Science.gov

Sample records for memory-constrained hybrid bist

  1. The Behavior Intervention Support Team (BIST) Program: Underlying Theories

    ERIC Educational Resources Information Center

    Boulden, Walter T.

    2010-01-01

    The Behavior Intervention Support Team (BIST) is a proactive school-wide behavior management plan for all students, emphasizing schools partnering with students and parents through caring relationships and high expectations. The BIST program is well-grounded in behavioral theory and combines strength-based and resiliency principles within the…

  2. Microhotplate Temperature Sensor Calibration and BIST.

    PubMed

    Afridi, M; Montgomery, C; Cooper-Balis, E; Semancik, S; Kreider, K G; Geist, J

    2011-01-01

    In this paper we describe a novel long-term microhotplate temperature sensor calibration technique suitable for Built-In Self Test (BIST). The microhotplate thermal resistance (thermal efficiency) and the thermal voltage from an integrated platinum-rhodium thermocouple were calibrated against a freshly calibrated four-wire polysilicon microhotplate-heater temperature sensor (heater) that is not stable over long periods of time when exposed to higher temperatures. To stress the microhotplate, its temperature was raised to around 400 °C and held there for days. The heater was then recalibrated as a temperature sensor, and microhotplate temperature measurements were made based on the fresh calibration of the heater, the first calibration of the heater, the microhotplate thermal resistance, and the thermocouple voltage. This procedure was repeated 10 times over a period of 80 days. The results show that the heater calibration drifted substantially during the period of the test while the microhotplate thermal resistance and the thermocouple-voltage remained stable to within about plus or minus 1 °C over the same period. Therefore, the combination of a microhotplate heater-temperature sensor and either the microhotplate thermal resistance or an integrated thin film platinum-rhodium thermocouple can be used to provide a stable, calibrated, microhotplate-temperature sensor, and the combination of the three sensor is suitable for implementing BIST functionality. Alternatively, if a stable microhotplate-heater temperature sensor is available, such as a properly annealed platinum heater-temperature sensor, then the thermal resistance of the microhotplate and the electrical resistance of the platinum heater will be sufficient to implement BIST. It is also shown that aluminum- and polysilicon-based temperature sensors, which are not stable enough for measuring high microhotplate temperatures (>220 °C) without impractically frequent recalibration, can be used to measure the

  3. An effective BIST scheme for SRAM full speed test

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Yu, Yue; Zheng, Jianbin; Song, Xiaoyu

    2011-09-01

    This article presents a novel built-in self-test (BIST) scheme at full speed test where access time test is performed. Based on normal BIST circuits, we harness an all digital phase locked loop to generate a high-frequency clock for static random access memory (SRAM) performance test at full speed. A delay chain is incorporated to achieve the four-phase clock. As inputs to SRAM, clock, address, data are generated in terms of the four-phase clock. Key performance parameters, such as access time, address setup and hold times, are measured. The test chip has been fabricated by United Microelectronics Corporation 55 nm CMOS logic standard process. According to test results, the maximum test frequency is about 1.3 GHz, and the test precision is about 35 ps at the typical process corner with supply voltage 1.0 V and temperature 25°C.

  4. A low-cost DAC BIST structure using a resistor loop

    PubMed Central

    Jang, Jaewon; Kim, Heetae

    2017-01-01

    This paper proposes a new DAC BIST (digital-to-analog converter built-in self-test) structure using a resistor loop known as a DDEM ADC (deterministic dynamic element matching analog-to-digital converter). Methods for both switch reduction and switch effect reduction are proposed for solving problems related to area overhead and accuracy of the conventional DAC BIST. The proposed BIST modifies the length of each resistor in the resistor loop via a merging operation and reduces the number of switches and resistors. In addition, the effect of switches is mitigated using the proposed switch effect reduction method. The accuracy of the proposed BIST is demonstrated by the reduction in the switch effect. The experimental results show that the proposed BIST reduces resource usages and the mismatch error caused by the switches. PMID:28212421

  5. A low-cost DAC BIST structure using a resistor loop.

    PubMed

    Jang, Jaewon; Kim, Heetae; Kang, Sungho

    2017-01-01

    This paper proposes a new DAC BIST (digital-to-analog converter built-in self-test) structure using a resistor loop known as a DDEM ADC (deterministic dynamic element matching analog-to-digital converter). Methods for both switch reduction and switch effect reduction are proposed for solving problems related to area overhead and accuracy of the conventional DAC BIST. The proposed BIST modifies the length of each resistor in the resistor loop via a merging operation and reduces the number of switches and resistors. In addition, the effect of switches is mitigated using the proposed switch effect reduction method. The accuracy of the proposed BIST is demonstrated by the reduction in the switch effect. The experimental results show that the proposed BIST reduces resource usages and the mismatch error caused by the switches.

  6. A Low-Cost BIST Based on Histogram Testing for Analog to Digital Converters

    NASA Astrophysics Data System (ADS)

    Kim, Kicheol; Kim, Youbean; Kim, Incheol; Son, Hyeonuk; Kang, Sungho

    In this letter a histogram-based BIST (Built-In Self-Test) approach for deriving the main characteristic parameters of an ADC (Analog to Digital Converter) such as offset, gain and non-linearities is proposed. The BIST uses a ramp signal as an input signal and two counters as a response analyzer to calculate the derived static parameters. Experimental results show that the proposed method reduces the hardware overhead and testing time while detecting any static faults in an ADC.

  7. Hybrid parallel programming with MPI and Unified Parallel C.

    SciTech Connect

    Dinan, J.; Balaji, P.; Lusk, E.; Sadayappan, P.; Thakur, R.; Mathematics and Computer Science; The Ohio State Univ.

    2010-01-01

    The Message Passing Interface (MPI) is one of the most widely used programming models for parallel computing. However, the amount of memory available to an MPI process is limited by the amount of local memory within a compute node. Partitioned Global Address Space (PGAS) models such as Unified Parallel C (UPC) are growing in popularity because of their ability to provide a shared global address space that spans the memories of multiple compute nodes. However, taking advantage of UPC can require a large recoding effort for existing parallel applications. In this paper, we explore a new hybrid parallel programming model that combines MPI and UPC. This model allows MPI programmers incremental access to a greater amount of memory, enabling memory-constrained MPI codes to process larger data sets. In addition, the hybrid model offers UPC programmers an opportunity to create static UPC groups that are connected over MPI. As we demonstrate, the use of such groups can significantly improve the scalability of locality-constrained UPC codes. This paper presents a detailed description of the hybrid model and demonstrates its effectiveness in two applications: a random access benchmark and the Barnes-Hut cosmological simulation. Experimental results indicate that the hybrid model can greatly enhance performance; using hybrid UPC groups that span two cluster nodes, RA performance increases by a factor of 1.33 and using groups that span four cluster nodes, Barnes-Hut experiences a twofold speedup at the expense of a 2% increase in code size.

  8. Stellarator hybrids

    SciTech Connect

    Furth, H.P.; Ludescher, C.

    1984-08-01

    The present paper briefly reviews the subject of tokamak-stellarator and pinch-stellarator hybrids, and points to two interesting new possibilities: compact-torus-stellarators and mirror-stellarators.

  9. Hybrid Gear

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  10. Hybrid Simulator

    SciTech Connect

    Trujillo, David J.; Sridharan, Srikesh; Weinstock, Irvin

    2005-10-15

    HybSim (short for Hybrid Simulator) is a flexible, easy to use screening tool that allows the user to quanti the technical and economic benefits of installing a village hybrid generating system and simulates systems with any combination of —Diesel generator sets —Photovoltaic arrays -Wind Turbines and -Battery energy storage systems Most village systems (or small population sites such as villages, remote military bases, small communities, independent or isolated buildings or centers) depend on diesel generation systems for their source of energy. HybSim allows the user to determine other "sources" of energy that can greatly reduce the dollar to kilo-watt hour ratio. Supported by the DOE, Energy Storage Program, HybSim was initially developed to help analyze the benefits of energy storage systems in Alaskan villages. Soon after its development, other sources of energy were added providing the user with a greater range of analysis opportunities and providing the village with potentially added savings. In addition to village systems, HybSim has generated interest for use from military institutions in energy provisions and USAID for international village analysis.

  11. Hybrid mimics and hybrid vigor in Arabidopsis.

    PubMed

    Wang, Li; Greaves, Ian K; Groszmann, Michael; Wu, Li Min; Dennis, Elizabeth S; Peacock, W James

    2015-09-01

    F1 hybrids can outperform their parents in yield and vegetative biomass, features of hybrid vigor that form the basis of the hybrid seed industry. The yield advantage of the F1 is lost in the F2 and subsequent generations. In Arabidopsis, from F2 plants that have a F1-like phenotype, we have by recurrent selection produced pure breeding F5/F6 lines, hybrid mimics, in which the characteristics of the F1 hybrid are stabilized. These hybrid mimic lines, like the F1 hybrid, have larger leaves than the parent plant, and the leaves have increased photosynthetic cell numbers, and in some lines, increased size of cells, suggesting an increased supply of photosynthate. A comparison of the differentially expressed genes in the F1 hybrid with those of eight hybrid mimic lines identified metabolic pathways altered in both; these pathways include down-regulation of defense response pathways and altered abiotic response pathways. F6 hybrid mimic lines are mostly homozygous at each locus in the genome and yet retain the large F1-like phenotype. Many alleles in the F6 plants, when they are homozygous, have expression levels different to the level in the parent. We consider this altered expression to be a consequence of transregulation of genes from one parent by genes from the other parent. Transregulation could also arise from epigenetic modifications in the F1. The pure breeding hybrid mimics have been valuable in probing the mechanisms of hybrid vigor and may also prove to be useful hybrid vigor equivalents in agriculture.

  12. A Step Response Based Mixed-Signal BIST Approach

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon

    2001-01-01

    A new Mixed-Signal Built-in Self-test approach that is based upon the step response of a reconfigurable (or multifunction) analog block is presented in this paper. The technique requires the overlapping step response of the Circuit Under Test (CUT) for two circuit configurations. Each configuration can be realized by changing the topology of the CUT or by sampling two CUT nodes with differing step responses. The technique can effectively detect both soft and hard faults and does not require an analog-to-digital converter (ADC) and/or digital-to-analog converter( DAC). It also does not require any precision voltage sources or comparators. The approach does not require any additional analog circuits to realize the test signal generator and a two input analog multiplexer for CUT test node sampling. The paper is concluded with the application of the proposed approach to a circuit found in the work of Epstein et a1 and two ITC 97 analog benchmark circuits.

  13. Hybrid rocket propulsion

    NASA Technical Reports Server (NTRS)

    Holzman, Allen L.

    1993-01-01

    Topics addressed are: (1) comparison of the theoretical impulses; (2) comparison of the density-specific impulses; (3) general propulsion system features comparison; (4) hybrid systems, booster applications; and (5) hybrid systems, upper stage propulsion applications.

  14. From hybrid swarms to swarms of hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  15. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  16. Mesoscale hybrid calibration artifact

    DOEpatents

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  17. Hybrid armature projectile

    DOEpatents

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  18. Intraply Hybrid Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  19. Hybrid armature projectile

    DOEpatents

    Hawke, R.S.; Asay, J.R.; Hall, C.A.; Konrad, C.H.; Sauve, G.L.; Shahinpoor, M.; Susoeff, A.R.

    1993-03-02

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasma blowby.

  20. Hybrid quantum information processing

    SciTech Connect

    Furusawa, Akira

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  1. Homoploid hybrid expectations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  2. Hybrid radiator cooling system

    SciTech Connect

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  3. Requirements for Hybrid Cosimulation

    DTIC Science & Technology

    2014-08-16

    hybrid cosimulation version of the Functional Mockup Interface ( FMI ) standard. A cosimulation standard de nes interfaces that enable diverse simulation...This hybrid mixture is not well supported by existing cosimulation standards, and speci cally not by FMI 2.0, for reasons that are explained in this...cosimulation standards, and specifically provides guidance for development of a hybrid cosimulation version of the Functional Mockup Interface ( FMI ) standard

  4. Managing hybrid marketing systems.

    PubMed

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  5. From hybrid swarms to swarms of hybrids

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2014-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  6. The New Information Hybrid.

    ERIC Educational Resources Information Center

    Levitan, Karen B.

    1981-01-01

    Discusses the creation and existence of "hybrid" organizations, i.e., nonprofit companies sponsored by the government to provide extensive research and development services. Possibilities for hybrids are brought about by government intervention in the information marketplace to produce social benefits. (SW)

  7. Hybrid baryons in QCD

    SciTech Connect

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbers $N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$ and $\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $J^{P}=1^{+}$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.

  8. Hybrid reactors. [Fuel cycle

    SciTech Connect

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  9. Hybrid propulsion technology program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  10. The hybrid BCI.

    PubMed

    Pfurtscheller, Gert; Allison, Brendan Z; Brunner, Clemens; Bauernfeind, Gunther; Solis-Escalante, Teodoro; Scherer, Reinhold; Zander, Thorsten O; Mueller-Putz, Gernot; Neuper, Christa; Birbaumer, Niels

    2010-01-01

    Nowadays, everybody knows what a hybrid car is. A hybrid car normally has two engines to enhance energy efficiency and reduce CO2 output. Similarly, a hybrid brain-computer interface (BCI) is composed of two BCIs, or at least one BCI and another system. A hybrid BCI, like any BCI, must fulfill the following four criteria: (i) the device must rely on signals recorded directly from the brain; (ii) there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii) real time processing; and (iv) the user must obtain feedback. This paper introduces hybrid BCIs that have already been published or are in development. We also introduce concepts for future work. We describe BCIs that classify two EEG patterns: one is the event-related (de)synchronisation (ERD, ERS) of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP). Hybrid BCIs can either process their inputs simultaneously, or operate two systems sequentially, where the first system can act as a "brain switch". For example, we describe a hybrid BCI that simultaneously combines ERD and SSVEP BCIs. We also describe a sequential hybrid BCI, in which subjects could use a brain switch to control an SSVEP-based hand orthosis. Subjects who used this hybrid BCI exhibited about half the false positives encountered while using the SSVEP BCI alone. A brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS). Hybrid BCIs can also use one brain signal and a different type of input. This additional input can be an electrophysiological signal such as the heart rate, or a signal from an external device such as an eye tracking system.

  11. Hybrid matrix fiber composites

    DOEpatents

    Deteresa, Steven J.; Lyon, Richard E.; Groves, Scott E.

    2003-07-15

    Hybrid matrix fiber composites having enhanced compressive performance as well as enhanced stiffness, toughness and durability suitable for compression-critical applications. The methods for producing the fiber composites using matrix hybridization. The hybrid matrix fiber composites include two chemically or physically bonded matrix materials, whereas the first matrix materials are used to impregnate multi-filament fibers formed into ribbons and the second matrix material is placed around and between the fiber ribbons that are impregnated with the first matrix material and both matrix materials are cured and solidified.

  12. Artificial mismatch hybridization

    DOEpatents

    Guo, Zhen; Smith, Lloyd M.

    1998-01-01

    An improved nucleic acid hybridization process is provided which employs a modified oligonucleotide and improves the ability to discriminate a control nucleic acid target from a variant nucleic acid target containing a sequence variation. The modified probe contains at least one artificial mismatch relative to the control nucleic acid target in addition to any mismatch(es) arising from the sequence variation. The invention has direct and advantageous application to numerous existing hybridization methods, including, applications that employ, for example, the Polymerase Chain Reaction, allele-specific nucleic acid sequencing methods, and diagnostic hybridization methods.

  13. Hybrid electric vehicles TOPTEC

    SciTech Connect

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  14. Hybrid Bloch brane

    NASA Astrophysics Data System (ADS)

    Bazeia, D.; Lima, Elisama E. M.; Losano, L.

    2017-02-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  15. Chaotic mixer improves microarray hybridization.

    PubMed

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  16. Hybrid plasmachemical reactor

    SciTech Connect

    Lelevkin, V. M. Smirnova, Yu. G.; Tokarev, A. V.

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  17. Hybrid adsorptive membrane reactor

    NASA Technical Reports Server (NTRS)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  18. Hybrid polymer microspheres

    NASA Technical Reports Server (NTRS)

    Rembaum, A.

    1980-01-01

    Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.

  19. Hybrid adsorptive membrane reactor

    SciTech Connect

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  20. Systems for hybrid cars

    NASA Astrophysics Data System (ADS)

    Bitsche, Otmar; Gutmann, Guenter

    Not only sharp competition but also legislation are pushing development of hybrid drive trains. Based on conventional internal combustion engine (ICE) vehicles, these drive trains offer a wide range of benefits from reduced fuel consumption and emission to multifaceted performance improvements. Hybrid electric drive trains may also facilitate the introduction of fuel cells (FC). The battery is the key component for all hybrid drive trains, as it dominates cost and performance issues. The selection of the right battery technology for the specific automotive application is an important task with an impact on costs of development and use. Safety, power, and high cycle life are a must for all hybrid applications. The greatest pressure to reduce cost is in soft hybrids, where lead-acid embedded in a considerate management presents the cheapest solution, with a considerable improvement in performance needed. From mild to full hybridization, an improvement in specific power makes higher costs more acceptable, provided that the battery's service life is equivalent to the vehicle's lifetime. Today, this is proven for the nickel-metal hydride system. Lithium ion batteries, which make use of a multiple safety concept, and with some development anticipated, provide even better prospects in terms of performance and costs. Also, their scalability permits their application in battery electric vehicles—the basis for better performance and enhanced user acceptance. Development targets for the batteries are discussed with a focus on system aspects such as electrical and thermal management and safety.

  1. Human hybrid hybridoma

    SciTech Connect

    Tiebout, R.F.; van Boxtel-Oosterhof, F.; Stricker, E.A.M.; Zeijlemaker, W.P.

    1987-11-15

    Hybrid hybridomas are obtained by fusion of two cells, each producing its own antibody. Several authors have reported the construction of murine hybrid hybridomas with the aim to obtain bispecific monoclonal antibodies. The authors have investigated, in a model system, the feasibility of constructing a human hybrid hybridoma. They fused two monoclonal cell lines: an ouabain-sensitive and azaserine/hypoxanthine-resistant Epstein-Barr virus-transformed human cell line that produces an IgG1kappa antibody directed against tetanus toxiod and an azaserine/hypoxanthine-sensitive and ouabain-resistant human-mouse xenohybrid cell line that produces a human IgG1lambda antibody directed against hepatitis-B surface antigen. Hybrid hybridoma cells were selected in culture medium containing azaserine/hypoxanthine and ouabain. The hybrid nature of the secreted antibodies was analyzed by means of two antigen-specific immunoassay. The results show that it is possible, with the combined use of transformation and xenohybridization techniques, to construct human hybrid hybridomas that produce bispecific antibodies. Bispecific antibodies activity was measured by means of two radioimmunoassays.

  2. Hybrid Propulsion Demonstration Program 250K Hybrid Motor

    NASA Technical Reports Server (NTRS)

    Story, George; Zoladz, Tom; Arves, Joe; Kearney, Darren; Abel, Terry; Park, O.

    2003-01-01

    The Hybrid Propulsion Demonstration Program (HPDP) program was formed to mature hybrid propulsion technology to a readiness level sufficient to enable commercialization for various space launch applications. The goal of the HPDP was to develop and test a 250,000 pound vacuum thrust hybrid booster in order to demonstrate hybrid propulsion technology and enable manufacturing of large hybrid boosters for current and future space launch vehicles. The HPDP has successfully conducted four tests of the 250,000 pound thrust hybrid rocket motor at NASA's Stennis Space Center. This paper documents the test series.

  3. Hybrid Breakdown in Cichlid Fish

    PubMed Central

    Stelkens, Rike Bahati; Schmid, Corinne; Seehausen, Ole

    2015-01-01

    Studies from a wide diversity of taxa have shown a negative relationship between genetic compatibility and the divergence time of hybridizing genomes. Theory predicts the main breakdown of fitness to happen after the F1 hybrid generation, when heterosis subsides and recessive allelic (Dobzhansky-Muller) incompatibilities are increasingly unmasked. We measured the fitness of F2 hybrids of African haplochromine cichlid fish bred from species pairs spanning several thousand to several million years divergence time. F2 hybrids consistently showed the lowest viability compared to F1 hybrids and non-hybrid crosses (crosses within the grandparental species), in agreement with hybrid breakdown. Especially the short- and long-term survival (2 weeks to 6 months) of F2 hybrids was significantly reduced. Overall, F2 hybrids showed a fitness reduction of 21% compared to F1 hybrids, and a reduction of 43% compared to the grandparental, non-hybrid crosses. We further observed a decrease of F2 hybrid viability with the genetic distance between grandparental lineages, suggesting an important role for negative epistatic interactions in cichlid fish postzygotic isolation. The estimated time window for successful production of F2 hybrids resulting from our data is consistent with the estimated divergence time between the multiple ancestral lineages that presumably hybridized in three major adaptive radiations of African cichlids. PMID:25996870

  4. Hybrid baryons in QCD

    DOE PAGES

    Dudek, Jozef J.; Edwards, Robert G.

    2012-03-21

    In this study, we present the first comprehensive study of hybrid baryons using lattice QCD methods. Using a large basis of composite QCD interpolating fields we extract an extensive spectrum of baryon states and isolate those of hybrid character using their relatively large overlap onto operators which sample gluonic excitations. We consider the spectrum of Nucleon and Delta states at several quark masses finding a set of positive parity hybrid baryons with quantum numbersmore » $$N_{1/2^+},\\,N_{1/2^+},\\,N_{3/2^+},\\, N_{3/2^+},\\,N_{5/2^+},\\,$$ and $$\\Delta_{1/2^+},\\, \\Delta_{3/2^+}$$ at an energy scale above the first band of `conventional' excited positive parity baryons. This pattern of states is compatible with a color octet gluonic excitation having $$J^{P}=1^{+}$$ as previously reported in the hybrid meson sector and with a comparable energy scale for the excitation, suggesting a common bound-state construction for hybrid mesons and baryons.« less

  5. Research on Hybrid Vehicle Drivetrain

    NASA Astrophysics Data System (ADS)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  6. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  7. Hybridization schemes for clusters

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.

  8. Smart hybrid rotary damper

    NASA Astrophysics Data System (ADS)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  9. Hybrid Vehicle Simulation.

    DTIC Science & Technology

    1983-10-17

    Driving Sequence," Federal Register, 35(219): 17288-313 (10 November 1970). 7. "Electric Cars : Where Batteries Stand," Automotive Industry, 185(13): 81-83...Storage Systems, November 1979. 11. Hiroyuko, Imai. "Optimal Acceleration Performance and Storage Battery Voltage of an Electric Automobile Viewed from...ARE:,/35X, 16HNOMINAL VOLTAGE=, F4.0 C,/35X13HBATTERY MASS=,F5.0) C C ENTER HYBRID VARIABLES. FIRST CARD- 1 IF HYBRID,0 IF NOT. NEXT CAR C )IF IHYB=1

  10. Diagnostics for hybrid reactors

    NASA Astrophysics Data System (ADS)

    Orsitto, Francesco Paolo

    2012-06-01

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  11. Diagnostics for hybrid reactors

    SciTech Connect

    Orsitto, Francesco Paolo

    2012-06-19

    The Hybrid Reactor(HR) can be considered an attractive actinide-burner or a fusion assisted transmutation for destruction of transuranic(TRU) nuclear waste. The hybrid reactor has two important subsystems: the tokamak neutron source and the blanket which includes a fuel zone where the TRU are placed and a tritium breeding zone. The diagnostic system for a HR must be as simple and robust as possible to monitor and control the plasma scenario, guarantee the protection of the machine and monitor the transmutation.

  12. Hybridized polymer matrix composite

    NASA Technical Reports Server (NTRS)

    Stern, B. A.; Visser, T.

    1981-01-01

    Under certain conditions of combined fire and impact, graphite fibers are released to the atmosphere by graphite fiber composites. The retention of graphite fibers in these situations is investigated. Hybrid combinations of graphite tape and cloth, glass cloth, and resin additives are studied with resin systems. Polyimide resins form the most resistant composites and resins based on simple novolac epoxies the least resistant of those tested. Great improvement in the containment of the fibers is obtained in using graphite/glass hybrids, and nearly complete prevention of individual fiber release is made possible by the use of resin additives.

  13. A Mathematical Approach to Hybridization

    ERIC Educational Resources Information Center

    Matthews, P. S. C.; Thompson, J. J.

    1975-01-01

    Presents an approach to hybridization which exploits the similarities between the algebra of wave functions and vectors. This method will account satisfactorily for the number of orbitals formed when applied to hybrids involving the s and p orbitals. (GS)

  14. Automatic hybrid electric lumina van

    SciTech Connect

    Ellers, C.W.

    1995-12-31

    A parallel/Series split-drive hybrid system driving a seven passenger Lumina van is described. The series type hybrid uses a heat-engine driven generator to charge the batteries and/or supply power to the electric drive motor. Volvo is now showing the Volvo ECC (Environmental Concept Car) which is one of the best examples of the series hybrid concept.

  15. Organics go hybrid

    NASA Astrophysics Data System (ADS)

    Lanzani, Guglielmo; Petrozza, Annamaria; Caironi, Mario

    2017-01-01

    From displays to solar cells, the field of organic optoelectronics has come a long way over the past 50 years, but the realization of an electrically pumped organic laser remains elusive. The answer may lie with hybrid organic-inorganic materials called perovskites.

  16. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    House, E. E.; Hoggatt, J. T.; Symonds, W. A.

    1980-01-01

    The extent to which graphite fibers are released from resin matrix composites that are exposed to fire and impact conditions was determined. Laboratory simulations of those conditions that could exist in the event of an aircraft crash and burn situation were evaluated. The effectiveness of various hybridizing concepts in preventing this release of graphite fibers were also evaluated. The baseline (i.e., unhybridized) laminates examined were prepared from commercially available graphite/epoxy, graphite/polyimide, and graphite/phenolic materials. Hybridizing concepts investigated included resin fillers, laminate coatings, resin blending, and mechanical interlocking of the graphite reinforcement. The baseline and hybridized laminates' mechanical properties, before and after isothermal and humidity aging, were also compared. It was found that a small amount of graphite fiber was released from the graphite/epoxy laminates during the burn and impact conditions used in this program. However, the extent to which the fibers were released is not considered a severe enough problem to preclude the use of graphite reinforced composites in civil aircraft structure. It also was found that several hybrid concepts eliminated this fiber release. Isothermal and humidity aging did not appear to alter the fiber release tendencies.

  17. Hybrid Imaging in Oncology.

    PubMed

    Fatima, Nosheen; Zaman, Maseeh uz; Gnanasegaran, Gopinath; Zaman, Unaiza; Shahid, Wajeeha; Zaman, Areeba; Tahseen, Rabia

    2015-01-01

    In oncology various imaging modalities play a crucial role in diagnosis, staging, restaging, treatment monitoring and follow up of various cancers. Stand-alone morphological imaging like computerized tomography (CT) and magnetic resonance imaging (MRI) provide a high magnitude of anatomical details about the tumor but are relatively dumb about tumor physiology. Stand-alone functional imaging like positron emission tomography (PET) and single photon emission tomography (SPECT) are rich in functional information but provide little insight into tumor morphology. Introduction of first hybrid modality PET/CT is the one of the most successful stories of current century which has revolutionized patient care in oncology due to its high diagnostic accuracy. Spurred on by this success, more hybrid imaging modalities like SPECT/CT and PET/MR were introduced. It is the time to explore the potential applications of the existing hybrid modalities, developing and implementing standardized imaging protocols and train users in nuclear medicine and radiology. In this review we discuss three existing hybrid modalities with emphasis on their technical aspects and clinical applications in oncology.

  18. Rethinking Resources and Hybridity

    ERIC Educational Resources Information Center

    Gonsalves, Allison J.; Seiler, Gale; Salter, Dana E.

    2011-01-01

    This review explores Alfred Schademan's "What does playing cards have to do with science? A resource-rich view of African American young men" by examining how he uses two key concepts--hybridity and resources--to propose an approach to science education that counters enduring deficit notions associated with this population. Our response to…

  19. Glueballs, Hybrids and Exotics

    SciTech Connect

    Reyes, M. A.; Moreno, G.

    2006-09-25

    We comment on the physics analysis carried out by the Experimental High Energy Physics (EHEP) group of the Instituto de Fisica of the University of Guanajuato (IFUG), Mexico. In particular, this group has been involved in analysis carried out to search for glueball, hybrid and exotic candidates.

  20. Hybridization of biomedical circuitry

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.

    1978-01-01

    The design and fabrication of low power hybrid circuits to perform vital signs monitoring are reported. The circuits consist of: (1) clock; (2) ECG amplifier and cardiotachometer signal conditioner; (3) impedance pneumobraph and respiration rate processor; (4) hear/breath rate processor; (5) temperature monitor; and (6) LCD display.

  1. Nuclear hybrid energy infrastructure

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  2. Improved hybrid rocket fuel

    NASA Technical Reports Server (NTRS)

    Dean, David L.

    1995-01-01

    McDonnell Douglas Aerospace, as part of its Independent R&D, has initiated development of a clean burning, high performance hybrid fuel for consideration as an alternative to the solid rocket thrust augmentation currently utilized by American space launch systems including Atlas, Delta, Pegasus, Space Shuttle, and Titan. It could also be used in single stage to orbit or as the only propulsion system in a new launch vehicle. Compared to solid propellants based on aluminum and ammonium perchlorate, this fuel is more environmentally benign in that it totally eliminates hydrogen chloride and aluminum oxide by products, producing only water, hydrogen, nitrogen, carbon oxides, and trace amounts of nitrogen oxides. Compared to other hybrid fuel formulations under development, this fuel is cheaper, denser, and faster burning. The specific impulse of this fuel is comparable to other hybrid fuels and is between that of solids and liquids. The fuel also requires less oxygen than similar hybrid fuels to produce maximum specific impulse, thus reducing oxygen delivery system requirements.

  3. Hybrid Solar GHP Simulator

    SciTech Connect

    Yavuzturk, Cy; Chiasson, Andrew; Shonder, John

    2012-12-11

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is

  4. Fitness consequences of hybridization between ecotypes of Avena barbata: hybrid breakdown, hybrid vigor, and transgressive segregation.

    PubMed

    Johansen-Morris, A D; Latta, R G

    2006-08-01

    Hybridization is an important factor in the evolution of plants; however, many of the studies that have examined hybrid fitness have been concerned with the study of early generation hybrids. We examined the early- and late-generation fitness consequences of hybridization between two ecotypes of the selfing annual Avena barbata in a greenhouse environment as well as in two natural environments. Fitness of early generation (F2) hybrids reflects both the action of dominance effects (hybrid vigor) and recombination (hybrid breakdown) and was not significantly different from that of the midparent in any environment. Fitness of later generation (F6) recombinant inbred lines (RILS) derived from the cross reflect both the loss of early generation heterozygosity as well as disruption of any coadapted gene complexes present in the parents. In all environments, F6 RILs were on average significantly less fit than the (equally homozygous) midparent, indicating hybrid breakdown through the disruption of epistatic interactions. However, the inbred F6 were also less fit than the heterozygous F2, indicating that hybrid vigor also occurs in A. barbata, and counteracts hybrid breakdown in early generation hybrids. Also, although the F6 generation mean is lower than the midparent mean, there are individual genotypes within the F6 generation that are capable of outperforming the parental ecotypes in the greenhouse. Fewer hybrid genotypes are capable of outperforming the parental ecotypes in the field. Overall, these experiments demonstrate how a single hybridization event can result in a number of outcomes including hybrid vigor, hybrid breakdown, and transgressive segregation, which interact to determine long-term hybrid fitness.

  5. Ants exhibit asymmetric hybridization in a mosaic hybrid zone.

    PubMed

    Purcell, Jessica; Zahnd, Sacha; Athanasiades, Anouk; Türler, Rebecca; Chapuisat, Michel; Brelsford, Alan

    2016-10-01

    Research on hybridization between species provides unparalleled insights into the pre- and postzygotic isolating mechanisms that drive speciation. In social organisms, colony-level incompatibilities may provide additional reproductive barriers not present in solitary species, and hybrid zones offer an opportunity to identify these barriers. Here, we use genotyping-by-sequencing to sequence hundreds of markers in a hybrid zone between two socially polymorphic ant species, Formica selysi and Formica cinerea. We characterize the zone, determine the frequency of hybrid workers, infer whether hybrid queens or males are produced and investigate whether hybridization is influenced by colony social organization. We also compare cuticular hydrocarbon profiles and aggression levels between the two species. The hybrid zone exhibits a mosaic structure. The asymmetric distribution of hybrids skewed towards F. cinerea suggests a pattern of unidirectional nuclear gene flow from F. selysi into F. cinerea. The occurrence of backcrossed individuals indicates that hybrid queens and/or males are fertile, and the presence of the F. cinerea mitochondrial haplotype in 97% of hybrids shows that successful F1 hybrids will generally have F. cinerea mothers and F. selysi fathers. We found no evidence that social organization contributes to speciation, because hybrids occur in both single-queen and multiple-queen colonies. Strongly differentiated cuticular hydrocarbon profiles and heightened interspecific aggression further reveal that species recognition cues are both present and perceived. The discovery of fertile hybrids and asymmetrical gene flow is unusual in ants, and this hybrid zone will therefore provide an ideal system with which to investigate speciation in social insects.

  6. Hybrid plasma modeling.

    SciTech Connect

    Hopkins, Matthew Morgan; DeChant, Lawrence Justin.; Piekos, Edward Stanley; Pointon, Timothy David

    2009-02-01

    This report summarizes the work completed during FY2007 and FY2008 for the LDRD project ''Hybrid Plasma Modeling''. The goal of this project was to develop hybrid methods to model plasmas across the non-continuum-to-continuum collisionality spectrum. The primary methodology to span these regimes was to couple a kinetic method (e.g., Particle-In-Cell) in the non-continuum regions to a continuum PDE-based method (e.g., finite differences) in continuum regions. The interface between the two would be adjusted dynamically ased on statistical sampling of the kinetic results. Although originally a three-year project, it became clear during the second year (FY2008) that there were not sufficient resources to complete the project and it was terminated mid-year.

  7. Hybrid superconducting magnetic suspensions

    SciTech Connect

    Tixador, P.; Hiebel, P.; Brunet, Y.

    1996-07-01

    Superconductors, especially high T{sub c} ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO.

  8. Pulsed hybrid field emitter

    SciTech Connect

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  9. Pulsed hybrid field emitter

    DOEpatents

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  10. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    London, A.

    1981-01-01

    Design approaches and materials are described from which are fabricated pyrostatic graphite/epoxy (Gr/Ep) laminates that show improved retention of graphite particulates when subjected to burning. Sixteen hybridized plus two standard Gr/Ep laminates were designed, fabricated, and tested in an effort to eliminate the release of carbon (graphite) fiber particles from burned/burning, mechanically disturbed samples. The term pyrostatic is defined as meaning mechanically intact in the presence of fire. Graphite particulate retentive laminates were constructed whose constituent materials, cost of fabrication, and physical and mechanical properties were not significantly different from existing Gr/Ep composites. All but one laminate (a Celion graphite/bis-maleimide polyimide) were based on an off-the-shelf Gr/Ep, the AS-1/3501-5A system. Of the 16 candidates studied, four thin (10-ply) and four thick (50-ply) hybridized composites are recommended.

  11. Phoxonic Hybrid Superlattice.

    PubMed

    Alonso-Redondo, Elena; Huesmann, Hannah; El Boudouti, El-Houssaine; Tremel, Wolfgang; Djafari-Rouhani, Bahram; Butt, Hans-Juergen; Fytas, George

    2015-06-17

    We studied experimentally and theoretically the direction-dependent elastic and electromagnetic wave propagation in a supported film of hybrid PMMA (poly[methyl-methacrylate])-TiO2 superlattice (SL). In the direction normal to the layers, this one-dimensional periodic structure opens propagation band gaps for both hypersonic (GHz) phonons and near-UV photons. The high mismatch of elastic and optical impedance results in a large dual phoxonic band gap. The presence of defects inherent to the spin-coating fabrication technique is sensitively manifested in the band gap region. Utilizing Brillouin light scattering, phonon propagation along the layers was observed to be distinctly different from propagation normal to them and can, under certain conditions (SL thickness and substrate elasticity), reveal the nanomechanical properties of the constituent layers. Besides the first realization of unidirectional phoxonic behavior, hybrid (soft-hard) periodic materials are a promising simple platform for opto-acoustic interactions and applications such as filters and Bragg mirrors.

  12. Optimization-based power management of hybrid power systems with applications in advanced hybrid electric vehicles and wind farms with battery storage

    NASA Astrophysics Data System (ADS)

    Borhan, Hoseinali

    result in the need for repeated control system redesign. To address these shortcomings, we formulate the power management problem as a nonlinear and constrained optimal control problem. Solution of this optimal control problem in real-time on chronometric- and memory-constrained automotive microcontrollers is quite challenging; this computational complexity is due to the highly nonlinear dynamics of the powertrain subsystems, mixed-integer switching modes of their operation, and time-varying and nonlinear hard constraints that system variables should satisfy. The main contribution of the first part of the dissertation is that it establishes methods for systematic and step-by step improvements in fuel economy while maintaining the algorithmic computational requirements in a real-time implementable framework. More specifically a linear time-varying model predictive control approach is employed first which uses sequential quadratic programming to find sub-optimal solutions to the power management problem. Next the objective function is further refined and broken into a short and a long horizon segments; the latter approximated as a function of the state using the connection between the Pontryagin minimum principle and Hamilton-Jacobi-Bellman equations. The power management problem is then solved using a nonlinear MPC framework with a dynamic programming solver and the fuel economy is further improved. Typical simplifying academic assumptions are minimal throughout this work, thanks to close collaboration with research scientists at Ford research labs and their stringent requirement that the proposed solutions be tested on high-fidelity production models. Simulation results on a high-fidelity model of a hybrid electric vehicle over multiple standard driving cycles reveal the potential for substantial fuel economy gains. To address the control calibration challenges, we also present a novel and fast calibration technique utilizing parallel computing techniques. ^ The second

  13. Fibonacci-Pell Hybridities

    ERIC Educational Resources Information Center

    Koshy, Thomas; Gao, Zhenguang

    2012-01-01

    We develop a recurrence satisfied by the Fibonacci and Pell families. We then use it to find explicit formulae and generating functions for the hybrids "F[subscript n]P[subscript n]", "L[subscript n]P[subscript n]", "F[subscript n]Q[subscript n]" and "L[subscript n]Q[subscript n]", where "F[subscript n]", "L[subscript n]", "P[subscript n]" and…

  14. Hybrid electroluminescent devices

    DOEpatents

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  15. Rationalizing Hybrid Earthquake Probabilities

    NASA Astrophysics Data System (ADS)

    Gomberg, J.; Reasenberg, P.; Beeler, N.; Cocco, M.; Belardinelli, M.

    2003-12-01

    An approach to including stress transfer and frictional effects in estimates of the probability of failure of a single fault affected by a nearby earthquake has been suggested in Stein et al. (1997). This `hybrid' approach combines conditional probabilities, which depend on the time elapsed since the last earthquake on the affected fault, with Poissonian probabilities that account for friction and depend only on the time since the perturbing earthquake. The latter are based on the seismicity rate change model developed by Dieterich (1994) to explain the temporal behavior of aftershock sequences in terms of rate-state frictional processes. The model assumes an infinite population of nucleation sites that are near failure at the time of the perturbing earthquake. In the hybrid approach, assuming the Dieterich model can lead to significant transient increases in failure probability. We explore some of the implications of applying the Dieterich model to a single fault and its impact on the hybrid probabilities. We present two interpretations that we believe can rationalize the use of the hybrid approach. In the first, a statistical distribution representing uncertainties in elapsed and/or mean recurrence time on the fault serves as a proxy for Dieterich's population of nucleation sites. In the second, we imagine a population of nucleation patches distributed over the fault with a distribution of maturities. In both cases we find that the probability depends on the time since the last earthquake. In particular, the size of the transient probability increase may only be significant for faults already close to failure. Neglecting the maturity of a fault may lead to overestimated rate and probability increases.

  16. Hybrid Warfare and Challenges

    DTIC Science & Technology

    2009-01-01

    against financial targets. Hybrid challenges are not limited to non - state actors. States can shift their conventional units to irregular formations and... non -state actors, using both simple and sophisticated technolo- gies in innovative ways.”23 Tomorrow’s conflicts will not be easily categorized into...between “regular” and “irregu- lar” warfare are blurring. Even non -state groups are increasingly gaining access to the kinds of weapons that were once

  17. Hybrid knowledge systems

    NASA Technical Reports Server (NTRS)

    Subrahmanian, V. S.

    1994-01-01

    An architecture called hybrid knowledge system (HKS) is described that can be used to interoperate between a specification of the control laws describing a physical system, a collection of databases, knowledge bases and/or other data structures reflecting information about the world in which the physical system controlled resides, observations (e.g. sensor information) from the external world, and actions that must be taken in response to external observations.

  18. Hybrid undulator numerical optimization

    SciTech Connect

    Hairetdinov, A.H.; Zukov, A.A.

