; Zhang, Xuchen; Liang, Xitong; Zhang, Fang; Wang, Lianzhang; Zhong, Yi
2016-01-01
Translocation of signaling molecules, MAPK in particular, from the cytosol to nucleus represents a universal key element in initiating the gene program that determines memory consolidation. Translocation mechanisms and their behavioral impact, however, remain to be determined. Here, we report that a highly conserved nuclear transporter, Drosophila importin-7 (DIM-7), regulates import of training-activated MAPK for consolidation of long-term memory (LTM). We show that silencing DIM-7 functions results in impaired LTM, whereas overexpression of DIM-7 enhances LTM. This DIM-7–dependent regulation of LTM is confined to a consolidation time window and in mushroom body neurons. Image data show that bidirectional alteration in DIM-7 expression results in proportional changes in the intensity of training-activated MAPK accumulated within the nuclei of mushroom body neurons during LTM consolidation. Such DIM-7–regulated nuclear accumulation of activated MAPK is observed only in the training specified for LTM induction and determines the amplitude, but not the time course, of memory consolidation. PMID:26929354
Liddle, Jacki; Smith-Conway, Erin R; Baker, Rosemary; Angwin, Anthony J; Gallois, Cindy; Copland, David A; Pachana, Nancy A; Humphreys, Michael S; Byrne, Gerard J; Chenery, Helen J
2012-12-01
People with dementia have a range of needs that are met by informal caregivers. A DVD-based training program was developed using research-based strategies for memory and communication in dementia. The effectiveness of the training on the caregiver experience and the well-being of the person with dementia was evaluated. A pre-test/post-test controlled trial was undertaken with caregiver-care-recipient dyads living in the community. Measures of the carers' knowledge of memory and communication strategies, burden, positive perceptions of caregiving, and perceptions of problem behaviors were taken pre- and three months post-intervention. The depression and well-being of the person with dementia were also evaluated. Satisfaction with the training and feedback were measured. Twenty-nine dyads (13 training group, 16 control group) participated. Bonferroni's correction was made to adjust for multiple comparisons, setting α at 0.00385. A significant improvement was found in caregivers' knowledge for the training group compared to the control group (p = 0.0011). The training group caregivers reported a reduction in the frequency of care recipient disruptive behaviors (p = 0.028) and increased perceptions of positive aspects of caregiving (p = 0.039), both at a level approaching significance. The training group care recipients had increased frequency of verbally communicated depressive behaviors at a level approaching significance (p = 0.0126). The frequency of observed depressive behaviors was not significantly different between groups. This approach to training for caregivers of people with dementia appears promising for its impact on knowledge and the caregiving experience. Further research could monitor the impact of the training on broader measures of depression and well-being, with a larger sample.
Grimaud, Élisabeth; Taconnat, Laurence; Clarys, David
2017-06-01
The aim of this study was to compare two methods of cognitive stimulation for the cognitive functions. The first method used an usual approach, the second used leisure activities in order to assess their benefits on cognitive functions (speed of processing; working memory capacity and executive functions) and psychoaffective measures (memory span and self esteem). 67 participants over 60 years old took part in the experiment. They were divided into three groups: 1 group followed a program of conventional cognitive stimulation, 1 group a program of cognitive stimulation using leisure activities and 1 control group. The different measures have been evaluated before and after the training program. Results show that the cognitive stimulation program using leisure activities is as effective on memory span, updating and memory self-perception as the program using conventional cognitive stimulation, and more effective on self-esteem than the conventional program. There is no difference between the two stimulated groups and the control group on speed of processing. Neither of the two cognitive stimulation programs provides a benefit over shifting and inhibition. These results indicate that it seems to be possible to enhance working memory and to observe far transfer benefits over self-perception (self-esteem and memory self-perception) when using leisure activities as a tool for cognitive stimulation.
ERIC Educational Resources Information Center
Gray, S. A.; Chaban, P.; Martinussen, R.; Goldberg, R.; Gotlieb, H.; Kronitz, R.; Hockenberry, M.; Tannock, R.
2012-01-01
Background: Youths with coexisting learning disabilities (LD) and attention deficit hyperactivity disorder (ADHD) are at risk for poor academic and social outcomes. The underlying cognitive deficits, such as poor working memory (WM), are not well targeted by current treatments for either LD or ADHD. Emerging evidence suggests that WM might be…
Major Robert Lawrence Memorial Tribute
2017-12-08
Following an Astronauts Memorial Foundation tribute honoring U.S. Air Foce Maj. Robert Lawrence, guests place flowers at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex. Selected in 1967 for the Manned Orbiting Laboratory Program, Lawrence was the first African-American astronaut. He lost his life in a training accident 50 years ago. The ceremony took place in the Center for Space Education at the Kennedy Space Center Visitor Complex.
Alesi, Marianna; Rappo, Gaetano; Pepi, Annamaria
2016-01-01
One of the most significant current discussions has led to the hypothesis that domain-specific training programs alone are not enough to improve reading achievement or working memory abilities. Incremental or Entity personal conceptions of intelligence may be assumed to be an important prognostic factor to overcome domain-specific deficits. Specifically, incremental students tend to be more oriented toward change and autonomy and are able to adopt more efficacious strategies. This study aims at examining the effect of personal conceptions of intelligence to strengthen the efficacy of a multidimensional intervention program in order to improve decoding abilities and working memory. Participants included two children (M age = 10 years) with developmental dyslexia and different conceptions of intelligence. The children were tested on a whole battery of reading and spelling tests commonly used in the assessment of reading disabilities in Italy. Afterwards, they were given a multimedia test to measure motivational factors such as conceptions of intelligence and achievement goals. The children took part in the T.I.R.D. Multimedia Training for the Rehabilitation of Dyslexia (Rappo and Pepi, 2010) reinforced by specific units to improve verbal working memory for 3 months. This training consisted of specific tasks to rehabilitate both visual and phonological strategies (sound blending, word segmentation, alliteration test and rhyme test, letter recognition, digraph recognition, trigraph recognition, and word recognition as samples of visual tasks) and verbal working memory (rapid words and non-words recognition). Posttest evaluations showed that the child holding the incremental theory of intelligence improved more than the child holding a static representation. On the whole this study highlights the importance of treatment programs in which both specificity of deficits and motivational factors are both taken into account. There is a need to plan multifaceted intervention programs based on a transverse approach, considering both cognitive and motivational factors. PMID:26779069
Self-Regulation and Recall: Growth Curve Modeling of Intervention Outcomes for Older Adults
West, Robin L.; Hastings, Erin C.
2013-01-01
Memory training has often been supported as a potential means to improve performance for older adults. Less often studied are the characteristics of trainees that benefit most from training. Using a self-regulatory perspective, the current project examined a latent growth curve model to predict training-related gains for middle-aged and older adult trainees from individual differences (e.g., education), information processing skills (strategy use) and self-regulatory factors such as self-efficacy, control, and active engagement in training. For name recall, a model including strategy usage and strategy change as predictors of memory gain, along with self-efficacy and self-efficacy change, showed comparable fit to a more parsimonious model including only self-efficacy variables as predictors. The best fit to the text recall data was a model focusing on self-efficacy change as the main predictor of memory change, and that model showed significantly better fit than a model also including strategy usage variables as predictors. In these models, overall performance was significantly predicted by age and memory self-efficacy, and subsequent training-related gains in performance were best predicted directly by change in self-efficacy (text recall), or indirectly through the impact of active engagement and self-efficacy on gains (name recall). These results underscore the benefits of targeting self-regulatory factors in intervention programs designed to improve memory skills. PMID:21604891
Self-regulation and recall: growth curve modeling of intervention outcomes for older adults.
West, Robin L; Hastings, Erin C
2011-12-01
Memory training has often been supported as a potential means to improve performance for older adults. Less often studied are the characteristics of trainees that benefit most from training. Using a self-regulatory perspective, the current project examined a latent growth curve model to predict training-related gains for middle-aged and older adult trainees from individual differences (e.g., education), information processing skills (strategy use) and self-regulatory factors such as self-efficacy, control, and active engagement in training. For name recall, a model including strategy usage and strategy change as predictors of memory gain, along with self-efficacy and self-efficacy change, showed comparable fit to a more parsimonious model including only self-efficacy variables as predictors. The best fit to the text recall data was a model focusing on self-efficacy change as the main predictor of memory change, and that model showed significantly better fit than a model also including strategy usage variables as predictors. In these models, overall performance was significantly predicted by age and memory self-efficacy, and subsequent training-related gains in performance were best predicted directly by change in self-efficacy (text recall), or indirectly through the impact of active engagement and self-efficacy on gains (name recall). These results underscore the benefits of targeting self-regulatory factors in intervention programs designed to improve memory skills.
Pascoe, Leona; Roberts, Gehan; Doyle, Lex W; Lee, Katherine J; Thompson, Deanne K; Seal, Marc L; Josev, Elisha K; Nosarti, Chiara; Gathercole, Susan; Anderson, Peter J
2013-09-16
Very preterm children exhibit difficulties in working memory, a key cognitive ability vital to learning information and the development of academic skills. Previous research suggests that an adaptive working memory training intervention (Cogmed) may improve working memory and other cognitive and behavioural domains, although further randomised controlled trials employing long-term outcomes are needed, and with populations at risk for working memory deficits, such as children born preterm.In a cohort of extremely preterm (<28 weeks' gestation)/extremely low birthweight (<1000 g) 7-year-olds, we will assess the effectiveness of Cogmed in improving academic functioning 2 years' post-intervention. Secondary objectives are to assess the effectiveness of Cogmed in improving working memory and attention 2 weeks', 12 months' and 24 months' post-intervention, and to investigate training related neuroplasticity in working memory neural networks 2 weeks' post-intervention. This double-blind, placebo-controlled, randomised controlled trial aims to recruit 126 extremely preterm/extremely low birthweight 7-year-old children. Children attending mainstream school without major intellectual, sensory or physical impairments will be eligible. Participating children will undergo an extensive baseline cognitive assessment before being randomised to either an adaptive or placebo (non-adaptive) version of Cogmed. Cogmed is a computerised working memory training program consisting of 25 sessions completed over a 5 to 7 week period. Each training session takes approximately 35 minutes and will be completed in the child's home. Structural, diffusion and functional Magnetic Resonance Imaging, which is optional for participants, will be completed prior to and 2 weeks following the training period. Follow-up assessments focusing on academic skills (primary outcome), working memory and attention (secondary outcomes) will be conducted at 2 weeks', 12 months' and 24 months' post-intervention. To our knowledge, this study will be the first randomised controlled trial to (a) assess the effectiveness of Cogmed in school-aged extremely preterm/extremely low birthweight children, while incorporating advanced imaging techniques to investigate neural changes associated with adaptive working memory training, and (b) employ long-term follow-up to assess the potential benefit of improved working memory on academic functioning. If effective, Cogmed would serve as a valuable, available intervention for improving developmental outcomes for this population. Australian New Zealand Clinical Trials Registry ACTRN12612000124831.
Payne, Brennan R.; Stine-Morrow, Elizabeth A. L.
2017-01-01
Effective language understanding is crucial to maintaining cognitive abilities and learning new information through adulthood. However, age-related declines in working memory (WM) have a robust negative influence on multiple aspects of language comprehension and use, potentially limiting communicative competence. In the current study (N = 41), we examined the effects of a novel home-based computerized cognitive training program targeting verbal WM on changes in verbal WM and language comprehension in healthy older adults relative to an active component-control group. Participants in the WM training group showed non-linear improvements in performance on trained verbal WM tasks. Relative to the active control group, WM training participants also showed improvements on untrained verbal WM tasks and selective improvements across untrained dimensions of language, including sentence memory, verbal fluency, and comprehension of syntactically ambiguous sentences. Though the current study is preliminary in nature, it does provide initial promising evidence that WM training may influence components of language comprehension in adulthood and suggests that home-based training of WM may be a viable option for probing the scope and limits of cognitive plasticity in older adults. PMID:28848421
Payne, Brennan R; Stine-Morrow, Elizabeth A L
2017-01-01
Effective language understanding is crucial to maintaining cognitive abilities and learning new information through adulthood. However, age-related declines in working memory (WM) have a robust negative influence on multiple aspects of language comprehension and use, potentially limiting communicative competence. In the current study ( N = 41), we examined the effects of a novel home-based computerized cognitive training program targeting verbal WM on changes in verbal WM and language comprehension in healthy older adults relative to an active component-control group. Participants in the WM training group showed non-linear improvements in performance on trained verbal WM tasks. Relative to the active control group, WM training participants also showed improvements on untrained verbal WM tasks and selective improvements across untrained dimensions of language, including sentence memory, verbal fluency, and comprehension of syntactically ambiguous sentences. Though the current study is preliminary in nature, it does provide initial promising evidence that WM training may influence components of language comprehension in adulthood and suggests that home-based training of WM may be a viable option for probing the scope and limits of cognitive plasticity in older adults.
Cheng, Calvin P W; Chan, Sandra S M; Mak, Arthur D P; Chan, Wai Chi; Cheng, Sheung Tak; Shi, Lin; Wang, Defeng; Lam, Linda Chiu-Wa
2015-10-24
There has been longstanding interesting in cognitive training for older adults with cognitive impairment. In this study, we will investigate the effects of working memory training, and explore augmentation strategies that could possibly consolidate the effects in older adults with mild neurocognitive disorder. Transcranial direct current stimulation (tDCS) has been demonstrated to affect the neuronal excitability and reported to enhance memory performance. As tDCS may also modulate cognitive function through changes in neuroplastic response, it would be adopted as an augmentation strategy for working memory training in the present study. This is a 4-week intervention double-blind randomized controlled trial (RCT) of tDCS. Chinese older adults (aged 60 to 90 years) with mild neurocognitive disorder due to Alzheimer's disease (DSM-5 criteria) would be randomized into a 4-week intervention of either tDCS-working memory (DCS-WM), tDCS-control cognitive training (DCS-CC), and sham tDCS-working memory (WM-CD) groups. The primary outcome would be working memory test - the n-back task performance and the Chinese version of the Alzheimer's Disease Assessment Scale - Cognitive Subscale (ADAS-Cog). Secondary outcomes would be test performance of specific cognitive domains and mood. Intention-to-treat analysis would be carried out. Changes of efficacy indicators with time and intervention would be tested with mixed effect models. This study adopts the theory of neuroplasticity to evaluate the potential cognitive benefits of non-invasive electrical brain stimulation, working memory training and dual stimulation in older adults at risk of cognitive decline. It would also examine the tolerability, program adherence and adverse effects of this novel intervention. Information would be helpful for further research of dementia prevention studies. ChiCTR-TRC- 14005036 Date of registration: 31 July 2014.
Remembering: forget about forgetting and train your brain instead.
Sorrell, Jeanne M
2008-09-01
As people age, they often become increasingly concerned about their inability to remember names and faces or recall specific words. As their memory seems to decline, they worry about developing Alzheimer's disease. Yet, new research suggests that for most aging adults, failing to remember is because of an overload of information and difficulty in trying to sort through a cluttered "database." Brain-training programs based on evolving research, as well as increased opportunities to reflect on healthy aging experiences, offer important possibilities for working with clients concerned about memory problems.
Greenaway, M C; Duncan, N L; Smith, G E
2013-04-01
Individuals with amnestic mild cognitive impairment (MCI) have few empirically based treatment options for combating their memory loss. This study sought to examine the efficacy of a calendar/notebook rehabilitation intervention, the memory support system (MSS), for individuals with amnestic MCI. Forty individuals with single domain amnestic MCI and their program partners were randomized to receive the MSS, either with training or without (controls). Measures of adherence, activities of daily living, and emotional impact were completed at the first and last intervention sessions and again at 8 weeks and 6 months post intervention. Training in use of a notebook/calendar system significantly improved adherence over those who received the calendars but no training. Functional ability and memory self-efficacy significantly improved for those who received MSS training. Change in functional ability remained significantly better in the intervention group than in the control group out to 8-week follow-up. Care partners in the intervention group demonstrated improved mood by 8-week and 6-month follow-ups, whereas control care partners reported worse caregiver burden by 6-month follow-up. Memory support system training resulted in improvement in activities of daily living and sense of memory self-efficacy for individuals with MCI. Although activities of daily living benefits were maintained out to 8 weeks post intervention, future inclusion of booster sessions may help extend the therapeutic effect out even further. Improved mood of care partners of trained individuals and worsening sense of caregiver burden over time for partners of untrained individuals further support the efficacy of the MSS for MCI. Copyright © 2012 John Wiley & Sons, Ltd.
Ottersen, Jon; Grill, Katja M
2015-01-01
Training on working memory (WM) improves attention and WM in children with attention-deficit hyperactivity disorder and memory impairments. However, for children with intellectual disabilities (ID), the results have been less encouraging. In this preliminary study it was hypothesized that children with ID would benefit from an extended amount of training and that the level of difficulty during training would affect the outcome. We included 21 children with mild or moderate ID aged 8-13 years. They went through between 37 and 50 training sessions with an adaptive computerized program on WM and non-verbal reasoning (NVR). The children were divided into two subgroups with different difficulty levels during training. The transfer to untrained cognitive tests was compared to the results of 22 children with ID training only 25 sessions, and to a control group. We found that the training group with the extended training program improved significantly on a block design task measuring NVR and on a WM task compared to the control group. There was also a significantly larger improvement on block design relative to the training group with the shorter training time. The children that received easier training tasks also improved significantly more on a verbal WM task compared to children with more demanding tasks. In conclusion, these preliminary data suggest that children with ID might benefit from cognitive training with longer training periods and less demanding tasks, compared to children without disabilities.
Schweizer, Susanne; Hampshire, Adam; Dalgleish, Tim
2011-01-01
So-called 'brain-training' programs are a huge commercial success. However, empirical evidence regarding their effectiveness and generalizability remains equivocal. This study investigated whether brain-training (working memory [WM] training) improves cognitive functions beyond the training task (transfer effects), especially regarding the control of emotional material since it constitutes much of the information we process daily. Forty-five participants received WM training using either emotional or neutral material, or an undemanding control task. WM training, regardless of training material, led to transfer gains on another WM task and in fluid intelligence. However, only brain-training with emotional material yielded transferable gains to improved control over affective information on an emotional Stroop task. The data support the reality of transferable benefits of demanding WM training and suggest that transferable gains across to affective contexts require training with material congruent to those contexts. These findings constitute preliminary evidence that intensive cognitively demanding brain-training can improve not only our abstract problem-solving capacity, but also ameliorate cognitive control processes (e.g. decision-making) in our daily emotive environments.
Caller, Tracie A; Secore, Karen L; Ferguson, Robert J; Roth, Robert M; Alexandre, Faith P; Henegan, Patricia L; Harrington, Jessica J; Jobst, Barbara C
2015-03-01
The aim of this study was to assess the feasibility of a self-management intervention targeting cognitive dysfunction to improve quality of life and reduce memory-related disability in adults with epilepsy. The intervention incorporates (1) education on cognitive function in epilepsy, (2) self-awareness training, (3) compensatory strategies, and (4) application of these strategies in day-to-day life using problem-solving therapy. In addition to the behavioral modification, formal working memory training was conducted by utilizing a commercially available program in a subgroup of patients. Our findings suggest that a self-management intervention targeting cognitive dysfunction was feasible for delivery to a rural population with epilepsy, with 13 of 16 enrolled participants completing the 8-session program. Qualitative data indicate high satisfaction and subjective improvement in cognitive functioning in day-to-day life. These findings provide support for further evaluation of the efficacy of this intervention through a randomized controlled trial. Copyright © 2015 Elsevier Inc. All rights reserved.
Major Robert Lawrence Memorial Tribute
2017-12-08
During an Astronauts Memorial Foundation tribute honoring U.S. Air Foce Maj. Robert Lawrence, his sister, Barbara Lawrence, Ph.D., far right, places a flower at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex. Selected in 1967 for the Manned Orbiting Laboratory Program, Lawrence was the first African-American astronaut. He lost his life in a training accident 50 years ago. The ceremony took place in the Center for Space Education at the Kennedy Space Center Visitor Complex.
Major Robert Lawrence Memorial Tribute
2017-12-08
During an Astronauts Memorial Foundation tribute honoring U.S. Air Foce Maj. Robert Lawrence, his sister, Barbara Lawrence, Ph.D., places a flower at the Space Mirror Memorial which honors those lost in efforts to explore space. Selected in 1967 for the Manned Orbiting Laboratory Program, Lawrence was the first African-American astronaut. He lost his life in a training accident 50 years ago. The ceremony took place in the Center for Space Education at the Kennedy visitor complex.
Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne
2017-01-01
Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults (Mage = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults. PMID:28119597
Bellander, Martin; Eschen, Anne; Lövdén, Martin; Martin, Mike; Bäckman, Lars; Brehmer, Yvonne
2016-01-01
Studies attempting to improve episodic memory performance with strategy instructions and training have had limited success in older adults: their training gains are limited in comparison to those of younger adults and do not generalize to untrained tasks and contexts. This limited success has been partly attributed to age-related impairments in associative binding of information into coherent episodes. We therefore investigated potential training and transfer effects of process-based associative memory training (i.e., repeated practice). Thirty-nine older adults ( M age = 68.8) underwent 6 weeks of either adaptive associative memory training or item recognition training. Both groups improved performance in item memory, spatial memory (object-context binding) and reasoning. A disproportionate effect of associative memory training was only observed for item memory, whereas no training-related performance changes were observed for associative memory. Self-reported strategies showed no signs of spontaneous development of memory-enhancing associative memory strategies. Hence, the results do not support the hypothesis that process-based associative memory training leads to higher associative memory performance in older adults.
To Switch or Not to Switch: Role of Cognitive Control in Working Memory Training in Older Adults.
Basak, Chandramallika; O'Connell, Margaret A
2016-01-01
It is currently not known what are the best working memory training strategies to offset the age-related declines in fluid cognitive abilities. In this randomized clinical double-blind trial, older adults were randomly assigned to one of two types of working memory training - one group was trained on a predictable memory updating task (PT) and another group was trained on a novel, unpredictable memory updating task (UT). Unpredictable memory updating, compared to predictable, requires greater demands on cognitive control (Basak and Verhaeghen, 2011a). Therefore, the current study allowed us to evaluate the role of cognitive control in working memory training. All participants were assessed on a set of near and far transfer tasks at three different testing sessions - before training, immediately after the training, and 1.5 months after completing the training. Additionally, individual learning rates for a comparison working memory task (performed by both groups) and the trained task were computed. Training on unpredictable memory updating, compared to predictable, significantly enhanced performance on a measure of episodic memory, immediately after the training. Moreover, individuals with faster learning rates showed greater gains in this episodic memory task and another new working memory task; this effect was specific to UT. We propose that the unpredictable memory updating training, compared to predictable memory updating training, may a better strategy to improve selective cognitive abilities in older adults, and future studies could further investigate the role of cognitive control in working memory training.
Greenaway, M. C.; Duncan, N. L.; Smith, G. E.
2013-01-01
Objective Individuals with amnestic Mild Cognitive Impairment (MCI) have few empirically-based treatment options for combating their memory loss. This study sought to examine the efficacy of a calendar/notebook rehabilitation intervention, the Memory Support System (MSS), for individuals with amnestic MCI. Methods Forty individuals with single domain amnestic MCI and their program partners were randomized to receive the MSS, either with training or without (controls). Measures of adherence, activities of daily living, and emotional impact were completed at the first and last intervention session and again at 8-weeks and 6 months post intervention. Results Training in use of a notebook/calendar system significantly improved adherence over those who received the calendars but no training. Functional ability and memory self efficacy significantly improved for those who received MSS training. Change in functional ability remained significantly better in the intervention group than in the control group out to 8 week follow up. Care partners in the intervention group demonstrated improved mood by 8 week and 6 month follow-up, while control care partners reported worse caregiver burden by 6 month follow up. Conclusions MSS training resulted in improvement in ADLs and sense of memory self efficacy for individuals with MCI. While ADL benefits were maintained out to 8 weeks post intervention, future inclusion of booster sessions may help extend the therapeutic effect out even further. Improved mood of care partners of trained individuals and worsening sense of caregiver burden over time for partners of untrained individuals further supports the efficacy of the MSS for MCI. PMID:22678947
Chacko, A; Bedard, A-C V; Marks, D; Gopalan, G; Feirsen, N; Uderman, J; Chimiklis, A; Heber, E; Cornwell, M; Anderson, L; Zwilling, A; Ramon, M
2018-05-01
The present study examines the potential of sequencing a neurocognitive intervention with behavioral parent training (BPT) to improve executive functions (EFs), psychiatric symptoms, and multiple indices of functional impairment in school-age children aged 7 to 11 years who have been diagnosed with attention-deficit/hyperactivity disorder (ADHD). Specifically, in a randomized controlled trial design, 85 children were assigned to either Cogmed Working Memory Training (CWMT) followed by an empirically supported, manualized BPT intervention, or to a placebo version of CWMT followed by the same BPT intervention. Working memory maintenance (i.e., attention control/short-term memory), working memory processing and manipulation, ADHD and oppositional defiant disorder (ODD) symptoms, impairment in parent-child dynamics, familial impairment, and overall functional compromise were evaluated as outcomes. The results suggest specific effects of the combined CWMT and BPT program on verbal and nonverbal working memory storage and nonverbal working memory processing and manipulation but no incremental benefits in regard to ADHD symptoms, ODD symptoms, and functional outcomes. The present findings do not support the hypothesis regarding the complementary and augmentative benefits of sequenced neurocognitive and BPT interventions for the treatment of ADHD. These results, the study's limitations, and future directions for research are further discussed.
Söderqvist, Stina; Nutley, Sissela B.; Ottersen, Jon; Grill, Katja M.; Klingberg, Torkel
2012-01-01
Children with intellectual disabilities show deficits in both reasoning ability and working memory (WM) that impact everyday functioning and academic achievement. In this study we investigated the feasibility of cognitive training for improving WM and non-verbal reasoning (NVR) ability in children with intellectual disability. Participants were randomized to a 5-week adaptive training program (intervention group) or non-adaptive version of the program (active control group). Cognitive assessments were conducted prior to and directly after training and 1 year later to examine effects of the training. Improvements during training varied largely and amount of progress during training predicted transfer to WM and comprehension of instructions, with higher training progress being associated with greater transfer improvements. The strongest predictors for training progress were found to be gender, co-morbidity, and baseline capacity on verbal WM. In particular, females without an additional diagnosis and with higher baseline performance showed greater progress. No significant effects of training were observed at the 1-year follow-up, suggesting that training should be more intense or repeated in order for effects to persist in children with intellectual disabilities. A major finding of this study is that cognitive training is feasible in this clinical sample and can help improve their cognitive performance. However, a minimum cognitive capacity or training ability seems necessary for the training to be beneficial, with some individuals showing little improvement in performance. Future studies of cognitive training should take into consideration how inter-individual differences in training progress influence transfer effects and further investigate how baseline capacities predict training outcome. PMID:23060775
2017-10-01
AWARD NUMBER: W81XWH-15-1-0508 TITLE: Multimodal Intervention Trial for Cognitive Deficits in Neurofibromatosis Type 1: Efficacy of...Computerized Cognitive Training and Stimulant Medication PRINCIPAL INVESTIGATOR: Maria T. Acosta, M.D. CONTRACTING ORGANIZATION: Children’s National Health...database. 15. SUBJECT TERMS Neurofibromatosis, cognition , pediatric, computerized training programs, working memory 16. SECURITY CLASSIFICATION OF: 17
Transfer after Working Memory Updating Training
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures. PMID:26406319
Transfer after Working Memory Updating Training.
Waris, Otto; Soveri, Anna; Laine, Matti
2015-01-01
During the past decade, working memory training has attracted much interest. However, the training outcomes have varied between studies and methodological problems have hampered the interpretation of results. The current study examined transfer after working memory updating training by employing an extensive battery of pre-post cognitive measures with a focus on near transfer. Thirty-one healthy Finnish young adults were randomized into either a working memory training group or an active control group. The working memory training group practiced with three working memory tasks, while the control group trained with three commercial computer games with a low working memory load. The participants trained thrice a week for five weeks, with one training session lasting about 45 minutes. Compared to the control group, the working memory training group showed strongest transfer to an n-back task, followed by working memory updating, which in turn was followed by active working memory capacity. Our results support the view that working memory training produces near transfer effects, and that the degree of transfer depends on the cognitive overlap between the training and transfer measures.
Effects of Computer Cognitive Training on Depression in Cognitively Impaired Seniors
ERIC Educational Resources Information Center
Allen, Nara L.
2016-01-01
The aim of the present study was to investigate the effects of a computer cognitive training program on depression levels in older mildly cognitive impaired individuals. Peterson et al. (1999), defines mild cognitive impairment (MCI) as a transitional stage in which an individual's memory deteriorates and his likelihood of developing Alzheimer's…
Pathways to rural family practice at Memorial University of Newfoundland.
Rourke, James; O'Keefe, Danielle; Ravalia, Mohamed; Moffatt, Scott; Parsons, Wanda; Duggan, Norah; Stringer, Katherine; Jong, Michael; Walsh, Kristin Harris; Hippe, Janelle
2018-03-01
To assess Memorial University of Newfoundland's (MUN's) commitment to a comprehensive pathways approach to rural family practice, and to determine the national and provincial effects of applying this approach. Analysis of anonymized secondary data. Canada. Memorial's medical degree (MD) graduates practising family medicine in Newfoundland and Labrador as of January 2015 (N = 305), MUN's 2011 and 2012 MD graduates (N = 120), and physicians who completed family medicine training programs in Canada between 2004 and 2013 and who were practising in Canada 2 years after completion of their postgraduate training (N = 8091). National effect was measured by the proportion of MUN's family medicine program graduates practising in rural Canada compared with those from other Canadian family medicine training programs. Provincial effect was measured by the location of MUN's MD graduates practising family medicine in Newfoundland and Labrador as of January 2015. Commitment to a comprehensive pathways approach to rural family practice was measured by anonymized geographic data on admissions, educational placements, and practice locations of MUN's 2011 and 2012 MD graduates, including those who completed family medicine residencies at MUN. Memorial's comprehensive pathways approach to training physicians for rural practice was successful on both national and provincial levels: 26.9% of MUN family medicine program graduates were in a rural practice location 2 years after exiting their post-MD training from 2004 to 2013 compared with the national rate of 13.3% (national effect); 305 of MUN's MD graduates were practising family medicine in Newfoundland and Labrador as of 2015, with 36% practising in rural areas (provincial effect). Of 114 MD students with known background who graduated in 2011 and 2012, 32% had rural backgrounds. Memorial's 2011 and 2012 MD graduates spent 20% of all clinical placement weeks in rural areas; of note, 90% of all first-year placements and 95% of third-year family medicine clerkship placements were rural. For the 25 MUN 2011 and 2012 MD graduates who also completed family medicine residencies at MUN, 38% of family medicine placement weeks were spent in rural communities or rural towns. Of the 30 MUN 2011 and 2012 MD graduates practising family medicine in Canada as of January 2015, 42% were practising in rural communities or rural towns; 73% were practising in Newfoundland and Labrador and half of those were in rural communities and rural towns. A comprehensive rural pathways approach that includes recruiting rural students and exposing all medical students to extensive rural placements and all family medicine residents to rural family practice training has resulted in more rural generalist physicians in family practice in Newfoundland and Labrador and across Canada. Copyright© the College of Family Physicians of Canada.
Neural Plastic Effects of Cognitive Training on Aging Brain
Leung, Natalie T. Y.; Tam, Helena M. K.; Chu, Leung W.; Kwok, Timothy C. Y.; Chan, Felix; Lam, Linda C. W.; Woo, Jean; Lee, Tatia M. C.
2015-01-01
Increasing research has evidenced that our brain retains a capacity to change in response to experience until late adulthood. This implies that cognitive training can possibly ameliorate age-associated cognitive decline by inducing training-specific neural plastic changes at both neural and behavioral levels. This longitudinal study examined the behavioral effects of a systematic thirteen-week cognitive training program on attention and working memory of older adults who were at risk of cognitive decline. These older adults were randomly assigned to the Cognitive Training Group (n = 109) and the Active Control Group (n = 100). Findings clearly indicated that training induced improvement in auditory and visual-spatial attention and working memory. The training effect was specific to the experience provided because no significant difference in verbal and visual-spatial memory between the two groups was observed. This pattern of findings is consistent with the prediction and the principle of experience-dependent neuroplasticity. Findings of our study provided further support to the notion that the neural plastic potential continues until older age. The baseline cognitive status did not correlate with pre- versus posttraining changes to any cognitive variables studied, suggesting that the initial cognitive status may not limit the neuroplastic potential of the brain at an old age. PMID:26417460
Hardy, Joseph L.; Nelson, Rolf A.; Thomason, Moriah E.; Sternberg, Daniel A.; Katovich, Kiefer; Farzin, Faraz; Scanlon, Michael
2015-01-01
Background A variety of studies have demonstrated gains in cognitive ability following cognitive training interventions. However, other studies have not shown such gains, and questions remain regarding the efficacy of specific cognitive training interventions. Cognitive training research often involves programs made up of just one or a few exercises, targeting limited and specific cognitive endpoints. In addition, cognitive training studies typically involve small samples that may be insufficient for reliable measurement of change. Other studies have utilized training periods that were too short to generate reliable gains in cognitive performance. Methods The present study evaluated an online cognitive training program comprised of 49 exercises targeting a variety of cognitive capacities. The cognitive training program was compared to an active control condition in which participants completed crossword puzzles. All participants were recruited, trained, and tested online (N = 4,715 fully evaluable participants). Participants in both groups were instructed to complete one approximately 15-minute session at least 5 days per week for 10 weeks. Results Participants randomly assigned to the treatment group improved significantly more on the primary outcome measure, an aggregate measure of neuropsychological performance, than did the active control group (Cohen’s d effect size = 0.255; 95% confidence interval = [0.198, 0.312]). Treatment participants showed greater improvements than controls on speed of processing, short-term memory, working memory, problem solving, and fluid reasoning assessments. Participants in the treatment group also showed greater improvements on self-reported measures of cognitive functioning, particularly on those items related to concentration compared to the control group (Cohen’s d = 0.249; 95% confidence interval = [0.191, 0.306]). Conclusion Taken together, these results indicate that a varied training program composed of a number of tasks targeted to different cognitive functions can show transfer to a wide range of untrained measures of cognitive performance. Trial Registration ClinicalTrials.gov NCT-02367898 PMID:26333022
Rudebeck, Sarah R.; Bor, Daniel; Ormond, Angharad; O’Reilly, Jill X.; Lee, Andy C. H.
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants’ episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary. PMID:23209740
Rudebeck, Sarah R; Bor, Daniel; Ormond, Angharad; O'Reilly, Jill X; Lee, Andy C H
2012-01-01
One current challenge in cognitive training is to create a training regime that benefits multiple cognitive domains, including episodic memory, without relying on a large battery of tasks, which can be time-consuming and difficult to learn. By giving careful consideration to the neural correlates underlying episodic and working memory, we devised a computerized working memory training task in which neurologically healthy participants were required to monitor and detect repetitions in two streams of spatial information (spatial location and scene identity) presented simultaneously (i.e. a dual n-back paradigm). Participants' episodic memory abilities were assessed before and after training using two object and scene recognition memory tasks incorporating memory confidence judgments. Furthermore, to determine the generalizability of the effects of training, we also assessed fluid intelligence using a matrix reasoning task. By examining the difference between pre- and post-training performance (i.e. gain scores), we found that the trainers, compared to non-trainers, exhibited a significant improvement in fluid intelligence after 20 days. Interestingly, pre-training fluid intelligence performance, but not training task improvement, was a significant predictor of post-training fluid intelligence improvement, with lower pre-training fluid intelligence associated with greater post-training gain. Crucially, trainers who improved the most on the training task also showed an improvement in recognition memory as captured by d-prime scores and estimates of recollection and familiarity memory. Training task improvement was a significant predictor of gains in recognition and familiarity memory performance, with greater training improvement leading to more marked gains. In contrast, lower pre-training recollection memory scores, and not training task improvement, led to greater recollection memory performance after training. Our findings demonstrate that practice on a single working memory task can potentially improve aspects of both episodic memory and fluid intelligence, and that an extensive training regime with multiple tasks may not be necessary.
The Influence of Cognitive Training on Older Adults’ Recall for Short Stories
Sisco, S. M.; Marsiske, M; Gross, A. L.; Rebok, G. W.
2013-01-01
Objectives This paper investigated how a multi-component memory intervention affected memory for prose. We compared verbatim and paraphrased recall for short stories immediately and 1-, 2-, 3- and 5-years post-intervention in the ACTIVE (Advanced Cognitive Training for Independent and Vital Elderly) sample. Methods We studied 1,912 ACTIVE participants aged 65–91. Participants were randomized into one of three training arms (Memory, Reasoning, Speed of Processing) or a no-contact Control group; about half of the trained participants received additional booster training 1 and 3 years post-intervention. Results Memory-trained participants showed higher verbatim recall than non-memory-trained participants. Booster memory training led to higher verbatim recall. Memory training effects were evident immediately following training and not after one year following training. Discussion Results suggest that multi-factorial memory training can improve verbatim recall for prose, but the effect does not last without continued intervention. PMID:24385636
The influence of cognitive training on older adults' recall for short stories.
Sisco, Shannon M; Marsiske, Michael; Gross, Alden L; Rebok, George W
2013-12-01
This article investigated how a multicomponent memory intervention affected memory for prose. We compared verbatim and paraphrased recall for short stories immediately and 1, 2, 3, and 5 years post-intervention in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) sample. We studied 1,912 ACTIVE participants aged 65 to 91. Participants were randomized into one of three training arms (Memory, Reasoning, Speed of Processing) or a no-contact Control group; about half of the trained participants received additional booster training 1 and 3 years post-intervention. Memory-trained participants showed higher verbatim recall than non-memory-trained participants. Booster-memory training led to higher verbatim recall. Memory training effects were evident immediately following training and not after 1 year following training. Results suggest that multifactorial memory training can improve verbatim recall for prose, but the effect does not last without continued intervention.
NLM microcomputer-based tutorials (for microcomputers). Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perkins, M.
1990-04-01
The package consists of TOXLEARN--a microcomputer-based training package for TOXLINE (Toxicology Information Online), CHEMLEARN-a microcomputer-based training package for CHEMLINE (Chemical Information Online), MEDTUTOR--a microcomputer-based training package for MEDLINE (Medical Information Online), and ELHILL LEARN--a microcomputer-based training package for the ELHILL search and retrieval software that supports the above-mentioned databases...Software Description: The programs were developed under PILOTplus using the NLM LEARN Programmer. They run on IBM-PC, XT, AT, PS/2, and fully compatible computers. The programs require 512K RAM memory, one disk drive, and DOS 2.0 or higher. The software supports most monochrome, color graphics, enhanced color graphics, or visual graphics displays.
Zhao, Xin; Xu, Yiwenjie; Fu, Junjun; Maes, Joseph H R
2018-04-01
Previous studies examining effects of working memory (WM) updating training revealed mixed results. One factor that might modulate training gains, and possibly also transfer of those gains to non-trained cognitive tasks, is achievement motivation. In the present Studies 1 and 2, students with either a high (HAM) or low (LAM) achievement motivation completed a 14-day visuospatial WM updating training program. In Study 2, the students also performed a set of tasks measuring other executive functions and fluid intelligence prior to and after training. In both studies, the HAM students displayed a larger training gain than the LAM students. Study 2 revealed that after training, both groups showed better performance on the near-transfer but not far-transfer tasks. Importantly, the differential training gain was not associated with better post-training performance for the HAM compared to the LAM students on any of the transfer tasks. These results are taken to support a modulatory role of achievement motivation on WM training benefits, but not on transfer of those benefits to other tasks. Possible reasons for the general improvement on the near-transfer tasks and the absence of a modulatory role of achievement motivation on transfer-task performance are discussed.
Chapman, Sandra B.; Rackley, Audette; Eroh, Justin; Chiang, Hsueh‐Sheng; Perez, Alison; Venza, Erin; Spence, Jeffrey S.
2016-01-01
Objective Cognitive training offers a promising way to mitigate cognitive deterioration in individuals with mild cognitive impairment (MCI). This randomized control pilot trial examined the effects of Gist Reasoning Training on cognition as compared with a training involving New Learning in a well‐characterized MCI group. Methods Fifty participants with amnestic MCI were randomly assigned to the experimental Gist Training group or an active control New Learning group. Both groups received 8 h of training over a 4‐week period. We compared pre‐training with post‐training changes in cognitive functions between the two training groups. Results The Gist Training group showed higher performance in executive function (strategic control and concept abstraction) and memory span compared with the New Learning group. Conversely, the New Learning group showed gains in memory for details. Conclusion These findings suggest that cognitive training in general yields benefits, and more specifically, training programs that target top–down cognitive functions such as gist reasoning may have a broad impact on improving cognition in MCI. © 2016 The Authors. International Journal of Geriatric Psychiatry Published by John Wiley & Sons Ltd. PMID:27112124
[Cognitive plasticity in Alzheimer's disease patients receiving cognitive stimulation programs].
Zamarrón Cassinello, Ma Dolores; Tárraga Mestre, Luis; Fernández-Ballesteros, Rocío
2008-08-01
The main purpose of this article is to examine whether cognitive plasticity increases after cognitive training in Alzheimer's disease patients. Twenty six patients participated in this study, all of them diagnosed with mild Alzheimer's disease, 17 of them received a cognitive training program during 6 months, and the other 9 were assigned to the control group. Participants were assigned to experimental or control conditions for clinical reasons. In order to assess cognitive plasticity, all patients were assessed before and after treatment with three subtests from the "Bateria de Evaluación de Potencial de Aprendizaje en Demencias" [Assessment Battery of Learning Potential in Dementia] (BEPAD). After treatment, Alzheimer's disease patients improved their performance in all the tasks assessing cognitive plasticity: viso-spatial memory, audio-verbal memory and verbal fluency. However, the cognitive plasticity scores of the patients in the control group decreased. In conclusion, this study showed that cognitive stimulation programs can improve cognitive functioning in mildly demented patients, and patients who do not receive any cognitive interventions may reduce their cognitive functioning.
Gavelin, Hanna Malmberg; Boraxbekk, Carl-Johan; Stenlund, Therese; Järvholm, Lisbeth Slunga; Neely, Anna Stigsdotter
2015-08-13
Stress-related exhaustion has been linked to a pattern of selective cognitive impairments, mainly affecting executive functioning, attention and episodic memory. Little is known about potential treatments of these cognitive deficits. The purpose of this study was to evaluate the effects of a process-based cognitive training intervention, designed to target the specific cognitive impairments associated with stress-related exhaustion. To this end, patients diagnosed with exhaustion disorder (ED) were randomized to either a multimodal stress rehabilitation program with the addition of a process-based cognitive training intervention (training group, n = 27) or a treatment-as-usual control condition, consisting of multimodal stress rehabilitation with no additional training (control group, n = 32). Treatment effects were evaluated through an extensive cognitive test battery, assessing both near and far transfer effects, as well as self-report forms regarding subjective cognitive complaints and burnout levels. Results showed pronounced training-related improvements on the criterion updating task (p < 0.001). Further, evidence was found of selective near transfer effects to updating (p = 0.01) and episodic memory (p = 0.04). Also, the trained group reported less subjective memory complaints (p = 0.02) and levels of burnout decreased for both groups, but more so for the trained group (p = 0.04), following the intervention. These findings suggest that process-based cognitive training may be a viable method to address the cognitive impairments associated with ED.
Gavelin, Hanna Malmberg; Boraxbekk, Carl-Johan; Stenlund, Therese; Järvholm, Lisbeth Slunga; Neely, Anna Stigsdotter
2015-01-01
Stress-related exhaustion has been linked to a pattern of selective cognitive impairments, mainly affecting executive functioning, attention and episodic memory. Little is known about potential treatments of these cognitive deficits. The purpose of this study was to evaluate the effects of a process-based cognitive training intervention, designed to target the specific cognitive impairments associated with stress-related exhaustion. To this end, patients diagnosed with exhaustion disorder (ED) were randomized to either a multimodal stress rehabilitation program with the addition of a process-based cognitive training intervention (training group, n = 27) or a treatment-as-usual control condition, consisting of multimodal stress rehabilitation with no additional training (control group, n = 32). Treatment effects were evaluated through an extensive cognitive test battery, assessing both near and far transfer effects, as well as self-report forms regarding subjective cognitive complaints and burnout levels. Results showed pronounced training-related improvements on the criterion updating task (p < 0.001). Further, evidence was found of selective near transfer effects to updating (p = 0.01) and episodic memory (p = 0.04). Also, the trained group reported less subjective memory complaints (p = 0.02) and levels of burnout decreased for both groups, but more so for the trained group (p = 0.04), following the intervention. These findings suggest that process-based cognitive training may be a viable method to address the cognitive impairments associated with ED.
Can verbal working memory training improve reading?
Banales, Erin; Kohnen, Saskia; McArthur, Genevieve
2015-01-01
The aim of the current study was to determine whether poor verbal working memory is associated with poor word reading accuracy because the former causes the latter, or the latter causes the former. To this end, we tested whether (a) verbal working memory training improves poor verbal working memory or poor word reading accuracy, and whether (b) reading training improves poor reading accuracy or verbal working memory in a case series of four children with poor word reading accuracy and verbal working memory. Each child completed 8 weeks of verbal working memory training and 8 weeks of reading training. Verbal working memory training improved verbal working memory in two of the four children, but did not improve their reading accuracy. Similarly, reading training improved word reading accuracy in all children, but did not improve their verbal working memory. These results suggest that the causal links between verbal working memory and reading accuracy may not be as direct as has been assumed.
Working-memory training improves developmental dyslexia in Chinese children.
Luo, Yan; Wang, Jing; Wu, Hanrong; Zhu, Dongmei; Zhang, Yu
2013-02-15
Although plasticity in the neural system underlies working memory, and working memory can be improved by training, there is thus far no evidence that children with developmental dyslexia can benefit from working-memory training. In the present study, thirty dyslexic children aged 8-11 years were recruited from an elementary school in Wuhan, China. They received working-memory training, including training in visuospatial memory, verbal memory, and central executive tasks. The difficulty of the tasks was adjusted based on the performance of each subject, and the training sessions lasted 40 minutes per day, for 5 weeks. The results showed that working-memory training significantly enhanced performance on the nontrained working memory tasks such as the visuospatial, the verbal domains, and central executive tasks in children with developmental dyslexia. More importantly, the visual rhyming task and reading fluency task were also significantly improved by training. Progress on working memory measures was related to changes in reading skills. These experimental findings indicate that working memory is a pivotal factor in reading development among children with developmental dyslexia, and interventions to improve working memory may help dyslexic children to become more proficient in reading.