    1995-12-31

    3D properties of the hybrid undulator scheme arc studied numerically using PANDIRA code. It is shown that there exist two well defined sets of undulator parameters which provide either maximum on-axis field amplitude or minimal higher harmonics amplitude of the basic undulator field. Thus the alternative between higher field amplitude or pure sinusoidal field exists. The behavior of the undulator field amplitude and harmonics structure for a large set of (undulator gap)/(undulator wavelength) values is demonstrated.

  19. Hybrid Propulsion Technology Program

    NASA Technical Reports Server (NTRS)

    Jensen, G. E.; Holzman, A. L.

    1990-01-01

    Future launch systems of the United States will require improvements in booster safety, reliability, and cost. In order to increase payload capabilities, performance improvements are also desirable. The hybrid rocket motor (HRM) offers the potential for improvements in all of these areas. The designs are presented for two sizes of hybrid boosters, a large 4.57 m (180 in.) diameter booster duplicating the Advanced Solid Rocket Motor (ASRM) vacuum thrust-time profile and smaller 2.44 m (96 in.), one-quater thrust level booster. The large booster would be used in tandem, while eight small boosters would be used to achieve the same total thrust. These preliminary designs were generated as part of the NASA Hybrid Propulsion Technology Program. This program is the first phase of an eventual three-phaes program culminating in the demonstration of a large subscale engine. The initial trade and sizing studies resulted in preferred motor diameters, operating pressures, nozzle geometry, and fuel grain systems for both the large and small boosters. The data were then used for specific performance predictions in terms of payload and the definition and selection of the requirements for the major components: the oxidizer feed system, nozzle, and thrust vector system. All of the parametric studies were performed using realistic fuel regression models based upon specific experimental data.

  20. Asymmetric Hybrid Nanoparticles

    SciTech Connect

    Chumanov, George

    2015-11-05

    Hybrid Nanoparticles (AHNs) are rationally-designed multifunctional nanostructures and novel building blocks for the next generation of advanced materials and devices. Nanoscale materials attract considerable interest because of their unusual properties and potential for practical applications. Most of the activity in this field is focused on the synthesis of homogeneous nanoparticles from metals, metal oxides, semiconductors, and polymers. It is well recognized that properties of nanoparticles can be further enhanced if they are made as hybrid structures. This program is concerned with the synthesis, characterization, and application of such hybrid structures termed AHNs. AHNs are composed of a homogeneous core and several caps of different materials deposited on its surface (Fig. 1). Combined properties of the core and the caps as well as new properties that arise from core-cap and cap-cap interactions render AHNs multifunctional. In addition, specific chemical reactivity of the caps enables directional self-assembly of AHNs into complex architectures that are not possible with only spherical nanoparticles.

  1. Printed hybrid systems

    NASA Astrophysics Data System (ADS)

    Karioja, Pentti; Mäkinen, Jukka-Tapani; Keränen, Kimmo; Aikio, Janne; Alajoki, Teemu; Jaakola, Tuomo; Koponen, Matti; Keränen, Antti; Heikkinen, Mikko; Tuomikoski, Markus; Suhonen, Riikka; Hakalahti, Leena; Kopola, Pälvi; Hast, Jukka; Liedert, Ralf; Hiltunen, Jussi; Masuda, Noriyuki; Kemppainen, Antti; Rönkä, Kari; Korhonen, Raimo

    2012-04-01

    This paper presents research activities carried out at VTT Technical Research Centre of Finland in the field of hybrid integration of optics, electronics and mechanics. Main focus area in our research is the manufacturing of electronic modules and product structures with printed electronics, film-over-molding and polymer sheet lamination technologies and the goal is in the next generation of smart systems utilizing monolithic polymer packages. The combination of manufacturing technologies such as roll-to-roll -printing, injection molding and traditional component assembly is called Printed Hybrid Systems (PHS). Several demonstrator structures have been made, which show the potential of polymer packaging technology. One demonstrator example is a laminated structure with embedded LED chips. Element thickness is only 0.3mm and the flexible stack of foils can be bent in two directions after assembly process and was shaped curved using heat and pressure. The combination of printed flexible circuit boards and injection molding has also been demonstrated with several functional modules. The demonstrators illustrate the potential of origami electronics, which can be cut and folded to 3D shapes. It shows that several manufacturing process steps can be eliminated by Printed Hybrid Systems technology. The main benefits of this combination are small size, ruggedness and conformality. The devices are ideally suited for medical applications as the sensitive electronic components are well protected inside the plastic and the structures can be cleaned easily due to the fact that they have no joints or seams that can accumulate dirt or bacteria.

  2. Hybrid2 - The hybrid power system simulation model

    SciTech Connect

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van; Manwell, J.F.

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  3. Hybrid2: The hybrid power system simulation model

    SciTech Connect

    Baring-Gould, E I; Green, H J; van Dijk, V A.P.; Manwell, J F

    1996-07-01

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids (including wind turbines, PV, diesel generators, AC/DC energy storage) as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, NREL and U. Mass. researchers developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed.

  4. Solar thermal electric hybridization issues

    SciTech Connect

    Williams, T A; Bohn, M S; Price, H W

    1994-10-01

    Solar thermal electric systems have an advantage over many other renewable energy technologies because the former use heat as an intermediate energy carrier. This is an advantage as it allows for a relatively simple method of hybridization by using heat from fossil-fuel. Hybridization of solar thermal electric systems is a topic that has recently generated significant interest and controversy and has led to many diverse opinions. This paper discusses many of the issues associated with hybridization of solar thermal electric systems such as what role hybridization should play; how it should be implemented; what are the efficiency, environmental, and cost implications; what solar fraction is appropriate; how hybrid systems compete with solar-only systems; and how hybridization can impact commercialization efforts for solar thermal electric systems.

  5. Josephson-CMOS Hybrid Memories

    DTIC Science & Technology

    2007-04-25

    Liu, X . Meng, S. R. Whiteley, and T. Van Duzer, “Characterization of 4 K CMOS devices and circuits for hybrid Josephson- CMOS systems,” IEEE Trans. on...Josephson- CMOS hybrid memories Qingguo Liu Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB...to 00-00-2007 4. TITLE AND SUBTITLE Josephson- CMOS hybrid memories 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  6. Hybrid solar lighting systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2007-06-12

    A hybrid solar lighting system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates each component.

  7. Hybrid solar lighting distribution systems and components

    DOEpatents

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  8. Variations of hybrid damping

    NASA Astrophysics Data System (ADS)

    Lam, Margaretha J.; Inman, Daniel J.; Saunders, William R.

    1998-06-01

    Damping is important to structures and can be achieved through the addition of viscoelastic materials (VEM). The damping of the VEM is enhanced if a constraining layer is attached to the VEM. If this constraining layer is active, the treatment is called active constrained layer damping (ACLD). In the last few years, ACLD has proven to be superior in vibration control to active or passive damping. The active element makes ACLD more effective than passive constrained layer damping. It also provides a fail-safe in case of breakdown of the active element that is not present for purely active control. It is shown that the control effort needed to damp vibration using ACLD can be significantly higher than purely active control. In order to combine the inherent damping of passive control with the effectiveness of the active element, this paper will explore different variations of active, passive and hybrid damping. Some of the variations include: passive constrained layer damping (PCLD) separate from active element but on the same side of beam, PCLD separate from active on the opposite side of the beam, and active element underneath PCLD. The discretized system equations will be obtained using assumed modes method and Lagrange's equation. The damping will be modeled using the Golla-Hughes-McTavish (GHM) method. The optimal placement and size of the active, passive, ACLD and hybrid treatments will be found using different schemes. The issue of overshoot and settling time of the output and control force using LQR will be addressed, as well as the control effort, passive and active vibration suppression, and LQR cost function. It will be shown that the hybrid treatments are capable of greater vibration control for lower control effort for different optimization schemes. 31

  9. Large hybrid membrane mirrors

    NASA Astrophysics Data System (ADS)

    Sohn, Erika; Ruiz Schneider, Elfego; Ferreira, Alejandra

    2003-01-01

    The trend to minimize the thickness in optical mirrors has led to several practical limits in their fabrication and operation. The design of a flexible membrane mirror segment, which overcomes most of these limitations and can be conformed to giant segmented primary mirrors, is presented. The segment consists of a lightweight multi-layer hybrid structure, which will permit precise active control of the reflecting surface by means of a continuous elastic medium interface with embedded pneumatic actuators. Conceptual designs, finite element analysis model simulations and experimental results are included.

  10. Competitive hybridization models.

    PubMed

    Cherepinsky, Vera; Hashmi, Ghazala; Mishra, Bud

    2010-11-01

    Microarray technology, in its simplest form, allows one to gather abundance data for target DNA molecules, associated with genomes or gene-expressions, and relies on hybridizing the target to many short probe oligonucleotides arrayed on a surface. While for such multiplexed reactions conditions are optimized to make the most of each individual probe-target interaction, subsequent analysis of these experiments is based on the implicit assumption that a given experiment yields the same result regardless of whether it was conducted in isolation or in parallel with many others. It has been discussed in the literature that this assumption is frequently false, and its validity depends on the types of probes and their interactions with each other. We present a detailed physical model of hybridization as a means of understanding probe interactions in a multiplexed reaction. Ultimately, the model can be derived from a system of ordinary differential equations (ODE's) describing kinetic mass action with conservation-of-mass equations completing the system. We examine pairwise probe interactions in detail and present a model of "competition" between the probes for the target--especially, when the target is effectively in short supply. These effects are shown to be predictable from the affinity constants for each of the four probe sequences involved, namely, the match and mismatch sequences for both probes. These affinity constants are calculated from the thermodynamic parameters such as the free energy of hybridization, which are in turn computed according to the nearest neighbor (NN) model for each probe and target sequence. Simulations based on the competitive hybridization model explain the observed variability in the signal of a given probe when measured in parallel with different groupings of other probes or individually. The results of the simulations can be used for experiment design and pooling strategies, based on which probes have been shown to have a strong effect

  11. Ionic electroactive hybrid transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.

    2005-05-01

    Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized

  12. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  13. Hybrid Techniques Investigation.

    DTIC Science & Technology

    1984-04-01

    ALGORITHM; HYBRID CONF GURAT ION CONTROL 5-16 .. p o,6 2. LOGICAL CONFIGURATION TABLE ELEMENT GENERATION When the composite OPCs are generated for each...ISM. . , , ,.; = = JYt m- -. -W Pr 09rage instruct ions Qpuaue Normal Lanes i15 Space A oControl [ - I I N A IDirectory -6 1 S ZICTMemo C DeoderSpace...files, however, are retained. 7-1 % % S- 5i .iS 𔃿 gw_.-, ’ e "+ +1, ., W" .m ,W" " ," m . . ,, .r- + " 5’- • " ~SECT ION 8 ’ GUARD FUNCTIONS IN A

  14. Hybrid receiver study

    NASA Technical Reports Server (NTRS)

    Stone, M. S.; Mcadam, P. L.; Saunders, O. W.

    1977-01-01

    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions.

  15. Competitive hybridization models

    NASA Astrophysics Data System (ADS)

    Cherepinsky, Vera; Hashmi, Ghazala; Mishra, Bud

    2010-11-01

    Microarray technology, in its simplest form, allows one to gather abundance data for target DNA molecules, associated with genomes or gene-expressions, and relies on hybridizing the target to many short probe oligonucleotides arrayed on a surface. While for such multiplexed reactions conditions are optimized to make the most of each individual probe-target interaction, subsequent analysis of these experiments is based on the implicit assumption that a given experiment yields the same result regardless of whether it was conducted in isolation or in parallel with many others. It has been discussed in the literature that this assumption is frequently false, and its validity depends on the types of probes and their interactions with each other. We present a detailed physical model of hybridization as a means of understanding probe interactions in a multiplexed reaction. Ultimately, the model can be derived from a system of ordinary differential equations (ODE’s) describing kinetic mass action with conservation-of-mass equations completing the system. We examine pairwise probe interactions in detail and present a model of “competition” between the probes for the target—especially, when the target is effectively in short supply. These effects are shown to be predictable from the affinity constants for each of the four probe sequences involved, namely, the match and mismatch sequences for both probes. These affinity constants are calculated from the thermodynamic parameters such as the free energy of hybridization, which are in turn computed according to the nearest neighbor (NN) model for each probe and target sequence. Simulations based on the competitive hybridization model explain the observed variability in the signal of a given probe when measured in parallel with different groupings of other probes or individually. The results of the simulations can be used for experiment design and pooling strategies, based on which probes have been shown to have a strong

  16. Robust hybrid mass damper

    NASA Astrophysics Data System (ADS)

    Collette, C.; Chesné, S.

    2016-08-01

    In this paper, the design of a hybrid mass damper (HMD) is proposed for the reduction of the resonant vibration amplitude of a multiple degree-of-freedom structure. HMD includes both passive and active elements. Combining these elements the system is fail-safe and its performances are comparable to usual purely active systems. The control law is a revisited direct velocity feedback. Two zeros are added to the controller to interact with the poles of the plant. The developed control law presents the particularity to be simple and hyperstable. The proposed HMD is compared to other classical control approaches for similar purpose in term of vibration attenuation, power consumption and stroke.

  17. Hybrid vehicle potential assessment. Volume 7: Hybrid vehicle review

    NASA Technical Reports Server (NTRS)

    Leschly, K. O.

    1979-01-01

    Review of hybrid vehicles built during the past ten years or planned to be built in the near future is presented. An attempt is made to classify and analyze these vehicles to get an overall picture of their key characteristics. The review includes onroad hybrid passenger cars, trucks, vans, and buses.

  18. The Hybrid Advantage: Graduate Student Perspectives of Hybrid Education Courses

    ERIC Educational Resources Information Center

    Hall, Sarah; Villareal, Donna

    2015-01-01

    Hybrid courses combine online and face-to-face learning environments. To organize and teach hybrid courses, instructors must understand the uses of multiple online learning tools and face-toface classroom activities to promote and monitor the progress of students. The purpose of this phenomenological study was to explore the perspectives of…

  19. Hybrid microdosing system

    NASA Astrophysics Data System (ADS)

    Nguyen, Nam-Trung; Richter, Stefan; Mehner, Jan; Schubert, Steffen; Doetzel, Wolfram; Gessner, Thomas

    1998-09-01

    Based on an article in print this paper presents a hybrid assembled bi-directional micro dosing system for a water flow range of -40 (mu) l/min to 80 (mu) l/min. The system consists of a silicon micropump/valve chip (9 mm X 9 mm) and a silicon flow sensor (6 mm X 12 mm). The valve/pump can be driven by either a piezoelectric disk or an electrostatic actuator. Both, piezoelectric and electrostatic actuation for the pump/valve, the technology of each component and the hybrid assembling of the whole system are described. Results of transient numerical simulation of the pump and the mass flow sensor are presented and compared with experimental results. Descriptions of two different operational modes of the micro dosing system are given. The new pulse-width modulated control method for the actuator makes controlling the system easier. It allows an open-loop control of the pump rates without changing the driving frequency. All reported micropumps were driven by a square-wave signal which causes a relatively high noise level. In contrast to this, sawtooth and sinusoidal signals generate a smooth and quiet operation because of the small drag force on the fluid ports. Results of different driving methods are presented and compared.

  20. Hybrid Turbine Electric Vehicle

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    Hybrid electric power trains may revolutionize today's ground passenger vehicles by significantly improving fuel economy and decreasing emissions. The NASA Lewis Research Center is working with industry, universities, and Government to develop and demonstrate a hybrid electric vehicle. Our partners include Bowling Green State University, the Cleveland Regional Transit Authority, Lincoln Electric Motor Division, the State of Ohio's Department of Development, and Teledyne Ryan Aeronautical. The vehicle will be a heavy class urban transit bus offering double the fuel economy of today's buses and emissions that are reduced to 1/10th of the Environmental Protection Agency's standards. At the heart of the vehicle's drive train is a natural-gas-fueled engine. Initially, a small automotive engine will be tested as a baseline. This will be followed by the introduction of an advanced gas turbine developed from an aircraft jet engine. The engine turns a high-speed generator, producing electricity. Power from both the generator and an onboard energy storage system is then provided to a variable-speed electric motor attached to the rear drive axle. An intelligent power-control system determines the most efficient operation of the engine and energy storage system.

  1. Hybrid flexure hinges

    NASA Astrophysics Data System (ADS)

    Lin, Rongzhou; Zhang, Xianmin; Long, Xuejun; Fatikow, Sergej

    2013-08-01

    This paper designs and analyzes the hybrid flexure hinge composed of half a hyperbolic flexure hinge and half a corner-filleted flexure hinge. As it is transversely asymmetric, it has different performance when the fixed and free ends switch. Considering the diversion of rotation center from midpoint, closed-form equations are formulated to characterize both the active rotation and all other in-plane parasitic motion by the Castigliano's second theorem. The maximum stress is evaluated as well. These equations are verified by the finite element analysis and experimentation. The compliance precision ratios are proposed to indicate flexure hinges' ability of preserving the rotation center when they have the same displacement at the free end. The hybrid flexure hinges are compared with five kinds of common notch flexure hinges (circular, corner-filleted, elliptical, hyperbolic, and parabolic flexure hinges) quantitatively based on compliance, precision, compliance precision ratios, and the maximum stress. Conclusions are drawn regarding the performance of these six kinds of flexure hinges.

  2. New smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-10-15

    We consider the extension of the supersymmetric Pati-Salam model which solves the b-quark mass problem of supersymmetric grand unified models with exact Yukawa unification and universal boundary conditions and leads to the so-called new shifted hybrid inflationary scenario. We show that this model can also lead to a new version of smooth hybrid inflation based only on renormalizable interactions provided that a particular parameter of its superpotential is somewhat small. The potential possesses valleys of minima with classical inclination, which can be used as inflationary paths. The model is consistent with the fitting of the three-year Wilkinson microwave anisotropy probe data by the standard power-law cosmological model with cold dark matter and a cosmological constant. In particular, the spectral index turns out to be adequately small so that it is compatible with the data. Moreover, the Pati-Salam gauge group is broken to the standard model gauge group during inflation and, thus, no monopoles are formed at the end of inflation. Supergravity corrections based on a nonminimal Kaehler potential with a convenient choice of a sign keep the spectral index comfortably within the allowed range without generating maxima and minima of the potential on the inflationary path. So, unnatural restrictions on the initial conditions for inflation can be avoided.

  3. Arabidopsis hybrid speciation processes

    PubMed Central

    Schmickl, Roswitha; Koch, Marcus A.

    2011-01-01

    The genus Arabidopsis provides a unique opportunity to study fundamental biological questions in plant sciences using the diploid model species Arabidopsis thaliana and Arabidopsis lyrata. However, only a few studies have focused on introgression and hybrid speciation in Arabidopsis, although polyploidy is a common phenomenon within this genus. More recently, there is growing evidence of significant gene flow between the various Arabidopsis species. So far, we know Arabidopsis suecica and Arabidopsis kamchatica as fully stabilized allopolyploid species. Both species evolved during Pleistocene glaciation and deglaciation cycles in Fennoscandinavia and the amphi-Beringian region, respectively. These hybrid studies were conducted either on a phylogeographic scale or reconstructed experimentally in the laboratory. In our study we focus at a regional and population level. Our research area is located in the foothills of the eastern Austrian Alps, where two Arabidopsis species, Arabidopsis arenosa and A. lyrata ssp. petraea, are sympatrically distributed. Our hypothesis of genetic introgression, migration, and adaptation to the changing environment during the Pleistocene has been confirmed: We observed significant, mainly unidirectional gene flow between the two species, which has given rise to the tetraploid A. lyrata. This cytotype was able to escape from the narrow ecological niche occupied by diploid A. lyrata ssp. petraea on limestone outcrops by migrating northward into siliceous areas, leaving behind a trail of genetic differentiation. PMID:21825128

  4. Suppression subtractive hybridization.

    PubMed

    Ghorbel, Mohamed T; Murphy, David

    2011-01-01

    Comparing two RNA populations that differ from the effects of a single independent variable, such as a drug treatment or a specific genetic defect, can establish differences in the abundance of specific transcripts that vary in a population dependent manner. There are different methods for identifying differentially expressed genes. These methods include microarray, Serial Analysis of Gene Expression (SAGE), and quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Herein, the protocol describes an easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under examination. It is specifically relevant when low levels of RNA starting material are available. This protocol describes the use of Switching Mechanism At RNA Termini Polymerase Chain Reaction (SMART-PCR) to amplify cDNA from small amounts of RNA. The amplified cDNA populations under comparison are then subjected to Suppression Subtractive Hybridization (SSH-PCR). SSH-PCR is a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The resulting products are cDNA populations enriched for significantly overrepresented transcripts in either of the two input RNAs. These cDNA populations can then be cloned to generate subtracted cDNA library. Microarrays made with clones from the subtracted forward and reverse cDNA libraries are then screened for differentially expressed genes using targets generated from tester and driver total RNAs.

  5. Viterbi/algebraic hybrid decoder

    NASA Technical Reports Server (NTRS)

    Boyd, R. W.; Ingels, F. M.; Mo, C.

    1980-01-01

    Decoder computer program is hybrid between optimal Viterbi and optimal algebraic decoders. Tests have shown that hybrid decoder outperforms any strictly Viterbi or strictly algebraic decoder and effectively handles compound channels. Algorithm developed uses syndrome-detecting logic to direct two decoders to assume decoding load alternately, depending on real-time channel characteristics.

  6. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F [London, TN; Dress, William B [Camas, WA

    2010-02-09

    Systems and methods are described for hybrid spread spectrum radio systems. A method, includes receiving a hybrid spread spectrum signal including: fast frequency hopping demodulating and direct sequence demodulating a direct sequence spread spectrum signal, wherein multiple frequency hops occur within a single data-bit time and each bit is represented by chip transmissions at multiple frequencies.

  7. Expanding Discourse Repertoires with Hybridity

    ERIC Educational Resources Information Center

    Kelly, Gregory J.

    2012-01-01

    In "Hybrid discourse practice and science learning" Kamberelis and Wehunt present a theoretically rich argument about the potential of hybrid discourses for science learning. These discourses draw from different forms of "talk, social practice, and material practices" to create interactions that are "intertextually complex" and "interactionally…

  8. [Behaviors of maricultured hybrid sturgeon].

    PubMed

    Wu, Changwen; Jiang, Chengguo; Chen, Guoye

    2006-02-01

    The study on the behaviors of hybrid sturgeon under mariculture conditions showed that hybrid sturgeon had a stronger endurance to the exposure in air, with 100% and 74.1% of livability after 1 h and 3 h exposure, respectively. The feeding habit of hybrid sturgeon could be domesticated, i.e., all kinds of vegetal proteinic food could be used as feedstuff. Hybrid sturgeon also had a strong hunger resistance. An obvious ingestion rhythm was observed, with two peaks in the morning and evening when breeding in cement pool, and during slack tide and tidal stand when breeding in deep water cage. At the two peaks, the ingestion exceeded 50% of that in the whole day. The hybrid sturgeon in cement pool had the habit of hiding during the day and coming out at night, while that in deep water cage stayed at the base in riptide and swam in slack tide. Hybrid sturgeon had a weaker resistance to riptide and wave than American red snapper, but a stronger resistance than yellow croaker. Hybrid sturgeon could quickly adapt the surroundings, and be a good species to mariculture in deep water cage. The appropriate size of hybrid sturgeon bred in deep water cage should be about 400 g.

  9. Hybrid breeding in autogamous cereals.

    PubMed

    Longin, Carl Friedrich Horst; Mühleisen, Jonathan; Maurer, Hans Peter; Zhang, Hongliang; Gowda, Manje; Reif, Jochen Christoph

    2012-10-01

    Hybrid breeding in autogamous cereals has a long history of attempts with moderate success. There is a vast amount of literature investigating the potential problems and solutions, but until now, market share of hybrids is still a niche compared to line varieties. Our aim was to summarize the status quo of hybrid breeding efforts for the autogamous cereals wheat, rice, barley, and triticale. Furthermore, the research needs for a successful hybrid breeding in autogamous cereals are intensively discussed. To our opinion, the basic requirements for a successful hybrid breeding in autogamous cereals are fulfilled. Nevertheless, optimization of the existing hybridization systems is urgently required and should be coupled with the development of clear male and female pool concepts. We present a quantitative genetic framework as a first step to compare selection gain of hybrid versus line breeding. The lack of precise empirical estimates of relevant quantitative genetic parameters, however, is currently the major bottleneck for a robust evaluation of the potential of hybrid breeding in autogamous cereals.

  10. Hybrid Power Management

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis

    2005-01-01

    An engineering discipline denoted as hybrid power management (HPM) has emerged from continuing efforts to increase energy efficiency and reliability of hybrid power systems. HPM is oriented toward integration of diverse electric energy-generating, energy-storing, and energy-consuming devices in optimal configurations for both terrestrial and outer-space applications. The basic concepts of HPM are potentially applicable at power levels ranging from nanowatts to megawatts. Potential applications include terrestrial power-generation, terrestrial transportation, biotechnology, and outer-space power systems. Instances of this discipline at prior stages of development were reported (though not explicitly labeled as HPM) in three prior NASA Tech Briefs articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle"(LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW-17177), Vol. 27, No. 8 (August 2003), page 38; and "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 24, No. 10 (October 2003), page 37. As the titles of the cited articles indicate, the use of ultracapacitors as energy-storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller. Power-control circuits for ultracapacitors can be simpler than those for batteries, for two reasons: (1) Because of the absence of chemical reactions, charge and discharge currents can be greater than those in batteries, limited only by the electrical

  11. Hybrid powertrain controller

    DOEpatents

    Jankovic, Miroslava; Powell, Barry Kay

    2000-12-26

    A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.

  12. Hybrid Systems Diagnosis

    NASA Technical Reports Server (NTRS)

    McIlraith, Sheila; Biswas, Gautam; Clancy, Dan; Gupta, Vineet

    2005-01-01

    This paper reports on an on-going Project to investigate techniques to diagnose complex dynamical systems that are modeled as hybrid systems. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. We cast the diagnosis problem as a model selection problem. To reduce the space of potential models under consideration, we exploit techniques from qualitative reasoning to conjecture an initial set of qualitative candidate diagnoses, which induce a smaller set of models. We refine these diagnoses using parameter estimation and model fitting techniques. As a motivating case study, we have examined the problem of diagnosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  13. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Stanley Miller; Rich Gebert; William Swanson

    1999-11-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the US Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in a manner that has not been done before. The AHPC concept consists of a combination of fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two collection methods, both in the particulate collection step and in the transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emission with conventional ESPs, and it solves the problem of reentrainment and collection of dust in conventional baghouses. The AHPC is currently being tested at the 2.7-MW scale at the Big Stone power station.

  14. Supersymmetric Hybrid Inflation Redux

    NASA Astrophysics Data System (ADS)

    Rehman, Mansoor Ur; Shafi, Qaisar; Wickman, Joshua R.

    2010-02-01

    We discuss the important role played during inflation by one of the soft supersymmetry breaking terms in the inflationary potential of supersymmetric hybrid inflation models. With minimal Kahler potential, the inclusion of this term allows the prediction for the scalar spectral index to agree with the value ns = 0.963^+0.014 -0.015 found by WMAP5. In the absence of this soft term, and by taking into account only radiative and supergravity corrections, it is well known that ns >= 0.985. This same soft term has previously been shown to play a key role in resolving the MSSM μ problem. The tensor to scalar ratio r is quite small in these models, taking on values r <= 10-5 in the WMAP5 2σ range of ns. )

  15. Hybrid Natural Inflation

    NASA Astrophysics Data System (ADS)

    Ross, Graham G.; Germán, Gabriel; Vázquez, J. Alberto

    2016-05-01

    We construct two simple effective field theory versions of Hybrid Natural Inflation (HNI) that illustrate the range of its phenomenological implications. The resulting inflationary sector potential, V = Δ4(1 + acos( ϕ/f)), arises naturally, with the inflaton field a pseudo-Nambu-Goldstone boson. The end of inflation is triggered by a waterfall field and the conditions for this to happen are determined. Also of interest is the fact that the slow-roll parameter ɛ (and hence the tensor r) is a non-monotonic function of the field with a maximum where observables take universal values that determines the maximum possible tensor to scalar ratio r. In one of the models the inflationary scale can be as low as the electroweak scale. We explore in detail the associated HNI phenomenology, taking account of the constraints from Black Hole production, and perform a detailed fit to the Planck 2015 temperature and polarisation data.

  16. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  17. Photochromic mesoporous hybrid coatings

    NASA Astrophysics Data System (ADS)

    Raboin, L.; Matheron, M.; Gacoin, T.; Boilot, J.-P.

    2008-09-01

    Spirooxazine (SO) photochromic molecules were trapped in sol-gel matrices. In order to increase the colourability and improve mechanical properties of sol-gel photochromic films, we present an original strategy in which SO photochromic molecules were dispersed in mesoporous organized films using the impregnation technique. Well-ordered organosilicate mesoporous coatings with the 3D-hexagonal symmetry were prepared by the sol-gel technique. These robust mesoporous films, which contain high amounts of hydrophobic methyl groups at the pore surface, offer optimized environments for photochromic dyes dispersed by impregnation technique. After impregnation by a spirooxazine solution, the photochromic response is only slightly slower when compared with mesostructured or soft sol-gel matrices, showing that mesoporous organized hybrid matrix are good host for photochromic dyes. Moreover, the molecular loading in films is easily adjustable in a large range using multi-impregnation procedure and increasing the film thickness leading to coatings for optical switching devices.

  18. Recognition Using Hybrid Classifiers.

    PubMed

    Osadchy, Margarita; Keren, Daniel; Raviv, Dolev

    2016-04-01

    A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a "hybrid" classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train and apply.

  19. Hybrid powertrain system

    SciTech Connect

    Grillo, Ricardo C.; O'Neil, Walter K.; Preston, David M.

    2005-09-20

    A hybrid powertrain system is provided that includes a first prime mover having a rotational output, a second prime mover having a rotational output, and a transmission having a main shaft supporting at least two main shaft gears thereon. The transmission includes a first independent countershaft drivingly connected to the first prime mover and including at least one ratio gear supported thereon that meshes with a respective main shaft gear. A second independent countershaft is drivingly connected to the second prime mover and includes at least one ratio gear supported thereon that meshes with a respective main shaft gear. The ratio gears on the first and second countershafts cooperate with the main shaft gears to provide at least one gear ratio between the first and second countershafts and the main shaft. A shift control mechanism selectively engages and disengages the first and second countershafts for rotation with the main shaft.

  20. Hybrid Electric Transit Bus

    NASA Technical Reports Server (NTRS)

    Viterna, Larry A.

    1997-01-01

    A government, industry, and university cooperative is developing an advanced hybrid electric city transit bus. Goals of this effort include doubling the fuel economy compared to current buses and reducing emissions to one-tenth of current EPA standards. Unique aspects of the vehicle's power system include the use of ultra-capacitors as an energy storage system, and a planned natural gas fueled turbogenerator developed from a small jet engine. Power from both the generator and energy storage system is provided to a variable speed electric motor attached to the rear axle. At over 15000 kg gross weight, this is the largest vehicle of its kind ever built using ultra-capacitor energy storage. This paper describes the overall power system architecture, the evolution of the control strategy, and its performance over industry standard drive cycles.

  1. Hybridized polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Henshaw, J.

    1983-01-01

    Methods of improving the fire resistance of graphite epoxy composite laminates were investigated with the objective of reducing the volume of loose graphite fibers disseminated into the airstream as the result of a high intensity aircraft fuel fire. Improvements were sought by modifying the standard graphite epoxy systems without significantly negating their structural effectiveness. The modifications consisted primarily of an addition of a third constituent material such as glass fibers, glass flakes, carbon black in a glassy resin. These additions were designed to encourage coalescense of the graphite fibers and thereby reduce their aerodynamic float characteristics. A total of 38 fire tests were conducted on thin (1.0 mm) and thick (6.0 mm) hybrid panels.

  2. Hybrid vehicle control

    DOEpatents

    Shallvari, Iva; Velnati, Sashidhar; DeGroot, Kenneth P.

    2015-07-28

    A method and apparatus for heating a catalytic converter's catalyst to an efficient operating temperature in a hybrid electric vehicle when the vehicle is in a charge limited mode such as e.g., the charge depleting mode or when the vehicle's high voltage battery is otherwise charge limited. The method and apparatus determine whether a high voltage battery of the vehicle is incapable of accepting a first amount of charge associated with a first procedure to warm-up the catalyst. If it is determined that the high voltage battery is incapable of accepting the first amount of charge, a second procedure with an acceptable amount of charge is performed to warm-up the catalyst.

  3. Hybrid Filter Membrane

    NASA Technical Reports Server (NTRS)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  4. Hybridization increases invasive knotweed success

    PubMed Central

    Parepa, Madalin; Fischer, Markus; Krebs, Christine; Bossdorf, Oliver

    2014-01-01

    Hybridization is one of the fundamental mechanisms by which rapid evolution can occur in exotic species. If hybrids show increased vigour, this could significantly contribute to invasion success. Here, we compared the success of the two invasive knotweeds, Fallopia japonica and F. sachalinensis, and their hybrid, F. × bohemica, in competing against experimental communities of native plants. Using plant material from multiple clones of each taxon collected across a latitudinal gradient in Central Europe, we found that knotweed hybrids performed significantly better in competition with a native community and that they more strongly reduced the growth of the native plants. One of the parental species, F. sachalinensis, regenerated significantly less well from rhizomes, and this difference disappeared if activated carbon was added to the substrate, which suggests allelopathic inhibition of F. sachalinensis regeneration by native plants. We found substantial within-taxon variation in competitive success in all knotweed taxa, but variation was generally greatest in the hybrid. Interestingly, there was also significant variation within the genetically uniform F. japonica, possibly reflecting epigenetic differences. Our study shows that invasive knotweed hybrids are indeed more competitive than their parents and that hybridization increased the invasiveness of the exotic knotweed complex. PMID:24665343

  5. Hybrid codes: Methods and applications

    SciTech Connect

    Winske, D. ); Omidi, N. )

    1991-01-01

    In this chapter we discuss hybrid'' algorithms used in the study of low frequency electromagnetic phenomena, where one or more ion species are treated kinetically via standard PIC methods used in particle codes and the electrons are treated as a single charge neutralizing massless fluid. Other types of hybrid models are possible, as discussed in Winske and Quest, but hybrid codes with particle ions and massless fluid electrons have become the most common for simulating space plasma physics phenomena in the last decade, as we discuss in this paper.

  6. Hybrid Bearing Prognostic Test Rig

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Certo, Joseph M.; Handschuh, Robert F.; Dimofte, Florin

    2005-01-01

    The NASA Glenn Research Center has developed a new Hybrid Bearing Prognostic Test Rig to evaluate the performance of sensors and algorithms in predicting failures of rolling element bearings for aeronautics and space applications. The failure progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings can be tested from fault initiation to total failure. The effects of different lubricants on bearing life can also be evaluated. Test conditions monitored and recorded during the test include load, oil temperature, vibration, and oil debris. New diagnostic research instrumentation will also be evaluated for hybrid bearing damage detection. This paper summarizes the capabilities of this new test rig.

  7. Triplex in-situ hybridization

    SciTech Connect

    Fresco, Jacques R.; Johnson, Marion D.

    2002-01-01

    Disclosed are methods for detecting in situ the presence of a target sequence in a substantially double-stranded nucleic acid segment, which comprises: a) contacting in situ under conditions suitable for hybridization a substantially double-stranded nucleic acid segment with a detectable third strand, said third strand being capable of hybridizing to at least a portion of the target sequence to form a triple-stranded structure, if said target sequence is present; and b) detecting whether hybridization between the third strand and the target sequence has occured.

  8. Hybrid Vehicle Program. Final report

    SciTech Connect

    1984-06-01

    This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

  9. Hybrid Inflatable Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Raboin, Jasen; Valle, Gerard D.; Edeen, Gregg; DeLaFuente, Horacio M.; Schneider, William C.; Spexarth, Gary R.; Johnson, Christopher J.; Pandya, Shalini

    2004-01-01

    Figure 1 shows a prototype of a large pressure vessel under development for eventual use as a habitable module for long spaceflight (e.g., for transporting humans to Mars). The vessel is a hybrid that comprises an inflatable shell attached to a rigid central structural core. The inflatable shell is, itself, a hybrid that comprises (1) a pressure bladder restrained against expansion by (2) a web of straps made from high-strength polymeric fabrics. On Earth, pressure vessels like this could be used, for example, as portable habitats that could be set up quickly in remote locations, portable hyperbaric chambers for treatment of decompression sickness, or flotation devices for offshore platforms. In addition, some aspects of the design of the fabric straps could be adapted to such other items as lifting straps, parachute straps, and automotive safety belts. Figure 2 depicts selected aspects of the design of a vessel of this type with a toroidal configuration. The bladder serves as an impermeable layer to keep air within the pressure vessel and, for this purpose, is sealed to the central structural core. The web includes longitudinal and circumferential straps. To help maintain the proper shape upon inflation after storage, longitudinal and circumferential straps are indexed together at several of their intersections. Because the web is not required to provide a pressure seal and the bladder is not required to sustain structural loads, the bladder and the web can be optimized for their respective functions. Thus, the bladder can be sealed directly to the rigid core without having to include the web in the seal substructure, and the web can be designed for strength. The ends of the longitudinal straps are attached to the ends of the rigid structural core by means of clevises. Each clevis pin is surrounded by a roller, around which a longitudinal strap is wrapped to form a lap seam with itself. The roller is of a large diameter chosen to reduce bending of the fibers in

  10. How common is homoploid hybrid speciation?

    PubMed

    Schumer, Molly; Rosenthal, Gil G; Andolfatto, Peter

    2014-06-01

    Hybridization has long been considered a process that prevents divergence between species. In contrast to this historical view, an increasing number of empirical studies claim to show evidence for hybrid speciation without a ploidy change. However, the importance of hybridization as a route to speciation is poorly understood, and many claims have been made with insufficient evidence that hybridization played a role in the speciation process. We propose criteria to determine the strength of evidence for homoploid hybrid speciation. Based on an evaluation of the literature using this framework, we conclude that although hybridization appears to be common, evidence for an important role of hybridization in homoploid speciation is more circumscribed.

  11. Hybrid Fuel Cell Technology Overview

    SciTech Connect

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  12. Damage of hybrid composite laminates

    NASA Astrophysics Data System (ADS)

    Haery, Haleh A.; Kim, Ho Sung

    2013-08-01

    Hybrid laminates consisting of woven glass fabric/epoxy composite plies and woven carbon fabric/epoxy composite plies are studied for fatigue damage and residual strength. A theoretical framework based on the systems approach is proposed as a guide to deal with the complexity involving uncertainties and a large number of variables in the hybrid composite system. A relative damage sensitivity factor expression was developed for quantitative comparisons between non-hybrid and hybrid composites. Hypotheses derived from the theoretical framework were tested and verified. The first hypothesis was that the difference between two different sets of properties produces shear stress in interface between carbon fibre reinforced plastics (CRP) and glass fibre reinforced plastics (GRP), and eventually become a source for CRP/GRP interfacial delamination or longitudinal cracking. The second hypothesis was that inter-fibre bundle delamination occurs more severely to CRP sub-system than GRP sub-system.

  13. Accelerated hybrid-circuit production

    NASA Technical Reports Server (NTRS)

    Berg, J. E.; Dassele, M. A.

    1979-01-01

    Modified die-bonding machine speeds up hybrid-circuit production. Utilizing two pedestals, one for die tray and another for substrate tray, increased production and decreased error-margin are possible.

  14. Real and Hybrid Atomic Orbitals.

    ERIC Educational Resources Information Center

    Cook, D. B.; Fowler, P. W.

    1981-01-01

    Demonstrates that the Schrodinger equation for the hydrogenlike atom separates in both spheroconal and prolate spheroidal coordinates and that these separations provide a sound theoretical basis for the real and hybrid atomic orbitals. (Author/SK)

  15. Hybrid-Vehicle Transmission System

    NASA Technical Reports Server (NTRS)

    Lupo, G.; Dotti, G.

    1985-01-01

    Continuously-variable transmission system for hybrid vehicles couples internal-combustion engine and electric motor section, either individually or in parallel, to power vehicle wheels during steering and braking.

  16. Hybrid Electro-Optic Processor

    DTIC Science & Technology

    1991-07-01

    This report describes the design of a hybrid electro - optic processor to perform adaptive interference cancellation in radar systems. The processor is...modulator is reported. Included is this report is a discussion of the design, partial fabrication in the laboratory, and partial testing of the hybrid electro ... optic processor. A follow on effort is planned to complete the construction and testing of the processor. The work described in this report is the

  17. Hybrid particles and associated methods

    DOEpatents

    Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin

    2015-02-10

    Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.

  18. Fabricating a hybrid imaging device

    NASA Technical Reports Server (NTRS)

    Wadsworth, Mark (Inventor); Atlas, Gene (Inventor)

    2003-01-01

    A hybrid detector or imager includes two substrates fabricated under incompatible processes. An array of detectors, such as charged-coupled devices, are formed on the first substrate using a CCD fabrication process, such as a buried channel or peristaltic process. One or more charge-converting amplifiers are formed on a second substrate using a CMOS fabrication process. The two substrates are then bonded together to form a hybrid detector.

  19. New shifted hybrid inflation

    NASA Astrophysics Data System (ADS)

    Jeannerot, Rachel; Khalil, Shaaban; Lazarides, George

    2002-07-01

    A new shifted hybrid inflationary scenario is introduced which, in contrast to the older one, relies only on renormalizable superpotential terms. This scenario is automatically realized in a concrete extension of the `minimal' supersymmetric Pati-Salam model which naturally leads to a moderate violation of Yukawa unification so that, for μ>0, the predicted b-quark mass is acceptable even with universal boundary conditions. It is shown that this extended model possesses a classically flat `shifted' trajectory which acquires a slope via one-loop radiative corrections and can be used as inflationary path. The constraints from the cosmic background explorer can be met with natural values of the relevant parameters. Also, there is no disastrous production of magnetic monopoles after inflation since the Pati-Salam gauge group is already broken on the `shifted' path. The relevant part of inflation takes place at values of the inflaton field which are not much smaller than the `reduced' Planck scale and, thus, supergravity corrections could easily invalidate inflation. It is, however, shown that inflation can be kept intact provided that an extra gauge singlet with a superheavy vacuum expectation value, which originates from D-terms, is introduced and a specific form of the Kähler potential is used. Moreover, it is found that, although the supergravity corrections are sizable, the constraints from the cosmic background explorer can again be met by readjusting the values of the parameters which were obtained with global supersymmetry.

  20. Hybrid manifold embedding.

    PubMed

    Liu, Yang; Liu, Yan; Chan, Keith C C; Hua, Kien A

    2014-12-01

    In this brief, we present a novel supervised manifold learning framework dubbed hybrid manifold embedding (HyME). Unlike most of the existing supervised manifold learning algorithms that give linear explicit mapping functions, the HyME aims to provide a more general nonlinear explicit mapping function by performing a two-layer learning procedure. In the first layer, a new clustering strategy called geodesic clustering is proposed to divide the original data set into several subsets with minimum nonlinearity. In the second layer, a supervised dimensionality reduction scheme called locally conjugate discriminant projection is performed on each subset for maximizing the discriminant information and minimizing the dimension redundancy simultaneously in the reduced low-dimensional space. By integrating these two layers in a unified mapping function, a supervised manifold embedding framework is established to describe both global and local manifold structure as well as to preserve the discriminative ability in the learned subspace. Experiments on various data sets validate the effectiveness of the proposed method.

  1. Hybrid superconductor magnet bearings

    NASA Astrophysics Data System (ADS)

    Chu, Wei-Kan

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  2. Hybrid Power Management (HPM)

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2007-01-01

    The NASA Glenn Research Center s Avionics, Power and Communications Branch of the Engineering and Systems Division initiated the Hybrid Power Management (HPM) Program for the GRC Technology Transfer and Partnership Office. HPM is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and fuel cells. HPM has extremely wide potential. Applications include power generation, transportation systems, biotechnology systems, and space power systems. HPM has the potential to significantly alleviate global energy concerns, improve the environment, and stimulate the economy. One of the unique power devices being utilized by HPM for energy storage is the ultracapacitor. An ultracapacitor is an electrochemical energy storage device, which has extremely high volumetric capacitance energy due to high surface area electrodes, and very small electrode separation. Ultracapacitors are a reliable, long life, maintenance free, energy storage system. This flexible operating system can be applied to all power systems to significantly improve system efficiency, reliability, and performance. There are many existing and conceptual applications of HPM.

  3. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  4. Hybrid superconductor magnet bearings

    SciTech Connect

    Chu, W.

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB`s) utilize high temperature superconductors (HTS`s) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS`s, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, the authors present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  5. Hybrid power source

    DOEpatents

    Singh, Harmohan N.

    2012-06-05

    A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

  6. Hybrid cluster identification

    NASA Astrophysics Data System (ADS)

    Martín-Herrero, J.

    2004-10-01

    I present a hybrid method for the labelling of clusters in two-dimensional lattices, which combines the recursive approach with iterative scanning to reduce the stack size required by the pure recursive technique, while keeping its benefits: single pass and straightforward cluster characterization and percolation detection parallel to the labelling. While the capacity to hold the entire lattice in memory is usually regarded as the major constraint for the applicability of the recursive technique, the required stack size is the real limiting factor. Resorting to recursion only for the transverse direction greatly reduces the recursion depth and therefore the required stack. It also enhances the overall performance of the recursive technique, as is shown by results on a set of uniform random binary lattices and on a set of samples of the Ising model. I also show how this technique may replace the recursive technique in Wolff's cluster algorithm, decreasing the risk of stack overflow and increasing its speed, and the Hoshen-Kopelman algorithm in the Swendsen-Wang cluster algorithm, allowing effortless characterization during generation of the samples and increasing its speed.

  7. Survey of lower hybrid experiments

    SciTech Connect

    Porkolab, M.

    1983-05-01

    Recent developments in lower hybrid experiments are discussed. While a decade ago there were many small scale experiments which verified the fundamental aspects of wave propagation near and above the lower hybrid frequency, more recently the greatest interest has been in using lower hybrid waves to heat the plasma, and to drive currents in toroidal devices. While in the mid 70's lower hybrid heating experiments in tokamaks were carried out at the 100 to 200 kW level, in recent experiments powers up to 1 MW have been injected in the Alcator C tokamak at MIT. Also, while the earlier lower hybrid experiments concentrated on the ion heating regime (..omega.. approx. = ..omega../sub LH/), in the more recent experiments the electron heating regime (..omega.. greater than or equal to 2..omega../sub LH/) and the current drive regime (..omega.. > 2..omega../sub LH/) has been explored to a greater extent. The reason for this is that bulk ion heating near the mode conversion layer appears to be less reproducible and more difficult to achieve than electron heating (and concommitant collisional bulk ion heating). While the reason for this is not well understood, it is likely that as the wave frequency gets closer to the lower hybrid frequency the shorter wavelength waves may be more effectively absorbed and/or scattered near the plasma surface by nonlinear effects (parametric instabilities, low frequency fluctuations, etc.). Toroidal effects may further enhance such mechanisms.

  8. Ecological context shapes hybridization dynamics.

    PubMed

    Buerkle, C Alex

    2009-05-01

    Gene exchange among oak species (Quercus) in Europe is known to be pervasive and to complicate population genetic studies of this species complex. A study in this issue of Molecular Ecology adds geographical and stand-level resolution to the patterns of genetic variation among four species and documents the relatively high frequency of hybrids (10.7-30.5% of trees in a population, including hybrids between all pairs of species; Lepais et al. 2009). In addition, the authors show that the relative abundance of parental species affects the genetic composition of hybrids and shifts the average direction of introgression. Variation in the relative abundance of parental species is one example of how the ecological context of hybridization can influence the dynamics and outcome of contact between species and represents an opportunity to investigate the components of reproductive isolation between species. This research raises several questions about the dynamics of hybridization in this well-studied species complex, and highlights methodological and conceptual issues associated with contemporary research on hybridization.

  9. Hybrid Arrays for Chemical Sensing

    NASA Astrophysics Data System (ADS)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    In recent years, multisensory approaches to environment monitoring for chemical detection as well as other forms of situational awareness have become increasingly popular. A hybrid sensor is a multimodal system that incorporates several sensing elements and thus produces data that are multivariate in nature and may be significantly increased in complexity compared to data provided by single-sensor systems. Though a hybrid sensor is itself an array, hybrid sensors are often organized into more complex sensing systems through an assortment of network topologies. Part of the reason for the shift to hybrid sensors is due to advancements in sensor technology and computational power available for processing larger amounts of data. There is also ample evidence to support the claim that a multivariate analytical approach is generally superior to univariate measurements because it provides additional redundant and complementary information (Hall, D. L.; Linas, J., Eds., Handbook of Multisensor Data Fusion, CRC, Boca Raton, FL, 2001). However, the benefits of a multisensory approach are not automatically achieved. Interpretation of data from hybrid arrays of sensors requires the analyst to develop an application-specific methodology to optimally fuse the disparate sources of data generated by the hybrid array into useful information characterizing the sample or environment being observed. Consequently, multivariate data analysis techniques such as those employed in the field of chemometrics have become more important in analyzing sensor array data. Depending on the nature of the acquired data, a number of chemometric algorithms may prove useful in the analysis and interpretation of data from hybrid sensor arrays. It is important to note, however, that the challenges posed by the analysis of hybrid sensor array data are not unique to the field of chemical sensing. Applications in electrical and process engineering, remote sensing, medicine, and of course, artificial

  10. Hybridization in a warmer world

    PubMed Central

    Chunco, Amanda J

    2014-01-01

    Climate change is profoundly affecting the evolutionary trajectory of individual species and ecological communities, in part through the creation of novel species assemblages. How climate change will influence competitive interactions has been an active area of research. Far less attention, however, has been given to altered reproductive interactions. Yet, reproductive interactions between formerly isolated species are inevitable as populations shift geographically and temporally as a result of climate change, potentially resulting in introgression, speciation, or even extinction. The susceptibility of hybridization rates to anthropogenic disturbance was first recognized in the 1930s. To date, work on anthropogenically mediated hybridization has focused primarily on either physical habitat disturbance or species invasion. Here, I review recent literature on hybridization to identify how ecological responses to climate change will increase the likelihood of hybridization via the dissolution of species barriers maintained by habitat, time, or behavior. Using this literature, I identify several cases where novel hybrid zones have recently formed, likely as a result of changing climate. Future research should focus on identifying areas and taxonomic groups where reproductive species interactions are most likely to be influenced by climate change. Furthermore, a better understanding of the evolutionary consequences of climate-mediated secondary contact is urgently needed. Paradoxically, hybridization is both a major conservation concern and an important source of novel genetic and phenotypic variation. Hybridization may therefore both contribute to increasing rates of extinction and stimulate the creation of novel phenotypes that will speed adaptation to novel climates. Predicting which result will occur following secondary contact will be an important contribution to conservation for many species. PMID:24963394

  11. Hybrid origins of cultivated potatoes.

    PubMed

    Rodríguez, Flor; Ghislain, Marc; Clausen, Andrea M; Jansky, Shelley H; Spooner, David M

    2010-10-01

    Solanum section Petota is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. Using DNA sequence data of the waxy gene, we here infer relationships among the four species of cultivated potatoes accepted in the latest taxonomic treatment (S. ajanhuiri, S. curtilobum, S. juzepczukii and S. tuberosum, the latter divided into the Andigenum and Chilotanum Cultivar Groups). The data support prior ideas of hybrid origins of S. ajanhuiri from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. megistacrolobum; S. juzepczukii from the S. tuberosum Andigenum Group (2x = S. stenotomum) × S. acaule; and S. curtilobum from the S. tuberosum Andigenum Group (4x = S. tuberosum subsp. andigenum) × S. juzepczukii. For the tetraploid cultivar-groups of S. tuberosum, hybrid origins are suggested entirely within much more closely related species, except for two of three examined accessions of the S. tuberosum Chilotanum Group that appear to have hybridized with the wild species S. maglia. Hybrid origins of the crop/weed species S. sucrense are more difficult to support and S. vernei is not supported as a wild species progenitor of the S. tuberosum Andigenum Group.

  12. Somatic hybridization in higher plants.

    PubMed

    Constabel, F

    1976-11-01

    Somatic hybridization in higher plants has come into focus since methods have been established for protoplast fusion and uptake of foreign DNA and organelles by protoplasts. Polyethylene glycol (PEG) was an effective agent for inducing fusion. Treatment of protoplasts with PEG resulted in 5 to 30% heterospecific fusion products. Protoplasts of different species, genera and even families were compatible when fused. A number of protoplast combinations (soybean + corn, soybean + pea, soybean + tobacco, carrot + barley, etc.) provided fusion products which underwent cell division and callus formation. Fusion products initially were heterokaryocytes. In dividing heterokaryocytes, random distribution of mitotic nuclei was observed to be accompanied by multiple wall formation and to result in chimeral callus. Juxtaposition of mitotic nuclei suggested nuclear fusion and hybrid formation. Fusion of heterospecific interphase nuclei was demonstrated in soybean + pea and carrot + barley heterokaryons. Provided parental protoplasts carry suitable markers, the fusion products can be recognized. For the isolation and cloning of hybrid cells, fusion experiments must be supplemented with a selective system. Complementation of two non-allelic genes that prevent or inhibit growth under special culture conditions appears as the principle on which to base the selection of somatic hybrids. As protoplasts of some species have been induced to regenerate entire plants, the development of hybrid plants from protoplast fusion products is feasible and has already been demonstrated for tobacco.

  13. Hybrid metrology implementation: server approach

    NASA Astrophysics Data System (ADS)

    Osorio, Carmen; Timoney, Padraig; Vaid, Alok; Elia, Alex; Kang, Charles; Bozdog, Cornel; Yellai, Naren; Grubner, Eyal; Ikegami, Toru; Ikeno, Masahiko

    2015-03-01

    Hybrid metrology (HM) is the practice of combining measurements from multiple toolset types in order to enable or improve metrology for advanced structures. HM is implemented in two phases: Phase-1 includes readiness of the infrastructure to transfer processed data from the first toolset to the second. Phase-2 infrastructure allows simultaneous transfer and optimization of raw data between toolsets such as spectra, images, traces - co-optimization. We discuss the extension of Phase-1 to include direct high-bandwidth communication between toolsets using a hybrid server, enabling seamless fab deployment and further laying the groundwork for Phase-2 high volume manufacturing (HVM) implementation. An example of the communication protocol shows the information that can be used by the hybrid server, differentiating its capabilities from that of a host-based approach. We demonstrate qualification and production implementation of the hybrid server approach using CD-SEM and OCD toolsets for complex 20nm and 14nm applications. Finally we discuss the roadmap for Phase-2 HM implementation through use of the hybrid server.

  14. Effectiveness-implementation Hybrid Designs

    PubMed Central

    Curran, Geoffrey M.; Bauer, Mark; Mittman, Brian; Pyne, Jeffrey M.; Stetler, Cheryl

    2013-01-01

    Objectives This study proposes methods for blending design components of clinical effectiveness and implementation research. Such blending can provide benefits over pursuing these lines of research independently; for example, more rapid translational gains, more effective implementation strategies, and more useful information for decision makers. This study proposes a “hybrid effectiveness-implementation” typology, describes a rationale for their use, outlines the design decisions that must be faced, and provides several real-world examples. Results An effectiveness-implementation hybrid design is one that takes a dual focus a priori in assessing clinical effectiveness and implementation. We propose 3 hybrid types: (1) testing effects of a clinical intervention on relevant outcomes while observing and gathering information on implementation; (2) dual testing of clinical and implementation interventions/strategies; and (3) testing of an implementation strategy while observing and gathering information on the clinical intervention’s impact on relevant outcomes. Conclusions The hybrid typology proposed herein must be considered a construct still in evolution. Although traditional clinical effectiveness and implementation trials are likely to remain the most common approach to moving a clinical intervention through from efficacy research to public health impact, judicious use of the proposed hybrid designs could speed the translation of research findings into routine practice. PMID:22310560

  15. Testing hybridization hypotheses and evaluating the evolutionary potential of hybrids in mangrove plant species.

    PubMed

    Lo, E Y Y

    2010-10-01

    Natural hybridization is of marked importance from global to local biological diversity. In mangroves, species ranges overlap extensively with one another and species share a long overlap of flowering time. Although hybridization has been suggested, patterns of hybridization and the evolutionary potential of hybrids are not yet fully understood. This study provides molecular evidence for the parental origins and status of hybrids in the dominant mangrove genus Rhizophora based on comparisons of chloroplast and nuclear phylogenies and estimations of genetic relatedness and structure from inter-simple sequence repeat (ISSR) markers. Phylogenetic analyses indicate that almost all species can act as maternal parents to hybrids and that hybridization can be bidirectional. Bayesian analyses indicate that hybrids are simple F(1) s, and no trace of backcrossing was detected within populations. Hybridization, for the most part, occurs almost only locally and dispersal of hybrid individuals is limited beyond the hybrid sites.

  16. Plaque-based competitive hybridization.

    PubMed

    Villányi, Zoltán; Gyurján, István; Stéger, Viktor; Orosz, László

    2008-01-01

    The authors have developed a simple, cost-saving experimental design, plaque-based competitive hybridization (PBCH), for genome-wide identification of genes differentially expressed in different tissues. PBCH offers advantages in comparison with other methods used in comparative genomics by combining the principles of differential hybridization with the subtractive hybridization. PBCH is particularly advantageous when libraries with few differences are to be analyzed. The authors demonstrate the use of PBCH by identifying 3 genes, up-regulated in the developing velvet antler of red deer (Cervus elaphus): ApoD, C011A2, and S100a1. The fidelity and sensitivity of PBCH is also shown: 1 specific clone among a library sample of 15,000 can be recognized. Possibilities for further utilizations are discussed.

  17. Intercalated hybrid graphite fiber composite

    NASA Technical Reports Server (NTRS)

    Gaier, James R. (Inventor)

    1993-01-01

    The invention is directed to a highly conductive lightweight hybrid material and methods of producing the same. The hybrid composite is obtained by weaving strands of a high strength carbon or graphite fiber into a fabric-like structure, depositing a layer of carbon onto the structure, heat treating the structure to graphitize the carbon layer, and intercalating the graphitic carbon layer structure. A laminate composite material useful for protection against lightning strikes comprises at least one layer of the hybrid material over at least one layer of high strength carbon or graphite fibers. The composite material of the present invention is compatible with matrix compounds, has a coefficient of thermal expansion which is the same as underlying fiber layers, and is resistant to galvanic corrosion in addition to being highly conductive. These materials are useful in the aerospace industry, in particular as lightning strike protection for airplanes.

  18. Homoploid hybrid speciation in animals.

    PubMed

    Mavárez, Jesús; Linares, Mauricio

    2008-10-01

    Among animals, evidence for homoploid hybrid speciation (HHS, i.e. the creation of a hybrid lineage without a change in chromosome number) was limited until recently to the virgin chub, Gila seminuda, and some controversial data in support of hybrid status for the red wolf, Canis rufus. This scarcity of evidence, together with pessimistic attitudes among zoologists about the evolutionary importance of hybridisation, prompted the view that HHS is extremely rare among animals, especially as compared with plants. However, in recent years, the literature on animal HHS has expanded to include several new putative examples in butterflies, ants, flies and fishes. We argue that this evidence suggests that HHS is far more common than previously thought and use it to provide insights into some of the genetic and ecological aspects associated with this type of speciation among animals.

  19. DNA-based hybrid catalysis.

    PubMed

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  20. Additive manufacturing of hybrid circuits

    SciTech Connect

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David M.; Hirschfeld, Deidre; Hall, Aaron Christopher

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  1. Genomic Networks of Hybrid Sterility

    PubMed Central

    Turner, Leslie M.; White, Michael A.; Tautz, Diethard; Payseur, Bret A.

    2014-01-01

    Hybrid dysfunction, a common feature of reproductive barriers between species, is often caused by negative epistasis between loci (“Dobzhansky-Muller incompatibilities”). The nature and complexity of hybrid incompatibilities remain poorly understood because identifying interacting loci that affect complex phenotypes is difficult. With subspecies in the early stages of speciation, an array of genetic tools, and detailed knowledge of reproductive biology, house mice (Mus musculus) provide a model system for dissecting hybrid incompatibilities. Male hybrids between M. musculus subspecies often show reduced fertility. Previous studies identified loci and several X chromosome-autosome interactions that contribute to sterility. To characterize the genetic basis of hybrid sterility in detail, we used a systems genetics approach, integrating mapping of gene expression traits with sterility phenotypes and QTL. We measured genome-wide testis expression in 305 male F2s from a cross between wild-derived inbred strains of M. musculus musculus and M. m. domesticus. We identified several thousand cis- and trans-acting QTL contributing to expression variation (eQTL). Many trans eQTL cluster into eleven ‘hotspots,’ seven of which co-localize with QTL for sterility phenotypes identified in the cross. The number and clustering of trans eQTL—but not cis eQTL—were substantially lower when mapping was restricted to a ‘fertile’ subset of mice, providing evidence that trans eQTL hotspots are related to sterility. Functional annotation of transcripts with eQTL provides insights into the biological processes disrupted by sterility loci and guides prioritization of candidate genes. Using a conditional mapping approach, we identified eQTL dependent on interactions between loci, revealing a complex system of epistasis. Our results illuminate established patterns, including the role of the X chromosome in hybrid sterility. The integrated mapping approach we employed is

  2. Hybrid combustion with metallized fuels

    NASA Technical Reports Server (NTRS)

    Yi, Jianwen; Wygle, Brian S.; Bates, Ronald W.; Jones, Michael D.; Ramohalli, Kumar

    1993-01-01

    A chemical method of adding certain catalysts to improve the degradation process of a solid fuel is discussed. Thermogravimetric (TGA) analysis used to study the fundamental degradation behavior of a typical hybrid fuel (HTPB) shows that high surface temperatures increase the degradation rate. Fuels were tested in a laboratory-scale experimental hybrid rocket and their behavior was compared to a baseline behavior of HTPB fuel regression rates. It was found that a small amount of metal powder added to the fuel can significantly increase the regression rates.

  3. Optical Hybrid Quantum Information Processing

    NASA Astrophysics Data System (ADS)

    Takeda, Shuntaro; Furusawa, Akira

    Historically, two complementary approaches to optical quantum information processing have been pursued: qubits and continuous-variables, each exploiting either particle or wave nature of light. However, both approaches have pros and cons. In recent years, there has been a significant progress in combining both approaches with a view to realizing hybrid protocols that overcome the current limitations. In this chapter, we first review the development of the two approaches with a special focus on quantum teleportation and its applications. We then introduce our recent research progress in realizing quantum teleportation by a hybrid scheme, and mention its future applications to universal and fault-tolerant quantum information processing.

  4. Helping HAN for hybrid rockets

    NASA Astrophysics Data System (ADS)

    Ramohalli, Kumar; Dowler, Warren

    1995-01-01

    Hydroxyl amine nitrate (HAN) is a powerful oxidizer for hybrid rocket flight motors. Miscible with water up to 95% by mass, it also has high density and has been extensively characterized for materials compatibility, safety, transportation, storage and handling. Before any serious attempt to use the proposed oxidizer in hybrids, though, the usual performance figures must first be obtained. The simplest are time-independent, equilibrium rocket performance numbers that include chamber temperature, temperature at the nozzle throat, and key species in the exhaust. These numbers must be followed by several other important performance evaluation, including burning rates, pressure dependence, susceptibility to instabilities and temperature sensitivity.

  5. Leptogenesis in smooth hybrid inflation

    NASA Astrophysics Data System (ADS)

    Jeannerot, R.; Khalil, S.; Lazarides, G.

    2001-05-01

    We present a concrete supersymmetric grand unified model based on the Pati-Salam gauge group SU(4)c×SU(2)L×SU(2)R and leading naturally to smooth hybrid inflation, which avoids the cosmological disaster encountered in the standard hybrid inflationary scenario from the overproduction of monopoles at the end of inflation. Successful `reheating' which satisfies the gravitino constraint takes place after the termination of inflation. Also, adequate baryogenesis via a primordial leptogenesis occurs consistently with the solar and atmospheric neutrino oscillation data as well as the SU(4)c symmetry.

  6. Witnessing entanglement in hybrid systems

    NASA Astrophysics Data System (ADS)

    Borrelli, Massimo; Rossi, Matteo; Macchiavello, Chiara; Maniscalco, Sabrina

    2014-08-01

    We extend the definition of entanglement witnesses based on spin structure factors to the case of scatterers with quantum mechanical motion. We show that this allows for hybrid entanglement detection and specialize the witness for a chain of trapped ions. Within this framework, we also show how the collective vibronic state of the chain can act as an undesired quantum environment affecting the spin-spin-entanglement detection. Furthermore, we investigate several specific cases where these witness operators allow us to detect hybrid entanglement.

  7. Hybrid Power Management System and Method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2008-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  8. Field errors in hybrid insertion devices

    SciTech Connect

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  9. Hybrid power management system and method

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J. (Inventor)

    2007-01-01

    A system and method for hybrid power management. The system includes photovoltaic cells, ultracapacitors, and pulse generators. In one embodiment, the hybrid power management system is used to provide power for a highway safety flasher.

  10. ADVANCED HYBRID PARTICULATE COLLECTOR

    SciTech Connect

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  11. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  12. Distant hybridization leads to different ploidy fishes.

    PubMed

    Liu, ShaoJun

    2010-04-01

    Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (female) x common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (male), and RCC (2n=100) (female) x blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (male) are described. In the distant hybridization of RCC (female) x CC (male), bisexual fertile F(3)-F(18) allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (female) x BSB (male), different ploidy fishes were

  13. Energy Storage for Hybrid Miiltary Vehicles

    DTIC Science & Technology

    2005-03-11

    Energy Storage for Hybrid Military Vehicles Ghassan Y. Khalil Abstract The benefits of hybrid electric vehicles have been recognized by the US Army...and safe energy storage in future All Electric Combat Vehicles (AECV). Keywords: battery, HEV, energy storage, battery management Introduction The...potential benefits of hybrid electric vehicles for military applications have been recognized by the US Army as well as other military services. Hybrid

  14. A Step Response Based Mixed-Signal BIST Approach for Continuous-time Linear Circuits

    NASA Technical Reports Server (NTRS)

    Walker, Alvernon; Lala, P. K.

    2001-01-01

    A new Mixed-Signal Built-in self-test approach that is based upon the step response of a reconfigurable (or multifunction) analog block is presented in this paper. The technique requires the overlapping step response of the Circuit Under Test (CUT) for two circuit configurations. Each configuration can be realized by changing the topology of the CUT or by sampling two CUT nodes with differing step responses. The technique can effectively detect both soft and hard faults and does not require an analog-to-digital converter (ADC) and/or digital-to-analog converter(DAC). It also does not require any precision voltage sources or comparators. This approach does not require any additional analog circuits to realize the test signal generator and sample circuits. The paper is concluded with the application of the proposed approach to a circuit found in the work of Epstein et al and two ITC 97 analog benchmark circuits.

  15. The Hybrid Automobile and the Atkinson Cycle

    ERIC Educational Resources Information Center

    Feldman, Bernard J.

    2008-01-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle…

  16. Hybrid Doctoral Program: Innovative Practices and Partnerships

    ERIC Educational Resources Information Center

    Alvich, Dori; Manning, JoAnn; McCormick, Kathy; Campbell, Robert

    2012-01-01

    This paper reflects on how one mid-Atlantic University innovatively incorporated technology into the development of a hybrid doctoral program in educational leadership. The paper describes a hybrid doctoral degree program using a rigorous design; challenges of reworking a traditional syllabus of record to a hybrid doctoral program; the perceptions…

  17. Sativa by falcata alfalfa hybrid variety trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous research has demonstrated that alfalfa (Medicago sativa L.) subsp. sativa by subsp. falcata hybrids showed heterosis. Limited work has been done examining these hybrids in a sward situation. The objective of this study was to produce sativa by falcata hybrids using Dairyland Seed Company’...

  18. Hybrid Computation at Louisiana State University.

    ERIC Educational Resources Information Center

    Corripio, Armando B.

    Hybrid computation facilities have been in operation at Louisiana State University since the spring of 1969. In part, they consist of an Electronics Associates, Inc. (EAI) Model 680 analog computer, an EAI Model 693 interface, and a Xerox Data Systems (XDS) Sigma 5 digital computer. The hybrid laboratory is used in a course on hybrid computation…

  19. Diploid hybrid speciation in Penstemon (Scrophulariaceae)

    PubMed Central

    Wolfe, Andrea D.; Xiang, Qiu-Yun; Kephart, Susan R.

    1998-01-01

    Hybrid speciation has played a significant role in the evolution of angiosperms at the polyploid level. However, relatively little is known about the importance of hybrid speciation at the diploid level. Two species of Penstemon have been proposed as diploid hybrid derivatives based on morphological data, artificial crossing studies, and pollinator behavior observations: Penstemon spectabilis (derived from hybridization between Penstemon centranthifolius and Penstemon grinnellii) and Penstemon clevelandii (derived from hybridization between P. centranthifolius and P. spectabilis). Previous studies were inconclusive regarding the purported hybrid nature of these species because of a lack of molecular markers sufficient to differentiate the parental taxa in the hybrid complex. We developed hypervariable nuclear markers using inter-simple sequence repeat banding patterns to test these classic hypotheses of diploid hybrid speciation in Penstemon. Each species in the hybrid complex was genetically distinct, separated by 10–42 species-specific inter-simple sequence repeat markers. Our data do not support the hybrid origin of P. spectabilis but clearly support the diploid hybrid origin of P. clevelandii. Our results further suggest that the primary reason diploid hybrid speciation is so difficult to detect is the lack of molecular markers able to differentiate parental taxa from one another, particularly with recently diverged species. PMID:9560237

  20. Hybrid cars now, fuel cell cars later.

    PubMed

    Demirdöven, Nurettin; Deutch, John

    2004-08-13

    We compare the energy efficiency of hybrid and fuel cell vehicles as well as conventional internal combustion engines. Our analysis indicates that fuel cell vehicles using hydrogen from fossil fuels offer no significant energy efficiency advantage over hybrid vehicles operating in an urban drive cycle. We conclude that priority should be placed on hybrid vehicles by industry and government.

  1. Using Hybrid Modeling to Develop Innovative Activities

    ERIC Educational Resources Information Center

    Lichtman, Brenda; Avans, Diana

    2005-01-01

    This article describes a hybrid activities model that physical educators can use with students in grades four and above to create virtually a limitless array of novel games. A brief introduction to the basic theory is followed by descriptions of some hybrid games. Hybrid games are typically the result of merging two traditional sports or other…

  2. Hybrid origins of cultivated potatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wild and cultivated potatoes, Solanum section Petota, is taxonomically difficult, partly because of interspecific hybridization at both the diploid and polyploid levels. The taxonomy of cultivated potatoes is particularly controversial. With DNA sequence data of the GBSSI (waxy) gene we here infer r...

  3. Hybrid free electron laser devices

    SciTech Connect

    Asgekar, Vivek; Dattoli, G.

    2007-03-15

    We consider hybrid free electron laser devices consisting of Cerenkov and undulator sections. We will show that they can in principle be used as segmented devices and also show the possibility of exploiting Cerenkov devices for the generation of nonlinear harmonic coherent power. We discuss both oscillator and amplifier schemes.

  4. Iterative framework radiation hybrid mapping

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Building comprehensive radiation hybrid maps for large sets of markers is a computationally expensive process, since the basic mapping problem is equivalent to the traveling salesman problem. The mapping problem is also susceptible to noise, and as a result, it is often beneficial to remove markers ...

  5. The threat of hybrid Phytophthoras

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of invasive plant pathogens have resulted from the introduction of exotic organisms. However, another mechanism for invasiveness results from hybridization between species. This phenomenon has been documented in plants and animals, but its role in plant pathology has only recently been ...

  6. LANL Debuts Hybrid Garbage Truck

    ScienceCinema

    Witt, Monica

    2016-08-26

    Los Alamos National Laboratory has begun using a diesel-hydraulic hybrid garbage truck that could save up to 30 percent in operating costs and greenhouse emissions. The Peterbilt Model 320 takes energy from braking and uses it to help the truck accelerate after stops.

  7. Hybrid shower counter for CDF

    SciTech Connect

    Nodulman, L.

    1980-01-01

    A hybrid scintillator/strip chamber electromagnetic calorimeter has been proposed for the Collider Detector Facility at Fermilab. Large modules of lead/scintillator with wavebar readout are to contain one or more bidimensional wire chambers near shower maximum. Results of the ongoing program of computer simulation and prototype testing are discussed.

  8. Magneto-Acoustic Hybrid Nanomotor.

    PubMed

    Li, Jinxing; Li, Tianlong; Xu, Tailin; Kiristi, Melek; Liu, Wenjuan; Wu, Zhiguang; Wang, Joseph

    2015-07-08

    Efficient and controlled nanoscale propulsion in harsh environments requires careful design and manufacturing of nanomachines, which can harvest and translate the propelling forces with high spatial and time resolution. Here we report a new class of artificial nanomachine, named magneto-acoustic hybrid nanomotor, which displays efficient propulsion in the presence of either magnetic or acoustic fields without adding any chemical fuel. These fuel-free hybrid nanomotors, which comprise a magnetic helical structure and a concave nanorod end, are synthesized using a template-assisted electrochemical deposition process followed by segment-selective chemical etching. Dynamic switching of the propulsion mode with reversal of the movement direction and digital speed regulation are demonstrated on a single nanovehicle. These hybrid nanomotors exhibit a diverse biomimetic collective behavior, including stable aggregation, swarm motion, and swarm vortex, triggered in response to different field inputs. Such adaptive hybrid operation and controlled collective behavior hold considerable promise for designing smart nanovehicles that autonomously reconfigure their operation mode according to their mission or in response to changes in their surrounding environment or in their own performance, thus holding considerable promise for diverse practical biomedical applications of fuel-free nanomachines.

  9. 1997 hybrid electric vehicle specifications

    SciTech Connect

    Sluder, S.; Larsen, R.; Duoba, M.

    1996-10-01

    The US DOE sponsors Advanced Vehicle Technology competitions to help educate the public and advance new vehicle technologies. For several years, DOE has provided financial and technical support for the American Tour de Sol. This event showcases electric and hybrid electric vehicles in a road rally across portions of the northeastern United States. The specifications contained in this technical memorandum apply to vehicles that will be entered in the 1997 American Tour de Sol. However, the specifications were prepared to be general enough for use by other teams and individuals interested in developing hybrid electric vehicles. The purpose of the specifications is to ensure that the vehicles developed do not present a safety hazard to the teams that build and drive them or to the judges, sponsors, or public who attend the competitions. The specifications are by no means the definitive sources of information on constructing hybrid electric vehicles - as electric and hybrid vehicles technologies advance, so will the standards and practices for their construction. In some cases, the new standards and practices will make portions of these specifications obsolete.

  10. Transgressive Hybrids as Hopeful Monsters.

    PubMed

    Dittrich-Reed, Dylan R; Fitzpatrick, Benjamin M

    2013-06-01

    The origin of novelty is a critical subject for evolutionary biologists. Early geneticists speculated about the sudden appearance of new species via special macromutations, epitomized by Goldschmidt's infamous "hopeful monster". Although these ideas were easily dismissed by the insights of the Modern Synthesis, a lingering fascination with the possibility of sudden, dramatic change has persisted. Recent work on hybridization and gene exchange suggests an underappreciated mechanism for the sudden appearance of evolutionary novelty that is entirely consistent with the principles of modern population genetics. Genetic recombination in hybrids can produce transgressive phenotypes, "monstrous" phenotypes beyond the range of parental populations. Transgressive phenotypes can be products of epistatic interactions or additive effects of multiple recombined loci. We compare several epistatic and additive models of transgressive segregation in hybrids and find that they are special cases of a general, classic quantitative genetic model. The Dobzhansky-Muller model predicts "hopeless" monsters, sterile and inviable transgressive phenotypes. The Bateson model predicts "hopeful" monsters with fitness greater than either parental population. The complementation model predicts both. Transgressive segregation after hybridization can rapidly produce novel phenotypes by recombining multiple loci simultaneously. Admixed populations will also produce many similar recombinant phenotypes at the same time, increasing the probability that recombinant "hopeful monsters" will establish true-breeding evolutionary lineages. Recombination is not the only (or even most common) process generating evolutionary novelty, but might be the most credible mechanism for sudden appearance of new forms.

  11. LANL Debuts Hybrid Garbage Truck

    SciTech Connect

    Witt, Monica

    2010-11-17

    Los Alamos National Laboratory has begun using a diesel-hydraulic hybrid garbage truck that could save up to 30 percent in operating costs and greenhouse emissions. The Peterbilt Model 320 takes energy from braking and uses it to help the truck accelerate after stops.

  12. Hybrid respiration-signal conditioner

    NASA Technical Reports Server (NTRS)

    Rinard, G. A.; Steffen, D. A.; Sturm, R. E.

    1979-01-01

    Hybrid impedance-pneumograph and respiration-rate signal conditioner element of hand-held vital signs monitor measures changes in impedance of chest during breathing cycle and generates analog respiration signal as output along with synchronous square wave that can be monitored by breath-rate processor.

  13. Expanding discourse repertoires with hybridity

    NASA Astrophysics Data System (ADS)

    Kelly, Gregory J.

    2012-09-01

    In "Hybrid discourse practice and science learning" Kamberelis and Wehunt present a theoretically rich argument about the potential of hybrid discourses for science learning. These discourses draw from different forms of "talk, social practice, and material practices" to create interactions that are "intertextually complex" and "interactionally dynamic." The hybrid discourse practices are described as involving the dynamic interplay of at least three key elements: "the lamination of multiple cultural frames, the shifting relations between people and their discourse, and the shifting power relations between and among people." Each of these elements requires a respective unit of analysis and are often mutually reinforcing. The authors present a theoretically cogent argument for the study of hybrid discourse practices and identify the potential such discourses may have for science education. This theoretical development leads to an analysis of spoken and written discourse around a set of educational events concerning the investigation of owl pellets by two fifth grade students, their classmates, and teacher. Two discourse segments are presented and analyzed by the authors in detail. The first is a discourse analysis of the dissection of the owl pellet by two students, Kyle and Max. The second analysis examines the science report of these same two students. In this article, I pose a number of questions about the study with the hope that by doing so I expand the conversation around the insightful analysis presented.

  14. Yeast two-hybrid screen.

    PubMed

    Makuch, Lauren

    2014-01-01

    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  15. Shape Memory Composite Hybrid Hinge

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  16. A hybrid air conditioner driven by a hybrid solar collector

    NASA Astrophysics Data System (ADS)

    Al-Alili, Ali

    The objective of this thesis is to search for an efficient way of utilizing solar energy in air conditioning applications. The current solar Air Conditioners (A/C)s suffer from low Coefficient of Performance (COP) and performance degradation in hot and humid climates. By investigating the possible ways of utilizing solar energy in air conditioning applications, the bottlenecks in these approaches were identified. That resulted in proposing a novel system whose subsystem synergy led to a COP higher than unity. The proposed system was found to maintain indoor comfort at a higher COP compared to the most common solar A/Cs, especially under very hot and humid climate conditions. The novelty of the proposed A/C is to use a concentrating photovoltaic/thermal collector, which outputs thermal and electrical energy simultaneously, to drive a hybrid A/C. The performance of the hybrid A/C, which consists of a desiccant wheel, an enthalpy wheel, and a vapor compression cycle (VCC), was investigated experimentally. This work also explored the use of a new type of desiccant material, which can be regenerated with a low temperature heat source. The experimental results showed that the hybrid A/C is more effective than the standalone VCC in maintaining the indoor conditions within the comfort zone. Using the experimental data, the COP of the hybrid A/C driven by a hybrid solar collector was found to be at least double that of the current solar A/Cs. The innovative integration of its subsystems allows each subsystem to do what it can do best. That leads to lower energy consumption which helps reduce the peak electrical loads on electric utilities and reduces the consumer operating cost since less energy is purchased during the on peak periods and less solar collector area is needed. In order for the proposed A/C to become a real alternative to conventional systems, its performance and total cost were optimized using the experimentally validated model. The results showed that for an

  17. Strategies for optimizing DNA hybridization on surfaces.

    PubMed

    Ravan, Hadi; Kashanian, Soheila; Sanadgol, Nima; Badoei-Dalfard, Arastoo; Karami, Zahra

    2014-01-01

    Specific and predictable hybridization of the polynucleotide sequences to their complementary counterparts plays a fundamental role in the rational design of new nucleic acid nanodevices. Generally, nucleic acid hybridization can be performed using two major strategies, namely hybridization of DNA or RNA targets to surface-tethered oligonucleotide probes (solid-phase hybridization) and hybridization of the target nucleic acids to randomly distributed probes in solution (solution-phase hybridization). Investigations into thermodynamic and kinetic parameters of these two strategies showed that hybridization on surfaces is less favorable than that of the same sequence in solution. Indeed, the efficiency of DNA hybridization on surfaces suffers from three constraints: (1) electrostatic repulsion between DNA strands on the surface, (2) steric hindrance between tethered DNA probes, and (3) nonspecific adsorption of the attached oligonucleotides to the solid surface. During recent years, several strategies have been developed to overcome the problems associated with DNA hybridization on surfaces. Optimizing the probe surface density, application of a linker between the solid surface and the DNA-recognizing sequence, optimizing the pH of DNA hybridization solutions, application of thiol reagents, and incorporation of a polyadenine block into the terminal end of the recognizing sequence are among the most important strategies for enhancing DNA hybridization on surfaces.

  18. Towards stable silicon nanoarray hybrid solar cells

    NASA Astrophysics Data System (ADS)

    He, W. W.; Wu, K. J.; Wang, K.; Shi, T. F.; Wu, L.; Li, S. X.; Teng, D. Y.; Ye, C. H.

    2014-01-01

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  19. Towards stable silicon nanoarray hybrid solar cells.