Major Robert Lawrence Memorial Tribute
2017-12-08
During an Astronauts Memorial Foundation tribute honoring U.S. Air Foce Maj. Robert Lawrence, vocalist Marva King sings with the Winston Scott “Cosmic Jazz Ensemble.” Selected in 1967 for the Manned Orbiting Laboratory Program, Lawrence was the first African-American astronaut. He lost his life in a training accident 50 years ago. The ceremony took place in the Center for Space Education at the Kennedy Space Center Visitor Complex.
Advanced Simulation in Undergraduate Pilot Training: Automatic Instructional System
1975-10-01
an addressable reel-to--reel audio tape recorder, a random access audio memory drum , and an interactive software package which permits the user to...audio memory drum , and an interactive software package which permits the user to develop preptogtahmed exercises. Figure 2 illustrates overall...Data Recprding System consists of two elements; an overlay program which performs the real-time sampling of specified variables and stores data to disc
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2015-01-01
Objectives. Memory training in combination with practice in semantic structuring and word fluency has been shown to improve memory performance. This study investigated the efficacy of a working memory training combined with exercises in semantic structuring and word fluency and examined whether training effects generalize to other cognitive tasks. Methods. In this double-blind randomized control study, 36 patients with memory impairments following brain damage were allocated to either the experimental or the active control condition, with both groups receiving 9 hours of therapy. The experimental group received a computer-based working memory training and exercises in word fluency and semantic structuring. The control group received the standard memory therapy provided in the rehabilitation center. Patients were tested on a neuropsychological test battery before and after therapy, resulting in composite scores for working memory; immediate, delayed, and prospective memory; word fluency; and attention. Results. The experimental group improved significantly in working memory and word fluency. The training effects also generalized to prospective memory tasks. No specific effect on episodic memory could be demonstrated. Conclusion. Combined treatment of working memory training with exercises in semantic structuring is an effective method for cognitive rehabilitation of organic memory impairment. © The Author(s) 2014.
Online Attention Training for Older Adults.
Wennberg, Alexandra; Kueider, Alexandra; Spira, Adam; Adams, Gregory; Rager, Robert; Rebok, George
Evidence suggests that cognitive training interventions can improve older adults' cognitive performance. Successful training programs are adaptable and train multiple cognitive domains to target individual strengths and weaknesses. Computerized training programs are useful because they allow older adults to easily access training. This pilot study used an online attention training program, ATTENTION WORKOUT™, to enhance three aspects of attention- coordination , allocation , and selective focus -in community-dwelling older adults randomized to either an abbreviated (n=13) or an extended (n=17) practice training program over a 6-week period. Participants in the extended practice group significantly improved on selective focus reading distraction tasks with unrelated words (U=39.5; Z=-2.34; p =.02) and blanks (U=26.5; Z=-3.05; p =.002) as well as a matching attributes task (U=49.5; Z=-2.33; p =.02). The extended practice group significantly improved on three tasks of coordinating attention - radio-tuning (U=30; Z=-2.73; p =.01), circuit-breaker resetting (U=46; Z=-2.24; p =.03), and the combination of the two tasks (U=15; Z=-3.51; p <.0001) - as well as a memory generalization task (U=20; Z=-3.27; p =.001). A post-test satisfaction survey found both groups enjoyed the program, but the abbreviated practice group felt the tasks were more difficult. These findings suggest online attention training programs, like ATTENTION WORKOUT, can improve attention-related skills in community-dwelling older adults.
Working memory training to improve speech perception in noise across languages
Ingvalson, Erin M.; Dhar, Sumitrajit; Wong, Patrick C. M.; Liu, Hanjun
2015-01-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners. PMID:26093435
Working memory training to improve speech perception in noise across languages.
Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun
2015-06-01
Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.
Working memory training improves emotion regulation ability: Evidence from HRV.
Xiu, Lichao; Zhou, Renlai; Jiang, Yihan
2016-03-01
Emotion regulation during social situations plays a pivotal role in health and interpersonal functioning. In this study, we propose a working memory training approach to improve emotion regulation ability. This training promotes an updating function that is a crucial modulated process for emotion regulation. In the present study, the participants in the training group completed a running memory task over 20 days of training. Their working memory capability and high-frequency heart rate variability (HF-HRV) data on pretest and posttest were assessed and analyzed. Compared with the control group, the training group's reaction time in the 2-back working memory task was reduced significantly. In addition, the HF-HRV in the emotion regulation condition was increased after the 20-day training, which indicates that the working memory training effect could transfer to emotion regulation. In other words, working memory training improved emotion regulation ability. Copyright © 2015 Elsevier Inc. All rights reserved.
Rojas, Manuel J.; Cardenas P., Fernando
2017-01-01
Background Exercise can change cellular structure and connectivity (neurogenesis or synaptogenesis), causing alterations in both behavior and working memory. The aim of this study was to evaluate the effect of exercise on working memory and hippocampal neurogenesis in adult male Wistar rats using a T-maze test. Methods An experimental design with two groups was developed: the experimental group (n = 12) was subject to a forced exercise program for five days, whereas the control group (n = 9) stayed in the home cage. Six to eight weeks after training, the rats’ working memory was evaluated in a T-maze test and four choice days were analyzed, taking into account alternation as a working memory indicator. Hippocampal neurogenesis was evaluated by means of immunohistochemistry of BrdU positive cells. Results No differences between groups were found in the behavioral variables (alternation, preference index, time of response, time of trial or feeding), or in the levels of BrdU positive cells. Discussion Results suggest that although exercise may have effects on brain structure, a construct such as working memory may require more complex changes in networks or connections to demonstrate a change at behavioral level. PMID:28503368
Flegal, Kristin E.; Lustig, Cindy
2016-01-01
Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either 1) mandated a specific strategy to increase deep, associative encoding, 2) attempted to suppress such encoding by mandating rote rehearsal, or 3) encouraged time and effort towards encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies. PMID:26549616
Capodieci, Agnese; Gola, Maria Laura; Cornoldi, Cesare; Re, Anna Maria
2018-02-01
Preschoolers with attention-deficit/hyperactivity disorder (ADHD) have been found to exhibit impairments on neuropsychological measures of working memory (WM). As WM is an important predictor of future learning abilities, early intervention could help to prevent severe problems. The purpose of this research was to ascertain the efficacy of an intervention for training WM in 5-year-old children with symptoms of ADHD. Thirty-four children with symptoms of ADHD were randomly divided into two groups: One was assigned to the WM training condition, and the other continued normal class activities. The training was provided at school in small groups that also included typically developing children. The trained group showed a significant improvement in tasks measuring their WM and other controlled processes at conclusion of study, whereas no significant improvement was found in the control group. We concluded that early intervention on WM may be effective in children with symptoms of ADHD.
Flegal, Kristin E; Lustig, Cindy
2016-07-01
Cognitive training programs that instruct specific strategies frequently show limited transfer. Open-ended approaches can achieve greater transfer, but may fail to benefit many older adults due to age deficits in self-initiated processing. We examined whether a compromise that encourages effort at encoding without an experimenter-prescribed strategy might yield better results. Older adults completed memory training under conditions that either (1) mandated a specific strategy to increase deep, associative encoding, (2) attempted to suppress such encoding by mandating rote rehearsal, or (3) encouraged time and effort toward encoding but allowed for strategy choice. The experimenter-enforced associative encoding strategy succeeded in creating integrated representations of studied items, but training-task progress was related to pre-existing ability. Independent of condition assignment, self-reported deep encoding was associated with positive training and transfer effects, suggesting that the most beneficial outcomes occur when environmental support guiding effort is provided but participants generate their own strategies.
Gladwin, Thomas E; Peeters, Margot; Prins, Pier J M; Wiers, Reinout W
2018-01-01
Background Working memory capacity has been found to be impaired in adolescents with various psychological problems, such as addictive behaviors. Training of working memory capacity can lead to significant behavioral improvements, but it is usually long and tedious, taxing participants’ motivation to train. Objective This study aimed to evaluate whether adding game elements to the training could help improve adolescents’ motivation to train while improving cognition. Methods A total of 84 high school students were allocated to a working memory capacity training, a gamified working memory capacity training, or a placebo condition. Working memory capacity, motivation to train, and drinking habits were assessed before and after training. Results Self-reported evaluations did not show a self-reported preference for the game, but participants in the gamified working memory capacity training condition did train significantly longer. The game successfully increased motivation to train, but this effect faded over time. Working memory capacity increased equally in all conditions but did not lead to significantly lower drinking, which may be due to low drinking levels at baseline. Conclusions We recommend that future studies attempt to prolong this motivational effect, as it appeared to fade over time. PMID:29792294
Ho, Yim-Chi; Cheung, Mei-Chun; Chan, Agnes S
2003-07-01
The hypothesis that music training can improve verbal memory was tested in children. The results showed that children with music training demonstrated better verbal but not visual memory than did their counterparts without such training. When these children were followed up after a year, those who had begun or continued music training demonstrated significant verbal memory improvement. Students who discontinued the training did not show any improvement. Contrary to the differences in verbal memory between the groups, their changes in visual memory were not significantly different. Consistent with previous findings for adults (A. S. Chan, Y. Ho, & M. Cheung, 1998), the results suggest that music training systematically affects memory processing in accordance with possible neuroanatomical modifications in the left temporal lobe.
Medical Music Therapy: A Model Program for Clinical Practice, Education, Training and Research
ERIC Educational Resources Information Center
Standley, Jayne
2005-01-01
This monograph evolved from the unique, innovative partnership between the Florida State University Music Therapy Program and Tallahassee Memorial HealthCare. Its purpose is to serve as a model for music therapy educators, students, clinicians, and the hospital administrators who might employ them. This book should prove a valuable resource for…
Selective transfer of visual working memory training on Chinese character learning.
Opitz, Bertram; Schneiders, Julia A; Krick, Christoph M; Mecklinger, Axel
2014-01-01
Previous research has shown a systematic relationship between phonological working memory capacity and second language proficiency for alphabetic languages. However, little is known about the impact of working memory processes on second language learning in a non-alphabetic language such as Mandarin Chinese. Due to the greater complexity of the Chinese writing system we expect that visual working memory rather than phonological working memory exerts a unique influence on learning Chinese characters. This issue was explored in the present experiment by comparing visual working memory training with an active (auditory working memory training) control condition and a passive, no training control condition. Training induced modulations in language-related brain networks were additionally examined using functional magnetic resonance imaging in a pretest-training-posttest design. As revealed by pre- to posttest comparisons and analyses of individual differences in working memory training gains, visual working memory training led to positive transfer effects on visual Chinese vocabulary learning compared to both control conditions. In addition, we found sustained activation after visual working memory training in the (predominantly visual) left infero-temporal cortex that was associated with behavioral transfer. In the control conditions, activation either increased (active control condition) or decreased (passive control condition) without reliable behavioral transfer effects. This suggests that visual working memory training leads to more efficient processing and more refined responses in brain regions involved in visual processing. Furthermore, visual working memory training boosted additional activation in the precuneus, presumably reflecting mental image generation of the learned characters. We, therefore, suggest that the conjoint activity of the mid-fusiform gyrus and the precuneus after visual working memory training reflects an interaction of working memory and imagery processes with complex visual stimuli that fosters the coherent synthesis of a percept from a complex visual input in service of enhanced Chinese character learning. © 2013 Published by Elsevier Ltd.
Fernell, Maria; Swinton, Cayley; Lukowiak, Ken
2016-01-01
Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water.
Fernell, Maria; Swinton, Cayley; Lukowiak, Ken
2016-01-01
ABSTRACT Epicatechin (Epi), a flavanol found in foods such as dark chocolate has previously been shown to enhance memory formation in our model system, operant conditioning of aerial respiration in Lymnaea. In those experiments snails were trained in Epi. Here we ask whether snails exposed to Epi before training, during the consolidation period immediately following training, or 1 h after training would enhance memory formation. We report here that Epi is only able to enhance memory if snails are placed in Epi-containing pond water immediately after training. That is, Epi enhances memory formation if it is applied during the memory consolidation period as well as if snails are trained in Epi-containing pond water. PMID:27574544
Prospective memory training in older adults and its relevance for successful aging.
Hering, Alexandra; Rendell, Peter G; Rose, Nathan S; Schnitzspahn, Katharina M; Kliegel, Matthias
2014-11-01
In research on cognitive plasticity, two training approaches have been established: (1) training of strategies to improve performance in a given task (e.g., encoding strategies to improve episodic memory performance) and (2) training of basic cognitive processes (e.g., working memory, inhibition) that underlie a range of more complex cognitive tasks (e.g., planning) to improve both the training target and the complex transfer tasks. Strategy training aims to compensate or circumvent limitations in underlying processes, while process training attempts to augment or to restore these processes. Although research on both approaches has produced some promising findings, results are still heterogeneous and the impact of most training regimes for everyday life is unknown. We, therefore, discuss recent proposals of training regimes aiming to improve prospective memory (i.e., forming and realizing delayed intentions) as this type of complex cognition is highly relevant for independent living. Furthermore, prospective memory is associated with working memory and executive functions and age-related decline is widely reported. We review initial evidence suggesting that both training regimes (i.e., strategy and/or process training) can successfully be applied to improve prospective memory. Conceptual and methodological implications of the findings for research on age-related prospective memory and for training research in general are discussed.
Valentijn, Susanne A M; van Hooren, Susan A H; Bosma, Hans; Touw, Dory M; Jolles, Jelle; van Boxtel, Martin P J; Ponds, Rudolf W H M
2005-04-01
The objective of the study was to examine the effectiveness of two types of memory training (collective and individual), compared to control (waiting list), on memory performance. Participants were 139 community-dwelling older individuals recruited through media advertisements asking for people with subjective memory complaints to participate in a study. Data were collected at baseline, and at 1 week and 4 months after the intervention. Training efficacy was assessed using measures of subjective and objective memory performance. After the intervention, participants in the collective training group reported more stability in memory functioning and had fewer feelings of anxiety and stress about memory functioning. In addition, positive effects were found on objective memory functioning. Compared with the other two groups, the collective training group participants had an improved recall of a previously learned word list. Compared to controls, participants in the individual training group reported fewer feelings of anxiety and stress in relation to memory functioning.
Improving fluid intelligence with training on working memory: a meta-analysis.
Au, Jacky; Sheehan, Ellen; Tsai, Nancy; Duncan, Greg J; Buschkuehl, Martin; Jaeggi, Susanne M
2015-04-01
Working memory (WM), the ability to store and manipulate information for short periods of time, is an important predictor of scholastic aptitude and a critical bottleneck underlying higher-order cognitive processes, including controlled attention and reasoning. Recent interventions targeting WM have suggested plasticity of the WM system by demonstrating improvements in both trained and untrained WM tasks. However, evidence on transfer of improved WM into more general cognitive domains such as fluid intelligence (Gf) has been more equivocal. Therefore, we conducted a meta-analysis focusing on one specific training program, n-back. We searched PubMed and Google Scholar for all n-back training studies with Gf outcome measures, a control group, and healthy participants between 18 and 50 years of age. In total, we included 20 studies in our analyses that met our criteria and found a small but significant positive effect of n-back training on improving Gf. Several factors that moderate this transfer are identified and discussed. We conclude that short-term cognitive training on the order of weeks can result in beneficial effects in important cognitive functions as measured by laboratory tests.
How to build better memory training games
Deveau, Jenni; Jaeggi, Susanne M.; Zordan, Victor; Phung, Calvin; Seitz, Aaron R.
2015-01-01
Can we create engaging training programs that improve working memory (WM) skills? While there are numerous procedures that attempt to do so, there is a great deal of controversy regarding their efficacy. Nonetheless, recent meta-analytic evidence shows consistent improvements across studies on lab-based tasks generalizing beyond the specific training effects (Au et al., 2014; Karbach and Verhaeghen, 2014), however, there is little research into how WM training aids participants in their daily life. Here we propose that incorporating design principles from the fields of Perceptual Learning (PL) and Computer Science might augment the efficacy of WM training, and ultimately lead to greater learning and transfer. In particular, the field of PL has identified numerous mechanisms (including attention, reinforcement, multisensory facilitation and multi-stimulus training) that promote brain plasticity. Also, computer science has made great progress in the scientific approach to game design that can be used to create engaging environments for learning. We suggest that approaches integrating knowledge across these fields may lead to a more effective WM interventions and better reflect real world conditions. PMID:25620916
Gray matter responsiveness to adaptive working memory training: a surface-based morphometry study
Román, Francisco J.; Lewis, Lindsay B.; Chen, Chi-Hua; Karama, Sherif; Burgaleta, Miguel; Martínez, Kenia; Lepage, Claude; Jaeggi, Susanne M.; Evans, Alan C.; Kremen, William S.
2016-01-01
Here we analyze gray matter indices before and after completing a challenging adaptive cognitive training program based on the n-back task. The considered gray matter indices were cortical thickness (CT) and cortical surface area (CSA). Twenty-eight young women (age range 17–22 years) completed 24 training sessions over the course of 3 months (12 weeks, 24 sessions), showing expected performance improvements. CT and CSA values for the training group were compared with those of a matched control group. Statistical analyses were computed using a ROI framework defined by brain areas distinguished by their genetic underpinning. The interaction between group and time was analyzed. Middle temporal, ventral frontal, inferior parietal cortices, and pars opercularis were the regions where the training group showed conservation of gray matter with respect to the control group. These regions support working memory, resistance to interference, and inhibition. Furthermore, an interaction with baseline intelligence differences showed that the expected decreasing trend at the biological level for individuals showing relatively low intelligence levels at baseline was attenuated by the completed training. PMID:26701168
van de Rest, Ondine; van der Zwaluw, Nikita L; Tieland, Michael; Adam, Jos J; Hiddink, Gert Jan; van Loon, Luc J C; de Groot, Lisette C P G M
2014-01-01
Physical activity has been proposed as one of the most effective strategies to prevent cognitive decline. Protein supplementation may exert an additive effect. The effect of resistance-type exercise training with or without protein supplementation on cognitive functioning in frail and pre-frail elderly people was assessed in a secondary analysis. Two 24-week, double-blind, randomized, placebo-controlled intervention studies were carried out in parallel. Subjects performed a resistance-type exercise program of two sessions per week (n=62) or no exercise program (n=65). In both studies, subjects were randomly allocated to either a protein (2×15 g daily) or a placebo drink. Cognitive functioning was assessed with a neuropsychological test battery focusing on the cognitive domains episodic memory, attention and working memory, information processing speed, and executive functioning. In frail and pre-frail elderly, resistance-type exercise training in combination with protein supplementation improved information processing speed (changes in domain score 0.08±0.51 versus -0.23±0.19 in the non-exercise group, p=0.04). Exercise training without protein supplementation was beneficial for attention and working memory (changes in domain scores 0.35±0.70 versus -0.12±0.69 in the non-exercise group, p=0.02). There were no significant differences among the intervention groups on the other cognitive tests or domain scores. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Spencer-Smith, Megan; Klingberg, Torkel
2015-01-01
Many common disorders across the lifespan feature impaired working memory (WM). Reported benefits of a WM training program include improving inattention in daily life, but this has not been evaluated in a meta-analysis. This study aimed to evaluate whether one WM training method has benefits for inattention in daily life by conducting a systematic review and meta-analysis. We searched Medline and PsycINFO, relevant journals and contacted authors for studies with an intervention and control group reporting post-training estimates of inattention in daily life. To reduce the influence of different WM training methods on the findings, the review was restricted to trials evaluating the Cogmed method. A meta-analysis calculated the pooled standardised difference in means (SMD) between intervention and control groups. A total of 622 studies were identified and 12 studies with 13 group comparisons met inclusion criteria. The meta-analysis showed a significant training effect on inattention in daily life, SMD=-0.47, 95% CI -0.65, -0.29, p<.00001. Subgroup analyses showed this significant effect was observed in groups of children and adults as well as users with and without ADHD, and in studies using control groups that were active and non-adaptive, wait-list and passive as well as studies using specific or general measures. Seven of the studies reported follow-up assessment and a meta-analysis showed persisting training benefits for inattention in daily life, SMD=-0.33, 95% CI -0.57 -0.09, p=.006. Additional meta-analyses confirmed improvements after training on visuospatial WM, SMD=0.66, 95% CI 0.43, 0.89, p<.00001, and verbal WM tasks, SMD=0.40, 95% CI 0.18, 0.62, p=.0004. Benefits of a WM training program generalise to improvements in everyday functioning. Initial evidence shows that the Cogmed method has significant benefits for inattention in daily life with a clinically relevant effect size.
The influence of agility training on physiological and cognitive performance.
Lennemann, Lynette M; Sidrow, Kathryn M; Johnson, Erica M; Harrison, Catherine R; Vojta, Christopher N; Walker, Thomas B
2013-12-01
Agility training (AT) has recently been instituted in several military communities in hopes of improving combat performance and general fitness. The purpose of this study was to determine how substituting AT for traditional military physical training (PT) influences physical and cognitive performance. Forty-one subjects undergoing military technical training were divided randomly into 2 groups for 6 weeks of training. One group participated in standard military PT consisting of calisthenics and running. A second group duplicated the amount of exercise of the first group but used AT as their primary mode of training. Before and after training, subjects completed a physical and cognitive battery of tests including V[Combining Dot Above]O2max, reaction time, Illinois Agility Test, body composition, visual vigilance, dichotic listening, and working memory tests. There were significant improvements within the AT group in V[Combining Dot Above]O2max, Illinois Agility Test, visual vigilance, and continuous memory. There was a significant increase in time-to-exhaustion for the traditional group. We conclude that AT is as effective or more effective as PT in enhancing physical fitness. Further, it is potentially more effective than PT in enhancing specific measures of physical and cognitive performance, such as physical agility, memory, and vigilance. Consequently, we suggest that AT be incorporated into existing military PT programs as a way to improve war-fighter performance. Further, it seems likely that the benefits of AT observed here occur in various other populations.
Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A.; Pina, Violeta; Puga, Jorge L.; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J.
2018-01-01
Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills. PMID:29375442
Sánchez-Pérez, Noelia; Castillo, Alejandro; López-López, José A; Pina, Violeta; Puga, Jorge L; Campoy, Guillermo; González-Salinas, Carmen; Fuentes, Luis J
2017-01-01
Student academic achievement has been positively related to further development outcomes, such as the attainment of higher educational, employment, and socioeconomic aspirations. Among all the academic competences, mathematics has been identified as an essential skill in the field of international leadership as well as for those seeking positions in disciplines related to science, technology, and engineering. Given its positive consequences, studies have designed trainings to enhance children's mathematical skills. Additionally, the ability to regulate and control actions and cognitions, i.e., executive functions (EF), has been associated with school success, which has resulted in a strong effort to develop EF training programs to improve students' EF and academic achievement. The present study examined the efficacy of a school computer-based training composed of two components, namely, working memory and mathematics tasks. Among the advantages of using a computer-based training program is the ease with which it can be implemented in school settings and the ease by which the difficulty of the tasks can be adapted to fit the child's ability level. To test the effects of the training, children's cognitive skills (EF and IQ) and their school achievement (math and language grades and abilities) were evaluated. The results revealed a significant improvement in cognitive skills, such as non-verbal IQ and inhibition, and better school performance in math and reading among the children who participated in the training compared to those children who did not. Most of the improvements were related to training on WM tasks. These findings confirmed the efficacy of a computer-based training that combined WM and mathematics activities as part of the school routines based on the training's impact on children's academic competences and cognitive skills.
Richter, Kim Merle; Mödden, Claudia; Eling, Paul; Hildebrandt, Helmut
2018-04-26
To show the effectiveness of a combined recognition and working memory training on everyday memory performance in patients suffering from organic memory disorders. In this double-blind, randomized controlled Study 36 patients with organic memory impairments, mainly attributable to stroke, were assigned to either the experimental or the active control group. In the experimental group a working memory training was combined with a recollection training based on the repetition-lag procedure. Patients in the active control group received the memory therapy usually provided in the rehabilitation center. Both groups received nine hours of therapy. Prior (T0) and subsequent (T1) to the therapy, patients were evaluated on an everyday memory test (EMT) as well as on a neuropsychological test battery. Based on factor analysis of the neuropsychological test scores at T0 we calculated composite scores for working memory, verbal learning and word fluency. After treatment, the intervention group showed a significantly greater improvement for WM performance compared with the active control group. More importantly, performance on the EMT also improved significantly in patients receiving the recollection and working memory training compared with patients with standard memory training. Our results show that combining working memory and recollection training significantly improves performance on everyday memory tasks, demonstrating far transfer effects. The present study argues in favor of a process-based approach for treating memory impairments. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Training of Working Memory Impacts Neural Processing of Vocal Pitch Regulation
Li, Weifeng; Guo, Zhiqiang; Jones, Jeffery A.; Huang, Xiyan; Chen, Xi; Liu, Peng; Chen, Shaozhen; Liu, Hanjun
2015-01-01
Working memory training can improve the performance of tasks that were not trained. Whether auditory-motor integration for voice control can benefit from working memory training, however, remains unclear. The present event-related potential (ERP) study examined the impact of working memory training on the auditory-motor processing of vocal pitch. Trained participants underwent adaptive working memory training using a digit span backwards paradigm, while control participants did not receive any training. Before and after training, both trained and control participants were exposed to frequency-altered auditory feedback while producing vocalizations. After training, trained participants exhibited significantly decreased N1 amplitudes and increased P2 amplitudes in response to pitch errors in voice auditory feedback. In addition, there was a significant positive correlation between the degree of improvement in working memory capacity and the post-pre difference in P2 amplitudes. Training-related changes in the vocal compensation, however, were not observed. There was no systematic change in either vocal or cortical responses for control participants. These findings provide evidence that working memory training impacts the cortical processing of feedback errors in vocal pitch regulation. This enhanced cortical processing may be the result of increased neural efficiency in the detection of pitch errors between the intended and actual feedback. PMID:26553373
Can Interactive Working Memory Training Improve Learning?
ERIC Educational Resources Information Center
Alloway, Tracy
2012-01-01
Background: Working memory is linked to learning outcomes and there is emerging evidence that training working memory can yield gains in working memory and fluid intelligence. Aims: The aim of the present study was to investigate whether interactive working memory training would transfer to acquired cognitive skills, such as vocabulary and…
Working Memory Training and Speech in Noise Comprehension in Older Adults.
Wayne, Rachel V; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S
2016-01-01
Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5-1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed.
Working Memory Training and Speech in Noise Comprehension in Older Adults
Wayne, Rachel V.; Hamilton, Cheryl; Jones Huyck, Julia; Johnsrude, Ingrid S.
2016-01-01
Understanding speech in the presence of background sound can be challenging for older adults. Speech comprehension in noise appears to depend on working memory and executive-control processes (e.g., Heald and Nusbaum, 2014), and their augmentation through training may have rehabilitative potential for age-related hearing loss. We examined the efficacy of adaptive working-memory training (Cogmed; Klingberg et al., 2002) in 24 older adults, assessing generalization to other working-memory tasks (near-transfer) and to other cognitive domains (far-transfer) using a cognitive test battery, including the Reading Span test, sensitive to working memory (e.g., Daneman and Carpenter, 1980). We also assessed far transfer to speech-in-noise performance, including a closed-set sentence task (Kidd et al., 2008). To examine the effect of cognitive training on benefit obtained from semantic context, we also assessed transfer to open-set sentences; half were semantically coherent (high-context) and half were semantically anomalous (low-context). Subjects completed 25 sessions (0.5–1 h each; 5 sessions/week) of both adaptive working memory training and placebo training over 10 weeks in a crossover design. Subjects' scores on the adaptive working-memory training tasks improved as a result of training. However, training did not transfer to other working memory tasks, nor to tasks recruiting other cognitive domains. We did not observe any training-related improvement in speech-in-noise performance. Measures of working memory correlated with the intelligibility of low-context, but not high-context, sentences, suggesting that sentence context may reduce the load on working memory. The Reading Span test significantly correlated only with a test of visual episodic memory, suggesting that the Reading Span test is not a pure-test of working memory, as is commonly assumed. PMID:27047370
Hotton, Matthew; Derakshan, Nazanin; Fox, Elaine
2018-01-01
The process of worry has been associated with reductions in working memory capacity and availability of resources necessary for efficient attentional control. This, in turn, can lead to escalating worry. Recent investigations into working memory training have shown improvements in attentional control and cognitive performance in high trait-anxious individuals and individuals with sub-clinical depression. The current randomised controlled trial investigated the effects of 15 days of adaptive n-back working memory training, or an active control task, on working memory capacity, attentional control and worry in a sample of high worriers. Pre-training, post-training and one-month follow-up measures of working memory capacity were assessed using a Change Detection task, while a Flanker task was used to assess attentional control. A breathing focus task was used as a behavioural measure of worry in addition to a number of self-report assessments of worry and anxiety. Overall there was no difference between the active training and the active control condition with both groups demonstrating similar improvements in working memory capacity and worry, post-training and at follow-up. However, training-related improvements on the n-back task were associated with gains in working memory capacity and reductions in worry symptoms in the active training condition. These results highlight the need for further research investigating the role of individual differences in working memory training. Copyright © 2017. Published by Elsevier Ltd.
Improving working memory in children with low language abilities
Holmes, Joni; Butterfield, Sally; Cormack, Francesca; van Loenhoud, Anita; Ruggero, Leanne; Kashikar, Linda; Gathercole, Susan
2015-01-01
This study investigated whether working memory training is effective in enhancing verbal memory in children with low language abilities (LLA). Cogmed Working Memory Training was completed by a community sample of children aged 8–11 years with LLA and a comparison group with matched non-verbal abilities and age-typical language performance. Short-term memory (STM), working memory, language, and IQ were assessed before and after training. Significant and equivalent post-training gains were found in visuo-spatial short-term memory in both groups. Exploratory analyses across the sample established that low verbal IQ scores were strongly and highly specifically associated with greater gains in verbal STM, and that children with higher verbal IQs made greater gains in visuo-spatial short-term memory following training. This provides preliminary evidence that intensive working memory training may be effective for enhancing the weakest aspects of STM in children with low verbal abilities, and may also be of value in developing compensatory strategies. PMID:25983703
Working memory training may increase working memory capacity but not fluid intelligence.
Harrison, Tyler L; Shipstead, Zach; Hicks, Kenny L; Hambrick, David Z; Redick, Thomas S; Engle, Randall W
2013-12-01
Working memory is a critical element of complex cognition, particularly under conditions of distraction and interference. Measures of working memory capacity correlate positively with many measures of real-world cognition, including fluid intelligence. There have been numerous attempts to use training procedures to increase working memory capacity and thereby performance on the real-world tasks that rely on working memory capacity. In the study reported here, we demonstrated that training on complex working memory span tasks leads to improvement on similar tasks with different materials but that such training does not generalize to measures of fluid intelligence.
Training on Working Memory and Inhibitory Control in Young Adults
Maraver, Maria J.; Bajo, M. Teresa; Gomez-Ariza, Carlos J.
2016-01-01
Different types of interventions have focused on trying to improve Executive Functions (EFs) due to their essential role in human cognition and behavior regulation. Although EFs are thought to be diverse, most training studies have targeted cognitive processes related to working memory (WM), and fewer have focused on training other control mechanisms, such as inhibitory control (IC). In the present study, we aimed to investigate the differential impact of training WM and IC as compared with control conditions performing non-executive control activities. Young adults were divided into two training (WM/IC) and two (active/passive) control conditions. Over six sessions, the training groups engaged in three different computer-based adaptive activities (WM or IC), whereas the active control group completed a program with low control-demanding activities that mainly involved processing speed. In addition, motivation and engagement were monitored through the training. The WM-training activities required maintenance, updating and memory search processes, while those from the IC group engaged response inhibition and interference control. All participants were pre- and post-tested in criterion tasks (n-back and Stroop), near transfer measures of WM (Operation Span) and IC (Stop-Signal). Non-trained far transfer outcome measures included an abstract reasoning test (Raven’s Advanced Progressive Matrices) and a well-validated experimental task (AX-CPT) that provides indices of cognitive flexibility considering proactive/reactive control. Training results revealed that strongly motivated participants reached higher levels of training improvements. Regarding transfer effects, results showed specific patterns of near transfer effects depending on the type of training. Interestingly, it was only the IC training group that showed far transfer to reasoning. Finally, all trained participants showed a shift toward a more proactive mode of cognitive control, highlighting a general effect of training on cognitive flexibility. The present results reveal specific and general modulations of executive control mechanisms after brief training intervention targeting either WM or IC. PMID:27917117
Memory strategy training in children with cerebral infarcts related to sickle cell disease.
Yerys, Benjamin E; White, Desirée A; Salorio, Cynthia F; McKinstry, Robert; Moinuddin, Asif; DeBaun, Michael
2003-06-01
Cerebral infarcts occur in approximately 30% of children with sickle cell disease (SCD), but little information exists regarding remediation of associated cognitive deficits. The authors examined the benefits of training children with infarcts to use memory strategies. Six children with SCD-related infarcts received academic tutoring; three of these children received additional training in memory strategies (silent rehearsal to facilitate short-term memory and semantic organization to facilitate long-term memory). The performance of children receiving strategy training appeared to improve more than that of children receiving only tutoring. Memory in children with SCD-related infarcts may be enhanced through strategy training.
Computerized Working-Memory Training as a Candidate Adjunctive Treatment for Addiction
Bickel, Warren K.; Moody, Lara; Quisenberry, Amanda
2014-01-01
Alcohol and other drug dependencies are, in part, characterized by deficits in executive functioning, including working memory. Working-memory training is a candidate computerized adjunctive intervention for the treatment of alcoholism and other drug dependencies. This article reviews emerging evidence for computerized working memory training as an efficacious adjunctive treatment for drug dependence and highlights future challenges and opportunities in the field of working-memory training, including duration of training needed, persistence of improvements and utility of booster sessions, and selection of patients based on degree of deficits. PMID:26259006
Wenisch, Emilie; Cantegreil-Kallen, Inge; De Rotrou, Jocelyne; Garrigue, Pia; Moulin, Florence; Batouche, Fériel; Richard, Aurore; De Sant'Anna, Martha; Rigaud, Anne Sophie
2007-08-01
Cognitive training programs have been developed for Alzheimer's disease patients and the healthy elderly population. Collective cognitive stimulation programs have been shown to be efficient for subjects with memory complaint. The aim of this study was to evaluate the benefit of such cognitive programs in populations with Mild Cognitive Impairment (MCI). Twelve patients with MCI and twelve cognitively normal elders were administered a cognitive stimulation program. Cognitive performance (Logical Memory, Word paired associative learning task, Trail Making Test, verbal fluency test) were collected before and after the intervention. A gain score [(post-score - pre-score)/ pre-score] was calculated for each variable and compared between groups. The analysis revealed a larger intervention size effect in MCI than in normal elders' performances on the associative learning task (immediate recall: p<0.05, delayed recall: p<0.01). The intervention was more beneficial in improving associative memory abilities in MCI than in normal subjects. At the end of the intervention, the MCI group had lower results than the normal group only for the delayed recall of Logical Memory. Although further studies are needed for more details on the impact of cognitive stimulation programs on MCI patients, this intervention is effective in compensating associative memory difficulties of these patients. Among non-pharmacological interventions, cognitive stimulation therapy is a repeatable and inexpensive collective method that can easily be provided to various populations with the aim of slowing down the rate of decline in elderly persons with cognitive impairment.
Effects and mechanisms of working memory training: a review.
von Bastian, Claudia C; Oberauer, Klaus
2014-11-01
Can cognitive abilities such as reasoning be improved through working memory training? This question is still highly controversial, with prior studies providing contradictory findings. The lack of theory-driven, systematic approaches and (occasionally serious) methodological shortcomings complicates this debate even more. This review suggests two general mechanisms mediating transfer effects that are (or are not) observed after working memory training: enhanced working memory capacity, enabling people to hold more items in working memory than before training, or enhanced efficiency using the working memory capacity available (e.g., using chunking strategies to remember more items correctly). We then highlight multiple factors that could influence these mechanisms of transfer and thus the success of training interventions. These factors include (1) the nature of the training regime (i.e., intensity, duration, and adaptivity of the training tasks) and, with it, the magnitude of improvements during training, and (2) individual differences in age, cognitive abilities, biological factors, and motivational and personality factors. Finally, we summarize the findings revealed by existing training studies for each of these factors, and thereby present a roadmap for accumulating further empirical evidence regarding the efficacy of working memory training in a systematic way.
Babaei, P; Azali Alamdari, K; Soltani Tehrani, B; Damirchi, A
2013-08-01
Brain derived neurotrophic factor (BDNF) and physical inactivity contribute to the development of metabolic syndrome (MetS). Aerobic training has been reported to improve MetS, however less attention has been directed toward the role of training and detraining on cognitive function in MetS. Twenty one healthy middle-aged males and 21 with MetS were distributed into four groups: MetS exercise (ME), MetS control (MC), Healthy exercise (HE) and healthy control (HC). Both ME and HE, followed a 6-week aerobic training program (3 sessions/week). Digit Span memory test and blood sampling were conducted pre training, post training and also following a six weeks detraining. Data were analyzed using spearman, pearson and repeated measure ANOVA tests. Baseline serum BDNF level was positively correlated with waist circumference (r=0.383, P=0.012) and showed significant elevation in MetS compared with healthy subjects (1101.66±61.34 vs. 903.72±46.57 pg/mL, P=0.014). After aerobic exercise BDNF level significantly increased in HE, but decreased in ME group (P=0.001). Both short and mid term memory significantly increased (P<0.05) only in HE group. Exercise induced cognitive improvement might be mediated via BDNF-linked mechanisms in healthy people. However, the health status of individuals should be considered.
Cognitive control training for emotion-related impulsivity.
Peckham, Andrew D; Johnson, Sheri L
2018-06-01
Many forms of psychopathology are tied to a heightened tendency to respond impulsively to strong emotions, and this tendency, in turn, is closely tied to problems with cognitive control. The goal of the present study was to test whether a two-week, six-session cognitive control training program is efficacious in reducing emotion-related impulsivity. Participants (N = 52) reporting elevated scores on an emotion-related impulsivity measure completed cognitive control training targeting working memory and response inhibition. A subset of participants were randomized to a waitlist control group. Impulsivity, emotion regulation, and performance on near and far-transfer cognitive tasks were assessed at baseline and after completion of training. Emotion-related impulsivity declined significantly from pre-training to post-training and at two-week follow-up; improvements were not observed in the waitlist control group. A decrease in brooding rumination and an increase in reappraisal were also observed. Participants showed significant improvements on trained versions of the working memory and inhibition tasks as well as improvements on an inhibition transfer task. In sum, these preliminary findings show that cognitive training appears to be well-tolerated for people with significant emotion-driven impulsivity. Results provide preliminary support for the efficacy of cognitive training interventions as a way to reduce emotion-related impulsivity. Copyright © 2018 Elsevier Ltd. All rights reserved.
RCT of working memory training in ADHD: long-term near-transfer effects.
Hovik, Kjell Tore; Saunes, Brit-Kari; Aarlien, Anne Kristine; Egeland, Jens
2013-01-01
The aim of the study is to evaluate the long-term near-transfer effects of computerized working memory (WM) training on standard WM tasks in children with Attention-Deficit/Hyperactivity Disorder (ADHD). Sixty-seven children aged 10-12 years in Vestfold/Telemark counties (Norway) diagnosed with F90.0 Hyperkinetic disorder (ICD-10) were randomly assigned to training or control group. The training group participated in a 25-day training program at school, while the control group received treatment-as-usual. Participants were tested one week before intervention, immediately after and eight months later. Based on a component analysis, six measures of WM were grouped into composites representing Visual, Auditory and Manipulation WM. The training group had significant long-term differential gains compared to the control group on all outcome measures. Performance gains for the training group were significantly higher in the visual domain than in the auditory domain. The differential gain in Manipulation WM persisted after controlling for an increase in simple storage capacity. Systematic training resulted in a long-term positive gain in performance on similar tasks, indicating the viability of training interventions for children with ADHD. The results provide evidence for both domain-general and domain-specific models. Far-transfer effects were not investigated in this article. Controlled-Trials.com ISRCTN19133620.
Nelwan, Michel; Kroesbergen, Evelyn H
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9-12 years old ( N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training's lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development.
Littlepage, Glenn E; Hein, Michael B; Moffett, Richard G; Craig, Paul A; Georgiou, Andrea M
2016-12-01
This study evaluates the effectiveness of a training program designed to improve cross-functional coordination in airline operations. Teamwork across professional specializations is essential for safe and efficient airline operations, but aviation education primarily emphasizes positional knowledge and skill. Although crew resource management training is commonly used to provide some degree of teamwork training, it is generally focused on specific specializations, and little training is provided in coordination across specializations. The current study describes and evaluates a multifaceted training program designed to enhance teamwork and team performance of cross-functional teams within a simulated airline flight operations center. The training included a variety of components: orientation training, position-specific declarative knowledge training, position-specific procedural knowledge training, a series of high-fidelity team simulations, and a series of after-action reviews. Following training, participants demonstrated more effective teamwork, development of transactive memory, and more effective team performance. Multifaceted team training that incorporates positional training and team interaction in complex realistic situations and followed by after-action reviews can facilitate teamwork and team performance. Team training programs, such as the one described here, have potential to improve the training of aviation professionals. These techniques can be applied to other contexts where multidisciplinary teams and multiteam systems work to perform highly interdependent activities. © 2016, Human Factors and Ergonomics Society.
Levy, Roi; Levitan, David; Susswein, Abraham J
2016-01-01
Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory. DOI: http://dx.doi.org/10.7554/eLife.17769.001 PMID:27919318
Levy, Roi; Levitan, David; Susswein, Abraham J
2016-12-06
Brief experiences while a memory is consolidated may capture the consolidation, perhaps producing a maladaptive memory, or may interrupt the consolidation. Since consolidation occurs during sleep, even fleeting experiences when animals are awakened may produce maladaptive long-term memory, or may interrupt consolidation. In a learning paradigm affecting Aplysia feeding, when animals were trained after being awakened from sleep, interactions between new experiences and consolidation were prevented by blocking long-term memory arising from the new experiences. Inhibiting protein synthesis eliminated the block and allowed even a brief, generally ineffective training to produce long-term memory. Memory formation depended on consolidative proteins already expressed before training. After effective training, long term memory required subsequent transcription and translation. Memory formation during the sleep phase was correlated with increased CREB1 transcription, but not CREB2 transcription. Increased C/EBP transcription was a correlate of both effective and ineffective training and of treatments not producing memory.
Treating attention in mild aphasia: evaluation of attention process training-II.
Murray, Laura L; Keeton, R Jessica; Karcher, Laura
2006-01-01
This study examined whether attention processing training-II [Sohlberg, M. M., Johnson, L., Paule, L., Raskin, S. A., & Mateer, C. A. (2001). Attention Process Training-II: A program to address attentional deficits for persons with mild cognitive dysfunction (2nd ed.). Wake Forest, NC: Lash & Associates.; APT-II], when applied in the context of a multiple baseline ABA design, would improve the attention abilities of RW, a patient with mild conduction aphasia and concomitant attention and working memory deficits. We also explored whether APT-II training would enhance RW's auditory comprehension, other cognitive abilities such as memory, and his and his spouse's perceptions of his daily attention and communication difficulties. With treatment, RW improved on trained attention tasks and made modest gains on standardized tests and probes that evaluated cognitive skills related to treatment activities. Nominal change in auditory comprehension and untrained attention and memory functions was observed, and neither RW nor his spouse reported noticeable improvements in his daily attention or communication abilities. These and previous findings indicate that structured attention retraining may enhance specific attention skills, but that positive changes in broader attention and untrained functions are less likely. As a result of reading this article, the participant will be able to: (1) summarize the previous literature regarding attention impairments and treatment approaches for patients with aphasia. (2) describe how Attention Processing Training-II affected the attention, auditory comprehension, and other cognitive abilities of the patient in this study.
Chan, Christopher L F; Ngai, Elena K Y; Leung, Paul K H; Wong, Stephen
2010-06-01
To examine the effect of the adapted virtual reality cognitive training program in older adults with chronic schizophrenia. Older adults with chronic schizophrenia were recruited from a long-stay care setting and were randomly assigned into intervention (n = 12) and control group (n = 15). The intervention group received 10-session of VR program that consisted of 2 VR activities using IREX. The control group attended the usual programs in the setting. After the 10-session intervention, older adults with chronic schizophrenia preformed significantly better than control in overall cognitive function (p .000), and in two cognitive subscales: repetition (p .001) and memory (p .040). These participants engaged in the VR activities volitionally. No problem of cybersickness was observed. The results of the current study indicate that engaging in the adapted virtual reality cognitive training program offers the potential for significant gains in cognitive function of the older adults with chronic schizophrenia.
El Haj, Mohamad; Kessels, Roy P C; Allain, Philippe
2016-01-01
Source memory is a core component of episodic recall as it allows for the reconstruction of contextual details characterizing the acquisition of episodic events. Unlike episodic memory, little is known about source memory rehabilitation. Our review addresses this issue by emphasizing several strategies as useful tools in source memory rehabilitation programs. Four main strategies are likely to improve source recall in amnesic patients-namely, (a) contextual cueing, (b) unitization, (c) errorless learning, and (d) executive function programs. The rationale behind our suggestion is that: (a) reinstating contextual cues during retrieval can serve as retrieval cues and enhance source memory; (b) unitization as an encoding process allows for the integration of several pieces of contextual information into a new single entity; (c) errorless learning may prevent patients from making errors during source learning; and (d) as source memory deteriorations have been classically attributed to executive dysfunction, the rehabilitation of the latter ability is likely to maintain the former ability. Besides these four strategies, our review suggests several additional rehabilitation techniques such as the vanishing cues and spaced retrieval methods. Another additional strategy is the use of electronic devices. By gathering these strategies, our review provides a helpful guideline for clinicians dealing with source memory impairments. Our review further highlights the lack of randomized and controlled studies in the field of source memory rehabilitation.
Brom, Sarah Susanne; Kliegel, Matthias
2014-09-01
Considering the importance of prospective memory for independence in old age recently, research has started to examine interventions to reduce prospective memory errors. Two general approaches can be proposed: (a) process training of executive control associated with prospective memory functioning, and/or (b) strategy training to reduce executive task demands. The present study was the first to combine and compare both training methods in a sample of 62 community-dwelling older adults (60-86 years) and to explore their effects on an ecologically valid everyday life prospective memory task (here: regular blood pressure monitoring). Even though the training of executive control was successful in enhancing the trained ability, clear transfer effects on prospective memory performance could only be found for the strategy training. However, participants with low executive abilities benefited particularly from the implementation intention strategy. Conceptually, this supports models suggesting interactions between task demands and individual differences in executive control in explaining individual differences in prospective memory performance. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Working Memory Training Improves Dual-Task Performance on Motor Tasks.