    PubMed

    He, W W; Wu, K J; Wang, K; Shi, T F; Wu, L; Li, S X; Teng, D Y; Ye, C H

    2014-01-16

    Silicon nanoarray hybrid solar cells benefit from the ease of fabrication and the cost-effectiveness of the hybrid structure, and represent a new research focus towards the utilization of solar energy. However, hybrid solar cells composed of both inorganic and organic components suffer from the notorious stability issue, which has to be tackled before the hybrid solar cells could become a viable alternative for harvesting solar energy. Here we show that Si nanoarray/PEDOT:PSS hybrid solar cells with improved stability can be fabricated via eliminating the water inclusion in the initial formation of the heterojunction between Si nanoarray and PEDOT:PSS. The Si nanoarray hybrid solar cells are stable against rapid degradation in the atmosphere environment for several months without encapsulation. This finding paves the way towards the real-world applications of Si nanoarray hybrid solar cells.

  20. Hybrid Streamers for Polar Seismic

    NASA Astrophysics Data System (ADS)

    Gifford, C. M.; Agah, A.; Tsoflias, G. P.

    2006-12-01

    We propose a new hybrid streamer seismic approach for polar regions that incorporates insertion of spiked geophones, the land streamer method of transportation, and mobile robotics. Current land streamers do not plant the geophone spike at each node location on the streamer(s) nor use robotic control. This approach combines the two methods, and is therefore termed "Hybrid Streamers". Land seismic 3D surveying is costly and time consuming due to manual handling of geophones and cables. Multiple streamers make this process simpler by allowing efficient deployment of large numbers of geophones. Hybrid streamers go further to robotically insert the geophone spike at each node location to achieve higher frequency and better resolution seismic images. For deployment and retrieval, the geophone spikes are drilled into the ground, or inserted using heat. This can be accomplished by modifying the geophone spike to be similar to a threaded screw or similar to a soldering iron for polar environments. Heat could help melt the ice during deployment, which would refreeze around the geophone for firm coupling. Heat could also be used to make polar geophone retrieval easier. By ensuring that the towing robots are robust and effective, the problem of single point of failure can be less of an issue. Polar rovers have proven useful in harsh environments, and could be utilized in polar seismic applications. Towing geophone nodes in a tethered fashion not only provides all nodes with power to operate the onboard equipment, but also gives them a medium to transfer data to the towing rover. Hybrid streamers could be used in several ways. One or more hybrid streamers could be tethered and towed by a single robot. Several robots could be used to form a single grid, working in conjunction to image larger areas in three dimensions. Such an approach could speed up entire missions and make efficient use of seismic source ignitions. The reduction of human involvement by use of mobile robots

  1. Hybrid methods for cybersecurity analysis :

    SciTech Connect

    Davis, Warren Leon,; Dunlavy, Daniel M.

    2014-01-01

    Early 2010 saw a signi cant change in adversarial techniques aimed at network intrusion: a shift from malware delivered via email attachments toward the use of hidden, embedded hyperlinks to initiate sequences of downloads and interactions with web sites and network servers containing malicious software. Enterprise security groups were well poised and experienced in defending the former attacks, but the new types of attacks were larger in number, more challenging to detect, dynamic in nature, and required the development of new technologies and analytic capabilities. The Hybrid LDRD project was aimed at delivering new capabilities in large-scale data modeling and analysis to enterprise security operators and analysts and understanding the challenges of detection and prevention of emerging cybersecurity threats. Leveraging previous LDRD research e orts and capabilities in large-scale relational data analysis, large-scale discrete data analysis and visualization, and streaming data analysis, new modeling and analysis capabilities were quickly brought to bear on the problems in email phishing and spear phishing attacks in the Sandia enterprise security operational groups at the onset of the Hybrid project. As part of this project, a software development and deployment framework was created within the security analyst work ow tool sets to facilitate the delivery and testing of new capabilities as they became available, and machine learning algorithms were developed to address the challenge of dynamic threats. Furthermore, researchers from the Hybrid project were embedded in the security analyst groups for almost a full year, engaged in daily operational activities and routines, creating an atmosphere of trust and collaboration between the researchers and security personnel. The Hybrid project has altered the way that research ideas can be incorporated into the production environments of Sandias enterprise security groups, reducing time to deployment from months and

  2. Natural and sexual selection against hybrid flycatchers.

    PubMed

    Svedin, Nina; Wiley, Chris; Veen, Thor; Gustafsson, Lars; Qvarnström, Anna

    2008-03-22

    While sexual selection is generally assumed to quickly cause or strengthen prezygotic barriers between sister species, its role in causing postzygotic isolation, through the unattractiveness of intermediate hybrids, is less often examined. Combining 24 years of pedigree data and recently developed species-specific molecular markers from collared (Ficedula albicollis) and pied (Ficedula hypoleuca) flycatchers and their hybrids, we were able to quantify all key components of fitness. To disentangle the relative role of natural and sexual selection acting on F1 hybrid flycatchers, we estimated various fitness components, which when combined represent the total lifetime reproductive success of F1 hybrids, and then compared the different fitness components of F1 hybrids to that of collared flycatchers. Female hybrid flycatchers are sterile, with natural selection being the selective force involved, but male hybrids mainly experienced a reduction in fitness through sexual selection (decreased pairing success and increased rate of being cuckolded). To disentangle the role of sexual selection against male hybrids from a possible effect of genetic incompatibility (on the rate of being cuckolded), we compared male hybrids with pure-bred males expressing intermediate plumage characters. Given that sexual selection against male hybrids is a result of their intermediate plumage, we expect these two groups of males to have a similar fitness reduction. Alternatively, hybrids have reduced fitness owing to genetic incompatibility, in which case their fitness should be lower than that of the intermediate pure-bred males. We conclude that sexual selection against male hybrids accounts for approximately 75% of the reduction in their fitness. We discuss how natural and sexual selection against hybrids may have different implications for speciation and conclude that reinforcement of reproductive barriers may be more likely when there is sexual selection against hybrids.

  3. Planar slot coupled microwave hybrid

    DOEpatents

    Petter, Jeffrey K.

    1991-01-01

    A symmetrical 180.degree. microwave hybrid is constructed by opening a slot line in a ground plane below a conducting strip disposed on a dielectric substrate, creating a slot coupled conductor. Difference signals propagating on the slot coupled conductor are isolated on the slot line leaving sum signals to propagate on the microstrip. The difference signal is coupled from the slot line onto a second microstrip line for transmission to a desired location. The microstrip branches in a symmetrical fashion to provide the input/output ports of the 180.degree. hybrid. The symmetry of the device provides for balance and isolation between sum and difference signals, and provides an advantageous balance between the power handling capabilities and the bandwidth of the device.

  4. Nanorice: a new hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Nordlander, P.; Brandl, D.; Le, F.; Wang, H.; Halas, N. J.

    2006-03-01

    The plasmon hybridization method [1] is applied to nanorice, a new metallic nanostructure which combines the properties of two popular tunable plasmonic nanoparticle geometries: nanorods and nanoshells. The particle consists of a prolate spheroidal dielectric core and a thin metallic shell, bearing a remarkable resemblance to a rice grain. The nanorice particle shows far greater geometric tunability of the optical resonance, larger local field intensity enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than any previously reported dielectric-metal nanostructure. The tunability of the nanorice particle arises from the interaction of primitive plasmons associated with the inner and outer surfaces of the shell. The results from plasmon hybridization are compared to FDTD simulations. [1] E. Prodan and P. Nordlander, J. Chem. Phys. 120(2004)5444-5454

  5. Adaptive hybrid control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  6. Hybrid chirped pulse amplification system

    SciTech Connect

    Barty, Christopher P.; Jovanovic, Igor

    2005-03-29

    A hybrid chirped pulse amplification system wherein a short-pulse oscillator generates an oscillator pulse. The oscillator pulse is stretched to produce a stretched oscillator seed pulse. A pump laser generates a pump laser pulse. The stretched oscillator seed pulse and the pump laser pulse are directed into an optical parametric amplifier producing an optical parametric amplifier output amplified signal pulse and an optical parametric amplifier output unconverted pump pulse. The optical parametric amplifier output amplified signal pulse and the optical parametric amplifier output laser pulse are directed into a laser amplifier producing a laser amplifier output pulse. The laser amplifier output pulse is compressed to produce a recompressed hybrid chirped pulse amplification pulse.

  7. Protein-inorganic hybrid nanoflowers

    NASA Astrophysics Data System (ADS)

    Ge, Jun; Lei, Jiandu; Zare, Richard N.

    2012-07-01

    Flower-shaped inorganic nanocrystals have been used for applications in catalysis and analytical science, but so far there have been no reports of `nanoflowers' made of organic components. Here, we report a method for creating hybrid organic-inorganic nanoflowers using copper (II) ions as the inorganic component and various proteins as the organic component. The protein molecules form complexes with the copper ions, and these complexes become nucleation sites for primary crystals of copper phosphate. Interaction between the protein and copper ions then leads to the growth of micrometre-sized particles that have nanoscale features and that are shaped like flower petals. When an enzyme is used as the protein component of the hybrid nanoflower, it exhibits enhanced enzymatic activity and stability compared with the free enzyme. This is attributed to the high surface area and confinement of the enzymes in the nanoflowers.

  8. Atom-Light Hybrid Interferometer

    NASA Astrophysics Data System (ADS)

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L. Q.; Ou, Z. Y.; Zhang, Weiping

    2015-07-01

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  9. Atom-Light Hybrid Interferometer.

    PubMed

    Chen, Bing; Qiu, Cheng; Chen, Shuying; Guo, Jinxian; Chen, L Q; Ou, Z Y; Zhang, Weiping

    2015-07-24

    A new type of hybrid atom-light interferometer is demonstrated with atomic Raman amplification processes replacing the beam splitting elements in a traditional interferometer. This nonconventional interferometer involves correlated optical and atomic waves in the two arms. The correlation between atoms and light developed with the Raman process makes this interferometer different from conventional interferometers with linear beam splitters. It is observed that the high-contrast interference fringes are sensitive to the optical phase via a path change as well as the atomic phase via a magnetic field change. This new atom-light correlated hybrid interferometer is a sensitive probe of the atomic internal state and should find wide applications in precision measurement and quantum control with atoms and photons.

  10. Active and Passive Hybrid Sensor

    NASA Technical Reports Server (NTRS)

    Carswell, James R.

    2010-01-01

    A hybrid ocean wind sensor (HOWS) can map ocean vector wind in low to hurricane-level winds, and non-precipitating and precipitating conditions. It can acquire active and passive measurements through a single aperture at two wavelengths, two polarizations, and multiple incidence angles. Its low profile, compact geometry, and low power consumption permits installation on air craft platforms, including high-altitude unmanned aerial vehicles (UAVs).

  11. Hybrid Power Management Program Continued

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2002-01-01

    Hybrid Power Management (HPM) is the innovative integration of diverse, state-of-the-art power devices in an optimal configuration for space and terrestrial applications. The appropriate application and control of the various power devices significantly improves overall system performance and efficiency. The advanced power devices include ultracapacitors and photovoltaics. HPM has extremely wide potential with applications including power-generation, transportation, biotechnology, and space power systems. It may significantly alleviate global energy concerns, improve the environment, and stimulate the economy.

  12. Hybrid Ionosilica containing aromatic groups

    NASA Astrophysics Data System (ADS)

    Thach, U. D.; Prelot, B.; Hesemann, P.

    2015-07-01

    Ionosilicas are defined as mesostructured silica based materials bearing covalently bound ionic groups. These materials, situated at the interface of ionic liquids and structured silica mesophases, are usually synthesized following template directed hydrolysis-polycondensation procedures starting from silylated ionic compounds. Here, we report new ammonium type hybrid ionosilicas containing aromatic groups which can serve as a new platform for the design of functional materials, for applications in the areas of ion exchange reactions, drug delivery or wastewater treatment.

  13. Hybrid sugarbeets - fuel from fodder

    SciTech Connect

    Yarris, L.

    1980-05-01

    Plant geneticists at Utah University are exploring the possibility of developing a hybrid sugarbeet especially bred for use in making alcohol fuel. They are aiming at increasing sugar quantity in the beet without having to worry about the quality factors that affect sugar crystallization. A cross between European fodder beets and U.S. sugarbeets which would be resistant to curly top virus disease is envisaged.

  14. Complex Hybrid Inflation and Baryogenesis

    SciTech Connect

    Delepine, David; Martinez, Carlos; Urena-Lopez, L. Arturo

    2007-04-20

    We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated with the waterfall field charge. We show that the asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry. The latter strongly depends on the vacuum expectation value of the waterfall field, which is well constrained by diverse cosmological observations.

  15. Electric and hybrid vehicles program

    NASA Astrophysics Data System (ADS)

    1993-08-01

    The progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY 1992 is described. Detailed descriptions are provided of program activities during FY 1992 in the areas of battery, fuel cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. This Annual Report also contains a status report on incentives and use of foreign components, as well as a list of publications resulting from the DOE program.

  16. Hybrid optical acoustic seafloor mapping

    NASA Astrophysics Data System (ADS)

    Inglis, Gabrielle

    The oceanographic research and industrial communities have a persistent demand for detailed three dimensional sea floor maps which convey both shape and texture. Such data products are used for archeology, geology, ship inspection, biology, and habitat classification. There are a variety of sensing modalities and processing techniques available to produce these maps and each have their own potential benefits and related challenges. Multibeam sonar and stereo vision are such two sensors with complementary strengths making them ideally suited for data fusion. Data fusion approaches however, have seen only limited application to underwater mapping and there are no established methods for creating hybrid, 3D reconstructions from two underwater sensing modalities. This thesis develops a processing pipeline to synthesize hybrid maps from multi-modal survey data. It is helpful to think of this processing pipeline as having two distinct phases: Navigation Refinement and Map Construction. This thesis extends existing work in underwater navigation refinement by incorporating methods which increase measurement consistency between both multibeam and camera. The result is a self consistent 3D point cloud comprised of camera and multibeam measurements. In map construction phase, a subset of the multi-modal point cloud retaining the best characteristics of each sensor is selected to be part of the final map. To quantify the desired traits of a map several characteristics of a useful map are distilled into specific criteria. The different ways that hybrid maps can address these criteria provides justification for producing them as an alternative to current methodologies. The processing pipeline implements multi-modal data fusion and outlier rejection with emphasis on different aspects of map fidelity. The resulting point cloud is evaluated in terms of how well it addresses the map criteria. The final hybrid maps retain the strengths of both sensors and show significant improvement

  17. Hybrid Microcircuit Rework Procedures Evaluation.

    DTIC Science & Technology

    1980-08-01

    collect. Careful selection of materials and process control can reduce the work stage tempera- tures to 200°C or less; actual work stage temperatures are...ULTRASONIC DIE BONDELNON-DEST WRUCIV IOD - WIRE BOND CLEAN CURE SEMICONODUCTOR ETICA WIRE BOND V SEMICONDUCTOR SUBSTRATE ADHESIVE CHIPS TO TTI N I CHIPS...data were normalized to reflect the actual number of hybrids produced. The percentages of travelers examined varied from 5 to 50 percent of the total

  18. Standard-smooth hybrid inflation

    SciTech Connect

    Lazarides, George; Vamvasakis, Achilleas

    2007-12-15

    We consider the extended supersymmetric Pati-Salam model which, for {mu}>0 and universal boundary conditions, succeeds to yield experimentally acceptable b-quark masses by moderately violating Yukawa unification. It is known that this model can lead to new shifted or new smooth hybrid inflation. We show that a successful two-stage inflationary scenario can be realized within this model based only on renormalizable superpotential interactions. The cosmological scales exit the horizon during the first stage of inflation, which is of the standard hybrid type and takes place along the trivial flat direction with the inflaton driven by radiative corrections. Spectral indices compatible with the recent data can be achieved in global supersymmetry or minimal supergravity by restricting the number of e-foldings of our present horizon during the first inflationary stage. The additional e-foldings needed for solving the horizon and flatness problems are naturally provided by a second stage of inflation, which occurs mainly along the built-in new smooth hybrid inflationary path appearing right after the destabilization of the trivial flat direction at its critical point. Monopoles are formed at the end of the first stage of inflation and are, subsequently, diluted by the second stage of inflation to become utterly negligible in the present universe for almost all (for all) the allowed values of the parameters in the case of global supersymmetry (minimal supergravity)

  19. Additive manufacturing of hybrid circuits

    DOE PAGES

    Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; ...

    2016-03-26

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects.more » Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.« less

  20. Toward a hybrid artificial pancreas.

    PubMed

    Friedman, E A

    1989-06-01

    Management of insulinopenic diabetic individuals centers on administration of insulin by means of multiple injections, a wearable or implantable insulin-infusion pump, or a whole-organ or segmental-pancreas transplant. Preliminary trials indicate that surgical implantation of a hybrid device containing living insulin-secreting tissue may function as a combined glucose sensor and insulin-infusion pump. By means of a chamber composed of a semipermeable membrane shaped into hollow fibers or a box surrounding endocrine tissue, pilot studies have shown that isolated islets of Langerhans, fragments of insulinoma, or a fetal pancreas retains function for days to weeks, as judged by the ability to sustain euglycemic conditions in chemically induced diabetic rats. Lacking clear proof that normalizing blood glucose levels will prevent vascular complications of diabetes in humans, the case for further development of a hybrid (tissue plus fabricated components) device rests mainly on optimistic extrapolation of results attained in the chemically induced diabetic rat and dog. For the minority of diabetic patients who have insulin-dependent diabetes, the benefit afforded by a bionic device establishing internal insulin release regulated by silently sensed blood glucose level is more than enough payoff for the discomfort and surgery involved in its implantation. Further trials of a hybrid artificial pancreas in the dog appear warranted as a logical extension of preliminary studies with this species.

  1. Hybrid metric-Palatini stars

    NASA Astrophysics Data System (ADS)

    Danilǎ, Bogdan; Harko, Tiberiu; Lobo, Francisco S. N.; Mak, M. K.

    2017-02-01

    We consider the internal structure and the physical properties of specific classes of neutron, quark and Bose-Einstein condensate stars in the recently proposed hybrid metric-Palatini gravity theory, which is a combination of the metric and Palatini f (R ) formalisms. It turns out that the theory is very successful in accounting for the observed phenomenology, since it unifies local constraints at the Solar System level and the late-time cosmic acceleration, even if the scalar field is very light. In this paper, we derive the equilibrium equations for a spherically symmetric configuration (mass continuity and Tolman-Oppenheimer-Volkoff) in the framework of the scalar-tensor representation of the hybrid metric-Palatini theory, and we investigate their solutions numerically for different equations of state of neutron and quark matter, by adopting for the scalar field potential a Higgs-type form. It turns out that the scalar-tensor definition of the potential can be represented as an Clairaut differential equation, and provides an explicit form for f (R ) given by f (R )˜R +Λeff, where Λeff is an effective cosmological constant. Furthermore, stellar models, described by the stiff fluid, radiation-like, bag model and the Bose-Einstein condensate equations of state are explicitly constructed in both general relativity and hybrid metric-Palatini gravity, thus allowing an in-depth comparison between the predictions of these two gravitational theories. As a general result it turns out that for all the considered equations of state, hybrid gravity stars are more massive than their general relativistic counterparts. Furthermore, two classes of stellar models corresponding to two particular choices of the functional form of the scalar field (constant value, and logarithmic form, respectively) are also investigated. Interestingly enough, in the case of a constant scalar field the equation of state of the matter takes the form of the bag model equation of state describing

  2. Hybrid Airy plasmons with dynamically steerable trajectories.

    PubMed

    Li, Rujiang; Imran, Muhammad; Lin, Xiao; Wang, Huaping; Xu, Zhiwei; Chen, Hongsheng

    2017-01-26

    With their intriguing diffraction-free, self-accelerating, and self-healing properties, Airy plasmons show promise for use in the trapping, transporting, and sorting of micro-objects, imaging, and chip scale signal processing. However, high dissipative loss and lack of dynamical steerability restrict the implementation of Airy plasmons in these applications. Here we reveal hybrid Airy plasmons for the first time by taking a hybrid graphene-based plasmonic waveguide in the terahertz (THz) domain as an example. Due to coupling between optical modes and plasmonic modes, the hybrid Airy plasmons can have large propagation lengths and effective transverse deflections, where the transverse waveguide confinements are governed by the hybrid modes with moderate quality factors. Meanwhile, the propagation trajectories of the hybrid Airy plasmons are dynamically steerable by changing the chemical potential of graphene. These hybrid Airy plasmons may promote the further discovery of non-diffracting beams along with the emerging developments of optical tweezers and tractor beams.

  3. Model-Based Prognostics of Hybrid Systems

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew; Roychoudhury, Indranil; Bregon, Anibal

    2015-01-01

    Model-based prognostics has become a popular approach to solving the prognostics problem. However, almost all work has focused on prognostics of systems with continuous dynamics. In this paper, we extend the model-based prognostics framework to hybrid systems models that combine both continuous and discrete dynamics. In general, most systems are hybrid in nature, including those that combine physical processes with software. We generalize the model-based prognostics formulation to hybrid systems, and describe the challenges involved. We present a general approach for modeling hybrid systems, and overview methods for solving estimation and prediction in hybrid systems. As a case study, we consider the problem of conflict (i.e., loss of separation) prediction in the National Airspace System, in which the aircraft models are hybrid dynamical systems.

  4. Local adaptation within a hybrid species.

    PubMed

    Eroukhmanoff, F; Hermansen, J S; Bailey, R I; Sæther, S A; Sætre, G-P

    2013-10-01

    Ecological divergence among populations may be strongly influenced by their genetic background. For instance, genetic admixture through introgressive hybridization or hybrid speciation is likely to affect the genetic variation and evolvability of phenotypic traits. We studied geographic variation in two beak dimensions and three other phenotypic traits of the Italian sparrow (Passer italiae), a young hybrid species formed through interbreeding between house sparrows (P. domesticus) and Spanish sparrows (P. hispaniolensis). We found that beak morphology was strongly influenced by precipitation regimes and that it appeared to be the target of divergent selection within Italian sparrows. Interestingly, however, the degree of parental genetic contribution in the hybrid species had no effect on phenotypic beak variation. Moreover, beak height divergence may mediate genetic differentiation between populations, consistent with isolation-by-adaptation within this hybrid species. The study illustrates how hybrid species may be relatively unconstrained by their admixed genetic background, allowing them to adapt rapidly to environmental variation.

  5. Flight Testing of Hybrid Powered Vehicles

    NASA Technical Reports Server (NTRS)

    Story, George; Arves, Joe

    2006-01-01

    Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.

  6. [Hybridization of crucian carp, Carassius carassius (Linnaeus, 1758), in Ukrainian reservoirs and genetic structure of hybrids].

    PubMed

    Mezhzheryn, S V; Kokodyĭĭ, S V; Kulysh, A V; Verlat'iĭĭ, D B; Fedorenko, L V

    2012-01-01

    Hybridization of crucian carps Carassius carassius in polyspecific crucian populations of reservoirs of Ukraine and genetic structure of the hybrids were investigated using biochemical gene marking and cytometric procedure. The fact of wide hybridization between C. auratus and C. carassius was proved to be true by large number of hybrids which can form populations consisting only from hybrid individuals. Hybrids C. auratus x C. carassius were diploid, tryploid and in exceptional cases tetraploid; females and males which most likely breed by hybridogenesis. Besides, some clonal hybrids C. carassius x C. gibelio-1 appearing as tetraploid females, and one triploid female C. carassius x Tinca tinca were revealed. It is supported that hybridization of alien C. auratus with endemic C. carassius became one of mechanisms of replacement and depressions of populations of the last.

  7. Hybrid and Plug-in Electric Vehicles

    SciTech Connect

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  8. Hybrid Warfare: Preparing for Future Conflict

    DTIC Science & Technology

    2015-02-17

    AIR WAR COLLEGE AIR UNIVERSITY HYBRID WARFARE: PREPARING FOR FUTURE CONFLICT by Michael Miller, Lieutenant Colonel, United States Air...00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Hybrid Warfare: Preparing For Future Conflict 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hybrid warfare will be the most likely type of conflict the US and its allies will face in the future

  9. Parallel Hybrid Vehicle Optimal Storage System

    NASA Technical Reports Server (NTRS)

    Bloomfield, Aaron P.

    2009-01-01

    A paper reports the results of a Hybrid Diesel Vehicle Project focused on a parallel hybrid configuration suitable for diesel-powered, medium-sized, commercial vehicles commonly used for parcel delivery and shuttle buses, as the missions of these types of vehicles require frequent stops. During these stops, electric hybridization can effectively recover the vehicle's kinetic energy during the deceleration, store it onboard, and then use that energy to assist in the subsequent acceleration.

  10. 17 CFR 34.3 - Hybrid instrument exemption.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Hybrid instrument exemption... OF HYBRID INSTRUMENTS § 34.3 Hybrid instrument exemption. (a) A hybrid instrument is exempt from all... rendering other services with respect to such exempt hybrid instrument is exempt for such activity from...

  11. 17 CFR 34.3 - Hybrid instrument exemption.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Hybrid instrument exemption... OF HYBRID INSTRUMENTS § 34.3 Hybrid instrument exemption. (a) A hybrid instrument is exempt from all... rendering other services with respect to such exempt hybrid instrument is exempt for such activity from...

  12. 17 CFR 34.3 - Hybrid instrument exemption.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Hybrid instrument exemption... OF HYBRID INSTRUMENTS § 34.3 Hybrid instrument exemption. (a) A hybrid instrument is exempt from all... rendering other services with respect to such exempt hybrid instrument is exempt for such activity from...

  13. 17 CFR 34.3 - Hybrid instrument exemption.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Hybrid instrument exemption... OF HYBRID INSTRUMENTS § 34.3 Hybrid instrument exemption. (a) A hybrid instrument is exempt from all... rendering other services with respect to such exempt hybrid instrument is exempt for such activity from...

  14. Consensus of Hybrid Multi-Agent Systems.

    PubMed

    Zheng, Yuanshi; Ma, Jingying; Wang, Long

    2017-01-27

    In this brief, we consider the consensus problem of hybrid multiagent systems. First, the hybrid multiagent system is proposed, which is composed of continuous-time and discrete-time dynamic agents. Then, three kinds of consensus protocols are presented for the hybrid multiagent system. The analysis tool developed in this brief is based on the matrix theory and graph theory. With different restrictions of the sampling period, some necessary and sufficient conditions are established for solving the consensus of the hybrid multiagent system. The consensus states are also obtained under different protocols. Finally, simulation examples are provided to demonstrate the effectiveness of our theoretical results.

  15. Hybrid incompatibility "snowballs" between Solanum species.

    PubMed

    Moyle, Leonie C; Nakazato, Takuya

    2010-09-17

    Among the reproductive barriers that can isolate species, hybrid sterility is frequently due to dysfunctional interactions between loci that accumulate between differentiating lineages. Theory describing the evolution of these incompatibilities has generated the prediction, still empirically untested, that loci underlying hybrid incompatibility should accumulate faster than linearly with time--the "snowball effect." We evaluated the accumulation of quantitative trait loci (QTL) between species in the plant group Solanum and found evidence for a faster-than-linear accumulation of hybrid seed sterility QTL, thus empirically evaluating and confirming this theoretical prediction. In comparison, loci underlying traits unrelated to hybrid sterility show no evidence for an accelerating rate of accumulation between species.

  16. Nanostructured organic and hybrid solar cells.

    PubMed

    Weickert, Jonas; Dunbar, Ricky B; Hesse, Holger C; Wiedemann, Wolfgang; Schmidt-Mende, Lukas

    2011-04-26

    This Progress Report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices.

  17. RNA in situ hybridization in Arabidopsis.

    PubMed

    Wu, Miin-Feng; Wagner, Doris

    2012-01-01

    RNA in situ hybridization using digoxigenin-labeled riboprobes on tissue sections is a powerful technique for revealing microscopic spatial gene expression. Here, we describe an in situ hybridization method commonly practiced in Arabidopsis research labs. The highly stringent hybridization condition eliminates the usage of Ribonlucease A and gives highly specific signals. This also allows the use of longer probes which enhance signal strength without cross hybridization to closely related genes. In addition, using spin columns in template and riboprobe purification greatly reduces background signals.

  18. A genomic perspective on hybridization and speciation

    PubMed Central

    Payseur, Bret A.; Rieseberg, Loren H.

    2016-01-01

    Hybridization among diverging lineages is common in nature. Genomic data provide a special opportunity to characterize the history of hybridization and the genetic basis of speciation. We review existing methods and empirical studies to identify recent advances in the genomics of hybridization, as well as issues that need to be addressed. Notable progress has been made in the development of methods for detecting hybridization and inferring individual ancestries. However, few approaches reconstruct the magnitude and timing of gene flow, estimate the fitness of hybrids or incorporate knowledge of recombination rate. Empirical studies indicate that the genomic consequences of hybridization are complex, including a highly heterogeneous landscape of differentiation. Inferred characteristics of hybridization differ substantially among species groups. Loci showing unusual patterns – which may contribute to reproductive barriers – are usually scattered throughout the genome, with potential enrichment in sex chromosomes and regions of reduced recombination. We caution against the growing trend of interpreting genomic variation in summary statistics across genomes as evidence of differential gene flow. We argue that converting genomic patterns into useful inferences about hybridization will ultimately require models and methods that directly incorporate key ingredients of speciation, including the dynamic nature of gene flow, selection acting in hybrid populations and recombination rate variation. PMID:26836441

  19. Organic/inorganic hybrid coatings for anticorrosion

    NASA Astrophysics Data System (ADS)

    He, Zhouying

    Compared to organic coatings, organic-inorganic hybrid coatings can potentially improve the anticorrosion performance. The organic phase provides the excellent mechaincal and barrier properties while the inorganic phase acts as an adhesion promoter and corrosion inhibitor. Despite that many studies on alkoxylsilane-based hybrid coatings have been developed and studied, their weatherability and anticorrosion performance has been rarely evaluated. On the other hand, organic-inorganic hybrid coatings based on mixed sol-gel precursors have received much less attention compared to alkoxylsilane-based hybrid coatings. In the first part, polyurethane hybrid coatings with a unique hybrid crosslinked structure as an improved unicoat were successfully prepared. The effect of polyesters on physical properties of the hybrid coatings was studied. Polyurethane coatings derived from cycloaliphatic polyester show comparable properties than those derived from the commercially viable aromatic polyester. Introducing the polysiloxane part into the polyurethane coatings enhanced the crosslinking density, Tg, mechanical properties, and general coating properties. The increased adhesion between the hybrid coating and the substrate make the hybrid coating a good candidate for anticorrosion application, which is shown by electrochemical impedance spectroscopy (EIS). The degradation mechanism of the polyurethane/polysiloxane hybrid coatings under various weathering conditions was shown to be the scission of the urethane and ester groups in the organic phase along with reorganizing and rearranging of the inorganic phase. The anticorrosion performance of the cycloaliphatic hybrid was much better than that of aromatic based hybrid under outdoor weathering based on visual observation and EIS analysis. Acid undercutting is an issue for TEOS based hybrid coating. In the second part, design of experiments (DOEs) was used to statistically investigate on the effect of sol-gel precursors. The

  20. Anticancer hybrids--a patent survey.

    PubMed

    Nepali, Kunal; Sharma, Sahil; Kumar, Dinesh; Budhiraja, Abhishek; Dhar, Kanaya L

    2014-01-01

    The molecular hybridization (MH) is a strategy of rational design of such ligands or prototypes based on the recognition of pharmacophoric sub-units in the molecular structure of two or more known bioactive derivatives which, through the adequate fusion of these sub-units, lead to the design of new hybrid architectures that maintain pre-selected characteristics of the original templates. The concept of molecular hybridization and the promises/challenges associated with these hybrid molecules along with recent advances on anticancer hybrids and critical discussions on the future aspects of the hybrid drugs have already been presented through a number of reports. However, this article presents the structures of potent hybrids reported during the last two decades along with a detailed account of the patent literature. Significant number of patents on the molecules designed through this valuable drug design technique clearly highlight the present focus of the researchers all around the globe towards hybrid molecules capable of amplifying the effect of individual functionalities through action on another bio target or to interact with multiple targets as one single molecule lowering the risk of drug-drug interactions and minimizing the drug resistance. This review article basically emphasizes the patent literature along with an overview of potent hybrid structures, their IC50 /GI50 values against the various cell lines employed. The present compilation can be utilized as a guide for the medicinal chemists focusing on this area of drug design.

  1. The Hybrid Automobile and the Atkinson Cycle

    NASA Astrophysics Data System (ADS)

    Feldman, Bernard J.

    2008-10-01

    The hybrid automobile is a strikingly new automobile technology with a number of new technological features that dramatically improve energy efficiency. This paper will briefly describe how hybrid automobiles work; what are these new technological features; why the Toyota Prius hybrid internal combustion engine operates on the Atkinson cycle instead of the Otto cycle; and what are the advantages and disadvantages of the hybrid automobile. This is a follow-up to my two previous papers on the physics of automobile engines.1,2

  2. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  3. On Hybrid and mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1981-01-01

    Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.

  4. Skeletogenesis in sea urchin interordinal hybrid embryos.

    PubMed

    Brandhorst, B P; Davenport, R

    2001-07-01

    Reciprocal interordinal crosses were made between the sea urchins Strongylocentrotus purpuratus and Lytechinus pictus. Previous research indicated that the expression of many L. pictus genes is reduced in the hybrid embryos. The S. purpuratus gene encoding the spicule matrix protein SM50 and the L. pictus gene encoding its orthologue LSM34 were both expressed at normal levels per gene copy in hybrid embryos, and in about 32 skeletogenic primary mesenchyme cells (PMCs) in hybrid and natural gastrulae. In many embryos of all crosses, 16 PMCs initially ingressed, while 32-64 PMCs were present in gastrulae. The skeletal spicules of most hybrid plutei were predominantly like those of S. purpuratus, consistent with the predominance of expression of S. purpuratus genes in hybrid embryos. The spicules of some hybrid plutei showed features characteristic of L. pictus, such as recurrent rods, branched body rod tips, or convergent ventral transverse rods; a few hybrid spicules were predominantly like those of L. pictus. Based on our observations and the literature, we propose the following. Cues from the ectodermal epithelium position the PMCs as they elaborate the initial triradiate spicules. Their orientation and outgrowth appears to be responsible for the convergence of the tips of body rods in most S. purpuratus and hybrid embryos, unlike in most L. pictus embryos. Variations among hybrid and natural embryos in skeletal branching pattern reflect differences in interpretation by PMCs of patterning cues produced by the ectodermal epithelium that probably have similar spatial distributions in the two species.

  5. Hybrid atom-membrane optomechanics

    NASA Astrophysics Data System (ADS)

    Treutlein, Philipp

    We have realized a hybrid mechanical system in which ultracold atoms and a micromechanical membrane are coupled by radiation pressure forces. The atoms are trapped in an optical lattice, formed by retro-reflection of a laser beam from an optical cavity that contains the membrane as mechanical element. When we laser cool the atoms, we observe that the membrane is sympathetically cooled from ambient to millikelvin temperatures through its interaction with the atoms. Sympathetic cooling with ultracold atoms or ions has previously been used to cool other microscopic systems such as atoms of a different species or molecular ions up to the size of proteins. Here we use it to efficiently cool the fundamental vibrational mode of a macroscopic solid-state system, whose mass exceeds that of the atomic ensemble by ten orders of magnitude. Our hybrid system operates in a regime of large atom-membrane cooperativity. With technical improvements such as cryogenic pre-cooling of the membrane, it enables ground-state cooling and quantum control of mechanical oscillators in a regime where purely optomechanical techniques cannot reach the ground state. References: A. Jöckel, A. Faber, T. Kampschulte, M. Korppi, M. T. Rakher, and P. Treutlein, Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system, Nature Nanotechnology 10, 55 (2015). B. Vogell, T. Kampschulte, M. T. Rakher, A. Faber, P. Treutlein, K. Hammerer, and P. Zoller, Long distance coupling of a quantum mechanical oscillator to the internal states of an atomic ensemble, New J. Phys. 17, 043044 (2015). B. Vogell, K. Stannigel, P. Zoller, K. Hammerer, M. T. Rakher, M. Korppi, A. Jöckel, and P. Treutlein, Cavity-enhanced long-distance coupling of an atomic ensemble to a micromechanical membrane, Phys. Rev. A 87, 023816 (2013).

  6. Interploidy hybridization in sympatric zones: the formation of Epidendrum fulgens × E. puniceoluteum hybrids (Epidendroideae, Orchidaceae)

    PubMed Central

    Moraes, Ana P; Chinaglia, Mariana; Palma-Silva, Clarisse; Pinheiro, Fábio

    2013-01-01

    Interspecific hybridization is a primary cause of extensive morphological and chromosomal variation and plays an important role in plant species diversification. However, the role of interploidal hybridization in the formation of hybrid swarms is less clear. Epidendrum encompasses wide variation in chromosome number and lacks strong premating barriers, making the genus a good model for clarifying the role of chromosomes in postzygotic barriers in interploidal hybrids. In this sense, hybrids from the interploidal sympatric zone between E. fulgens (2n = 2x = 24) and E. puniceoluteum (2n = 4x = 56) were analyzed using cytogenetic techniques to elucidate the formation and establishment of interploidal hybrids. Hybrids were not a uniform group: two chromosome numbers were observed, with the variation being a consequence of severe hybrid meiotic abnormalities and backcrossing with E. puniceoluteum. The hybrids were triploids (2n = 3x = 38 and 40) and despite the occurrence of enormous meiotic problems associated with triploidy, the hybrids were able to backcross, producing successful hybrid individuals with broad ecological distributions. In spite of the nonpolyploidization of the hybrid, its formation is a long-term evolutionary process rather than a product of a recent disturbance, and considering other sympatric zones in Epidendrum, these events could be recurrent. PMID:24198942

  7. Hybrid spread spectrum radio system

    DOEpatents

    Smith, Stephen F.; Dress, William B.

    2010-02-02

    Systems and methods are described for hybrid spread spectrum radio systems. A method includes modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control an amplification circuit that provides a gain to the signal. Another method includes: modulating a signal by utilizing a subset of bits from a pseudo-random code generator to control a fast hopping frequency synthesizer; and fast frequency hopping the signal with the fast hopping frequency synthesizer, wherein multiple frequency hops occur within a single data-bit time.

  8. Hybrid grapheme plasmonic waveguide modulators

    NASA Astrophysics Data System (ADS)

    Ansell, D.; Thackray, B. D.; Aznakayeva, D. E.; Thomas, P.; Auton, G. H.; Marshall, O. P.; Rodriguez, F. J.; Radko, I. P.; Han, Z.; Bozhevolnyi, S. I.; Grigorenko, A. N.

    2016-03-01

    The unique optical and electronic properties of graphene allow one to realize active optical devices. While several types of graphene-based photonic modulators have already been demonstrated, the potential of combining the versatility of graphene with sub-wavelength field confinement of plasmonic/metallic structures is not fully realized. Here we report fabrication and study of hybrid graphene-plasmonic modulators. We consider several types of modulators and identify the most promising one for light modulation at telecom and near-infrared. Our proof-of-concept results pave the way towards on-chip realization of efficient graphene-based active plasmonic waveguide devices for optical communications.

  9. Hybrid laminar flow control study

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Hybrid laminar flow control (HLFC) in which leading edge suction is used in conjunction with wing pressure distribution tailoring to postpone boundary layer transition and reduce friction drag was examined. Airfoil design characteristics required for laminar flow control (LFC) were determined. The aerodynamic design of the HLFC wing for a 178 passenger commercial turbofan transport was developed, and a drag was estimated. Systems changes required to install HLFC were defined, and weights and fuel economy were estimated. The potential for 9% fuel reduction for a 3926-km (2120-nmi) mission is identified.

  10. Kit for detecting nucleic acid sequences using competitive hybridization probes

    DOEpatents

    Lucas, Joe N.; Straume, Tore; Bogen, Kenneth T.

    2001-01-01

    A kit is provided for detecting a target nucleic acid sequence in a sample, the kit comprising: a first hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the first hybridization probe including a first complexing agent for forming a binding pair with a second complexing agent; and a second hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the first hybridization probe does not selectively hybridize, the second hybridization probe including a detectable marker; a third hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a first portion of the target sequence, the third hybridization probe including the same detectable marker as the second hybridization probe; and a fourth hybridization probe which includes a nucleic acid sequence that is sufficiently complementary to selectively hybridize to a second portion of the target sequence to which the third hybridization probe does not selectively hybridize, the fourth hybridization probe including the first complexing agent for forming a binding pair with the second complexing agent; wherein the first and second hybridization probes are capable of simultaneously hybridizing to the target sequence and the third and fourth hybridization probes are capable of simultaneously hybridizing to the target sequence, the detectable marker is not present on the first or fourth hybridization probes and the first, second, third, and fourth hybridization probes each include a competitive nucleic acid sequence which is sufficiently complementary to a third portion of the target sequence that the competitive sequences of the first, second, third, and fourth hybridization probes compete with each other to hybridize to the third portion of the

  11. Hybrid polypeptides having cellobiohydrolase activity and polynucleotides encoding same

    SciTech Connect

    Liu, Ye; Shaghasi, Tarana

    2016-11-01

    The present invention provides hybrid polypeptides having cellobiohydrolase activity. The present invention also provides polynucleotides encoding the hybrid polypeptides; nucleic acid constructs, vectors and host cells comprising the polynucleotides; and processes of using the hybrid polypeptides.

  12. COMPARISON OF COMPARATIVE GENOMIC HYBRIDIZATIONS TECHNOLOGIES ACROSS MICROARRAY PLATFORMS

    EPA Science Inventory

    Comparative Genomic Hybridization (CGH) measures DNA copy number differences between a reference genome and a test genome. The DNA samples are differentially labeled and hybridized to an immobilized substrate. In early CGH experiments, the DNA targets were hybridized to metaphase...

  13. Quantum technologies with hybrid systems

    PubMed Central

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  14. Hybrid Thermochemical/Biological Processing

    NASA Astrophysics Data System (ADS)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  15. Quantum technologies with hybrid systems

    NASA Astrophysics Data System (ADS)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  16. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  17. Nanofabrication of Hybrid Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Dibos, Alan Michael

    The material requirements for optoelectronic devices can vary dramatically depending on the application. Often disparate material systems need to be combined to allow for full device functionality. At the nanometer scale, this can often be challenging because of the inherent chemical and structural incompatibilities of nanofabrication. This dissertation concerns the integration of seemingly dissimilar materials into hybrid optoelectronic devices for photovoltaic, plasmonic, and photonic applications. First, we show that combining a single strip of conjugated polymer and inorganic nanowire can yield a nanoscale solar cell, and modeling of optical absorption and exciton diffusion in this device can provide insight into the efficiency of charge separation. Second, we use an on-chip nanowire light emitting diode to pump a colloidal quantum dot coupled to a silver waveguide. The resulting device is an electro-optic single plasmon source. Finally, we transfer diamond waveguides onto near-field avalanche photodiodes fabricated from GaAs. Embedded in the diamond waveguides are nitrogen vacancy color centers, and the mapping of emission from these single-photon sources is demonstrated using our on-chip detectors, eliminating the need for external photodetectors on an optical table. These studies show the promise of hybrid optoelectronic devices at the nanoscale with applications in alternative energy, optical communication, and quantum optics.

  18. Electric and hybrid vehicles program

    NASA Astrophysics Data System (ADS)

    1992-05-01

    The Department of Energy's (DOE) Electric and Hybrid Vehicles (EHV) Program is conducting research, development, testing, and evaluation activities to encourage the use of electricity and alternative fuels for transportation. This program supports the expanded DOE involvement as recommended in the National Energy Strategy. The transportation sector is the single largest user of petroleum; it consumed 63 percent of all petroleum used in the United States last year. Only a small fraction (5 percent) of electricity is generated from petroleum. Electric vehicles, which are themselves virtually pollution-free, could play a key role in helping to reduce both urban pollution and our dependence on petroleum imports. The program's goals are to develop, in cooperation with industry, the technology that will lead to the production and introduction of pollution-free electric vehicles into the Nation's transportation fleet and substitute domestic sources of energy for petroleum-based fuels. This report describes progress achieved in developing electric and hybrid vehicle technologies, beginning with highlights of recent accomplishments in FY-91. Detailed descriptions are provided of program activities during FY-91 in the areas of battery, fuel-cell, and propulsion system development, and testing and evaluation of new technology in fleet site operations and in laboratories. In accordance with the reporting requirements of the Act, this annual report contains a status report on incentives and use of foreign components and concludes with a list of publications resulting from the DOE program.

  19. Quantum technologies with hybrid systems.

    PubMed

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  20. Optical fiber hybridization assay fluorosensor

    NASA Astrophysics Data System (ADS)

    Pilevar, Saeed; Davis, Christopher C.; Hodzic, Vildana; Portugal, Frank

    1999-04-01

    The present work describes an all-fiber hybridization assay sensor that relies on the evanescent field excitation of fluorescence from surface-bound fluorophores. The evanescent field is made accessible through the use of a long adiabatically tapered single-mode fiber probe. A semiconductor laser operating at 785 nm wavelength is used in a pulsed mode to excite fluorescence in the tapered region of a fiber probe using the near-infrared fluorophore IRD 41. We have carried out real-time hybridization tests for IRD 41-labeled oligonucleotide at various probe concentrations binding to complementary oligonucleotide cross-linked to the tapered fiber surface. Short oligonucleotides (20-mer) bound to the fiber surface have been used to detect near-infrared dye labeled complementary sequences at sub-nanomolar levels. Sandwich assays with total RNA were conducted to examine the capability of the biosensor for detecting bacterial cells using rRNA as the target. The results indicate that this fluorosensor is capable of detecting H. pylori in a sandwich assay at picomolar concentrations.

  1. Silica-Ceria Hybrid Nanostructures

    SciTech Connect

    Munusamy, Prabhakaran; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Baer, Donald R.; Thevuthasan, Suntharampillai

    2012-04-25

    A new hybrid material system that consists of ceria attached silica nanoparticles has been developed. Because of the versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and versatile properties of silica and antioxidant properties of ceria nanoparticles, this material system is ideally suited for biomedical applications. The silica particles of size ~50nm were synthesized by the Stöber synthesis method and ceria nanoparticles of size ~2-3nm was attached to the silica surface using a hetrocoagulation method. The presence of silanol groups on the surface of silica particles mediated homogenous nucleation of ceria which were attached to silica surface by Si-O-Ce bonding. The formations of silica-ceria hybrid nanostructures were characterized by X-photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (HRTEM). The HRTEM image confirms the formation of individual crystallites of ceria nanoparticles attached to the silica surface. The XPS analysis indicates that ceria nanoparticles are chemically bonded to surface of silica and possess mixture of +3 and +4 chemical states.

  2. Evaluating the Pedagogical Potential of Hybrid Models

    ERIC Educational Resources Information Center

    Levin, Tzur; Levin, Ilya

    2013-01-01

    The paper examines how the use of hybrid models--that consist of the interacting continuous and discrete processes--may assist in teaching system thinking. We report an experiment in which undergraduate students were asked to choose between a hybrid and a continuous solution for a number of control problems. A correlation has been found between…

  3. Drought tolerance selection of sugarbeet hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased water demands and drought have resulted in a need to indentify crop hybrids that are drought tolerant, requiring less irrigation to sustain yields. This study was conducted to assess differences in drought tolerance among a group of genetically diverse sugarbeet hybrids. The study was cond...

  4. The Hybridization of Social Science Knowledge.

    ERIC Educational Resources Information Center

    Dogan, Mattei

    1996-01-01

    Describes the growth of science as a twofold process: (1) the fragmentation of formal disciplines; and (2) a recombination of the specialties resulting from this fragmentation. Discusses the division of disciplines into specialized subfields that has led to the development of hybrid specialties, and maintains that the concept of hybridization is…

  5. First-Generation Hybrid Compact Compton Imager

    SciTech Connect

    Cunningham, M; Burks, M; Chivers, D; Cork, C; Fabris, L; Gunter, D; Krings, T; Lange, D; Hull, E; Mihailescu, L; Nelson, K; Niedermayr, T; Protic, D; Valentine, J; Vetter, K; Wright, D

    2005-11-07

    At Lawrence Livermore National Laboratory, we are pursuing the development of a gamma-ray imaging system using the Compton effect. We have built our first generation hybrid Compton imaging system, and we have conducted initial calibration and image measurements using this system. In this paper, we present the details of the hybrid Compton imaging system and initial calibration and image measurements.

  6. Computer code for intraply hybrid composite design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program has been developed and is described herein for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  7. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-09-30

    Advanced Digital Signal Processing for Hybrid Lidar William D. Jemison Clarkson University [Technical Section Technical Objectives The technical...objective of this project is the development and evaluation of various digital signal processing (DSP) algorithms that will enhance hybrid lidar ...algorithm as shown in Figure 1. Hardware Platform for Algorithm Implementation + Underwater Channel Characteristics ^ Lidar DSP Algorithm Figure

  8. Pollination biology in hybridizing Baptisia (Fabaceae) populations.

    PubMed

    Leebens-Mack, J; Milligan, B

    1998-04-01

    In their classic study, Alston and Turner (American Journal of Botany, vol. 50, 159-173, 1963) documented extensive hybridization among four morphologically distinct Baptisia species native to East Texas. While Alston and Turner found putative F1 hybrids in great numbers, they found no evidence of backcrossing. In this study prezygotic and postzygotic reproductive barriers between two of these species, B. leucophaea and B. sphaerocarpa, were investigated and found to be quite weak. Flowering times overlap and bumble bees were observed visiting both species and intermediate hybrids. While pollinator constancy in flights between B. leucophaea and B. sphaerocarpa was moderately strong, significant levels of constancy were not observed in flights involving hybrids and either parental species. Thus, backcrossing was not impeded by pollinator behavior. Further, hybrid pollen was highly stainable (93.5%) and able to effectively set seed in crossing experiments with both parental species. Pollinator behavior was compared in experimental populations with and without hybrid ramets and found to differ between these two treatments. Hybrids were found to facilitate pollinator movement between species. In total, these results suggest that reproductive isolation is not responsible for the rarity of backcrossing in naturally hybridizing B. leucophaea and B. sphaerocarpa populations.

  9. The Federal electric and hybrid vehicle program

    NASA Technical Reports Server (NTRS)

    Schwartz, H. J.

    1980-01-01

    The commercial development and use of electric and hybrid vehicles is discussed with respect to its application as a possible alternative transportation system. A market demonstration is described that seeks to place 10,000 electric hybrid vehicles into public and private sector demonstrations.

  10. California State University, Northridge: Hybrid Lab Courses

    ERIC Educational Resources Information Center

    EDUCAUSE, 2014

    2014-01-01

    California State University, Northridge's Hybrid Lab course model targets high failure rate, multisection, gateway courses in which prerequisite knowledge is a key to success. The Hybrid Lab course model components incorporate interventions and practices that have proven successful at CSUN and other campuses in supporting students, particularly…

  11. NETL's Hybrid Performance, or Hyper, facility

    ScienceCinema

    None

    2016-07-12

    NETL's Hybrid Performance, or Hyper, facility is a one-of-a-kind laboratory built to develop control strategies for the reliable operation of fuel cell/turbine hybrids and enable the simulation, design, and implementation of commercial equipment. The Hyper facility provides a unique opportunity for researchers to explore issues related to coupling fuel cell and gas turbine technologies.

  12. Electrokinetic acceleration of DNA hybridization in microsystems.

    PubMed

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems.

  13. Computer code for intraply hybrid composite design

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1981-01-01

    A computer program is described for intraply hybrid composite design (INHYD). The program includes several composite micromechanics theories, intraply hybrid composite theories, and a hygrothermomechanical theory. These theories provide INHYD with considerable flexibility and capability which the user can exercise through several available options. Key features and capabilities of INHYD are illustrated through selected samples.

  14. 7 CFR 201.11a - Hybrid.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... that is hybrid shall be at least 95 percent of the percentage of pure seed shown unless the percentage of pure seed which is hybrid seed is shown separately. If two or more kinds or varieties are present... on the label. Any one kind or kind and variety that has pure seed which is less than 95 percent...

  15. 7 CFR 201.11a - Hybrid.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... that is hybrid shall be at least 95 percent of the percentage of pure seed shown unless the percentage of pure seed which is hybrid seed is shown separately. If two or more kinds or varieties are present... on the label. Any one kind or kind and variety that has pure seed which is less than 95 percent...

  16. 7 CFR 201.11a - Hybrid.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that is hybrid shall be at least 95 percent of the percentage of pure seed shown unless the percentage of pure seed which is hybrid seed is shown separately. If two or more kinds or varieties are present... on the label. Any one kind or kind and variety that has pure seed which is less than 95 percent...

  17. 7 CFR 201.11a - Hybrid.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... that is hybrid shall be at least 95 percent of the percentage of pure seed shown unless the percentage of pure seed which is hybrid seed is shown separately. If two or more kinds or varieties are present... on the label. Any one kind or kind and variety that has pure seed which is less than 95 percent...

  18. 7 CFR 201.11a - Hybrid.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that is hybrid shall be at least 95 percent of the percentage of pure seed shown unless the percentage of pure seed which is hybrid seed is shown separately. If two or more kinds or varieties are present... on the label. Any one kind or kind and variety that has pure seed which is less than 95 percent...

  19. High power battery systems for hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Corson, Donald W.

    Pure electric and hybrid vehicles have differing demands on the battery system of a vehicle. This results in correspondingly different demands on the battery management of a hybrid vehicle. Examples show the differing usage patterns. The consequences for the battery cells and the battery management are discussed. The importance of good thermal management is underlined.

  20. Hybrid Compounding in New Zealand English

    ERIC Educational Resources Information Center

    Degani, Marta; Onysko, Alexander

    2010-01-01

    This study investigates hybrid compound formation of Maori and English terms in present day New Zealand English (NZE). On the background of Maori and English language contact, the phenomenon of hybrid compounding emerges as a process that, on the one hand, symbolizes the vitality of the Maori element in NZE and, on the other hand, marks the…

  1. Cooling/grounding mount for hybrid circuits

    NASA Technical Reports Server (NTRS)

    Bagstad, B.; Estrada, R.; Mandel, H.

    1981-01-01

    Extremely short input and output connections, adequate grounding, and efficient heat removal for hybrid integrated circuits are possible with mounting. Rectangular clamp holds hybrid on printed-circuit board, in contact with heat-conductive ground plate. Clamp is attached to ground plane by bolts.

  2. Complex Dynamical Behavior in Hybrid Systems

    DTIC Science & Technology

    2012-09-29

    multiple mode switching and other high-level supervisory control architectures, give rise to complicated hybrid dynamical systems with behaviors... switching and other high-level supervisory control architectures, give rise to complicated hybrid dynamical systems with behaviors that can be difficult...Teel, ``Analytical and numerical Lyapunov functions for SISO linear control systems with first-order reset elements”, International Journal of

  3. Benefits of Hybrid Classes in Community Colleges

    ERIC Educational Resources Information Center

    Barker, Joel

    2015-01-01

    This article discusses hybrid courses and their impact on educational facilities, their students, and instructors. Instructors now have over ten years of data related to hybrid courses and by trial and error have devised different strategies to plan and execute lesson plans via partly online forums. Programs are in place that give students the…

  4. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    SciTech Connect

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  5. Design guidelines for hybrid microcircuits; organic adhesives for hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Perkins, K. L.; Licari, J. J.

    1975-01-01

    The properties of organic adhesives were studied to acquire an adequate information base to generate a guideline document for the selection of adhesives for use in high reliability hybrid microcircuits. Specific areas covered include: (1) alternate methods for determining the outgassing of cured adhesives; (2) effects of long term aging at 150C on the electrical properties of conductive adhesives; (3) effects of shelf life age on adhesive characteristics; (4) bond strengths of electrically conductive adhesives on thick film gold metallization, (5) a copper filled adhesive; (6) effects of products outgassed from cured adhesives on device electrical parameters; (7) metal migration from electrically conductive adhesives; and (8) ionic content of electrically insulative adhesives. The tests performed during these investigations are described, and the results obtained are discussed in detail.

  6. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2010-03-30

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  7. Space and power efficient hybrid counters array

    DOEpatents

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  8. Evaluation of a Hybrid Elastic EVA Glove

    NASA Technical Reports Server (NTRS)

    Korona, F. Adam; Akin, David

    2002-01-01

    The hybrid elastic design is based upon an American Society for Engineering Education (ASEE) glove designed by at the Space Systems Laboratory (SSL) in 1985. This design uses an elastic restraint layer instead of convolute joints to achieve greater dexterity and mobility during EVA (extravehicular activity). Two pilot studies and a main study were conducted using the hybrid elastic glove and 4000-series EMU (extravehicular activity unit) glove. Data on dexterity performance, joint range of motion, grip strength and perceived exertion was assessed for the EMU and hybrid elastic gloves with correlations to a barehanded condition. During this study, 30 test subjects performed multiple test sessions using a hybrid elastic glove and a 4000- series shuttle glove in a 4.3psid pressure environment. Test results to date indicate that the hybrid elastic glove performance is approximately similar to the performance of the 4000-series glove.

  9. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation of the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix hybridized with secondary S-glass or Kevlar 49 fiber composites is presented. The specimen stress-strain behavior was determined, showing that mechanical properties of intraply hybrid composites can be measured with available methods such as the ten-degree off-axis test for intralaminar shear, and conventional tests for tensile, flexure, and Izod impact properties. The results also showed that combinations of high modulus graphite/S-glass/epoxy matrix composites exist which yield intraply hybrid laminates with the best 'balanced' properties, and that the translation efficiency of mechanical properties from the constituent composites to intraply hybrids may be assessed with a simple equation.

  10. Ultra-thin microporous/hybrid materials

    DOEpatents

    Jiang, Ying-Bing [Albuquerque, NM; Cecchi, Joseph L [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM

    2012-05-29

    Ultra-thin hybrid and/or microporous materials and methods for their fabrication are provided. In one embodiment, the exemplary hybrid membranes can be formed including successive surface activation and reaction steps on a porous support that is patterned or non-patterned. The surface activation can be performed using remote plasma exposure to locally activate the exterior surfaces of porous support. Organic/inorganic hybrid precursors such as organometallic silane precursors can be condensed on the locally activated exterior surfaces, whereby ALD reactions can then take place between the condensed hybrid precursors and a reactant. Various embodiments can also include an intermittent replacement of ALD precursors during the membrane formation so as to enhance the hybrid molecular network of the membranes.

  11. Flexural performance of woven hybrid composites

    NASA Astrophysics Data System (ADS)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  12. Hybrid percolation transition in complex networks

    NASA Astrophysics Data System (ADS)

    Kahng, Byungnam

    Percolation has been one of the most applied statistical models. Percolation transition is one of the most robust continuous transitions known thus far. However, recent extensive researches reveal that it exhibits diverse types of phase transitions such as discontinuous and hybrid phase transitions. Here hybrid phase transition means the phase transition exhibiting natures of both continuous and discontinuous phase transitions simultaneously. Examples include k-core percolation, cascading failures in interdependent networks, synchronization, etc. Thus far, it is not manifest if the critical behavior of hybrid percolation transitions conforms to the conventional scaling laws of second-order phase transition. Here, we investigate the critical behaviors of hybrid percolation transitions in the cascading failure model in inter-dependent networks and the restricted Erdos-Renyi model. We find that the critical behaviors of the hybrid percolation transitions contain some features that cannot be described by the conventional theory of second-order percolation transitions.

  13. Hybrid Laminates for Application in North Conditions

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Oreshko, E. I.; Erasov, V. S.; Serebrennikova, N. Yu.

    2016-11-01

    A hybrid aluminum-lithium alloy/SIAL laminate as a possible material for application in structures operated in North conditions is considered. The finite-element method is used for a buckling stability analysis of hybrid panels, bars, and plates. A technique allowing one to compare the buckling stability of multilayered hybrid plates is offered. Compression tests were run on a hybrid laminate wing panel as a prototype of the top panel of TU-204SM airplane made from a high-strength B95T2 aluminum alloy. It turned out that the lighter composite panel had a higher load-carrying capacity than the aluminum one. Results of investigation into the properties the hybrid aluminum-lithium alloy/SIAL laminate and an analysis of scientific-technical data on this subject showed that this composite material could be used in the elements of airframes, including those operated in north conditions.

  14. The role of epigenetics in hybrid vigour.

    PubMed

    Groszmann, Michael; Greaves, Ian K; Fujimoto, Ryo; Peacock, W James; Dennis, Elizabeth S

    2013-12-01

    Hybrid vigour, or heterosis, refers to the increased yield and biomass of hybrid offspring relative to the parents. Although this has been exploited in plants for agriculture and horticulture, the molecular and cellular mechanisms underlying hybrid vigour are largely unknown. Genetic analyses show that there are a large number of quantitative trait loci (QTLs) that contribute to the heterotic phenotype, indicating that it is a complex phenomenon. Gene expression in hybrids is regulated by the interactions of the two parental epigenetic systems and the underlying genomes. Increasing understanding of the interplay of small RNA (sRNA) molecules, DNA methylation, and histone marks provides new opportunities to define the basis of hybrid vigour and to understand why F1 heterosis is not passed on to subsequent generations. We discuss recent findings that suggest the existence of several pathways that alter DNA methylation patterns, which may lead to transcriptional changes resulting in the heterotic phenotype.

  15. Hybridization and Selective Release of DNA Microarrays

    SciTech Connect

    Beer, N R; Baker, B; Piggott, T; Maberry, S; Hara, C M; DeOtte, J; Benett, W; Mukerjee, E; Dzenitis, J; Wheeler, E K

    2011-11-29

    DNA microarrays contain sequence specific probes arrayed in distinct spots numbering from 10,000 to over 1,000,000, depending on the platform. This tremendous degree of multiplexing gives microarrays great potential for environmental background sampling, broad-spectrum clinical monitoring, and continuous biological threat detection. In practice, their use in these applications is not common due to limited information content, long processing times, and high cost. The work focused on characterizing the phenomena of microarray hybridization and selective release that will allow these limitations to be addressed. This will revolutionize the ways that microarrays can be used for LLNL's Global Security missions. The goals of this project were two-fold: automated faster hybridizations and selective release of hybridized features. The first study area involves hybridization kinetics and mass-transfer effects. the standard hybridization protocol uses an overnight incubation to achieve the best possible signal for any sample type, as well as for convenience in manual processing. There is potential to significantly shorten this time based on better understanding and control of the rate-limiting processes and knowledge of the progress of the hybridization. In the hybridization work, a custom microarray flow cell was used to manipulate the chemical and thermal environment of the array and autonomously image the changes over time during hybridization. The second study area is selective release. Microarrays easily generate hybridization patterns and signatures, but there is still an unmet need for methodologies enabling rapid and selective analysis of these patterns and signatures. Detailed analysis of individual spots by subsequent sequencing could potentially yield significant information for rapidly mutating and emerging (or deliberately engineered) pathogens. In the selective release work, optical energy deposition with coherent light quickly provides the thermal energy to

  16. Hybrid Composite Cryogenic Tank Structure

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas

    2011-01-01

    A hybrid lightweight composite tank has been created using specially designed materials and manufacturing processes. The tank is produced by using a hybrid structure consisting of at least two reinforced composite material systems. The inner composite layer comprises a distinct fiber and resin matrix suitable for cryogenic use that is a braided-sleeve (and/or a filamentwound layer) aramid fiber preform that is placed on a removable mandrel (outfitted with metallic end fittings) and is infused (vacuum-assisted resin transfer molded) with a polyurethane resin matrix with a high ductility at low temperatures. This inner layer is allowed to cure and is encapsulated with a filamentwound outer composite layer of a distinct fiber resin system. Both inner and outer layer are in intimate contact, and can also be cured at the same time. The outer layer is a material that performs well for low temperature pressure vessels, and it can rely on the inner layer to act as a liner to contain the fluids. The outer layer can be a variety of materials, but the best embodiment may be the use of a continuous tow of carbon fiber (T-1000 carbon, or others), or other high-strength fibers combined with a high ductility epoxy resin matrix, or a polyurethane matrix, which performs well at low temperatures. After curing, the mandrel can be removed from the outer layer. While the hybrid structure is not limited to two particular materials, a preferred version of the tank has been demonstrated on an actual test tank article cycled at high pressures with liquid nitrogen and liquid hydrogen, and the best version is an inner layer of PBO (poly-pphenylenebenzobisoxazole) fibers with a polyurethane matrix and an outer layer of T-1000 carbon with a high elongation epoxy matrix suitable for cryogenic temperatures. A polyurethane matrix has also been used for the outer layer. The construction method is ideal because the fiber and resin of the inner layer has a high strain to failure at cryogenic

  17. Coaxial hybrid iron (CHI) wiggler

    NASA Astrophysics Data System (ADS)

    Jackson, Robert H.; Freund, Henry P.; Pershing, Dean E.; Taccetti, J. M.

    1993-11-01

    A magnetic wiggler design has been developed for applications in free-electron lasers which is scalable to small periods with high field amplitude, high beam current acceptance, and excellent transverse focusing and beam propagation properties. The Coaxial Hybrid Iron (CHI) wiggler design consists of a coaxial arrangement of alternating ferromagnetic and non- ferromagnetic rings with the central portion of the coax shifted by one half period. The entire arrangement is immersed in a solenoidal field which results in a cylindrically symmetric periodic field. A key advantage of this wiggler configuration is its capacity to handle very high beam currents with excellent focusing and transport properties. FEL configuration using the CHI wiggler design have the potential for high power, high frequency coherent generation in relatively compact systems. Analytic and simulated characteristics of the CHI wiggler are presented.

  18. An IIR median hybrid filter

    NASA Technical Reports Server (NTRS)

    Bauer, Peter H.; Sartori, Michael A.; Bryden, Timothy M.

    1992-01-01

    A new class of nonlinear filters, the so-called class of multidirectional infinite impulse response median hybrid filters, is presented and analyzed. The input signal is processed twice using a linear shift-invariant infinite impulse response filtering module: once with normal causality and a second time with inverted causality. The final output of the MIMH filter is the median of the two-directional outputs and the original input signal. Thus, the MIMH filter is a concatenation of linear filtering and nonlinear filtering (a median filtering module). Because of this unique scheme, the MIMH filter possesses many desirable properties which are both proven and analyzed (including impulse removal, step preservation, and noise suppression). A comparison to other existing median type filters is also provided.

  19. Optimization of hybrid solar dryer

    SciTech Connect

    Khattab, N.M.

    1996-10-01

    The hybrid solar convective drying system considered here consists of a solar air heater, drying chamber, and electric heater to provide air at constant temperature to the dryer. In order to reduce the electric energy consumed, pebble bed storage was used, comprising one unit with drying chamber. Computer modeling and simulation were carried out to analyze the effect of design dimensions of the air heater and pebble storage bed on energy savings. Measurements of hourly weather conditions were used in the simulation to determine the optimum design dimensions that would realize minimum electric energy for each operating temperature. The energy saved for the four seasons of the year was obtained at different tilt angels of the air heater to discern the best tilt for each drying season, realizing minimum energy consumption.

  20. Hybrid microgels with antibacterial properties.

    PubMed

    Häntzschel, Nadine; Hund, Rolf-Dieter; Hund, Heike; Schrinner, Marc; Lück, Christian; Pich, Andrij

    2009-05-13

    In the present work, we have used aqueous microgels as containers for the deposition of silver nanoparticles (AgNPs). It has been shown that AgNPs can be effectively incorporated in the microgel interior during the in situ reduction of silver ions. Obtained hybrid microgels with variable AgNPs loading (from 1 to 12 wt.-%) have been used as antibacterial agents for two bacteria types. The experimental results indicate that porous microgel structure allows the release of the silver ions from the AgNPs surface into an aqueous phase. This ensures effective reduction in the number of bacterial colonies in test plates and complete bacteria killing. The antibacterial efficiency of the microgel particles increases with AgNPs loading.

  1. Quantum photonics hybrid integration platform

    SciTech Connect

    Murray, E.; Floether, F. F.; Ellis, D. J. P.; Meany, T.; Bennett, A. J. Shields, A. J.; Lee, J. P.; Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A.

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  2. Permutation on hybrid natural inflation

    NASA Astrophysics Data System (ADS)

    Carone, Christopher D.; Erlich, Joshua; Ramos, Raymundo; Sher, Marc

    2014-09-01

    We analyze a model of hybrid natural inflation based on the smallest non-Abelian discrete group S3. Leading invariant terms in the scalar potential have an accidental global symmetry that is spontaneously broken, providing a pseudo-Goldstone boson that is identified as the inflaton. The S3 symmetry restricts both the form of the inflaton potential and the couplings of the inflaton field to the waterfall fields responsible for the end of inflation. We identify viable points in the model parameter space. Although the power in tensor modes is small in most of the parameter space of the model, we identify parameter choices that yield potentially observable values of r without super-Planckian initial values of the inflaton field.

  3. Hybrid Multifoil Aerogel Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Sakamoto, Jeffrey; Paik, Jong-Ah; Jones, Steven; Nesmith, Bill

    2008-01-01

    This innovation blends the merits of multifoil insulation (MFI) with aerogel-based insulation to develop a highly versatile, ultra-low thermally conductive material called hybrid multifoil aerogel thermal insulation (HyMATI). The density of the opacified aerogel is 240 mg/cm3 and has thermal conductivity in the 20 mW/mK range in high vacuum and 25 mW/mK in 1 atmosphere of gas (such as argon) up to 800 C. It is stable up to 1,000 C. This is equal to commercially available high-temperature thermal insulation. The thermal conductivity of the aerogel is 36 percent lower compared to several commercially available insulations when tested in 1 atmosphere of argon gas up to 800 C.

  4. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  5. Nanorice Particles: Hybrid Plasmonic Nanostructures

    NASA Technical Reports Server (NTRS)

    Wang, Hui (Inventor); Brandl, Daniel (Inventor); Le, Fei (Inventor); Nordlander, Peter (Inventor); Halas, Nancy J. (Inventor)

    2010-01-01

    A new hybrid nanoparticle, i.e., a nanorice particle, which combines the intense local fields of nanorods with the highly tunable plasmon resonances of nanoshells, is described herein. This geometry possesses far greater structural tunability than previous nanoparticle geometries, along with much larger local field enhancements and far greater sensitivity as a surface plasmon resonance (SPR) nanosensor than presently known dielectric-conductive material nanostructures. In an embodiment, a nanoparticle comprises a prolate spheroid-shaped core having a first aspect ratio. The nanoparticle also comprises at least one conductive shell surrounding said prolate spheroid-shaped core. The nanoparticle has a surface plasmon resonance sensitivity of at least 600 nm RIU(sup.-1). Methods of making the disclosed nanorice particles are also described herein.

  6. Hybrid Shielding for Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  7. Stellarmak a hybrid stellarator: Spheromak

    SciTech Connect

    Hartman, C.W.

    1980-01-04

    This paper discusses hybridization of modified Stellarator-like transform windings (T-windings) with a Spheromak or Field-Reversed-Mirror configuration. This configuration, Stellarmak, retains the important topological advantage of the Spheromak or FRM of having no plasma linking conductors or blankets. The T-windings provide rotational transformation in toroidal angle of the outer poloidal field lines, in effect creating a reversed B/sub Toroidal/ Spheromak or adding average B/sub T/ to the FRM producing higher shear, increased limiting ..beta.., and possibly greater stability to kinks and tilt. The presence of field ripple in the toroidal direction may be sufficient to inhibit cancellation of directed ion current by electron drag to allow steady state operation with the toroidal as well as poloidal current maintained by neutral beams.

  8. Sexual dimorphism in hybrids rats.

    PubMed

    Garcia-Falgueras, Alicia; Pinos, Helena; Fernández, Rosa; Collado, Paloma; Pasaro, Eduardo; Segovia, Santiago; Guillamon, Antonio

    2006-12-06

    Laboratory rat strains descend from Wistar rats as a consequence of artificial selection. Previously we reported that the medial posterior division of the bed nucleus of the stria terminalis (BSTMP) was sexually dimorphic in Wistar and Long-Evans strains while the medial anterior division (BSTMA) and the locus coeruleus (LC) only showed sex differences in the ancestor Wistar strain. The lateral posterior division (BSTLP) was isomorphic in both strains. The present work studies the number of neurons in the BSTMP, BSTMA, BSTLP and LC of male and female Wistar and Long-Evans rats (F(0)) and their hybrid F(1) and F(2) generations. The BSTMP is sexually dimorphic in the F(0), F(1) and F(2) generations while sex differences in the LC are only seen in F(0) Wistar rats but not in the F(0) Long-Evans or the F(1) and F(2) hybrid generations. Sex differences in the BSTMA are seen in F(0) Wistar but not in F(0) Long-Evans rats and completely disappear in the F(2) generations. The number of neurons in the LC of both males and females decreased in heterozygotic individuals (F(1)) but increased in homozygotic (F(2)). However, the number of neurons in the BSTMP changes significantly over the generations, although the ratio of neurons (female/male) is stable and unaffected in homo- or heterozygosis. Thus, the mechanism that regulates the neuronal female/male ratio would be different from the one that controls the number of neurons. The facts that sex differences in the BSTMP are not affected by homo- or heterozygosis and that they are seen in several mammalian orders suggest the existence of a "fixed" type of brain sex differences in the Mammalia Class.

  9. Hybrid electric vehicles in Europe and Japan

    SciTech Connect

    Wyczalek, F.A.

    1996-12-31

    Beginning in 1990, the major automotive passenger vehicle manufacturers once again reexamined the battery powered electric vehicle (EV). This intensive effort to reduce the battery EV to commercial practice focused attention on the key issue of limited vehicle range, resulting from the low energy density and high mass characteristics of batteries, in comparison to liquid hydrocarbon fuels. Consequently, by 1995, vehicle manufacturers turned their attention to hybrid electric vehicles (HEV). This redirection of EV effort is highlighted by the focus on experimental hybrid EV displayed at the 1995 Frankfurt Motor Show and the Tokyo Motor Show in Japan. In Europe the 56th IAA in Frankfurt included twelve or more EV designed for personnel transportation, and among them, two featured hybrid-electric (HEV) systems: the Peugeot turboelectric HEV, and the Opel Ermscher Selectra HEV. In Japan, at the 31st Tokyo Motor Show, among the twenty or more EV on display, seven were hybrid HEV by: Daihatsu, Mitsubishi, Toyota: and, the Suburu, Suzuki, and the Kia KEV4 parallel type HEV. This paper presents a comparative analysis of the key features of these hybrid propulsion systems. Among the conclusions, two issues are evident: one, the focus is on series-type hybrid systems, with the exception of the parallel Suburu and Suzuki HEV, and, two, the major manufacturers are turning to the hybrid concept in their search for solutions to two key EV Issues: limited driving range; and, heating and air conditioning, associated with the low energy density characteristic of batteries.

  10. Modeling hybrid perovskites by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  11. Novel brewing yeast hybrids: creation and application.

    PubMed

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  12. Current Status of Hybrid Bearing Damage Detection

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Certo, Joseph M.; Morales, Wilfredo

    2004-01-01

    Advances in material development and processing have led to the introduction of ceramic hybrid bearings for many applications. The introduction of silicon nitride hybrid bearings into the high pressure oxidizer turbopump, on the space shuttle main engine, led NASA to solve a highly persistent and troublesome bearing problem. Hybrid bearings consist of ceramic balls and steel races. The majority of hybrid bearings utilize Si3N4 balls. The aerospace industry is currently studying the use of hybrid bearings and naturally the failure modes of these bearings become an issue in light of the limited data available. In today s turbine engines and helicopter transmissions, the health of the bearings is detected by the properties of the debris found in the lubrication line when damage begins to occur. Current oil debris sensor technology relies on the magnetic properties of the debris to detect damage. Since the ceramic rolling elements of hybrid bearings have no metallic properties, a new sensing system must be developed to indicate the system health if ceramic components are to be safely implemented in aerospace applications. The ceramic oil debris sensor must be capable of detecting ceramic and metallic component damage with sufficient reliability and forewarning to prevent a catastrophic failure. The objective of this research is to provide a background summary on what is currently known about hybrid bearing failure modes and to report preliminary results on the detection of silicon nitride debris, in oil, using a commercial particle counter.

  13. Hybrid Mesh for Nasal Airflow Studies

    PubMed Central

    Zubair, Mohammed; Abdullah, Mohammed Zulkifly; Ahmad, Kamarul Arifin

    2013-01-01

    The accuracy of the numerical result is closely related to mesh density as well as its distribution. Mesh plays a very significant role in the outcome of numerical simulation. Many nasal airflow studies have employed unstructured mesh and more recently hybrid mesh scheme has been utilized considering the complexity of anatomical architecture. The objective of this study is to compare the results of hybrid mesh with unstructured mesh and study its effect on the flow parameters inside the nasal cavity. A three-dimensional nasal cavity model is reconstructed based on computed tomographic images of a healthy Malaysian adult nose. Navier-Stokes equation for steady airflow is solved numerically to examine inspiratory nasal flow. The pressure drop obtained using the unstructured computational grid is about 22.6 Pa for a flow rate of 20 L/min, whereas the hybrid mesh resulted in 17.8 Pa for the same flow rate. The maximum velocity obtained at the nasal valve using unstructured grid is 4.18 m/s and that with hybrid mesh is around 4.76 m/s. Hybrid mesh reported lower grid convergence index (GCI) than the unstructured mesh. Significant differences between unstructured mesh and hybrid mesh are determined highlighting the usefulness of hybrid mesh for nasal airflow studies. PMID:23983811

  14. Modeling hybrid perovskites by molecular dynamics.

    PubMed

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  15. Hybrid options for light-duty vehicles.

    SciTech Connect

    An, F., Stodolsky, F.; Santini, D.

    1999-07-19

    Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

  16. "Hybrid" ameloblastoma: a report of two cases.

    PubMed

    Lawal, A O; Adisa, A O; Olusanya, A A; Adeyemi, B F

    2011-12-01

    Ameloblastoma is the most common odontogenic tumour. The tumour has been described as a benign but locally invasive polymorphic neoplasm. Hybrid lesions have been described, which combine histological features of desmoplastic and conventional ameloblastoma. The hybrid ameloblastoma is rare and only few cases have been reported worldwide. We present two cases seen from a review of 195 ameloblastoma cases seen over a ten year period. The cases presented with clinical features of the conventional ameloblastoma such as bucco-lingual bone expansion and multilocular radiololucency. Larger clinical series of hybrid ameloblastoma need to be reviewed in order to better characterize the clinical behaviour, aggressiveness and prognosis of this rare variant of ameloblastoma.

  17. Hadron rapidity spectra within a hybrid model

    NASA Astrophysics Data System (ADS)

    Khvorostukhin, A. S.; Toneev, V. D.

    2017-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  18. Interspecific hybridization between greater kudu and nyala.

    PubMed

    Dalton, Desiré L; Tordiffe, Adrian; Luther, Ilse; Duran, Assumpta; van Wyk, Anna M; Brettschneider, Helene; Oosthuizen, Almero; Modiba, Catherine; Kotzé, Antoinette

    2014-06-01

    Hybridization of wildlife species, even in the absence of introgression, is of concern due to wasted reproductive effort and a reduction in productivity. In this study we detail an accidental mating between a female nyala (Tragelaphus angasii) and a male greater kudu (T. strepsiceros). The hybrid was phenotypically nyala and was identified as such based on mitochondrial DNA. Further genetic analysis based on nine microsatellite markers, chromosome number and chromosome morphology however, confirmed its status as an F1 hybrid. Results obtained from a reproductive potential assessment indicated that this animal does not have the potential to breed successfully and can be considered as sterile.

  19. Fuzzy Hybrid Deliberative/Reactive Paradigm (FHDRP)

    NASA Technical Reports Server (NTRS)

    Sarmadi, Hengameth

    2004-01-01

    This work aims to introduce a new concept for incorporating fuzzy sets in hybrid deliberative/reactive paradigm. After a brief review on basic issues of hybrid paradigm the definition of agent-based fuzzy hybrid paradigm, which enables the agents to proceed and extract their behavior through quantitative numerical and qualitative knowledge and to impose their decision making procedure via fuzzy rule bank, is discussed. Next an example performs a more applied platform for the developed approach and finally an overview of the corresponding agents architecture enhances agents logical framework.

  20. Competitive displacement of DNA during surface hybridization.

    PubMed

    Bishop, J; Wilson, C; Chagovetz, A M; Blair, S

    2007-01-01

    Using real-time dual-color fluorescence detection, we have experimentally tracked individual target species during competitive DNA surface hybridization in a two-component sample. Our experimental results demonstrate displacement of the lower affinity species by the higher affinity species and corroborate recent theoretical models describing competitive DNA surface hybridization. Competition at probe sites complementary to one of the two DNA species was monitored in separate experiments for two different target pairs. Each pair differs in sequence by a single nucleotide polymorphism, and one pair includes a folding target. We propose a mechanistic interpretation of the differences between hybridization curves of targets in multi-component and single-component experiments.

  1. Advanced propulsion system concept for hybrid vehicles

    NASA Technical Reports Server (NTRS)

    Bhate, S.; Chen, H.; Dochat, G.

    1980-01-01

    A series hybrid system, utilizing a free piston Stirling engine with a linear alternator, and a parallel hybrid system, incorporating a kinematic Stirling engine, are analyzed for various specified reference missions/vehicles ranging from a small two passenger commuter vehicle to a van. Parametric studies for each configuration, detail tradeoff studies to determine engine, battery and system definition, short term energy storage evaluation, and detail life cycle cost studies were performed. Results indicate that the selection of a parallel Stirling engine/electric, hybrid propulsion system can significantly reduce petroleum consumption by 70 percent over present conventional vehicles.

  2. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    NASA Astrophysics Data System (ADS)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  3. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  4. Powertrain system for a hybrid electric vehicle

    DOEpatents

    Reed, Jr., Richard G.; Boberg, Evan S.; Lawrie, Robert E.; Castaing, Francois J.

    1999-08-31

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  5. Localized lower hybrid acceleration of ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.

    1992-01-01

    Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.