Kimura, Takehide; Kaneko, Fuminari; Nagahata, Keita; Shibata, Eriko; Aoki, Nobuhiro
2017-01-01
The authors investigated whether working memory training improves motor-motor dual-task performance consisted of upper and lower limb tasks. The upper limb task was a simple reaction task and the lower limb task was an isometric knee extension task. 45 participants (age = 21.8 ± 1.6 years) were classified into a working memory training group (WM-TRG), dual-task training group, or control group. The training duration was 2 weeks (15 min, 4 times/week). Our results indicated that working memory capacity increased significantly only in the WM-TRG. Dual-task performance improved in the WM-TRG and dual-task training group. Our study provides the novel insight that working memory training improves dual-task performance without specific training on the target motor task.
Both mineralocorticoid and glucocorticoid receptors regulate emotional memory in mice.
Zhou, Ming; Bakker, Eveline H M; Velzing, Els H; Berger, Stefan; Oitzl, Melly; Joëls, Marian; Krugers, Harm J
2010-11-01
Corticosteroid hormones are thought to promote optimal behavioral adaptation under fearful conditions, primarily via glucocorticoid receptors (GRs). Here, we examined - using pharmacological and genetic approaches in mice - if mineralocorticoid receptors (MRs) also play a role in fearful memory formation. As expected, administration of the GR-antagonist RU38486 prior to training in a fear conditioning paradigm impaired contextual memory when tested 24 (but not when tested 3) h after training. Tone-cue memory was enhanced by RU38486 when tested at 4 (but not 25) h after training. Interestingly, pre (but not post)-training administration of MR antagonist spironolactone impaired contextual memory, both at 3 and 24h after training. Similar effects were also found in forebrain-specific MR knockout mice. Spironolactone also impaired tone-cue memory, but only at 4h after training. These results reveal that - in addition to GRs - MRs also play a critical role in establishing fear memories, particularly in the early phase of memory formation. Copyright © 2010 Elsevier Inc. All rights reserved.
Nasehi, Mohammad; Soltanpour, Reyhaneh; Ebrahimi-Ghiri, Mohaddeseh; Zarrabian, Shahram; Zarrindast, Mohammad-Reza
2017-11-01
The effects of pharmacological interventions on fear memory have widely been studied, but there are very few studies about the effects of brain electrical stimulation on fear memory function. Therefore, our aim was to determine whether anodal/cathodal transcranial direct current stimulation (tDCS) over the right frontal cortex would modify propranolol-induced contextual and auditory fear memory deficits, before or after training. The adult NMRI male mice were randomly assigned into three groups: the sham group, the anodal tDCS group, and the cathodal tDCS group. Fear memories were evaluated using a classical fear conditioning apparatus. While the anodal stimulation did not affect fear retrieval, post-training cathodal stimulation improved fear memory retrieval. Regardless of when propranolol (0.1 mg/kg) was administered, it impaired fear memory retrieval. However, when anodal stimulation and propranolol were applied prior to the training, contextual fear memory retrieval was increased and auditory fear memory was reversed. An enhanced contextual retrieval was also observed when propranolol was administered prior to the training and stimulation occurred after the training. Only when the stimulation occurred prior to the training and propranolol was administered after the training was there a selective improvement in contextual fear memory retrieval, leaving the auditory fear memory retrieval impaired. Interestingly, cathodal stimulation improved the effects of propranolol on auditory fear memory only when it occurred prior to the training. The results highlight possible improving effects for anodal/cathodal tDCS on propranolol-induced deficits on fear memories. The timing of the interventions related to the specific phases of memory formation is important in modulating fear behaviors.
Nozawa, Takayuki; Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Nouchi, Rui; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta
2015-01-01
Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach.
Taki, Yasuyuki; Kanno, Akitake; Akimoto, Yoritaka; Ihara, Mizuki; Yokoyama, Ryoichi; Kotozaki, Yuka; Sekiguchi, Atsushi; Takeuchi, Hikaru; Miyauchi, Carlos Makoto; Ogawa, Takeshi; Goto, Takakuni; Sunda, Takashi; Shimizu, Toshiyuki; Tozuka, Eiji; Hirose, Satoru; Nanbu, Tatsuyoshi; Kawashima, Ryuta
2015-01-01
Background. Increasing proportion of the elderly in the driving population raises the importance of assuring their safety. We explored the effects of three different types of cognitive training on the cognitive function, brain structure, and driving safety of the elderly. Methods. Thirty-seven healthy elderly daily drivers were randomly assigned to one of three training groups: Group V trained in a vehicle with a newly developed onboard cognitive training program, Group P trained with a similar program but on a personal computer, and Group C trained to solve a crossword puzzle. Before and after the 8-week training period, they underwent neuropsychological tests, structural brain magnetic resonance imaging, and driving safety tests. Results. For cognitive function, only Group V showed significant improvements in processing speed and working memory. For driving safety, Group V showed significant improvements both in the driving aptitude test and in the on-road evaluations. Group P showed no significant improvements in either test, and Group C showed significant improvements in the driving aptitude but not in the on-road evaluations. Conclusion. The results support the effectiveness of the onboard training program in enhancing the elderly's abilities to drive safely and the potential advantages of a multimodal training approach. PMID:26161000
How Community Colleges Can Capitalize on Changes in Information Services.
ERIC Educational Resources Information Center
Nourse, Jimmie Anne; Widman, Rudy
1991-01-01
Urges community college librarians to become leaders in library instruction by developing aggressive teaching programs using high-technology information resources, such as compact disc read-only-memory (CD-ROM), telecommunications, and on-line databases. Discusses training, hardware, software, and funding issues. (DMM)
Pedraza, Lizeth K; Sierra, Rodrigo O; Boos, Flávia Z; Haubrich, Josué; Quillfeldt, Jorge A; Alvares, Lucas de Oliveira
2016-03-01
Memory fades over time, becoming more schematic or abstract. The loss of contextual detail in memory may reflect a time-dependent change in the brain structures supporting memory. It has been well established that contextual fear memory relies on the hippocampus for expression shortly after learning, but it becomes hippocampus-independent at a later time point, a process called systems consolidation. This time-dependent process correlates with the loss of memory precision. Here, we investigated whether training intensity predicts the gradual decay of hippocampal dependency to retrieve memory, and the quality of the contextual memory representation over time. We have found that training intensity modulates the progressive decay of hippocampal dependency and memory precision. Strong training intensity accelerates systems consolidation and memory generalization in a remarkable timeframe match. The mechanisms underpinning such process are triggered by glucocorticoid and noradrenaline released during training. These results suggest that the stress levels during emotional learning act as a switch, determining the fate of memory quality. Moderate stress will create a detailed memory, whereas a highly stressful training will develop a generic gist-like memory. © 2015 Wiley Periodicals, Inc.
The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors.
Heisz, Jennifer J; Clark, Ilana B; Bonin, Katija; Paolucci, Emily M; Michalski, Bernadeta; Becker, Suzanna; Fahnestock, Margaret
2017-11-01
This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.
Episodic Memories in Anxiety Disorders: Clinical Implications
Zlomuzica, Armin; Dere, Dorothea; Machulska, Alla; Adolph, Dirk; Dere, Ekrem; Margraf, Jürgen
2014-01-01
The aim of this review is to summarize research on the emerging role of episodic memories in the context of anxiety disorders (AD). The available literature on explicit, autobiographical, and episodic memory function in AD including neuroimaging studies is critically discussed. We describe the methodological diversity of episodic memory research in AD and discuss the need for novel tests to measure episodic memory in a clinical setting. We argue that alterations in episodic memory functions might contribute to the etiology of AD. We further explain why future research on the interplay between episodic memory function and emotional disorders as well as its neuroanatomical foundations offers the promise to increase the effectiveness of modern psychological treatments. We conclude that one major task is to develop methods and training programs that might help patients suffering from AD to better understand, interpret, and possibly actively use their episodic memories in a way that would support therapeutic interventions and counteract the occurrence of symptoms. PMID:24795583
VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.
2011-01-01
We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501
Working memory training improves visual short-term memory capacity.
Schwarb, Hillary; Nail, Jayde; Schumacher, Eric H
2016-01-01
Since antiquity, philosophers, theologians, and scientists have been interested in human memory. However, researchers today are still working to understand the capabilities, boundaries, and architecture. While the storage capabilities of long-term memory are seemingly unlimited (Bahrick, J Exp Psychol 113:1-2, 1984), working memory, or the ability to maintain and manipulate information held in memory, seems to have stringent capacity limits (e.g., Cowan, Behav Brain Sci 24:87-185, 2001). Individual differences, however, do exist and these differences can often predict performance on a wide variety of tasks (cf. Engle What is working-memory capacity? 297-314, 2001). Recently, researchers have promoted the enticing possibility that simple behavioral training can expand the limits of working memory which indeed may also lead to improvements on other cognitive processes as well (cf. Morrison and Chein, Psychol Bull Rev 18:46-60 2011). However, initial investigations across a wide variety of cognitive functions have produced mixed results regarding the transferability of training-related improvements. Across two experiments, the present research focuses on the benefit of working memory training on visual short-term memory capacity-a cognitive process that has received little attention in the training literature. Data reveal training-related improvement of global measures of visual short-term memory as well as of measures of the independent sub-processes that contribute to capacity (Awh et al., Psychol Sci 18(7):622-628, 2007). These results suggest that the ability to inhibit irrelevant information within and between trials is enhanced via n-back training allowing for selective improvement on untrained tasks. Additionally, we highlight a potential limitation of the standard adaptive training procedure and propose a modified design to ensure variability in the training environment.
Cheung, Mei-Chun; Chan, Agnes S; Liu, Ying; Law, Derry; Wong, Christina W Y
2017-01-01
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation.
Cheung, Mei-chun; Chan, Agnes S.; Liu, Ying; Law, Derry; Wong, Christina W. Y.
2017-01-01
Music training can improve cognitive functions. Previous studies have shown that children and adults with music training demonstrate better verbal learning and memory performance than those without such training. Although prior studies have shown an association between music training and changes in the structural and functional organization of the brain, there is no concrete evidence of the underlying neural correlates of the verbal memory encoding phase involved in such enhanced memory performance. Therefore, we carried out an electroencephalography (EEG) study to investigate how music training was associated with brain activity during the verbal memory encoding phase. Sixty participants were recruited, 30 of whom had received music training for at least one year (the MT group) and 30 of whom had never received music training (the NMT group). The participants in the two groups were matched for age, education, gender distribution, and cognitive capability. Their verbal and visual memory functions were assessed using standardized neuropsychological tests and EEG was used to record their brain activity during the verbal memory encoding phase. Consistent with previous studies, the MT group demonstrated better verbal memory than the NMT group during both the learning and the delayed recall trials in the paper-and-pencil tests. The MT group also exhibited greater learning capacity during the learning trials. Compared with the NMT group, the MT group showed an increase in long-range left and right intrahemispheric EEG coherence in the theta frequency band during the verbal memory encoding phase. In addition, their event-related left intrahemispheric theta coherence was positively associated with subsequent verbal memory performance as measured by discrimination scores. These results suggest that music training may modulate the cortical synchronization of the neural networks involved in verbal memory formation. PMID:28358852
Nelwan, Michel; Kroesbergen, Evelyn H.
2016-01-01
The goal of this randomized controlled trial was to investigate whether Jungle Memory working memory training (JM) affects performance on working memory tasks, performance in mathematics and gains made on a mathematics training (MT) in school aged children between 9–12 years old (N = 64) with both difficulties in mathematics, as well as attention and working memory. Children were randomly assigned to three groups and were trained in two periods: (1) JM first, followed by MT, (2) MT first, followed by JM, and (3) a control group that received MT only. Bayesian analyses showed possible short term effects of JM on near transfer measures of verbal working memory, but none on visual working memory. Furthermore, support was found for the hypothesis that children that received JM first, performed better after MT than children who did not follow JM first or did not train with JM at all. However, these effects could be explained at least partly by frequency of training effects, possibly due to motivational issues, and training-specific factors. Furthermore, it remains unclear whether the effects found on improving mathematics were actually mediated by gains in working memory. It is argued that JM might not train the components of working memory involved in mathematics sufficiently. Another possible explanation can be found in the training’s lack of adaptivity, therefore failing to provide the children with tailored instruction and feedback. Finally, it was hypothesized that, since effect sizes are generally small, training effects are bound to a critical period in development. PMID:27708595
Maroti, Daniel; Westerberg, Annika Fryxell; Saury, Jean-Michel; Bileviciute-Ljungar, Indre
2015-08-18
Patients with myalgic encephalomyelitis/chronic fatigue syndrome experience cognitive difficulties. The aim of this study was to evaluate the effect of computerized training on working memory in this syndrome. Non-randomized (quasi-experimental) study with no-treatment control group and non-equivalent dependent variable design in a myalgic encephalomyelitis/chronic fatigue syndrome-cohort. Patients with myalgic encephalomyelitis/chronic fatigue syndrome who participated in a 6-month outpatient rehabilitation programme were included in the study. Eleven patients who showed signs of working memory deficit were recruited for additional memory training and 12 patients with no working memory deficit served as controls. Cognitive training with computerized working memory tasks of increasing difficulty was performed 30-45 min/day, 5 days/week over a 5-week period. Short-term and working memory tests (Digit Span - forward, backward, total) were used as primary outcome measures. Nine of the 11 patients were able to complete the training. Cognitive training increased working memory (p = 0.003) and general attention (p = 0.004) to the mean level. Short-term memory was also improved, but the difference was not statistically significant (p = 0.052) vs prior training. The control group did not show any significant improvement in primary outcome measures. Cognitive training may be a new treatment for patients with myalgic encephalomyelitis/chronic fatigue syndrome.
Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines
Aher, Yogesh D.; Sase, Ajinkya; Gröger, Marion; Mokhtar, Maher; Höger, Harald; Lubec, Gert
2015-01-01
Background Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM), a frequently used paradigm for the evaluation of complex memory formation in the rodent. Methods 24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program. Results Working memory errors (WME) and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites. Conclusion The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM. PMID:26469788
Cognitive remediation training improves performance in patients with chronic fatigue syndrome.
McBride, Richard L; Horsfield, Sarah; Sandler, Carolina X; Cassar, Joanne; Casson, Sally; Cvejic, Erin; Vollmer-Conna, Uté; Lloyd, Andrew R
2017-11-01
Neurocognitive disturbance with subjectively-impaired concentration and memory is a common, disabling symptom reported by patients with chronic fatigue syndrome (CFS). We recently reported preliminary evidence for benefits of cognitive remediation as part of an integrated cognitive-behavioral therapy (CBT)/ graded exercise therapy (GET) program. Here, we describe a contemporaneous, case-control trial evaluating the effectiveness of an online cognitive remediation training program (cognitive exercise therapy; CET) in addition to CBT/GET (n=36), compared to CBT/GET alone (n=36). The study was conducted in an academic, tertiary referral outpatient setting over 12 weeks (11 visits) with structured, home-based activities between visits. Participants self-reported standardized measures of symptom severity and functional status before and after the intervention. Those in the CET arm also completed standardized neurocognitive assessment before, and following, treatment. The addition of formal CET led to significantly greater improvements in self-reported neurocognitive symptoms compared to CBT/GET alone. Subjective improvement was predicted by CET group and lower baseline mood disturbance. In the CET group, significant improvements in objectively-measured executive function, processing speed, and working memory were observed. These subjective and objective performance improvements suggest that a computerized, home-based cognitive training program may be an effective intervention for patients with CFS, warranting randomized controlled trials. Copyright © 2017 Elsevier B.V. All rights reserved.
Nasehi, Mohammad; Khani-Abyaneh, Mozhgan; Ebrahimi-Ghiri, Mohaddeseh; Zarrindast, Mohammad-Reza
2017-07-28
Accumulating evidence supports the efficacy of transcranial direct current stimulation (tDCS) in modulating numerous cognitive functions. Despite the fact that tDCS has been used for the enhancement of memory and cognition, very few animal studies have addressed its impact on the modulation of fear memory. This study was designed to determine whether pre/post-training frontal tDCS application would alter fear memory acquisition and/or consolidation deficits induced by propranolol in NMRI mice. Results indicated that administration of β1-adrenoceptor blocker propranolol (0.1mg/kg) impaired fear memory retrieval. Pre/post-training application of anodal tDCS when propranolol was administered prior to training reversed contextual memory retrieval whereas only the anodal application prior to training could induce the same result in the auditory test. Meanwhile, anodal stimulation had no effect on fear memories by itself. Moreover, regardless of when cathode was applied and propranolol administered, their combination restored contextual memory retrieval, while only cathodal stimulation prior to training facilitated the contextual memory retrieval. Also, auditory memory retrieval was restored when cathodal stimulation and propranolol occurred prior to training but it was abolished when stimulation occurred after training and propranolol was administered prior to training. Collectively, our findings show that tDCS applied on the left frontal cortex of mice affects fear memory performance. This alteration seems to be task-dependent and varies depending on the nature and timing of the stimulation. In certain conditions, tDCS reverses the effect of propranolol. These results provide initial evidence to support the timely use of tDCS for the modulation of fear-related memories. Copyright © 2017 Elsevier B.V. All rights reserved.
Sebastian, Veronica; Diallo, Aissatou; Ling, Douglas S. F.; Serrano, Peter A.
2013-01-01
Globally, it is estimated that nearly 10 million people sustain severe brain injuries leading to hospitalization and/or death every year. Amongst survivors, traumatic brain injury (TBI) results in a wide variety of physical, emotional and cognitive deficits. The most common cognitive deficit associated with TBI is memory loss, involving impairments in spatial reference and working memory. However, the majority of research thus far has characterized the deficits associated with TBI on either reference or working memory systems separately, without investigating how they interact within a single task. Thus, we examined the effects of TBI on short-term working and long-term reference memory using the radial 8-arm maze (RAM) with a sequence of four baited and four unbaited arms. Subjects were given 10 daily trials for 6 days followed by a memory retrieval test 2 weeks after training. Multiple training trials not only provide robust training, but also test the subjects' ability to frequently update short-term memory while learning the reference rules of the task. Our results show that TBI significantly impaired short-term working memory function on previously acquired spatial information but has little effect on long-term reference memory. Additionally, TBI significantly increased working memory errors during acquisition and reference memory errors during retention testing 2 weeks later. With a longer recovery period after TBI, the robust RAM training mitigated the reference memory deficit in retention but not the short-term working memory deficit during acquisition. These results identify the resiliency and vulnerabilities of short-term working and long-term reference memory to TBI in the context of robust training. The data highlight the role of cognitive training and other behavioral remediation strategies implicated in attenuating deficits associated with TBI. PMID:23653600
Guo, Xia; Ohsawa, Chie; Suzuki, Akiko; Sekiyama, Kaoru
2018-01-01
Previous studies have reported that music training not only improves children's musical skills, but also enhances their cognitive functions. However, there is a disagreement about what domain(s) might be affected. Moreover, effects of short-term (
Guo, Xia; Ohsawa, Chie; Suzuki, Akiko; Sekiyama, Kaoru
2017-01-01
Previous studies have reported that music training not only improves children's musical skills, but also enhances their cognitive functions. However, there is a disagreement about what domain(s) might be affected. Moreover, effects of short-term (
Alesi, Marianna; Battaglia, Giuseppe; Roccella, Michele; Testa, Davide; Palma, Antonio; Pepi, Annamaria
2014-01-01
Background This work examined the efficacy of an integrated exercise training program (coach and family) in three children with Down syndrome to improve their motor and cognitive abilities, in particular reaction time and working memory. Methods The integrated exercise training program was used in three children with Down syndrome, comprising two boys (M1, with a chronological age of 10.3 years and a mental age of 4.7 years; M2, with a chronological age of 14.6 years and a mental age of less than 4 years) and one girl (F1, chronological age 14.0 years and a mental age of less than 4 years). Results Improvements in gross motor ability scores were seen after the training period. Greater improvements in task reaction time were noted for both evaluation parameters, ie, time and omissions. Conclusion There is a close interrelationship between motor and cognitive domains in individuals with atypical development. There is a need to plan intervention programs based on the simultaneous involvement of child and parents and aimed at promoting an active lifestyle in individuals with Down syndrome. PMID:24672238
Makizako, Hyuma; Tsutsumimoto, Kota; Doi, Takehiko; Hotta, Ryo; Nakakubo, Sho; Liu-Ambrose, Teresa; Shimada, Hiroyuki
2015-11-04
Depressive symptoms and memory problems are significant risk factors for dementia. Exercise can reduce depressive symptoms and improve cognitive function in older people. In addition, the benefits of horticultural activity on physical and mental well-being have been demonstrated in people with dementia. Although evidence of such non-pharmacological interventions is mounting, no studies have examined whether physical exercise and horticultural activity exert a positive impact on brain and mental health (e.g., depressive symptoms) in non-demented older adults at high risk of cognitive impairment and depression. Therefore, we propose a randomized controlled trial to assess the efficacy and efficiency of physical exercise and horticultural activity in improving brain and mental health in community-dwelling older adults with memory problems and depressive symptoms. The 20-week randomized controlled trial will include 90 community-dwelling adults aged 65 years or older with memory problems and depressive symptoms. Participants will be randomized to one of three experiments: exercise, horticultural activity, or educational control group, using a 1:1:1 allocation ratio. The combined exercise program and horticultural activity program will consist of 20 weekly 90-minute sessions. Participants in the exercise group will practice aerobic exercise, muscle strength training, postural balance retraining, and dual-task training. The horticultural activity program will include crop-related activities, such as field cultivation, growing, and harvesting. Participants in the educational control group will attend two 90-minute educational classes during the 6-month trial period. Depressive symptoms and memory performance will be measured by the Geriatric Depression Scale-15, and the Logical Memory subtests of the Wechsler Memory Scale-Revised will be used to measure depressive symptoms and memory performance as primary outcomes, at baseline (prior to randomization), immediately following intervention (6 months from baseline), and 6 months after intervention. Hippocampal volume will be measured at baseline and immediately after intervention, using magnetic resonance imaging. Secondary outcomes will comprise cognitive function, including language, attention/executive performance, and processing speed; brain-derived neurotrophic-factor serum levels; and health-related quality of life. This intervention study will determine the clinical importance and efficacy of physical exercise and horticultural activity as non-pharmacological interventions in community-dwelling older adults at high risk of poor brain and mental health. UMIN000018547 ; registered 7 August 2015.
ERIC Educational Resources Information Center
Naumann, Johannes; Richter, Tobias; Christmann, Ursula; Groeben, Norbert
2008-01-01
Cognitive and metacognitive strategies are particularly important for learning with hypertext. The effectiveness of strategy training, however, depends on available working memory resources. Thus, especially learners high on working memory capacity can profit from strategy training, while learners low on working memory capacity might easily be…
Distinct Transfer Effects of Training Different Facets of Working Memory Capacity
ERIC Educational Resources Information Center
von Bastian, Claudia C.; Oberauer, Klaus
2013-01-01
The impact of working memory training on a broad set of transfer tasks was examined. Each of three groups of participants trained one specific functional category of working memory capacity: storage and processing, relational integration, and supervision. A battery comprising tests to measure working memory, task shifting, inhibition, and…
Effects of Serial Rehearsal Training on Memory Search
ERIC Educational Resources Information Center
McCauley, Charley; And Others
1976-01-01
Half the subjects were trained to use a serial rehearsal strategy during target set storage and half were given no strategy training. The results indicate that the rate of memory search is IQ-related, and that serial rehearsal training facilitates memory search when rehearsal is covert. (Author/BW)
Jurado-Berbel, Patricia; Costa-Miserachs, David; Torras-Garcia, Meritxell; Coll-Andreu, Margalida; Portell-Cortés, Isabel
2010-02-11
The present work examined whether post-training systemic epinephrine (EPI) is able to modulate short-term (3h) and long-term (24 h and 48 h) memory of standard object recognition, as well as long-term (24 h) memory of separate "what" (object identity) and "where" (object location) components of object recognition. Although object recognition training is associated to low arousal levels, all the animals received habituation to the training box in order to further reduce emotional arousal. Post-training EPI improved long-term (24 h and 48 h), but not short-term (3 h), memory in the standard object recognition task, as well as 24 h memory for both object identity and object location. These data indicate that post-training epinephrine: (1) facilitates long-term memory for standard object recognition; (2) exerts separate facilitatory effects on "what" (object identity) and "where" (object location) components of object recognition; and (3) is capable of improving memory for a low arousing task even in highly habituated rats.
Aben, Laurien; Heijenbrok-Kal, Majanka H; Ponds, Rudolf W H M; Busschbach, Jan J V; Ribbers, Gerard M
2014-01-01
This study aims to determine the long-term effects of a new Memory Self-efficacy (MSE) training program for stroke patients on MSE, depression, and quality of life. In a randomized controlled trial, patients were allocated to a MSE training or a peer support group. Outcome measures were MSE, depression, and quality of life, measured with the Metamemory-In-Adulthood questionnaire, Center for Epidemiological Studies-Depression Scale (CES-D), and the Who-Qol Bref questionnaire, respectively. We used linear mixed models to compare the outcomes of both groups immediately after training, after 6 months, and after 12 months, adjusted for baseline. In total, 153 former inpatients from 2 rehabilitation centers were randomized-77 to the experimental and 76 to the control group. MSE increased significantly more in the experimental group and remained significantly higher than in the control group after 6 and 12 months (B = 0.42; P = .010). Psychological quality of life also increased more in the experimental group but not significantly (B = 0.09; P = .077). However, in the younger subgroup of patients (<65 years old), psychological quality of life significantly improved in the experimental group compared to the control group and remained significantly higher over time (B = 0.14; P = .030). Other outcome measures were not significantly different between both groups. An MSE training program improved MSE and psychological quality of life in stroke patients aged <65 years. These effects persisted during 12 months of follow-up.
Do the effects of working memory training depend on baseline ability level?
Foster, Jeffrey L; Harrison, Tyler L; Hicks, Kenny L; Draheim, Christopher; Redick, Thomas S; Engle, Randall W
2017-11-01
There is a debate about the ability to improve cognitive abilities such as fluid intelligence through training on tasks of working memory capacity. The question addressed in the research presented here is who benefits the most from training: people with low cognitive ability or people with high cognitive ability? Subjects with high and low working memory capacity completed a 23-session study that included 3 assessment sessions, and 20 sessions of training on 1 of 3 training regiments: complex span training, running span training, or an active-control task. Consistent with other research, the authors found that training on 1 executive function did not transfer to ability on a different cognitive ability. High working memory subjects showed the largest gains on the training tasks themselves relative to the low working memory subjects-a finding that suggests high spans benefit more than low spans from training with executive function tasks. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Memory rehabilitation for the working memory of patients with multiple sclerosis (MS).
Mousavi, Shokoufeh; Zare, Hossein; Etemadifar, Masoud; Taher Neshatdoost, Hamid
2018-05-01
The main cognitive impairments in multiple sclerosis (MS) affect the working memory, processing speed, and performances that are in close interaction with one another. Cognitive problems in MS are influenced to a lesser degree by disease recovery medications or treatments,but cognitive rehabilitation is considered one of the promising methods for cure. There is evidence regarding the effectiveness of cognitive rehabilitation for MS patients in various stages of the disease. Since the impairment in working memory is one of the main MS deficits, a particular training that affects this cognitive domain can be of a great value. This study aims to determine the effectiveness of memory rehabilitation on the working memory performance of MS patients. Sixty MS patients with cognitive impairment and similar in terms of demographic characteristics, duration of disease, neurological problems, and mental health were randomly assigned to three groups: namely, experimental, placebo, and control. Patients' cognitive evaluation incorporated baseline assessments immediately post-intervention and 5 weeks post-intervention. The experimental group received a cognitive rehabilitation program in one-hour sessions on a weekly basis for 8 weeks. The placebo group received relaxation techniques on a weekly basis; the control group received no intervention. The results of this study showed that the cognitive rehabilitation program had a positive effect on the working memory performance of patients with MS in the experimental group. These results were achieved in immediate evaluation (post-test) and follow-up 5 weeks after intervention. There was no significant difference in working memory performance between the placebo group and the control group. According to the study, there is evidence for the effectiveness of a memory rehabilitation program for the working memory of patients with MS. Cognitive rehabilitation can improve working memory disorders and have a positive effect on the working memory performance of these patients.
Masson, Marjolaine; Wykes, Til; Maziade, Michel; Reeder, Clare; Gariépy, Marie-Anne; Roy, Marc-André; Ivers, Hans; Cellard, Caroline
2015-01-01
The objective of this case study was to assess the specific effect of cognitive remediation for schizophrenia on the pattern of cognitive impairments. Case A is a 33-year-old man with a schizophrenia diagnosis and impairments in visual memory, inhibition, problem solving, and verbal fluency. He was provided with a therapist delivered cognitive remediation program involving practice and strategy which was designed to train attention, memory, executive functioning, visual-perceptual processing, and metacognitive skills. Neuropsychological and clinical assessments were administered at baseline and after three months of treatment. At posttest assessment, Case A had improved significantly on targeted (visual memory and problem solving) and nontargeted (verbal fluency) cognitive processes. The results of the current case study suggest that (1) it is possible to improve specific cognitive processes with targeted exercises, as seen by the improvement in visual memory due to training exercises targeting this cognitive domain; (2) cognitive remediation can produce improvements in cognitive processes not targeted during remediation since verbal fluency was improved while there was no training exercise on this specific cognitive process; and (3) including learning strategies in cognitive remediation increases the value of the approach and enhances participant improvement, possibly because strategies using verbalization can lead to improvement in verbal fluency even if it was not practiced. PMID:25949840
Transfer after process-based object-location memory training in healthy older adults.
Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne
2016-11-01
A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Owens, Max; Koster, Ernst H W; Derakshan, Nazanin
2013-03-01
Impaired filtering of irrelevant information from working memory is thought to underlie reduced working memory capacity for relevant information in dysphoria. The current study investigated whether training-related gains in working memory performance on the adaptive dual n-back task could result in improved inhibitory function. Efficacy of training was monitored in a change detection paradigm allowing measurement of a sustained event-related potential asymmetry sensitive to working memory capacity and the efficient filtering of irrelevant information. Dysphoric participants in the training group showed training-related gains in working memory that were accompanied by gains in working memory capacity and filtering efficiency compared to an active control group. Results provide important initial evidence that behavioral performance and neural function in dysphoria can be improved by facilitating greater attentional control. Copyright © 2013 Society for Psychophysiological Research.
Complexity, Training Paradigm Design, and the Contribution of Memory Subsystems to Grammar Learning
Ettlinger, Marc; Wong, Patrick C. M.
2016-01-01
Although there is variability in nonnative grammar learning outcomes, the contributions of training paradigm design and memory subsystems are not well understood. To examine this, we presented learners with an artificial grammar that formed words via simple and complex morphophonological rules. Across three experiments, we manipulated training paradigm design and measured subjects' declarative, procedural, and working memory subsystems. Experiment 1 demonstrated that passive, exposure-based training boosted learning of both simple and complex grammatical rules, relative to no training. Additionally, procedural memory correlated with simple rule learning, whereas declarative memory correlated with complex rule learning. Experiment 2 showed that presenting corrective feedback during the test phase did not improve learning. Experiment 3 revealed that structuring the order of training so that subjects are first exposed to the simple rule and then the complex improved learning. The cumulative findings shed light on the contributions of grammatical complexity, training paradigm design, and domain-general memory subsystems in determining grammar learning success. PMID:27391085
Prince, Toni-Moi; Wimmer, Mathieu; Choi, Jennifer; Havekes, Robbert; Aton, Sara; Abel, Ted
2014-01-01
Sleep deprivation disrupts hippocampal function and plasticity. In particular, long-term memory consolidation is impaired by sleep deprivation, suggesting that a specific critical period exists following learning during which sleep is necessary. To elucidate the impact of sleep deprivation on long-term memory consolidation and synaptic plasticity, long-term memory was assessed when mice were sleep deprived following training in the hippocampus-dependent object place recognition task. We found that 3 hours of sleep deprivation significantly impaired memory when deprivation began 1 hour after training. In contrast, 3 hours of deprivation beginning immediately post-training did not impair spatial memory. Furthermore, a 3-hour sleep deprivation beginning 1 hour after training impaired hippocampal long-term potentiation (LTP), whereas sleep deprivation immediately after training did not affect LTP. Together, our findings define a specific 3-hour critical period, extending from 1 to 4 hours after training, during which sleep deprivation impairs hippocampal function. PMID:24380868
Systematic Training Program for Enhancing Learning Strategies and Skills: Further Development
1978-09-01
Habits andAttitudes, Form C, New York: The Psychological Corporation, 1966. Craik , F. I. M. & Lockhart , R. S. “ Levels of processing : A framework for...supported by the work of Rothkopf (1966) and Craik and Lockhart (1972). Although varying somewhat in surface structure, the main differences between...strategies cognitive strategies cognitive training memory human Information processing 20. TRACT (Conllma, an r.~~ra• aid. If n.c..a.ry and ld.ntlfy by
Working Memory Training Does Not Improve Intelligence in Healthy Young Adults
ERIC Educational Resources Information Center
Chooi, Weng-Tink; Thompson, Lee A.
2012-01-01
Jaeggi and her colleagues claimed that they were able to improve fluid intelligence by training working memory. Subjects who trained their working memory on a dual n-back task for a period of time showed significant improvements in working memory span tasks and fluid intelligence tests such as the Raven's Progressive Matrices and the Bochumer…
Histone Deacetylase Inhibition Facilitates Massed Pattern-Induced Synaptic Plasticity and Memory
ERIC Educational Resources Information Center
Pandey, Kiran; Sharma, Kaushik P.; Sharma, Shiv K.
2015-01-01
Massed training is less effective for long-term memory formation than the spaced training. The role of acetylation in synaptic plasticity and memory is now well established. However, the role of this important protein modification in synaptic plasticity induced by massed pattern of stimulation or memory induced by massed training is not well…
PKMζ Differentially Utilized between Sexes for Remote Long-Term Spatial Memory
Sebastian, Veronica; Vergel, Tatyana; Baig, Raheela; Schrott, Lisa M.; Serrano, Peter A.
2013-01-01
It is well established that male rats have an advantage in acquiring place-learning strategies, allowing them to learn spatial tasks more readily than female rats. However many of these differences have been examined solely during acquisition or in 24h memory retention. Here, we investigated whether sex differences exist in remote long-term memory, lasting 30d after training, and whether there are differences in the expression pattern of molecular markers associated with long-term memory maintenance. Specifically, we analyzed the expression of protein kinase M zeta (PKMζ) and the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunit GluA2. To adequately evaluate memory retention, we used a robust training protocol to attenuate sex differences in acquisition and found differential effects in memory retention 1d and 30d after training. Female cohorts tested for memory retention 1d after 60 training trials outperformed males by making significantly fewer reference memory errors at test. In contrast, male cohorts tested 30d after 60 training trials outperformed females of the same condition, making fewer reference memory errors and achieving significantly higher retention test scores. Furthermore, given 60 training trials, females tested 30d later showed significantly worse memory compared to females tested 1d later, while males tested 30d later did not differ from males tested 1d later. Together these data suggest that with robust training males do no retain spatial information as well as females do 24h post-training but maintain this spatial information for longer. Males also showed a significant increase in synaptic PKMζ expression and a positive correlation with retention test scores, while females did not. Interestingly, both sexes showed a positive correlation between retention test scores and synaptic GluA2 expression. Furthermore, the increased expression of synaptic PKMζ, associated with male memory but not with female memory, identifies another potential sex-mediated difference in memory processing. PMID:24244733
Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia.
Krishnan, Harini C; Gandour, Catherine E; Ramos, Joshua L; Wrinkle, Mariah C; Sanchez-Pacheco, Joseph J; Lyons, Lisa C
2016-12-01
Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica , a relatively simple model system well known for studies of learning and memory. Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation. © 2016 Associated Professional Sleep Societies, LLC.
Working memory training shows immediate and long-term effects on cognitive performance in children
Pugin, Fiona; Metz, Andreas J.; Stauffer, Madlaina; Wolf, Martin; Jenni, Oskar G.; Huber, Reto
2014-01-01
Working memory is important for mental reasoning and learning processes. Several studies in adults and school-age children have shown performance improvement in cognitive tests after working memory training. Our aim was to examine not only immediate but also long-term effects of intensive working memory training on cognitive performance tests in children. Fourteen healthy male subjects between 10 and 16 years trained a visuospatial n-back task over 3 weeks (30 min daily), while 15 individuals of the same age range served as a passive control group. Significant differences in immediate (after 3 weeks of training) and long-term effects (after 2-6 months) in an auditory n-back task were observed compared to controls (2.5 fold immediate and 4.7 fold long-term increase in the training group compared to the controls). The improvement was more pronounced in subjects who improved their performance during the training. Other cognitive functions (matrices test and Stroop task) did not change when comparing the training group to the control group. We conclude that visuospatial working memory training in children boosts performance in similar memory tasks such as the auditory n-back task. The sustained performance improvement several months after the training supports the effectiveness of the training. PMID:25671082
Context controls access to working and reference memory in the pigeon (Columba livia).
Roberts, William A; Macpherson, Krista; Strang, Caroline
2016-01-01
The interaction between working and reference memory systems was examined under conditions in which salient contextual cues were presented during memory retrieval. Ambient colored lights (red or green) bathed the operant chamber during the presentation of comparison stimuli in delayed matching-to-sample training (working memory) and during the presentation of the comparison stimuli as S+ and S- cues in discrimination training (reference memory). Strong competition between memory systems appeared when the same contextual cue appeared during working and reference memory training. When different contextual cues were used, however, working memory was completely protected from reference memory interference. © 2016 Society for the Experimental Analysis of Behavior.
Bueno, Ana Paula A; de Paiva, Joselisa Péres Queiroz; Corrêa, Moisés Dos Santos; Tiba, Paula Ayako; Fornari, Raquel Vecchio
2017-03-15
It is well established that corticosterone (CORT) enhances memory consolidation of emotionally arousing experiences. Despite emotional memories being usually referred to as well remembered for long periods, there are no studies that have investigated the effects of CORT in modulating the duration and specificity of memory. In the present study, we trained Wistar rats in a single-trial contextual fear conditioning protocol and injected CORT (0.3, 1.0 or 3.0mg/kg), immediately after training, to investigate its effects on memory consolidation. Rats were tested 2 and 29days after the training session or only 29days after training to assess recent or remote memory. Our results show that animals tested for recent memory discriminated the training context from a novel one, while those tested only for remote memory generalized the fear response to both contexts. Animals tested for remote memory after being tested for recent memory were able to discriminate both contexts. These results support the literature regarding memory specificity and duration. However, CORT treatment, even at the dose of 1.0mg/kg that effectively enhanced the plasmatic hormone levels, did not affect the strength or the specificity of memory in either recent or remote memory tests. We hypothesize that the lack of effect of CORT treatment could be due to the low arousing training experience of the single-trial protocol which, despite being sufficient to induce significant recent and remote memory consolidation, may not be sufficient to allow the memory-enhancing effect of CORT. Copyright © 2017 Elsevier Inc. All rights reserved.
Shen, J; Zhang, G; Yao, L; Zhao, X
2015-03-19
Working memory refers to the ability to temporarily store and manipulate information that is necessary for complex cognition activities. Previous studies have demonstrated that working memory capacity can be improved by behavioral training, and brain activities in the frontal and parietal cortices and the connections between these regions are also altered by training. Our recent neurofeedback training has proven that the regulation of the left dorsal lateral prefrontal cortex (DLPFC) activity using real-time functional magnetic resonance imaging (rtfMRI) can improve working memory performance. However, how working memory training promotes interaction between brain regions and whether this promotion correlates with performance improvement remain unclear. In this study, we employed structural equation modeling (SEM) to calculate the interactions between the regions within the working memory network during neurofeedback training. The results revealed that the direct effect of the frontoparietal connection in the left hemisphere was enhanced by the rtfMRI training. Specifically, the increase in the path from the left DLPFC to the left inferior parietal lobule (IPL) was positively correlated with improved performance in verbal working memory. These findings demonstrate the important role of the frontoparietal connection in working memory training and suggest that increases in frontoparietal connectivity might be a key factor associated with behavioral improvement. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Musical plus phonological input for young foreign language readers
Fonseca-Mora, M. C.; Jara-Jiménez, Pilar; Gómez-Domínguez, María
2015-01-01
Based on previous studies showing that phonological awareness is related to reading abilities and that music training improves phonological processing, the aim of the present study was to test for the efficiency of a new method for teaching to read in a foreign language. Specifically, we tested the efficacy of a phonological training program, with and without musical support that aimed at improving early reading skills in 7–8-year-old Spanish children (n = 63) learning English as a foreign language. Of interest was also to explore the impact of this training program on working memory and decoding skills. To achieve these goals we tested three groups of children before and after training: a control group, an experimental group with phonological non-musical intervention (active control), and an experimental group with musical intervention. Results clearly point to the beneficial effects of the phonological teaching approach but the further impact of the music support was not demonstrated. Moreover, while children in the music group showed low musical aptitudes before training, they nevertheless performed better than the control group. Therefore, the phonological training program with and without music support seem to have significant effects on early reading skills. PMID:25852604
Musical plus phonological input for young foreign language readers.
Fonseca-Mora, M C; Jara-Jiménez, Pilar; Gómez-Domínguez, María
2015-01-01
Based on previous studies showing that phonological awareness is related to reading abilities and that music training improves phonological processing, the aim of the present study was to test for the efficiency of a new method for teaching to read in a foreign language. Specifically, we tested the efficacy of a phonological training program, with and without musical support that aimed at improving early reading skills in 7-8-year-old Spanish children (n = 63) learning English as a foreign language. Of interest was also to explore the impact of this training program on working memory and decoding skills. To achieve these goals we tested three groups of children before and after training: a control group, an experimental group with phonological non-musical intervention (active control), and an experimental group with musical intervention. Results clearly point to the beneficial effects of the phonological teaching approach but the further impact of the music support was not demonstrated. Moreover, while children in the music group showed low musical aptitudes before training, they nevertheless performed better than the control group. Therefore, the phonological training program with and without music support seem to have significant effects on early reading skills.
Lee, Wang-jun
2016-01-01
Myong Ji Hospital has launched the 'public health Service project team' for the first time in Korea as a private institution to carry forward and administer public health projects and services in a more structured way. Notably, Goyang Centenarian's Good Memory School has deliberately provided various art therapy programs to those who have a high risk of dementia in pursuit of promoting dementia prevention, and maintaining a positive mind and healthy body for any required daily activities for senior living. Participating patients have expressed remarkable satisfaction, and the art therapy programs have not only shown the effectiveness of strengthening the mental status of the cognitively-impaired patients but have also proposed a feasible non-pharmacological therapy option, which promotes the quality of their daily living and lowers the burden for their caregivers.
2013-01-01
Background Individuals who sustain traumatic brain injuries (TBIs) often continue to experience significant impairment of cognitive functions mediated by the prefrontal cortex well into chronic stages of recovery. Traditional brain training programs that focus on improving specific skills fall short of addressing integrative functions that draw upon multiple higher-order processes critical for social and vocational integration. In the current study, we compare the effects of two short-term, intensive, group-based cognitive rehabilitation programs for individuals with chronic TBI. One program emphasizes learning about brain functions and influences on cognition, while the other program adopts a top-down approach to improve abstract reasoning abilities that are largely reliant on the prefrontal cortex. These treatment programs are evaluated in civilian and military veteran TBI populations. Methods/design One hundred individuals are being enrolled in this double-blinded clinical trial (all measures and data analyses will be conducted by blinded raters and analysts). Each individual is randomly assigned to one of two treatment conditions, with each condition run in groups of five to seven individuals. The primary anticipated outcomes are improvement in abstract reasoning and everyday life functioning, measured through behavioral tasks and questionnaires, and attention modulation, as measured by functional neuroimaging. Secondary expected outcomes include improvements in the cognitive processes of working memory, attention, and inhibitory control. Discussion Results of this trial will determine whether cognitive rehabilitation aimed at teaching TBI-relevant information about the brain and cognition versus training in TBI-affected thinking abilities (e.g., memory, attention, and executive functioning) can improve outcomes in chronic military and civilian TBI patient populations. It should shed light on the nature of improvements and the characteristics of patients most likely to benefit. This trial will also provide information about the sustainability of treatment-related improvements 3 months post-training. Trial registration ClinicalTrials.gov Identifier: NCT01552473 PMID:23363480
The inhibitory avoidance discrimination task to investigate accuracy of memory.
Atucha, Erika; Roozendaal, Benno
2015-01-01
The present study was aimed at developing a new inhibitory avoidance task, based on training and/or testing rats in multiple contexts, to investigate accuracy of memory. In the first experiment, male Sprague-Dawley rats were given footshock in an inhibitory avoidance apparatus and, 48 h later, retention latencies of each rat were assessed in the training apparatus (Shock box) as well as in a novel, contextually modified, apparatus. Retention latencies in the Shock box were significantly longer than those in the Novel box, indicating accurate memory of the training context. When the noradrenergic stimulant yohimbine (0.3 mg/kg, sc) was administered after the training, 48-h retention latencies in the Shock box, but not Novel box, were increased, indicating that the noradrenergic activation enhanced memory of the training experience without reducing memory accuracy. In the second experiment, rats were trained on an inhibitory avoidance discrimination task: They were first trained in an inhibitory avoidance apparatus without footshock (Non-Shock box), followed 1 min later by footshock training in a contextually modified apparatus (Shock box). Forty-eight-hour retention latencies in the Shock and Non-Shock boxes did not differ from each other but were both significantly longer than those in a Novel box, indicating that rats remembered the two training contexts but did not have episodic-like memory of the association of footshock with the correct training context. When the interval between the two training episodes was increased to 2 min, rats showed accurate memory of the association of footshock with the training context. Yohimbine administered after the training also enhanced rats' ability to remember in which training context they had received actual footshock. These findings indicate that the inhibitory avoidance discrimination task is a novel variant of the well-established inhibitory avoidance task suitable to investigate accuracy of memory.
ERIC Educational Resources Information Center
Redick, Thomas S.; Shipstead, Zach; Harrison, Tyler L.; Hicks, Kenny L.; Fried, David E.; Hambrick, David Z.; Kane, Michael J.; Engle, Randall W.
2013-01-01
Numerous recent studies seem to provide evidence for the general intellectual benefits of working memory training. In reviews of the training literature, Shipstead, Redick, and Engle (2010, 2012) argued that the field should treat recent results with a critical eye. Many published working memory training studies suffer from design limitations…
Language-specific memory for everyday arithmetic facts in Chinese-English bilinguals.