  6. Chromosome doubling in vine cacti hybrids.

    PubMed

    Tel-Zur, N; Abbo, S; Bar-Zvi, D; Mizrahi, Y

    2003-01-01

    We performed reciprocal crosses between the tetraploid Selenicereus megalanthus and the diploid Hylocereus species, H. undatus and H. polyrhizus. S. megalanthus x H. undatus gave rise to viable hexaploids and 6x-aneuploid hybrids rather than to the expected triploids. No genuine hybrids were obtained in the reciprocal cross. The pollen diameter of the tetraploid S. megalanthus varied widely, indicating the occurrence of unreduced gametes, while that of H. undatus pollen was very uniform, indicating an extremely low frequency of unreduced gametes. This finding suggests that the hexaploids were formed by chromosome doubling after the formation of the hybrid triploid zygote rather than by fusion of unreduced gametes of the two species.

  7. Checkpointing for a hybrid computing node

    DOEpatents

    Cher, Chen-Yong

    2016-03-08

    According to an aspect, a method for checkpointing in a hybrid computing node includes executing a task in a processing accelerator of the hybrid computing node. A checkpoint is created in a local memory of the processing accelerator. The checkpoint includes state data to restart execution of the task in the processing accelerator upon a restart operation. Execution of the task is resumed in the processing accelerator after creating the checkpoint. The state data of the checkpoint are transferred from the processing accelerator to a main processor of the hybrid computing node while the processing accelerator is executing the task.

  8. Hybrid catfish offers performance advantages for US catfish farmers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Channel x blue hybrid catfish is the only hybrid among 28 interspecific hybrid crosses and backcrosses evaluated within the family Ictaluridae to exhibit dominant traits desirable for intensive aquaculture. In a 2004 pond trial, hybrid catfish outperformed channel catfish in all the production trai...

  9. Hybrid lipid-based nanostructures

    NASA Astrophysics Data System (ADS)

    Dayani, Yasaman

    Biological membranes serve several important roles, such as structural support of cells and organelles, regulation of ionic and molecular transport, barriers to non-mediated transport, contact between cells within tissues, and accommodation of membrane proteins. Membrane proteins and other vital biomolecules incorporated into the membrane need a lipid membrane to function. Due to importance of lipid bilayers and their vital function in governing many processes in the cell, the development of various models as artificial lipid membranes that can mimic cell membranes has become a subject of great interest. Using different models of artificial lipid membranes, such as liposomes, planar lipid bilayers and supported or tethered lipid bilayers, we are able to study many biophysical processes in biological membranes. The ability of different molecules to interact with and change the structure of lipid membranes can be also investigated in artificial lipid membranes. An important application of lipid bilayer-containing interfaces is characterization of novel membrane proteins for high throughput drug screening studies to investigate receptor-drug interactions and develop biosensor systems. Membrane proteins need a lipid bilayer environment to preserve their stability and functionality. Fabrication of materials that can interact with biomolecules like proteins necessitates the use of lipid bilayers as a mimic of cell membranes. The objective of this research is to develop novel hybrid lipid-based nanostructures mimicking biological membranes. Toward this aim, two hybrid biocompatible structures are introduced: lipid bilayer-coated multi-walled carbon nanotubes (MWCNTs) and hydrogel-anchored liposomes with double-stranded DNA anchors. These structures have potential applications in biosensing, drug targeting, drug delivery, and biophysical studies of cell membranes. In the first developed nanostructure, lipid molecules are covalently attached to the surfaces of MWCNTs, and

  10. The Hybrid Mindset and Operationalizing Innovation: Toward a Theory of Hybrid

    DTIC Science & Technology

    2014-05-22

    NASRALLAH IN THE 2006 SECOND LEBANON WAR ..... 45 CONCLUSION: A THOUGHT PROCESS FOR INNOVATION AND TOWARDS A THOERY OF HYBRID...is that it expands warfare beyond the cognitive boundaries and dimensions of warfare common to most Western military thinking. To understand... artists 13 preparing to combat future hybrid threats. Understanding a hybrid way of thinking will help to create the initial framework for a

  11. Passive and Hybrid PFC Rectifiers

    NASA Astrophysics Data System (ADS)

    Nishida, Yasuyuki

    The diode rectifier offers several desirable features such as a unity displacement-factor and a high efficiency with low complexity and high reliability, but the utility line-current is significantly distorted. The traditional multi-pulse (e.g., 12-pulse, 18-pulse and so on) PAM concept by means of multiple rectifier units and phase-shifting isolation-transformers is a well-known scheme to improve the input line-current waveform and reduce dc-current/voltage ripple. Though, the necessity of the isolation-transformer is a great weak point especially for applications in low to medium power range. To mitigate the problem, several investigations have been done. The PWM rectifier is a modern and effective alternative, although it results in a higher initial cost, lower efficiency and EMI noise problems due to high frequency switching. To solve the problem, we have two alternatives without PWM and are so called “Passive” schemes. One is the multi-pulse/multi-phase scheme without the isolation transformer but with an autotransformer. This scheme results in a simplified multi-pulse PAM rectifier. The other is the Third-Harmonic-Current Injection and the expanded schemes. Although these two schemes have been studied independently in most cases, new types of diode PFC rectifier obtained by combining the two schemes have been studied recently. Additionally, further new topologies, so called “Hybrid” type, have been proposed very recently. The rectifiers with the new concept consist of an autotransformer-connected double 3-phase bridge 12-pulse rectifier and a PWM dc-dc converter on the dc-side to perform the current injection. The Hybrid rectifiers offer output voltage controllability and sinusoidal input currents similarly to the PWM rectifiers. To show the current trends and remaining possibilities of the Passive and Hybrid rectifiers, this paper gives a survey and historical review of the rectifiers. Then, some new topologies in the category are investigated

  12. Somatic hybrids Solanum nigrum (+) S. tuberosum: morphological assessment and verification of hybridity.

    PubMed

    Szczerbakowa, A; Maciejewska, U; Zimnoch-Guzowska, E; Wielgat, B

    2003-02-01

    Somatic hybrids between the cultivated potato diploid hybrid clone, ZEL-1136, and hexaploid non-tuber-bearing wild species Solanum nigrum L. exhibiting resistance to Phytophthora infestans were regenerated after PEG-mediated fusion of mesophyll protoplasts. The objective was to transfer the late-blight resistance genes from the wild species into plants of the cultivated potato clone. From a total of 59 regenerants, 40 clones survived and have been maintained in vitro on hormone-free MS/2 medium. Thirty-two somatic hybrids were identified by their intermediate morphology (leaves of nigrum type and flowers of tuberosum type) and verified by flow cytometry and random amplified polymorphic DNA (RAPD) patterns. The RAPD analysis of nuclear DNA confirmed the hybrid nature of 29 clones. Flow cytometry revealed a wide range of ploidy in the generated hybrids, from nearly the tetra- to decaploid level. Most of the hybrid clones were stable in vitro, grew vigorously in soil, and set flowers and parthenocarpic berries. However, all of the flowering hybrids were male-sterile. Nine hybrid clones produced tuber-like structures in soil. The most vigorous flowering somatic hybrids were selected for assessment of the late-blight resistance.

  13. Hybrids do it better: Lessons from websites of hybrid organizations in modern health movements.

    PubMed

    Striley, Katie Margavio; Field-Springer, Kimberly

    2016-01-01

    Hybrid organizations in modern health movements adopt multiple organizational logistics, allowing them to more effectively achieve social change. We conducted an analysis of 152 probreastfeeding organization websites categorized as institutionalized organizations, grassroots organizations, or hybrid organizations. Through a series of ANOVA analyses, we found that hybrid's websites provide significantly more useful health care information, better maintained dialogue with members, more efficiently mobilized members, commoditized health care issues less, and created member identity while maintaining institutional ties. Ultimately, hybrids tended to incorporate the positive elements from both grassroots and institutional organizations, while rejecting many of the negative elements.

  14. Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars

    NASA Astrophysics Data System (ADS)

    van Vliet, Oscar P. R.; Kruithof, Thomas; Turkenburg, Wim C.; Faaij, André P. C.

    We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be seen both as an alternative to petrol, diesel and parallel hybrid cars, as well as an intermediate stage towards fully electric or fuel cell cars. We calculate the fuel consumption and costs of four diesel-fuelled series hybrid, four plug-in hybrid and four fuel cell car configurations, and compared these to three reference cars. We find that series hybrid cars may reduce fuel consumption by 34-47%, but cost €5000-12,000 more. Well-to-wheel greenhouse gas emissions may be reduced to 89-103 g CO 2 km -1 compared to reference petrol (163 g km -1) and diesel cars (156 g km -1). Series hybrid cars with wheel motors have lower weight and 7-21% lower fuel consumption than those with central electric motors. The fuel cell car remains uncompetitive even if production costs of fuel cells come down by 90%. Plug-in hybrid cars are competitive when driving large distances on electricity, and/or if cost of batteries come down substantially. Well-to-wheel greenhouse gas emissions may be reduced to 60-69 g CO 2 km -1.

  15. The Drosophila melanogaster hybrid male rescue gene causes inviability in male and female species hybrids.

    PubMed Central

    Barbash, D A; Roote, J; Ashburner, M

    2000-01-01

    The Drosophila melanogaster mutation Hmr rescues inviable hybrid sons from the cross of D. melanogaster females to males of its sibling species D. mauritiana, D. simulans, and D. sechellia. We have extended previous observations that hybrid daughters from this cross are poorly viable at high temperatures and have shown that this female lethality is suppressed by Hmr and the rescue mutations In(1)AB and D. simulans Lhr. Deficiencies defined here as Hmr(-) also suppressed lethality, demonstrating that reducing Hmr(+) activity can rescue otherwise inviable hybrids. An Hmr(+) duplication had the opposite effect of reducing the viability of female and sibling X-male hybrid progeny. Similar dose-dependent viability effects of Hmr were observed in the reciprocal cross of D. simulans females to D. melanogaster males. Finally, Lhr and Hmr(+) were shown to have mutually antagonistic effects on hybrid viability. These data suggest a model where the interaction of sibling species Lhr(+) and D. melanogaster Hmr(+) causes lethality in both sexes of species hybrids and in both directions of crossing. Our results further suggest that a twofold difference in Hmr(+) dosage accounts in part for the differential viability of male and female hybrid progeny, but also that additional, unidentified genes must be invoked to account for the invariant lethality of hybrid sons of D. melanogaster mothers. Implications of our findings for understanding Haldane's rule-the observation that hybrid breakdown is often specific to the heterogametic sex-are also discussed. PMID:10747067

  16. Pulse detonation assembly and hybrid engine

    NASA Technical Reports Server (NTRS)

    Rasheed, Adam (Inventor); Dean, Anthony John (Inventor); Vandervort, Christian Lee (Inventor)

    2010-01-01

    A pulse detonation (PD) assembly includes a number of PD chambers adapted to expel respective detonation product streams and a number of barriers disposed between respective pairs of PD chambers. The barriers define, at least in part, a number of sectors that contain at least one PD chamber. A hybrid engine includes a number of PD chambers and barriers. The hybrid engine further includes a turbine assembly having at least one turbine stage, being in flow communication with the PD chambers and being configured to be at least partially driven by the detonation product streams. A segmented hybrid engine includes a number of PD chambers and segments configured to receive and direct the detonation product streams from respective PD chambers. The segmented hybrid engine further includes a turbine assembly configured to be at least partially driven by the detonation product streams.

  17. Thermodynamics of DNA hybridization on gold nanoparticles.

    PubMed

    Xu, Jun; Craig, Stephen L

    2005-09-28

    Dynamic light scattering is used as a sensitive probe of hybridization on DNA-functionalized colloidal gold nanoparticles. When a target DNA strand possesses an 8 base "dangling end", duplex formation on the surface of the nanoparticles leads to an increase in hydrodynamic radius. Duplex melting is manifested in a drop in hydrodynamic radius with increasing temperature, and the concentration dependence of the melting temperature provides a measure of the thermodynamics of binding. The hybridization thermodynamics are found to be significantly lower at higher hybridization densities than those previously reported for initial hybridization events. The pronounced deviation from Langmuir adsorption behavior is greater for longer duplexes, and it is, therefore, consistent with electrostatic repulsion between densely packed oligonucleotides. The results have implications for sensing and DNA-directed nanoparticle assembly.

  18. A General Study of Hybrid Composite Laminates.

    DTIC Science & Technology

    1977-12-01

    appeared to have little effect on the overall properties of a laminate. Hybrid composite laminates obey classical laminate theory and can, in certain ply configurations, develop considerable free edge effect stresses. (Author)

  19. Thermodynamics of DNA hybridization on surfaces.

    PubMed

    Schmitt, Terry J; Knotts, Thomas A

    2011-05-28

    Hybridization of single-stranded DNA (ssDNA) targets to surface-tethered ssDNA probes was simulated using an advanced coarse-grain model to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more thermodynamically favorable than in the bulk. In addition, the effects of stretching or compressing the probe strand were investigated as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Taken as a whole, the results suggest that current methods to enhance microarray performance by seeking to improve hybridization on the surface may not yield the desired outcomes.

  20. Thermodynamics of DNA hybridization on surfaces

    NASA Astrophysics Data System (ADS)

    Schmitt, Terry J.; Knotts, Thomas A.

    2011-05-01

    Hybridization of single-stranded DNA (ssDNA) targets to surface-tethered ssDNA probes was simulated using an advanced coarse-grain model to identify key factors that influence the accuracy of DNA microarrays. Comparing behavior in the bulk and on the surface showed, contrary to previous assumptions, that hybridization on surfaces is more thermodynamically favorable than in the bulk. In addition, the effects of stretching or compressing the probe strand were investigated as a model system to test the hypothesis that improving surface hybridization will improve microarray performance. The results in this regard indicate that selectivity can be increased by reducing overall sensitivity by a small degree. Taken as a whole, the results suggest that current methods to enhance microarray performance by seeking to improve hybridization on the surface may not yield the desired outcomes.

  1. A Hybrid Approach to Protect Palmprint Templates

    PubMed Central

    Sun, Dongmei; Xiong, Ke; Qiu, Zhengding

    2014-01-01

    Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach. PMID:24982977

  2. 40 CFR 1036.525 - Hybrid engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Correct for the net energy change of the energy storage device as described in 40 CFR 1066.501. Effective..., the rechargeable energy storage system (RESS) and the power electronics between the hybrid...

  3. Hybrid colloidal plasmonic-photonic crystals.

    PubMed

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals.

  4. Photochromic organic-inorganic hybrid materials.

    PubMed

    Pardo, Rosario; Zayat, Marcos; Levy, David

    2011-02-01

    Photochromic organic-inorganic hybrid materials have attracted considerable attention owing to their potential application in photoactive devices, such as optical memories, windows, photochromic decorations, optical switches, filters or non-linear optics materials. The growing interest in this field has largely expanded the use of photochromic materials for the purpose of improving existing materials and exploring new photochromic hybrid systems. This tutorial review summarizes the design and preparation of photochromic hybrid materials, and particularly those based on the incorporation of organic molecules in organic-inorganic matrices by the sol-gel method. This is the most commonly used method for the preparation of these materials as it allows vitreous hybrid materials to be obtained at low temperatures, and controls the interaction between the organic molecule and its embedding matrix, and hence allows tailoring of the performance of the resulting devices.

  5. Molecular mechanisms of polyploidy and hybrid vigor.

    PubMed

    Chen, Z Jeffrey

    2010-02-01

    Hybrids such as maize (Zea mays) or domestic dog (Canis lupus familiaris) grow bigger and stronger than their parents. This is also true for allopolyploids such as wheat (Triticum spp.) or frog (i.e. Xenopus and Silurana) that contain two or more sets of chromosomes from different species. The phenomenon, known as hybrid vigor or heterosis, was systematically characterized by Charles Darwin (1876). The rediscovery of heterosis in maize a century ago has revolutionized plant and animal breeding and production. Although genetic models for heterosis have been rigorously tested, the molecular bases remain elusive. Recent studies have determined the roles of nonadditive gene expression, small RNAs, and epigenetic regulation, including circadian-mediated metabolic pathways, in hybrid vigor, which could lead to better use and exploitation of the increased biomass and yield in hybrids and allopolyploids for food, feed, and biofuels.

  6. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  7. Superconducting-semiconducting nanowire hybrid microwave circuits

    NASA Astrophysics Data System (ADS)

    de Lange, G.; van Heck, B.; Bruno, A.; van Woerkom, D.; Geresdi, A.; Plissard, S. R.; Bakkers, E. P. A. M.; Akhmerov, A. R.; Dicarlo, L.

    2015-03-01

    Hybrid superconducting-semiconducting circuits offer a versatile platform for studying quantum effects in mesoscopic solid-state systems. We report the realization of hybrid artificial atoms based on Indium-Arsenide nanowire Josephson elements in a circuit quantum electrodynamics architecture. Transmon-like single-junction devices have gate-tunable transition frequencies. Split-junction devices behave as transmons near zero applied flux and as flux qubits near half flux quantum, wherein states with oppositely flowing persistent current can be driven by microwaves. This flux-qubit like behaviour results from non-sinusoidal current-phase relations in the nanowire Josephson elements. These hybrid microwave circuits are made entirely of magnetic-field compatible materials, offering new opportunities for hybrid experiments combining microwave circuits with polarized spin ensembles and Majorana bound states. We acknowledge funding from Microsoft Research and the Dutch Organization for Fundamental Research on Matter (FOM).

  8. The path exchange method for hybrid LCA.

    PubMed

    Lenzen, Manfred; Crawford, Robert

    2009-11-01

    Hybrid techniques for Life-Cycle Assessment (LCA) provide a way of combining the accuracy of process analysis and the completeness of input-output analysis. A number of methods have been suggested to implement a hybrid LCA in practice, with the main challenge being the integration of specific process data with an overarching input-output system. In this work we present a new hybrid LCA method which works at the finest input-output level of detail: structural paths. This new Path Exchange method avoids double-counting and system disturbance just as previous hybrid LCA methods, but instead of a large LCA database it requires only a minimum of external information on those structural paths that are to be represented by process data.

  9. Recent progress in hybrid materials science.

    PubMed

    Sanchez, Clément; Shea, Kenneth J; Kitagawa, Susumu

    2011-02-01

    This themed issue of Chemical Society Reviews reviews recent progress made in hybrid materials science. Guest editors Clément Sanchez, Susumu Kitagawa and Ken Shea introduce the issue and the academic and industrial importance of the field.

  10. Integrated approach for hybrid rocket technology development

    NASA Astrophysics Data System (ADS)

    Barato, Francesco; Bellomo, Nicolas; Pavarin, Daniele

    2016-11-01

    Hybrid rocket motors tend generally to be simple from a mechanical point of view but difficult to optimize because of their complex and still not well understood cross-coupled physics. This paper addresses the previous issue presenting the integrated approach established at University of Padua to develop hybrid rocket based systems. The methodology tightly combines together system analysis and design, numerical modeling from elementary to sophisticated CFD, and experimental testing done with incremental philosophy. As an example of the approach, the paper presents the experience done in the successful development of a hybrid rocket booster designed for rocket assisted take off operations. It is thought that following the proposed approach and selecting carefully the most promising applications it is possible to finally exploit the major advantages of hybrid rocket motors as safety, simplicity, low cost and reliability.

  11. Control system for a hybrid powertrain system

    SciTech Connect

    Naqvi, Ali K.; Demirovic, Besim; Gupta, Pinaki; Kaminsky, Lawrence A.

    2014-09-09

    A vehicle includes a powertrain with an engine, first and second torque machines, and a hybrid transmission. A method for operating the vehicle includes operating the engine in an unfueled state, releasing an off-going clutch which when engaged effects operation of the hybrid transmission in a first continuously variable mode, and applying a friction braking torque to a wheel of the vehicle to compensate for an increase in an output torque of the hybrid transmission resulting from releasing the off-going clutch. Subsequent to releasing the off-going clutch, an oncoming clutch which when engaged effects operation of the hybrid transmission in a second continuously variable mode is synchronized. Subsequent to synchronization of the oncoming clutch, the oncoming clutch is engaged.

  12. Silicon nanocrystal-noble metal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  13. Recent advances in PLC hybrid integration technology

    NASA Astrophysics Data System (ADS)

    Ogawa, Ikuo; Kitagawa, Takeshi

    2003-07-01

    Opto-electronic hybrid integraiton using a silica-based planar lightwave circuit (PLC) platform is an attractive way to realize the various kinds of opto-electronic components required for future photonic networks. This paper briefly introduces the concept and basic techniques used for PLC hybrid integration, and describes recent advances in this field. We also report on several high-performance optical devices that we recently developed using this technology.

  14. Mechanical property characterization of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sinclair, J. H.

    1979-01-01

    An investigation was conducted to characterize the mechanical properties of intraply hybrids made from graphite fiber/epoxy matrix (primary composites) hybridized with varying amounts of secondary composites made from S-glass or Kevlar 49 fibers. The tests were conducted using thin laminates having the same thickness. The specimens for these tests were instrumented with strain gages to determine stress-strain behavior. Significant results are included.

  15. Intraply Hybrid Composites Would Contain Control Strips

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Shiao, Chi-Yu

    1996-01-01

    "Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.

  16. Controlling plasmon hybridization for negative refraction metamaterials

    NASA Astrophysics Data System (ADS)

    Kanté, B.; Burokur, S. N.; Sellier, A.; de Lustrac, A.; Lourtioz, J.-M.

    2009-02-01

    The hybridization scheme of plasmon modes in cut-wire-based left-handed metamaterials is shown to critically depend on the coupling between paired cut wires. We show that an inverted hybridization scheme obtained with an asymmetric alignment of paired cut wires is the most appropriate to negative refraction. This is validated (numerically and experimentally) by the first demonstration of negative refraction in the microwave domain using only periodic ensembles of cut wires.

  17. Semiconductor/High-Tc-Superconductor Hybrid ICs

    NASA Technical Reports Server (NTRS)

    Burns, Michael J.

    1995-01-01

    Hybrid integrated circuits (ICs) containing both Si-based semiconducting and YBa(2)Cu(3)O(7-x) superconducting circuit elements on sapphire substrates developed. Help to prevent diffusion of Cu from superconductors into semiconductors. These hybrid ICs combine superconducting and semiconducting features unavailable in superconducting or semiconducting circuitry alone. For example, complementary metal oxide/semiconductor (CMOS) readout and memory devices integrated with fast-switching Josephson-junction super-conducting logic devices and zero-resistance interconnections.

  18. HOPSPACK: Hybrid Optimization Parallel Search Package.

    SciTech Connect

    Gray, Genetha Anne.; Kolda, Tamara G.; Griffin, Joshua; Taddy, Matt; Martinez-Canales, Monica L.

    2008-12-01

    In this paper, we describe the technical details of HOPSPACK (Hybrid Optimization Parallel SearchPackage), a new software platform which facilitates combining multiple optimization routines into asingle, tightly-coupled, hybrid algorithm that supports parallel function evaluations. The frameworkis designed such that existing optimization source code can be easily incorporated with minimalcode modification. By maintaining the integrity of each individual solver, the strengths and codesophistication of the original optimization package are retained and exploited.4

  19. Extra Chance Generalized Hybrid Monte Carlo

    NASA Astrophysics Data System (ADS)

    Campos, Cédric M.; Sanz-Serna, J. M.

    2015-01-01

    We study a method, Extra Chance Generalized Hybrid Monte Carlo, to avoid rejections in the Hybrid Monte Carlo method and related algorithms. In the spirit of delayed rejection, whenever a rejection would occur, extra work is done to find a fresh proposal that, hopefully, may be accepted. We present experiments that clearly indicate that the additional work per sample carried out in the extra chance approach clearly pays in terms of the quality of the samples generated.

  20. A Hybrid Approach to Clinical Question Answering

    DTIC Science & Technology

    2014-11-01

    participation in TREC, we submitted a single run using a hybrid Natural Language Processing ( NLP )-driven approach to accomplish the given task. Evaluation re...for the CDS track uses a variety of NLP - based techniques to address the clinical questions provided. We present a description of our approach, and...discuss our experimental setup, results and eval- uation in the subsequent sections. 2 Description of Our Approach Our hybrid NLP -driven method presents a

  1. Analysis of Hybrid Hydrogen Systems: Final Report

    SciTech Connect

    Dean, J.; Braun, R.; Munoz, D.; Penev, M.; Kinchin, C.

    2010-01-01

    Report on biomass pathways for hydrogen production and how they can be hybridized to support renewable electricity generation. Two hybrid systems were studied in detail for process feasibility and economic performance. The best-performing system was estimated to produce hydrogen at costs ($1.67/kg) within Department of Energy targets ($2.10/kg) for central biomass-derived hydrogen production while also providing value-added energy services to the electric grid.

  2. Amorphous Carbon-Boron Nitride Nanotube Hybrids

    NASA Technical Reports Server (NTRS)

    Kim, Jae Woo (Inventor); Siochi, Emilie J. (Inventor); Wise, Kristopher E. (Inventor); Lin, Yi (Inventor); Connell, John (Inventor)

    2016-01-01

    A method for joining or repairing boron nitride nanotubes (BNNTs). In joining BNNTs, the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures. In repairing BNNTs, the damaged site of the nanotube structure is modified with amorphous carbon deposited by controlled electron beam irradiation to form well bonded hybrid a-C/BNNT structures at the damage site.

  3. Morphological variation of genetically confirmed Alouatta Pigra × A. palliata hybrids from a natural hybrid zone in Tabasco, Mexico.

    PubMed

    Kelaita, Mary A; Cortés-Ortiz, Liliana

    2013-02-01

    While hybridization has been reported for a large number of primate taxa, there is a general lack of data on hybrid morphology for wild individuals with known genetic ancestry. A confirmed hybrid zone for the closely related Neotropical primates Alouatta palliata and A. pigra has provided a unique opportunity to study primate hybrid morphological variation. Here we used molecular evidence based on mitochondrial, Y-chromosome, and autosomal data to assess hybrid ancestry. We conducted univariate and multivariate statistical comparisons of morphometric data collected from individuals both outside and within the hybrid zone in Tabasco, Mexico. Our results show that of all the hybrids detected (N = 128), only 12% of them were approximately genetically intermediate, and none of them were first generation hybrids. Univariate pairwise comparisons among parental individuals, multigenerational backcrossed hybrids, and intermediate hybrids showed that overall, multigenerational backcrossed hybrids resemble the parental species with which they share most of their alleles. Conversely, intermediates were highly variable. Similarly, principal component analysis depicts an overlap between the parental species and their backcrosses when considering overall morphological differences. Finally, discriminant function analysis of the morphological variables was overall unreliable for classifying individuals into their assigned genotypic classes. Taken together, our results suggest that primate natural hybridization studies should incorporate molecular methods for determining ancestry, because morphology may not always be a reliable indicator of hybrid status. Hybrid zones could comprise a large number of multigenerational backcrossed hybrids that are indistinguishable from the parental species. The implications for studying hybridization in the primate fossil record are discussed.

  4. Hybrid Control Systems: Design and Analysis for Aerospace Applications

    DTIC Science & Technology

    2009-02-28

    COVERED (From - To) 15-02-2006 - 30-11-200! 4. TITLE AND SUBTITLE Hybrid control systems : Design and analysis for aerospace applications 5a...of this research was to contribute to the fundamental understanding of hybrid control systems and to explore the use of hybrid feedback in problems...of interest to the Air Force. We aimed to provide a solid, foundational understanding of hybrid systems that will enable the vast potential of hybrid

  5. Coherent hybrid electromagnetic field imaging

    DOEpatents

    Cooke, Bradly J.; Guenther, David C.

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  6. Silicon-organic hybrid devices

    NASA Astrophysics Data System (ADS)

    Alloatti, L.; Korn, D.; Pfeifle, J.; Palmer, R.; Koeber, S.; Baier, M.; Schmogrow, R.; Diebold, Sebastian; Pahl, P.; Zwick, T.; Yu, H.; Bogaerts, W.; Baets, R.; Fournier, M.; Fedeli, J.; Dinu, R.; Koos, C.; Freude, W.; Leuthold, J.

    2013-02-01

    Silicon-organic hybrid (SOH) devices combine silicon waveguides with a number of specialized materials, ranging from third-order optically-nonlinear molecules to second-order nonlinear polymers and liquid-crystals. Second-order nonlinear materials allow building high-speed and low-voltage electro-optic modulators, which are key components for future silicon-based photonics transceivers. We report on a 90 GHz bandwidth phase modulator, and on a 56 Gbit/s QPSK experiment using an IQ Pockels effect modulator. By using liquid-crystal claddings instead, we show experimentally that phase shifters with record-low power consumption and ultra-low voltage-length product of VπL = 0.06 Vmm. Secondorder nonlinear materials, moreover, allow creating nonlinear waveguides for sum- or difference-frequency generation, and for lowest-noise optical parametric amplification. These processes are exploited for a large variety of applications, like in the emerging field of on-chip generation of mid-IR wavelengths, where pump powers are significantly smaller compared to equivalent devices using third-order nonlinear materials. In this work, we present the first SOH waveguide design suited for second-order nonlinear processes. We predict for our device an amplification of 14 dB/cm assuming a conservative χ(2)-nonlinearity of 230 pm/V and a CW pump power as low as 20 dBm.

  7. Hybrid EDFA/Raman Amplifiers

    NASA Astrophysics Data System (ADS)

    Masuda, Hiroji

    This chapter describes the technologies needed for cascading an erbium-doped fiber amplifier (EDFA) and a fiber Raman amplifier (FRA or RA) to create a hybrid amplifier (HA), the EDFA/Raman HA. Two kinds of HA are defined in this chapter: the narrowband HA (NB-HA) and the seamless and wideband HA (SWB-HA). The NB-HA employs distributed Raman amplification in the transmission fiber together with an EDFA and provides low noise transmission in the C- or L-band. The noise figure of the transmission line is lower than it would be if only an EDFA were used. The SWB-HA, on the other hand, employs distributed or discrete Raman amplification together with an EDFA, and provides a low-noise and wideband transmission line or a low-noise and wideband discrete amplifier for the C- and L-bands. The typical gain bandwidth (Δλ) of the NB-HA is ~30 to 40 nm, whereas that of the SWB-HA is ~70 to 80 nm.

  8. Nonlinear stability of hybrid control

    SciTech Connect

    Doulgeri, Z.; Fahantidis, N.; Paul, R.P.

    1998-07-01

    A theoretical and experimental investigation on the stability properties of the hybrid control scheme was performed using Lyapunov`s theory for both the original scheme, which uses the Jacobian inverse for mapping Cartesian errors to joint errors, and a scheme using the Jacobian pseudoinverse. Both schemes result in position and force controllers that are statically coupled in the task space. Stability analysis shows that the pseudoinverse scheme is asymptotically stable, whereas the inverse scheme may become unstable depending on the manipulator attitude and the environmental stiffness. In the manipulator workspace, where kinematic instabilities have been reported to exist even away from kinematic singularities, the Jacobian inverse affects negatively the Lyapunov function`s positive definiteness and the negative sign of its derivative; this effect may become dominant when the environmental stiffness is zero or very low. Experimental results for a 2- and 3-degrees-of-freedom planar manipulator using a PUMA 560 were performed both in free space where stiffness is zero and in contact with a stiff surface. Experimental results in fee space have confirmed the stability properties of the two schemes as predicted by the theoretical analysis and are in agreement with previously reported simulation and experimental results. Experimental results in contact with a stiff wall gave stable results for both schemes.

  9. Hybrid systems process mixed wastes

    SciTech Connect

    Chertow, M.R.

    1989-10-01

    Some technologies, developed recently in Europe, combine several processes to separate and reuse materials from solid waste. These plants have in common, generally, that they are reasonably small, have a composting component for the organic portion, and often have a refuse-derived fuel component for combustible waste. Many European communities also have very effective drop-off center programs for recyclables such as bottles and cans. By maintaining the integrity of several different fractions of the waste, there is a less to landfill and less to burn. The importance of these hybrid systems is that they introduce in one plant an approach that encompasses the key concept of today's solid waste planning; recover as much as possible and landfill as little as possible. The plants also introduce various risks, particularly of finding secure markets. There are a number of companies offering various combinations of materials recovery, composting, and waste combustion. Four examples are included: multiple materials recovery and refuse-derived fuel production in Eden Prairie, Minnesota; multiple materials recovery, composting and refuse-derived fuel production in Perugia, Italy; composting, refuse-derived fuel, and gasification in Tolmezzo, Italy; and a front-end system on a mass burning waste-to-energy plant in Neuchatel, Switzerland.

  10. RF/Optical Hybrid Antenna

    NASA Astrophysics Data System (ADS)

    Torrez, T. M.

    2015-05-01

    This article details analyses performed on several variations of a proposed radio frequency (RF)/optical hybrid antenna. The goal was to determine the structural impact of adding an assembly of optical mirrors to the antenna; stresses in the structural members and reflector surface deformation were used to assess this impact. The results showed that the structure could handle the added assembly, and the surface RMS increased, as expected, with larger increases seen as the antenna translates in elevation from the rigging angle of 45 deg (a predetermined location chosen to optimize panel settings during installation). In addition, actuators are located behind each optical mirror to reoptimize the mirror positions after they deflect due to the antenna being tipped in elevation. The necessary actuator motion was calculated for each mirror for a range of elevation angles, and it was found that the required motions are achievable by commonly used actuators. Resonant frequency analysis was also performed on the quadripod and tripod (for DSS-13 at Goldstone) to determine the effect that adding optical components on the apex has on the structure and its first mode; it was found that the impact is minimal to both the stresses seen in the structure and its first mode.

  11. Main memory unit. [hybrid computers

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The development of a main memory unit (MMU) for the space ultrareliable module computer (SUMC) model HTC is discussed. The design, fabrication, and test of basic memory modules (BMM) which were to be used in the design and construction of the MMU are described. The BMM was designed from state-of-the-art technologies which included large scale integration devices mounted and interconnected on a substrate to form a functional module to be utilized in the MMU development. A SUMC memory system design study is discussed which addressed itself to the BMM design and analysis to be conducted to determine the most efficient organization of the BMM in order to establish such modularity features as: word length expandability without redesign, high reliability, and fault tolerance. One MMU was designed, fabricated, tested, and delivered which will be electrical and mechanically compatible with the hybrid technology computer (HTC) model of the SUMC family of computers. The MMU will contain a storage capacity of 8196 36 bit words which includes a parity bit for each 8 bit byte of data.

  12. Parker Hybrid Hydraulic Drivetrain Demonstration

    SciTech Connect

    Collett, Raymond; Howland, James; Venkiteswaran, Prasad

    2014-03-31

    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  13. Heterodyne effect in Hybrid CARS

    NASA Astrophysics Data System (ADS)

    Wang, Xi; Zhang, Aihua; Zhi, Miaochan; Sokolov, Alexei; Welch, George; Scully, Marlan

    2009-10-01

    We study the interaction between the resonant Raman signal and non-Raman field, either the concomitant nonresonant four-wave-mixing (FWM) background or an applied external field, in our recently developed scheme of coherent Anti-Stokes Raman scattering, a hybrid CARS. Our technique combines instantaneous coherent excitation of several characteristic molecular vibrations with subsequent probing of these vibrations by an optimally shaped, time-delayed, narrowband laser pulse. This pulse configuration mitigates the non-resonant FWM background while maximizing the Raman-resonant signal, and allows rapid and highly specific detection even in the presence of multiple scattering. We apply this method to non-invasive monitoring of blood glucose levels. Under certain conditions we find that the measured signal is linearly proportional to the glucose concentration due to optical interference with the residual background light, which allows reliable detection of spectral signatures down to medically-relevant glucose levels. We also study the interference between the CARS field and an external field (the local oscillator) by controlling their relative phase and amplitude. This control allows direct observation of the real and imaginary components of the third-order nonlinear susceptibility (χ^(3)) of the sample. We demonstrate that the heterodyne method can be used to amplify the signal and thus increase detection sensitivity.

  14. Lower hybrid wavepacket stochasticity revisited

    SciTech Connect

    Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.

    2014-02-12

    Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B≅0.5 T, Ðœ„n{sub e}≅5×10{sup 17} 1/m{sup 3} plasma at T{sub e}≅10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].

  15. Pentaploid Wheat Hybrids: Applications, Characterisation, and Challenges

    PubMed Central

    Padmanaban, Sriram; Zhang, Peng; Hare, Ray A.; Sutherland, Mark W.; Martin, Anke

    2017-01-01

    Interspecific hybridisation between hexaploid and tetraploid wheat species leads to the development of F1 pentaploid hybrids with unique chromosomal constitutions. Pentaploid hybrids derived from bread wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum spp. durum Desf.) crosses can improve the genetic background of either parent by transferring traits of interest. The genetic variability derived from bread and durum wheat and transferred into pentaploid hybrids has the potential to improve disease resistance, abiotic tolerance, and grain quality, and to enhance agronomic characters. Nonetheless, pentaploid wheat hybrids have not been fully exploited in breeding programs aimed at improving crops. There are several potential barriers for efficient pentaploid wheat production, such as low pollen compatibility, poor seed set, failed seedling establishment, and frequent sterility in F1 hybrids. However, most of the barriers can be overcome by careful selection of the parental genotypes and by employing the higher ploidy level genotype as the maternal parent. In this review, we summarize the current research on pentaploid wheat hybrids and analyze the advantages and pitfalls of current methods used to assess pentaploid-derived lines. Furthermore, we discuss current and potential applications in commercial breeding programs and future directions for research into pentaploid wheat. PMID:28367153

  16. Mechanisms of Surface-Mediated DNA Hybridization

    PubMed Central

    2015-01-01

    Single-molecule total internal reflection fluorescence microscopy was employed in conjunction with resonance energy transfer (RET) to observe the dynamic behavior of donor-labeled ssDNA at the interface between aqueous solution and a solid surface decorated with complementary acceptor-labeled ssDNA. At least 100 000 molecular trajectories were determined for both complementary strands and negative control ssDNA. RET was used to identify trajectory segments corresponding to the hybridized state. The vast majority of molecules from solution adsorbed nonspecifically to the surface, where a brief two-dimensional search was performed with a 7% chance of hybridization. Successful hybridization events occurred with a characteristic search time of ∼0.1 s, and unsuccessful searches resulted in desorption from the surface, ultimately repeating the adsorption and search process. Hybridization was reversible, and two distinct modes of melting (i.e., dehybridization) were observed, corresponding to long-lived (∼15 s) and short-lived (∼1.4 s) hybridized time intervals. A strand that melted back onto the surface could rehybridize after a brief search or desorb from the interface. These mechanistic observations provide guidance for technologies that involve DNA interactions in the near-surface region, suggesting a need to design surfaces that both enhance the complex multidimensional search process and stabilize the hybridized state. PMID:24708278

  17. Hybrid Data Assimilation without Ensemble Filtering

    NASA Technical Reports Server (NTRS)

    Todling, Ricardo; Akkraoui, Amal El

    2014-01-01

    The Global Modeling and Assimilation Office is preparing to upgrade its three-dimensional variational system to a hybrid approach in which the ensemble is generated using a square-root ensemble Kalman filter (EnKF) and the variational problem is solved using the Grid-point Statistical Interpolation system. As in most EnKF applications, we found it necessary to employ a combination of multiplicative and additive inflations, to compensate for sampling and modeling errors, respectively and, to maintain the small-member ensemble solution close to the variational solution; we also found it necessary to re-center the members of the ensemble about the variational analysis. During tuning of the filter we have found re-centering and additive inflation to play a considerably larger role than expected, particularly in a dual-resolution context when the variational analysis is ran at larger resolution than the ensemble. This led us to consider a hybrid strategy in which the members of the ensemble are generated by simply converting the variational analysis to the resolution of the ensemble and applying additive inflation, thus bypassing the EnKF. Comparisons of this, so-called, filter-free hybrid procedure with an EnKF-based hybrid procedure and a control non-hybrid, traditional, scheme show both hybrid strategies to provide equally significant improvement over the control; more interestingly, the filter-free procedure was found to give qualitatively similar results to the EnKF-based procedure.

  18. Various challenging aspects of hybrid propulsion

    NASA Astrophysics Data System (ADS)

    Orlandi, O.; Theil, D.; Saramago, J.; Amand, P. G.; Dauch, F.; Gautier, P.

    2011-10-01

    The hybrid technology appears as an innovative, high performance, and promising propulsion technique in a number of space missions. By combining functions and advantages taken from both solid and liquid propulsion, this technology is expected to provide mainly high performance with throttleability and stop-restart capabilities. The safety conditions of engine operation and design reliability almost similar to solid propulsion increase the interest to this technology. However, the standard fuels (mainly based on a carbon polymer) exhibit low regression rates that require complex grain shapes and low loading ratio. Thanks to a dedicated study supported by the European Space Agency (ESA), SNPE in collaboration with Avio and University of Naples (DIAS department) performed an exhaustive state-of-the-art and a market survey of accomplishments in hybrid propulsion. Based on the resulting tradeoff study on potential future launchers and spacecraft applications, the most promising applications are selected to conduct preliminary designs. These applications can also be seen as the vector of hybrid propulsion development. This study concentrates on hybrid propulsion systems with advanced hybrid fuels for Lander platform and Upper Stage. High throttleability and high propulsive performance associated with stop and restart capability are needed to meet mission requirements for Lander and Upper Stage, respectively. Preliminary design shows the advantages provided by hybrid propulsion: a significant payload mass increase for the upper stage case and a soft landing for the Lander case.

  19. Immune resistance of semisyngeneic F1 hybrid mice to lymphoma grafts differs from natural hybrid resistance in its genetic pattern

    SciTech Connect

    Klein, G.O.; Klein, G.