Chen, Yalin; Yanke, Jill; Campbell, Jamie I D
2016-04-01
The role of language in memory for arithmetic facts remains controversial. Here, we examined transfer of memory training for evidence that bilinguals may acquire language-specific memory stores for everyday arithmetic facts. Chinese-English bilingual adults (n = 32) were trained on different subsets of simple addition and multiplication problems. Each operation was trained in one language or the other. The subsequent test phase included all problems with addition and multiplication alternating across trials in two blocks, one in each language. Averaging over training language, the response time (RT) gains for trained problems relative to untrained problems were greater in the trained language than in the untrained language. Subsequent analysis showed that English training produced larger RT gains for trained problems relative to untrained problems in English at test relative to the untrained Chinese language. In contrast, there was no evidence with Chinese training that problem-specific RT gains differed between Chinese and the untrained English language. We propose that training in Chinese promoted a translation strategy for English arithmetic (particularly multiplication) that produced strong cross-language generalization of practice, whereas training in English strengthened relatively weak, English-language arithmetic memories and produced little generalization to Chinese (i.e., English training did not induce an English translation strategy for Chinese language trials). The results support the existence of language-specific strengthening of memory for everyday arithmetic facts.
Major Robert Lawrence Memorial Tribute
2017-12-08
During an Astronauts Memorial Foundation tribute honoring U.S. Air Foce Maj. Robert Lawrence, The Winston Scott “Cosmic Jazz Ensemble” performed. Participants are, from the left, former NASA astronaut Winston Scott playing trumpet, Al Dodds on bass, Stan Soloko playing drums, vocalist Shyrl “Lady Tandy” Johnson, and Ron Teixeira playing piano. Selected in 1967 for the Manned Orbiting Laboratory Program, Lawrence was the first African-American astronaut. He lost his life in a training accident 50 years ago. The ceremony took place in the Center for Space Education at the Kennedy Space Center Visitor Complex.
Working memory and executive functions: effects of training on academic achievement.
Titz, Cora; Karbach, Julia
2014-11-01
The aim of this review is to illustrate the role of working memory and executive functions for scholastic achievement as an introduction to the question of whether and how working memory and executive control training may improve academic abilities. The review of current research showed limited but converging evidence for positive effects of process-based complex working-memory training on academic abilities, particularly in the domain of reading. These benefits occurred in children suffering from cognitive and academic deficits as well as in healthy students. Transfer of training to mathematical abilities seemed to be very limited and to depend on the training regime and the characteristics of the study sample. A core issue in training research is whether high- or low-achieving children benefit more from cognitive training. Individual differences in terms of training-related benefits suggested that process-based working memory and executive control training often induced compensation effects with larger benefits in low performing individuals. Finally, we discuss the effects of process-based training in relation to other types of interventions aimed at improving academic achievement.
Bello-Medina, Paola C; Sánchez-Carrasco, Livia; González-Ornelas, Nadia R; Jeffery, Kathryn J; Ramírez-Amaya, Víctor
2013-08-01
Here we tested whether the well-known superiority of spaced training over massed training is equally evident in both object identity and object location recognition memory. We trained animals with objects placed in a variable or in a fixed location to produce a location-independent object identity memory or a location-dependent object representation. The training consisted of 5 trials that occurred either on one day (Massed) or over the course of 5 consecutive days (Spaced). The memory test was done in independent groups of animals either 24h or 7 days after the last training trial. In each test the animals were exposed to either a novel object, when trained with the objects in variable locations, or to a familiar object in a novel location, when trained with objects in fixed locations. The difference in time spent exploring the changed versus the familiar objects was used as a measure of recognition memory. For the object-identity-trained animals, spaced training produced clear evidence of recognition memory after both 24h and 7 days, but massed-training animals showed it only after 24h. In contrast, for the object-location-trained animals, recognition memory was evident after both retention intervals and with both training procedures. When objects were placed in variable locations for the two types of training and the test was done with a brand-new location, only the spaced-training animals showed recognition at 24h, but surprisingly, after 7 days, animals trained using both procedures were able to recognize the change, suggesting a post-training consolidation process. We suggest that the two training procedures trigger different neural mechanisms that may differ in the two segregated streams that process object information and that may consolidate differently. Copyright © 2013 Elsevier B.V. All rights reserved.
Training spatial-simultaneous working memory in individuals with Down syndrome.
Lanfranchi, Silvia; Pulina, Francesca; Carretti, Barbara; Mammarella, Irene C
2017-05-01
Recent studies have suggested that the spatial-simultaneous component of working memory (WM), which is involved when stimuli are presented simultaneously, is selectively impaired in individuals with Down syndrome (DS). The main objective of the present study was to examine whether WM performance can be enhanced in individuals with DS by analyzing the immediate and maintenance effects of a training program. For this purpose, 61 individuals with DS were randomly assigned to three groups: one trained on simultaneous components of visuospatial WM; one serving as an active control group, that completed activities on vocabulary; and one serving as a passive control group, that only attended the pre- and post-test and follow-up assessments. The efficacy of the training was analyzed in terms of specific (spatial-simultaneous WM tasks), near transfer (spatial-sequential and verbal WM tasks), far transfer (spatial abilities, everyday competences), and maintenance effects (with a follow-up at 1 month). The results showed an overall significant effect on the WM on the group receiving the training. The benefit was generally specific, however, with some transfer to other WM tasks, but only in the immediate (post-test) assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Working memory training in children: Effectiveness depends on temperament.
Studer-Luethi, Barbara; Bauer, Catherine; Perrig, Walter J
2016-02-01
Studies revealing transfer effects of working memory (WM) training on non-trained cognitive performance of children hold promising implications for scholastic learning. However, the results of existing training studies are not consistent and provoke debates about the potential and limitations of cognitive enhancement. To examine the influence of individual differences on training outcomes is a promising approach for finding causes for such inconsistencies. In this study, we implemented WM training in an elementary school setting. The aim was to investigate near and far transfer effects on cognitive abilities and academic achievement and to examine the moderating effects of a dispositional and a regulative temperament factor, neuroticism and effortful control. Ninety-nine second-graders were randomly assigned to 20 sessions of computer-based adaptive WM training, computer-based reading training, or a no-contact control group. For the WM training group, our analyses reveal near transfer on a visual WM task, far transfer on a vocabulary task as a proxy for crystallized intelligence, and increased academic achievement in reading and math by trend. Considering individual differences in temperament, we found that effortful control predicts larger training mean and gain scores and that there is a moderation effect of both temperament factors on post-training improvement: WM training condition predicted higher post-training gains compared to both control conditions only in children with high effortful control or low neuroticism. Our results suggest that a short but intensive WM training program can enhance cognitive abilities in children, but that sufficient self-regulative abilities and emotional stability are necessary for WM training to be effective.
Musician enhancement for speech-in-noise.
Parbery-Clark, Alexandra; Skoe, Erika; Lam, Carrie; Kraus, Nina
2009-12-01
To investigate the effect of musical training on speech-in-noise (SIN) performance, a complex task requiring the integration of working memory and stream segregation as well as the detection of time-varying perceptual cues. Previous research has indicated that, in combination with lifelong experience with musical stream segregation, musicians have better auditory perceptual skills and working memory. It was hypothesized that musicians would benefit from these factors and perform better on speech perception in noise than age-matched nonmusician controls. The performance of 16 musicians and 15 nonmusicians was compared on clinical measures of speech perception in noise-QuickSIN and Hearing-In-Noise Test (HINT). Working memory capacity and frequency discrimination were also assessed. All participants had normal hearing and were between the ages of 19 and 31 yr. To be categorized as a musician, participants needed to have started musical training before the age of 7 yr, have 10 or more years of consistent musical experience, and have practiced more than three times weekly within the 3 yr before study enrollment. Nonmusicians were categorized by the failure to meet the musician criteria, along with not having received musical training within the 7 yr before the study. Musicians outperformed the nonmusicians on both QuickSIN and HINT, in addition to having more fine-grained frequency discrimination and better working memory. Years of consistent musical practice correlated positively with QuickSIN, working memory, and frequency discrimination but not HINT. The results also indicate that working memory and frequency discrimination are more important for QuickSIN than for HINT. Musical experience appears to enhance the ability to hear speech in challenging listening environments. Large group differences were found for QuickSIN, and the results also suggest that this enhancement is derived in part from musicians' enhanced working memory and frequency discrimination. For HINT, in which performance was not linked to frequency discrimination ability and was only moderately linked to working memory, musicians still performed significantly better than the nonmusicians. The group differences for HINT were evident in the most difficult condition in which the speech and noise were presented from the same location and not spatially segregated. Understanding which cognitive and psychoacoustic factors as well as which lifelong experiences contribute to SIN may lead to more effective remediation programs for clinical populations for whom SIN poses a particular perceptual challenge. These results provide further evidence for musical training transferring to nonmusical domains and highlight the importance of taking musical training into consideration when evaluating a person's SIN ability in a clinical setting.
Modeling Learning and Memory Using Verbal Learning Tests: Results From ACTIVE
Gross, Alden L.
2013-01-01
Objective. To investigate the influence of memory training on initial recall and learning. Method. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Results. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen’s d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p < .001). Findings were replicated using the HVLT (decline in initial recall, d = 0.60, p = .01; pre- and posttraining acceleration in learning, d = 3.10, p < .001). Because of the immediate training boost, the memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. Discussion. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning. PMID:22929389
Optale, Gabriele; Urgesi, Cosimo; Busato, Valentina; Marin, Silvia; Piron, Lamberto; Priftis, Konstantinos; Gamberini, Luciano; Capodieci, Salvatore; Bordin, Adalberto
2010-05-01
Memory decline is a prevalent aspect of aging but may also be the first sign of cognitive pathology. Virtual reality (VR) using immersion and interaction may provide new approaches to the treatment of memory deficits in elderly individuals. The authors implemented a VR training intervention to try to lessen cognitive decline and improve memory functions. The authors randomly assigned 36 elderly residents of a rest care facility (median age 80 years) who were impaired on the Verbal Story Recall Test either to the experimental group (EG) or the control group (CG). The EG underwent 6 months of VR memory training (VRMT) that involved auditory stimulation and VR experiences in path finding. The initial training phase lasted 3 months (3 auditory and 3 VR sessions every 2 weeks), and there was a booster training phase during the following 3 months (1 auditory and 1 VR session per week). The CG underwent equivalent face-to-face training sessions using music therapy. Both groups participated in social and creative and assisted-mobility activities. Neuropsychological and functional evaluations were performed at baseline, after the initial training phase, and after the booster training phase. The EG showed significant improvements in memory tests, especially in long-term recall with an effect size of 0.7 and in several other aspects of cognition. In contrast, the CG showed progressive decline. The authors suggest that VRMT may improve memory function in elderly adults by enhancing focused attention.
Modeling learning and memory using verbal learning tests: results from ACTIVE.
Gross, Alden L; Rebok, George W; Brandt, Jason; Tommet, Doug; Marsiske, Michael; Jones, Richard N
2013-03-01
To investigate the influence of memory training on initial recall and learning. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen's d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p < .001). Findings were replicated using the HVLT (decline in initial recall, d = 0.60, p = .01; pre- and posttraining acceleration in learning, d = 3.10, p < .001). Because of the immediate training boost, the memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning.
Vilela, Thais Ceresér; Muller, Alexandre Pastoris; Damiani, Adriani Paganini; Macan, Tamires Pavei; da Silva, Sabrina; Canteiro, Paula Bortoluzzi; de Sena Casagrande, Alisson; Pedroso, Giulia Dos Santos; Nesi, Renata Tiscoski; de Andrade, Vanessa Moraes; de Pinho, Ricardo Aurino
2017-12-01
Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75 NTR receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1β. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.
[Efficacy of frequency-neurofeedback and Cogmed JM-working memory training in children with ADHD].
van Dongen-Boomsma, M; Vollebregt, M A; Slaats-Willemse, D; Buitelaar, J K
2015-01-01
The need for and the interest in non-pharmacological treatments for children with ADHD are increasing. The treatments include electro-encephalogram (EEG) frequency-neurofeedback and Cogmed working memory training. To investigate the efficacy of frequency-neurofeedback and Cogmed working memory training in children with ADHD. Forty-one children with ADHD (aged 8-15 years) were assigned to frequency-neurofeedback or to placebo-neurofeedback in a randomized double-blind trial. We took measurements to find out whether frequency-neurofeedback had reduced the severity of the ADHD-symptoms, and/or had improved neurocognitive ability and global clinical functioning. Fifty-one children with ADHD (aged 5-7 years) were assigned to the active Cogmed JM-working memory training or to the placebo working memory training in a randomised double-blind trial. We took measurements to find out whether Cogmed JM-working memory training had reduced the ADHD symptoms, and/or had improved neurocognitive ability, daily performance and global clinical functioning. The ADHD symptoms and global clinical functioning of the children in both neurofeedback groups improved. However, frequency-neurofeedback did nor produce any significantly better treatment results than did the placebo neurofeedback. At the neurocognitive level, frequency-neurofeedback did not yield any measurements that were significantly superior to those achieved with placebo feedback. Various outcome measurements improved in both groups with memory training. However, the active working memory training was not found to have produced significantly better results than the placebo training with regards to the ADHD symptoms, neurocognitive ability and daily and global functioning. Children from the active working memory training group showed improvements in trained working memory tasks but not on untrained tasks. Neither study produced any conclusive evidence for the efficacy of the investigated treatments in children with ADHD. However, both types of treatments can be further improved. Furthermore, the controlled designs may have restricted the embedding of the treatments. Because of possible improvements in the treatments in the future and because of the design restrictions affecting the treatments in their present form, it is still too early to draw any definitive conclusions about the validity and advantages of the two treatment methods.
Acute Sleep Deprivation Blocks Short- and Long-Term Operant Memory in Aplysia
Krishnan, Harini C.; Gandour, Catherine E.; Ramos, Joshua L.; Wrinkle, Mariah C.; Sanchez-Pacheco, Joseph J.; Lyons, Lisa C.
2016-01-01
Study Objectives: Insufficient sleep in individuals appears increasingly common due to the demands of modern work schedules and technology use. Consequently, there is a growing need to understand the interactions between sleep deprivation and memory. The current study determined the effects of acute sleep deprivation on short and long-term associative memory using the marine mollusk Aplysia californica, a relatively simple model system well known for studies of learning and memory. Methods: Aplysia were sleep deprived for 9 hours using context changes and tactile stimulation either prior to or after training for the operant learning paradigm, learning that food is inedible (LFI). The effects of sleep deprivation on short-term (STM) and long-term memory (LTM) were assessed. Results: Acute sleep deprivation prior to LFI training impaired the induction of STM and LTM with persistent effects lasting at least 24 h. Sleep deprivation immediately after training blocked the consolidation of LTM. However, sleep deprivation following the period of molecular consolidation did not affect memory recall. Memory impairments were independent of handling-induced stress, as daytime handled control animals demonstrated no memory deficits. Additional training immediately after sleep deprivation failed to rescue the induction of memory, but additional training alleviated the persistent impairment in memory induction when training occurred 24 h following sleep deprivation. Conclusions: Acute sleep deprivation inhibited the induction and consolidation, but not the recall of memory. These behavioral studies establish Aplysia as an effective model system for studying the interactions between sleep and memory formation. Citation: Krishnan HC, Gandour CE, Ramos JL, Wrinkle MC, Sanchez-Pacheco JJ, Lyons LC. Acute sleep deprivation blocks short- and long-term operant memory in Aplysia. SLEEP 2016;39(12):2161–2171. PMID:27748243
A Metacognitive Visuospatial Working Memory Training for Children
ERIC Educational Resources Information Center
Caviola, Sara; Mammarella, Irene C.; Cornoldi, Cesare; Lucangeli, Daniela
2009-01-01
The paper studies whether visuospatial working memory (VSWM) and, specifically, recall of sequential-spatial information, can be improved by metacognitive training. Twenty-two fourth-grade children were involved in seven sessions of sequential-spatial memory training, while twenty-four children attended lessons given by their teacher. The…
Vieira, Luiza Jane Eyre de Souza; Silva, Raimunda Magalhães da; Cavalcanti, Ludmila Fontenele; Deslandes, Suely Ferreira
2015-11-01
This article analyzes the training offered to municipal public employees to confront sexual violence against children and adolescents in four Brazilian capitals. Based on a multiple case study, it focuses on the training programs offered in the 2010-2011 biennium by the municipal government for professionals and managers in the public health network. We analyzed 66 semi-structured interviews and written documents pertaining to the training actions. We observed an unequal investment among the capitals and a lack of specificity in the treatment of the themes. There is a considerable lack of institutional memory which complicates the analysis of professional training strategies. Healthcare was the field which trained their professionals the most, including the subject of notification in training content. We noted little investment in training oriented toward the prevention of violence and the promotion of protective relationships and links. We emphasized the inductive role of federal and state programs in the areas of Tourism and Education. Few initiatives included the participation of more than one public sector. We suggest the creation of a training plan about violence and the sexual rights of children and adolescents, and in particular about sexual violence.
Mueller, Genevieve R; Moloff, Alan L; Wedmore, Ian S; Schoeff, Jonathan E; Laporta, Anthony J
2012-01-01
A delicate balance exists between a beneficial stress response that enhances memory and recall performance and a detrimental high stress response that impairs memory and learning. Repetitive training in stressful situations enables people to lower their stress levels from the detrimental range to a more beneficial one.1 This is particularly true for physicians in training as they seek to achieve advanced skills and knowledge in the fields of triage, emergency medicine, and surgery prior to graduation. This need is significant for medical students entering military service after graduation. We theorize that military medical students can advance their proficiencies through an Intensive Skills Week (ISW) prior to entering their third and forth year rotations. To test this theory, Rocky Vista University will hold a week long high-intensity first-responder, emergency medicine and surgical training course, facilitated by military medical physicians, to further students? skills and maximize training using the Human Worn Partial Surgical Task Simulator (Cut Suit). We also see the possible benefit to physician and non-physician military personnel, especially Special Operations Forces (SOF) medical personnel, from developing and implementing similar training programs when live tissue or cadaver models are unavailable or not feasible. Stress, cortisol, medical student, enhanced learning, scenario, high intensity. 2012.
Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious.
ERIC Educational Resources Information Center
Dunning, Darren L.; Holmes, Joni; Gathercole, Susan E.
2013-01-01
Children with low working memory typically make poor educational progress, and it has been speculated that difficulties in meeting the heavy working memory demands of the classroom may be a contributory factor. Intensive working memory training has been shown to boost performance on untrained memory tasks in a variety of populations. This first…
Post-Retrieval Extinction Attenuates Cocaine Memories
Sartor, Gregory C; Aston-Jones, Gary
2014-01-01
Recent studies have shown that post-retrieval extinction training attenuates fear and reward-related memories in both humans and rodents. This noninvasive, behavioral approach has the potential to be used in clinical settings to treat maladaptive memories that underlie several psychiatric disorders, including drug addiction. However, few studies to date have used a post-retrieval extinction approach to attenuate addiction-related memories. In the current study, we attempted to disrupt cocaine-related memories by using the post-retrieval extinction paradigm in male Sprague Dawley rats. Results revealed that starting extinction training 1 h after cocaine contextual memory was retrieved significantly attenuated cocaine-primed reinstatement of conditioned place preference (CPP) and relapse of cocaine CPP (drug-free and cocaine-primed) following 30 days of abstinence. However, animals that did not retrieve the contextual cocaine memory before extinction training, or animals that began extinction training 24 h after retrieval (outside of the reconsolidation window), demonstrated normal cocaine CPP. Conversely, animals that received additional CPP conditioning, rather than extinction training, 1 h after reactivation of cocaine memory showed enhanced cocaine CPP compared with animals that did not reactivate the cocaine memory before conditioning. These results reveal that a behavioral manipulation that takes advantage of reconsolidation and extinction of drug memories may be useful in decreasing preference for, and abuse of, cocaine. PMID:24257156
Rose, Nathan S.; Rendell, Peter G.; Hering, Alexandra; Kliegel, Matthias; Bidelman, Gavin M.; Craik, Fergus I. M.
2015-01-01
Prospective memory (PM) – the ability to remember and successfully execute our intentions and planned activities – is critical for functional independence and declines with age, yet few studies have attempted to train PM in older adults. We developed a PM training program using the Virtual Week computer game. Trained participants played the game in 12, 1-h sessions over 1 month. Measures of neuropsychological functions, lab-based PM, event-related potentials (ERPs) during performance on a lab-based PM task, instrumental activities of daily living, and real-world PM were assessed before and after training. Performance was compared to both no-contact and active (music training) control groups. PM on the Virtual Week game dramatically improved following training relative to controls, suggesting PM plasticity is preserved in older adults. Relative to control participants, training did not produce reliable transfer to laboratory-based tasks, but was associated with a reduction of an ERP component (sustained negativity over occipito-parietal cortex) associated with processing PM cues, indicative of more automatic PM retrieval. Most importantly, training produced far transfer to real-world outcomes including improvements in performance on real-world PM and activities of daily living. Real-world gains were not observed in either control group. Our findings demonstrate that short-term training with the Virtual Week game produces cognitive and neural plasticity that may result in real-world benefits to supporting functional independence in older adulthood. PMID:26578936
Guimond, Synthia; Lepage, Martin
2016-01-01
Available cognitive remediation interventions have a significant but relatively small to moderate impact on episodic memory in schizophrenia. The present study aimed to evaluate the efficacy and feasibility of a brief novel episodic memory training targeting the self-initiation of semantic encoding strategies. To select patients with such deficits, 28 participants with schizophrenia performed our Semantic Encoding Memory Task (SEMT) that provides a measure of self-initiated semantic encoding strategies. This task identified a deficit in 13 participants who were then offered two 60-minute training sessions one week apart. After the training, patients performed an alternate version of the SEMT. The CVLT-II (a standardised measure of semantic encoding strategies) and the BVMT-R (a control spatial memory task) were used to quantify memory pre- and post-training. After the training, participants were significantly better at self-initiating semantic encoding strategies in the SEMT (p = .004) and in the CVLT-II (p = .002). No significant differences were found in the BVMT-R. The current study demonstrates that a brief and specific training in memory strategies can help patients to improve a deficient memory process in schizophrenia. Future studies will need to test this intervention further using a randomised controlled trial, and to explore its functional impact.
Working memory training in older adults: Bayesian evidence supporting the absence of transfer.
Guye, Sabrina; von Bastian, Claudia C
2017-12-01
The question of whether working memory training leads to generalized improvements in untrained cognitive abilities is a longstanding and heatedly debated one. Previous research provides mostly ambiguous evidence regarding the presence or absence of transfer effects in older adults. Thus, to draw decisive conclusions regarding the effectiveness of working memory training interventions, methodologically sound studies with larger sample sizes are needed. In this study, we investigated whether or not a computer-based working memory training intervention induced near and far transfer in a large sample of 142 healthy older adults (65 to 80 years). Therefore, we randomly assigned participants to either the experimental group, which completed 25 sessions of adaptive, process-based working memory training, or to the active, adaptive visual search control group. Bayesian linear mixed-effects models were used to estimate performance improvements on the level of abilities, using multiple indicator tasks for near (working memory) and far transfer (fluid intelligence, shifting, and inhibition). Our data provided consistent evidence supporting the absence of near transfer to untrained working memory tasks and the absence of far transfer effects to all of the assessed abilities. Our results suggest that working memory training is not an effective way to improve general cognitive functioning in old age. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Leadership training for undergraduate medical students.
Maddalena, Victor
2016-07-04
Purpose Physicians play an important leadership role in the management and governance of the healthcare system. Yet, many physicians lack formal management and leadership training to prepare them for this challenging role. This Viewpoint article argues that leadership concepts need to be introduced to undergraduate medical students early and throughout their medical education. Design/methodology/approach Leadership is an integral part of medical practice. The recent inclusion of "Leader" competency in the CanMEDS 2015 represents a subtle but important shift from the previous "manager" competency. Providing medical students with the basics of leadership concepts early in their medical education allows them to integrate leadership principles into their professional practice. Findings The Faculty of Medicine at the Memorial University of Newfoundland (MUN) has developed an eight-module, fully online Physician Leadership Certificate for their undergraduate medical education program. This program is cited as an example of an undergraduate medical curriculum that offers leadership training throughout the 4 years of the MD program. Originality/value There are a number of continuing professional development opportunities for physicians in the area of management and leadership. This Viewpoint article challenges undergraduate medical education programs to develop and integrate leadership training in their curricula.
ERIC Educational Resources Information Center
Gathercole, Susan E.
2014-01-01
Chacko et al.'s investigation of the clinical utility of WM training to alleviate key symptoms of ADHD is timely and substantial, and marks a significant point in cognitive training research. Cogmed Working Memory Training (CWMT) involves intensive practice on multiple memory span tasks that increase in difficulty as performance improves with…
ERIC Educational Resources Information Center
Peng, Peng; Fuchs, Douglas
2017-01-01
Researchers are increasingly interested in working memory (WM) training. However, it is unclear whether it strengthens comprehension in young children who are at risk for learning difficulties. We conducted a modest study of whether the training of verbal WM would improve verbal WM and passage listening comprehension and whether training effects…
Brain plasticity and functional losses in the aged: scientific bases for a novel intervention.
Mahncke, Henry W; Bronstone, Amy; Merzenich, Michael M
2006-01-01
Aging is associated with progressive losses in function across multiple systems, including sensation, cognition, memory, motor control, and affect. The traditional view has been that functional decline in aging is unavoidable because it is a direct consequence of brain machinery wearing down over time. In recent years, an alternative perspective has emerged, which elaborates on this traditional view of age-related functional decline. This new viewpoint--based upon decades of research in neuroscience, experimental psychology, and other related fields--argues that as people age, brain plasticity processes with negative consequences begin to dominate brain functioning. Four core factors--reduced schedules of brain activity, noisy processing, weakened neuromodulatory control, and negative learning--interact to create a self-reinforcing downward spiral of degraded brain function in older adults. This downward spiral might begin from reduced brain activity due to behavioral change, from a loss in brain function driven by aging brain machinery, or more likely from both. In aggregate, these interrelated factors promote plastic changes in the brain that result in age-related functional decline. This new viewpoint on the root causes of functional decline immediately suggests a remedial approach. Studies of adult brain plasticity have shown that substantial improvement in function and/or recovery from losses in sensation, cognition, memory, motor control, and affect should be possible, using appropriately designed behavioral training paradigms. Driving brain plasticity with positive outcomes requires engaging older adults in demanding sensory, cognitive, and motor activities on an intensive basis, in a behavioral context designed to re-engage and strengthen the neuromodulatory systems that control learning in adults, with the goal of increasing the fidelity, reliability, and power of cortical representations. Such a training program would serve a substantial unmet need in aging adults. Current treatments directed at age-related functional losses are limited in important ways. Pharmacological therapies can target only a limited number of the many changes believed to underlie functional decline. Behavioral approaches focus on teaching specific strategies to aid higher order cognitive functions, and do not usually aspire to fundamentally change brain function. A brain-plasticity-based training program would potentially be applicable to all aging adults with the promise of improving their operational capabilities. We have constructed such a brain-plasticity-based training program and conducted an initial randomized controlled pilot study to evaluate the feasibility of its use by older adults. A main objective of this initial study was to estimate the effect size on standardized neuropsychological measures of memory. We found that older adults could learn the training program quickly, and could use it entirely unsupervised for the majority of the time required. Pre- and posttesting documented a significant improvement in memory within the training group (effect size 0.41, p<0.0005), with no significant within-group changes in a time-matched computer using active control group, or in a no-contact control group. Thus, a brain-plasticity-based intervention targeting normal age-related cognitive decline may potentially offer benefit to a broad population of older adults.
2013-01-01
Background To increase the ecological validity of neuropsychological instruments the use of virtual reality (VR) applications can be considered as an effective tool in the field of cognitive neurorehabilitation. Despite the growing use of VR programs, only few studies have considered the application of everyday activities like shopping or travelling in VR training devices. Methods We developed a novel 360°- VR supermarket, which is displayed on a circular arrangement of 8 touch-screens – the “OctaVis”. In this setting, healthy human adults had to memorize an auditorily presented shopping list (list A) and subsequently buy all remembered products of this list in the VR supermarket. This procedure was accomplished on three consecutive days. On day four, a new shopping list (list B) was introduced and participants had to memorize and buy only products of this list. On day five, participants had to buy all remembered items of list A again, but without new presentation of list A. Additionally, we obtained measures of participants’ presence, immersion and figural-spatial memory abilities. We also tested a sample of patients with focal epilepsy with an extended version of our shopping task, which consisted of eight days of training. Results We observed a comprehensive and stable effect of learning for the number of correct products, the required time for shopping, and the length of movement trajectories in the VR supermarket in the course of the training program. Task performance was significantly correlated with participants’ figural-spatial memory abilities and subjective level of immersion into the VR. Conclusions Learning effects in our paradigm extend beyond mere verbal learning of the shopping list as the data show evidence for multi-layered learning (at least visual-spatial, strategic, and verbal) on concordant measures. Importantly, learning also correlated with measures of figural-spatial memory and the degree of immersion into the VR. We propose that cognitive training with the VR supermarket program in the OctaVis will be efficient for the assessment and training of real-life cognitive abilities in healthy subjects and patients with epilepsy. It is most likely that our findings will also apply for patients with cognitive disabilities resulting from other neurological and psychiatric syndromes. PMID:23618596
Grewe, Philip; Kohsik, Agnes; Flentge, David; Dyck, Eugen; Botsch, Mario; Winter, York; Markowitsch, Hans J; Bien, Christian G; Piefke, Martina
2013-04-23
To increase the ecological validity of neuropsychological instruments the use of virtual reality (VR) applications can be considered as an effective tool in the field of cognitive neurorehabilitation. Despite the growing use of VR programs, only few studies have considered the application of everyday activities like shopping or travelling in VR training devices. We developed a novel 360°-VR supermarket, which is displayed on a circular arrangement of 8 touch-screens--the "OctaVis". In this setting, healthy human adults had to memorize an auditorily presented shopping list (list A) and subsequently buy all remembered products of this list in the VR supermarket. This procedure was accomplished on three consecutive days. On day four, a new shopping list (list B) was introduced and participants had to memorize and buy only products of this list. On day five, participants had to buy all remembered items of list A again, but without new presentation of list A. Additionally, we obtained measures of participants' presence, immersion and figural-spatial memory abilities. We also tested a sample of patients with focal epilepsy with an extended version of our shopping task, which consisted of eight days of training. We observed a comprehensive and stable effect of learning for the number of correct products, the required time for shopping, and the length of movement trajectories in the VR supermarket in the course of the training program. Task performance was significantly correlated with participants' figural-spatial memory abilities and subjective level of immersion into the VR. Learning effects in our paradigm extend beyond mere verbal learning of the shopping list as the data show evidence for multi-layered learning (at least visual-spatial, strategic, and verbal) on concordant measures. Importantly, learning also correlated with measures of figural-spatial memory and the degree of immersion into the VR. We propose that cognitive training with the VR supermarket program in the OctaVis will be efficient for the assessment and training of real-life cognitive abilities in healthy subjects and patients with epilepsy. It is most likely that our findings will also apply for patients with cognitive disabilities resulting from other neurological and psychiatric syndromes.
Video Game Training Enhances Visuospatial Working Memory and Episodic Memory in Older Adults
Toril, Pilar; Reales, José M.; Mayas, Julia; Ballesteros, Soledad
2016-01-01
In this longitudinal intervention study with experimental and control groups, we investigated the effects of video game training on the visuospatial working memory (WM) and episodic memory of healthy older adults. Participants were 19 volunteer older adults, who received 15 1-h video game training sessions with a series of video games selected from a commercial package (Lumosity), and a control group of 20 healthy older adults. The results showed that the performance of the trainees improved significantly in all the practiced video games. Most importantly, we found significant enhancements after training in the trained group and no change in the control group in two computerized tasks designed to assess visuospatial WM, namely the Corsi blocks task and the Jigsaw puzzle task. The episodic memory and short-term memory of the trainees also improved. Gains in some WM and episodic memory tasks were maintained during a 3-month follow-up period. These results suggest that the aging brain still retains some degree of plasticity, and that video game training might be an effective intervention tool to improve WM and other cognitive functions in older adults. PMID:27199723
Segretin, M. Soledad; Lipina, Sebastián J.; Hermida, M. Julia; Sheffield, Tiffany D.; Nelson, Jennifer M.; Espy, Kimberly A.; Colombo, Jorge A.
2014-01-01
The association between socioeconomic status and child cognitive development, and the positive impact of interventions aimed at optimizing cognitive performance, are well-documented. However, few studies have examined how specific socio-environmental factors may moderate the impact of cognitive interventions among poor children. In the present study, we examined how such factors predicted cognitive trajectories during the preschool years, in two samples of children from Argentina, who participated in two cognitive training programs (CTPs) between the years 2002 and 2005: the School Intervention Program (SIP; N = 745) and the Cognitive Training Program (CTP; N = 333). In both programs children were trained weekly for 16 weeks and tested before and after the intervention using a battery of tasks assessing several cognitive control processes (attention, inhibitory control, working memory, flexibility and planning). After applying mixed model analyses, we identified sets of socio-environmental predictors that were associated with higher levels of pre-intervention cognitive control performance and with increased improvement in cognitive control from pre- to post-intervention. Child age, housing conditions, social resources, parental occupation and family composition were associated with performance in specific cognitive domains at baseline. Housing conditions, social resources, parental occupation, family composition, maternal physical health, age, group (intervention/control) and the number of training sessions were related to improvements in specific cognitive skills from pre- to post-training. PMID:24659975
Active materials by four-dimension printing
NASA Astrophysics Data System (ADS)
Ge, Qi; Qi, H. Jerry; Dunn, Martin L.
2013-09-01
We advance a paradigm of printed active composite materials realized by directly printing glassy shape memory polymer fibers in an elastomeric matrix. We imbue the active composites with intelligence via a programmed lamina and laminate architecture and a subsequent thermomechanical training process. The initial configuration is created by three-dimension (3D) printing, and then the programmed action of the shape memory fibers creates time dependence of the configuration—the four-dimension (4D) aspect. We design and print laminates in thin plate form that can be thermomechanically programmed to assume complex three-dimensional configurations including bent, coiled, and twisted strips, folded shapes, and complex contoured shapes with nonuniform, spatially varying curvature. The original flat plate shape can be recovered by heating the material again. We also show how the printed active composites can be directly integrated with other printed functionalities to create devices; here we demonstrate this by creating a structure that can assemble itself.
Savulich, George; Piercy, Thomas; Fox, Chris; Suckling, John; Rowe, James B; O’Brien, John T
2017-01-01
Abstract Background Cognitive training is effective in patients with mild cognitive impairment but does not typically address the motivational deficits associated with older populations with memory difficulties. Methods We conducted a randomized controlled trial of cognitive training using a novel memory game on an iPad in 42 patients with a diagnosis of amnestic mild cognitive impairment assigned to either the cognitive training (n=21; 8 hours of gameplay over 4 weeks) or control (n=21; clinic visits as usual) groups. Results Significant time-by-pattern-by-group interactions were found for cognitive performance in terms of the number of errors made and trials needed on the Cambridge Neuropsychological Test Automated Battery Paired Associates Learning task (P=.044; P=.027). Significant time-by-group interactions were also found for the Cambridge Neuropsychological Test Automated Battery Paired Associates Learning first trial memory score (P=.002), Mini-Mental State Examination (P=.036), the Brief Visuospatial Memory Test (P=.032), and the Apathy Evaluation Scale (P=.026). Within-group comparisons revealed highly specific effects of cognitive training on episodic memory. The cognitive training group maintained high levels of enjoyment and motivation to continue after each hour of gameplay, with self-confidence and self-rated memory ability improving over time. Conclusions Episodic memory robustly improved in the cognitive training group. “Gamified” cognitive training may also enhance visuospatial abilities in patients with amnestic mild cognitive impairment. Gamification maximizes engagement with cognitive training by increasing motivation and could complement pharmacological treatments for amnestic mild cognitive impairment and mild Alzheimer’s disease. Larger, more controlled trials are needed to replicate and extend these findings. PMID:28898959
Savulich, George; Piercy, Thomas; Fox, Chris; Suckling, John; Rowe, James B; O'Brien, John T; Sahakian, Barbara J
2017-08-01
Cognitive training is effective in patients with mild cognitive impairment but does not typically address the motivational deficits associated with older populations with memory difficulties. We conducted a randomized controlled trial of cognitive training using a novel memory game on an iPad in 42 patients with a diagnosis of amnestic mild cognitive impairment assigned to either the cognitive training (n=21; 8 hours of gameplay over 4 weeks) or control (n=21; clinic visits as usual) groups. Significant time-by-pattern-by-group interactions were found for cognitive performance in terms of the number of errors made and trials needed on the Cambridge Neuropsychological Test Automated Battery Paired Associates Learning task (P=.044; P=.027). Significant time-by-group interactions were also found for the Cambridge Neuropsychological Test Automated Battery Paired Associates Learning first trial memory score (P=.002), Mini-Mental State Examination (P=.036), the Brief Visuospatial Memory Test (P=.032), and the Apathy Evaluation Scale (P=.026). Within-group comparisons revealed highly specific effects of cognitive training on episodic memory. The cognitive training group maintained high levels of enjoyment and motivation to continue after each hour of gameplay, with self-confidence and self-rated memory ability improving over time. Episodic memory robustly improved in the cognitive training group. "Gamified" cognitive training may also enhance visuospatial abilities in patients with amnestic mild cognitive impairment. Gamification maximizes engagement with cognitive training by increasing motivation and could complement pharmacological treatments for amnestic mild cognitive impairment and mild Alzheimer's disease. Larger, more controlled trials are needed to replicate and extend these findings. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Boivin, Michael J; Bangirana, Paul; Nakasujja, Noeline; Page, Connie F; Shohet, Cilly; Givon, Deborah; Bass, Judith K; Opoka, Robert O; Klein, Pnina S
2013-11-01
To evaluate mediational intervention for sensitizing caregivers (MISC). MISC biweekly caregiver training significantly enhanced child development compared with biweekly training on health and nutrition (active control) and to evaluate whether MISC training improved the emotional well-being of the caregivers compared with controls. Sixty of 120 rural Ugandan preschool child/caregiver dyads with HIV were assigned by randomized clusters to biweekly MISC training, alternating between home and clinic for 1 year. Control dyads received a health and nutrition curriculum. Children were evaluated at baseline, 6 months, and 1 year with the Mullen Early Learning Scales and the Color-Object Association Test for memory. Caldwell Home Observation for Measurement of the Environment and videotaped child/caregiver MISC interactions also were evaluated. Caregivers were evaluated for depression and anxiety with the Hopkins Symptoms Checklist. Between-group repeated-measures ANCOVA comparisons were made with age, sex, CD4 levels, viral load, material socioeconomic status, physical development, and highly active anti-retroviral therapy treatment status as covariates. The children given MISC had significantly greater gains compared with controls on the Mullen Visual Reception scale (visual-spatial memory) and on Color-Object Association Test memory. MISC caregivers significantly improved on Caldwell Home Observation for Measurement of the Environment scale and total frequency of MISC videotaped interactions. MISC caregivers also were less depressed. Mortality was less for children given MISC compared with controls during the training year. MISC was effective in teaching Ugandan caregivers to enhance their children's cognitive development through practical and sustainable techniques applied during daily interactions in the home. Copyright © 2013 Mosby, Inc. All rights reserved.
Mnemonic training reshapes brain networks to support superior memory
Dresler, Martin; Shirer, William R.; Konrad, Boris N.; Müller, Nils C.J.; Wagner, Isabella C.; Fernández, Guillén; Czisch, Michael; Greicius, Michael D.
2017-01-01
Summary Memory skills strongly differ across the general population, however little is known about the brain characteristics supporting superior memory performance. Here, we assess functional brain network organization of 23 of the world’s most successful memory athletes and matched controls by fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that in a group of naïve controls, functional connectivity changes induced by six weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain’s functional network organization to enable superior memory performance. PMID:28279356
It Is Time to Take Memory Training Seriously
ERIC Educational Resources Information Center
Buckley, Sue
2008-01-01
For more than 25 years people have known that children and adults with Down syndrome have a specific impairments in working memory. Within the working memory system, they have particular difficulty with the verbal short-term memory part of the system. However, memory training may become more popular as recent work with both children with Down…
Miotto, Eliane C; Savage, Cary R; Evans, Jonathan J; Wilson, Barbara A; Martin, Maria G M; Balardin, Joana B; Barros, Fabio G; Garrido, Griselda; Teixeira, Manoel J; Amaro Junior, Edson
2013-03-01
Memory deficit is a frequent cognitive disorder following acquired prefrontal cortex lesions. In the present study, we investigated the brain correlates of a short semantic strategy training and memory performance of patients with distinct prefrontal cortex lesions using fMRI and cognitive tests. Twenty-one adult patients with post-acute prefrontal cortex (PFC) lesions, twelve with left dorsolateral PFC (LPFC) and nine with bilateral orbitofrontal cortex (BOFC) were assessed before and after a short cognitive semantic training using a verbal memory encoding paradigm during scanning and neuropsychological tests outside the scanner. After the semantic strategy training both groups of patients showed significant behavioral improvement in verbal memory recall and use of semantic strategies. In the LPFC group, greater activity in left inferior and medial frontal gyrus, precentral gyrus and insula was found after training. For the BOFC group, a greater activation was found in the left parietal cortex, right cingulated and precuneus after training. The activation of these specific areas in the memory and executive networks following cognitive training was associated to compensatory brain mechanisms and application of the semantic strategy. Copyright © 2012 Elsevier B.V. All rights reserved.
Do Computerised Training Programmes Designed to Improve Working Memory Work?
ERIC Educational Resources Information Center
Apter, Brian J. B.
2012-01-01
A critical review of working memory training research during the last 10 years is provided. Particular attention is given to research that has attempted to investigate the efficacy of commercially marketed computerised training programmes such as "Cogmed" and "Jungle Memory". Claimed benefits are questioned on the basis that research methodologies…
Working Memory Training for Adolescents with Cannabis Use Disorders: A Randomized Controlled Trial
ERIC Educational Resources Information Center
Sweeney, Mary M.; Rass, Olga; DiClemente, Cara; Schacht, Rebecca L.; Vo, Hoa T.; Fishman, Marc J.; Leoutsakos, Jeannie-Marie S.; Mintzer, Miriam Z.; Johnson, Matthew W.
2018-01-01
Adolescent cannabis use is associated with working memory impairment. The present randomized controlled trial assigned adolescents ages 14 to 21 enrolled in cannabis use treatment to receive either working memory training (experimental group) or a control training (control group) as an adjunctive treatment. Cognitive function, drug use, and other…
Training of attention and memory deficits in children with acquired brain injury.
Sjö, N Madsen; Spellerberg, S; Weidner, S; Kihlgren, M
2010-02-01
This pilot study concerns cognitive rehabilitation of children with acquired brain injury (ABI). The aim is threefold; to determine (1) whether the Amsterdam Memory and Attention Training for Children (AMAT-C) programme for children with ABI can be integrated in the child's school, (2) whether supervision in the school-setting maintains the child's motivation throughout the training programme and (3) whether positive changes in memory, attention and executive functions are found with this implementation of the training method. Seven children with memory and/or attention deficits after ABI were trained with AMAT-C. Measures used were programme evaluation questions, neuropsychological tests and a questionnaire concerning executive functions. Overall, children, parents and trainers were satisfied with the programme and the children were motivated throughout the programme. The children showed significant improvements in neuropsychological subtests, primarily in tests of learning and memory. No overall change in executive functions was noted. Provision of AMAT-C training and supervision at the child's school appears to ensure (1) satisfaction with the programme, (2) sustaining of motivation and (3) improvements in learning and memory.
Loomes, Carly; Rasmussen, Carmen; Pei, Jacqueline; Manji, Shazeen; Andrew, Gail
2008-01-01
A key area of weakness in individuals with fetal alcohol spectrum disorder (FASD) is working memory, thus the goal of this study was to determine whether teaching children (aged 4-11) with FASD verbal rehearsal would increase their memory. Rehearsal training has been effective in other populations with working memory difficulties, so we hypothesized that children with FASD would also benefit from rehearsal training. Children were divided into an Experimental group, who received rehearsal training and a Control group, who did not receive training. All children were tested on digit span tasks over three sessions: a pretest (baseline) and then post-test 1 and post-test 2 (where only the Experimental group received rehearsal training). The Experimental group showed a significant increase in performance across session but the Control group did not. Children in the Experimental group performed significantly higher than the Control group on post-test 2 but not on the pretest or post-test 1. More children in the Experimental group showed behavioral evidence and self-report of rehearsal after training. Rehearsal training was successful at increasing the memory for numbers among children with FASD and may help to ameliorate working memory difficulties in FASD, ultimately supporting academic and developmental growth of children with FASD.
Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation.
Brown, Kirk Warren; Goodman, Robert J; Ryan, Richard M; Anālayo, Bhikkhu
2016-01-01
Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training-episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance.
Lichtenfels, Martina; Dornelles, Arethuza da Silva; Petry, Fernanda Dos Santos; Blank, Martina; de Farias, Caroline Brunetto; Roesler, Rafael; Schwartsmann, Gilberto
2017-11-01
Over two-thirds of women with breast cancer have positive tumors for hormone receptors, and these patients undergo treatment with endocrine therapy, tamoxifen being the most widely used agent. Despite being very effective in breast cancer treatment, tamoxifen is associated with side effects that include cognitive impairments. However, the specific aspects and mechanisms underlying these impairments remain to be characterized. Here, we have investigated the effects of tamoxifen and interaction with estrogen receptors on formation of memory for inhibitory avoidance conditioning in female rats. In the first experiment, Wistar female rats received a single oral dose of tamoxifen (1, 3, or 10 mg/kg) or saline by gavage immediately after training and were tested for memory consolidation 24 h after training. In the second experiment, rats received a single dose of 1 mg/kg tamoxifen or saline by gavage 3 h after training and were tested 24 h after training for memory consolidation. In the third experiment, rats received a subcutaneous injection with estrogen receptor α agonist or estrogen receptor beta agonist 30 min before the training. After training, rats received a single oral dose of tamoxifen 1 mg/kg or saline and were tested 24 h after training. In the fourth experiment, rats were trained and tested 24 h later. Immediately after test, rats received a single dose of tamoxifen (1 mg/kg) or saline by gavage and were given four additional daily test trials followed by a re-instatement. Tamoxifen at 1 mg/kg impaired memory consolidation when given immediately after training and the estrogen receptor alpha agonist improved the tamoxifen-related memory impairment. Moreover, tamoxifen impairs memory consolidation of the test. These findings indicate that estrogen receptors regulate the early phase of memory consolidation and the effects of tamoxifen on memory consolidation.
Lawlor-Savage, Linette; Goghari, Vina M.
2017-01-01
Training of working memory as a method of increasing working memory capacity and fluid intelligence has received much attention in recent years. This burgeoning field remains highly controversial with empirically-backed disagreements at all levels of evidence, including individual studies, systematic reviews, and even meta-analyses. The current study investigated the effect of a randomized six week online working memory intervention on untrained cognitive abilities in a community-recruited sample of healthy young adults, in relation to both a processing speed training active control condition, as well as a no-contact control condition. Results of traditional null hypothesis significance testing, as well as Bayesian factor analyses, revealed support for the null hypothesis across all cognitive tests administered before and after training. Importantly, all three groups were similar at pre-training for a variety of individual variables purported to moderate transfer of training to fluid intelligence, including personality traits, motivation to train, and expectations of cognitive improvement from training. Because these results are consistent with experimental trials of equal or greater methodological rigor, we suggest that future research re-focus on: 1) other promising interventions known to increase memory performance in healthy young adults, and; 2) examining sub-populations or alternative populations in which working memory training may be efficacious. PMID:28558000
Method of preparing a two-way shape memory alloy
Johnson, Alfred D.
1984-01-01
A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress.
Schmicker, Marlen; Schwefel, Melanie; Vellage, Anne-Katrin; Müller, Notger G
2016-04-01
Memory training (MT) in older adults with memory deficits often leads to frustration and, therefore, is usually not recommended. Here, we pursued an alternative approach and looked for transfer effects of 1-week attentional filter training (FT) on working memory performance and its neuronal correlates in young healthy humans. The FT effects were compared with pure MT, which lacked the necessity to filter out irrelevant information. Before and after training, all participants performed an fMRI experiment that included a combined task in which stimuli had to be both filtered based on color and stored in memory. We found that training induced processing changes by biasing either filtering or storage. FT induced larger transfer effects on the untrained cognitive function than MT. FT increased neuronal activity in frontal parts of the neuronal gatekeeper network, which is proposed to hinder irrelevant information from being unnecessarily stored in memory. MT decreased neuronal activity in the BG part of the gatekeeper network but enhanced activity in the parietal storage node. We take these findings as evidence that FT renders working memory more efficient by strengthening the BG-prefrontal gatekeeper network. MT, on the other hand, simply stimulates storage of any kind of information. These findings illustrate a tight connection between working memory and attention, and they may open up new avenues for ameliorating memory deficits in patients with cognitive impairments.
Zinke, Katharina; Zeintl, Melanie; Rose, Nathan S; Putzmann, Julia; Pydde, Andrea; Kliegel, Matthias
2014-01-01
Recent studies suggest that working memory training may benefit older adults; however, findings regarding training and transfer effects are mixed. The current study aimed to investigate the effects of a process-based training intervention in a diverse sample of older adults and explored possible moderators of training and transfer effects. For that purpose, 80 older adults (65-95 years) were assigned either to a training group that worked on visuospatial, verbal, and executive working memory tasks for 9 sessions over 3 weeks or to a control group. Performance on trained and transfer tasks was assessed in all participants before and after the training period, as well as at a 9-month follow-up. Analyses revealed significant training effects in all 3 training tasks in trained participants relative to controls, as well as near transfer to a verbal working memory task and far transfer to a fluid intelligence task. Encouragingly, all training effects and the transfer effect to verbal working memory were stable at the 9-month follow-up session. Further analyses revealed that training gains were predicted by baseline performance in training tasks and (to a lesser degree) by age. Gains in transfer tasks were predicted by age and by the amount of improvement in the trained tasks. These findings suggest that cognitive plasticity is preserved over a large range of old age and that even a rather short training regime can lead to (partly specific) training and transfer effects. However, baseline performance, age, and training gains moderate the amount of plasticity. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Stollhoff, Nicola; Eisenhardt, Dorothea
2009-07-29
Here, we examine the role of the magnitude of the unconditioned stimulus (US) during classical conditioning in consolidation processes after memory retrieval. We varied the US durations during training and we test the impact of these variations on consolidation after memory retrieval with one or two conditioned stimulus-only trials. We found that the consolidation of an extinction memory depends on US duration during training and ruled out the possibility that this effect is attributable to differences in satiation after conditioning. We conclude that consolidation of an extinction memory is triggered only when the duration of the US reaches a critical threshold. This demonstrates that memory consolidation cannot be regarded as an isolated process depending solely on training conditions. Instead, it depends on the animal's previous experience as well.
Cognitive and memory training in adults at risk of dementia: A Systematic Review
2011-01-01
Background Effective non-pharmacological cognitive interventions to prevent Alzheimer's dementia or slow its progression are an urgent international priority. The aim of this review was to evaluate cognitive training trials in individuals with mild cognitive impairment (MCI), and evaluate the efficacy of training in memory strategies or cognitive exercises to determine if cognitive training could benefit individuals at risk of developing dementia. Methods A systematic review of eligible trials was undertaken, followed by effect size analysis. Cognitive training was differentiated from other cognitive interventions not meeting generally accepted definitions, and included both cognitive exercises and memory strategies. Results Ten studies enrolling a total of 305 subjects met criteria for cognitive training in MCI. Only five of the studies were randomized controlled trials. Meta-analysis was not considered appropriate due to the heterogeneity of interventions. Moderate effects on memory outcomes were identified in seven trials. Cognitive exercises (relative effect sizes ranged from .10 to 1.21) may lead to greater benefits than memory strategies (.88 to -1.18) on memory. Conclusions Previous conclusions of a lack of efficacy for cognitive training in MCI may have been influenced by not clearly defining the intervention. Our systematic review found that cognitive exercises can produce moderate-to-large beneficial effects on memory-related outcomes. However, the number of high quality RCTs remains low, and so further trials must be a priority. Several suggestions for the better design of cognitive training trials are provided. PMID:21942932
Experience and information loss in auditory and visual memory.
Gloede, Michele E; Paulauskas, Emily E; Gregg, Melissa K
2017-07-01
Recent studies show that recognition memory for sounds is inferior to memory for pictures. Four experiments were conducted to examine the nature of auditory and visual memory. Experiments 1-3 were conducted to evaluate the role of experience in auditory and visual memory. Participants received a study phase with pictures/sounds, followed by a recognition memory test. Participants then completed auditory training with each of the sounds, followed by a second memory test. Despite auditory training in Experiments 1 and 2, visual memory was superior to auditory memory. In Experiment 3, we found that it is possible to improve auditory memory, but only after 3 days of specific auditory training and 3 days of visual memory decay. We examined the time course of information loss in auditory and visual memory in Experiment 4 and found a trade-off between visual and auditory recognition memory: Visual memory appears to have a larger capacity, while auditory memory is more enduring. Our results indicate that visual and auditory memory are inherently different memory systems and that differences in visual and auditory recognition memory performance may be due to the different amounts of experience with visual and auditory information, as well as structurally different neural circuitry specialized for information retention.
Education and public astronomy programs at the Carter Observatory: an overview
NASA Astrophysics Data System (ADS)
Orchiston, W.; Dodd, R. J.
1996-05-01
This paper outlines the extensive range of public programs offered by the Carter Observatory, including 'public nights', new planetarium and audio-visual shows, displays, the Carter Memorial Lectures, the annual 'Astronomical Handbook' and other publications, and a monthtly newspaper column and three monthly radio programs. It also deals with the Observatory's involvement in undergraduate and postgraduate astronomy at Victoria University of Wellington, various adult education training programs, holiday programs, and the recent development of the Education Service in response to the introduction of an Astronomy curriculum into schools throughout New Zealand. Some possible future developments in the public astronomy and education areas are also discussed.
ERIC Educational Resources Information Center
Cunningham, James; Sood, Krishan
2018-01-01
This study evaluates the validity of claims that Working Memory (WM) training is an effective and legitimate school-based maths intervention. By analysing the current developments in WM in the fields of neurology and cognitive psychology, this study seeks to analyse their relevance to the classroom. This study analyses memory profiles of children…
Using Neuroplasticity-Based Auditory Training to Improve Verbal Memory in Schizophrenia
Fisher, Melissa; Holland, Christine; Merzenich, Michael M.; Vinogradov, Sophia
2009-01-01
Objective Impaired verbal memory in schizophrenia is a key rate-limiting factor for functional outcome, does not respond to currently available medications, and shows only modest improvement after conventional behavioral remediation. The authors investigated an innovative approach to the remediation of verbal memory in schizophrenia, based on principles derived from the basic neuroscience of learning-induced neuroplasticity. The authors report interim findings in this ongoing study. Method Fifty-five clinically stable schizophrenia subjects were randomly assigned to either 50 hours of computerized auditory training or a control condition using computer games. Those receiving auditory training engaged in daily computerized exercises that placed implicit, increasing demands on auditory perception through progressively more difficult auditory-verbal working memory and verbal learning tasks. Results Relative to the control group, subjects who received active training showed significant gains in global cognition, verbal working memory, and verbal learning and memory. They also showed reliable and significant improvement in auditory psychophysical performance; this improvement was significantly correlated with gains in verbal working memory and global cognition. Conclusions Intensive training in early auditory processes and auditory-verbal learning results in substantial gains in verbal cognitive processes relevant to psychosocial functioning in schizophrenia. These gains may be due to a training method that addresses the early perceptual impairments in the illness, that exploits intact mechanisms of repetitive practice in schizophrenia, and that uses an intensive, adaptive training approach. PMID:19448187
Hargreaves, A; Dillon, R; Anderson-Schmidt, H; Corvin, A; Fitzmaurice, B; Castorina, M; Robertson, I H; Donohoe, G
2015-12-01
Cognitive deficits are a core feature of schizophrenia and related psychotic disorders and are associated with decreased levels of functioning. Behavioural interventions have shown success in remediating these deficits; determining how best to maximise this benefit while minimising the cost is an important next step in optimising this intervention for clinical use. To examine the effects of a novel working-memory focused cognitive remediation (CR) training on cognitive difficulties based on internet delivery of training and weekly telephone support. Participants with a diagnosis of psychosis (n=56) underwent either 8 weeks of CR (approximately 20 h) or 8 weeks of treatment as usual (TAU). General cognitive ability, working memory and episodic memory were measured both pre and post intervention for all participants. In addition to improvements on trained working memory tasks, CR training was associated with significant improvements in two tests of verbal episodic memory. No association between CR and changes in general cognitive ability was observed. Effect sizes for statistically significant changes in memory were comparable to those reported in the literature based primarily on 1:1 training. The cognitive benefits observed in this non-randomised preliminary study indicate that internet-based working memory training can be an effective cognitive remediation therapy. The successes and challenges of an internet-based treatment are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Boivin, Michael J; Bangirana, Paul; Nakasujja, Noeline; Page, Connie F; Shohet, Cilly; Givon, Deborah; Bass, Judith K; Opoka, Robert O; Klein, Pnina S
2013-05-01
Mediational intervention for sensitizing caregivers (MISC) is a structured program enabling caregivers to enhance their child's cognitive and emotional development through daily interactions. The principal aim was to evaluate if a year-long MISC caregiver training program produced greater improvement in child cognitive and emotional development compared with a control program. One hundred and nineteen uninfected HIV-exposed preschool children and their caregivers were randomly assigned to 1 of 2 treatment arms: biweekly MISC training alternating between home and clinic for 1 year or a health and nutrition curriculum. All children were evaluated at baseline, 6 months, and 1 year with the Mullen Early Learning Scales, Color-Object Association Test for memory, and Achenbach Child Behavior Checklist for psychiatric symptoms. Caregivers were evaluated on the same schedule with the Hopkins Symptoms Checklist-25 for depression and anxiety. The treatment arms were compared using repeated-measures analysis of covariance with child age, gender, weight, socioeconomic status, caregiving quality, caregiver anxiety, and caregiver education as covariates. The MISC children had significantly greater gains compared to controls on the Mullen Receptive and Expressive Language development, and on the Mullen composite score of cognitive ability. Color-Object Association Test total memory for MISC children was marginally better than controls. No Achenbach Child Behavior Checklist differences between the groups were noted. Caldwell Home Observation for Measurement of the Environment scores and observed mediational interaction scores from videotapes measuring caregiving quality also improved significantly more for the MISC group. The MISC enhanced cognitive performance, especially in language development. These benefits were possibly mediated by improved caregiving and positive emotional benefit to the caregiver.
Jiang, Lijuan; Cao, Xinyi; Li, Ting; Tang, Yingying; Li, Wei; Wang, Jijun; Chan, Raymond C.; Li, Chunbo
2016-01-01
The aim of this study was to investigate whether changes in cortical thickness correlated with cognitive function changes in healthy older adults after receiving cognitive training interventions. Moreover, it also aimed to examine the differential impacts of a multi-domain and a single-domain cognitive training interventions. Longitudinal magnetic resonance imaging (MRI) scanning was performed on participants 65–75 years of age using the Siemens 3.0 T Trio Tim with the Magnetization Prepared Rapid Gradient Echo (MPRAGE) sequence. The cortical thickness was determined using FreeSurfer Software. Cognitive functioning was evaluated using the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). There were significant group × time interaction effects on the left supramarginal, the left frontal pole cortical regions; and a marginal significant group × time interaction effects on visuospatial/constructional and delayed memory scores. In a multi-domain cognitive training group, a number of cortical region changes were significantly positively correlated with changes in attention, delayed memory, and the total score, but significantly negatively correlated with changes in immediate memory and language scores. In the single-domain cognitive training group, some cortical region changes were significantly positively associated with changes in immediate memory, delayed memory, and the total score, while they were significantly negatively associated with changes in visuospatial/constructional, language, and attention scores. Overall, multi-domain cognitive training offered more advantages in visuospatial/constructional, attention, and delayed memory abilities, while single-domain cognitive training benefited immediate memory ability more effectively. These findings suggest that healthy older adults benefit more from the multi-domain cognitive training than single-domain cognitive training. Cognitive training has impacted on cortical thickness changes in healthy elderly. PMID:27252649
ERIC Educational Resources Information Center
Yuan, Qi; Harley, Carolyn W.
2012-01-01
Increased AMPA signaling is proposed to mediate long-term memory. Rat neonates acquire odor preferences in a single olfactory bulb if one nostril is occluded at training. Memory testing here confirmed that only trained bulbs support increased odor preference at 24 h. Olfactory nerve field potentials were tested at 24 h in slices from trained and…
ERIC Educational Resources Information Center
Conkright, Thomas D.; Joliat, Judy
1996-01-01
Discusses the challenges, solutions, and compromises involved in creating computer-delivered training courseware for Apollo Travel Services, a company whose 50,000 agents must access a mainframe from many different computing configurations. Initial difficulties came in trying to manage random access memory and quicken response time, but the future…
Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J.; Gunter, Jeffrey L.; Carmona, Susanna; Jaeggi, Susanne M.; Thompson, Paul M.
2016-01-01
Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. PMID:27477628
Taking Working Memory Training from the Laboratory into Schools
ERIC Educational Resources Information Center
Holmes, Joni; Gathercole, Susan Elizabeth
2014-01-01
Working memory skills have been shown to be enhanced by adaptive training in several randomised controlled trials. Here, two field trials were conducted in which teachers administered working memory training to their own pupils in school. Twenty-two children aged 8-9?years participated in Trial 1. In Trial 2, 50 children aged 9-11?years with the…
Effects of Training Auditory Sequential Memory and Attention on Reading.
ERIC Educational Resources Information Center
Klein, Pnina S.; Schwartz, Allen A.
To determine if auditory sequential memory (ASM) in young children can be improved through training and to discover the effects of such training on the reading scores of children with reading problems, a study was conducted involving 92 second and third graders. For purposes of this study, auditory sequential memory was defined as the ability to…
ERIC Educational Resources Information Center
Banisaeid, Maryam
2013-01-01
The present study was conducted to compare the effect of memory and cognitive strategies training on vocabulary learning of intermediate proficiency group of Iranian learners of English as a foreign language. It is to check how memory and cognitive strategies training affect word learning of EFL intermediate learners (N = 60) who were homogenized…
Working Memory Training in Typically Developing Children: A Meta-Analysis of the Available Evidence
ERIC Educational Resources Information Center
Sala, Giovanni; Gobet, Fernand
2017-01-01
The putative effectiveness of working memory (WM) training at enhancing cognitive and academic skills is still ardently debated. Several researchers have claimed that WM training fosters not only skills such as visuospatial WM and short-term memory (STM), but also abilities outside the domain of WM, such as fluid intelligence and mathematics.…
Does Working Memory Training Transfer? A Meta-Analysis Including Training Conditions as Moderators
ERIC Educational Resources Information Center
Schwaighofer, Matthias; Fischer, Frank; Bühner, Markus
2015-01-01
A meta-analysis was undertaken to reexamine near- and far-transfer effects following working-memory training and to consider potential moderators more systematically. Forty-seven studies with 65 group comparisons were included in the meta-analysis. Results showed near-transfer effects to short-term and working-memory skills that were sustained at…
Hancock, Laura M; Bruce, Jared M; Bruce, Amanda S; Lynch, Sharon G
2015-01-01
Between 40-65% of multiple sclerosis patients experience cognitive deficits, with processing speed and working memory most commonly affected. This pilot study investigated the effect of computerized cognitive training focused on improving processing speed and working memory. Participants were randomized into either an active or a sham training group and engaged in six weeks of training. The active training group improved on a measure of processing speed and attention following cognitive training, and data trended toward significance on measures of other domains. Results provide preliminary evidence that cognitive training with multiple sclerosis patients may produce moderate improvement in select areas of cognitive functioning.
Training and transfer effects of interference control training in children and young adults.
Zhao, Xin; Jia, Lina
2018-04-24
Many studies have examined transfer of working memory (WM) training improvements to non-trained cognitive tasks, with largely disappointing results. Interference control has been suggested to be a central feature of WM. However, studies examining transfer effects of a training program exclusively and directly targeting interference control are lacking. Forty-one 10‒12 year-old children and 47 19‒24 year-old adults were assigned to an adaptive interference control training or active control condition. Transfer of training effects to tasks measuring interference control, response inhibition, WM updating, task-switching, and non-verbal fluid intelligence were assessed during a 3-month follow-up session and/or an immediate post-training session. Substantial evidence of training improvements and a positive transfer effect to a non-trained interference control task were observed for both age groups. Marginal evidence for beneficial transfer of training effects for the trained compared to non-trained participants was found for a WM task for both age groups, and for the children for another interference control task and a response inhibition task. However, these transfer effects were absent during the 3-month follow-up measurement. These results suggest some potential for interference control training programs to enhance aspects of cognitive functioning, with some evidence for a more wide-spread, but short-lived, transfer for children compared to adults.
Do older adults use the Method of Loci? Results from the ACTIVE Study
Gross, Alden L.; Brandt, Jason; Bandeen-Roche, Karen; Carlson, Michelle C.; Stuart, Elizabeth A.; Marsiske, Michael; Rebok, George W.
2013-01-01
Background The method of loci (MoL) is a complex visuospatial mnemonic strategy. Previous research suggests older adults could potentially benefit from using the MoL, but that it is too attentionally demanding for them to use in practice. We evaluated the hypotheses that training can increase the use of MoL, and that MoL use is associated with better memory. Methods We analyzed skip patterns on response forms for the Auditory Verbal Learning Test (AVLT) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE, n=1,401) trial using 5 years of longitudinal follow-up. Results At baseline, 2% of participants skipped spaces. Fewer than 2% of control participants skipped spaces at any visit across 5 years, but 25% of memory-trained participants, taught the MoL, did so. Participants who skipped spaces used more serial clustering, a hallmark of the MoL (p<0.001). Trained participants who skipped spaces showed greater memory improvement after training than memory-trained participants who did not skip spaces (Cohen's d=0.84, P=0.007), and did not differ in the subsequent rate of long-term memory decline through up to 5 years of follow-up. Conclusion Despite being attentionally demanding, this study suggests that after training, the MoL is used by up to 25% of older adults, and that its use is associated with immediate memory improvement that was sustained through the course of follow-up. Findings are consistent with the notion that older adults balance complexity with novelty in strategy selection, and that changes in strategies used following memory training result in observable qualitative and quantitative differences in memory performance. PMID:24625044
Training of the executive component of working memory: subcortical areas mediate transfer effects.
Dahlin, Erika; Bäckman, Lars; Neely, Anna Stigsdotter; Nyberg, Lars
2009-01-01
Several recent studies show that training can improve working memory (WM) performance. In this review, many issues related to WM training, such as neural basis, transfer effects, and age-related changes are addressed. We focus on our own studies investigating training on tasks taxing the executive updating function and discuss our findings in relation to results from other studies investigating training of the executive component of WM. The review confirms positive behavioral effects of training on working memory. The most common neural pattern following training is fronto-parietal activity decreases. Increases in sub-cortical areas are also frequently reported after training, and we suggest that such increases indicate changes in the underlying skill following training. Transfer effects are in general difficult to demonstrate. Some studies show that older adults increase their performance after WM training. However, transfer effects are small or nonexistent in old age. The main finding in this review is that sub-cortical areas seem to have a critical role in mediating transfer effects to untrained tasks after at least some forms of working memory training (such as updating).
Gathercole, Susan E
2014-03-01
Chacko et al.'s investigation of the clinical utility of WM training to alleviate key symptoms of ADHD is timely and substantial, and marks a significant point in cognitive training research. Cogmed Working Memory Training (CWMT) involves intensive practice on multiple memory span tasks that increase in difficulty as performance improves with practice. Relative to a placebo version in which the span level of the memory tasks are kept at a low fixed level, Chacko et al. () found that CWMT boosted the performance of children with ADHD on short-term memory (STM) tasks similar to trained activities. Complex WM span measures sharing little overlap with the structure of training activities were not enhanced. Neither did active CWMT ameliorate classic symptoms of ADHD such as parent or teacher ratings of attentional problems, or direct measures of motor impulsivity and sustained attention. Reading, spelling, comprehension or mathematics scores similarly showed no response to training. © 2014 The Authors. Journal of Child Psychology and Psychiatry. © 2014 Association for Child and Adolescent Mental Health.
Sleeping brain, learning brain. The role of sleep for memory systems.
Peigneux, P; Laureys, S; Delbeuck, X; Maquet, P
2001-12-21
The hypothesis that sleep participates in the consolidation of recent memory traces has been investigated using four main paradigms: (1) effects of post-training sleep deprivation on memory consolidation, (2) effects of learning on post-training sleep, (3) effects of within sleep stimulation on the sleep pattern and on overnight memories, and (4) re-expression of behavior-specific neural patterns during post-training sleep. These studies convincingly support the idea that sleep is deeply involved in memory functions in humans and animals. However, the available data still remain too scarce to confirm or reject unequivocally the recently upheld hypothesis that consolidations of non-declarative and declarative memories are respectively dependent upon REM and NREM sleep processes.
ERIC Educational Resources Information Center
Zinke, Katharina; Zeintl, Melanie; Rose, Nathan S.; Putzmann, Julia; Pydde, Andrea; Kliegel, Matthias
2014-01-01
Recent studies suggest that working memory training may benefit older adults; however, findings regarding training and transfer effects are mixed. The current study aimed to investigate the effects of a process-based training intervention in a diverse sample of older adults and explored possible moderators of training and transfer effects. For…
2011-01-27
CAPE CANAVERAL, Fla. -- Kennedy Space Center Director and former astronaut Bob Cabana, left, United Space Alliance's Associate Program Manager for Solid Rocket Boosters Roger Elliott and Center Deputy Director Janet Petro participate in a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett
2011-01-27
CAPE CANAVERAL, Fla. -- United Space Alliance's Associate Program Manager for Solid Rocket Boosters Roger Elliott, back, Kennedy Space Center Deputy Director Janet Petro, and Center Director and former astronaut Bob Cabana, participate in a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett
2011-01-27
CAPE CANAVERAL, Fla. -- United Space Alliance's Associate Program Manager for Solid Rocket Boosters Roger Elliott, left, Kennedy Space Center Deputy Director Janet Petro, and Center Director and former astronaut Bob Cabana, participate in a Day of Remembrance wreath laying ceremony at the Space Mirror Memorial at the Kennedy Space Center Visitor Complex in Florida. The ceremony honors members of the NASA family who lost their lives while furthering the cause of exploration and discovery. The memorial displays the names of 24 United States astronauts, including the crew members of space shuttles Columbia and Challenger, Apollo 1, and those who died in training and commercial airplane accidents. The memorial is a project of the Astronauts Memorial Foundation and was paid for by Florida residents who purchased special Challenger mission automobile license plates. 2011 marks the 25th anniversary of the loss of Challenger, which broke apart over the Atlantic Ocean 73 seconds into flight on Jan. 28, 1986. Photo credit: NASA/Kim Shiflett
Fungal mediated innate immune memory, what have we learned?
Quintin, Jessica
2018-05-30
The binary classification of mammalian immune memory is now obsolete. Innate immune cells carry memory characteristics. The overall capacity of innate immune cells to remember and alter their responses is referred as innate immune memory and the induction of a non-specific memory resulting in an enhanced immune status is termed "trained immunity". Historically, trained immunity was first described as triggered by the human fungal pathogen Candida albicans. Since, numerous studies have accumulated and deciphered the main characteristics of trained immunity mediated by fungi and fungal components. This review aims at presenting the newly described aspect of memory in innate immunity with an emphasis on the historically fungal mediated one, covering the known molecular mechanisms associated with training. In addition, the review uncovers the numerous non-specific effect that β-glucans trigger in the context of infectious diseases and septicaemia, inflammatory diseases and cancer. Copyright © 2018. Published by Elsevier Ltd.
Piracetam, an AMPAkine drug, facilitates memory consolidation in the day-old chick.
Samartgis, Jodi R; Schachte, Leslie; Hazi, Agnes; Crowe, Simon F
2012-12-01
Piracetam is an AMPAkine drug that may have a range of different mechanisms at the cellular level, and which has been shown to facilitate memory, amongst its other effects. This series of experiments demonstrated that a 10mg/kg dose of piracetam facilitated memory consolidation in the day-old chick when injected from immediately until 120min after weak training (i.e. using a 20% v/v concentration of methyl anthranilate) with the passive avoidance learning task. Administration of piracetam immediately after training led to memory facilitation which lasted for up to 24h following training. This dose of the AMPAkine was not shown to facilitate memory reconsolidation. These findings support the contention that application of the AMPAkine piracetam facilitates memory using a weak training task, and extend the range of actions previously noted with NMDA-related agents to those which also facilitate the AMPA receptor. Copyright © 2012 Elsevier Inc. All rights reserved.
Effects of Sleep Deprivation and Aging on Long-Term and Remote Memory in Mice
ERIC Educational Resources Information Center
Vecsey, Christopher G.; Park, Alan J.; Khatib, Nora; Abel, Ted
2015-01-01
Sleep deprivation (SD) following hippocampus-dependent learning in young mice impairs memory when tested the following day. Here, we examined the effects of SD on remote memory in both young and aged mice. In young mice, we found that memory is still impaired 1 mo after training. SD also impaired memory in aged mice 1 d after training, but, by a…
Method of preparing a two-way shape memory alloy
Johnson, A.D.
1984-03-06
A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases are disclosed. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress. 8 figs.
Glucocorticoid effects on object recognition memory require training-associated emotional arousal.
Okuda, Shoki; Roozendaal, Benno; McGaugh, James L
2004-01-20
Considerable evidence implicates glucocorticoid hormones in the regulation of memory consolidation and memory retrieval. The present experiments investigated whether the influence of these hormones on memory depends on the level of emotional arousal induced by the training experience. We investigated this issue in male Sprague-Dawley rats by examining the effects of immediate posttraining systemic injections of the glucocorticoid corticosterone on object recognition memory under two conditions that differed in their training-associated emotional arousal. In rats that were not previously habituated to the experimental context, corticosterone (0.3, 1.0, or 3.0 mg/kg, s.c.) administered immediately after a 3-min training trial enhanced 24-hr retention performance in an inverted-U shaped dose-response relationship. In contrast, corticosterone did not affect 24-hr retention of rats that received extensive prior habituation to the experimental context and, thus, had decreased novelty-induced emotional arousal during training. Additionally, immediate posttraining administration of corticosterone to nonhabituated rats, in doses that enhanced 24-hr retention, impaired object recognition performance at a 1-hr retention interval whereas corticosterone administered after training to well-habituated rats did not impair 1-hr retention. Thus, the present findings suggest that training-induced emotional arousal may be essential for glucocorticoid effects on object recognition memory.
Okamoto, Takehito; Endo, Shogo; Shirao, Tomoaki; Nagao, Soichi
2011-06-15
We developed a new protocol that induces long-term adaptation of horizontal optokinetic response (HOKR) eye movement by hours of spaced training and examined the role of protein synthesis in the cerebellar cortex in the formation of memory of adaptation. Mice were trained to view 800 cycles of screen oscillation either by 1 h of massed training or by 2.5 h to 8 d of training with 0.5 h to 1 d space intervals. The HOKR gains increased similarly by 20-30% at the end of training; however, the gains increased by 1 h of massed training recovered within 24 h, whereas the gains increased by spaced training were sustained over 24 h. Bilateral floccular lidocaine microinfusions immediately after the end of training recovered the gains increased by 1 h of massed training but did not affect the gains increased by 4 h of spaced training, suggesting that the memory trace of adaptation was transferred from the flocculus to the vestibular nuclei within 4 h of spaced training. Blockade of floccular protein synthesis, examined by bilateral floccular microinfusions of anisomycin or actinomycin D 1-4 h before the training, impaired the gains increased by 4 h of spaced training but did not affect the gains increased by 1 h of massed training. These findings suggest that the transfer of the memory trace of adaptation occurs within 4 h of spaced training, and proteins synthesized in the flocculus during training period may play an important role in memory transfer.
Training Planning and Working Memory in Third Graders
ERIC Educational Resources Information Center
Goldin, Andrea Paula; Segretin, Maria Soledad; Hermida, Maria Julia; Paz, Luciano; Lipina, Sebastian Javier; Sigman, Mariano
2013-01-01
Working memory and planning are fundamental cognitive skills supporting fluid reasoning. We show that 2 games that train working memory and planning skills in school-aged children promote transfer to 2 different tasks: an attentional test and a fluid reasoning test. We also show long-term improvement of planning and memory capacities in…
ERIC Educational Resources Information Center
Honoré, Nastasya; Noël, Marie-Pascale
2017-01-01
Working memory capacities are associated with mathematical development. Many studies have tried to improve working memory abilities through training. Furthermore, the central executive has been shown to be the component of working memory, which is the most strongly related to numerical and arithmetical skills. Therefore, we developed a training…
Casagrande, Mirelle A; Haubrich, Josué; Pedraza, Lizeth K; Popik, Bruno; Quillfeldt, Jorge A; de Oliveira Alvares, Lucas
2018-04-01
Memories are not instantly created in the brain, requiring a gradual stabilization process called consolidation to be stored and persist in a long-lasting manner. However, little is known whether this time-dependent process is dynamic or static, and the factors that might modulate it. Here, we hypothesized that the time-course of consolidation could be affected by specific learning parameters, changing the time window where memory is susceptible to retroactive interference. In the rodent contextual fear conditioning paradigm, we compared weak and strong training protocols and found that in the latter memory is susceptible to post-training hippocampal inactivation for a shorter period of time. The accelerated consolidation process triggered by the strong training was mediated by glucocorticoids, since this effect was blocked by pre-training administration of metyrapone. In addition, we found that pre-exposure to the training context also accelerates fear memory consolidation. Hence, our results demonstrate that the time window in which memory is susceptible to post-training interferences varies depending on fear conditioning intensity and contextual familiarity. We propose that the time-course of memory consolidation is dynamic, being directly affected by attributes of the learning experiences. Copyright © 2018 Elsevier Inc. All rights reserved.
Adrenergic enhancement of consolidation of object recognition memory.
Dornelles, Arethuza; de Lima, Maria Noemia Martins; Grazziotin, Manoela; Presti-Torres, Juliana; Garcia, Vanessa Athaide; Scalco, Felipe Siciliani; Roesler, Rafael; Schröder, Nadja
2007-07-01
Extensive evidence indicates that epinephrine (EPI) modulates memory consolidation for emotionally arousing tasks in animals and human subjects. However, previous studies have not examined the effects of EPI on consolidation of recognition memory. Here we report that systemic administration of EPI enhances consolidation of memory for a novel object recognition (NOR) task under different training conditions. Control male rats given a systemic injection of saline (0.9% NaCl) immediately after NOR training showed significant memory retention when tested at 1.5 or 24, but not 96h after training. In contrast, rats given a post-training injection of EPI showed significant retention of NOR at all delays. In a second experiment using a different training condition, rats treated with EPI, but not SAL-treated animals, showed significant NOR retention at both 1.5 and 24-h delays. We next showed that the EPI-induced enhancement of retention tested at 96h after training was prevented by pretraining systemic administration of the beta-adrenoceptor antagonist propranolol. The findings suggest that, as previously observed in experiments using aversively motivated tasks, epinephrine modulates consolidation of recognition memory and that the effects require activation of beta-adrenoceptors.
Telch, Michael J.; Bruchey, Aleksandra K.; Rosenfield, David; Cobb, Adam R.; Smits, Jasper; Pahl, Sandra; Gonzalez-Lima, F.
2015-01-01
Objective Preclinical studies have shown that low-dose USP methylene blue increases mitochondrial cytochrome oxidase activity in the brain and improves memory retention after learning tasks, including fear extinction. We report on the first controlled experiment to examine the memory-enhancing effects of post-training methylene blue administration on retention of fear extinction and contextual memory following fear extinction training. Method Adults (N = 42) displaying marked claustrophobic fear were randomized to double-blind administration of 260 mg of methylene blue versus placebo immediately following six five-minute extinction trials to an enclosed chamber. Retesting occurred one month later to assess fear renewal as indexed by peak fear during exposure to a non-trained enclosed chamber with the prediction that methylene blue's effects would vary as a function of fear reduction achieved during extinction training. Incidental contextual memory was assessed 1 and 30 days after training to assess the cognitive enhancing effects of methylene blue independent of its effects on fear attenuation. Results Consistent with predictions, participants displaying low end fear at post-training showed significantly less fear at follow-up if they received methylene blue post-training relative to placebo. In contrast, participants displaying moderate to high levels of post-training fear tended to fare worse at follow-up relative to placebo. Methylene blue's enhancement of contextual memory was unrelated to initial or post-training claustrophobic fear. Conclusions Methylene blue enhances memory and the retention of fear extinction when administered after a successful exposure session, but may have a deleterious effect on extinction when administered after an unsuccessful exposure session. PMID:25018057
Stroboscopic visual training improves information encoding in short-term memory.
Appelbaum, L Gregory; Cain, Matthew S; Schroeder, Julia E; Darling, Elise F; Mitroff, Stephen R
2012-11-01
The visual system has developed to transform an undifferentiated and continuous flow of information into discrete and manageable representations, and this ability rests primarily on the uninterrupted nature of the input. Here we explore the impact of altering how visual information is accumulated over time by assessing how intermittent vision influences memory retention. Previous work has shown that intermittent, or stroboscopic, visual training (i.e., practicing while only experiencing snapshots of vision) can enhance visual-motor control and visual cognition, yet many questions remain unanswered about the mechanisms that are altered. In the present study, we used a partial-report memory paradigm to assess the possible changes in visual memory following training under stroboscopic conditions. In Experiment 1, the memory task was completed before and immediately after a training phase, wherein participants engaged in physical activities (e.g., playing catch) while wearing either specialized stroboscopic eyewear or transparent control eyewear. In Experiment 2, an additional group of participants underwent the same stroboscopic protocol but were delayed 24 h between training and assessment, so as to measure retention. In comparison to the control group, both stroboscopic groups (immediate and delayed retest) revealed enhanced retention of information in short-term memory, leading to better recall at longer stimulus-to-cue delays (640-2,560 ms). These results demonstrate that training under stroboscopic conditions has the capacity to enhance some aspects of visual memory, that these faculties generalize beyond the specific tasks that were trained, and that trained improvements can be maintained for at least a day.
Gibson, Bradley S; Gondoli, Dawn M; Johnson, Ann C; Robison, Matthew K
2014-01-01
There has been great interest in using working memory (WM) training regimens as an alternative treatment for ADHD, but it has recently been concluded that existing training regimens may not be optimally designed because they target the primary memory component but not the secondary component of WM capacity. This conclusion requires the ability to accurately measure changes in primary and secondary memory abilities over time. The immediate free recall task has been used in previous studies to measure these changes; however, one concern with these tasks is that the recall order required on training exercises may influence the recall strategy used during free recall, which may in turn influence the relative number of items recalled from primary and secondary memory. To address this issue, previous training studies have explicitly controlled recall strategy before and after training. However, the necessity of controlling for recall strategies has not been explicitly tested. The present study investigated the effects of forward-serial-order training on free recall performance under conditions in which recall strategy was not controlled using a sample of adolescents with ADHD. Unlike when recall order was controlled, the main findings showed selective improvement of the secondary memory component (as opposed to the primary memory component) when recall order was uncontrolled. This finding advances our understanding of WM training by highlighting the importance of controlling for recall strategies when free recall tasks are used to measure changes in the primary and secondary components of WM across time.
Lu, Lu; Li, Guoqiang
2016-06-15
Reversible elongation by cooling and contraction by heating, without the need for repeated programming, is well-known as the two-way shape-memory effect (2W-SME). This behavior is contrary to the common physics-contraction when cooling and expansion when heating. Materials with such behavior may find many applications in real life, such as self-sufficient grippers, fastening devices, optical gratings, soft actuators, and sealant. Here, it is shown that ionomer Surlyn 8940, a 50-year old polymer, exhibits both one-way multishape-memory effects and tunable two-way reversible actuation. The required external tensile stress to trigger the tunable 2W-SME is very low when randomly jumping the temperatures within the melting transition window. With a proper one-time programming, "true" 2W-SME (i.e., 2W-SME without the need for an external tensile load) is also achieved. A long training process is not needed to trigger the tunable 2W-SME. Instead, a proper one-time tensile programming is sufficient to trigger repeated and tunable 2W-SME. Because the 2W-SME of the ionomer Surlyn is driven by the thermally reversible network, here crystallization and melting transitions of the semicrystalline poly(ethylene-co-methacrylic acid), it is believed that a class of thermally reversible polymers should also exhibit tunable 2W-SMEs.
Dnmts and Tet target memory-associated genes after appetitive olfactory training in honey bees
Biergans, Stephanie D.; Giovanni Galizia, C.; Reinhard, Judith; Claudianos, Charles
2015-01-01
DNA methylation and demethylation are epigenetic mechanisms involved in memory formation. In honey bees DNA methyltransferase (Dnmt) function is necessary for long-term memory to be stimulus specific (i.e. to reduce generalization). So far, however, it remains elusive which genes are targeted and what the time-course of DNA methylation is during memory formation. Here, we analyse how DNA methylation affects memory retention, gene expression, and differential methylation in stimulus-specific olfactory long-term memory formation. Out of 30 memory-associated genes investigated here, 9 were upregulated following Dnmt inhibition in trained bees. These included Dnmt3 suggesting a negative feedback loop for DNA methylation. Within these genes also the DNA methylation pattern changed during the first 24 hours after training. Interestingly, this was accompanied by sequential activation of the DNA methylation machinery (i.e. Dnmts and Tet). In sum, memory formation involves a temporally complex epigenetic regulation of memory-associated genes that facilitates stimulus specific long-term memory in the honey bee. PMID:26531238
Morena, Maria; De Castro, Valentina; Gray, J Megan; Palmery, Maura; Trezza, Viviana; Roozendaal, Benno; Hill, Matthew N; Campolongo, Patrizia
2015-10-14
Variations in environmental aversiveness influence emotional memory processes in rats. We have previously shown that cannabinoid effects on memory are dependent on the stress level at the time of training as well as on the aversiveness of the environmental context. Here, we investigated whether the hippocampal endocannabinoid system modulates memory retrieval depending on the training-associated arousal level. Male adult Sprague Dawley rats were trained on a water maze spatial task at two different water temperatures (19°C and 25°C) to elicit either higher or lower stress levels, respectively. Rats trained under the higher stress condition had better memory and higher corticosterone concentrations than rats trained at the lower stress condition. The cannabinoid receptor agonist WIN55212-2 (10-30 ng/side), the 2-arachidonoyl glycerol (2-AG) hydrolysis inhibitor JZL184 (0.1-1 μg/side), and the anandamide (AEA) hydrolysis inhibitor URB597 (10-30 ng/side) were administered bilaterally into the hippocampus 60 min before probe-trial retention testing. WIN55212-2 or JZL184, but not URB597, impaired probe-trial performances only of rats trained at the higher stressful condition. Furthermore, rats trained under higher stress levels displayed an increase in hippocampal 2-AG, but not AEA, levels at the time of retention testing and a decreased affinity of the main 2-AG-degrading enzyme for its substrate. The present findings indicate that the endocannabinoid 2-AG in the hippocampus plays a key role in the selective regulation of spatial memory retrieval of stressful experience, shedding light on the neurobiological mechanisms involved in the impact of stress effects on memory processing. Endogenous cannabinoids play a central role in the modulation of memory for emotional events. Here we demonstrate that the endocannabinoid 2-arachidonoylglycerol in the hippocampus, a brain region crucially involved in the regulation of memory processes, selectively modulates spatial memory recall of stressful experiences. Thus, our findings provide evidence that the endocannabinoid 2-arachidonoylglycerol is a key player in mediating the impact of stress on memory retrieval. These findings can pave the way to new potential therapeutic intervention for the treatment of neuropsychiatric disorders, such as post-traumatic stress disorder, where a previous exposure to traumatic events could alter the response to traumatic memory recall leading to mental illness. Copyright © 2015 the authors 0270-6474/15/3513963-13$15.00/0.
Brydges, Christopher R; Ozolnieks, Krista L; Roberts, Gareth
2017-09-01
Attention deficit/hyperactivity disorder (ADHD) is a psychological condition characterized by inattention and hyperactivity. Cognitive deficits are commonly observed in ADHD patients, including impaired working memory, processing speed, and fluid intelligence, the three of which are theorized to be closely associated with one another. In this study, we aimed to determine if decreased fluid intelligence was associated with ADHD, and was mediated by deficits in working memory and processing speed. This study tested 142 young adults from the general population on a range of working memory, processing speed, and fluid intelligence tasks, and an ADHD self-report symptoms questionnaire. Results showed that total and hyperactive ADHD symptoms correlated significantly and negatively with fluid intelligence, but this association was fully mediated by working memory. However, inattentive symptoms were not associated with fluid intelligence. Additionally, processing speed was not associated with ADHD symptoms at all, and was not uniquely predictive of fluid intelligence. The results provide implications for working memory training programs for ADHD patients, and highlight potential differences between the neuropsychological profiles of ADHD subtypes. © 2015 The British Psychological Society.
Attention to memory: orienting attention to sound object representations.
Backer, Kristina C; Alain, Claude
2014-01-01
Despite a growing acceptance that attention and memory interact, and that attention can be focused on an active internal mental representation (i.e., reflective attention), there has been a paucity of work focusing on reflective attention to 'sound objects' (i.e., mental representations of actual sound sources in the environment). Further research on the dynamic interactions between auditory attention and memory, as well as its degree of neuroplasticity, is important for understanding how sound objects are represented, maintained, and accessed in the brain. This knowledge can then guide the development of training programs to help individuals with attention and memory problems. This review article focuses on attention to memory with an emphasis on behavioral and neuroimaging studies that have begun to explore the mechanisms that mediate reflective attentional orienting in vision and more recently, in audition. Reflective attention refers to situations in which attention is oriented toward internal representations rather than focused on external stimuli. We propose four general principles underlying attention to short-term memory. Furthermore, we suggest that mechanisms involved in orienting attention to visual object representations may also apply for orienting attention to sound object representations.
Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M; Salton, Stephen R
2015-07-15
Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive function, and rapidly and robustly induces expression of VGF, a secreted neuronal peptide precursor. VGF knock-out mice have impaired fear and spatial memory. Our study shows that VGF and VGF-derived peptide TLQP-62 are transiently induced after fear memory training, leading to increased BDNF/TrkB signaling, and that sequestration of hippocampal TLQP-62 immediately after training impairs memory formation. We propose that TLQP-62 is a critical component of a positive regulatory loop that is induced by memory training, rapidly reinforces BDNF-TrkB signaling, and is required for hippocampal memory consolidation. Copyright © 2015 the authors 0270-6474/15/3510344-14$15.00/0.
Lin, Wei-Jye; Jiang, Cheng; Sadahiro, Masato; Bozdagi, Ozlem; Vulchanova, Lucy; Alberini, Cristina M.
2015-01-01
Regulated expression and secretion of BDNF, which activates TrkB receptor signaling, is known to play a critical role in cognition. Identification of additional modulators of cognitive behavior that regulate activity-dependent BDNF secretion and/or potentiate TrkB receptor signaling would therefore be of considerable interest. In this study, we show in the adult mouse hippocampus that expression of the granin family gene Vgf and secretion of its C-terminal VGF-derived peptide TLQP-62 are required for fear memory formation. We found that hippocampal VGF expression and TLQP-62 levels were transiently induced after fear memory training and that sequestering secreted TLQP-62 peptide in the hippocampus immediately after training impaired memory formation. Reduced VGF expression was found to impair learning-evoked Rac1 induction and phosphorylation of the synaptic plasticity markers cofilin and synapsin in the adult mouse hippocampus. Moreover, TLQP-62 induced acute, transient activation of the TrkB receptor and subsequent CREB phosphorylation in hippocampal slice preparations and its administration immediately after training enhanced long-term memory formation. A critical role of BDNF-TrkB signaling as a downstream effector in VGF/TLQP-62-mediated memory consolidation was further revealed by posttraining activation of BDNF-TrkB signaling, which rescued impaired fear memory resulting from hippocampal administration of anti-VGF antibodies or germline VGF ablation in mice. We propose that VGF is a critical component of a positive BDNF-TrkB regulatory loop and, upon its induced expression by memory training, the TLQP-62 peptide rapidly reinforces BDNF-TrkB signaling, regulating hippocampal memory consolidation. SIGNIFICANCE STATEMENT Identification of the cellular and molecular mechanisms that regulate long-term memory formation and storage may provide alternative treatment modalities for degenerative and neuropsychiatric memory disorders. The neurotrophin BDNF plays a prominent role in cognitive function, and rapidly and robustly induces expression of VGF, a secreted neuronal peptide precursor. VGF knock-out mice have impaired fear and spatial memory. Our study shows that VGF and VGF-derived peptide TLQP-62 are transiently induced after fear memory training, leading to increased BDNF/TrkB signaling, and that sequestration of hippocampal TLQP-62 immediately after training impairs memory formation. We propose that TLQP-62 is a critical component of a positive regulatory loop that is induced by memory training, rapidly reinforces BDNF-TrkB signaling, and is required for hippocampal memory consolidation. PMID:26180209
Nikolaidis, Aki; Voss, Michelle W.; Lee, Hyunkyu; Vo, Loan T. K.; Kramer, Arthur F.