    1984-07-01

    Resistance of semisyngeneic F1 hybrid mice immunized three times with irradiated tumor cells was compared to the genetic pattern of natural hybrid resistance to challenge with live tumor cells. Syngeneic mice responded equally well to immunization with all five hemopoietic tumor lines tested as the naturally much more highly resistant F1 hybrids. Natural hybrid resistance was found to be severely reduced by sublethal irradiation with 4 Gy, in contrast to hybrid resistance to parental bone marrow.

  20. Design, Synthesis, and Analysis of Minor Groove Binder Pyrrolepolyamide-2′-Deoxyguanosine Hybrids

    PubMed Central

    Kawashima, Etsuko; Ohba, Yusuke; Terui, Yusuke; Kamaike, Kazuo

    2010-01-01

    Pyrrolepolyamide-2′-deoxyguanosine hybrids (Hybrid 2 and Hybrid 3) incorporating the 3-aminopropionyl or 3-aminopropyl linker were designed and synthesized on the basis of previously reported results of a pyrrolepolyamide-adenosine hybrid (Hybrid 1). Evaluation of the DNA binding sequence selectivity of pyrrolepolyamide-2′-deoxyguanosine hybrids was performed by CD spectral and Tm analyses. It was shown that Hybrid 3 possessed greater binding specificity than distamycin A, Hybrid 1 and Hybrid 2. PMID:20700414

  1. Wind/Hybrid Electricity Applications

    SciTech Connect

    McDaniel, Lori

    2001-03-01

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  2. Forage and bioenergy feedstock production from hybrid forage sorghum and sorghum x sudangrass hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the bioenergy industry expands, producers choosing to shift current forage crop production to dedicated biomass crops will find it advantageous to grow low risk multi-purpose crops that maximize management options. Hybrid forage sorghums (HFS) and sorghum by sudangrass hybrids (SSG) are capable...

  3. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters

    NASA Astrophysics Data System (ADS)

    Hui, Kerwin; Chai, Jeng-Da

    2016-01-01

    By incorporating the nonempirical strongly constrained and appropriately normed (SCAN) semilocal density functional [J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction problems and noncovalent interactions. In particular, SCAN0-2, which includes about 79% of Hartree-Fock exchange and 50% of second-order Møller-Plesset correlation, is shown to be reliably accurate for a very diverse range of applications, such as thermochemistry, kinetics, noncovalent interactions, and self-interaction problems.

  4. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  5. Evolution and Molecular Control of Hybrid Incompatibility in Plants

    PubMed Central

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with “parasitic” selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  6. Behavioral and spermatogenic hybrid male breakdown in Nasonia.

    PubMed

    Clark, M E; O'Hara, F P; Chawla, A; Werren, J H

    2010-03-01

    Several reproductive barriers exist within the Nasonia species complex, including allopatry, premating behavioral isolation, postzygotic inviability and Wolbachia-induced cytoplasmic incompatibility. Here we show that hybrid males suffer two additional reproductive disadvantages, an inability to properly court females and decreased sperm production. Hybrid behavioral sterility, characterized by a reduced ability of hybrids to perform necessary courtship behaviors, occurs in hybrids between two species of Nasonia. Hybrid males produced in crosses between N. vitripennis and N. giraulti courted females at a reduced frequency (23-69%), compared with wild-type N. vitripennis and N. giraulti males (>93%). Reduced courtship frequency was not a simple function of inactivity among hybrids. A strong effect of cytoplasmic (mitochondrial) background was also found in N. vitripennis and N. giraulti crosses; F2 hybrids with giraulti cytoplasm showing reduced ability at most stages of courtship. Hybrids produced between a younger species pair, N. giraulti and N. longicornis, were behaviorally fertile. All males possessed motile sperm, but sperm production is greatly reduced in hybrids between the older species pair, N. vitripennis and N. giraulti. This effect on hybrid males, lowered sperm counts rather than nonfunctional sperm, is different from most described cases of hybrid male sterility, and may represent an earlier stage of hybrid sperm breakdown. The results add to previous studies of F2 hybrid inviability and behavioral sterility, and indicate that Wolbachia-induced hybrid incompatibility has arisen early in species divergence, relative to behavioral sterility and spermatogenic infertility.

  7. Multidimensional Hybridization of Dark Surface Plasmons.

    PubMed

    Yankovich, Andrew B; Verre, Ruggero; Olsén, Erik; Persson, Anton E O; Trinh, Viet; Dovner, Gudrun; Käll, Mikael; Olsson, Eva

    2017-04-07

    Synthetic three-dimensional (3D) nanoarchitectures are providing more control over light-matter interactions and rapidly progressing photonic-based technology. These applications often utilize the strong synergy between electromagnetic fields and surface plasmons (SPs) in metallic nanostructures. However, many of the SP interactions hosted by complex 3D nanostructures are poorly understood because they involve dark hybridized states that are typically undetectable with far-field optical spectroscopy. Here, we use experimental and theoretical electron energy loss spectroscopy to elucidate dark SPs and their interactions in layered metal-insulator-metal disc nanostructures. We go beyond the established dipole SP hybridization analysis by measuring breathing and multipolar SP hybridization. In addition, we reveal multidimensional SP hybridization that simultaneously utilizes in-plane and out-of-plane SP coupling. Near-field classic electrodynamics calculations provide excellent agreement with all experiments. These results advance the fundamental understanding of SP hybridization in 3D nanostructures and provide avenues to further tune the interaction between electromagnetic fields and matter.

  8. Hybridization promotes speciation in Coenonympha butterflies.

    PubMed

    Capblancq, Thibaut; Després, Laurence; Rioux, Delphine; Mavárez, Jesús

    2015-12-01

    Hybridization has become a central element in theories of animal evolution during the last decade. New methods in population genomics and statistical model testing now allow the disentangling of the complexity that hybridization brings into key evolutionary processes such as local adaptation, colonization of new environments, species diversification and extinction. We evaluated the consequences of hybridization in a complex of three alpine butterflies in the genus Coenonympha, by combining morphological, genetic and ecological analyses. A series of approximate Bayesian computation procedures based on a large SNP data set strongly suggest that the Darwin's Heath (Coenonympha darwiniana) originated through hybridization between the Pearly Heath (Coenonympha arcania) and the Alpine Heath (Coenonympha gardetta) with different parental contributions. As a result of hybridization, the Darwin's Heath presents an intermediate morphology between the parental species, while its climatic niche seems more similar to the Alpine Heath. Our results also reveal a substantial genetic and morphologic differentiation between the two geographically disjoint Darwin's Heath lineages leading us to propose the splitting of this taxon into two different species.

  9. Manzanita Hybrid Power system Project Final Report

    SciTech Connect

    Trisha Frank

    2005-03-31

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit, and in 1995 the Tribe established the Manzanita Renewable Energy Office. Through the U.S. Department of Energy's Tribal Energy Program the Band received funds to install a hybrid renewable power system to provide electricity to one of the tribal community buildings, the Manzanita Activities Center (MAC building). The project began September 30, 1999 and was completed March 31, 2005. The system was designed and the equipment supplied by Northern Power Systems, Inc, an engineering company with expertise in renewable hybrid system design and development. Personnel of the National Renewable Energy Laboratory provided technical assistance in system design, and continued to provide technical assistance in system monitoring. The grid-connected renewable hybrid wind/photovoltaic system provides a demonstration of a solar/wind energy hybrid power-generating project on Manzanita Tribal land. During the system design phase, the National Renewable Energy Lab estimated that the wind turbine is expected to produce 10,000-kilowatt hours per year and the solar array 2,000-kilowatt hours per year. The hybrid system was designed to provide approximately 80 percent of the electricity used annually in the MAC building. The project proposed to demonstrate that this kind of a system design would provide highly reliable renewable power for community uses.

  10. Hybrid fuel cell for pulse power applications

    SciTech Connect

    Jarvis, L.P.; Atwater, T.B.; Cygan, P.J.

    1997-12-01

    A hybrid fuel cell demonstrated pulse power capability. It successfully ran a pulse power load simulation synonymous with electronics and communications equipment. The hybrid consisted of a 25 W Proton Exchange Membrane Fuel Cell (PEMFC) stack in parallel with a 70 farad capacitor assembly. A cyclic regime of 18.0 W for 2 minutes followed by 2.5 W for 18 minutes was chosen as the basic test regime. The operating potential cut-off voltage for pass/failure was set to 3.0 V. At room temperature (23--25 C), the PEMFC alone could not successfully power the baseline regime previously described. The PEMFC operating potential dropped below 3.0 V within 10 seconds. The hybrid continuously powered the cyclic regime for 25 hours. The hybrid`s operating potential never reached the voltage cut-off, even during the high load of 18.0 W. The tests were aborted after 25 hours of operation with no signs of output degradation, suggesting that continuous operation is possible.

  11. Bio-inspired Hybrid Carbon Nanotube Muscles

    PubMed Central

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-01-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems. PMID:27220918

  12. Hybrid discourse practice and science learning

    NASA Astrophysics Data System (ADS)

    Kamberelis, George; Wehunt, Mary D.

    2012-09-01

    In this article, we report on a study of how creative linguistic practices (which we call hybrid discourse practices) were enacted by students in a fifth-grade science unit on barn owls and how these practices helped to produce a synergistic micro-community of scientific practice in the classroom that constituted a fertile space for students (and the teacher) to construct emergent but increasingly legitimate and dynamic disciplinary knowledges and identities. Our findings are important for the ways in which they demonstrate (a) how students use hybrid discourse practices to self-scaffold their work within complex curricular tasks and when they are not completely sure about how to enact these tasks (b) how hybrid discourse practices can promote inquiry orientations to science, (c) how hybrid discourse practices index new and powerful forms of science pedagogy, and (d) how hybrid discourse practices are relevant to more global issues such as the crucial roles of language fluency and creativity, which are known prerequisites for advanced science learning and which aid students in developing skills that are necessary for entry into science and technology careers.

  13. Weather forecasting based on hybrid neural model

    NASA Astrophysics Data System (ADS)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  14. Development and characterization of hybrid thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Karkhanis, Priyanka Chandrashekhar

    This work is aimed at studying the possibility of using interply hybrid woven thermoplastic semi-pregs in secondary structures in aircrafts at TenCate Advanced Composites, Netherlands and Purdue University. Three different interply hybrids were designed from combination of Cetex(c) carbon-PPS semi-preg, Owen corning's woven glass with PPS sheets and discontinuous chopped Cetex(c) carbon-PPS semi-preg to get desired flexural, out of plane and bearing properties. The design calculations are done based on classical laminate theory and the selection of materials to be used with carbon-PPS was done based on cost and availability. The Hybrid laminate performances are analyzed and compared to the conventional Cetex (c) Carbon-PPS semi-preg laminates. Observations are reported on three point bend test (European standard 2562), four point bend test(ASTM D6415-99) and bearing test (Airbus standards AITM 1-0009) for the laminates and it was found that hybrid laminates show a reduction of 5-10% in bending stiffness, 20-40% reduction in out-of-plane strength and 2-5%reduction in bearing with a cost reduction of 20-30%. The research identifies and documents the different factors responsible for failures and reduction in strength in the Hybrids.

  15. Spatial Beam Dynamics Mediated by Hybrid Nonlinearity

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Lou, Cibo; Hu, Yi; Liu, Sheng; Zhao, Jianlin; Xu, Jingjun; Chen, Zhigang

    We provide a brief overview of recent progresses on the study of a new type of nonlinearity, named hybrid nonlinearity: the coexistence of self-focusing and self-defocusing nonlinearities in the same material under identical conditions. Such hybrid nonlinearity is established in a nonconventionally biased photorefractive crystal, which offers enhanced anisotropy and nonlocality, leading to a variety of unusual nonlinear beam dynamics in both continuous and discrete regimes. In homogenous media, elliptical optical solitons, stabilization of nonlinear optical vortices, as well as orientation-induced transition between bright and dark solitons are demonstrated. In discrete media, hybrid nonlinearity enables the creation of an ionic-type photonic lattice with alternating positive and negative optical potentials, which in turn enables the reconfiguration of lattice structures and Brillouin zones for band-gap engineering and light manipulation. Moreover, a host of nonlinear discrete localized states mediated by such hybrid nonlinearity are uncovered, including elliptical discrete solitons and "saddle" solitons. The novel concept of hybrid nonlinearity opens a door for exploring spatial beam dynamics and related nonlinear phenomena in anisotropic nonlinear systems beyond optics.

  16. Travelling waves in hybrid chemotaxis models.

    PubMed

    Franz, Benjamin; Xue, Chuan; Painter, Kevin J; Erban, Radek

    2014-02-01

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations.

  17. Bio-inspired Hybrid Carbon Nanotube Muscles

    NASA Astrophysics Data System (ADS)

    Kim, Tae Hyeob; Kwon, Cheong Hoon; Lee, Changsun; An, Jieun; Phuong, Tam Thi Thanh; Park, Sun Hwa; Lima, Márcio D.; Baughman, Ray H.; Kang, Tong Mook; Kim, Seon Jeong

    2016-05-01

    There has been continuous progress in the development for biomedical engineering systems of hybrid muscle generated by combining skeletal muscle and artificial structure. The main factor affecting the actuation performance of hybrid muscle relies on the compatibility between living cells and their muscle scaffolds during cell culture. Here, we developed a hybrid muscle powered by C2C12 skeletal muscle cells based on the functionalized multi-walled carbon nanotubes (MWCNT) sheets coated with poly(3,4-ethylenedioxythiophene) (PEDOT) to achieve biomimetic actuation. This hydrophilic hybrid muscle is physically durable in solution and responds to electric field stimulation with flexible movement. Furthermore, the biomimetic actuation when controlled by electric field stimulation results in movement similar to that of the hornworm by patterned cell culture method. The contraction and relaxation behavior of the PEDOT/MWCNT-based hybrid muscle is similar to that of the single myotube movement, but has faster relaxation kinetics because of the shape-maintenance properties of the freestanding PEDOT/MWCNT sheets in solution. Our development provides the potential possibility for substantial innovation in the next generation of cell-based biohybrid microsystems.

  18. Re-creating ancient hybrid species' complex phenotypes from early-generation synthetic hybrids: three examples using wild sunflowers.

    PubMed

    Rosenthal, David M; Rieseberg, Loren H; Donovan, Lisa A

    2005-07-01

    Can the complex phenotypes that characterize naturally occurring hybrid species be re-created in early-generation artificial hybrids? We address this question with three homoploid hybrid species (Helianthus anomalus, Helianthus deserticola, Helianthus paradoxus) and their ancestral parents (Helianthus annuus, Helianthus petiolaris) that are phenotypically distinct and ecologically differentiated. These species, and two synthetic hybrid populations of the ancestral parents, were characterized for morphological, physiological, and life-history traits in greenhouse studies. Among the synthetic hybrids, discriminant analysis identified a few individuals with the multitrait phenotype of the natural hybrid species: 0.7%-1.1% were H. anomalus-like, 0.5%-13% were H. deserticola-like, and only 0.4% were H. paradoxus-like. These relative frequencies mirror previous findings that genetic correlations are favorable for generating the hybrid species' phenotypes, and they correspond well with phylogeographic evidence that demonstrates multiple natural origins of H. deserticola and H. anomalus but a single origin for H. paradoxus. Even though synthetic hybrids with hybrid species phenotypes are rare, their phenotypic correlation matrices share most of the same principal components (eigenvectors), setting the stage for predictable recovery of hybrid species' phenotypes from different hybrid populations. Our results demonstrate past hybridization could have generated hybrid species-like multitrait phenotypes suitable for persistence in their respective environments in just three generations after initial hybridization.

  19. [Design, synthesis and evaluation of polyamide-nucleoside hybrids and oligonucleotides conjugated hybrid as a novel gene expression control compound].

    PubMed

    Kawashima, Etsuko; Kamaike, Kazuo

    2010-03-01

    On the basis of reports that a minor groove binder pyrrolepolyamide can interfere with gene expression by the sequence-specific recognition of DNA, we expected that nucleoside bearing a pyrrolepolyamide would be able to regulate gene expression. Therefore, we designed and synthesized the pyrrolepolyamide-adenosine (Hybrid 1) and -2'-deoxyguanosine hybrids (Hybrid 2 and Hybrid 3) as lead compounds for gene expression control compounds. The pyrrolepolyamide frame of Hybrid 2 and Hybrid 3 combines at the 2-exocyclic amino group of the 2'-deoxyguanosine by a linker and the 2-exocyclic amino group of guanine exists in the minor groove side of the duplex. Hybrid 2 is the 2'-deoxyguanosine-pyrrolepolyamide hybrid using the 3-aminopropionyl linker, while Hybrid 3 uses the 3-aminopropyl linker. An evaluation of the DNA binding sequence selectivity was performed by analysis of T(m) values and CD spectra, using distamycin A as a contrast. Hybrid 3 has provided more excellent sequence-distinguishable ability than other hybrids and Distamycin A. Moreover, on the basis of these results, we synthesized oligonucleotides conjugated to Hybrid 4, which is stable under conditions of DNA oligonucleotide solid phase synthesis, arranged from Hybrid 3. From T(m) values and CD spectral analysis, it was found that oligonucleotides conjugating Hybrid 4 possess high recognition ability and very high binding ability for the DNA that includes the pyrrolepolyamide binding sequence.

  20. Performance of a hybrid cylindrical roller bearing

    NASA Astrophysics Data System (ADS)

    Schrader, Stephen M.

    1992-08-01

    A 206-size hybrid (ceramic/steel) cylindrical roller bearing was tested in MIL-L-23699 C oil at several speeds and loads. Heat-generation data was collected and subsequently correlated with bearing-analysis software. Bearing-cage slip data was also collected at various oil-flow rates, oil temperatures, and with both MIL-L-7808 J and MIL-L-23699 C oils. The hybrid bearing was tested in MIL-L-23699 C oil for for 25 hours at 2220 N radial load and 1.08 MDN shaft speed. The hybrid bearing technology demonstrated in the report is applicable to the Integrated High Performance Turbine Engine Technology Initiative.

  1. Hybrid metamaterials for electrically triggered multifunctional control

    PubMed Central

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-01-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems. PMID:27807342

  2. Hybrid Motion Planning with Multiple Destinations

    NASA Technical Reports Server (NTRS)

    Clouse, Jeffery

    1998-01-01

    In our initial proposal, we laid plans for developing a hybrid motion planning system that combines the concepts of visibility-based motion planning, artificial potential field based motion planning, evolutionary constrained optimization, and reinforcement learning. Our goal was, and still is, to produce a hybrid motion planning system that outperforms the best traditional motion planning systems on problems with dynamic environments. The proposed hybrid system will be in two parts the first is a global motion planning system and the second is a local motion planning system. The global system will take global information about the environment, such as the placement of the obstacles and goals, and produce feasible paths through those obstacles. We envision a system that combines the evolutionary-based optimization and visibility-based motion planning to achieve this end.

  3. Lossless hybridization between photovoltaic and thermoelectric devices.

    PubMed

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

  4. Sneutrino hybrid inflation and nonthermal leptogenesis

    SciTech Connect

    Antusch, Stefan; Baumann, Jochen P.; Domcke, Valerie F.; Kostka, Philipp M. E-mail: jbaumann@mppmu.mpg.de E-mail: kostka@mppmu.mpg.de

    2010-10-01

    In sneutrino hybrid inflation the superpartner of one of the right-handed neutrinos involved in the seesaw mechanism plays the role of the inflaton field. It obtains its large mass after the ''waterfall'' phase transition which ends hybrid inflation. After this phase transition the oscillations of the sneutrino inflaton field may dominate the universe and efficiently produce the baryon asymmetry of the universe via nonthermal leptogenesis. We investigate the conditions under which inflation, with primordial perturbations in accordance with the latest WMAP results, as well as successful nonthermal leptogenesis can be realized simultaneously within the sneutrino hybrid inflation scenario. We point out which requirements successful inflation and leptogenesis impose on the seesaw parameters, i.e. on the Yukawa couplings and the mass of the right-handed (s)neutrino, and derive the predictions for the CMB observables in terms of the right-handed (s)neutrino mass and the other relevant model parameters.

  5. Simultaneous covalent and noncovalent hybrid polymerizations

    NASA Astrophysics Data System (ADS)

    Yu, Zhilin; Tantakitti, Faifan; Yu, Tao; Palmer, Liam C.; Schatz, George C.; Stupp, Samuel I.

    2016-01-01

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  6. Locomotion control of hybrid cockroach robots

    PubMed Central

    Sanchez, Carlos J.; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M.; Vinson, S. Bradleigh; Liang, Hong

    2015-01-01

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%. PMID:25740855

  7. Hybrid mode tunability in metamaterial nanowaveguides

    NASA Astrophysics Data System (ADS)

    Beig-Mohammadi, Maryam; Sang-Nourpour, Nafiseh; Sanders, Barry C.; Lavoie, Benjamin R.; Kheradmand, Reza

    2017-02-01

    We employ the properties of metamaterials to tailor the modes of metamaterial-dielectric waveguides operating at optical frequencies. We survey the effects of three-dimensional isotropic metamaterial structural parameters on the refractive index of metamaterials and on the hybrid modes in slab metamaterial-dielectric waveguides. Hybrid modes refer to hybrid ordinary-surface plasmon polariton modes in the waveguide structures. We investigate how robust metamaterials are to fluctuations in their structural parameters; specifically, we examine the effects of Gaussian errors on the metamaterials electromagnetic behavior. Our survey enables us to determine the allowable fluctuation limits and from this to identify appropriate unit-cell structure for further applications of metamaterials in waveguide technologies.

  8. Hybridized/coupled multiple resonances in nacre

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kim, Young L.

    2014-01-01

    We report that nacre (also known as mother-of-pearl), a wondrous nanocomposite found in nature, is a rich photonic nanomaterial allowing the experimental realization of collective excitation and light amplification via coupled states. Localized modes in three-dimensional complex media are typically isolated in frequency and space. However, multiple local resonances can be hybridized in multilayered nanostructures of nacre so that the effective cavity size for efficient disordered resonators is scaled up. Localized modes in hybridized states in nacre are overlapped in frequency with similar shapes in space, thus being collectively excited and synergistically amplified. These hybridized states boost light amplification, leading to stable and regular multimode lasing at low excitation energy. The simplicity of ameliorating disordered resonators by mimicking nacre can further serve as platforms for developing cost-effective photonic systems and provide materials for fundamental research on complex media.

  9. Phase reduction theory for hybrid nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Shirasaka, Sho; Kurebayashi, Wataru; Nakao, Hiroya

    2017-01-01

    Hybrid dynamical systems characterized by discrete switching of smooth dynamics have been used to model various rhythmic phenomena. However, the phase reduction theory, a fundamental framework for analyzing the synchronization of limit-cycle oscillations in rhythmic systems, has mostly been restricted to smooth dynamical systems. Here we develop a general phase reduction theory for weakly perturbed limit cycles in hybrid dynamical systems that facilitates analysis, control, and optimization of nonlinear oscillators whose smooth models are unavailable or intractable. On the basis of the generalized theory, we analyze injection locking of hybrid limit-cycle oscillators by periodic forcing and reveal their characteristic synchronization properties, such as ultrafast and robust entrainment to the periodic forcing and logarithmic scaling at the synchronization transition. We also illustrate the theory by analyzing the synchronization dynamics of a simple physical model of biped locomotion.

  10. Aerodynamic Shape Optimization Using Hybridized Differential Evolution

    NASA Technical Reports Server (NTRS)

    Madavan, Nateri K.

    2003-01-01

    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  11. The lightest hybrid meson supermultiplet in QCD

    SciTech Connect

    Dudek, Jozef J

    2011-10-01

    We interpret the spectrum of meson states recently obtained in non-perturbative lattice QCD calculations in terms of constituent quark-antiquark bound states and states, called 'hybrids', in which the q{bar q} pair is supplemented by an excitation of the gluonic field. We identify a lightest supermultiplet of hybrid mesons with J{sup PC} = (0,1,2){sup {-+}}, 1{sup -} built from a gluonic excitation of chromomagnetic character coupled to q{bar q} in an S-wave. The next lightest hybrids are suggested to be quark orbital excitations with the same gluonic excitation, while the next distinct gluonic excitation is significantly heavier. Existing models of gluonic excitations are compared to these findings and possible phenomenological consequences explored.

  12. Hybrid Rocket Experiment Station for Capstone Design

    NASA Technical Reports Server (NTRS)

    Conley, Edgar; Hull, Bethanne J.

    2012-01-01

    Portable hybrid rocket motors and test stands can be seen in many papers but none have been reported on the design or instrumentation at such a small magnitude. The design of this hybrid rocket and test stand is to be small and portable (suitcase size). This basic apparatus will be used for demonstrations in rocket propulsion. The design had to include all of the needed hardware to operate the hybrid rocket unit (with the exception of the external Oxygen tank). The design of this project includes making the correlation between the rocket's thrust and its size, the appropriate transducers (physical size, resolution, range, and cost), compatability with a laptop analog card, the ease of setup, and its portability.

  13. Vibron and phonon hybridization in dielectric nanostructures.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2011-04-05

    Plasmon hybridization theory has been an invaluable tool in advancing our understanding of the optical properties of metallic nanostructures. Through the prism of molecular orbital theory, it allows one to interpret complex structures as "plasmonic molecules" and easily predict and engineer their electromagnetic response. However, this formalism is limited to conducting particles. Here, we present a hybridization scheme for the external and internal vibrations of dielectric nanostructures that provides a straightforward understanding of the infrared signatures of these particles through analogy to existing hybridization models of both molecular orbitals and plasmons extending the range of applications far beyond metallic nanostructures. This method not only provides a qualitative understanding, but also allows for the quantitative prediction of vibrational spectra of complex nanoobjects from well-known spectra of their primitive building blocks. The examples of nanoshells illustrate how spectral features can be understood in terms of symmetry, number of nodal planes, and scale parameters.

  14. Hybrid ceramic bearings for difficult applications

    SciTech Connect

    Dezzani, M.M.; Pearson, P.K.

    1996-04-01

    The Torrington Company, under contract from the Advanced Research Projects Agency (ARPA), has developed a hybrid bearing with improved properties for difficult applications. M50 and M50 NiL steel rings were nitrided to produce rolling contact raceway surfaces with hardnesses near Rockwell C 70. Rings were assembled with NBD-200 silicon nitride balls. Full-scale bearing tests were run under conditions that included 150 C temperature, surface flaws created by hard particle contamination, partial EHD lubrication, and the sliding action of balls running under thrust loading. The hybrid bearings had longer life than all steel bearings and demonstrated resistance to the surface peeling mode of failure initiation. Higher strength of the rolling contact surfaces, high residual compressive stresses in the nitrided layers, and a more favorable action in ceramic to steel rolling contact are discussed as the reasons for improved performance of the hybrid over all-steel bearings.

  15. Rate analysis for a hybrid quantum repeater

    SciTech Connect

    Bernardes, Nadja K.; Loock, Peter van

    2011-01-15

    We present a detailed rate analysis for a hybrid quantum repeater assuming perfect memories and using optimal probabilistic entanglement generation and deterministic swapping routines. The hybrid quantum repeater protocol is based on atomic qubit-entanglement distribution through optical coherent-state communication. An exact, analytical formula for the rates of entanglement generation in quantum repeaters is derived, including a study on the impacts of entanglement purification and multiplexing strategies. More specifically, we consider scenarios with as little purification as possible and we show that for sufficiently low local losses, such purifications are still more powerful than multiplexing. In a possible experimental scenario, our hybrid system can create near-maximally entangled (F=0.98) pairs over a distance of 1280 km at rates of the order of 100 Hz.

  16. Simultaneous covalent and noncovalent hybrid polymerizations

    SciTech Connect

    Yu, Z.; Tantakitti, F.; Yu, T.; Palmer, L. C.; Schatz, G. C.; Stupp, S. I.

    2016-01-28

    Covalent and supramolecular polymers are two distinct forms of soft matter, composed of long chains of covalently and noncovalently linked structural units, respectively. We report a hybrid system formed by simultaneous covalent and supramolecular polymerizations of monomers. The process yields cylindrical fibers of uniform diameter that contain covalent and supramolecular compartments, a morphology not observed when the two polymers are formed independently. The covalent polymer has a rigid aromatic imine backbone with helicoidal conformation, and its alkylated peptide side chains are structurally identical to the monomer molecules of supramolecular polymers. In the hybrid system, covalent chains grow to higher average molar mass relative to chains formed via the same polymerization in the absence of a supramolecular compartment. The supramolecular compartments can be reversibly removed and re-formed to reconstitute the hybrid structure, suggesting soft materials with novel delivery or repair functions.

  17. Hybrid metamaterials for electrically triggered multifunctional control

    NASA Astrophysics Data System (ADS)

    Liu, Liu; Kang, Lei; Mayer, Theresa S.; Werner, Douglas H.

    2016-10-01

    Despite the exotic material properties that have been demonstrated to date, practical examples of versatile metamaterials remain exceedingly rare. The concept of metadevices has been proposed in the context of hybrid metamaterial composites: systems in which active materials are introduced to advance tunability, switchability and nonlinearity. In contrast to the successful hybridizations seen at lower frequencies, there has been limited exploration into plasmonic and photonic nanostructures due to the lack of available optical materials with non-trivial activity, together with difficulties in regulating responses to external forces in an integrated manner. Here, by presenting a series of proof-of-concept studies on electrically triggered functionalities, we demonstrate a vanadium dioxide integrated photonic metamaterial as a transformative platform for multifunctional control. The proposed hybrid metamaterial integrated with transition materials represents a major step forward by providing a universal approach to creating self-sufficient and highly versatile nanophotonic systems.

  18. Lossless hybridization between photovoltaic and thermoelectric devices

    PubMed Central

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S.; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device). PMID:23820973

  19. Locomotion control of hybrid cockroach robots.

    PubMed

    Sanchez, Carlos J; Chiu, Chen-Wei; Zhou, Yan; González, Jorge M; Vinson, S Bradleigh; Liang, Hong

    2015-04-06

    Natural systems retain significant advantages over engineered systems in many aspects, including size and versatility. In this research, we develop a hybrid robotic system using American (Periplaneta americana) and discoid (Blaberus discoidalis) cockroaches that uses the natural locomotion and robustness of the insect. A tethered control system was firstly characterized using American cockroaches, wherein implanted electrodes were used to apply an electrical stimulus to the prothoracic ganglia. Using this approach, larger discoid cockroaches were engineered into a remotely controlled hybrid robotic system. Locomotion control was achieved through electrical stimulation of the prothoracic ganglia, via a remotely operated backpack system and implanted electrodes. The backpack consisted of a microcontroller with integrated transceiver protocol, and a rechargeable battery. The hybrid discoid roach was able to walk, and turn in response to an electrical stimulus to its nervous system with high repeatability of 60%.

  20. Hybrid-free Josephson Parametric Converter

    NASA Astrophysics Data System (ADS)

    Frattini, N. E.; Narla, A.; Sliwa, K. M.; Shankar, S.; Hatridge, M.; Devoret, M. H.

    A necessary component for any quantum computation architecture is the ability to perform efficient quantum operations. In the microwave regime of superconducting qubits, these quantum-limited operations can be realized with a non-degenerate Josephson junction based three-wave mixer, the Josephson Parametric Converter (JPC). Currently, the quantum signal of interest must pass through a lossy 180 degree hybrid to be presented as a differential drive to the JPC. This hybrid therefore places a limit on the quantum efficiency of the system and also increases the device footprint. We present a new design for the JPC eliminating the need for any external hybrid. We also show that this design has nominally identical performance to the conventional JPC. Work supported by ARO, AFOSR and YINQE.

  1. Hybrid high refractive index polymer coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Flaim, Tony; Mercado, Ramil; Fowler, Shelly; Holmes, Douglas; Planje, Curtis

    2005-04-01

    Thermally curable hybrid high refractive index polymer solutions have been developed. These solutions are stable up to 6 months under room temperature storage conditions and can be easily spin-coated onto a desired substrate. When cured at elevated temperature, the hybrid polymer coating decomposes to form a metal oxide-rich film that has a high refractive index. The resulting films have refractive indices higher than 1.90 in the entire visible region and achieve film thicknesses of 300-900 nm depending on the level of metal oxide loading, cure temperature being used, and number of coatings. The formed films show greater than 90% internal transmission in the visible wavelength (400-700 nm). These hybrid high refractive index films are mechanically robust, are stable upon exposure to both heat and UV radiation, and are currently being investigated for microlithographic patterning potential.

  2. Magnetoresistance in inhomogeneous graphene/metal hybrids

    NASA Astrophysics Data System (ADS)

    Moktadir, Zakaria; Mizuta, Hiroshi

    2013-02-01

    We investigate extraordinary magnetoresistance (EMR) of inhomogeneous graphene-metal hybrids using finite element modelling. Inhomogeneous graphene is a binary system made of electron and hole puddles. Two geometries of the embedded metallic structure were considered: circular and fishbone geometries. We found that the breaking of graphene into charge puddles weakens the magnetoresistance of the hybrid system compared to a homogeneous graphene-metal system. For a fixed value of the magnetic field, the magnetoresistance increases with decreasing area fraction occupied by electrons puddles. Fishbone geometry showed an enhanced magnetoresistance compared to circular geometry. The EMR is also investigated as a function of the contact resistance for the fishbone geometry where it was found that a minimal contact resistance is essential to obtain enhanced EMR in graphene-metal hybrid devices.

  3. Invasive hybrid tiger salamander genotypes impact native amphibians

    PubMed Central

    Ryan, Maureen E.; Johnson, Jarrett R.; Fitzpatrick, Benjamin M.

    2009-01-01

    Although the ecological consequences of species invasions are well studied, the ecological impacts of genetic introgression through hybridization are less understood. This is particularly true of the impacts of hybridization on “third party” community members not genetically involved in hybridization. We also know little about how direct interactions between hybrid and parental individuals influence fitness. Here, we examined the ecological effects of hybridization between the native, threatened California Tiger Salamander (Ambystoma californiense) and the introduced Barred Tiger Salamander (Ambystoma tigrinum mavortium). Native x introduced hybrids are widespread in California, where they are top predators in seasonal ponds. We examined the impacts of early generation hybrids (first 2 generations of parental crosses) and contemporary hybrids derived from ponds where hybrids have been under selection in the wild for 20 generations. We found that most classes of hybrid tiger salamander larvae dramatically reduced survival of 2 native community members, the Pacific Chorus Frog (Pseudacris regilla) and the California Newt (Taricha torosa). We also found that native A. californiense larvae were negatively impacted by the presence of hybrid larvae: Native survival and size at metamorphosis were reduced and time to metamorphosis was extended. We also observed a large influence of Mendelian dominance on size, metamorphic timing and predation rate of hybrid tiger salamanders. These results suggest that both genetic and ecological factors are likely to influence the dynamics of admixture, and that tiger salamander hybridization might constitute a threat to additional pond-breeding species of concern in the region. PMID:19564601

  4. Invasive hybrid tiger salamander genotypes impact native amphibians.

    PubMed

    Ryan, Maureen E; Johnson, Jarrett R; Fitzpatrick, Benjamin M

    2009-07-07

    Although the ecological consequences of species invasions are well studied, the ecological impacts of genetic introgression through hybridization are less understood. This is particularly true of the impacts of hybridization on "third party" community members not genetically involved in hybridization. We also know little about how direct interactions between hybrid and parental individuals influence fitness. Here, we examined the ecological effects of hybridization between the native, threatened California Tiger Salamander (Ambystoma californiense) and the introduced Barred Tiger Salamander (Ambystoma tigrinum mavortium). Native x introduced hybrids are widespread in California, where they are top predators in seasonal ponds. We examined the impacts of early generation hybrids (first 2 generations of parental crosses) and contemporary hybrids derived from ponds where hybrids have been under selection in the wild for 20 generations. We found that most classes of hybrid tiger salamander larvae dramatically reduced survival of 2 native community members, the Pacific Chorus Frog (Pseudacris regilla) and the California Newt (Taricha torosa). We also found that native A. californiense larvae were negatively impacted by the presence of hybrid larvae: Native survival and size at metamorphosis were reduced and time to metamorphosis was extended. We also observed a large influence of Mendelian dominance on size, metamorphic timing and predation rate of hybrid tiger salamanders. These results suggest that both genetic and ecological factors are likely to influence the dynamics of admixture, and that tiger salamander hybridization might constitute a threat to additional pond-breeding species of concern in the region.

  5. Using genomic slot blot hybridization to assess intergeneric Saccharum x Erianthus hybrids (Andropogoneae - Saccharinae).

    PubMed

    Besse, P; McIntyre, C L; Burner, D M; Almeida, C G

    1997-08-01

    The use of genomic slot blot hybridization enabled the differentiation of hybrids from selfs in Saccharum x Erianthus intergeneric crosses in which Saccharum was used as the female parent. Based on the genomic in situ hybridization technique, slot blots of DNA from the parents and the progeny were blocked with the Saccharum parent DNA and hybridized with the labelled male Erianthus genomic DNA. This technique allowed a rapid screening for hybrids and was sensitive enough to detect a 1/20 dilution of Erianthus in Saccharum DNA, which should enable the detection of most partial hybrids. The genomic slot blot hybridization technique was shown to be potentially useful for assessing crosses involving Saccharum species with either Old World Erianthus section Ripidium or North American Erianthus (= Saccharum) species. The effectiveness of the technique was assessed on 144 progeny of a Saccharum officinarum x Erianthus arundinaceus cross, revealing that 43% of the progeny were selfs. The importance of this test as a tool to support intergeneric breeding programs is discussed.

  6. Homoploid hybrid origin of Yucca gloriosa: intersectional hybrid speciation in Yucca (Agavoideae, Asparagaceae).

    PubMed

    Rentsch, Jeremy D; Leebens-Mack, Jim

    2012-09-01

    There is a growing appreciation for the importance of hybrid speciation in angiosperm evolution. Here, we show that Yucca gloriosa (Asparagaceae: Agavoideae) is the product of intersectional hybridization between Y. aloifolia and Y. filamentosa. These species, all named by Carl Linnaeus, exist in sympatry along the southeastern Atlantic coast of the United States. Yucca gloriosa was found to share a chloroplast haplotype with Y. aloifolia in all populations sampled. In contrast, nuclear gene-based microsatellite markers in Y. gloriosa are shared with both parents. The hybrid origin of Y. gloriosa is supported by multilocus analyses of the nuclear microsatellite markers including principal coordinates analysis (PCO), maximum-likelihood hybrid index scoring (HINDEX), and Bayesian cluster analysis (STRUCTURE). The putative parental species share only one allele at a single locus, suggesting there is little to no introgressive gene flow occurring between these species and Y. gloriosa. At the same time, diagnostic markers are segregating in Y. gloriosa populations. Lack of variation in the chloroplast of Y. aloifolia, the putative maternal parent, makes it difficult to rule out multiple hybrid origins of Y. gloriosa, but allelic variation at nuclear loci can be explained by a single hybrid origin of Y. gloriosa. Overall, these data provide strong support for the homoploid hybrid origin of Y. gloriosa.

  7. Homoploid hybrid origin of Yucca gloriosa: intersectional hybrid speciation in Yucca (Agavoideae, Asparagaceae)

    PubMed Central

    Rentsch, Jeremy D; Leebens-Mack, Jim

    2012-01-01

    There is a growing appreciation for the importance of hybrid speciation in angiosperm evolution. Here, we show that Yucca gloriosa (Asparagaceae: Agavoideae) is the product of intersectional hybridization between Y. aloifolia and Y. filamentosa. These species, all named by Carl Linnaeus, exist in sympatry along the southeastern Atlantic coast of the United States. Yucca gloriosa was found to share a chloroplast haplotype with Y. aloifolia in all populations sampled. In contrast, nuclear gene-based microsatellite markers in Y. gloriosa are shared with both parents. The hybrid origin of Y. gloriosa is supported by multilocus analyses of the nuclear microsatellite markers including principal coordinates analysis (PCO), maximum-likelihood hybrid index scoring (HINDEX), and Bayesian cluster analysis (STRUCTURE). The putative parental species share only one allele at a single locus, suggesting there is little to no introgressive gene flow occurring between these species and Y. gloriosa. At the same time, diagnostic markers are segregating in Y. gloriosa populations. Lack of variation in the chloroplast of Y. aloifolia, the putative maternal parent, makes it difficult to rule out multiple hybrid origins of Y. gloriosa, but allelic variation at nuclear loci can be explained by a single hybrid origin of Y. gloriosa. Overall, these data provide strong support for the homoploid hybrid origin of Y. gloriosa. PMID:23139880

  8. Evidence for a bimodal distribution of hybrid indices in a hybrid zone with high admixture

    PubMed Central

    McKenzie, Jessica L.; Dhillon, Rashpal S.; Schulte, Patricia M.