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research. PMID:24711792
Nikolaidis, Aki; Voss, Michelle W; Lee, Hyunkyu; Vo, Loan T K; Kramer, Arthur F
2014-01-01
Researchers have devoted considerable attention and resources to cognitive training, yet there have been few examinations of the relationship between individual differences in patterns of brain activity during the training task and training benefits on untrained tasks (i.e., transfer). While a predominant hypothesis suggests that training will transfer if there is training-induced plasticity in brain regions important for the untrained task, this theory lacks sufficient empirical support. To address this issue we investigated the relationship between individual differences in training-induced changes in brain activity during a cognitive training videogame, and whether those changes explained individual differences in the resulting changes in performance in untrained tasks. Forty-five young adults trained with a videogame that challenges working memory, attention, and motor control for 15 2-h sessions. Before and after training, all subjects received neuropsychological assessments targeting working memory, attention, and procedural learning to assess transfer. Subjects also underwent pre- and post-functional magnetic resonance imaging (fMRI) scans while they played the training videogame to assess how these patterns of brain activity change in response to training. For regions implicated in working memory, such as the superior parietal lobe (SPL), individual differences in the post-minus-pre changes in activation predicted performance changes in an untrained working memory task. These findings suggest that training-induced plasticity in the functional representation of a training task may play a role in individual differences in transfer. Our data support and extend previous literature that has examined the association between training related cognitive changes and associated changes in underlying neural networks. We discuss the role of individual differences in brain function in training generalizability and make suggestions for future cognitive training research.
ERIC Educational Resources Information Center
McGaugh, James L.; Steward, Oswald; Power, Ann E.; Berlau, Daniel J.
2006-01-01
Recent studies have reported new evidence consistent with the hypothesis that reactivating a memory by re-exposure to a training context destabilizes the memory and induces "reconsolidation." In the present experiments, rats' memory for inhibitory avoidance (IA) training was tested 6 h (Test 1), 2 d (Test 2), and 6 d (Test 3) after training. On…
ERIC Educational Resources Information Center
Reese, Elaine; Newcombe, Rhiannon
2007-01-01
This longitudinal intervention assessed children's memory at 2-1/2 years (short-term posttest; N = 115) and their memory and narrative at 3-1/2 years (long-term posttest; N = 100) as a function of maternal training in elaborative reminiscing when children were 1-1/2 to 2-1/2 years. At both posttests, trained mothers were more elaborative in their…
Gafford, Georgette M; Parsons, Ryan G; Helmstetter, Fred J
2013-09-01
Prior work suggests that hippocampus-dependent memory undergoes a systems consolidation process such that recent memories are stored in the hippocampus, while older memories are independent of the hippocampus and instead dependent on cortical areas. One problem with interpreting these studies is that memory for the contextual stimuli weakens as time passes between the training event and testing and older memories are often less detailed, making it difficult to determine if memory storage in the hippocampus is related to the age or to the accuracy of the memory. Activity of the mammalian target of rapamycin (mTOR) signaling pathway is known to be important for controlling protein translation necessary for both memory consolidation after initial learning and for the reconsolidation of memory after retrieval. We tested whether p70s6 kinase (p70s6K), a key component of the mTOR signaling pathway, is activated following retrieval of context fear memory in the dorsal hippocampus (DH) and anterior cingulate cortex (ACC) at 1, 10, or 36 days after context fear conditioning. We also tested whether strengthening memory for the contextual stimuli changed p70s6K phosphorylation in these structures 36 days after training. We show that under standard training conditions retrieval of a recently formed memory is initially precise and involves the DH. Over time it loses detail, becomes independent of the DH and depends on the ACC. In a subsequent experiment, we preserved the accuracy of older memories through pre-exposure to the training context. We show that remote memory still involved the DH in animals given pre-exposure. These data support the notion that detailed memories depend on the DH regardless of their age. Copyright © 2013 Wiley Periodicals, Inc.
1990-09-01
learning occurs when this final Zink is made into long-term memory (13:79). Cognitive scientists realize the role of the trainee as a passive receiver of...of property on the computer, and when they did, this piece of paperwork printed out on their printer . Someone from the receiving section brought this
An embedded Simplified Fuzzy ARTMAP implemented on a microcontroller for food classification.
Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas
2013-08-13
In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food.
An Embedded Simplified Fuzzy ARTMAP Implemented on a Microcontroller for Food Classification
Garcia-Breijo, Eduardo; Garrigues, Jose; Sanchez, Luis Gil; Laguarda-Miro, Nicolas
2013-01-01
In the present study, a portable system based on a microcontroller has been developed to classify different kinds of honeys. In order to do this classification, a Simplified Fuzzy ARTMAP network (SFA) implemented in a microcontroller has been used. Due to memory limits when working with microcontrollers, it is necessary to optimize the use of both program and data memory. Thus, a Graphical User Interface (GUI) for MATLAB® has been developed in order to optimize the necessary parameters to programme the SFA in a microcontroller. The measures have been carried out by potentiometric techniques using a multielectrode made of seven different metals. Next, the neural network has been trained on a PC by means of the GUI in Matlab using the data obtained in the experimental phase. The microcontroller has been programmed with the obtained parameters and then, new samples have been analysed using the portable system in order to test the model. Results are very promising, as an 87.5% recognition rate has been achieved in the training phase, which suggests that this kind of procedures can be successfully used not only for honey classification, but also for many other kinds of food. PMID:23945736
Eliminating Residents Increases the Cost of Care.
DeMarco, Deborah M; Forster, Richard; Gakis, Thomas; Finberg, Robert W
2017-08-01
Academic health centers are facing a potential reduction in Medicare financing for graduate medical education (GME). Both the Medicare Payment Advisory Commission and the National Commission on Fiscal Responsibility and Reform (Deficit Commission) have suggested cutting approximately half the funding that teaching hospitals receive for indirect medical education. Because of the effort that goes into teaching trainees, who are only transient employees, hospital executives often see teaching programs as a drain on resources. In light of the possibility of a Medicare cut to GME programs, we undertook an analysis to assess the financial risk of training programs to our institution and the possibility of saving money by reducing resident positions. The chief administrative officer, in collaboration with the hospital chief financial officer, performed a financial analysis to examine the possibility of decreasing costs by reducing residency programs at the University of Massachusetts Memorial Medical Center. Despite the real costs of our training programs, the analysis demonstrated that GME programs have a positive impact on hospital finances. Reducing or eliminating GME programs would have a negative impact on our hospital's bottom line.
A simultaneous examination of two forms of working memory training: Evidence for near transfer only.
Minear, Meredith; Brasher, Faith; Guerrero, Claudia Brandt; Brasher, Mandy; Moore, Andrew; Sukeena, Joshua
2016-10-01
The efficacy of working-memory training is a topic of considerable debate, with some studies showing transfer to measures such as fluid intelligence while others have not. We report the results of a study designed to examine two forms of working-memory training, one using a spatial n-back and the other a verbal complex span. Thirty-one undergraduates completed 4 weeks of n-back training and 32 completed 4 weeks of verbal complex span training. We also included two active control groups. One group trained on a non-adaptive version of n-back and the other trained on a real-time strategy video game. All participants completed pre- and post-training measures of a large battery of transfer tasks used to create composite measures of short-term and working memory in both verbal and visuo-spatial domains as well as verbal reasoning and fluid intelligence. We only found clear evidence for near transfer from the spatial n-back training to new forms of n-back, and this was the case for both adaptive and non-adaptive n-back.
Memory self-efficacy predicts responsiveness to inductive reasoning training in older adults.
Payne, Brennan R; Jackson, Joshua J; Hill, Patrick L; Gao, Xuefei; Roberts, Brent W; Stine-Morrow, Elizabeth A L
2012-01-01
In the current study, we assessed the relationship between memory self-efficacy at pretest and responsiveness to inductive reasoning training in a sample of older adults. Participants completed a measure of self-efficacy assessing beliefs about memory capacity. Participants were then randomly assigned to a waitlist control group or an inductive reasoning training intervention. Latent change score models were used to examine the moderators of change in inductive reasoning. Inductive reasoning showed clear improvements in the training group compared with the control. Within the training group, initial memory capacity beliefs significantly predicted change in inductive reasoning such that those with higher levels of capacity beliefs showed greater responsiveness to the intervention. Further analyses revealed that self-efficacy had effects on how trainees allocated time to the training materials over the course of the intervention. Results indicate that self-referential beliefs about cognitive potential may be an important factor contributing to plasticity in adulthood.
Shahar, Nitzan; Meiran, Nachshon
2015-01-01
Few studies have addressed action control training. In the current study, participants were trained over 19 days in an adaptive training task that demanded constant switching, maintenance and updating of novel action rules. Participants completed an executive functions battery before and after training that estimated processing speed, working memory updating, set-shifting, response inhibition and fluid intelligence. Participants in the training group showed greater improvement than a no-contact control group in processing speed, indicated by reduced reaction times in speeded classification tasks. No other systematic group differences were found across the different pre-post measurements. Ex-Gaussian fitting of the reaction-time distribution revealed that the reaction time reduction observed among trained participants was restricted to the right tail of the distribution, previously shown to be related to working memory. Furthermore, training effects were only found in classification tasks that required participants to maintain novel stimulus-response rules in mind, supporting the notion that the training improved working memory abilities. Training benefits were maintained in a 10-month follow-up, indicating relatively long-lasting effects. The authors conclude that training improved action-related working memory abilities. PMID:25799443
Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila.
Le Glou, Eric; Seugnet, Laurent; Shaw, Paul J; Preat, Thomas; Goguel, Valérie
2012-10-01
Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time.
Skill-memory consolidation in the striatum
Willuhn, Ingo; Steiner, Heinz
2008-01-01
The sensorimotor striatum is important for procedural learning, including skill learning. Our previous findings indicate that this part of the striatum mediates the acquisition of a motor skill in a running-wheel task and that this skill learning is dependent on striatal D1 dopamine receptors. Here, we investigated whether the sensorimotor striatum is also involved in the consolidation of this skill memory and whether this consolidation is modified by the indirect dopamine receptor agonist cocaine. Rats were trained on a running wheel for two days (40 min/day) to learn a new motor skill, that is, the ability to control the movement of the wheel. Before each training session, the animals received an injection of vehicle or cocaine (25 mg/kg; i.p.). Immediately following the training session, an intrastriatal infusion of 2% lidocaine (1 μl) or a sham infusion were administered. Wheel-skill performance was tested before and repeatedly after the training. Our results show that post-trial intrastriatal infusion of lidocaine disrupted late-stage long-term skill memory (post-training days 6-26), but spared early long-term memory (1 day after the training). Skill consolidation was more susceptible to such disruption in animals that practiced less during the training. Cocaine given pre-trial prevented this post-trial disruption of skill consolidation. These findings indicate that the sensorimotor striatum is critical for consolidation of late but not early long-term skill memory. Furthermore, cocaine appeared to stabilize motor memory formation by protecting consolidation processes after the training. PMID:18687364
Sari, Berna A; Koster, Ernst H W; Pourtois, Gilles; Derakshan, Nazanin
2016-12-01
Trait anxiety is associated with impairments in attentional control and processing efficiency (see Berggren & Derakshan, 2013, for a review). Working memory training using the adaptive dual n-back task has shown to improve attentional control in subclinical depression with transfer effects at the behavioral and neural level on a working memory task (Owens, Koster, & Derakshan, 2013). Here, we examined the beneficial effects of working memory training on attentional control in pre-selected high trait anxious individuals who underwent a three week daily training intervention using the adaptive dual n-back task. Pre and post outcome measures of attentional control were assessed using a Flanker task that included a stress induction and an emotional a Antisaccade task (with angry and neutral faces as target). Resting state EEG (theta/beta ratio) was recorded to as a neural marker of trait attentional control. Our results showed that adaptive working memory training improved attentional control with transfer effects on the Flanker task and resting state EEG, but effects of training on the Antisaccade task were less conclusive. Finally, training related gains were associated with lower levels of trait anxiety at post (vs pre) intervention. Our results demonstrate that adaptive working memory training in anxiety can have beneficial effects on attentional control and cognitive performance that may protect against emotional vulnerability in individuals at risk of developing clinical anxiety. Copyright © 2015 Elsevier B.V. All rights reserved.
Neuronal Allocation to a Hippocampal Engram
Park, Sungmo; Kramer, Emily E; Mercaldo, Valentina; Rashid, Asim J; Insel, Nathan; Frankland, Paul W; Josselyn, Sheena A
2016-01-01
The dentate gyrus (DG) is important for encoding contextual memories, but little is known about how a population of DG neurons comes to encode and support a particular memory. One possibility is that recruitment into an engram depends on a neuron's excitability. Here, we manipulated excitability by overexpressing CREB in a random population of DG neurons and examined whether this biased their recruitment to an engram supporting a contextual fear memory. To directly assess whether neurons overexpressing CREB at the time of training became critical components of the engram, we examined memory expression while the activity of these neurons was silenced. Chemogenetically (hM4Di, an inhibitory DREADD receptor) or optogenetically (iC++, a light-activated chloride channel) silencing the small number of CREB-overexpressing DG neurons attenuated memory expression, whereas silencing a similar number of random neurons not overexpressing CREB at the time of training did not. As post-encoding reactivation of the activity patterns present during initial experience is thought to be important in memory consolidation, we investigated whether post-training silencing of neurons allocated to an engram disrupted subsequent memory expression. We found that silencing neurons 5 min (but not 24 h) following training disrupted memory expression. Together these results indicate that the rules of neuronal allocation to an engram originally described in the lateral amygdala are followed in different brain regions including DG, and moreover, that disrupting the post-training activity pattern of these neurons prevents memory consolidation. PMID:27187069
Neuronal Allocation to a Hippocampal Engram.
Park, Sungmo; Kramer, Emily E; Mercaldo, Valentina; Rashid, Asim J; Insel, Nathan; Frankland, Paul W; Josselyn, Sheena A
2016-12-01
The dentate gyrus (DG) is important for encoding contextual memories, but little is known about how a population of DG neurons comes to encode and support a particular memory. One possibility is that recruitment into an engram depends on a neuron's excitability. Here, we manipulated excitability by overexpressing CREB in a random population of DG neurons and examined whether this biased their recruitment to an engram supporting a contextual fear memory. To directly assess whether neurons overexpressing CREB at the time of training became critical components of the engram, we examined memory expression while the activity of these neurons was silenced. Chemogenetically (hM4Di, an inhibitory DREADD receptor) or optogenetically (iC++, a light-activated chloride channel) silencing the small number of CREB-overexpressing DG neurons attenuated memory expression, whereas silencing a similar number of random neurons not overexpressing CREB at the time of training did not. As post-encoding reactivation of the activity patterns present during initial experience is thought to be important in memory consolidation, we investigated whether post-training silencing of neurons allocated to an engram disrupted subsequent memory expression. We found that silencing neurons 5 min (but not 24 h) following training disrupted memory expression. Together these results indicate that the rules of neuronal allocation to an engram originally described in the lateral amygdala are followed in different brain regions including DG, and moreover, that disrupting the post-training activity pattern of these neurons prevents memory consolidation.
The spatial learning and memory performance in methamphetamine–sensitized and withdrawn rats
Bigdeli, Imanollah; Asia, Masomeh Nikfarjam- Haft; Miladi-Gorji, Hossein; Fadaei, Atefeh
2015-01-01
Objective(s): There is controversial evidence about the effect of methamphetamine (METH) on spatial memory. We tested the time- dependent effects of METH on spatial short-term (working) and long-term (reference) memory in METH –sensitized and withdrawn rats in the Morris water maze. Materials and Methods: Rats were sensitized to METH (2 mg/kg, daily/5 days, SC). Rats were trained in water maze (4 trials/day/for 5 days). Probe test was performed 24 hr after training. Two days after probe test, working memory training (2 trials/day/for 5 days) was conducted. Acquisition–retention interval was 75 min. The treatment was continued per day 30 and 120 min before the test. Two groups of METH –sensitized rats were trained in reference memory after a longer period of withdrawal (30 days). Results: Sensitized rats exhibited significantly longer escape latencies on the training, spent significantly less time in the target zone (all, P<0.05), and their working memory impaired 30 min after injection. While, METH has no effect on the spatial learning process 120 min after injection, and rats spent significantly less time in the target zone (P<0.05), as well it has no effect on working memory. Also, impairment of reference memory persisted after prolonged abstinence. Conclusion: Our findings indicated that METH impaired spatial learning and memory 30 min after injection, but spared spatial learning, either acquisition or retention of spatial working, but partially impaired retention of spatial reference memory following 120 min after injection in sensitized rats, which persisted even after prolonged abstinence. PMID:25945235
Bråthen, Anne Cecilie Sjøli; Rohani, Darius A.; Grydeland, Håkon; Fjell, Anders M.; Walhovd, Kristine B.
2017-01-01
Abstract Age differences in human brain plasticity are assumed, but have not been systematically investigated. In this longitudinal study, we investigated changes in white matter (WM) microstructure in response to memory training relative to passive and active control conditions in 183 young and older adults. We hypothesized that (i) only the training group would show improved memory performance and microstructural alterations, (ii) the young adults would show larger memory improvement and a higher degree of microstructural alterations as compared to the older adults, and (iii) changes in memory performance would relate to microstructural alterations. The results showed that memory improvement was specific to the training group, and that both the young and older participants improved their performance. The young group improved their memory to a larger extent compared to the older group. In the older sample, the training group showed less age‐related decline in WM microstructure compared to the control groups, in areas overlapping the corpus callosum, the cortico‐spinal tract, the cingulum bundle, the superior longitudinal fasciculus, and the anterior thalamic radiation. Less microstructural decline was related to a higher degree of memory improvement. Despite individual adaptation securing sufficient task difficulty, no training‐related group differences in microstructure were found in the young adults. The observed divergence of behavioral and microstructural responses to memory training with age is discussed within a supply‐demand framework. The results demonstrate that plasticity is preserved into older age, and that microstructural alterations may be part of a neurobiological substrate for behavioral improvements in older adults. Hum Brain Mapp 38:5666–5680, 2017. © 2018 The Authors Human Brain Mapping Published byWiley Periodicals, Inc. PMID:28782901
Working memory training and transfer in older adults.
Richmond, Lauren L; Morrison, Alexandra B; Chein, Jason M; Olson, Ingrid R
2011-12-01
There has been a great deal of interest, both privately and commercially, in using working memory training exercises to improve general cognitive function. However, many of the laboratory findings for older adults, a group in which this training is of utmost interest, are discouraging due to the lack of transfer to other tasks and skills. Importantly, improvements in everyday functioning remain largely unexamined in relation to WM training. We trained working memory in older adults using a task that encourages transfer in young adults (Chein & Morrison, 2010). We tested transfer to measures of working memory (e.g., Reading Span), everyday cognitive functioning [the Test of Everyday Attention (TEA) and the California Verbal Learning Test (CVLT)], and other tasks of interest. Relative to controls, trained participants showed transfer improvements in Reading Span and the number of repetitions on the CVLT. Training group participants were also significantly more likely to self-report improvements in everyday attention. Our findings support the use of ecological tasks as a measure of transfer in an older adult population.
McDougall, Siné; House, Becky
2012-01-01
In this study the effects of 'brain training' using the Nintendo DS Brain Training program were examined in two groups of older adults; the cognitive performance of an experimental group (n = 21) who were asked to use the Nintendo DS regularly over a 6-week period was compared with the control group (n = 20). Groups were matched on age (mean age = 74 years), education, computer experience, daily activities (time spent reading or watching television), and initial scores of Wechsler Adult Intelligence Scale. Analyses revealed that improvements were primarily in the Digit Span Test, specifically Digits Backwards. Although the Brain Training package appeared to have some efficacy, other factors such as perceived quality of life and perceived cognitive functioning were at least equally important in determining training outcomes. The implications of these findings for cognitive training are discussed.
ERIC Educational Resources Information Center
Loomes, Carly; Rasmussen, Carmen; Pei, Jacqueline; Manji, Shazeen; Andrew, Gail
2008-01-01
A key area of weakness in individuals with fetal alcohol spectrum disorder (FASD) is working memory, thus the goal of this study was to determine whether teaching children (aged 4-11) with FASD verbal rehearsal would increase their memory. Rehearsal training has been effective in other populations with working memory difficulties, so we…
Effects of Training Auditory Sequential Memory and Attention on Reading.
ERIC Educational Resources Information Center
Klein, Pnina S.; Schwartz, Allen A.
1979-01-01
The study, involving 92 second and third graders with deficits in reading and auditory sequential memory (ASM), examined the possibility of improving ASM through training and the relationship between this training and reading ability. (Author/CL)
Music training and working memory: an ERP study.
George, Elyse M; Coch, Donna
2011-04-01
While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials (ERPs) and a standardized test of working memory, we investigated both neural and behavioral aspects of working memory in college-aged, non-professional musicians and non-musicians. Behaviorally, musicians outperformed non-musicians on standardized subtests of visual, phonological, and executive memory. ERPs were recorded in standard auditory and visual oddball paradigms (participants responded to infrequent deviant stimuli embedded in lists of standard stimuli). Electrophysiologically, musicians demonstrated faster updating of working memory (shorter latency P300s) in both the auditory and visual domains and musicians allocated more neural resources to auditory stimuli (larger amplitude P300), showing increased sensitivity to the auditory standard/deviant difference and less effortful updating of auditory working memory. These findings demonstrate that long-term music training is related to improvements in working memory, in both the auditory and visual domains and in terms of both behavioral and ERP measures. Copyright © 2011 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Briskin-Luchinsky, Valeria; Levy, Roi; Halfon, Maayan; Susswein, Abraham J.
2018-01-01
Training "Aplysia" with inedible food for a period that is too brief to produce long-term memory becomes effective in producing memory when training is paired with a nitric oxide (NO) donor. Lip stimulation for the same period of time paired with an NO donor is ineffective. Using qPCR, we examined molecular correlates of brief training…
Auditory training improves auditory performance in cochlear implanted children.
Roman, Stephane; Rochette, Françoise; Triglia, Jean-Michel; Schön, Daniele; Bigand, Emmanuel
2016-07-01
While the positive benefits of pediatric cochlear implantation on language perception skills are now proven, the heterogeneity of outcomes remains high. The understanding of this heterogeneity and possible strategies to minimize it is of utmost importance. Our scope here is to test the effects of an auditory training strategy, "sound in Hands", using playful tasks grounded on the theoretical and empirical findings of cognitive sciences. Indeed, several basic auditory operations, such as auditory scene analysis (ASA) are not trained in the usual therapeutic interventions in deaf children. However, as they constitute a fundamental basis in auditory cognition, their development should imply general benefit in auditory processing and in turn enhance speech perception. The purpose of the present study was to determine whether cochlear implanted children could improve auditory performances in trained tasks and whether they could develop a transfer of learning to a phonetic discrimination test. Nineteen prelingually unilateral cochlear implanted children without additional handicap (4-10 year-olds) were recruited. The four main auditory cognitive processing (identification, discrimination, ASA and auditory memory) were stimulated and trained in the Experimental Group (EG) using Sound in Hands. The EG followed 20 training weekly sessions of 30 min and the untrained group was the control group (CG). Two measures were taken for both groups: before training (T1) and after training (T2). EG showed a significant improvement in the identification, discrimination and auditory memory tasks. The improvement in the ASA task did not reach significance. CG did not show any significant improvement in any of the tasks assessed. Most importantly, improvement was visible in the phonetic discrimination test for EG only. Moreover, younger children benefited more from the auditory training program to develop their phonetic abilities compared to older children, supporting the idea that rehabilitative care is most efficient when it takes place early on during childhood. These results are important to pinpoint the auditory deficits in CI children, to gather a better understanding of the links between basic auditory skills and speech perception which will in turn allow more efficient rehabilitative programs. Copyright © 2016 Elsevier B.V. All rights reserved.
Semantic congruence reverses effects of sleep restriction on associative encoding.
Alberca-Reina, Esther; Cantero, Jose L; Atienza, Mercedes
2014-04-01
Encoding and memory consolidation are influenced by factors such as sleep and congruency of newly learned information with prior knowledge (i.e., schema). However, only a few studies have examined the contribution of sleep to enhancement of schema-dependent memory. Based on previous studies showing that total sleep deprivation specifically impairs hippocampal encoding, and that coherent schemas reduce the hippocampal consolidation period after learning, we predict that sleep loss in the pre-training night will mainly affect schema-unrelated information whereas sleep restriction in the post-training night will have similar effects on schema-related and unrelated information. Here, we tested this hypothesis by presenting participants with face-face associations that could be semantically related or unrelated under different sleep conditions: normal sleep before and after training, and acute sleep restriction either before or after training. Memory was tested one day after training, just after introducing an interference task, and two days later, without any interference. Significant results were evident on the second retesting session. In particular, sleep restriction before training enhanced memory for semantically congruent events in detriment of memory for unrelated events, supporting the specific role of sleep in hippocampal memory encoding. Unexpectedly, sleep restriction after training enhanced memory for both related and unrelated events. Although this finding may suggest a poorer encoding during the interference task, this hypothesis should be specifically tested in future experiments. All together, the present results support a framework in which encoding processes seem to be more vulnerable to sleep loss than consolidation processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.
2013-01-01
Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169
Likova, Lora T.
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or “sketchpad,” for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw. PMID:22593738
Likova, Lora T
2012-01-01
In a memory-guided drawing task under blindfolded conditions, we have recently used functional Magnetic Resonance Imaging (fMRI) to demonstrate that the primary visual cortex (V1) may operate as the visuo-spatial buffer, or "sketchpad," for working memory. The results implied, however, a modality-independent or amodal form of its operation. In the present study, to validate the role of V1 in non-visual memory, we eliminated not only the visual input but all levels of visual processing by replicating the paradigm in a congenitally blind individual. Our novel Cognitive-Kinesthetic method was used to train this totally blind subject to draw complex images guided solely by tactile memory. Control tasks of tactile exploration and memorization of the image to be drawn, and memory-free scribbling were also included. FMRI was run before training and after training. Remarkably, V1 of this congenitally blind individual, which before training exhibited noisy, immature, and non-specific responses, after training produced full-fledged response time-courses specific to the tactile-memory drawing task. The results reveal the operation of a rapid training-based plasticity mechanism that recruits the resources of V1 in the process of learning to draw. The learning paradigm allowed us to investigate for the first time the evolution of plastic re-assignment in V1 in a congenitally blind subject. These findings are consistent with a non-visual memory involvement of V1, and specifically imply that the observed cortical reorganization can be empowered by the process of learning to draw.
Woldeit, M L; Korz, V
2010-02-03
A functional connection between theta rhythms, information processing, learning and memory formation is well documented by studies focusing on the impact of theta waves on motor activity, global context or phase coding in spatial learning. In the present study we analyzed theta oscillations during a spatial learning task and assessed which specific behavioral contexts were connected to changes in theta power and to the formation of memory. Therefore, we measured hippocampal dentate gyrus theta modulations in male rats that were allowed to establish a long-term spatial reference memory in a holeboard (fixed pattern of baited holes) in comparison to rats that underwent similar training conditions but could not form a reference memory (randomly baited holes). The first group established a pattern specific learning strategy, while the second developed an arbitrary search strategy, visiting increasingly more holes during training. Theta power was equally influenced during the training course in both groups, but was significantly higher when compared to untrained controls. A detailed behavioral analysis, however, revealed behavior- and context-specific differences within the experimental groups. In spatially trained animals theta power correlated with the amounts of reference memory errors in the context of the inspection of unbaited holes and exploration in which, as suggested by time frequency analyses, also slow wave (delta) power was increased. In contrast, in randomly trained animals positive correlations with working memory errors were found in the context of rearing behavior. These findings indicate a contribution of theta/delta to long-lasting memory formation in spatially trained animals, whereas in pseudo trained animals theta seems to be related to attention in order to establish trial specific short-term working memory. Implications for differences in neuronal plasticity found in earlier studies are discussed. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Colom, Roberto; Hua, Xue; Martínez, Kenia; Burgaleta, Miguel; Román, Francisco J; Gunter, Jeffrey L; Carmona, Susanna; Jaeggi, Susanne M; Thompson, Paul M
2016-10-01
Tensor-Based Morphometry (TBM) allows the automatic mapping of brain changes across time building 3D deformation maps. This technique has been applied for tracking brain degeneration in Alzheimer's and other neurodegenerative diseases with high sensitivity and reliability. Here we applied TBM to quantify changes in brain structure after completing a challenging adaptive cognitive training program based on the n-back task. Twenty-six young women completed twenty-four training sessions across twelve weeks and they showed, on average, large cognitive improvements. High-resolution MRI scans were obtained before and after training. The computed longitudinal deformation maps were analyzed for answering three questions: (a) Are there differential brain structural changes in the training group as compared with a matched control group? (b) Are these changes related to performance differences in the training program? (c) Are standardized changes in a set of psychological factors (fluid and crystallized intelligence, working memory, and attention control) measured before and after training, related to structural changes in the brain? Results showed (a) greater structural changes for the training group in the temporal lobe, (b) a negative correlation between these changes and performance across training sessions (the greater the structural change, the lower the cognitive performance improvements), and (c) negligible effects regarding the psychological factors measured before and after training. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cornoldi, Cesare; Carretti, Barbara; Drusi, Silvia; Tencati, Chiara
2015-09-01
Despite doubts voiced on their efficacy, a series of studies has been carried out on the capacity of training programmes to improve academic and reasoning skills by focusing on underlying cognitive abilities and working memory in particular. No systematic efforts have been made, however, to test training programmes that involve both general and specific underlying abilities. If effective, these programmes could help to increase students' motivation and competence. This study examined the feasibility of improving problem-solving skills in school children by means of a training programme that addresses general and specific abilities involved in problem solving, focusing on metacognition and working memory. The project involved a sample of 135 primary school children attending eight classes in the third, fourth, and fifth grades (age range 8-10 years). The classes were assigned to two groups, one attending the training programme in the first 3 months of the study (Training Group 1) and the other serving as a waiting-list control group (Training Group 2). In the second phase of the study, the role of the two groups was reversed, with Training Group 2 attending the training instead of Training Group 1. The training programme led to improvements in both metacognitive and working memory tasks, with positive-related effects on the ability to solve problems. The gains seen in Training Group 1 were also maintained at the second post-test (after 3 months). Specific activities focusing on metacognition and working memory may contribute to modifying arithmetical problem-solving performance in primary school children. © 2015 The British Psychological Society.
Effects of dividing attention on memory for declarative and procedural aspects of tool use.
Roy, Shumita; Park, Norman W
2016-07-01
Tool-related knowledge and skills are supported by a complex set of memory processes that are not well understood. Some aspects of tools are mediated by either declarative or procedural memory, while other aspects may rely on an interaction of both systems. Although motor skill learning is believed to be primarily supported by procedural memory, there is debate in the current literature regarding the role of declarative memory. Growing evidence suggests that declarative memory may be involved during early stages of motor skill learning, although findings have been mixed. In the current experiment, healthy, younger adults were trained to use a set of novel complex tools and were tested on their memory for various aspects of the tools. Declarative memory encoding was interrupted by dividing attention during training. Findings showed that dividing attention during training was detrimental for subsequent memory for tool attributes as well as accurate demonstration of tool use and tool grasping. However, dividing attention did not interfere with motor skill learning, suggesting that declarative memory is not essential for skill learning associated with tools.
Memory Training for Older Adults with Low Education: Mental Images versus Categorization
ERIC Educational Resources Information Center
da Silva, Henrique Salmazo; Yassuda, Monica Sanches
2009-01-01
This study aimed to describe the benefits of memory training for older adults with low education. Twenty-nine healthy older adults with zero to two years of formal education participated. Sixteen participants received training based on categorization (categorization group = CATG) and 13 received training based on mental images (imagery…
Effects of Skill Training on Working Memory Capacity
ERIC Educational Resources Information Center
Lee, Yuh-shiow; Lu, Min-ju; Ko, Hsiu-ping
2007-01-01
In this study we examined the effects of skill training, in particular mental abacus and music training, on working memory. Two groups of participants--children who had received mental abacus training and their controls--participated in Experiment 1. All participants performed the following span tasks: forward digit span, backward digit span,…
Karbach, Julia; Verhaeghen, Paul
2014-11-01
This meta-analysis examined the effects of process-based executive-function and working memory training (49 articles, 61 independent samples) in older adults (> 60 years). The interventions resulted in significant effects on performance on the trained task and near-transfer tasks; significant results were obtained for the net pretest-to-posttest gain relative to active and passive control groups and for the net effect at posttest relative to active and passive control groups. Far-transfer effects were smaller than near-transfer effects but were significant for the net pretest-to-posttest gain relative to passive control groups and for the net gain at posttest relative to both active and passive control groups. We detected marginally significant differences in training-induced improvements between working memory and executive-function training, but no differences between the training-induced improvements observed in older adults and younger adults, between the benefits associated with adaptive and nonadaptive training, or between the effects in active and passive control conditions. Gains did not vary with total training time. © The Author(s) 2014.
Taherian, Fatemeh; Vafaei, Abbas Ali; Vaezi, Gholam Hassan; Eskandarian, Sharaf; Kashef, Adel; Rashidy-Pour, Ali
2014-01-01
Introduction Previous studies have demonstrated that the β-adrenergic receptor antagonist propranolol impairs fear memory reconsolidation in experimental animals. There are experimental parameters such as the age and the strength of memory that can interact with pharmacological manipulations of memory reconsolidation. In this study, we investigated the ability of the age and the strength of memory to influence the disrupting effects of propranolol on fear memory reconsolidation in rats. Methods The rats were trained in a contextual fear conditioning using two (weak training) or five (strong training) footshocks (1mA). Propranolol (10mg/kg) injection was immediately followed retrieval of either a one-day recent (weak or strong) or 36-day remote (weak or strong) contextual fear memories. Results We found that propranolol induced a long-lasting impairment of subsequent expression of recent and remote memories with either weak or strong strength. We also found no memory recovery after a weak reminder shock. Furthermore, no significant differences were found on the amount of memory deficit induced by propranolol among memories with different age and strength. Discussion Our data suggest that the efficacy of propranolol in impairing fear memory reconsolidation is not limited to the age or strength of the memory. PMID:25337385
Barnes, Jessica J; Nobre, Anna Christina; Woolrich, Mark W; Baker, Kate; Astle, Duncan E
2016-08-24
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called "phase amplitude coupling." Copyright © 2016 Barnes et al.
Barnes, Jessica J.; Nobre, Anna Christina; Woolrich, Mark W.; Baker, Kate
2016-01-01
Working memory is a capacity upon which many everyday tasks depend and which constrains a child's educational progress. We show that a child's working memory can be significantly enhanced by intensive computer-based training, relative to a placebo control intervention, in terms of both standardized assessments of working memory and performance on a working memory task performed in a magnetoencephalography scanner. Neurophysiologically, we identified significantly increased cross-frequency phase amplitude coupling in children who completed training. Following training, the coupling between the upper alpha rhythm (at 16 Hz), recorded in superior frontal and parietal cortex, became significantly coupled with high gamma activity (at ∼90 Hz) in inferior temporal cortex. This altered neural network activity associated with cognitive skill enhancement is consistent with a framework in which slower cortical rhythms enable the dynamic regulation of higher-frequency oscillatory activity related to task-related cognitive processes. SIGNIFICANCE STATEMENT Whether we can enhance cognitive abilities through intensive training is one of the most controversial topics of cognitive psychology in recent years. This is particularly controversial in childhood, where aspects of cognition, such as working memory, are closely related to school success and are implicated in numerous developmental disorders. We provide the first neurophysiological account of how working memory training may enhance ability in childhood, using a brain recording technique called magnetoencephalography. We borrowed an analysis approach previously used with intracranial recordings in adults, or more typically in other animal models, called “phase amplitude coupling.” PMID:27559180
ERIC Educational Resources Information Center
Wang, Gong-Wu; Liu, Jian; Wang, Xiao-Qin
2017-01-01
The ventral hippocampus (VH) and the basolateral amygdala (BLA) are both crucial in inhibitory avoidance (IA) memory. However, the exact role of the VH-BLA circuit in IA memory consolidation is unclear. This study investigated the effect of post-training reversible disconnection of the VH-BLA circuit in IA memory consolidation. Male Wistar rats…
Toward Inverse Control of Physics-Based Sound Synthesis
NASA Astrophysics Data System (ADS)
Pfalz, A.; Berdahl, E.
2017-05-01
Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.
Overman, Amy A; Robbins, Ruth E
2014-10-01
The purpose of this pilot study was to investigate the feasibility of implementing a noncomputerized, game-based, community cognitive health intervention with minority and/or lower socioeconomic status (SES) older adults in order to improve cognitive performance and quality of life. Through partnerships with community organizations, we implemented an innovative pilot 10-week cognitive training intervention. Noncomputerized games were used to combine social interaction and cognitive training that challenged attentional and memory function for 1 hour each week over the span of 10 weeks. One game used in the intervention program was created by adapting a working memory training task into a fun and competitive card game; the other two games were commercially available. The intervention and pre/post assessments were able to be delivered in a community setting. Overall retention was satisfactory, but it dropped in later weeks of the intervention. Older adult participants reported enjoying the games and being invested in their performance. They also reported playing the games with family and friends at home. Older adult participants complied with game rules but were reluctant to comply with instructions to rotate game partners and game types. They preferred their first partners, and they preferred the card game over the existing commercial games. This intervention has the potential to improve quality of life and reduce disparities in cognitive health in older adults because it is an accessible game-based intervention program that motivates older adult participants to engage cognitively and to continue this engagement beyond the formal training sessions. However, in order to carry this out on a larger scale, particular attention must be paid to recruitment, retention, and training procedures. This article discusses the critical need for cognitive training interventions in minority and lower SES older adults, the intended benefits, and the best approaches to conducting this type of intervention.
Training Older Adults to Use Tablet Computers: Does It Enhance Cognitive Function?
Chan, Micaela Y; Haber, Sara; Drew, Linda M; Park, Denise C
2016-06-01
Recent evidence shows that engaging in learning new skills improves episodic memory in older adults. In this study, older adults who were computer novices were trained to use a tablet computer and associated software applications. We hypothesize that sustained engagement in this mentally challenging training would yield a dual benefit of improved cognition and enhancement of everyday function by introducing useful skills. A total of 54 older adults (age 60-90) committed 15 hr/week for 3 months. Eighteen participants received extensive iPad training, learning a broad range of practical applications. The iPad group was compared with 2 separate controls: a Placebo group that engaged in passive tasks requiring little new learning; and a Social group that had regular social interaction, but no active skill acquisition. All participants completed the same cognitive battery pre- and post-engagement. Compared with both controls, the iPad group showed greater improvements in episodic memory and processing speed but did not differ in mental control or visuospatial processing. iPad training improved cognition relative to engaging in social or nonchallenging activities. Mastering relevant technological devices have the added advantage of providing older adults with technological skills useful in facilitating everyday activities (e.g., banking). This work informs the selection of targeted activities for future interventions and community programs. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America.
Training Older Adults to Use Tablet Computers: Does It Enhance Cognitive Function?
Chan, Micaela Y.; Haber, Sara; Drew, Linda M.; Park, Denise C.
2016-01-01
Purpose of the Study: Recent evidence shows that engaging in learning new skills improves episodic memory in older adults. In this study, older adults who were computer novices were trained to use a tablet computer and associated software applications. We hypothesize that sustained engagement in this mentally challenging training would yield a dual benefit of improved cognition and enhancement of everyday function by introducing useful skills. Design and Methods: A total of 54 older adults (age 60-90) committed 15 hr/week for 3 months. Eighteen participants received extensive iPad training, learning a broad range of practical applications. The iPad group was compared with 2 separate controls: a Placebo group that engaged in passive tasks requiring little new learning; and a Social group that had regular social interaction, but no active skill acquisition. All participants completed the same cognitive battery pre- and post-engagement. Results: Compared with both controls, the iPad group showed greater improvements in episodic memory and processing speed but did not differ in mental control or visuospatial processing. Implications: iPad training improved cognition relative to engaging in social or nonchallenging activities. Mastering relevant technological devices have the added advantage of providing older adults with technological skills useful in facilitating everyday activities (e.g., banking). This work informs the selection of targeted activities for future interventions and community programs. PMID:24928557
Oba, Sandra I.; Galvin, John J.; Fu, Qian-Jie
2014-01-01
Auditory training has been shown to significantly improve cochlear implant (CI) users’ speech and music perception. However, it is unclear whether post-training gains in performance were due to improved auditory perception or to generally improved attention, memory and/or cognitive processing. In this study, speech and music perception, as well as auditory and visual memory were assessed in ten CI users before, during, and after training with a non-auditory task. A visual digit span (VDS) task was used for training, in which subjects recalled sequences of digits presented visually. After the VDS training, VDS performance significantly improved. However, there were no significant improvements for most auditory outcome measures (auditory digit span, phoneme recognition, sentence recognition in noise, digit recognition in noise), except for small (but significant) improvements in vocal emotion recognition and melodic contour identification. Post-training gains were much smaller with the non-auditory VDS training than observed in previous auditory training studies with CI users. The results suggest that post-training gains observed in previous studies were not solely attributable to improved attention or memory, and were more likely due to improved auditory perception. The results also suggest that CI users may require targeted auditory training to improve speech and music perception. PMID:23516087
Working Memory Intervention: A Reading Comprehension Approach
ERIC Educational Resources Information Center
Perry, Tracy L.; Malaia, Evguenia
2013-01-01
For any complex mental task, people rely on working memory. Working memory capacity (WMC) is one predictor of success in learning. Historically, attempts to improve verbal WM through training have not been effective. This study provided elementary students with WM consolidation efficiency training to answer the question, Can reading comprehension…
Phonological Awareness Training and Short-Term Working Memory: Clinical Implications.
ERIC Educational Resources Information Center
Gillam, Ronald B.; van Kleeck, Anne
1996-01-01
This article finds that two aspects of phonological working memory, phonological coding and phonological recoding, appear to be important elements in the relationship between phonological working memory and phonological awareness. It suggests an approach to training in phonological awareness and reports an intervention study in which phonological…
Young, Matthew B; Howell, Leonard L; Hopkins, Lauren; Moshfegh, Cassandra; Yu, Zhe; Clubb, Lauren; Seidenberg, Jessica; Park, Jeanie; Swiercz, Adam P; Marvar, Paul J
2018-05-17
Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired. Copyright © 2018 Elsevier Ltd. All rights reserved.
Storkel, Holly L; Bontempo, Daniel E; Pak, Natalie S
2014-10-01
In this study, the authors investigated adult word learning to determine how neighborhood density and practice across phonologically related training sets influence online learning from input during training versus offline memory evolution during no-training gaps. Sixty-one adults were randomly assigned to learn low- or high-density nonwords. Within each density condition, participants were trained on one set of words and then were trained on a second set of words, consisting of phonological neighbors of the first set. Learning was measured in a picture-naming test. Data were analyzed using multilevel modeling and spline regression. Steep learning during input was observed, with new words from dense neighborhoods and new words that were neighbors of recently learned words (i.e., second-set words) being learned better than other words. In terms of memory evolution, large and significant forgetting was observed during 1-week gaps in training. Effects of density and practice during memory evolution were opposite of those during input. Specifically, forgetting was greater for high-density and second-set words than for low-density and first-set words. High phonological similarity, regardless of source (i.e., known words or recent training), appears to facilitate online learning from input but seems to impede offline memory evolution.
Fear Extinction Memory Consolidation Requires Potentiation of Pontine-Wave Activity during REM Sleep
Datta, Subimal; O'Malley, Matthew W .
2013-01-01
Sleep plays an important role in memory consolidation within multiple memory systems including contextual fear extinction memory, but little is known about the mechanisms that underlie this process. Here, we show that fear extinction training in rats, which extinguished conditioned fear, increased both slow-wave sleep and rapid-eye movement (REM) sleep. Surprisingly, 24 h later, during memory testing, only 57% of the fear-extinguished animals retained fear extinction memory. We found that these animals exhibited an increase in phasic pontine-wave (P-wave) activity during post-training REM sleep, which was absent in the 43% of animals that failed to retain fear extinction memory. The results of this study provide evidence that brainstem activation, specifically potentiation of phasic P-wave activity, during post-training REM sleep is critical for consolidation of fear extinction memory. The results of this study also suggest that, contrary to the popular hypothesis of sleep and memory, increased sleep after training alone does not guarantee consolidation and/or retention of fear extinction memory. Rather, the potentiation of specific sleep-dependent physiological events may be a more accurate predictor for successful consolidation of fear extinction memory. Identification of this unique mechanism will significantly improve our present understanding of the cellular and molecular mechanisms that underlie the sleep-dependent regulation of emotional memory. Additionally, this discovery may also initiate development of a new, more targeted treatment method for clinical disorders of fear and anxiety in humans that is more efficacious than existing methods such as exposure therapy that incorporate only fear extinction. PMID:23467372
Weinberger, Norman M; Miasnikov, Alexandre A; Bieszczad, Kasia M; Chen, Jemmy C
2013-09-01
Gamma oscillations (∼30-120Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n=16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4-15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. Copyright © 2013 Elsevier Inc. All rights reserved.
Weinberger, Norman M.; Miasnikov, Alexandre A.; Bieszczad, Kasia M.; Chen, Jemmy C.
2013-01-01
Gamma oscillations (~30–120 Hz) are considered to be a reflection of coordinated neuronal activity, linked to processes underlying synaptic integration and plasticity. Increases in gamma power within the cerebral cortex have been found during many cognitive processes such as attention, learning, memory and problem solving in both humans and animals. However, the specificity of gamma to the detailed contents of memory remains largely unknown. We investigated the relationship between learning-induced increased gamma power in the primary auditory cortex (A1) and the strength of memory for acoustic frequency. Adult male rats (n = 16) received three days (200 trials each) of pairing a tone (3.66 kHz) with stimulation of the nucleus basalis, which implanted a memory for acoustic frequency as assessed by associatively-induced disruption of ongoing behavior, viz., respiration. Post-training frequency generalization gradients (FGGs) revealed peaks at non-CS frequencies in 11/16 cases, likely reflecting normal variation in pre-training acoustic experiences. A stronger relationship was found between increased gamma power and the frequency with the strongest memory (peak of the difference between individual post- and pre-training FGGs) vs. behavioral responses to the CS training frequency. No such relationship was found for the theta/alpha band (4–15 Hz). These findings indicate that the strength of specific increased neuronal synchronization within primary sensory cortical fields can determine the specific contents of memory. PMID:23669065
[The IPT integrative program of psychological therapy for schizophrenia patients: new perspectives].
Pomini, Valentino
2004-04-01
The integrated psychological treatment for schizophrenic patients IPT is composed by six modules that can be implemented either separately or in an articulated way. In that case, the treatment begins with a cognitive remediation phase which is followed by a social skills training phase. In the first phase, exercises specifically focalize on selective attention, memory, logical reasoning, perception and communication skills. The second phase of the program offers three other modules that train other skills: 1) social skills, 2) emotional management, 3) interpersonal problem solving. The IPT program belong to the so called second generation of social skills training programmes. It has been validated by numerous controlled studies, either in its complete form or in partial forms containing only one ore more of its sub-programmes. The results of these studies are globally positive. They show that IPT is an interesting therapeutic contribution for the rehabilitation practice with schizophrenic patients. A third generation of social skills training has been elaborated on the basis of the current IPT program. These new adjunctions to the IPT tend to favour the utilization in the real life of the competencies trained in the sessions, either by adding specific homeworks, in-vivo or booster sessions, or by designating new programmes directed to specific rehabilitation objectives, such as the integration in a apartment, the management of leisure times or the return to a workplace. These new programmes have been studied. They are promising and seem to be a useful complement to the original IPT.
Memory Self-Efficacy Predicts Responsiveness to Inductive Reasoning Training in Older Adults
Jackson, Joshua J.; Hill, Patrick L.; Gao, Xuefei; Roberts, Brent W.; Stine-Morrow, Elizabeth A. L.
2012-01-01
Objectives. In the current study, we assessed the relationship between memory self-efficacy at pretest and responsiveness to inductive reasoning training in a sample of older adults. Methods. Participants completed a measure of self-efficacy assessing beliefs about memory capacity. Participants were then randomly assigned to a waitlist control group or an inductive reasoning training intervention. Latent change score models were used to examine the moderators of change in inductive reasoning. Results. Inductive reasoning showed clear improvements in the training group compared with the control. Within the training group, initial memory capacity beliefs significantly predicted change in inductive reasoning such that those with higher levels of capacity beliefs showed greater responsiveness to the intervention. Further analyses revealed that self-efficacy had effects on how trainees allocated time to the training materials over the course of the intervention. Discussion. Results indicate that self-referential beliefs about cognitive potential may be an important factor contributing to plasticity in adulthood. PMID:21743037
Effectiveness of cognitive training for Chinese elderly in Hong Kong
Kwok, Timothy; Wong, Anita; Chan, Grace; Shiu, YY; Lam, Ko-Chuen; Young, Daniel; Ho, Daniel WH; Ho, Florence
2013-01-01
In Hong Kong, the evidence for cognitive-training programs in fighting against memory complaints is lacking. This study aimed to evaluate the effectiveness of the Active Mind cognitive-training program in improving the cognitive function and quality of life (QoL) for local community-dwelling Chinese older adults. A total of 200 subjects were recruited from 20 different district elderly community centers (DECCs). Centers were randomly assigned into either the intervention group or control group. The intervention group underwent eight 1-hour sessions of cognitive training, while the control group were included in the usual group activities provided by the DECCs. Standardized neuropsychological tests (the Chinese version of Mattis Dementia Rating Scale [CDRS] and the Cantonese version of the Mini-Mental State Examination) and the QoL questionnaire SF12 were used to assess participants’ cognitive function and QoL before and after the trial. A total of 176 subjects completed the study. The intervention group showed greater improvement in the cognitive function measured by total CDRS score (treatment: 12.24 ± 11.57 vs control: 4.37 ± 7.99; P < 0.001) and QoL measured by total SF12 score (treatment: 7.82 ± 13.19 vs control: 3.18 ± 11.61; P = 0.014). Subjects with lower education level were associated with better cognitive response to the cognitive-training program. The current findings indicated that the Active Mind cognitive-training program was effective in improving the cognitive function and QoL for community-dwelling Chinese older adults in Hong Kong. PMID:23440076
Mindfulness Enhances Episodic Memory Performance: Evidence from a Multimethod Investigation
Goodman, Robert J.; Ryan, Richard M.; Anālayo, Bhikkhu
2016-01-01
Training in mindfulness, classically described as a receptive attentiveness to present events and experiences, has been shown to improve attention and working memory. Both are key to long-term memory formation, and the present three-study series used multiple methods to examine whether mindfulness would enhance episodic memory, a key form of long-term memory. In Study 1 (N = 143), a self-reported state of mindful attention predicted better recognition performance in the Remember-Know (R-K) paradigm. In Study 2 (N = 93), very brief training in a focused attention form of mindfulness also produced better recognition memory performance on the R-K task relative to a randomized, well-matched active control condition. Study 3 (N = 57) extended these findings by showing that relative to randomized active and inactive control conditions the effect of very brief mindfulness training generalized to free-recall memory performance. This study also found evidence for mediation of the mindfulness training—episodic memory relation by intrinsic motivation. These findings indicate that mindful attention can beneficially impact motivation and episodic memory, with potential implications for educational and occupational performance. PMID:27115491
Ji, Lanxin; Pearlson, Godfrey D; Zhang, Xue; Steffens, David C; Ji, Xiaoqing; Guo, Hua; Wang, Lihong
2018-05-31
Neuroimaging studies suggest that older adults may compensate for declines in cognitive function through neural compensation and reorganization of neural resources. While neural compensation as a key component of cognitive reserve is an important factor that mediates cognitive decline, the field lacks a quantitative measure of neural compensatory ability, and little is known about factors that may modify compensation, such as physical exercise. Twenty-five healthy older adults participated in a 6-week dance training exercise program. Gait speed, cognitive function, and functional magnetic resonance imaging during a challenging memory task were measured before and after the exercise program. In this study, we used a newly proposed data-driven independent component analysis approach to measure neural compensatory ability and tested the effect of physical exercise on neural compensation through a longitudinal study. After the exercise program, participants showed significantly improved memory performance in Logical Memory Test (WMS(LM)) (P < .001) and Rey Auditory Verbal Learning Test (P = .001) and increased gait speed measured by the 6-minute walking test (P = .01). Among all identified neural networks, only the motor cortices and cerebellum showed greater involvement during the memory task after exercise. Importantly, subjects who activated the motor network only after exercise (but not before exercise) showed WMS(LM) increases. We conclude that physical exercise improved gait speed, cognitive function, and compensatory ability through increased involvement of motor-related networks. Copyright © 2018 John Wiley & Sons, Ltd.
Külzow, Nadine; Cavalcanti de Sousa, Angelica Vieira; Cesarz, Magda; Hanke, Julie-Marie; Günsberg, Alida; Harder, Solvejg; Koblitz, Swantje; Grittner, Ulrike; Flöel, Agnes
2017-01-01
Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and a non-optimal timing of atDCS between sessions might have masked beneficial effects and should be more systematically addressed in future studies.
Lebedev, Alexander V; Nilsson, Jonna; Lövdén, Martin
2018-07-01
Researchers have proposed that solving complex reasoning problems, a key indicator of fluid intelligence, involves the same cognitive processes as solving working memory tasks. This proposal is supported by an overlap of the functional brain activations associated with the two types of tasks and by high correlations between interindividual differences in performance. We replicated these findings in 53 older participants but also showed that solving reasoning and working memory problems benefits from different configurations of the functional connectome and that this dissimilarity increases with a higher difficulty load. Specifically, superior performance in a typical working memory paradigm ( n-back) was associated with upregulation of modularity (increased between-network segregation), whereas performance in the reasoning task was associated with effective downregulation of modularity. We also showed that working memory training promotes task-invariant increases in modularity. Because superior reasoning performance is associated with downregulation of modular dynamics, training may thus have fostered an inefficient way of solving the reasoning tasks. This could help explain why working memory training does little to promote complex reasoning performance. The study concludes that complex reasoning abilities cannot be reduced to working memory and suggests the need to reconsider the feasibility of using working memory training interventions to attempt to achieve effects that transfer to broader cognition.
Topographical memory analyzed in mice using the Hamlet test, a novel complex maze.
Crouzier, Lucie; Gilabert, Damien; Rossel, Mireille; Trousse, Françoise; Maurice, Tangui
2018-03-01
The Hamlet test is an innovative device providing a complex environment for testing topographic memory in mice. Animals were trained in groups for weeks in a small village with a central agora, streets expanding from it towards five functionalized houses, where they can drink, eat, hide, run, interact with a stranger mouse. Memory was tested by depriving mice from water or food and analyzing their ability to locate the Drink/Eat house. Exploration and memory were analyzed in different strains, gender, and after different training periods and delays. After 2 weeks training, differences in exploration patterns were observed between strains, but not gender. Neuroanatomical structures activated by training, identified using FosB/ΔFosB immunolabelling, showed an involvement of the hippocampus-subiculum-parahippocampal gyrus axis and dopaminergic structures. Training increased hippocampal neurogenesis (cell proliferation and neuronal maturation) and modified the amnesic efficacy of muscarinic or nicotinic cholinergic antagonists. Moreover, topographical disorientation in Alzheimer's disease was addressed using intracerebroventricular injection of amyloid β 25-35 peptide in trained mice. When retested after 7 days, Aβ 25-35 -treated mice showed memory impairment. The Hamlet test specifically allows analysis of topographical memory in mice, based on complex environment. It offers an innovative tool for various ethological or pharmacological research needs. For instance, it allowed to examine topographical disorientation, a warning sign in Alzheimer's disease. Copyright © 2018 Elsevier Inc. All rights reserved.
The effects of working memory resource depletion and training on sensorimotor adaptation
Anguera, Joaquin A.; Bernard, Jessica A.; Jaeggi, Susanne M.; Buschkuehl, Martin; Benson, Bryan L.; Jennett, Sarah; Humfleet, Jennifer; Reuter-Lorenz, Patricia; Jonides, John; Seidler, Rachael D.
2011-01-01
We have recently demonstrated that visuospatial working memory performance predicts the rate of motor skill learning, particularly during the early phase of visuomotor adaptation. Here, we follow up these correlational findings with direct manipulations of working memory resources to determine the impact on visuomotor adaptation, a form of motor learning. We conducted two separate experiments. In the first one, we used a resource depletion strategy to investigate whether the rate of early visuomotor adaptation would be negatively affected by fatigue of spatial working memory resources. In the second study, we employed a dual n-back task training paradigm that has been shown to result in transfer effects [1] over five weeks to determine whether training-related improvements would boost the rate of early visuomotor adaptation. The depletion of spatial working memory resources negatively affected the rate of early visuomotor adaptation. However, enhancing working memory capacity via training did not lead to improved rates of visuomotor adaptation, suggesting that working memory capacity may not be the factor limiting maximal rate of visuomotor adaptation in young adults. These findings are discussed from a resource limitation / capacity framework with respect to current views of motor learning. PMID:22155489
Life review based on remembering specific positive events in active aging.
Latorre, José M; Serrano, Juan P; Ricarte, Jorge; Bonete, Beatriz; Ros, Laura; Sitges, Esther
2015-02-01
The aim of this study is to evaluate the effectiveness of life review (LR) based on specific positive events in non-depressed older adults taking part in an active aging program. Fifty-five older adults were randomly assigned to an experimental group or an active control (AC) group. A six-session individual training of LR based on specific positive events was carried out with the experimental group. The AC group undertook a "media workshop" of six sessions focused on learning journalistic techniques. Pre-test and post-test measures included life satisfaction, depressive symptoms, experiencing the environment as rewarding, and autobiographical memory (AM) scales. LR intervention decreased depressive symptomatology, improved life satisfaction, and increased specific memories. The findings suggest that practice in AM for specific events is an effective component of LR that could be a useful tool in enhancing emotional well-being in active aging programs, thus reducing depressive symptoms. © The Author(s) 2014.
Brain Training with Video Games in Covert Hepatic Encephalopathy.
Bajaj, Jasmohan S; Ahluwalia, Vishwadeep; Thacker, Leroy R; Fagan, Andrew; Gavis, Edith A; Lennon, Michael; Heuman, Douglas M; Fuchs, Michael; Wade, James B
2017-02-01
Despite the associated adverse outcomes, pharmacologic intervention for covert hepatic encephalopathy (CHE) is not the standard of care. We hypothesized that a video game-based rehabilitation program would improve white matter integrity and brain connectivity in the visuospatial network on brain magnetic resonance imaging (MRI), resulting in improved cognitive function in CHE subjects on measures consistent with the cognitive skill set emphasized by the two video games (e.g., IQ Boost-visual working memory, and Aim and Fire Challenge-psychomotor speed), but also generalize to thinking skills beyond the focus of the cognitive training (Hopkins verbal learning test (HVLT)-verbal learning/memory) and improve their health-related quality of life (HRQOL). The trial included three phases over 8 weeks; during the learning phase (cognitive tests administered twice over 2 weeks without intervening intervention), training phase (daily video game training for 4 weeks), and post-training phase (testing 2 weeks after the video game training ended). Thirty CHE patients completed all visits with significant daily achievement on the video games. In a subset of 13 subjects that underwent brain MRI, there was a significant decrease in fractional anisotropy, and increased radial diffusivity (suggesting axonal sprouting or increased cross-fiber formation) involving similar brain regions (i.e., corpus callosum, internal capsule, and sections of the corticospinal tract) and improvement in the visuospatial resting-state connectivity corresponding to the video game training domains. No significant corresponding improvement in HRQOL or HVLT performance was noted, but cognitive performance did transiently improve on cognitive tests similar to the video games during training. Although multimodal brain imaging changes suggest reductions in tract edema and improved neural network connectivity, this trial of video game brain training did not improve the HRQOL or produce lasting improvement in cognitive function in patients with CHE.
Kundu, Bornali; Sutterer, David W; Emrich, Stephen M; Postle, Bradley R
2013-05-15
Although long considered a natively endowed and fixed trait, working memory (WM) ability has recently been shown to improve with intensive training. What remains controversial and poorly understood, however, are the neural bases of these training effects and the extent to which WM training gains transfer to other cognitive tasks. Here we present evidence from human electrophysiology (EEG) and simultaneous transcranial magnetic stimulation and EEG that the transfer of WM training to other cognitive tasks is supported by changes in task-related effective connectivity in frontoparietal and parieto-occipital networks that are engaged by both the trained and transfer tasks. One consequence of this effect is greater efficiency of stimulus processing, as evidenced by changes in EEG indices of individual differences in short-term memory capacity and in visual search performance. Transfer to search-related activity provides evidence that something more fundamental than task-specific strategy or stimulus-specific representations has been learned. Furthermore, these patterns of training and transfer highlight the role of common neural systems in determining individual differences in aspects of visuospatial cognition.
Kundu, Bornali; Sutterer, David W.; Emrich, Stephen M.; Postle, Bradley R.
2013-01-01
Although long considered a natively endowed and fixed trait, working memory (WM) ability has recently been shown to improve with intensive training. What remains controversial and poorly understood, however, are the neural bases of these training effects, and the extent to which WM training gains transfer to other cognitive tasks. Here we present evidence from human electrophysiology (EEG) and simultaneous transcranial magnetic stimulation (TMS) and EEG that the transfer of WM training to other cognitive tasks is supported by changes in task-related effective connectivity in frontoparietal and parietooccipital networks that are engaged by both the trained and transfer tasks. One consequence of this effect is greater efficiency of stimulus processing, as evidenced by changes in EEG indices of individual differences in short-term memory capacity and in visual search performance. Transfer to search-related activity provides evidence that something more fundamental than task-specific strategy or stimulus-specific representations have been learned. Furthermore, these patterns of training and transfer highlight the role of common neural systems in determining individual differences in aspects of visuospatial cognition. PMID:23678114
Campbell, Adam M; Park, Collin R; Zoladz, Phillip R; Muñoz, Carmen; Fleshner, Monika; Diamond, David M
2008-02-01
Extensive research has shown that the antidepressant tianeptine blocks the adverse effects of chronic stress on hippocampal functioning. The current series of experiments extended this area of investigation by examining the influence of tianeptine on acute stress-induced impairments of spatial (hippocampus-dependent) memory. Tianeptine (10 mg/kg, ip) administered to adult male rats before, but not after, water maze training blocked the amnestic effects of predator stress (occurring between training and retrieval) on memory. The protective effects of tianeptine on memory occurred in rats which had extensive pre-stress training, as well as in rats which had only a single day of training. Tianeptine blocked stress effects on memory without altering the stress-induced increase in corticosterone levels. Propranolol, a beta-adrenergic receptor antagonist (5 and 10 mg/kg, ip), in contrast, did not block stress-induced amnesia. These findings indicate that treatment with tianeptine, unlike propanolol, provides an effective means with which to block the adverse effects of stress on cognitive functions of the hippocampus.
Kugelman, Tara; Zuloaga, Damian G; Weber, Sydney; Raber, Jacob
2016-02-01
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24h after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24h later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Kugelman, Tara; Zuloaga, Damian G.; Weber, Sydney; Raber, Jacob
2015-01-01
The brain might be exposed to irradiation under a variety of situations, including clinical treatments, nuclear accidents, dirty bomb scenarios, and military and space missions. Correctly recalling tasks learned prior to irradiation is important but little is known about post-learning effects of irradiation. It is not clear whether exposure to X-ray irradiation during memory consolidation, a few hours following training, is associated with altered contextual fear conditioning 24 hours after irradiation and which brain region(s) might be involved in these effects. Brain immunoreactivity patterns of the immediately early gene c-Fos, a marker of cellular activity was used to determine which brain areas might be altered in post-training irradiation memory retention tasks. In this study, we show that post-training gamma irradiation exposure (1 Gy) enhanced contextual fear memory 24 hours later and is associated with reduced cellular activation in the infralimbic cortex. Reduced GABA-ergic neurotransmission in parvalbumin-positive cells in the infralimbic cortex might play a role in this post-training radiation-enhanced contextual fear memory. PMID:26522840
Dauer, Lawrence T; Kelvin, Joanne F; Horan, Christopher L; St Germain, Jean
2006-06-08
Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses.
Dauer, Lawrence T; Kelvin, Joanne F; Horan, Christopher L; St Germain, Jean
2006-01-01
Background Radiation, for either diagnosis or treatment, is used extensively in the field of oncology. An understanding of oncology radiation safety principles and how to apply them in practice is critical for nursing practice. Misconceptions about radiation are common, resulting in undue fears and concerns that may negatively impact patient care. Effectively educating nurses to help overcome these misconceptions is a challenge. Historically, radiation safety training programs for oncology nurses have been compliance-based and behavioral in philosophy. Methods A new radiation safety training initiative was developed for Memorial Sloan-Kettering Cancer Center (MSKCC) adapting elements of current adult education theories to address common misconceptions and to enhance knowledge. A research design for evaluating the revised training program was also developed to assess whether the revised training program resulted in a measurable and/or statistically significant change in the knowledge or attitudes of nurses toward working with radiation. An evaluation research design based on a conceptual framework for measuring knowledge and attitude was developed and implemented using a pretest-intervention-posttest approach for 15% of the study population of 750 inpatient registered oncology nurses. Results As a result of the intervention program, there was a significant difference in nurse's cognitive knowledge as measured with the test instrument from pretest (58.9%) to posttest (71.6%). The evaluation also demonstrated that while positive nursing attitudes increased, the increase was significant for only 5 out of 9 of the areas evaluated. Conclusion The training intervention was effective for increasing cognitive knowledge, but was less effective at improving overall attitudes. This evaluation provided insights into the effectiveness of training interventions on the radiation safety knowledge and attitude of oncology nurses. PMID:16762060
Cacciamani, Laura; Likova, Lora T.
2017-01-01
The perirhinal cortex (PRC) is a medial temporal lobe structure that has been implicated in not only visual memory in the sighted, but also tactile memory in the blind (Cacciamani & Likova, 2016). It has been proposed that, in the blind, the PRC may contribute to modulation of tactile memory responses that emerge in low-level “visual” area V1 as a result of training-induced cortical reorganization (Likova, 2012; 2015). While some studies in the sighted have indicated that the PRC is indeed structurally and functionally connected to the visual cortex (Clavagnier et al., 2004; Peterson et al., 2012), the PRC’s direct modulation of V1 is unknown—particularly in those who lack the visual input that typically stimulates this region. In the present study, we tested Likova’s PRC modulation hypothesis; specifically, we used fMRI to assess the PRC’s Granger causal influence on V1 activation in the blind during a tactile memory task. To do so, we trained congenital and acquired blind participants on a unique memory-guided drawing technique previously shown to result in V1 reorganization towards tactile memory representations (Likova, 2012). The tasks (20s each) included: tactile exploration of raised line drawings of faces and objects, tactile memory retrieval via drawing, and a scribble motor/memory control. FMRI before and after a week of the Cognitive-Kinesthetic training on these tasks revealed a significant increase in PRC-to-V1 Granger causality from pre- to post-training during the memory drawing task, but not during the motor/memory control. This increase in causal connectivity indicates that the training strengthened the top-down modulation of visual cortex from the PRC. This is the first study to demonstrate enhanced directed functional connectivity from the PRC to the visual cortex in the blind, implicating the PRC as a potential source of the reorganization towards tactile representations that occurs in V1 in the blind brain (Likova, 2012). PMID:28347878
Cacciamani, Laura; Likova, Lora T
2017-05-01
The perirhinal cortex (PRC) is a medial temporal lobe structure that has been implicated in not only visual memory in the sighted, but also tactile memory in the blind (Cacciamani & Likova, 2016). It has been proposed that, in the blind, the PRC may contribute to modulation of tactile memory responses that emerge in low-level "visual" area V1 as a result of training-induced cortical reorganization (Likova, 2012, 2015). While some studies in the sighted have indicated that the PRC is indeed structurally and functionally connected to the visual cortex (Clavagnier, Falchier, & Kennedy, 2004; Peterson, Cacciamani, Barense, & Scalf, 2012), the PRC's direct modulation of V1 is unknown-particularly in those who lack the visual input that typically stimulates this region. In the present study, we tested Likova's PRC modulation hypothesis; specifically, we used fMRI to assess the PRC's Granger causal influence on V1 activation in the blind during a tactile memory task. To do so, we trained congenital and acquired blind participants on a unique memory-guided drawing technique previously shown to result in V1 reorganization towards tactile memory representations (Likova, 2012). The tasks (20s each) included: tactile exploration of raised line drawings of faces and objects, tactile memory retrieval via drawing, and a scribble motor/memory control. FMRI before and after a week of the Cognitive-Kinesthetic training on these tasks revealed a significant increase in PRC-to-V1 Granger causality from pre- to post-training during the memory drawing task, but not during the motor/memory control. This increase in causal connectivity indicates that the training strengthened the top-down modulation of visual cortex from the PRC. This is the first study to demonstrate enhanced directed functional connectivity from the PRC to the visual cortex in the blind, implicating the PRC as a potential source of the reorganization towards tactile representations that occurs in V1 in the blind brain (Likova, 2012). Copyright © 2017 Elsevier Inc. All rights reserved.
Regular rehearsal helps in consolidation of long term memory.
Parle, Milind; Singh, Nirmal; Vasudevan, Mani
2006-01-01
Memory, one of the most complex functions of the brain comprises of multiple components such as perception, registration, consolidation, storage, retrieval and decay. The present study was undertaken to evaluate the impact of different training sessions on the retention capacity of rats. The capacity of retention of learnt task was measured using exteroceptive behavioral models such as Hexagonal swimming pool apparatus, Hebb-Williams maze and Elevated plus-maze. A total of 150 rats divided into fifteen groups were employed in the present study. The animals were subjected to different training sessions during first three days. The ability to retain the learned task was tested after single, sub-acute, acute, sub-chronic and chronic exposure to above exteroceptive memory models in separate groups of animals. The memory score of all animals was recorded after 72 h, 192 h and 432 h of their last training trial. Rats of single exposure group did not show any effect on memory. Sub-acute training group animals showed improved memory up to 72 h only, where as in acute and sub-chronic training groups this memory improvement was extended up to 192 h. The rats, which were subjected to chronic exposures showed a significant improvement in retention capacity that lasted up to a period of eighteen days. These observations suggest that repeated rehearsals at regular intervals are probably necessary for consolidation of long-term memory. It was observed that sub-acute, acute and sub-chronic exposures, improved the retrieval ability of rats but this memory improving effect was short lived. Thus, rehearsal or training plays a crucial role in enhancing one's capacity of retaining the learnt information. Key PointsThe present study underlines the importance of regular rehearsals in enhancing one's capacity of retaining the learnt information. " Sub-acute, acute & sub-chronic rehearsals result in storing of information for a limited period of time.Quick decay of information or forgetting is a natural continuously active process designed to wipe out unnecessary and useless information.The capacities of grasping, understanding and memory are all crucial for career growth.Single exposure to a new environment is not sufficient enough to form a permanent memory trace in brain.
Bezu, M; Shanmugasundaram, B; Lubec, G; Korz, V
2016-10-01
Cognition enhancing drugs often target the dopaminergic system, which is involved in learning and memory, including working memory that in turn involves mainly the prefrontal cortex and the hippocampus. In most animal models for modulations of working memory animals are pre-trained to a certain criterion and treated then acutely to test drugs effects on working memory. Thus, little is known regarding subchronic or chronic application of cognition enhancing drugs and working memory performance. Therefore we trained male rats over six days in a rewarded alternation test in a T-maze. Rats received daily injections of either modafinil or Levodopa (L-Dopa) at a lower and a higher dose 30min before training. Levodopa but not modafinil increased working memory performance during early training significantly at day 3 when compared to vehicle controls. Both drugs induced dose dependent differences in working memory with significantly better performance at low doses compared to high doses for modafinil, in contrast to L-Dopa where high dose treated rats performed better than low dose rats. Strikingly, these effects appeared only at day 3 for both drugs, followed by a decline in behavioral performance. Thus, a critical drug independent time window for dopaminergic effects upon working memory could be revealed. Evaluating the underlying mechanisms contributes to the understanding of temporal effects of dopamine on working memory performance. Copyright © 2016 Elsevier B.V. All rights reserved.
Music Training and Working Memory: An ERP Study
ERIC Educational Resources Information Center
George, Elyse M.; Coch, Donna
2011-01-01
While previous research has suggested that music training is associated with improvements in various cognitive and linguistic skills, the mechanisms mediating or underlying these associations are mostly unknown. Here, we addressed the hypothesis that previous music training is related to improved working memory. Using event-related potentials…
Training of Visual-Spatial Working Memory in Preschool Children
Gade, Miriam; Zoelch, Christof; Seitz-Stein, Katja
2017-01-01
Working memory, the ability to store and manipulate information is of great importance for scholastic achievement in children. In this study, we report four studies in which preschoolers were trained on a visual-spatial working memory span task, namely the Corsi Block Task. Across all four studies, we found significant training effects for the intervention groups compared to active control groups. Confirming recent research, no transfer effects to other working memory tasks were found. Most importantly, our training effects were mainly brought about by children performing below the median in the pretest and those showing median performance, thereby closing the gap to children performing above the median (compensation effect). We consider this finding of great interest to ensure comparable starting conditions when entering school with a relatively short intervention. PMID:28713452
Semantic False Memories in the Form of Derived Relational Intrusions Following Training
ERIC Educational Resources Information Center
Guinther, Paul M.; Dougher, Michael J.
2010-01-01
Contemporary behavior analytic research is making headway in characterizing memory phenomena that typically have been characterized by cognitive models, and the current study extends this development by producing "false memories" in the form of functional equivalence responding. A match-to-sample training procedure was administered in order to…
[Neuropsychology of psychoeducation in schizophrenia: results of the Munich COGPIP study].
Pitschel-Walz, G; Gsottschneider, A; Froböse, T; Kraemer, S; Bäuml, J; Jahn, T
2013-01-01
The aim of the study was to examine whether the efficacy of psychoeducation in patients with schizophrenia is dependent on their cognitive performance and if a preceding cognitive training can enhance the therapeutic effects of psychoeducation. A total of 116 inpatients were randomly assigned to either a standardized cognitive training (COGPACK) or to routine occupational therapy, followed by a psychoeducational group program of 8 sessions within 4 weeks for all study patients. The effects of cognitive training and psychoeducation were assessed directly afterwards and in a follow-up after 9 months. The patient knowledge and compliance improved. Neurocognition and especially memory acquisition significantly predicted illness knowledge after psychoeducation, whereas psychopathology did not. No differential effects of the COGPACK training were found. After 9 months 75% of the patients showed a very good compliance and the readmission rate was 18%. The results were comparable under both study conditions. Besides baseline illness knowledge neurocognition was the only significant predictor for illness knowledge after psychoeducation. Patients with cognitive deficits can profit from psychoeducation in the long run as well. In future it should be examined whether a modified cognitive training program could achieve a faster improvement of the illness knowledge.
Attentional Filter Training but Not Memory Training Improves Decision-Making.
Schmicker, Marlen; Müller, Patrick; Schwefel, Melanie; Müller, Notger G
2017-01-01
Decision-making has a high practical relevance for daily performance. Its relation to other cognitive abilities such as executive control and memory is not fully understood. Here we asked whether training of either attentional filtering or memory storage would influence decision-making as indexed by repetitive assessments of the Iowa Gambling Task (IGT). The IGT was developed to assess and simulate real-life decision-making (Bechara et al., 2005). In this task, participants gain or lose money by developing advantageous or disadvantageous decision strategies. On five consecutive days we trained 29 healthy young adults (20-30 years) either in working memory (WM) storage or attentional filtering and measured their IGT scores after each training session. During memory training (MT) subjects performed a computerized delayed match-to-sample task where two displays of bars were presented in succession. During filter training (FT) participants had to indicate whether two simultaneously presented displays of bars matched or not. Whereas in MT the relevant target stimuli stood alone, in FT the targets were embedded within irrelevant distractors (bars in a different color). All subjects within each group improved their performance in the trained cognitive task. For the IGT, we observed an increase over time in the amount of money gained in the FT group only. Decision-making seems to be influenced more by training to filter out irrelevant distractors than by training to store items in WM. Selective attention could be responsible for the previously noted relationship between IGT performance and WM and is therefore more important for enhancing efficiency in decision-making.
Clark, Daniel O; Xu, Huiping; Unverzagt, Frederick W; Hendrie, Hugh
2016-07-01
The aim of this study was to investigate educational differences in treatment responses to memory, reasoning, and speed of processing cognitive training relative to no-contact control. Secondary analyses of the Advanced Cognitive Training for Independent and Vital Elderly trial were conducted. Two thousand eight hundred older adults were randomized to memory, reasoning, or speed of processing training or no-contact control. A repeated-measures mixed-effects model was used to investigate immediate post-training and 1-year outcomes with sensitivity analyses out to 10 years. Outcomes were as follows: (1) memory composite of Hopkins Verbal Learning Test, Rey Auditory Verbal Learning Test, and Rivermead Behavioral Memory Test; (2) reasoning composite of letter series, letter sets, and word series; and (3) speed of processing measured using three trials of useful field of view and the digit symbol substitution test. The effects of reasoning and memory training did not differ by educational attainment. The effect of speed of processing training did. Those with fewer than 12 years of education experienced a 50% greater effect on the useful field of view test compared with those with 16 or more years of education. The training advantage for those with fewer than 12 years of education was maintained to 3 years post-training. Older adults with less than a secondary education are at elevated risk of dementia, including Alzheimer's disease. The analyses here indicate that speed of processing training is effective in older adults with low educational attainment. Copyright © 2015 John Wiley & Sons, Ltd.
Chein, Jason M; Morrison, Alexandra B
2010-04-01
In the present study, a novel working memory (WM) training paradigm was used to test the malleability of WM capacity and to determine the extent to which the benefits of this training could be transferred to other cognitive skills. Training involved verbal and spatial versions of a complex WM span task designed to emphasize simultaneous storage and processing requirements. Participants who completed 4 weeks of WM training demonstrated significant improvements on measures of temporary memory. These WM training benefits generalized to performance on the Stroop task and, in a novel finding, promoted significant increases in reading comprehension. The results are discussed in relation to the hypothesis that WM training affects domain-general attention control mechanisms and can thereby elicit far-reaching cognitive benefits. Implications include the use of WM training as a general tool for enhancing important cognitive skills.
Modeling Active Aging and Explicit Memory: An Empirical Study.
Ponce de León, Laura Ponce; Lévy, Jean Pierre; Fernández, Tomás; Ballesteros, Soledad
2015-08-01
The rapid growth of the population of older adults and their concomitant psychological status and health needs have captured the attention of researchers and health professionals. To help fill the void of literature available to social workers interested in mental health promotion and aging, the authors provide a model for active aging that uses psychosocial variables. Structural equation modeling was used to examine the relationships among the latent variables of the state of explicit memory, the perception of social resources, depression, and the perception of quality of life in a sample of 184 older adults. The results suggest that explicit memory is not a direct indicator of the perception of quality of life, but it could be considered an indirect indicator as it is positively correlated with perception of social resources and negatively correlated with depression. These last two variables influenced the perception of quality of life directly, the former positively and the latter negatively. The main outcome suggests that the perception of social support improves explicit memory and quality of life and reduces depression in active older adults. The findings also suggest that gerontological professionals should design memory training programs, improve available social resources, and offer environments with opportunities to exercise memory.
Vandervert, Larry
2015-01-01
Following in the vein of studies that concluded that music training resulted in plastic changes in Einstein's cerebral cortex, controlled research has shown that music training (1) enhances central executive attentional processes in working memory, and (2) has also been shown to be of significant therapeutic value in neurological disorders. Within this framework of music training-induced enhancement of central executive attentional processes, the purpose of this article is to argue that: (1) The foundational basis of the central executive begins in infancy as attentional control during the establishment of working memory, (2) In accordance with Akshoomoff, Courchesne and Townsend's and Leggio and Molinari's cerebellar sequence detection and prediction models, the rigors of volitional control demands of music training can enhance voluntary manipulation of information in thought and movement, (3) The music training-enhanced blending of cerebellar internal models in working memory as can be experienced as intuition in scientific discovery (as Einstein often indicated) or, equally, as moments of therapeutic advancement toward goals in the development of voluntary control in neurological disorders, and (4) The blending of internal models as in (3) thus provides a mechanism by which music training enhances central executive processes in working memory that can lead to scientific discovery and improved therapeutic outcomes in neurological disorders. Within the framework of Leggio and Molinari's cerebellar sequence detection model, it is determined that intuitive steps forward that occur in both scientific discovery and during therapy in those with neurological disorders operate according to the same mechanism of adaptive error-driven blending of cerebellar internal models. It is concluded that the entire framework of the central executive structure of working memory is a product of the cerebrocerebellar system which can, through the learning of internal models, incorporate the multi-dimensional rigor and volitional-control demands of music training and, thereby, enhance voluntary control. It is further concluded that this cerebrocerebellar view of the music training-induced enhancement of central executive control in working memory provides a needed mechanism to explain both the highest level of scientific discovery and the efficacy of music training in the remediation of neurological impairments.
Van der Molen, M J; Van Luit, J E H; Van der Molen, M W; Klugkist, I; Jongmans, M J
2010-05-01
The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. A total of 95 adolescents with mild to borderline intellectual disabilities were randomly assigned to either a training adaptive to each child's progress in WM, a non-adaptive WM training, or to a control group. Verbal short-term memory (STM) improved significantly from pre- to post-testing in the group who received the adaptive training compared with the control group. The beneficial effect on verbal STM was maintained at follow-up and other effects became clear at that time as well. Both the adaptive and non-adaptive WM training led to higher scores at follow-up than at post-intervention on visual STM, arithmetic and story recall compared with the control condition. In addition, the non-adaptive training group showed a significant increase in visuo-spatial WM capacity. The current study provides the first demonstration that WM can be effectively trained in adolescents with mild to borderline intellectual disabilities.
Memory load as a cognitive antidote to performance decrements in data entry.
Chapman, Mary J; Healy, Alice F; Kole, James A
2016-10-01
In two experiments, subjects trained in data entry, typing one 4-digit number at a time. At training, subjects either typed the numbers immediately after they appeared (immediate) or typed the previous number from memory while viewing the next number (delayed). In Experiment 2 stimulus presentation time was limited and either nothing or a space (gap) was inserted between the second and third digits. In both experiments after training, all subjects completed a test with no gap and typed numbers immediately. Training with a memory load improved speed across training blocks (Experiment 1) and eliminated the decline in accuracy across training blocks (Experiment 2), thus serving as a cognitive antidote to performance decrements. An analysis of each keystroke revealed different underlying processes and strategies for the two training conditions, including when encoding took place. Chunking (in which the first and last two digits are treated separately) was more evident in the immediate than in the delayed condition and was exaggerated with a gap, even at test when there was no gap. These results suggest that such two-digit chunking is due to stimulus encoding and motor planning processes as well as memory, and those processes transferred from training to testing.
Explicit pre-training instruction does not improve implicit perceptual-motor sequence learning
Sanchez, Daniel J.; Reber, Paul J.
2012-01-01
Memory systems theory argues for separate neural systems supporting implicit and explicit memory in the human brain. Neuropsychological studies support this dissociation, but empirical studies of cognitively healthy participants generally observe that both kinds of memory are acquired to at least some extent, even in implicit learning tasks. A key question is whether this observation reflects parallel intact memory systems or an integrated representation of memory in healthy participants. Learning of complex tasks in which both explicit instruction and practice is used depends on both kinds of memory, and how these systems interact will be an important component of the learning process. Theories that posit an integrated, or single, memory system for both types of memory predict that explicit instruction should contribute directly to strengthening task knowledge. In contrast, if the two types of memory are independent and acquired in parallel, explicit knowledge should have no direct impact and may serve in a “scaffolding” role in complex learning. Using an implicit perceptual-motor sequence learning task, the effect of explicit pre-training instruction on skill learning and performance was assessed. Explicit pre-training instruction led to robust explicit knowledge, but sequence learning did not benefit from the contribution of pre-training sequence memorization. The lack of an instruction benefit suggests that during skill learning, implicit and explicit memory operate independently. While healthy participants will generally accrue parallel implicit and explicit knowledge in complex tasks, these types of information appear to be separately represented in the human brain consistent with multiple memory systems theory. PMID:23280147
Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.
Murphy, Cristina F B; Moore, David R; Schochat, Eliane
2015-01-01
Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research is required to investigate the effects of various stimuli and lengths of training on the generalization of sensory and cognitive learning to literacy skills.
Music lessons are associated with increased verbal memory in individuals with Williams syndrome.
Dunning, Brittany A; Martens, Marilee A; Jungers, Melissa K
2014-11-16
Williams syndrome (WS) is a genetic disorder characterized by intellectual delay and an affinity for music. It has been previously shown that familiar music can enhance verbal memory in individuals with WS who have had music training. There is also evidence that unfamiliar, or novel, music may also improve cognitive recall. This study was designed to examine if a novel melody could also enhance verbal memory in individuals with WS, and to more fully characterize music training in this population. We presented spoken or sung sentences that described an animal and its group name to 44 individuals with WS, and then tested their immediate and delayed memory using both recall and multiple choice formats. Those with formal music training (average duration of training 4½ years) scored significantly higher on both the spoken and sung recall items, as well as on the spoken multiple choice items, than those with no music training. Music therapy, music enjoyment, age, and Verbal IQ did not impact performance on the memory tasks. These findings provide further evidence that formal music lessons may impact the neurological pathways associated with verbal memory in individuals with WS, consistent with findings in typically developing individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.
A behavioral rehabilitation intervention for amnestic Mild Cognitive Impairment
Greenaway, Melanie C.; Hanna, Sherrie M.; Lepore, Susan W.; Smith, Glenn E.
2010-01-01
Individuals with amnestic Mild Cognitive Impairment (MCI) currently have few treatment options for combating their memory loss. The Memory Support System (MSS) is a calendar and organization system with accompanying 6-week curriculum designed for individuals with progressive memory impairment. Ability to learn the MSS and its utility were assessed in 20 participants. Participants were significantly more likely to successfully use the calendar system after training. Ninety-five percent were compliant with the MSS at training completion, and 89% continued to be compliant at follow-up. Outcome measures revealed a medium effect size for improvement in functional ability. Subjects further reported improved independence, self-confidence, and mood. This initial examination of the MSS suggests that with appropriate training, individuals with amnestic MCI can and will use a memory notebook system to help compensate for memory loss. These results are encouraging that the MSS may help with the symptoms of memory decline in MCI. PMID:18955724
Working Memory Training: Improving Intelligence--Changing Brain Activity
ERIC Educational Resources Information Center
Jausovec, Norbert; Jausovec, Ksenija
2012-01-01
The main objectives of the study were: to investigate whether training on working memory (WM) could improve fluid intelligence, and to investigate the effects WM training had on neuroelectric (electroencephalography--EEG) and hemodynamic (near-infrared spectroscopy--NIRS) patterns of brain activity. In a parallel group experimental design,…
The dorsolateral striatum selectively mediates extinction of habit memory.
Goodman, Jarid; Ressler, Reed L; Packard, Mark G
2016-12-01
Previous research has indicated a role for the dorsolateral striatum (DLS) in acquisition and retrieval of habit memory. However, the neurobiological mechanisms guiding extinction of habit memory have not been extensively investigated. The present study examined whether the dorsolateral striatum (DLS) is involved in extinction of habit memory in a food-rewarded response learning version of the plus-maze in adult male Long-Evans rats (experiment 1). In addition, to determine whether the role of this brain region in extinction is selective to habit memory, we also examined whether the DLS is required for extinction of hippocampus-dependent spatial memory in a place learning version of the plus-maze (experiment 2). Following acquisition in either task, rats received two days of extinction training, in which the food reward was removed from the maze. The number of perseverative trials (a trial in which the rat made the same previously reinforced body-turn) and latency to reach the previously correct food well were used as measures of extinction. Animals were given immediate post-training intra-DLS administration of the sodium channel blocker bupivacaine or vehicle to determine the effect of DLS inactivation on consolidation of extinction memory in each task. In the response learning task, post-training DLS inactivation impaired consolidation of extinction memory. Injections of bupivacaine delayed 2 h post-training did not affect extinction, indicating a time-dependent effect of neural inactivation on consolidation of extinction memory in this task. In contrast, post-training DLS inactivation did not impair, but instead slightly enhanced, extinction memory in the place learning task. The present findings indicate a critical role for the DLS in extinction of habit memory in the response learning task, and may be relevant to understanding the neural mechanisms through which maladaptive habits in human psychopathologies (e.g. drug addiction) may be suppressed. Copyright © 2016 Elsevier Inc. All rights reserved.
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-01-01
Background Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. Results In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Conclusion Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder. PMID:18945333
Takao, Keizo; Toyama, Keiko; Nakanishi, Kazuo; Hattori, Satoko; Takamura, Hironori; Takeda, Masatoshi; Miyakawa, Tsuyoshi; Hashimoto, Ryota
2008-10-22
Schizophrenia is a complex genetic disorder caused by multiple genetic and environmental factors. The dystrobrevin-binding protein 1 (DTNBP1: dysbindin-1) gene is a major susceptibility gene for schizophrenia. Genetic variations in DTNBP1 are associated with cognitive functions, general cognitive ability and memory function, and clinical features of patients with schizophrenia including negative symptoms and cognitive decline. Since reduced expression of dysbindin-1 has been observed in postmortem brains of patients with schizophrenia, the sandy (sdy) mouse, which has a deletion in the Dtnbp1 gene and expresses no dysbindin-1 protein, could be an animal model of schizophrenia. To address this issue, we have carried out a comprehensive behavioral analysis of the sdy mouse in this study. In a rotarod test, sdy mice did not exhibit motor learning whilst the wild type mice did. In a Barnes circular maze test both sdy mice and wild type mice learned to selectively locate the escape hole during the course of the training period and in the probe trial conducted 24 hours after last training. However, sdy mice did not locate the correct hole in the retention probe tests 7 days after the last training trial, whereas wild type mice did, indicating impaired long-term memory retention. A T-maze forced alternation task, a task of working memory, revealed no effect of training in sdy mice despite the obvious effect of training in wild type mice, suggesting a working memory deficit. Sdy mouse showed impaired long-term memory retention and working memory. Since genetic variation in DTNBP1 is associated with both schizophrenia and memory function, and memory function is compromised in patients with schizophrenia, the sdy mouse may represent a useful animal model to investigate the mechanisms of memory dysfunction in the disorder.
Maddox, Stephanie A.; Watts, Casey S.; Schafe, Glenn E.
2014-01-01
We have previously shown that auditory Pavlovian fear conditioning is associated with an increase in DNA methyltransferase (DNMT) expression in the lateral amygdala (LA) and that intra-LA infusion or bath application of an inhibitor of DNMT activity impairs the consolidation of an auditory fear memory and long-term potentiation (LTP) at thalamic and cortical inputs to the LA, in vitro. In the present study, we use awake behaving neurophysiological techniques to examine the role of DNMT activity in memory-related neurophysiological changes accompanying fear memory consolidation and reconsolidation in the LA, in vivo. We show that auditory fear conditioning results in a training-related enhancement in the amplitude of short-latency auditory-evoked field potentials (AEFPs) in the LA. Intra-LA infusion of a DNMT inhibitor impairs both fear memory consolidation and, in parallel, the consolidation of training-related neural plasticity in the LA; that is, short-term memory (STM) and short-term training-related increases in AEFP amplitude in the LA are intact, while long-term memory (LTM) and long-term retention of training-related increases in AEFP amplitudes are impaired. In separate experiments, we show that intra-LA infusion of a DNMT inhibitor following retrieval of an auditory fear memory has no effect on post-retrieval STM or short-term retention of training-related changes in AEFP amplitude in the LA, but significantly impairs both post-retrieval LTM and long-term retention of AEFP amplitude changes in the LA. These findings are the first to demonstrate the necessity of DNMT activity in the consolidation and reconsolidation of memory-associated neural plasticity, in vivo. PMID:24291571
Kramar, Cecilia P; Barbano, M Flavia; Medina, Jorge H
2014-12-01
The role of the hippocampus in memory supporting associative learning between contexts and unconditioned stimuli is well documented. Hippocampal dopamine neurotransmission modulates synaptic plasticity and memory processing of fear-motivated and spatial learning tasks. Much less is known about the involvement of the hippocampus and its D1/D5 dopamine receptors in the acquisition, consolidation and expression of memories for drug-associated experiences, more particularly, in the processing of single pairing cocaine conditioned place preference (CPP) training. To determine the temporal dynamics of cocaine CPP memory formation, we trained rats in a one-pairing CPP paradigm and tested them at different time intervals after conditioning. The cocaine-associated memory lasted 24 h but not 72 h. Then, we bilaterally infused the dorsal hippocampus with the GABA A receptor agonist muscimol or the D1/D5 dopamine receptor antagonist SCH 23390 at different stages to evaluate the mechanisms involved in the acquisition, consolidation or expression of cocaine CPP memory. Blockade of D1/D5 dopamine receptors at the moment of training impaired the acquisition of cocaine CPP memories, without having any effect when administered immediately or 12 h after training. The expression of cocaine CPP memory was also affected by the administration of SCH 23390 at the moment of the test. Conversely, muscimol impaired the consolidation of cocaine CPP memory only when administered 12 h post conditioning. These findings suggests that dopaminergic inputs to the dorsal hippocampus are required for the acquisition and expression of one trial cocaine-associated memory while neural activity of this structure is required for the late consolidation of these types of memories. Copyright © 2014 Elsevier Inc. All rights reserved.