    2015-01-01

    The genetic structure of a hybrid zone can provide insights into the relative roles of the various factors that maintain the zone. Here, we use a multilocus approach to characterize a hybrid zone between two subspecies of killifish (Fundulus heteroclitus, Walbaum 1792) found along the Atlantic coast of North America. We first analysed clinal variation along the Atlantic coast using a single-nucleotide polymorphism in the mitochondrial DNA (mtDNA) displacement loop (D-loop) and a panel of nine nuclear microsatellite markers. A model constraining all clines to the same width and centre was not significantly different from a model in which the clines were allowed to vary independently. Locus-by-locus analysis indicated that the majority of nuclear clines shared the same centre as the mtDNA cline, and the widths of these clines were also narrower than that predicted by a neutral model, suggesting that selection is operating to maintain the hybrid zone. However, two of the nuclear clines had widths greater than the neutral prediction and had centres that were displaced relative to the mtDNA cline centre. We also found that a marsh located near the centre of the mtDNA cline demonstrated a bimodal distribution of nuclear hybrid index values, suggesting a deficit of first-generation hybrids and backcrossed genotypes. Thus, selection against hybrid genotypes may be playing a role in maintaining this hybrid zone and the associated steep nuclear and mtDNA clines. PMID:27019720

  9. Mammalian two-hybrid system: a complementary approach to the yeast two-hybrid system.

    PubMed

    Luo, Y; Batalao, A; Zhou, H; Zhu, L

    1997-02-01

    Here we demonstrate the use of a mammalian two-hybrid system to study protein-protein interactions. Like the yeast two-hybrid system, this is a genetic, in vivo assay based on the reconstitution of the function of a transcriptional activator. In this system, one protein of interest is expressed as a fusion to the Gal4 DNA-binding domain and another protein is expressed as a fusion to the activation domain of the VP16 protein of the herpes simplex virus. The vectors that express these fusion proteins are cotransfected with a reporter chloramphenicol acetyltransferase (CAT) vector into a mammalian cell line. The reporter plasmid contains a cat gene under the control of five consensus Gal4 binding sites. If the two fusion proteins interact, there will be a significant increase in expression of the cat reporter gene. Previously, it was reported that mouse p53 antitumor protein and simian virus 40 large T antigen interact in a yeast two-hybrid system. Using a mammalian two-hybrid system, we were able to independently confirm this interaction. The mammalian two-hybrid system can be used as a complementary approach to verify protein-protein interactions detected by a yeast two-hybrid system screening. In addition, the mammalian two-hybrid system has two main advantages: (i) Assay results can be obtained within 48 h of transfection, and (ii) protein interactions in mammalian cells may better mimic actual in vivo interactions.

  10. Frontier battery development for hybrid vehicles

    PubMed Central

    2012-01-01

    Background Interest in hybrid-electric vehicles (HEVs) has recently spiked, partly due to an increasingly negative view toward the U.S. foreign oil dependency and environmental concerns. Though HEVs are becoming more common, they have a significant price premium over gasoline-powered vehicles. One of the primary drivers of this “hybrid premium” is the cost of the vehicles’ batteries. This paper focuses on these batteries used in hybrid vehicles, examines the types of batteries used for transportation applications and addresses some of the technological, environmental and political drivers in battery development and the deployment of HEVs. Methods This paper examines the claim, often voiced by HEV proponents, that by taking into account savings on gasoline and vehicle maintenance, hybrid cars are cheaper than traditional gasoline cars. This is done by a quantitative benefit-cost analysis, in addition to qualitative benefit-cost analysis from political, technological and environmental perspectives. Results The quantitative benefit-cost analysis shows that, taking account of all costs for the life of the vehicle, hybrid cars are in fact more expensive than gasoline-powered vehicles; however, after five years, HEVs will break even with gasoline cars. Conclusions Our results show that it is likely that after 5 years, using hybrid vehicles should be cheaper in effect and yield a positive net benefit to society. There are a number of externalities that could significantly impact the total social cost of the car. These externalities can be divided into four categories: environmental, industrial, R&D and political. Despite short-term implications and hurdles, increased HEV usage forecasts a generally favorable long-term net benefit to society. Most notably, increasing HEV usage could decrease greenhouse gas emissions, while also decreasing U.S. dependence on foreign oil. PMID:22540987

  11. CORSICA modelling of ITER hybrid operation scenarios

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  12. Hybrid stochastic simplifications for multiscale gene networks

    PubMed Central

    Crudu, Alina; Debussche, Arnaud; Radulescu, Ovidiu

    2009-01-01

    Background Stochastic simulation of gene networks by Markov processes has important applications in molecular biology. The complexity of exact simulation algorithms scales with the number of discrete jumps to be performed. Approximate schemes reduce the computational time by reducing the number of simulated discrete events. Also, answering important questions about the relation between network topology and intrinsic noise generation and propagation should be based on general mathematical results. These general results are difficult to obtain for exact models. Results We propose a unified framework for hybrid simplifications of Markov models of multiscale stochastic gene networks dynamics. We discuss several possible hybrid simplifications, and provide algorithms to obtain them from pure jump processes. In hybrid simplifications, some components are discrete and evolve by jumps, while other components are continuous. Hybrid simplifications are obtained by partial Kramers-Moyal expansion [1-3] which is equivalent to the application of the central limit theorem to a sub-model. By averaging and variable aggregation we drastically reduce simulation time and eliminate non-critical reactions. Hybrid and averaged simplifications can be used for more effective simulation algorithms and for obtaining general design principles relating noise to topology and time scales. The simplified models reproduce with good accuracy the stochastic properties of the gene networks, including waiting times in intermittence phenomena, fluctuation amplitudes and stationary distributions. The methods are illustrated on several gene network examples. Conclusion Hybrid simplifications can be used for onion-like (multi-layered) approaches to multi-scale biochemical systems, in which various descriptions are used at various scales. Sets of discrete and continuous variables are treated with different methods and are coupled together in a physically justified approach. PMID:19735554

  13. Genetic identification of spotted owls, barred owls, and their hybrids: Legal implications of hybrid identity

    USGS Publications Warehouse

    Haig, Susan M.; Wennerberg, Liv; Mullins, Thomas D.; Forsman, E.D.; Trail, P.

    2004-01-01

    Recent population expansion of Barred Owls ( Strix varia) into western North America has led to concern that they may compete with and further harm the Northern Spotted Owl ( S. occidentalis caurina), which is already listed as threatened under the U.S. Endangered Species Act (ESA). Because they hybridize, there is a legal need under the ESA for forensic identification of both species and their hybrids. We used mitochondrial control-region DNA and amplified fragment-length polymorphism (AFLP) analyses to assess maternal and biparental gene flow in this hybridization process. Mitochondrial DNA sequences (524 base pairs) indicated large divergence between Barred and Spotted Owls (13.9%). Further, the species formed two distinct clades with no signs of previous introgression. Fourteen diagnostic AFLP bands also indicated extensive divergence between the species, including markers differentiating them. Principal coordinate analyses and assignment tests clearly supported this differentiation. We found that hybrids had unique genetic combinations, including AFLP markers from both parental species, and identified known hybrids as well as potential hybrids with unclear taxonomic status. Our analyses corroborated the findings of extensive field studies that most hybrids genetically sampled resulted from crosses between female Barred Owls and male Spotted Owls. These genetic markers make it possible to clearly identify these species as well as hybrids and can now be used for research, conservation, and law enforcement. Several legal avenues may facilitate future conservation of Spotted Owls and other ESA-listed species that hybridize, including the ESA similarity-of-appearance clause (section 4[e]) and the Migratory Bird Treaty Act. The Migratory Bird Treaty Act appears to be the most useful route at this time.

  14. Anticorrosive organic/inorganic hybrid coatings

    NASA Astrophysics Data System (ADS)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  15. Italian hybrid and fission reactors scenario analysis

    SciTech Connect

    Ciotti, M.; Manzano, J.; Sepielli, M.

    2012-06-19

    Italy is a country where a long tradition of studies both in the fission and fusion field is consolidated; nevertheless a strong public opinion concerned with the destination of the Spent Nuclear Fuel hinders the development of nuclear power. The possibility to a severe reduction of the NSF mass generated from a fleet of nuclear reactors employing an hypothetical fusionfission hybrid reactor has been investigated in the Italian framework. The possibility to produce nuclear fuel for the fission nuclear reactors with the hybrid reactor was analyzed too.

  16. Hybrid modelling of anaerobic wastewater treatment processes.

    PubMed

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  17. Strength of adhesive-bonded hybrid structures

    NASA Technical Reports Server (NTRS)

    Kirschke, L.; Prinz, R.; Schnell, H.

    1979-01-01

    Structures prepared from materials with different thermal and mechanical properties by means of fiber-strengthened binders can fail in a number of ways. The present lecture is focused on failures through debonding at the metal or at the fiber-reinforced plastic. A method for calculating the stress distribution in adhesive layers as a function of the load is outlined, and its usefulness in providing insight into the behavior of bonds in hybrid structures is noted. Means of eliminating the unfavorable effects of temperature, humidity, creep and relaxation on the bonds in the manufacture of hybrid structures are examined, along with test methods developed for such structures.

  18. Advanced Digital Signal Processing for Hybrid Lidar

    DTIC Science & Technology

    2013-03-31

    project "Advanced Digital Signal Processing for Hybrid Lidar " covering the period of 1/1/2013-3/31/2013. 9LO\\SO^O’IH^’?’ William D. Jemison...Chaotic LIDAR for Naval Applications This document contains a Progress Summary for FY13 Q2 and a Short Work Statement for FY13 Progress Summary for...This technique has the potential to increase the unambiguous range of hybrid lidar -radar while maintaining reasonable range resolution. Proof-of

  19. Lewis hybrid computing system, users manual

    NASA Technical Reports Server (NTRS)

    Bruton, W. M.; Cwynar, D. S.

    1979-01-01

    The Lewis Research Center's Hybrid Simulation Lab contains a collection of analog, digital, and hybrid (combined analog and digital) computing equipment suitable for the dynamic simulation and analysis of complex systems. This report is intended as a guide to users of these computing systems. The report describes the available equipment' and outlines procedures for its use. Particular is given to the operation of the PACER 100 digital processor. System software to accomplish the usual digital tasks such as compiling, editing, etc. and Lewis-developed special purpose software are described.

  20. Prediction of properties of intraply hybrid composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Equations based on the mixtures rule are presented for predicting the physical, thermal, hygral, and mechanical properties of unidirectional intraply hybrid composites (UIHC) from the corresponding properties of their constituent composites. Bounds were derived for uniaxial longitudinal strengths, tension, compression, and flexure of UIHC. The equations predict shear and flexural properties which agree with experimental data from UIHC. Use of these equations in a composites mechanics computer code predicted flexural moduli which agree with experimental data from various intraply hybrid angleplied laminates (IHAL). It is indicated, briefly, how these equations can be used in conjunction with composite mechanics and structural analysis during the analysis/design process.

  1. The Rational Hybrid Monte Carlo algorithm

    NASA Astrophysics Data System (ADS)

    Clark, Michael

    2006-12-01

    The past few years have seen considerable progress in algorithmic development for the generation of gauge fields including the effects of dynamical fermions. The Rational Hybrid Monte Carlo (RHMC) algorithm, where Hybrid Monte Carlo is performed using a rational approximation in place the usual inverse quark matrix kernel is one of these developments. This algorithm has been found to be extremely beneficial in many areas of lattice QCD (chiral fermions, finite temperature, Wilson fermions etc.). We review the algorithm and some of these benefits, and we compare against other recent algorithm developements. We conclude with an update of the Berlin wall plot comparing costs of all popular fermion formulations.

  2. Hybrid procedures for peripheral obstructive disease.

    PubMed

    Schrijver, A M; Moll, F L; De Vries, J P Pm

    2010-12-01

    The incidence and prevalence of high-risk patients suffering from critical limb ischemia due to multilevel arterial obstructive disease is growing rapidly. Invasive surgical procedures to restore inflow to the crural and pedal circulation in case of TransAtlantic InterSociety Consensus C and D (TASC) lesions of the iliacofemoral arteries are related with substantial morbidity and mortality. The mid-term and long-term outcomes of sole percutaneous revascularization procedures are disappointing for TASC C and D lesions. Hybrid endovascular and open surgical revascularization procedures might be of benefit because of its less invasive character, no need for extensive venous graft material, and the ability to overcome long-segment arterial obstructions. The common femoral artery (CFA) plays a central role in most of the hybrid procedures. CFA desobstruction, in combination with open iliac angioplasty or open superficial femoral artery (SFA) angioplasty, and CFA desobstruction with remote endarterectomy of the superficial femoral artery, are commonplace. Another valuable hybrid technique is open angioplasty of the SFA and one-staged distal origin bypass grafting. Hybrid techniques can safely be performed in the vascular operating room providing that the inventory is equipped for endovascular interventions. Vascular surgeons with thorough experience in open transluminal angioplasty, whether or not in cooperation with interventional radiologists or angiologists, will have the lead in the preoperative and perioperative planning. No randomized controlled trials have been published comparing hybrid techniques and open surgical reconstructions, or sole endvascular methods for multilevel peripheral arterial disease. During the last decade, multiple prospective and retrospective series have been reported concerning hybrid techniques, all with good initial technical success (up to 95%) and acceptable 30-day morbidity and mortality rates. Mid-term and long-term patency rates are

  3. Managing transition to a hybrid operating room.

    PubMed

    Odle, Teresa G

    2011-01-01

    Managers of interventional radiology departments and medical imaging personnel who work in surgical suites deal with regular technical innovations in their work, but large-scale innovations seldom come along that transform markets and require massive architectural, training, and technological changes. The hybrid interventional/operating suite is one such massive change. This article presents an overview of the transition to hybrid procedures and designs, the benefits and challenges of the new delivery method, and change management issues for managers of cardiovascular and vascular interventional departments.

  4. Hybridizing matter-wave and classical accelerometers

    SciTech Connect

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  5. Lower Hybrid to Whistler Wave Conversion

    SciTech Connect

    Winske, Dan

    2012-07-16

    In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

  6. Equilibrium properties of hybrid field reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Gupta, D.; Gupta, S.; Onofri, M.; Osin, D.; Deng, B. H.; Dettrick, S. A.; Hubbard, K.; Gota, H.

    2017-01-01

    Field Reversed Configurations (FRCs) heated by neutral beam injection may include a large fast ion pressure that significantly modifies the equilibrium. A new analysis is required to characterize such hybrid FRCs, as the simple relations used up to now prove inaccurate. The substantial contributions of fast ions to FRC radial pressure balance and diamagnetism are described. A simple model is offered to reconstruct more accurately the equilibrium parameters of elongated hybrid FRCs. Further modeling requires new measurements of either the magnetic field or the plasma pressure.

  7. Hybrid piezoelectric energy harvesting transducer system

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing (Inventor); Jiang, Xiaoning (Inventor); Su, Ji (Inventor); Rehrig, Paul W. (Inventor); Hackenberger, Wesley S. (Inventor)

    2008-01-01

    A hybrid piezoelectric energy harvesting transducer system includes: (a) first and second symmetric, pre-curved piezoelectric elements mounted separately on a frame so that their concave major surfaces are positioned opposite to each other; and (b) a linear piezoelectric element mounted separately on the frame and positioned between the pre-curved piezoelectric elements. The pre-curved piezoelectric elements and the linear piezoelectric element are spaced from one another and communicate with energy harvesting circuitry having contact points on the frame. The hybrid piezoelectric energy harvesting transducer system has a higher electromechanical energy conversion efficiency than any known piezoelectric transducer.

  8. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  9. A general purpose characterization system for rooftop hybrid microconcentrators

    NASA Astrophysics Data System (ADS)

    Middleton, Robert; Jones, Christopher; Thomsen, Elizabeth; Diez, Vicente Munoz; Harvey, J.; Everett, Vernie; Blakers, Andrew

    2014-09-01

    A versatile characterization system for hybrid thermal and photovoltaic solar receivers is presented and demonstrated. The characterization of the thermal loss and effective area of a novel hybrid receiver is presented.

  10. DNA/DNA in situ hybridization with enzyme linked probes

    SciTech Connect

    Grillo, S.; Mosher, M.; Charles, P.; Henry, S.; Taub, F.

    1987-05-01

    A non-radioactive in situ nucleic acid hybridization method which requires no antibodies, haptens, avidin or biotin intermediateries is presented. Horseradish peroxidase (HRP) labeled nucleic acid probes are hybridized in situ for 2 hours or less, followed by brief washing of hybridized cells and the direct detection of in situ hybrids with diaminobenzidine (DAB). Application of this method to the detection of Human Papilloma Virus (HPV) in human cells is shown.

  11. The Underutilized Potential of the Hybrid Educator in Teacher Education

    ERIC Educational Resources Information Center

    Jennings, Gregory; Peloso, Jeanne M.

    2010-01-01

    The hybrid educator is an essential contributor to the development of new public school teachers. A hybrid educator is a college adjunct professor employed full time by a public school system. The role of the hybrid educator involves the navigation of two separate systems in developing new teachers: the university and the public school. This…

  12. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  13. Confirmation of hybrid origin in Arisaema (Araceae) using molecular markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A population of hybrids between Arisaema triphyllum subsp. stewardsonii and A. dracontium was investigated using molecular markers to document the hybrid origin. Total genomic DNA was extracted from A. triphyllum, A. dracontium, and the hybrids, and subjected to sequence analysis of various regions...

  14. 7 CFR 1400.212 - Growers of hybrid seed.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Growers of hybrid seed. 1400.212 Section 1400.212... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Eligibility § 1400.212 Growers of hybrid seed. The existence of a hybrid seed contract for a person or legal entity will not be taken into...

  15. 7 CFR 1400.212 - Growers of hybrid seed.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Growers of hybrid seed. 1400.212 Section 1400.212... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Eligibility § 1400.212 Growers of hybrid seed. The existence of a hybrid seed contract for a person or legal entity will not be taken into...

  16. 7 CFR 1400.212 - Growers of hybrid seed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Growers of hybrid seed. 1400.212 Section 1400.212... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Eligibility § 1400.212 Growers of hybrid seed. The existence of a hybrid seed contract for a person or legal entity will not be taken into...

  17. 7 CFR 1400.212 - Growers of hybrid seed.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Growers of hybrid seed. 1400.212 Section 1400.212... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Eligibility § 1400.212 Growers of hybrid seed. The existence of a hybrid seed contract for a person or legal entity will not be taken into...

  18. Cannibalism in single-batch hybrid catfish production ponds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybrid catfish are more efficiently harvested by seining than are Channel Catfish. Due to that, and their faster growth, hybrids are typically produced in “single-batch” production systems, either in intensively-aerated commercial ponds or in split-pond systems. In either production system, hybrids...

  19. 7 CFR 1400.212 - Growers of hybrid seed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Growers of hybrid seed. 1400.212 Section 1400.212... AND SUBSEQUENT CROP, PROGRAM, OR FISCAL YEARS Payment Eligibility § 1400.212 Growers of hybrid seed. The existence of a hybrid seed contract for a person or legal entity will not be taken into...

  20. Tamarix (Tamaricaceae) hybrids: most dominant invasive genotype in southern Africa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hybridization can potentially enhance invasiveness. Tamarix (Tamaricaceae) hybrids appear to be the dominant genotypes in their invasions. Exotic Tamarix are declared invasive in South Africa and the exotic T. chinensis and T. ramosissima are known to hybridize between themselves, and with the nativ...

  1. Multiple insect resistance in 77 commercial corn hybrids - 2014

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial corn hybrids were screened for ear- and kernel-feeding insect resistance under the field conditions at Tifton, GA. Twenty hybrids were rated as very good (VG), the highest rating for multiple insect resistance in 2014. Two hybrids were developed utilizing YHR traits (also known as Optimum...

  2. Multiple insect resistance in 70 commercial corn hybrids - 2013

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Commercial corn hybrids were screened for ear- and kernel-feeding insect resistance under the field conditions at Tifton, GA. Nineteen hybrids were rated as very good (VG), the highest rating for multiple insect resistance in 2013. Five hybrids were developed utilizing YHR or BHR traits (also known ...

  3. 47 CFR 73.404 - Interim hybrid IBOC DAB operation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... RADIO BROADCAST SERVICES Digital Audio Broadcasting § 73.404 Interim hybrid IBOC DAB operation. (a) The... test operation pursuant to § 73.1620, may commence interim hybrid IBOC DAB operation with digital... No. 99-325. FM stations are permitted to operate with hybrid digital effective radiated power...

  4. 47 CFR 73.404 - Interim hybrid IBOC DAB operation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... RADIO BROADCAST SERVICES Digital Audio Broadcasting § 73.404 Interim hybrid IBOC DAB operation. (a) The... test operation pursuant to § 73.1620, may commence interim hybrid IBOC DAB operation with digital... No. 99-325. FM stations are permitted to operate with hybrid digital effective radiated power...

  5. Reactions of Sweet Corn Hybrids to Prevalent Diseases and Herbicides

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This 27-year summary is of University of Illinois sweet corn nurseries from 1984 to 2010, and includes the reactions of 800 hybrids to eight diseases and three herbicides. Commercially-available and pre-commercial hybrids included 547 shrunken-2 hybrids (317 yellow, 152 bi-color, and 78 white), 117 ...

  6. Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery

    DOEpatents

    Bockelmann, Thomas R.; Hope, Mark E.; Zou, Zhanjiang; Kang, Xiaosong

    2009-02-10

    A battery control system for hybrid vehicle includes a hybrid powertrain battery, a vehicle accessory battery, and a prime mover driven generator adapted to charge the vehicle accessory battery. A detecting arrangement is configured to monitor the vehicle accessory battery's state of charge. A controller is configured to activate the prime mover to drive the generator and recharge the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a first predetermined level, or transfer electrical power from the hybrid powertrain battery to the vehicle accessory battery in response to the vehicle accessory battery's state of charge falling below a second predetermined level. The invention further includes a method for controlling a hybrid vehicle powertrain system.

  7. Hybrid graduate program in optical engineering

    NASA Astrophysics Data System (ADS)

    Rawat, Banmali S.

    2003-10-01

    A unique graduate program in optical engineering by combining optical and microwave courses has been developed in the University of Nevada, Reno. The advantage of such a hybrid program is better job opportunities in a tight job market as these students are suitable for both RF/microwaves and Optical industries.

  8. Hybrid energy harvesting using active thermal backplane

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Wook; Lee, Dong-Gun

    2016-04-01

    In this study, we demonstrate the concept of a new hybrid energy harvesting system by combing solar cells with magneto-thermoelectric generator (MTG, i.e., thermal energy harvesting). The silicon solar cell can easily reach high temperature under normal operating conditions. Thus the heated solar cell becomes rapidly less efficient as the temperature of solar cell rises. To increase the efficiency of the solar cell, air or water-based cooling system is used. To surpass conventional cooling devices requiring additional power as well as large working space for air/water collectors, we develop a new technology of pairing an active thermal backplane (ATB) to solar cell. The ATB design is based on MTG technology utilizing the physics of the 2nd order phase transition of active ferromagnetic materials. The MTG is cost-effective conversion of thermal energy to electrical energy and is fundamentally different from Seebeck TEG devices. The ATB (MTG) is in addition to being an energy conversion system, a very good conveyor of heat through both conduction and convection. Therefore, the ATB can provide dual-mode for the proposed hybrid energy harvesting. One is active convective and conductive cooling for heated solar cell. Another is active thermal energy harvesting from heat of solar cell. These novel hybrid energy harvesting device have potentially simultaneous energy conversion capability of solar and thermal energy into electricity. The results presented can be used for better understanding of hybrid energy harvesting system that can be integrated into commercial applications.

  9. Noise figure of hybrid optical parametric amplifiers.

    PubMed

    Marhic, Michel E

    2012-12-17

    Following a fiber optical parametric amplifier, used as a wavelength converter or in the phase-sensitive mode, by a phase-insensitive amplifier (PIA) can significantly reduce four-wave mixing between signals in broadband systems. We derive the quantum mechanical noise figures (NF) for these two hybrid configurations, and show that adding the PIA only leads to a moderate increase in NF.

  10. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  11. An oligonucleotide hybridization approach to DNA sequencing.

    PubMed

    Khrapko, K R; Lysov YuP; Khorlyn, A A; Shick, V V; Florentiev, V L; Mirzabekov, A D

    1989-10-09

    We have proposed a DNA sequencing method based on hybridization of a DNA fragment to be sequenced with the complete set of fixed-length oligonucleotides (e.g., 4(8) = 65,536 possible 8-mers) immobilized individually as dots of a 2-D matrix [(1989) Dokl. Akad. Nauk SSSR 303, 1508-1511]. It was shown that the list of hybridizing octanucleotides is sufficient for the computer-assisted reconstruction of the structures for 80% of random-sequence fragments up to 200 bases long, based on the analysis of the octanucleotide overlapping. Here a refinement of the method and some experimental data are presented. We have performed hybridizations with oligonucleotides immobilized on a glass plate, and obtained their dissociation curves down to heptanucleotides. Other approaches, e.g., an additional hybridization of short oligonucleotides which continuously extend duplexes formed between the fragment and immobilized oligonucleotides, should considerably increase either the probability of unambiguous reconstruction, or the length of reconstructed sequences, or decrease the size of immobilized oligonucleotides.

  12. A Hybrid Approach for Correcting Grammatical Errors

    ERIC Educational Resources Information Center

    Lee, Kiyoung; Kwon, Oh-Woog; Kim, Young-Kil; Lee, Yunkeun

    2015-01-01

    This paper presents a hybrid approach for correcting grammatical errors in the sentences uttered by Korean learners of English. The error correction system plays an important role in GenieTutor, which is a dialogue-based English learning system designed to teach English to Korean students. During the talk with GenieTutor, grammatical error…

  13. Ambipolar solution-processed hybrid perovskite phototransistors

    PubMed Central

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tom

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications. PMID:26345730

  14. Rice artificial hybridization for genetic analysis.

    PubMed

    Sha, Xueyan

    2013-01-01

    Artificial hybridization has probably been practiced since ancient time; however, the science of genetics did not initiate until Gregor Mendel conducted a series of crosses between different pure lines of garden pea and made careful observations and systematical analyses of their offspring. Artificial hybridization or crossing between carefully chosen parents has been and still is the primary way to transfer genes from different germplasm for self-pollinated rice. Through gene recombination, novel genetic variation is created by different arrangements of genes existing in parental lines. Procedures of artificial hybridization involve the selection of appropriate panicles from representative plants of the female parents, the emasculation of female parents, and the pollination of emasculated panicles with abundant pollens of selected male parents. Of the numerous proposed methods, hot water and vacuum emasculation have proven to be the most robust and reliable ones. A successful and efficient hybridization program also relies on the knowledge of parental lines or germplasm, the reproductive biology and development of rice, the conditions needed to promote flowering and seed development, and the techniques to synchronize flowering of diverse parents.

  15. Hybrid mesh generation using advancing reduction technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study presents an extension of the application of the advancing reduction technique to the hybrid mesh generation. The proposed algorithm is based on a pre-generated rectangle mesh (RM) with a certain orientation. The intersection points between the two sets of perpendicular mesh lines in RM an...

  16. Probing Compositional Variation within Hybrid Nanostructures

    SciTech Connect

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  17. Maize and tripsacum: experiments in intergeneric hybridization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research in maize-Tripsacum hybridization is extensive and encompasses a period of more than 60 years of collective research. The publication “The origin of Indian corn and its relatives” describes some of the initial research in this area (Mangelsdorf and Reeves, 1939) and is recommended reading f...

  18. Breeding maintainer lines for hybrid rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintainer lines are a component of 3-line hybrid rice production, necessary to perpetuate the male-sterile (MS) line. In practice, it is often the maintainer that is bred with an array of desirable traits, then male-sterility is transferred in through several backcrosses with the new maintainer to...

  19. Hybrid materials for optics and photonics.

    PubMed

    Lebeau, Benedicte; Innocenzi, Plinio

    2011-02-01

    The interest in organic-inorganic hybrids as materials for optics and photonics started more than 25 years ago and since then has known a continuous and strong growth. The high versatility of sol-gel processing offers a wide range of possibilities to design tailor-made materials in terms of structure, texture, functionality, properties and shape modelling. From the first hybrid material with optical functional properties that has been obtained by incorporation of an organic dye in a silica matrix, the research in the field has quickly evolved towards more sophisticated systems, such as multifunctional and/or multicomponent materials, nanoscale and self-assembled hybrids and devices for integrated optics. In the present critical review, we have focused our attention on three main research areas: passive and active optical hybrid sol-gel materials, and integrated optics. This is far from exhaustive but enough to give an overview of the huge potential of these materials in photonics and optics (254 references).

  20. Hybrid speciation in agricultural Campylobacter coli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Hybridization between distantly related organisms can facilitate rapid adaptation but is constrained by epistatic fitness interactions. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other at an average of nearly 40 amino acids per gene. Nevertheless, they have...

  1. Charmonium meson and hybrid radiative transitions

    SciTech Connect

    Guo, Peng; Yépez-Martínez, Tochtli; Szczepaniak, Adam P.

    2014-06-01

    We consider the non-relativistic limit of the QCD Hamiltonian in the Coulomb gauge, to describe radiative transitions between conventional charmonium states and from the lowest multiplet of cc¯ hybrids to charmonium mesons. The results are compared to potential quark models and lattices calculations.

  2. TARDEC Hybrid Electric (HE) Technology Program

    DTIC Science & Technology

    2011-02-05

    System Generator /Motor...ireDifferential Differential Energy Storage System Generator / Motor Inverter Engine Generator/Motor Transmission 3-Phase AC power into Motor Inverter When...Hybrid Electric Drive Propulsion TireTire Tire Energy Storage System Generator Controller 3Ø A/C to HV DC Generator Controller rectifies AC to DC

  3. A Mathematical Model for Suppression Subtractive Hybridization

    PubMed Central

    Gadgil, Chetan; Rink, Anette; Beattie, Craig

    2002-01-01

    Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assessing the effect of various parameters to facilitate its optimization. We derive an equation for the probability that a particular differentially expressed species is successfully isolated and use this to quantify the effect of the following parameters related to the cDNA sample: (a) mRNA abundance; (b) partial sequence complementarity to other species; and (3) degree of differential expression. We also evaluate the effect of parameters related to the process, including: (a) reaction times; and (b) extent of driver excess used in the two hybridization reactions. The optimum set of process parameters for successful isolation of differentially expressed species depends on transcript abundance. We show that the reaction conditions have a significant effect on the occurrence of false-positives and formulate strategies to isolate specific subsets of differentially expressed genes. We also quantify the effect of non-specific hybridization on the false-positive results and present strategies for spiking cDNA sequences to address this problem. PMID:18629052

  4. Hybrid Discourse Practice and Science Learning

    ERIC Educational Resources Information Center

    Kamberelis, George; Wehunt, Mary D.

    2012-01-01

    In this article, we report on a study of how creative linguistic practices (which we call "hybrid discourse practices") were enacted by students in a fifth-grade science unit on barn owls and how these practices helped to produce a synergistic micro-community of scientific practice in the classroom that constituted a fertile space for students…

  5. Hybrid quantum teleportation: A theoretical model

    SciTech Connect

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  6. Lithium-Air Batteries with Hybrid Electrolytes.

    PubMed

    He, Ping; Zhang, Tao; Jiang, Jie; Zhou, Haoshen

    2016-04-07

    During the past decade, Li-air batteries with hybrid electrolytes have attracted a great deal of attention because of their exceptionally high capacity. Introducing aqueous solutions and ceramic lithium superionic conductors to Li-air batteries can circumvent some of the drawbacks of conventional Li-O2 batteries such as decomposition of organic electrolytes, corrosion of Li metal from humidity, and insoluble discharge product blocking the air electrode. The performance of this smart design battery depends essentially on the property and structure of the cell components (i.e., hybrid electrolyte, Li anode, and air cathode). In recent years, extensive efforts toward aqueous electrolyte-based Li-air batteries have been dedicated to developing the high catalytic activity of the cathode as well as enhancing the conductivity and stability of the hybrid electrolyte. Herein, the progress of all aspects of Li-air batteries with hybrid electrolytes is reviewed. Moreover, some suggestions and concepts for tailored design that are expected to promote research in this field are provided.

  7. Report on Hybrid Rocket Cold Flow Experiments

    NASA Technical Reports Server (NTRS)

    Haapanen, Siina

    2004-01-01

    The discovery of paraffin based fuels has lead to renewed interest in hybrid rocket research. Experiments have shown that they burn 3-5 times faster than conventional hybrid fuels. High thrust level that would have required a multi-port design in the past can now be achieved with a single-port motor. While tests performed in Stanford and NASA Ames have demonstrated the paraffin hybrids to be a promising technology, one of the major challenges has been the relatively low efficiency. The c* efficiency has ranged between 80% and 90% in experiments conducted at the Ames Hybrid Combustion Facility (HCF). The test motor in these experiments had a 45 inch long fuel grain with the initial port diameter ranging between 3 and 5_inches. The c* efficiency is defined as the ratio of measured and theoretical characteristic velocities and is related to how completely the fuel and oxidizer are converted to combustion products. A low efficiency means that the reactants burn incompletely, and the reaction does not release the maximum possible amount of energy.

  8. Adventure Learning: Transformative Hybrid Online Education

    ERIC Educational Resources Information Center

    Doering, Aaron

    2006-01-01

    Adventure learning (AL) is a hybrid distance education approach that provides students with opportunities to explore real-world issues through authentic learning experiences within collaborative learning environments. This article defines this online distance education approach, outlines an AL framework, and showcases an AL archetype. In AL…

  9. Hybrid inflation in the complex plane

    NASA Astrophysics Data System (ADS)

    Buchmüller, W.; Domcke, V.; Kamada, K.; Schmitz, K.

    2014-07-01

    Supersymmetric hybrid inflation is an exquisite framework to connect inflationary cosmology to particle physics at the scale of grand unification. Ending in a phase transition associated with spontaneous symmetry breaking, it can naturally explain the generation of entropy, matter and dark matter. Coupling F-term hybrid inflation to soft supersymmetry breaking distorts the rotational invariance in the complex inflaton plane — an important fact, which has been neglected in all previous studies. Based on the δ N formalism, we analyze the cosmological perturbations for the first time in the full two-field model, also taking into account the fast-roll dynamics at and after the end of inflation. As a consequence of the two-field nature of hybrid inflation, the predictions for the primordial fluctuations depend not only on the parameters of the Lagrangian, but are eventually fixed by the choice of the inflationary trajectory. Recognizing hybrid inflation as a two-field model resolves two shortcomings often times attributed to it: the fine-tuning problem of the initial conditions is greatly relaxed and a spectral index in accordance with the PLANCK data can be achieved in a large part of the parameter space without the aid of supergravity corrections. Our analysis can be easily generalized to other (including large-field) scenarios of inflation in which soft supersymmetry breaking transforms an initially single-field model into a multi-field model.

  10. Hybrid functionals for simulating complex oxides

    NASA Astrophysics Data System (ADS)

    Franchini, Cesare

    Hybrid functionals are a class of exchange-correlation (XC) functionals in density functional theory (DFT) that are constructed by a suitable mixing of local/semi-local XC functionals (LDA/GGA) with a certain portion of the exact Hartree-Fock exchange. After being used for years in the chemistry community for studying molecular properties, hybrid functionals are being increasingly widely used for solid state problems, for which standard LDA/GGA approximations provide a defective description. In particular, hybrid functionals appear to account well for the complicated coupling between lattice, charge and spin degrees of freedom in transition metal oxides, a class of materials that has recently attracted a lot of interest due to its technological relevance (all-oxides electronics), the large spectrum of functionalities, and the many challenging issues related to strong electronic correlation. The purpose of this talk is to present the essential ideas and physical picture of hybrid functionals and to present a map of recent applications to complex oxides aiming to cover an ample spectra of cases (sp , 3 d, 4 d and 5 d compounds) and to discuss an extended array of physical phenomena including: metal-to-insulator transitions, electron localization, bandgap prediction, polarons, multiferroism, and spin-orbit coupling.

  11. A Hybrid Activity System as Educational Innovation

    ERIC Educational Resources Information Center

    Yamazumi, Katsuhiro

    2008-01-01

    This article analyzes a hybrid after-school learning activity for children called "New School" (NS). NS is an inter-institutional, collaborative project based on a partnership between a university and local elementary schools that also involves other social actors and institutions. Using a framework of third generation activity theory, the article…

  12. Hybrid metrology universal engine: co-optimization

    NASA Astrophysics Data System (ADS)

    Vaid, Alok; Osorio, Carmen; Tsai, Jamie; Bozdog, Cornel; Sendelbach, Matthew; Grubner, Eyal; Koret, Roy; Wolfling, Shay

    2014-04-01

    In recent years Hybrid Metrology has emerged as an option for enhancing the performance of existing measurement toolsets and is currently implemented in production1. Hybrid Metrology is the practice to combine measurements from multiple toolset types in order to enable or improve the measurement of one or more critical parameters. While all applications tried before were improved through standard (sequential) hybridization of data from one toolset to another, advances in device architecture, materials and processes made possible to find one case that demanded a much deeper understanding of the physical basis of measurements and simultaneous optimization of data. This paper presents the first such work using the concept of co-optimization based hybridization, where image analysis parameters of CD-SEM (critical dimensions Scanning Electron Microscope) are modulated by profile information from OCD (optical critical dimension - scatterometry) while the OCD extracted profile is concurrently optimized through addition of the CD-SEM CD results. Test vehicle utilized in this work is the 14nm technology node based FinFET High-k/Interfacial layer structure.

  13. Hybrid anode for semiconductor radiation detectors

    DOEpatents

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  14. Nitrous Oxide/Paraffin Hybrid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Zubrin, Robert; Snyder, Gary

    2010-01-01

    Nitrous oxide/paraffin (N2OP) hybrid rocket engines have been invented as alternatives to other rocket engines especially those that burn granular, rubbery solid fuels consisting largely of hydroxyl- terminated polybutadiene (HTPB). Originally intended for use in launching spacecraft, these engines would also be suitable for terrestrial use in rocket-assisted takeoff of small airplanes. The main novel features of these engines are (1) the use of reinforced paraffin as the fuel and (2) the use of nitrous oxide as the oxidizer. Hybrid (solid-fuel/fluid-oxidizer) rocket engines offer advantages of safety and simplicity over fluid-bipropellant (fluid-fuel/fluid-oxidizer) rocket en - gines, but the thrusts of HTPB-based hybrid rocket engines are limited by the low regression rates of the fuel grains. Paraffin used as a solid fuel has a regression rate about 4 times that of HTPB, but pure paraffin fuel grains soften when heated; hence, paraffin fuel grains can, potentially, slump during firing. In a hybrid engine of the present type, the paraffin is molded into a 3-volume-percent graphite sponge or similar carbon matrix, which supports the paraffin against slumping during firing. In addition, because the carbon matrix material burns along with the paraffin, engine performance is not appreciably degraded by use of the matrix.

  15. Fluorescent hybridization probes for nucleic acid detection.

    PubMed

    Guo, Jia; Ju, Jingyue; Turro, Nicholas J

    2012-04-01

    Due to their high sensitivity and selectivity, minimum interference with living biological systems, and ease of design and synthesis, fluorescent hybridization probes have been widely used to detect nucleic acids both in vivo and in vitro. Molecular beacons (MBs) and binary probes (BPs) are two very important hybridization probes that are designed based on well-established photophysical principles. These probes have shown particular applicability in a variety of studies, such as mRNA tracking, single nucleotide polymorphism (SNP) detection, polymerase chain reaction (PCR) monitoring, and microorganism identification. Molecular beacons are hairpin oligonucleotide probes that present distinctive fluorescent signatures in the presence and absence of their target. Binary probes consist of two fluorescently labeled oligonucleotide strands that can hybridize to adjacent regions of their target and generate distinctive fluorescence signals. These probes have been extensively studied and modified for different applications by modulating their structures or using various combinations of fluorophores, excimer-forming molecules, and metal complexes. This review describes the applicability and advantages of various hybridization probes that utilize novel and creative design to enhance their target detection sensitivity and specificity.

  16. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  17. 75 FR 81456 - Hybrid Retirement Plans; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BG36 Hybrid Retirement Plans; Correction AGENCY: Internal... plans. DATES: This correcting amendment is effective on December 28, 2010, and is applicable on October... Reduction in rate of benefit accrual under a defined benefit plan. * * * * * (b) * * * (1) * * *...

  18. 76 FR 4244 - Hybrid Retirement Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF THE TREASURY Internal Revenue Service 26 CFR Part 1 RIN 1545-BG36 Hybrid Retirement Plans Correction In rule document 2010-25941 beginning on page 64123 in the issue of Tuesday, October 19, 2010, make the...

  19. High-Temperature, Bellows Hybrid Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor); Sirocky, Paul J. (Inventor)

    1994-01-01

    A high-temperature hybrid seal is constructed of multiple elements to meet the many demands placed on the seal. The primary elements are: a central high-temperature bellows, a braided ceramic sheath covering the bellows, an outer abrasion resistant sheath covering the ceramic sheath, and a structurally-sound seal-end termination.

  20. Hybrid Laser Would Combine Power With Efficiency

    NASA Technical Reports Server (NTRS)

    Sipes, Donald L., Jr

    1986-01-01

    Efficient laser system constructed by using two semiconductor lasers to pump neodymium yttrium aluminum garnet (Nd:YAG) device. Hybrid concept allows digital transmission at data rates of several megabits per second with reasonably sized optical aperture of 20 cm. Beams from two GaAs lasers efficiently coupled for pumping Nd:YAG crystal. Combination of lasers exploits best features of each.