[Cognitive training combined with aerobic exercises in multiple sclerosis patients: a pilot study].
Jimenez-Morales, R M; Herrera-Jimenez, L F; Macias-Delgado, Y; Perez-Medinilla, Y T; Diaz-Diaz, S M; Forn, C
2017-06-01
The scientific evidences associated to the effectiveness of different techniques of cognitive rehabilitation are still contradictory. To compare a program of combined training (physical and cognitive) in front of a program of physical training and to observe their effectiveness about the optimization of the cognitive functions in patients with multiple sclerosis (MS). It was carried out an experimental study in 32 patients with MS. The patients were distributed in two groups: 16 to the experimental group (combined cognitive training with aerobic exercises) and 16 patients to the control group (aerobic exercises). The intervention was planned for six weeks combining cognitive tasks by means of a game of dynamic board of cubes and signs (TaDiCS ®) and a program of aerobic exercises. The Brief Repeatable Battery of Neuropsychological Test and the Stroop Test were applied to evaluate the cognitive yield. Also, the Beck Depression Inventory was administered. There were found significant differences in the intergrupal analysis after the intervention in the variable learning and visuoespacial long term memory (p = 0.000), attention (p = 0.026) and inhibitory control (p = 0.007). Also, in the intragroup analysis there were found significant differences in these variables and information processing speed in the group that received the combined training. These patients also showed a significant improvement in the emotional state (p = 0.043). The cognitive training combined with the aerobic exercises is effective to improve the cognitive performance.
Sohn, Bo Kyung; Hwang, Jae Yeon; Park, Su Mi; Choi, Jung-Seok; Lee, Jun-Young; Lee, Ji Yeuon; Jung, Hee-Yeon
2016-11-01
Maintaining employment is difficult for patients with schizophrenia because of deterioration of psychosocial and cognitive functions. Such patients usually require vocational rehabilitation training, which is both demanding and costly. In this study, we developed a virtual reality-based vocational rehabilitation training program (VR-VRTP) for such patients and evaluated its feasibility as an alternative to traditional rehabilitation programs. We developed the VR-VRTP to include various situations commonly encountered in two types of occupations: convenience store employee and supermarket clerk. We developed practical situations, as well as a system for providing feedback, to ensure patients would not lose interest during training. Nine participants each performed the VR-VRTP repeatedly per week for a total of 8 weeks. At baseline and after training, all participants were evaluated using the following clinical and neuropsychological tests: Manchester Scale, Clinical Global Impression, Personal and Social Performance Scale (PSP), Hamilton Depression Rating Scale, Zung Depression Rating Scale, Beck Anxiety Inventory, Wisconsin Card Sorting Test, Stroop Test, Rey-Osterrieth Complex Figure Test (RCFT), and Auditory Verbal Learning Test (AVLT). After training, patient scores improved on the PSP, general symptoms on the Manchester Scale, AVLT, and delayed recall on the RCFT. The Manchester positive symptom score showed a trend of improvement. No significant changes were observed for other measures. The VR-VRTP may improve general psychosocial function and memory, potentially influencing real-world vocational performance. These findings provide preliminary evidence regarding the utility of the VR-VRTP in patients with schizophrenia.
Coldwell, S E; Getz, T; Milgrom, P; Prall, C W; Spadafora, A; Ramsay, D S
1998-04-01
This paper describes CARL (Computer Assisted Relaxation Learning), a computerized, exposure-based therapy program for the treatment of dental injection fear. The CARL program operates primarily in two different modes; in vitro, which presents a video-taped exposure hierarchy, and in vivo, which presents scripts for a dentist or hygienist to use while working with a subject. Two additional modes are used to train subjects to use the program and to administer behavioral assessment tests. The program contains five different modules, which function to register a subject, train subjects to use physical and cognitive relaxation techniques, deliver an exposure hierarchy, question subjects about the helpfulness of each of the therapy components, and test for memory effects of anxiolytic medication. Nine subjects have completed the CARL therapy program and 1-yr follow-up as participants in a placebo-controlled clinical trial examining the effects of alprazolam on exposure therapy for dental injection phobia. All nine subjects were able to receive two dental injections, and all reduced their general fear of dental injections. Initial results therefore indicate that the CARL program successfully reduces dental injection fear.
Lo, Adrian C; De Maeyer, Joris H; Vermaercke, Ben; Callaerts-Vegh, Zsuzsanna; Schuurkes, Jan A J; D'Hooge, Rudi
2014-10-01
5-HT4 receptors (5-HT4R) are suggested to affect learning and memory processes. Earlier studies have shown that animals treated with 5-HT4R agonists, often with limited selectivity, show improved learning and memory with retention memory often being assessed immediately after or within 24 h after the last training session. In this study, we characterized the effect of pre-training treatment with the selective 5-HT4R agonist SSP-002392 on memory acquisition and the associated long-term memory retrieval in animal models of impaired cognition. Pre-training treatment with SSP-002392 (0.3 mg/kg, 1.5 mg/kg and 7.5 mg/kg p.o.) dose-dependently inhibited the cognitive deficits induced by scopolamine (0.5 mg/kg s.c.) in two different behavioral tasks: passive avoidance and Morris water maze. In the Morris water maze, spatial learning was significantly improved after treatment with SSP-002392 translating in an accelerated and more efficient localization of the hidden platform compared to scopolamine-treated controls. Moreover, retention memory was assessed 24 h (passive avoidance) and 72 h (Morris water maze) after the last training session of cognitive-impaired animals and this was significantly improved in animals treated with SSP-002392 prior to the training sessions. Furthermore, the effects of SSP-002392 were comparable to galanthamine hydrobromide. We conclude that SSP-002392 has potential as a memory-enhancing compound. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Low Vision Rehabilitation Program for Patients with Mild Cognitive Deficits
Whitson, Heather E.; Whitaker, Diane; Potter, Guy; McConnell, Eleanor; Tripp, Fay; Sanders, Linda L.; Muir, Kelly W.; Cohen, Harvey J.; Cousins, Scott W.
2012-01-01
Objective To design and pilot test a low vision rehabilitation program for patients with macular disease and cognitive deficits. Methods The Memory or Reasoning Enhanced Low Vision Rehabilitation (MORE-LVR) program was created by a team representing optometry, occupational therapy, ophthalmology, neuropsychology, and geriatrics. Key components of MORE-LVR are: 1) repetitive training with a therapist twice weekly over a 6-week period, 2) simplified training experience addressing no more than three individualized goals in a minimally distracting environment, 3) involvement of an informal companion (friend or family member). Eligible patients were recruited from an LVR clinic; measures were compared before and after the 6 week program. Results Twelve non-demented patients (mean age 84.5 years, 75% female) who screened positive for cognitive deficits completed the MORE-LVR intervention. Participants demonstrated improved scores on the National Eye Institute’s Visual Function Questionnaire (VFQ-25) composite score (47.2±16.3 to 54.8±13.8, p=0.01) and near activities score (21.5±14.0 to 41.0±23.1, p=0.02), timed performance measures (writing a grocery list [p=0.03], filling in a crossword puzzle answer [p=0.003]), a score indicating satisfaction with independence (p=0.05), and logical memory (p=0.02). All patients and companions reported progress toward at least one individualized goal; >70% reported progress toward all three goals. Conclusions This pilot study demonstrates feasibility of an LVR program for macular disease patients with mild cognitive deficits. Participants demonstrated improvements in vision-related function and cognitive measures and expressed high satisfaction. Future work is needed to determine if MORE-LVR is superior to usual outpatient LVR for persons with co-existing visual and cognitive impairments. PMID:23619914
Zhang, Shujuan; Li, Xiaoguang; Wang, Zhouyi; Liu, Yanchao; Gao, Yuan; Tan, Lu; Liu, Enjie; Zhou, Qiuzhi; Xu, Cheng; Wang, Xin; Liu, Gongping; Chen, Haote; Wang, Jian-Zhi
2017-05-08
Recent studies suggest that spatial training can maintain associative memory capacity in Tg2576 mice, but it is not known whether the beneficial effects can be inherited from the trained fathers to their offspring. Here, we exposed male wild-type and male 3XTg Alzheimer disease (AD) mice (3-m old) respectively to spatial training for one week and assessed the transgenerational effects in the F1 offspring when they were grown to 7-m old. We found that the paternal spatial training significantly enhanced progeny's spatial cognitive performance and synaptic transmission in wild-type mice. Among several synapse- or memory-associated proteins, we observed that the expression level of synaptotagmin 1 (SYT1) was significantly increased in the hippocampus of the paternally trained-offspring. Paternal training increased histone acetylation at the promoter of SYT1 in both fathers' and the offspring's hippocampus, and as well as in the fathers' sperm. Finally, paternal spatial training for one week did not improve memory and synaptic plasticity in 3XTg AD F1 offspring. Our findings suggest paternal spatial training for one week benefits the offspring's cognitive performance in wild-type mice with the mechanisms involving an enhanced transgenerational histone acetylation at SYT1 promoter.
Training working memory updating in young adults.
Linares, Rocío; Borella, Erika; Lechuga, M Teresa; Carretti, Barbara; Pelegrina, Santiago
2018-05-01
Working memory updating (WMU) is a core mechanism in the human mental architecture and a good predictor of a wide range of cognitive processes. This study analyzed the benefits of two different WMU training procedures, near transfer effects on a working memory measure, and far transfer effects on nonverbal reasoning. Maintenance of any benefits a month later was also assessed. Participants were randomly assigned to: an adaptive training group that performed two numerical WMU tasks during four sessions; a non-adaptive training group that performed the same tasks but on a constant and less demanding level of difficulty; or an active control group that performed other tasks unrelated with working memory. After the training, all three groups showed improvements in most of the tasks, and these benefits were maintained a month later. The gain in one of the two WMU measures was larger for the adaptive and non-adaptive groups than for the control group. This specific gain in a task similar to the one trained would indicate the use of a better strategy for performing the task. Besides this nearest transfer effect, no other transfer effects were found. The adaptability of the training procedure did not produce greater improvements. These results are discussed in terms of the training procedure and the feasibility of training WMU.
Ho, Joanna; Epps, Adrienne; Parry, Louise; Poole, Miriam; Lah, Suncica
2011-04-01
Memory problems that interfere with everyday living are frequently reported in children who have sustained acquired brain injury (ABI), but their nature and rehabilitation is under-researched. This study aimed to (1) determine neuropsychological correlates of everyday memory deficits in children with ABI, and (2) investigate the effectiveness of a newly developed programme for their rehabilitation. We assessed everyday memory, verbal memory, attention and behaviour in 15 children with ABI. The children attended the everyday memory rehabilitation programme: six weekly sessions that involved diary training, self-instruction training and case examples. At the onset we found that everyday memory problems were related to impaired attention and behavioural difficulties. On completion of the programme there was a significant increase in children's abilities to perform daily routines that demanded recall of information and events. In addition, children used diaries more frequently. Moreover, significant secondary gains were found in attention and mood (anxiety and depression). In conclusion, the results provided preliminary evidence that our six week programme could be effective in reducing everyday memory difficulties and improving psychological well-being in children with ABI.
Boivin, Michael J; Nakasujja, Noeline; Sikorskii, Alla; Opoka, Robert O; Giordani, Bruno
2016-08-01
Clinically stable children with HIV can have neuromotor, attention, memory, visual-spatial, and executive function impairments. We evaluated neuropsychological and behavioral benefits of computerized cognitive rehabilitation training (CCRT) in Ugandan HIV children. One hundred fifty-nine rural Ugandan children with WHO Stage I or II HIV disease (6 to 12 years; 77 boys, 82 girls; M = 8.9, SD = 1.86 years) were randomized to one of three treatment arms over a 2-month period. The CCRT arm received 24 one-hour sessions over 2 months, using Captain's Log (BrainTrain Corporation) programmed for games targeting working memory, attention, and visual-spatial analysis. These games progressed in difficulty as the child's performance improved. The second arm was a "limited CCRT" with the same games rotated randomly from simple to moderate levels of training. The third arm was a passive control group receiving no training. All children were assessed at enrollment, 2 months (immediately following CCRT), and 3 months after CCRT completion. The CCRT group had significantly greater gains through 3 months of follow-up compared to passive controls on overall Kaufman Assessment Battery for Children-second edition (KABC-II) mental processing index (p < .01), planning (p = .04), and knowledge (p = .03). The limited CCRT group performed better than controls on learning (p = .05). Both CCRT arms had significant improvements on CogState Groton maze learning (p < .01); although not on CogState attention/memory, TOVA/impulsivity, or behavior rating inventory for executive function and child behavior checklist (psychiatric behavior/symptom problems) ratings by caregiver. CCRT intervention can be effective for neurocognitive rehabilitation in children with HIV in low-resource settings, especially in children who are clinically stable on ARV treatment.
List Models of Procedure Learning
NASA Technical Reports Server (NTRS)
Matessa, Michael P.; Polson, Peter G.
2005-01-01
This paper presents a new theory of the initial stages of skill acquisition and then employs the theory to model current and future training programs for fight management systems (FMSs) in modern commercial airliners like the Boeing 777 and the Airbus A320. The theoretical foundations for the theory are a new synthesis of the literature on human memory and the latest version of the ACT-R theory of skill acquisition.
Zielinski, Mark R.; Davis, J. Mark; Fadel, James R.; Youngstedt, Shawn D.
2013-01-01
Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (~4 h loss/day) vs. ad libitum sleep] × 2 [exercise (1 h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. PMID:23644185
ERIC Educational Resources Information Center
Van der Molen, M. J.; Van Luit, J. E. H.; Van der Molen, M. W.; Klugkist, I.; Jongmans, M. J.
2010-01-01
Background: The goal of this study is to evaluate the effectiveness of a computerised working memory (WM) training on memory, response inhibition, fluid intelligence, scholastic abilities and the recall of stories in adolescents with mild to borderline intellectual disabilities attending special education. Method: A total of 95 adolescents with…
ERIC Educational Resources Information Center
Dahlin, Karin I. E.
2013-01-01
Working Memory (WM) has a central role in learning. It is suggested to be malleable and is considered necessary for several aspects of mathematical functioning. This study investigated whether work with an interactive computerised working memory training programme at school could affect the mathematical performance of young children. Fifty-seven…
Transfer of Old "Reactivated" Memory Retrieval Cues in Rats
ERIC Educational Resources Information Center
Briggs, James F.; Riccio, David C.
2008-01-01
The present studies examined whether the retrieval of an old "reactivated" memory could be brought under the control of new contextual cues. In Experiment 1 rats trained in one context were exposed to different contextual cues either immediately, 60 or 120 min after a cued reactivation of the training memory. When tested in the shifted context,…
ERIC Educational Resources Information Center
Steinfurth, Elisa C. K.; Kanen, Jonathan W.; Raio, Candace M.; Clem, Roger L.; Huganir, Richard L.; Phelps, Elizabeth A.
2014-01-01
Extinction training during reconsolidation has been shown to persistently diminish conditioned fear responses across species. We investigated in humans if older fear memories can benefit similarly. Using a Pavlovian fear conditioning paradigm we compared standard extinction and extinction after memory reactivation 1 d or 7 d following acquisition.…
Working Memory Training in Young Children with ADHD: A Randomized Placebo-Controlled Trial
ERIC Educational Resources Information Center
Dongen-Boomsma, Martine; Vollebregt, Madelon A.; Buitelaar, Jan K.; Slaats-Willemse, Dorine
2014-01-01
Background: Until now, working memory training has not reached sufficient evidence as effective treatment for ADHD core symptoms in children with ADHD; for young children with ADHD, no studies are available. To this end, a triple-blind, randomized, placebo-controlled study was designed to assess the efficacy of Cogmed Working Memory Training…
Pérez, Anna; Roqué, Marta; Domènech, Sara; Monteserín, Rosa; Soriano, Núria; Blancafort, Xavier; Bosom, Maria; Vidal, Cristina; Petit, Montse; Hortal, Núria; Gil, Carles; Espelt, Albert; López, Maria José
2015-10-01
There is limited evidence on the efficacy and social utility of cognitive training. To address this, we have designed a randomized controlled trial to assess the effectiveness of memory training workshops for healthy older people in terms of their short- and long-term impact on cognitive function, health-related quality of life, and functionality. A randomized controlled trial will be performed in health care centers in Barcelona (Spain) through comparison of a group of individuals participating in memory training workshops (experimental group) with another group with similar characteristics not participating in the workshops (control group). The intervention will consist of twelve 90-minute group sessions imparted once a week by a psychologist specialized in memory training. The groups will each comprise approximately 15 people, for a total number of 230 patients involved in the study. Each session has its own objectives, materials and activities. The content of the intervention is based on memory training from different perspectives, including cognitive and emotional aspects and social and individual skills. Data will be collected at baseline, at 3-4 months and at 6 months. To assess the efficacy of the intervention on cognitive function, health-related quality of life and functionality, a statistical analysis will be performed by fitting a repeated-measures mixed effects model for each main outcome: Self-perceived memory, measured by a Subjective Self-reported Memory Score (from 0 to 10) and by the Memory Failures in Everyday life questionnaire (MFE); Everyday memory, measured using the Rivermead Behavioural Memory Test-3 (RBMT-3) and Executive control abilities, measured in terms of visual-perceptual ability, working memory and task-switching ability with the Trail Making Test (TMT) and with the digit span scale of the Wechsler Adult Intelligence Scale III (WAIS III). The results of this study will be highly useful for social and public health policies related to older people. Given the continuous increase in the prevalence of older people, a large number of interventions targeting memory loss are funded by public resources. To ensure transparency and effective prioritization, research such as the present study is needed to provide evidence of the effectiveness and usefulness of these interventions. Number: NCT02431182 .
Thivierge, Stéphanie; Jean, Léonie; Simard, Martine
2014-11-01
The goal of the study was to investigate the effectiveness of a memory rehabilitation program to re-learn instrumental activities of daily living (IADLs) in patients with Alzheimer disease (AD). This was a 6-month block-randomized cross-over controlled study. All evaluation and training sessions were performed at each patient's home. Twenty participants with mild to moderate AD. The trained IADL was chosen by the patient and his/her caregiver in order to target the patient's needs and interests. Participants were trained twice a week for 4 weeks with the errorless learning (ELL) and spaced retrieval (SR) cognitive techniques. After training, there were several follow-ups over a period of at least 3 months. Performance on the trained IADL was assessed by a Direct Measure of Training (DMT), an observational instrument adapted from a well-validated scale. General cognitive function, everyday memory functioning, quality of life, neuropsychiatric symptoms and ADL/IADL of patients, as well as the caregiver's burden were assessed as secondary outcomes. A statistical significant difference was found between the trained and untrained groups on the DMT immediately following the intervention. Improvements were maintained for a 3-month period. The training did not have effects on any other measures. The present study showed that it is possible for AD patients to relearn significant IADLs with the ELL and SR techniques and to maintain these gains during at least 3 months. The findings of this study emphasize the importance to design robust but individualized intervention tailored on patients' particular needs. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Circadian Modulation of Consolidated Memory Retrieval Following Sleep Deprivation in Drosophila
Glou, Eric Le; Seugnet, Laurent; Shaw, Paul J.; Preat, Thomas; Goguel, Valérie
2012-01-01
Objectives: Several lines of evidence indicate that sleep plays a critical role in learning and memory. The aim of this study was to evaluate anesthesia resistant memory following sleep deprivation in Drosophila. Design: Four to 16 h after aversive olfactory training, flies were sleep deprived for 4 h. Memory was assessed 24 h after training. Training, sleep deprivation, and memory tests were performed at different times during the day to evaluate the importance of the time of day for memory formation. The role of circadian rhythms was further evaluated using circadian clock mutants. Results Memory was disrupted when flies were exposed to 4 h of sleep deprivation during the consolidation phase. Interestingly, normal memory was observed following sleep deprivation when the memory test was performed during the 2 h preceding lights-off, a period characterized by maximum wake in flies. We also show that anesthesia resistant memory was less sensitive to sleep deprivation in flies with disrupted circadian rhythms. Conclusions Our results indicate that anesthesia resistant memory, a consolidated memory less costly than long-term memory, is sensitive to sleep deprivation. In addition, we provide evidence that circadian factors influence memory vulnerability to sleep deprivation and memory retrieval. Taken together, the data show that memories weakened by sleep deprivation can be retrieved if the animals are tested at the optimal circadian time. Citation: Le Glou E; Seugnet L; Shaw PJ; Preat T; Goguel V. Circadian modulation of consolidated memory retrieval following sleep deprivation in Drosophila. SLEEP 2012;35(10):1377-1384. PMID:23024436
McCade, Kirsten J.; Wingo, Robert M.; Haarmann, Timothy K.; Sutherland, Andrew; Gubler, Walter D.
2015-12-15
A specialized conditioning protocol for honeybees that is designed for use within a complex agricultural ecosystem. This method ensures that the conditioned bees will be less likely to exhibit a conditioned response to uninfected plants, a false positive response that would render such a biological sensor unreliable for agricultural decision support. Also described is a superboosting training regime that allows training without the aid of expensive equipment and protocols for training in out in the field. Also described is a memory enhancing cocktail that aids in long term memory retention of a vapor signature. This allows the bees to be used in the field for longer durations and with fewer bees trained overall.
Chen, Yan-Chu; Ma, Yun-Li; Lin, Cheng-Hsiung; Cheng, Sin-Jhong; Hsu, Wei-Lun; Lee, Eminy H.-Y.
2017-01-01
Galectin-3, a member of the galectin protein family, has been found to regulate cell proliferation, inhibit apoptosis and promote inflammatory responses. Galectin-3 is also expressed in the adult rat hippocampus, but its role in learning and memory function is not known. Here, we found that contextual fear-conditioning training, spatial training or injection of NMDA into the rat CA1 area each dramatically decreased the level of endogenous galectin-3 expression. Overexpression of galectin-3 impaired fear memory, whereas galectin-3 knockout (KO) enhanced fear retention, spatial memory and hippocampal long-term potentiation. Galectin-3 was further found to associate with integrin α3, an association that was decreased after fear-conditioning training. Transfection of the rat CA1 area with small interfering RNA against galectin-3 facilitated fear memory and increased phosphorylated focal adhesion kinase (FAK) levels, effects that were blocked by co-transfection of the FAK phosphorylation-defective mutant Flag-FAKY397F. Notably, levels of serine-phosphorylated galectin-3 were decreased by fear conditioning training. In addition, blockade of galectin-3 phosphorylation at Ser-6 facilitated fear memory, whereas constitutive activation of galectin-3 at Ser-6 impaired fear memory. Interestingly galectin-1 plays a role in fear-memory formation similar to that of galectin-3. Collectively, our data provide the first demonstration that galectin-3 is a novel negative regulator of memory formation that exerts its effects through both extracellular and intracellular mechanisms. PMID:28744198
Romero-Granados, Rocío; Fontán-Lozano, Angela; Delgado-García, José María; Carrión, Angel M
2010-05-01
Neuropsychological analyses of amnesic patients, as well as lesion experiments, indicate that the temporal lobe is essential for the encoding, storage, and expression of object recognition memory (ORM). However, temporal lobe structures directly involved in the consolidation and reconsolidation of these memories are not yet well-defined. We report here that systemic administration of a protein synthesis inhibitor before or up to 4 h after training or reactivation sessions impairs consolidation and reconsolidation of ORM, without affecting short-term memory. We have also observed that ORM reconsolidation is sensitive to protein synthesis inhibition, independently of the ORM trace age. Using bdnf and egr-1 gene expression analysis, we defined temporal lobe areas related to consolidation and reconsolidation of ORM. Training and reactivation 21 days after ORM acquisition sessions provoked changes in bdnf mRNA in somatosensory, perirhinal, and hippocampal cortices. Reactivation 2 days after the training session elicited changes in bdnf and egr-1 mRNA in entorhinal and prefrontal cortices, while reactivation 9 days post-training provoked an increase in egr-1 transcription in somatosensory and entorhinal cortices. The differences in activated circuits and in the capacity to recall the memory trace after 9 or 21 days post-training suggest that memory trace suffers functional changes in this period of time. All these results indicate that the functional state of the recognition memory trace, from acquisition to forgetting, can be specifically defined by behavioral, circuitry, and molecular properties. 2009 Wiley-Liss, Inc.
Dopaminergic influences on formation of a motor memory.
Flöel, Agnes; Breitenstein, Caterina; Hummel, Friedhelm; Celnik, Pablo; Gingert, Christian; Sawaki, Lumy; Knecht, Stefan; Cohen, Leonardo G
2005-07-01
The ability of the central nervous system to form motor memories, a process contributing to motor learning and skill acquisition, decreases with age. Dopaminergic activity, one of the mechanisms implicated in memory formation, experiences a similar decline with aging. It is possible that restoring dopaminergic function in elderly adults could lead to improved formation of motor memories with training. We studied the influence of a single oral dose of levodopa (100mg) administered preceding training on the ability to encode an elementary motor memory in the primary motor cortex of elderly and young healthy volunteers in a randomized, double-blind, placebo-controlled design. Attention to the task and motor training kinematics were comparable across age groups and sessions. In young subjects, encoding a motor memory under placebo was more prominent than in older subjects, and the encoding process was accelerated by intake of levodopa. In the elderly group, diminished motor memory encoding under placebo was enhanced by intake of levodopa to levels present in younger subjects. Therefore, upregulation of dopaminergic activity accelerated memory formation in young subjects and restored the ability to form a motor memory in elderly subjects; possible mechanisms underlying the beneficial effects of dopaminergic agents on motor learning in neurorehabilitation.
Merging of long-term memories in an insect.
Hunt, Kathryn L; Chittka, Lars
2015-03-16
Research on comparative cognition has largely focused on successes and failures of animals to solve certain cognitive tasks, but in humans, memory errors can be more complex than simple failures to retrieve information [1, 2]. The existence of various types of "false memories," in which individuals remember events that they have never actually encountered, are now well established in humans [3, 4]. We hypothesize that such systematic memory errors may be widespread in animals whose natural lifestyle involves the processing and recollection of memories for multiple stimuli [5]. We predict that memory traces for various stimuli may "merge," such that features acquired in distinct bouts of training are combined in an animal's mind, so that stimuli that have never been viewed before, but are a combination of the features presented in training, may be chosen during recall. We tested this using bumblebees, Bombus terrestris. When individuals were first trained to a solid single-colored stimulus followed by a black and white (b/w)-patterned stimulus, a subsequent preference for the last entrained stimulus was found in both short-term- and long-term-memory tests. However, when bees were first trained to b/w-patterned stimuli followed by solid single-colored stimuli and were tested in long-term-memory tests 1 or 3 days later, they only initially preferred the most recently rewarded stimulus, and then switched their preference to stimuli that combined features from the previous color and pattern stimuli. The observed merging of long-term memories is thus similar to the memory conjunction error found in humans [6]. Copyright © 2015 Elsevier Ltd. All rights reserved.
The Effects of Musical Training on Verbal Memory
ERIC Educational Resources Information Center
Franklin, Michael S.; Moore, Katherine Sledge; Yip, Chun-Yu; Jonides, John; Rattray, Katie; Moher, Jeff
2008-01-01
A number of studies suggest a link between musical training and general cognitive abilities. Despite some positive results, there is disagreement about which abilities are improved. One line of research leads to the hypothesis that verbal abilities in general, and verbal memory in particular, are related to musical training. In the present…
Improving Reasoning Skills in Secondary History Education by Working Memory Training
ERIC Educational Resources Information Center
Ariës, Roel Jacobus; Groot, Wim; van den Brink, Henriette Maassen
2015-01-01
Secondary school pupils underachieve in tests in which reasoning abilities are required. Brain-based training of working memory (WM) may improve reasoning abilities. In this study, we use a brain-based training programme based on historical content to enhance reasoning abilities in history courses. In the first experiment, a combined intervention…
A pilot study on the benefit of cognitive rehabilitation in Parkinson’s disease
Adamski, Natalia; Adler, Matthias; Opwis, Klaus; Penner, Iris-Katharina
2016-01-01
Purpose: Patients with Parkinson’s disease (PD) show inefficiencies in cognitive performance including working memory functions. Since these problems impact on quality of life and overall well-being, the current study was aimed at improving patients’ situations by evaluating the computerized cognitive training tool, BrainStim. Method: A total of 19 healthy controls (HCs) and six patients with PD were included in the study. While all PD patients received cognitive training, the HC sample was subdivided into 12 subjects with training (HC-T) and 10 subjects without (HC-NT). Participants underwent a double baseline assessment, a post-training assessment, and a 3-month follow up on neuropsychological tests and self-report measures on fatigue and depression. Training was administered between the second baseline and postassessment. It comprised 16 supervised sessions according to a standardized training protocol over 4 weeks. Results: Significant improvements in verbal and visuospatial short-term and long-term memory were found in both training groups. In addition, the HC-T improved on mental speed, and verbal and visuospatial working memory. Both training groups showed stable results for all short-term visuospatial measures after 3 months. Further, the HC-T showed stable results for working memory, verbal, and visuospatial short-term and long-term memory. Conclusions: The efficacy of the applied computerized cognitive training tool BrainStim could be verified in patients with PD and healthy age-matched controls. The preliminary findings highlighted the suitability of a specific cognitive intervention to improve cognitive inefficiencies in patients with PD as well as in healthy older people. Further research on cognitive training in combination with PD drug therapy is needed to better understand the mutual interaction and to offer optimal therapeutic approaches to patients. PMID:27134671
Developing a Physician Management & Leadership Program (PMLP) in Newfoundland and Labrador.
Maddalena, Victor; Fleet, Lisa
2015-01-01
This article aims to document the process the province of Newfoundland and Labrador used to develop an innovative Physician Management and Leadership Program (PMLP). The PMLP is a collaborative initiative among Memorial University (Faculty of Medicine and Faculty of Business), the Government of Newfoundland and Labrador, and the Regional Health Authorities. As challenges facing health-care systems become more complex there is a growing need for management and leadership training for physicians. Memorial University Faculty of Medicine and the Gardiner Centre in the Faculty of Business in partnership with Regional Health Authorities and the Government of Newfoundland and Labrador identified the need for a leadership and management education program for physician leaders. A provincial needs assessment of physician leaders was conducted to identify educational needs to fill this identified gap. A Steering Committee was formed to guide the design and implementation and monitor delivery of the 10 module Physician Management and Leadership Program (PMLP). Designing management and leadership education programs to serve physicians who practice in a large, predominately rural geographic area can be challenging and requires efficient use of available resources and technology. While there are many physician management and leadership programs available in Canada and abroad, the PMLP was designed to meet the specific educational needs of physician leaders in Newfoundland and Labrador.
Training Software in Artificial-Intelligence Computing Techniques
NASA Technical Reports Server (NTRS)
Howard, Ayanna; Rogstad, Eric; Chalfant, Eugene
2005-01-01
The Artificial Intelligence (AI) Toolkit is a computer program for training scientists, engineers, and university students in three soft-computing techniques (fuzzy logic, neural networks, and genetic algorithms) used in artificial-intelligence applications. The program promotes an easily understandable tutorial interface, including an interactive graphical component through which the user can gain hands-on experience in soft-computing techniques applied to realistic example problems. The tutorial provides step-by-step instructions on the workings of soft-computing technology, whereas the hands-on examples allow interaction and reinforcement of the techniques explained throughout the tutorial. In the fuzzy-logic example, a user can interact with a robot and an obstacle course to verify how fuzzy logic is used to command a rover traverse from an arbitrary start to the goal location. For the genetic algorithm example, the problem is to determine the minimum-length path for visiting a user-chosen set of planets in the solar system. For the neural-network example, the problem is to decide, on the basis of input data on physical characteristics, whether a person is a man, woman, or child. The AI Toolkit is compatible with the Windows 95,98, ME, NT 4.0, 2000, and XP operating systems. A computer having a processor speed of at least 300 MHz, and random-access memory of at least 56MB is recommended for optimal performance. The program can be run on a slower computer having less memory, but some functions may not be executed properly.
NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.
Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V
2018-06-01
Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (<10th day), the unpaired presentation of conditioned stimuli (CS) or unconditioned stimuli (US) in the same training context did not have an effect on both types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.
Hashim, Hairul Anuar; Zainol, Nurul Ain
2015-01-01
This study compared the effects of 6 and 12 sessions of relaxation training on emotional distress, short-term memory, and sustained attention in primary school children. Participants (N = 132) aged 10 and 11 years old participated in this study. All participants and their parents provided written informed consent. Participants completed the measurement instruments before and after the completion of relaxation training. Nearly half (49%) of all respondents reported moderate to extremely severe stress, and 80 and 61% reported moderate to extremely severe anxiety and depression, respectively. The results of a one-way analysis of variance revealed a significant difference among the groups in mean changes in short-term memory. A greater memory increase was observed in the 12-session than in the six-session and no-training group. It can be conceived that 12-session of training should be considered when prescribing relaxation regimens as a nonspecific clinical treatment (i.e. for healthy students).
Winocur, G; Moscovitch, M
1990-08-01
Young adult rats with bilateral lesions to the hippocampus or prefrontal cortex, young operated controls, and normal old rats were tested on two complex mazes in the Hebb-Williams series. Approximately half the animals were previously trained on one of the mazes; the remainder received no previous training. The trained hippocampal rats showed sparing of memory for the general skill of maze learning but poor recall of the specific maze on which they had been previously trained. The opposite pattern was observed in trained prefrontal rats. In contrast, the aged rats' memory for maze-specific and maze-general information was impaired. The results confirmed the importance of the hippocampus for recalling highly specific information and pointed to a possible role for the frontal lobes in learning and remembering nonspecific skill-related information. The generalized deficit of the aged rats indicates that both types of memory were compromised and offers further evidence of frontal lobe and hippocampal dysfunction in normal aging.
Effects of simultaneously performed cognitive and physical training in older adults
2013-01-01
Background While many studies confirm the positive effect of cognitive and physical training on cognitive performance of older adults, only little is known about the effects of simultaneously performed cognitive and physical training. In the current study, older adults simultaneously performed a verbal working memory and a cardiovascular training to improve cognitive and motor-cognitive dual task performance. Twenty training sessions of 30 minutes each were conducted over a period of ten weeks, with a test session before, in the middle, and after the training. Training gains were tested in measures of selective attention, paired-associates learning, executive control, reasoning, memory span, information processing speed, and motor-cognitive dual task performance in the form of walking and simultaneously performing a working memory task. Results Sixty-three participants with a mean age of 71.8 ± 4.9 years (range 65 to 84) either performed the simultaneous training (N = 21), performed a single working memory training (N = 16), or attended no training at all (N = 26). The results indicate similar training progress and larger improvements in the executive control task for both training groups when compared to the passive control group. In addition, the simultaneous training resulted in larger improvements compared to the single cognitive training in the paired-associates task and was able to reduce the step-to-step variability during the motor-cognitive dual task when compared to the single cognitive training and the passive control group. Conclusions The simultaneous training of cognitive and physical abilities presents a promising training concept to improve cognitive and motor-cognitive dual task performance, offering greater potential on daily life functioning, which usually involves the recruitment of multiple abilities and resources rather than a single one. PMID:24053148
Computerized tabletop games as a form of a video game training for old-old.
Cujzek, Marina; Vranic, Andrea
2017-11-01
This research aimed at investigating the utility of a computerized version of a cognitively stimulating activity as a video game intervention for elderly. The study focused on the effect of a 6-week extensive practice intervention on aspects of cognitive functioning (vigilance, working memory (WM), inhibition, reasoning) of old-old participants (N = 29), randomly assigned to trained or active control group. The difference between groups was in the content of the extended video game practice - cognitively complex card game for trained and computerized version of a simple dice-game of chance for control participants. A pretest, posttest and a 4-month follow-up measurement was conducted. Results revealed improvements in both groups, except for improved reasoning found only in trained participants. These results suggest that: (1) improvements are dependent on the complexity of the program, (2) cognitively stimulating activity are a valid training procedure for old-old, (3) novelty of computer use is an important factor in determining training efficacy.
HONTIOR - HIGHER-ORDER NEURAL NETWORK FOR TRANSFORMATION INVARIANT OBJECT RECOGNITION
NASA Technical Reports Server (NTRS)
Spirkovska, L.
1994-01-01
Neural networks have been applied in numerous fields, including transformation invariant object recognition, wherein an object is recognized despite changes in the object's position in the input field, size, or rotation. One of the more successful neural network methods used in invariant object recognition is the higher-order neural network (HONN) method. With a HONN, known relationships are exploited and the desired invariances are built directly into the architecture of the network, eliminating the need for the network to learn invariance to transformations. This results in a significant reduction in the training time required, since the network needs to be trained on only one view of each object, not on numerous transformed views. Moreover, one hundred percent accuracy is guaranteed for images characterized by the built-in distortions, providing noise is not introduced through pixelation. The program HONTIOR implements a third-order neural network having invariance to translation, scale, and in-plane rotation built directly into the architecture, Thus, for 2-D transformation invariance, the network needs only to be trained on just one view of each object. HONTIOR can also be used for 3-D transformation invariant object recognition by training the network only on a set of out-of-plane rotated views. Historically, the major drawback of HONNs has been that the size of the input field was limited to the memory required for the large number of interconnections in a fully connected network. HONTIOR solves this problem by coarse coding the input images (coding an image as a set of overlapping but offset coarser images). Using this scheme, large input fields (4096 x 4096 pixels) can easily be represented using very little virtual memory (30Mb). The HONTIOR distribution consists of three main programs. The first program contains the training and testing routines for a third-order neural network. The second program contains the same training and testing procedures as the first, but it also contains a number of functions to display and edit training and test images. Finally, the third program is an auxiliary program which calculates the included angles for a given input field size. HONTIOR is written in C language, and was originally developed for Sun3 and Sun4 series computers. Both graphic and command line versions of the program are provided. The command line version has been successfully compiled and executed both on computers running the UNIX operating system and on DEC VAX series computer running VMS. The graphic version requires the SunTools windowing environment, and therefore runs only on Sun series computers. The executable for the graphics version of HONTIOR requires 1Mb of RAM. The standard distribution medium for HONTIOR is a .25 inch streaming magnetic tape cartridge in UNIX tar format. It is also available on a 3.5 inch diskette in UNIX tar format. The package includes sample input and output data. HONTIOR was developed in 1991. Sun, Sun3 and Sun4 are trademarks of Sun Microsystems, Inc. UNIX is a registered trademark of AT&T Bell Laboratories. DEC, VAX, and VMS are trademarks of Digital Equipment Corporation.
Pigeon visual short-term memory directly compared to primates.
Wright, Anthony A; Elmore, L Caitlin
2016-02-01
Three pigeons were trained to remember arrays of 2-6 colored squares and detect which of two squares had changed color to test their visual short-term memory. Procedures (e.g., stimuli, displays, viewing times, delays) were similar to those used to test monkeys and humans. Following extensive training, pigeons performed slightly better than similarly trained monkeys, but both animal species were considerably less accurate than humans with the same array sizes (2, 4 and 6 items). Pigeons and monkeys showed calculated memory capacities of one item or less, whereas humans showed a memory capacity of 2.5 items. Despite the differences in calculated memory capacities, the pigeons' memory results, like those from monkeys and humans, were all well characterized by an inverse power-law function fit to d' values for the five display sizes. This characterization provides a simple, straightforward summary of the fundamental processing of visual short-term memory (how visual short-term memory declines with memory load) that emphasizes species similarities based upon similar functional relationships. By closely matching pigeon testing parameters to those of monkeys and humans, these similar functional relationships suggest similar underlying processes of visual short-term memory in pigeons, monkeys and humans. Copyright © 2015 Elsevier B.V. All rights reserved.
Extinction and recovery of an avoidance memory impaired by scopolamine.
Navarro, N M; Krawczyk, M C; Boccia, M M; Blake, M G
2017-03-15
Pre-training administration of scopolamine (SCP) resembles situations of cholinergic dysfunction, leading to memory impairment of mice trained in an inhibitory avoidance task. We suggest here that SCP does not impair memory formation, but acquisition is affected in a way that reduces the strength of the stored memory, thus making this memory less able to control behavior when tested. Hence, a memory trace is stored, but is poorly expressed during the test. Although weakly expressed, this memory shows extinction during successive tests, and can be strengthened by using a reminder. Our results indicate that memories stored under cholinergic dysfunction conditions seem absent or lost, but are in fact present and experience common memory processes, such as extinction, and could be even recovered by using appropriate protocols. Copyright © 2017 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Wiest, Dudley J.; Wong, Eugene H.; Minero, Laura P.; Pumaccahua, Tessy T.
2014-01-01
Working memory has been well documented as a significant predictor of academic outcomes (e.g., reading and math achievement as well as general life outcomes). The purpose of this study was to investigate the effectiveness of computerized cognitive training to improve both working memory and encoding abilities in a school setting. Thirty students…
ERIC Educational Resources Information Center
LaLumiere, Ryan T.; McGaugh, James L.
2005-01-01
Previous findings indicate that the noradrenergic, dopaminergic, and cholinergic innervations of the basolateral amygdala (BLA) modulate memory consolidation. The current study investigated whether memory enhancement induced by post-training intra-BLA infusions of a [beta]-adrenergic or muscarinic cholinergic agonist requires concurrent activation…
From antenna to antenna: lateral shift of olfactory memory recall by honeybees.
Rogers, Lesley J; Vallortigara, Giorgio
2008-06-04
Honeybees, Apis mellifera, readily learn to associate odours with sugar rewards and we show here that recall of the olfactory memory, as demonstrated by the bee extending its proboscis when presented with the trained odour, involves first the right and then the left antenna. At 1-2 hour after training using both antennae, recall is possible mainly when the bee uses its right antenna but by 6 hours after training a lateral shift has occurred and the memory can now be recalled mainly when the left antenna is in use. Long-term memory one day after training is also accessed mainly via the left antenna. This time-dependent shift from right to left antenna is also seen as side biases in responding to odour presented to the bee's left or right side. Hence, not only are the cellular events of memory formation similar in bees and vertebrate species but also the lateralized networks involved may be similar. These findings therefore seem to call for remarkable parallel evolution and suggest that the proper functioning of memory formation in a bilateral animal, either vertebrate or invertebrate, requires lateralization of processing.
Yamaguchi, Motonori; Randle, James M; Wilson, Thomas L; Logan, Gordon D
2017-09-01
Hierarchical control of skilled performance depends on chunking of several lower-level units into a single higher-level unit. The present study examined the relationship between chunking and recognition of trained materials in the context of typewriting. In 3 experiments, participants were trained with typing nonwords and were later tested on their recognition of the trained materials. In Experiment 1, participants typed the same words or nonwords in 5 consecutive trials while performing a concurrent memory task. In Experiment 2, participants typed the materials with lags between repetitions without a concurrent memory task. In both experiments, recognition of typing materials was associated with better chunking of the materials. Experiment 3 used the remember-know procedure to test the recollection and familiarity components of recognition. Remember judgments were associated with better chunking than know judgments or nonrecognition. These results indicate that chunking is associated with explicit recollection of prior typing episodes. The relevance of the existing memory models to chunking in typewriting was considered, and it is proposed that memory chunking improves retrieval of trained typing materials by integrating contextual cues into the memory traces. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Külzow, Nadine; Cavalcanti de Sousa, Angelica Vieira; Cesarz, Magda; Hanke, Julie-Marie; Günsberg, Alida; Harder, Solvejg; Koblitz, Swantje; Grittner, Ulrike; Flöel, Agnes
2018-01-01
Object-location memory (OLM) is known to decline with normal aging, a process accelerated in pathological conditions like mild cognitive impairment (MCI). In order to maintain cognitive health and to delay the transition from healthy to pathological conditions, novel strategies are being explored. Tentative evidence suggests that combining cognitive training and anodal transcranial direct current stimulation (atDCS), both reported to induce small and often inconsistent behavioral improvements, could generate larger or more consistent improvements or both, compared to each intervention alone. Here, we explored the combined efficacy of these techniques on OLM. In a subject-blind sham-controlled cross-over design 32 healthy older adults underwent a 3-day visuospatial training paired with either anodal (20 min) or sham (30 s) atDCS (1 mA, temporoparietal). Subjects were asked to learn the correct object-location pairings on a street map, shown over five learning blocks on each training day. Acquisition performance was assessed by accuracy on a given learning block in terms of percentage of correct responses. Training success (performance on last training day) and delayed memory after 1-month were analyzed by mixed model analysis and were controlled for gender, age, education, sequence of stimulation and baseline performance. Exploratory analysis of atDCS effects on within-session (online) and between-session (offline) memory performance were conducted. Moreover, transfer effects on similar trained (visuospatial) and less similar (visuo-constructive, verbal) untrained memory tasks were explored, both immediately after training, and on follow-up. We found that atDCS paired with OLM-training did not enhance success in training or performance in 1-month delayed memory or transfer tasks. In sum, this study did not support the notion that the combined atDCS-training approach improves immediate or delayed OLM in older adults. However, specifics of the experimental design, and a non-optimal timing of atDCS between sessions might have masked beneficial effects and should be more systematically addressed in future studies. PMID:29375290
Dobryakova, Ekaterina; Wylie, Glenn R; DeLuca, John; Chiaravalloti, Nancy D
2014-09-01
Cognitive impairment in individuals with multiple sclerosis (MS) is now well recognized. One of the most common cognitive deficits is found in memory functioning, largely due to impaired acquisition. We examined functional brain activity 6 months after memory retraining in individuals with MS. The current report presents long term follow-up results from a randomized clinical trial on a memory rehabilitation protocol known as the modified Story Memory Technique. Behavioral memory performance and brain activity of all participants were evaluated at baseline, immediately after treatment, and 6 months after treatment. Results revealed that previously observed increases in patterns of cerebral activation during learning immediately after memory training were maintained 6 months post training.